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ABSTRACT 

 

 

Driver heterogeneity in travel behavior has repeatedly been cited in the literature as a 

limitation that needs to be addressed. In this work, driver heterogeneity is addressed from 

four different perspectives. First, driver heterogeneity is addressed by models of driver 

perceptions of travel conditions: travel distance, time, and speed. Second, it is addressed 

from the perspective of driver learning trends and models of driver-types. Driver type is 

not commonly used in the vernacular of transportation engineering. It is a term that was 

developed in this work to reflect driver aggressiveness in route switching behavior. It 

may be interpreted as analogous to the commonly known personality-types, but applied 

to driver behavior. Third, driver heterogeneity is addressed via latent class choice models. 

Last, personality traits were found significant in all estimated models. The first three 

adopted perspectives were modeled as functions of variables of driver demographics, 

personality traits, and choice situation characteristics. The work is based on three 

datasets: a driving simulator experiment, an in situ driving experiment in real-world 

conditions, and a naturalistic real-life driving experiment. In total, the results are based on 

three experiments, 109 drivers, 74 route choice situations, and 8,644 route choices. It is 

assuring that results from all three experiments were found to be highly consistent. 

Discrepancies between predictions of network-oriented traffic assignment models and 

observed route choice percentages were identified and incorporating variables of driver 

heterogeneity were found to improve route choice model performance. Variables from all 

three groups: driver demographics, personality traits, and choice situation characteristics, 

were found significant in all considered models for driver heterogeneity. However, it is 

extremely interesting that all five variables of driver personality traits were found to be, 

in general, as significant as, and frequently more significant than, variables of trip 

characteristics – such as travel time. Neuroticism, extraversion and conscientiousness 

were found to increase route switching behavior, and openness to experience and 

agreeable were found to decrease route switching behavior. In addition, as expected, 

travel time was found to be highly significant in the models that were developed. 

However, unexpectedly, travel speed was also found to be highly significant, and travel 

distance was not as significant as expected. Results of this work are highly promising for 

the future of understanding and modeling of heterogeneity of human travel behavior, as 

well as for identifying target markets and the future of intelligent transportation systems. 
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Chapter 1 

Introduction 
 

 
If an alien was to hover a few hundred yards above the planet 

It could be forgiven for thinking 

That cars were the dominant life-form 

Heathcore Williams, Autogeddon, 1991 [1] 

 

In his book, The Life of the Automobile, Ilya Ehrenburg defended the automobile. He said “[The 

automobile] can’t be blamed for anything. Its conscience is as clear as Monsieur Citroen’s 

conscience. It only fulfills its destiny: it is destined to wipe out the world” [2]. These two 

observations are very true to the extent that Herbert Girardet wrote that today we no longer live 

in a civilization, but rather in a mobilization – of natural resources, people and products [3]. 

 

Climate change and the peaking of oil are probably the two most prominent life threatening 

challenges of the twenty first century. The term peaking of oil refers to the point in time at which 

maximum global extraction of oil is reached, where oil extraction starts to decline and become 

more expensive, and when oil wars begin [4]. Relevant to the former challenge, transportation 

systems are responsible for approximately 14% of global greenhouse gas emissions, and it is the 

second most growing source of these emissions [5]. In the US, motor vehicles alone are 

estimated to produce 60% of all carbon dioxide gas emissions [6]. As for the latter challenge, 

half of all global oil produced is used in transportation. In addition, about 95% of all 

transportation systems are powered with oil [7]. Rob Routs, Executive Director at Shell said that 

“Since the marriage of fossil fuels and the internal combustion engine some hundred years ago, 

the fortunes of our industries have been tied together” [8]. However, it appears that the fate of 

climate change too is tied with the fate of the internal combustion engine, because every gallon 

of petrol produces 24 pounds of heat trapping emissions [4]. 

  

The world is asking transportation researchers and engineers for solutions that could decrease the 

carbon footprint and the oil dependency of today’s transportation systems. Especially since a 

significant portion of these emissions and oil consumption is unproductively and irrationally 

wasted in traffic jams. Adding to this the extravagant annual numbers of deaths and injuries that 

are related to transportation makes this a nightmare. Most of transportation emissions, oil 

consumption, traffic jams, and casualties are attributed to the automobile. Today, the number of 

automobiles roaming the world is estimated to be more than 650 million cars. With current 

trends it is estimated to reach 1 billion in a couple of decades [4]. 

 

Many have written about the obligatory need to significantly cut human generated greenhouse 

gas emissions and dependence on oil, if humans care about sustaining life on earth. Today, 

however, chances that humans will change their lifestyles or stop using the car to save their lives 

seem highly unlikely. Even more than the way it was half a century ago when science fiction 

author and Nobel Peace Prize Nominee Arthur C. Clarke wrote that civilization could not survive 

for 10 minutes without the car [9]. One of Buckminster Fuller’s famous quotes states that “You 
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never change anything by fighting the existing reality. To change something, build a new model 

that makes the existing model obsolete”. There are signs that the transportation industry is 

following this quote. It appears that the above threats will result in the tipping of transportation 

as we know it. 

 

In spite of its difficulty, many have made applaudable efforts to predict the future of 

transportation [4, 10, 11]. Although these predictions are recent, uncertain and consequently 

incomprehensive, and although the predictions are very different, they all have one common 

solution element: Intelligent Transportation Systems (ITSs). 

 

It is because of all the above that worldwide expectations from ITS applications are on the rise. 

To “enhance safety, increase mobility and sustain the environment” [12], ITS attempts to 

transform the transportation system to “an integrated nexus rather than a parallel series” [4]. ITS 

applications apply information, communication and computation technologies to all areas of the 

transportation industry. Although ITS applications vary significantly, the focus of this 

dissertation is not. This dissertation provides foundation work that demonstrates that for ITS to 

achieve its ultimate potential, it is imperative to consider driver heterogeneity. 

 

Route choice models are responsible for predicting the route a driver would choose when going 

from a point of origin to a point of destination. Route choice models are among the most widely 

used models in transportation engineering. They are used in transportation planning, traffic 

simulation, advanced traffic signal control, and Electronic Route Guidance Systems (ERGSs). 

ERGS applications are the branch of Advanced Traveler Information Systems (ATISs) that 

provides route guidance to a traveler; whether pre-trip (e.g. Google Maps) or en-route (e.g. 

commercial GPS units like Garmin). ATIS, by turn, is the branch of ITS which involves 

providing travelers with information to aid them in making informed choices. 

 

In general, there are two main groups of route choice models. The first group encompasses 

mathematical network oriented models that assume drivers to behave in a certain manner so that 

a certain objective function can be optimized at the network level (e.g. user equilibrium and 

dynamic traffic assignment) [13-15]. The second group of models includes behavioral driver 

oriented models which attempt to accurately describe individual driver route choice behavior and 

incorporate the effect of information provision on driver behavior. Examples of these models 

include random utility models [16, 17], random regret minimization models [18], probabilistic 

models [19], cognitive-psychology based models [20, 21], fuzzy models [22], and models based 

on data mining which are sometimes referred to as user models [23-26]. 

 

An optimally functioning ITS system would use the above models on two different sides: the 

driver and the system. While the driver side would improve network performance by helping 

drivers make better choices, the system side would enhance network performance by improving 

network efficiency. Two main assumptions are required for the driver side system to be 

successful: i) drivers are incapable of accurately acquiring the provided information on their 

own, and ii) the provided information is relevant to the drivers’ criteria for choice preference. On 

the other hand, two other assumptions are needed for the system side to be efficient: i) it 

considers the information provided to each driver and can correctly predict drivers’ choices, and 

ii) it is capable of using these predictions to improve system management. 
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Since that the violation of any one of these assumptions sacrifices half of the ITS system, it is 

imperative to ensure their validity. Additionally, it can be seen that all four of these assumptions: 

a) perceptions, b) choice criteria, c) choice prediction, and d) network management, are highly 

dependent on the behavior of the individual driver. Accordingly, an ITS system that incorporates 

factors of driver heterogeneity is destined to be more efficient. In summary, two factors are 

crucial: 1) assumptions validity, and 2) driver heterogeneity. 

 

Moreover, within the context of route choice behavior, recent publications have identified four 

main areas of challenge: i) experiment medium, ii) processing of large datasets, iii) choice set 

generation, and iv) discrete choice modeling [25, 27]. In addition, driver heterogeneity has been 

repeatedly cited as a limitation that needs to be addressed. Example citations include: “it is 

desirable to develop a model which is disaggregated by a type of driver because the route choice 

behavior varies by individual” [28], “Drivers do not become homogeneous and rational, as 

equilibrium analyses presuppose; rather, there are fewer rational drivers even after a long process 

of learning, and heterogeneous drivers make up the system” [29], “studies that focus only on a 

rather rational description of day-to-day learning cover only a limited part of the way route 

choices are made over time” [17]. 

 

Mediums for route choice experiments include stated and revealed preference surveys, travel and 

driving simulator experiments, and real-world and naturalistic driving GPS-based experiments. 

In addition, a few experiments are based on simulation. Because of cost limitations and past 

technological limitations, most route choice literature is based on either stated preference surveys 

or travel simulator experiments. Stated preference surveys are surveys in which drivers answer 

questions about their behavior in hypothetical situations [30, 31]. Travel simulators are computer 

based programs that digitally display the choice situation and its characteristics for a participant. 

Then the participant makes her/his choice, which is considered a revealed preference [16, 32]. 

There are guidelines to make either of these methods more realistic [33]. Nonetheless, since 

drivers do not actually live the choice situation, it is impossible for either of these methods to 

capture drivers’ perceptions of real-world traffic conditions. On the other hand, for about a 

decade now, experiments based on driving simulators [19, 34] and GPS-based surveys [24, 26] 

have been gaining momentum. Driving simulators are vehicle-like structures which a person 

drives in virtual environments. It uses a computer to display the environment exterior of the 

vehicle to the driver. In a driving simulator, the driver drives through a virtual network in real-

time. In a travel simulator, no driving happens. Driving simulators have been extensively used 

for safety research. Recently, however, researchers have started to use driving simulators for 

travel behavior. GPS-based surveys are surveys based on actively logging the individuals’ 

movements –usually– in a naturalistic setting. They are usually supplemented with a travel diary 

that is typically filled by the participant. While experiment fidelity is the main critique for 

driving simulator-based experiments, limitations of GPS-based route choice surveys include the 

inability to infer the travel conditions on the alternative routes and the inability to identify the 

choice set that the driver considers when making her/his route choices. Last, simulation-based 

experiments are generally used to investigate the performance of a specific choice theory, and 

not for capturing driver behavior [29]. 
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With this in mind, the work presented here starts with an evaluation of three of the four 

necessary assumptions for an efficient ITS system: perceptions, choice criteria, and choice 

prediction. Then, the work attempts to identify sources of driver heterogeneity that can improve 

models of route choice behavior. Considered sources of driver heterogeneity include driver 

perceptions, learning trends and driver-types, latent classes, and variables of driver personality 

traits as captured by the NEO Personality Inventory-Revised [35]. Estimated route choice models 

include general, hierarchical and latent class models of route switching behavior, and models of 

route choice set size. In addition, this work addresses current challenges of experiment medium 

by estimating models using three different mediums: a driving simulator experiment 

supplemented with a revealed preference survey, a real-world experiment supplemented with 

stated and revealed preference surveys, and a naturalistic real-life experiment. In total the results 

presented in this work are based on a sample of 109 drivers, who collectively faced 74 choice 

situations and made 8,644 route choices. 

 

It is assuring that results from all three experiments were found to be highly comparable. 

Discrepancies between predictions of network-oriented traffic assignment models and observed 

route choice percentages were identified, and incorporating variables of driver heterogeneity 

were found to improve route choice model performance. Variables of three natures: driver 

demographics, personality traits, and choice situation characteristics, were found significant in 

all estimated models of driver heterogeneity. However, it is extremely interesting that all five 

variables of driver personality traits were found to be, in general, as significant as, and frequently 

more significant than, variables of trip characteristics – such as travel time. Neuroticism, 

extraversion and conscientiousness were found to increase route switching behavior, and 

openness to experience and agreeable were found to decrease route switching behavior. In 

addition, as expected, travel time was found to be highly significant in the models estimated. 

However, unexpectedly, travel speed was also found to be highly significant, and travel distance 

was not as significant as expected. 

 

This work is divided into three parts. The first part includes chapters 3, 4, and 5 and presents 

analysis and models that are based on the driving simulator experiment. The second part includes 

chapters 6, 7, 8, and 9 and presents analysis and models that are based on the real-word driving 

experiment. The last part includes chapter 10 and presents the analysis and models based on the 

naturalistic real-life driving experiment. 

 

The following parts of this dissertation are organized as follows. Chapter 2 presents a thorough 

literature review of route choice models and their implications on network performance. Part I: 

Driving Simulator Experiment follows chapter 2 and is outlined as follows. 

 

Chapter 3 contrasts drivers’ perceptions and choices against their experiences of travel time, 

speed and distance. It identifies significant limitations of driver perceptions and highlights the 

importance of travel speed perceptions in route choice behavior. Chapter 4 explores the 

aggregate network choice evolution, and based on driver learning trends identifies four driver 

types. Chapter 5 explores the benefits of including the identified driver types in the route choice 

model, and investigates differences between driver-type choice criteria.  
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Part II: Real-World Driving Experiment starts with chapter 6 and is composed of the following. 

Chapter 6 (similar to chapter 3) contrasts drivers’ perceptions and choices against their 

experiences of travel time, speed and distance, and it identifies significant limitations of driver 

perceptions and highlights the importance of travel speed in route choice behavior. In addition, 

the chapter includes models of driver perceptions that reveal the importance of driver personality 

traits. Chapter 7 identifies discrepancies between predictions of network-oriented traffic 

assignment models and observed route choice percentages. The same four driver-types of 

Chapter 4 are re-observed in Chapter 7, and are found predictable based on driver demographics 

and personality traits in a driver-type model. Chapter 8 presents a two-stage hierarchical model 

where the first stage predicts the driver type and the second stage incorporates the predicted 

driver type in route choice switching models. The last chapter of Part II, Chapter 9, estimates 

latent class choice models to overcome the limitations of the hierarchical model. Like the 

hierarchical model, the estimated latent class models prove that inclusion of latent driver classes 

improves model performance. 

 

In the last part of this work, Part III: Naturalistic Real-Life Experiment, Chapter 10 presents two 

route choice behavior models: a route switching model and a model of route choice set size. 

Variables of personality traits are found to be highly significant in both models. 

 

The dissertation ends with Chapter 11, which presents the conclusions of this work and 

suggestions for further work. 

 

Results of this work are highly promising for the future of understanding and modeling 

heterogeneity of human travel behavior, as well as for identifying target markets and the future 

of intelligent transportation systems. 
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GLOSSARY 

Link or Arc: A roadway segment with homogeneous traffic and roadway characteristics (e.g. same number of lanes, 
base lane capacity, free-flow speed, speed-at-capacity, and jam density). Typically networks are divided into links for 
traffic modeling purposes. 

Route or Path: A sequence of roadway segments (links or arcs) used by a driver to travel from his/her point of origin 
to his/her destination. 

Traffic Routing: The procedure that computes the sequence of roadways that minimize some utility objective 
function. This utility function could either be travel time or a generalized function that also includes road tolls. 

Traffic Assignment: The procedure used to find the link flows from the Origin-Destination (O-D) demand. Traffic 
assignment involves two steps: (1) traffic routing and (2) traffic demand loading. Traffic assignment can be divided 
into static, time-dependent, and dynamic. 

User Equilibrium Traffic Assignment: The assignment of traffic on a network such that it distributes itself in a way 
that the travel costs on all routes used from any origin to any destination are equal, while all unused routes have equal 
or greater travel costs. 

System Optimum Traffic Assignment: The assignment of traffic such that the average journey travel times of all 
motorists is a minimum, which implies that the aggregate vehicle-hours spent in travel is also minimum. 
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Static Traffic Assignment: Traffic assignment ignoring the temporal dimension of the problem. 

Time-Dependent Traffic Assignment:  An approximate approach to modeling the dynamic traffic assignment 
problem by dividing the time horizon into steady-state time intervals and applying a static assignment to each time 
interval. 

Dynamic Traffic Assignment: Traffic assignment considering the temporal dimension of the problem. 

Traffic Loading: The procedure of assigning O-D demands to routes. 

Synthetic O-D Estimation: The procedure that estimates O-D demands from measured link flow counts, which 
includes static, time-dependent, and dynamic. 

Traffic Stream Motion Model: A mathematical representation (traffic flow model) for traffic stream motion behavior.  

Car-following Model: A mathematical representation (traffic flow model) for driver longitudinal motion behavior.  

Marginal Link Travel Time: The increase in a link’s travel time resulting from an assignment of an additional vehicle 
to this link. 

I. DEFINITION OF THE SUBJECT AND IMPORTANCE 

The dynamic nature of traffic networks is manifested in both temporal and spatial changes in traffic demand, 
roadway capacities, and traffic control settings. Typically, the underlying network traffic demand builds up over time 
at the onset of a peak period, varies stochastically during the peak period, and decays at the conclusion of the peak 
period. As traffic congestion builds up within a transportation network, drivers may elect to either cancel their trip 
altogether, alter their travel departure time, change their mode of travel, or change their route of travel. Dynamic 
traffic routing is defined as the process of dynamically selecting the sequence of roadway segments from a trip origin 
to a trip destination. Dynamic routing entails using time-dependent roadway travel times to compute this sequence of 
roadway segments. Consequently, the modeling of driver routing behavior requires the estimation of roadway travel 
times into the near future, which may entail some form of traffic modeling. 

In addition to dynamic changes in traffic demand, roadway capacities are both stochastic and vary dynamically as 
vehicles interact with one another along roadway segments. For example, the roadway capacity at a merge section 
varies dynamically as the composition of on-ramp and freeway demands vary (Cassidy et al. 1995; Evans et al. 2001; 
Lertworawanich et al. 2001; Lorenz et al. 2001; Lertworawanich et al. 2003; Minderhoud et al. 2003; Kerner 2004; 
Kerner 2004; Kerner et al. 2004; Rakha et al. 2004; Cassidy et al. 2005; Elefteriadou et al. 2005; Kerner 2005; Kerner et al. 
2006). To further complicate matters, traffic control settings (e.g. traffic signal timings) also vary both temporally and 
spatially, thus introducing another level of dynamics within transportation networks. All these factors make the 
dynamic assessment of traffic networks extremely complex, as shall be demonstrated in this article. The article is by no 
means comprehensive but does provide some insight into the various challenges and complexities that are associated 
with the assessment of dynamic networks. 

II. INTRODUCTION 

Studies have shown that even drivers familiar with a trip typically choose sub-optimal routes thus incurring extra 
travel time in the range of seven percent on average (Jeffery 1981). Furthermore, the occurrence of incidents and 
special events introduces other forms of variability that drivers are unable to anticipate and thus result in additional 
errors in a driver’s route selection. Consequently, advanced traveler information systems (ATISs), which are an 
integral component of intelligent transportation systems (ITSs), can assist the public in their travel decisions by 
providing real-time travel information via route guidance systems; variable message signs (VMSs); the radio, or the 
web. It is envisioned that better travel information can enhance the efficiency of a transportation system by allowing 
travelers to make better decisions regarding their time of departure, mode of travel, and/or route of travel. An 
integral component of an ATIS is a dynamic traffic assignment (DTA) system. A DTA system predicts the 
transportation network state over a short time horizon (typically 15- to 60-min. time horizon) by modeling complex 
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demand and supply relationships through the use of sophisticated models and algorithms. The DTA requires two sets 
of input, namely demand and supply data. Demand represents the demand for travel and is typically in the form of 
mode-specific time-dependent origin-destination (O-D) matrices. Alternatively, the supply component models the 
movement of individual vehicles along a roadway typically using roadway specific speed-flow-density relationships 
together with the explicit modeling of queue buildup and decay. Figure 1 illustrates schematically that an ATIS can 
utilize two approaches for the estimation of future traffic conditions, namely: statistical models or a DTA framework. 
This article focuses on the DTA approach and thus will be described in more detail. The DTA combines a traffic router 
and modeler, as illustrated in the figure. The traffic router estimates the optimum travel routes while the traffic 
modeler models traffic to evaluate the performance of traffic after assigning motorists to their routes. A feedback loop 
allows for the feedback of either travel times or marginal travel times, which in turn, are used by the traffic router to 
compute the optimum routes. This feedback continues until the travel times are consistent with the travel routes and 
there is no incentive for drivers to alter their routes. 

Field Data

Traffic Router

Traffic Modeler

Model
Calibration

Feedback
Loop

Model Output

Disseminate 
Information

Statistical
Prediction

Modeling
Prediction

DTA

 

Figure 1: Schematic of an ATIS Framework 

A DTA can be applied off-line (in a laboratory) or on-line (in the field). An on-line application of a DTA entails 
gathering traffic data in real-time at any instant t and feeding these data to the DTA to predict short-term traffic 
conditions ∆t temporal units into the future (i.e. at time t+∆t). As was mentioned earlier, the input to the DTA includes 
mode specific time dependent O-D matrices. Unfortunately, current surveillance equipment does not measure O-D 
matrices; instead they measure traffic volumes passing a specific point. Consequently, O-D estimation tools are 
required to estimate the O-D matrix from observed link counts, as illustrated in Figure 2. However, the estimation of 
an O-D matrix requires identifying which O-D demands contribute to which roadway counts. The assigning of O-D 
demands to link counts involves what is commonly known in the field of traffic engineering as the traffic assignment 
problem. Traffic assignment in turn requires real-time O-D matrices and roadway travel times as input. Consequently, 
some form of feedback is required to solve this problem. A more detailed description of traffic assignment 
formulations and techniques is provided in Sections IV and V, while the estimation of route travel times is described 
in Section VII and the estimation of O-D matrices is described in Section VIII. 

The dynamic assessment of traffic networks using a DTA is both data driven (trapezoidal boxes) and model based 
(colored rectangular boxes), as illustrated in Figure 2. This procedure involves: measuring raw field data, constructing 
model input data, executing a traffic model to predict future conditions, and advising a traveler in the case of control 
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systems. The framework starts by measuring traffic states at instant “t” (roadway travel times and link flows) and 
subsequently estimating these traffic states Δt in the future. Procedures for the estimation of dynamic roadway travel 
times are provided in Section VII of this article. Using the measured link flows and travel times, an O-D matrix is 
constructed using a synthetic O-D estimator. Section VIII describes the various formulations for estimating a dynamic 
O-D matrix together with some heuristic practical approaches to estimate this O-D matrix. 

Once the O-D demands are estimated the future states are predicted using a traffic modeler. Section VI provides a 
brief overview of the various state-of-the-practice modeling approaches. The model also computes various measures 
of effectiveness (MOEs) including delay, fuel consumption, and emissions, as will be described in Section IX. The 
traffic modeler can either combine traffic modeling with traffic assignment or alternatively utilize the routes 
computed by the O-D estimator to route traffic. This closed loop optimal control framework can involve a single loop 
or in most cases may involve an iterative loop to attain equilibrium. The framework involves a feedback loop in which 
input model parameters are adjusted in real-time through the computation of an error between model predictions and 
actual measurements. This real-time calibration entails adjusting roadway parameters (e.g. capacity, free-flow speed, 
speed-at-capacity, and jam density) and traffic routes to reflect dynamic changes in traffic and network conditions. For 
example, the capacity of a roadway might vary because of changes in weather conditions and/or the occurrence of 
incidents. The system should be able to adapt itself dynamically without any user intervention. 

Field Roadway Counts 
(t)

Field TT
(t)

Field TT
(t+∆t)

Synthetic O-D Estimator 
& Traffic Router

Seed O-D Matrix
(t)

O-D Matrix
(t)

Routes
(t)

Traffic ModelerEstimated Link Flow
(t)

Link Flow Error
(t+∆t)

Estimated Link TT
(t)

Link TT Error
(t+∆t)

Calibrated Parameters
(t+∆t)

Estimated MOEs
(t+∆t)

 

Figure 2: Dynamic Traffic Assessment and Routing Framework 

This article attempts to synthesize the literature on the dynamic assessment and routing of traffic. The problem as will 
be demonstrated later in the paper is extremely complex because, after all, it deals with the human psychic, which not 
only varies from one person to another, but may also vary depending on the purpose of a trip, the level of urgency the 
driver has, and the psychic of the driver at the time the trip is made. This article is by no means comprehensive, given 
the massive literature on the topic, but does highlight some of the key aspects of the problem, how researchers have 
attempted to address this problem, and future research needs and directions.  

The article discusses the various issues associated with the dynamic assessment of transportation systems. Initially, 
driver travel decision behavior modeling is presented and discussed. Subsequently, various traffic assignment 
formulations are presented together with the implementation issues associated with these formulations. Next, the 
mathematical formulations of these assignment techniques are discussed together with mathematical and numerical 
approaches to modeling dynamic traffic routing. Subsequently, the issues associated with the modeling of traffic 
stream behavior, the estimation of dynamic roadway travel times, and the estimation of dynamic O-D demands are 
discussed. Subsequently, the procedures for computation of various assessment measures are presented. Next, the use 
of technology to alter driver behavior is presented. Finally, directions for further research are presented. 
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III. DRIVER TRAVEL DECISION BEHAVIOR MODELING 

As with the general case of modeling human behavior, modeling driver travel behavior has always been complicated, 
never accurate enough, and in constant demand for further research. Among the early attempts to model human 
choice behavior is the economic theory of the “economic man”; who in the course of being economic is also “rational” 
(Simon 1955). According to Simon’s exact words, “actual human rationality-striving can at best be an extremely crude and 
simplified approximation to the kind of global rationality that is implied, for example, by game-theoretical models”.   

In general, traffic assignment (static or dynamic assignment) has undoubtedly been among the most researched 
transportation problems, if not the most, for more than the past half of a century. However, DTA in particular has had 
the bigger share for almost one third of a century now. Since the early work of Merchant and Nemhauser (Merchant 
1978; Merchant 1978), researchers have attempted to improve available DTA models, hence, providing a very rich and 
vastly wide  literature. 

As a result of the rapid technological evolution over the last decade of the previous century (the 20th century); 
manifested in the communications, information and computational technological advances; a worldwide initiative to 
add information and communications technology to transport infrastructure and vehicles, termed as the intelligent 
transportation systems (ITS) program, was introduced to the transportation science. According to the Wikipedia 
Encyclopedia, among the main objectives of ITS is to “manage factors that are typically at odds with each other such as 
vehicles, loads, and routes to improve safety and reduce vehicle wear, transportation times and fuel consumption”. Needless to 
say, the ITS impact on route selection and roadway travel times has a direct effect on a DTA. 

The main effect of ITS on DTA manifests itself within the area of advanced traveler information systems (ATIS). ATIS 
is primarily concerned with providing people, in general, and trip makers, in particular, with pre-trip and en-route 
trip-related information. According to the U.S. Federal Highway Administration (FHWA), “advanced traveler 
information includes static and real-time information on traffic conditions, and schedules, road and weather conditions, special 
events, and tourist information. ATIS is classified by how and when travelers receive their desired information (pre-trip or en-
route) and is divided by user service categories. Operations essential to the success of these systems are the collection of traffic and 
traveler information, the processing and fusing of information - often at a central point, and the distribution of information to 
travelers. Important components of these systems include new technologies applied to the use and presentation of information and 
the communications used to effectively disseminate this information”(J. Noonan et al. 1998).  

As will be discussed later, a significant amount of DTA research is directed towards developing data dissemination 
standards. These standards attempt to achieve the maximum possible benefits while complying with the ITS 
objectives. Although the provision of pre-trip information may influence traveler departure time and route of travel 
(and in extreme cases, might result in a person canceling his/her trip all together), thus requiring further complicated 
DTA models that capture forgone and induced demand, as will be discussed later. Moreover, probably the greatest 
dimension for DTA model complexity was introduced to research when the disseminated ATIS information was to be 
designed as a control factor to change the manner by which trips are distributed over the network, for example from 
user equilibrium to system optimum.  

Although ITS and ATIS were practically introduced a little more than a decade ago, and in spite of the significant 
research funds and efforts that have been devoted to the topic, current available DTA models are, at least, relatively 
undeveloped, which necessitates new approaches that can capture the challenges from the application domains as 
well as for the fundamental questions related to tractability and realism (Srinivas Peeta 2001). This will be discussed 
briefly in the following section. 

Driver travel decision theory is a complicated research area. Research within this area encompasses a very wide range 
of research efforts. Before going over a brief list of these possible research areas, it should be noted that most of these 
research areas overlap with one another. Therefore, for a valid driver behavior model, all of the following aspects 
should be efficiently covered in a practical and realistic manner. This been said, the following is a brief list of some of 
the main research areas that are highly related to driver travel decision theory: 

 Human decision theory, which can be reflected in the trip maker’s decision to make or cancel a scheduled 
trip, route and departure time selection, compliance with the pre-trip or en-route disseminated information, 
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en-route path diversion and/or return, mode choice based on disseminated information, etc. Literature 
concerning human decision theory extends back to more than half a century ago and continues to be 
researched up to this date.  Examples of the literature concerning the human decision theory include: 
administrative behavior (Simon 1947; Simon 1957), theory of choice (Arrow 1951), rational choice theory 
(Simon 1955), game theory, and decision field theory (Jerome R. Busemeyer 1993). Examples of the literature 
concerning driver decision theory include: decision field theory (Talaat 2006), approximate reasoning models 
(Koutsopoulos et al. 1995), route choice utility models (Hawas 2004), inductive learning (Nakayama et al. 
2000), effect of age on routing decisions (Walker et al. 1997), and rational learning (Nakayama et al. 2001). 

 Design of disseminated information, which encompasses the criteria governing the dissemination of 
information, the structure and type of information to be disseminated, when data are disseminated, and 
indentifying target drivers. This governs, to a large extent, the drivers’ compliance rates in response to 
disseminated information. Hence, affecting the routes chosen by drivers, the traffic volumes on these routes 
and alternative routes, and different travel times, among others. Literature concerning the effect of ATIS and 
ATIS content on drivers behavior include: the required information that would reduce traffic congestion 
(Richard Arnott 1991), the effect of ATIS on drivers route choice (Abdel-Aty 1997), commuters diversion 
propensity (Schofer 1993), the effect of traffic information disseminated through variable message signs on 
driver choices (S. Peeta 2006), drivers en-route routing decisions (Asad J. Khattak 1993). 

 Human perception based on experience and information provision, which is reflected in day-to-day 
variations in driver decisions. For example, given identical conditions on two separate days, the same person 
might select different routes and departure times; possibly due to different experiences on previous days. 
Examples of current literature include: models that include the incorporation of driver behavior dynamics 
under information provision (Srinivas Peeta 2004), behavioral-based consistency seeking models (Srinivas 
Peeta 2006), perception updating and day-to-day travel choice dynamics with information provision 
(Mithilesh Jha 1998), the modeling of inertia and compliance mechanisms under real-time information 
(Srinivasan 2000), drivers psychological deliberation while making dynamic route choices (Talaat 2006), the 
effect of using in-vehicle navigational systems on diver behavior (Allen et al. 1991), the effect of network 
familiarity on routing decisions (Lotan 1997), and the effect of varying levels of cognitive loads on driver 
behavior (Katsikopoulos et al. 2000). 

 Among the challenges in modeling human decision theory are the possible data collection techniques. The 
current practice for data collection includes revealed and stated preference surveys. Research has 
demonstrated that surveyed stated preference results have significant biases; in comparison to real behavior. 
In addition to the research being performed to analyze, capture, and improve the reasons for such biases; 
other research directions are being performed to solve other survey problems. For example, the problems of 
low and slow survey participation rates, as well as under-represented groups in typical survey techniques. 
Examples of literature within this field include: stated preference for investigating commuters diversion 
propensity (Schofer 1993), using stated preference for studying the effect of advanced traffic information on 
drivers route choice (Abdel-Aty 1997), driver response to variable message sign-based traffic information 
according to stated preference data collected through three different survey administration methods, namely, 
an on-site survey, a mail-back survey and an internet-based survey (S. Peeta 2006), transferring insights into 
commuter behavior dynamics from laboratory experiments to field surveys (Hani S. Mahmassani 2000) and 
(Peeta 2000), and the applicability of using driving  simulators for data collection (Koutsopoulos et al. 1995). 

 Issues of uncertainty, which is a fundamental feature in most transportation phenomena.  Research dealing 
with uncertainty has a wide application in DTA. It can be represented in the trip maker route travel time 
estimates, in the compliance rates of drivers to information, in the driver’s trust in the disseminated 
information and its reliability, among others. Uncertainty-related research issues have been addressed 
through several approaches, like stochastic modeling, fuzzy control, and reliability indices. Examples of 
current literature include the works of Birge and Ho (Birge 1993), Peeta and Zhou (Peeta 1999; Peeta 1999), 
Cantarell and Cascetta (Cantarella 1995), Ziliaskopoulos and Waller (Ziliaskopoulos 2000), Waller and 
Ziliaskopoulos (Waller 2006), Waller (Waller 2000), Peeta and Jeong (Srinivas Peeta 2006), Jha et al. (Jha 1998), 
Peeta and Paz (Peeta 2006), Koutsopoulos et al. (Koutsopoulos et al. 1995), and Hawas (Hawas 2004). 
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IV. STATIC TRAFFIC ROUTING AND ASSIGNMENT 

Prior to describing the issues associated with dynamic routing, a description of static routing issues is first presented. 
This section describes two formulations for static traffic assignment, namely the User Equilibrium (UE) and System 
Optimum (SO) assignment. Traffic assignment is defined as the basic problem of finding the link flows given an 
origin-destination trip matrix and a set of link or marginal link travel times, as illustrated in Figure 3. The solution of 
this problem can either be based on the assumption that each motorist travels on the path that minimizes his/her 
travel time – known as the UE assignment – or alternatively to minimize the system-wide travel time – known as the 
SO assignment. The traffic assignment initially computes the travel routes (paths) and then determines the unique link 
flows on the various network links. As will be discussed later, while the estimated link flows are unique the path 
flows that are derived from these link flows are not unique and thus require some computational tool to estimate the 
most-likely of these path flows (synthetic O-D estimator). If a time dimension is introduced to the assignment module 
the formulation is extended from a static to a dynamic context. However, as will be discussed later the addition of a 
time dimension deems the formulation non-convex and thus the mathematical program used to solve the problem 
becomes infeasible and thus comes the need for a simulation-based solution approach. 

O-D MatrixLink TT Link Marginal TT

Solve Bechmann Formulation
(Eqn. 1)

Solve Total TT Formulation
(Eqn. 12)

UE Link Flows SO Link Flows

Synthetic O-D Estimator

Traffic Router and Assignment

 

Figure 3: Traffic Assignment Framework 

Wardrop (Wardrop 1952) was the first to explicitly differentiate between these two alternative traffic assignment 
methods or philosophies. Models based on Wardrop’s first principle are referred to as UE, while those based on the 
second principle are deemed as SO. Wardrop’s first principle states that “traffic on a network distributes itself in such a 
way that the travel costs on all routes used from any origin to any destination are equal, while all unused routes have equal or 
greater travel costs.” Alternatively, Wardrop’s second principle states that the average journey travel times of all 
motorists is a minimum, which implies that the aggregate vehicle-hours spent in travel is also minimum. 

One of the most spectacular examples that illustrated that the UE flow in a network is in general different from the SO 
flow, is the Braess network (Braess 1968). In this network the system-optimal flow was obtained by completely 
suppressing the flow which would normally occur, on a certain link, at equilibrium. The Braess “paradox” was 
studied later in more detail (LeBlanc et al. 1970; Murchland 1970; LeBlanc 1975; Fisk 1979; Stewart 1980; Frank 1981; 
Steinberg et al. 1983; Rilett et al. 1991). For example, Stewart (Stewart 1980) illustrated three important facts using a 
very simple two-link network and the Braess paradox that included: (a) the equilibrium flow does not necessarily 
minimize the total cost; (b) adding a new link to a network may increase the total cost at equilibrium; (c) adding a new 
link to a network may increase the equilibrium travel cost for each individual motorist. Stewart also illustrated that a 
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group of travelers having only one reasonable route may be seriously inconvenienced by another group of travelers 
who choose the same route in order to obtain a slight improvement in their personal cost of travel. 

User Equilibrium vs. System Optimum Traffic Assignment 
The differences between user and system optimum traffic assignment are best illustrated using an example 
illustration. The  sample test network for this study is derived from an earlier study by Rakha (Rakha 1990). The 
network consists of two one-way routes, numbered 1 and 2, from origin A to destination B. The travel time 
relationship for route 1 is characterized by the relationship 10+0.010v1 where v1 is the traffic volume on route 1 (veh). 
Alternatively, the travel time along route 2 is characterized by the relationship 15+0.005v2 where v2 is the traffic 
volume traveling along route 2 (veh). Considering at total demand of 1000 veh traveling between zones A and B, the 
travel time along routes 1 and 2 vary as a function of the volume on each of the routes, as illustrated in Figure 4. The 
figure demonstrates that the travel times along routes 1 and 2 are equal at 16.5 min. when 667 veh travel along route 1 
and 333 veh travel along route 2. Alternatively, the system-optimum traffic assignment is achieved at a volume 
distribution of 500 veh on routes 1 and 2, respectively. From a traffic engineering point of view, the difference in total 
travel time between the system and user-optimum traffic assignment (16,250 versus 16,667 veh-min.) is of interest. 
This difference represents the extent of possible benefits for a system versus user optimum routing for this particular 
network and traffic pattern. Figure 4 also illustrates how the average link travel times on routes 1 and 2 vary for the 
same range of possible routings of traffic between route 1 and 2. In this figure the difference between the travel times 
on route 1 and 2 (15.0 versus 17.5 minutes) represents the incentive that exists for vehicles on route 2 to change to 
route 1. When compared to the user equilibrium routing, the total difference in travel time is composed of two 
components, which represent the respective increases (route 1) and decreases (route 2) in average travel time that 
result from a shift from the system to user-optimum routing. 
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Figure 4: Variation in Route and System Travel Time for Test Network 

Implementation Issues 
While the simple example illustrated the potential benefits of system optimized routings and the incentive that exists 
for drivers to switch back to the original user equilibrium routings, it is clear that neither an exhaustive enumeration 
nor an analytical approach (solving the differential equations of the system travel time) are satisfactory for finding the 
system optimized routings when more than just a few possible routes are available. 

Different static traffic assignment algorithms have been developed over the past half century. These methods are 
broadly divided into non-equilibrium and equilibrium methods. Non-equilibrium methods include all-or-nothing 
assignment, where all traffic is assigned to a single minimum path between two zones (path that incurs the minimum 
travel time). Example algorithms for computing minimum paths include models developed by Dantzig (Dantzig 1957) 
and Dijkstra (Dijkstra 1959). Other non-equilibrium methods include incremental, iterative, diversion models, 
multipath assignment (Dial 1971), and combined models. According to Van Vliet (Van Vliet 1976) the incremental 
assignment method (explained later) is capable of reaching an acceptable degree of convergence faster than an 
iterative method. With regards to diversion models, the most common diversion models include the California 
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diversion curves (Moskowitz 1956) and the Detroit diversion curves (Smock 1962). Alternatively, multipath traffic 
assignment methods assign traffic stochastically. For example, the Dial method (Dial 1971) stochastically diverts trips 
to alternate paths, but trips are not explicitly assigned to routes. Other multipath methods (Burell 1968; Burell 1976) 
assume that users do not know the actual travel times on each link, but a driver’s estimate of link travel time is drawn 
randomly from a distribution of possible times. Finally, combined non-equilibrium models include combining 
capacity restraint models with probabilistic assignment (Randle 1979), combining iterative with incremental 
assignment (Yagar 1971; Yagar 1974; Yagar 1975; Yagar 1976), or combining stochastic with equilibrium assignment 
(Sheffi et al. 1981). 

Equilibrium assignment techniques are based on Wardrop’s first principle (Wardrop 1952). These were classified by 
Matsoukis and Michalopoulos (Matsoukis et al. 1986) into: assignments with fixed demand, assignments with elastic 
demands, and combined models. Only the first method will be discussed. The equilibrium assignment algorithm is a 
weighted combination of a sequence of all-or-nothing assignments. This produces a non-linear programming (NLP) 
problem which is subject to linear constraints. This NLP is very hard to solve and the approach seems to be of limited 
use for realistically sized equilibrium traffic assignment problems. The NLP problem can be replaced by a much 
simpler linear approximation and solved using the Frank-Wolfe algorithm (Frank et al. 1956). This iterative 
linearization procedure still involves longer computational times than the iterative procedure. LeBlanc et al. (LeBlanc 
et al. 1974) developed an iterative procedure solving one-dimensional searches and LP problems that minimize 
successively better linear approximations to the non-linear objective function. Nguyen (Nguyen 1969) converted the 
convex optimization problem into a set of simpler sub-problems that could be solved with the convex-simplex 
method. 

One of the most common approaches to implement a user equilibrium traffic assignment involves the use of an 
incremental traffic assignment technique (Yagar 1971; Yagar 1975; Leonard et al. 1978; Van Aerde 1985; Matsoukis 
1986; Van Aerde et al. 1988; Van Aerde et al. 1988). Such a technique breaks down the total traffic demand that is to be 
loaded onto the network into a number of increments that are each loaded onto the network in turn. Each increment is 
loaded onto what appears to be the shortest route, after all the previous increments have been loaded. The link travel 
times are then recalculated, in order to re-compute the fastest route for the next increment to be loaded. When more 
than one route are to be used for travel between a given origin and destination, the increments are automatically 
assigned alternatively to each route, when each becomes faster again after previous increments head along the other 
route. In the end, the extent to which the overall assignment approaches an equilibrium state depends upon the 
number of increments utilized, with the average final error being roughly proportional to the final increment size. 

Van Aerde and Rakha (Rakha et al. 1989; Rakha 1990) demonstrated that the system-optimum traffic assignment can 
also be solved considering an incremental traffic assignment. Specifically, Van Aerde and Rakha (Rakha et al. 1989; 
Rakha 1990) recognized the fact that the increase in system travel time caused by the addition of one vehicle is 
composed of the additional travel time incurred by the subject vehicle and the increase in travel time that is imparted 
on all other vehicles which are already on the link. While the former quantity is usually already available as a direct or 
indirect measurement on the link, the derivation of the latter quantity is more subtle. It is a function of the rate of 
change of the average travel time, per additional vehicle, and the number of vehicles already on the link. In 
mathematical terms, this is simply the product of the derivative of the travel time versus volume relationship, with 
respect to volume, multiplied by the volume already present on the link. Consequently, the standard objective 
function that is utilized in any minimum path algorithm, which searches for the user equilibrium routes, can be 
replaced by a new objective function that minimizes the total travel time. This routing can be achieved using an 
incremental assignment of vehicles based on their marginal travel time as opposed to their actual travel time, which 
results in a system optimum as opposed to a user equilibrium routing, as was demonstrated earlier in Figure 3. Stated 
differently at dynamic system optimum, the time-dependent marginal cost on all the paths actually used are equal 
and less than the marginal cost on any unused paths. In the static case, the path marginal cost (PMC) is the sum of the 
link marginal cost (LMC). However, in the dynamic case, the PMC evaluation is much more complicated since path 
flows are not assigned to links on the path simultaneously. However, within the dynamic context, most researchers 
(Peeta 1994; Ghali et al. 1995) assume that the path flow perturbation travels along the path at the same speed as the 
additional flow unit. Shen et al. (Shen et al. 2006) demonstrated that this assumption is not necessarily correct. 
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Furthermore, they presented a solution algorithm for path-based system optimum models based on a new PMC 
evaluation method. The approach was then tested and validated on a simple network. 

V. DYNAMIC TRAFFIC ROUTING 

This section describes the mathematical formulations for the static routing problem together with some solution 
approaches to the problem. Subsequently, the extension of the problem for the dynamic context is presented together 
with state-of-the-art solution approaches.  

The dynamic traffic assignment approach is summarized in Figure 5 and involves three input variables, namely: 
dynamic link travel times (in the case of the UE assignment), dynamic marginal travel times (in the case of the SO 
assignment), and dynamic O-D matrices. In the case of the UE assignment the Bechmann formulation is solved 
(Equation (1)) if we use a time-dependent static (or quasi static) assignment as will be discussed in detail in the 
following sections, while in the case of the SO assignment Equation (12) is solved. Within the static context these 
formulations are solved analytically using a mathematical program given that the objective function and feasible 
region are convex. Alternatively, in the dynamic context the objective function is non-convex and thus is more difficult 
to solve necessitating the use of a modeling approach to solve the problem. 

After solving these two formulations the link flows are computed and input into an O-D estimator to provide an 
estimate of the O-D demand which is then compared to the initial solution. This feedback loop continues until the 
difference in either link flows or O-D flows is within a desired margin of error or the maximum number of iterations 
criteria is met. 

Dynamic O-D 
MatrixDynamic Link TT Dynamic Link 

Marginal TT

Dynamic UE Routes
(Minimum TT)

Dynamic SO Routes
(Minimum Marginal TT)

Dynamic Traffic 
Assignment

Dynamic Link 
Flows

Traffic Router

 

Figure 5: Dynamic Traffic Assignment Framework 

Mathematical Formulations 
Following the notation presented by Sheffi (Sheffi 1985) we present the network notations that are used in the 
mathematical formulation of a static traffic assignment problem. Initially, the variable definitions are presented 
followed by the vector definitions (bold variables). 
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Set of network nodes

Set of network arcs (links)

Set of origin centroids

Set of destination centroids

Set of paths connecting O-D pair -

Flow on arc ( )

Travel time on arc ( )

Flow 

rs

a

a
rs
k

N

A

R

S

k r s; r R,s S

x a

t a

f on path ( ) connecting O-D pair ( - )

Travel time on path ( ) connecting O-D pair ( - )

Trip rate between origin ( ) and destination ( )

1	if arc ( ) is on path (
Indicator variable:

rs
k

rs

rs rs
a,k a,k

k r s

c k r s

q r s

a k
 

) between O-D pair ( - )

0	otherwise

r s

 

Using vector notations (bold variables) the variables are defined as, 

Vector of flows on all arcs, = ( ..., ,...)

Vector of travel times on all arcs, = ( ..., ,...)

Vector of flows on all paths connecting O-D pair r-s, = ( ..., ,...)

Matrix of flows on all pa

a

a
rs
k

x

t

frs

x

t

f

f ths connecting all O-D pairs, = ( ..., ,...)

Vector of travel times on all paths connecting O-D pair r-s, = ( ..., c ,...)

Matrix of travel times on all paths connecting all O-D pairs ,= ( ...,

rs
k

rs

rs

f

c

c  ,...)

Origin-destination matrix (with elements = )

Link-path incidence matrix (with elements) for O-D pair r-s, as discussed below

Matrix of link-path incidence matrices (for all O-D p

rs
rs
a,k

q

  

rs

rs

c

q

airs), = ( ..., ,...)rs

 

The link-path incident matrix is of size equal to the number of links or arcs in the network (number of rows) and 

number of paths between origin (r) and destination (s). The element in the ath row, and kth column of ∆rs is ,
rs
a k . In 

other words, , ,( )rs rs
a k a k . 

The following basic relations are fundamental to the mathematical program formulation: 

 A link performance function, which is also known as the volume-delay curve or the link congestion function, 
represents the relationship between flow and travel time on a link (a) (ta=ta(xa)). 

 The mathematical program formulations assume that travel time on a given link is only dependent on the 
flow on the subject link (the model does not capture the effect of opposing flows on the delay of opposed 
flows), or mathematically 

( ) ( )
0  and 0a a a a

b a

t x t x
a b a

x x
 where, bx is the flow on link (b). 

 The travel time on a particular path equals the sum of the travel times on the links comprising that path as 

, , ,rs rs
k a a k rs

a

c t k k r R s S  or .c t  considering the vector notation. 

 The flow on each link equals the sum of the flows on all paths traversing the subject link as 
rs rs

a k a,k
r s k

x (f . ) a A  or T.x f . 
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 The above formula uses the incidence relationships to express link flows in term of path flows, i.e. ( )x x f . 

The incidence relationships also mean that the partial derivative of the link flow can be defined with respect 
to a particular path flow as follows,  

, ,

( )
( . )a rs rs mn

k a k a lmn mn
r s kl l

x f
f

f f
, where 0 if - -

rs
k
mn
l

f
  k  l or r s  m n

f
 

Where, mn
lf is the flow on path (l) connecting O-D pair (m-n). Since the function xa(f) includes a flow 

summation using the subscripts r, s, and k, the variable with respect to which the derivative is being taken is 
subscribed by m, n, and l, to avoid the confusion in differentiation. 

User Equilibrium 
As mentioned earlier, the UE model is based on the assumption that each traveler takes the path that minimizes 
his/her travel time from their origin to their destination, regardless of any effect this might have on the other network 
users. In other words, at equilibrium, none of the travelers will be able to reduce their travel times by unilaterally 
switching to another path. This implies that at equilibrium the link flow pattern is such that the travel times on all of 
the used paths connecting any given O-D pair will be equal. The travel time on all of these used paths will also be less 
than or equal to the travel time on any of the unused paths. 

The mathematical program that represents this model can be cast using Bechmann’s transformation as, 

0

Min.

S.T.

(Flow conservation constraints)

0 (Non-negativety constraints)

ax

a
a

rs
k rs

k
rs
k

rs rs
a k a,k

r s k

 z x   t w  dw

f q r,s

f k,r,s

x f a

 (1) 

It is worth mentioning that this formulation “has been evident in the transportation literature since the mid-1950’s, but its 
usefulness became apparent only when solution algorithms for this program were developed in the late 1960’s and early 
1970’s”(Sheffi 1985). 

In order to prove that the solution of Beckmann’s transformation program satisfies the user-equilibrium assignment, 
first the equivalence conditions will be discussed followed by the uniqueness conditions. In the equivalence 
conditions it will be shown that the first-order conditions for the minimization program are identical to the 
equilibrium conditions. Whereas, in the uniqueness conditions, it will be shown that the user-equilibrium equivalent 
minimization program has only one solution. Hence, proving that the solution of Beckmann’s transformation program 
satisfies the user-equilibrium assignment problem. 

Equivalency Conditions 

Beckmann’s transformation program is a minimization program with linear equality and non-negativity constraints. 
In order to find the first-order conditions for such a program, the Lagrangian with respect to the equality constraints 
can be written as  

 , rs
rs rs k

r s k

L f u z x f u q f , (2) 

where urs denotes the dual variable associated with the flow conservation constraint for O-D pair (r-s). At the 
stationary point of the Lagrangian, the following first-order conditions have to hold with respect to the path-flow 
variables and the dual variables. First, with respect to the path-flow variables 
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,
0 , ,rs

k rs
k

L f u
f k r s

f
 and  

,
0 , ,

rs
k

L f u
k r s

f
 (3) 

must hold. Alternatively, with respect to the dual variables 

,
0 ,

rs

L f u
r s

u
 (4) 

must hold. In addition to the following non-negativity constrains, 

0rs
kf k,r,s . (5) 

Note that the formulation of this Lagrangian is given in terms of path flow by using the incidence relationships, 
xa = xa(f). 

The partial derivative of L(x,u) with respect to the flow variables mn
lf can be given by 

,
rs

rs rs kmn mn mn
r s kl l l

L f y
z x f u q f

f f f
. (6) 

Using the chain rule the first term can be solved as 

ax

b b mn mn
a b b,l lmn mn mn

b A b a bb bl l l0

z x x x
z x f . t (w) dw . t c

x xf f f
. (7) 

The second term can be solved as 

rs
rs rs k mnmn

r s kl

u q f u
f

, (8) 

because (a) urs is not a function of mn
lf ; (b) qrs is constant; and 

1	if r=m, s=n, and k=l

0	otherwise

rs
k
mn
l

f

f
. Consequently, 

Equation (3) and (4) can be solved to derive 

mn
l mnmn

l

L(f,u)
c u

f
. 

Hence, we can derive the following first-order conditions, 

( ) 0 , ,

0 , ,

,

0 , ,

rs rs
k k rs
rs
k rs

rs
k rs

k
rs
k

f c u k r s

c u k r s

f q r s

f k r s

. (9) 

We can imply the following from these conditions, (1) The first two conditions, for any path (k) connecting any O-D 

pair (r-s), either (a) The flow on that path, rs
kf , equals zero, in which case, the travel time on this path, rs

kc , will have a 

value that is greater than or equal to the value of the O-D specific Lagrange multiplier, rsu ,or, (b) the flow on that path  

will have a value (greater than zero), in which case, the travel time on this path  will have a value equal to the value of 

the  O-D specific Lagrange multiplier, rsu . In both cases, the value of the O-D specific Lagrange multiplier is always 
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less than or equal to the travel time on all other paths connecting the same O-D pair. Hence, this value of the Lagrange 
multiplier is the minimum path travel time between this O-D pair thus proving that the solution of Beckman’s 
transformation program satisfies the user-equilibrium assignment. 

The last two conditions satisfy the flow conversation and non-negativity constraints, respectively. The proof can 
further be explained as follows, paths connecting O-D pair (r-s) can be divided into two groups, (1) Paths with zero 
flow, and are characterized by a travel time which is either greater than or equal to the minimum travel time; and (2) 
Paths with non-negative flows, and are characterized by minimum travel times. Thus, confirming the user-
equilibrium notion which states that no user can improve his/her travel times by unilaterally changing their routes. 

The above proves that user-equilibrium conditions are satisfied at any stationary point of Beckman’s transformation 
program. The following section proves that there is only one solution for Beckman’s transformation program. It 
proves that Beckman’s transformation program has only one stationary point, and that this point is a minimum.  

Uniqueness Condition 

In order to prove that Beckmann’s transformation program has only one solution, it is sufficient to prove that the 
objective function is strictly convex in the vicinity of the solution point, convex everywhere else (within the feasible 
solution region), and that the feasible region (defined by the constraints) is convex. 

It is known that linear equality constraints ensure a convex feasible region, and that the addition of the non-negativity 
constrains does not alter this fact. The convexity of the objective function, with respect to link flows, can be proven in 
two different ways. The fist way can be achieved by the application of the properties of convex functions, on the link-
performance functions. On the other hand, the second proof is achieved by proving that the Hessian matrix of the 
objective function is positive definite. 

Link performance functions are known to be continuously increasing functions. Hence, link-performance functions 
are convex functions. The objective function equals the summation of the integral of the link-performance functions of 
all links. Properties of convex functions state that integrals of convex functions are also convex functions, and that the 
summation of convex functions is also a convex function. Hence, proving that the objective function is convex 
everywhere. Subsequently proving that there is only one solution for Beckman’s transformation program, with respect 
to link flows, and that solution is a minimum. 

Recalling that 

1 for m=n

0 otherwise

2
m m

m n n

t (x )z(x)

x x x
, (10) 

the Hessian matrix for the objective function can be calculated to be as follows, 

2 2 2
1 1

2
2 1 11 1

2 2 2
2 2

2 2
1 2 2 22

2 2 2

2
1 2

( ) ( ) ( ) ( )
0 0

( )( ) ( ) ( )
0 0

( )

( )( ) ( ) ( ) 0 0

A

A

A A

AA A A

z x z x z x dt x
x x x xx dx

dt xz x z x z x

z x x x x x dxx

dt xz x z x z x
dxx x x x x

. (11) 

Obviously, the matrix is definite positive, proving that the objective function is strictly positive, and subsequently, has 
a unique minimum solution. 

It is worth mentioning that the Beckman’s transformation program is not convex with respect to path flows, and 
therefore, the equilibrium conditions themselves are not unique with respect to path flows. In other words, while 
there is actually only one unique solution for link flows, there are an infinite number of paths flows solutions that 
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would produce this unique link flows solution, which raises the need to compute the most likely of these solutions 
using a synthetic O-D estimator as was described earlier and will be discussed later in more detail. 

System Optimum 
As mentioned earlier, the SO model attempts to minimize the total travel time spent in the network. Hence, it might 
assign certain trips to a slightly longer path (in terms of travel time), in order to reduce the travel time of other user 
trips by a value which is greater than the value of the increased travel time, and thus achieving a reduced total 
network travel time. Opposite to user equilibrium, in the system optimum state, users can reduce their travel times by 
unilaterally switching to alternative paths, which becomes a challenge to implement such a strategy.  Therefore, the 
solution is not stable. SO network travel time mainly serves as a yardstick that measures the performance of a 
network. 

The mathematical program that represents this model can be written as follows, 

Min. . ( )

S.T.

(Flow conservation constraints)

0 (Non-negativety constraints)

z z a
a

rs
k rs

k
rs
k

rs rs
a k a,k

r s k

 z(x)  x t x

f q r,s

f k,r,s

x (f . ) a

 (12) 

As can be seen, the only difference between user-equilibrium and system optimum programs is the objective function.  
The SO optimum objective function equals the summation of the products of the travel time on each link times the 
traffic volume assigned to this link, for all links. Hence, it works on minimizing the total travel time experienced by all 
vehicles traveling on all links of the networks. On the other hand, the UE objective function equaled the summation of 
only the travel times of all links. 

It can also be seen that the constraints in the SO model are exactly the same as in the UE model. Consequently, similar 
to the case with the user-equilibrium equivalent program, the solution of this program can be found by solving for the 
first-order conditions for a stationary point of the following Lagrangian 

 , rs
rs rs k

r s k

L f u z x f u q f , (13) 

where rsu denotes the dual variable associated with the flow conservation constraint for O-D pair (r-s). At the 

stationary point of the Lagrangian, the following first-order conditions have to hold with respect to the path-flow 
variables 

( , )
0 , ,rs

k rs
k

L f u
f k r s

f
 and 

( , )
0 , ,

rs
k

L f u
k r s

f
. (14) 

With respect to the dual variables 

( , )
0 ,

rs

L f u
r s

u
. (15) 

In addition to the non-negativity constraints 

0rs
kf k,r,s .  (16) 

Note that, the formulation of this Lagrangian is given in terms of path flow by using the incidence relationships, 
xa = xa (f). 
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The partial derivative of ( , )L x u  with respect to the flow variables mn
lf can be given by, 

rs
rs rs kmn mn mn

r s kl l l

L(f,u)
z x f u q f

f f f
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L(f,u)
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Where, at  is a summation of two terms, (1) ( )a at x , which is the travel time experienced by this additional driver when 

the total link flow is (xa) and (2) a a

a

dt x

dx
, which is the additional travel time burden that this driver inflicts on each 

one of the other (xa) travelers already using link a.  

In summary, it can be interpreted as the marginal contribution of an additional traveler – or an infinitesimal flow unit 
– on the ath link to the total travel time on that link. 

Substituting the above results into Equations (14) through (16), we get the following first-order conditions 
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Similar to the interpretation of the user equilibrium conditions, the following can be implied from the above, (1) The 

first two Conditions, for any path (k) connecting any O-D pair (r-s), either (a) the flow on that path, rs
kf , equals zero 

whenever the marginal total travel time on this path, rs
kc , will have a value that is greater than or equal to the value of 

the O-D specific Lagrange multiplier, rsu ,or, (b) the flow on that path, rs
kf , will have a value (greater than zero) 

whenever the marginal total travel time on this path, rs
kc , will have a value equal to the value of the  O-D specific 

Lagrange multiplier, rsu . In both cases, the value of the O-D specific Lagrange multiplier is always less than or equal 

to the marginal total travel time on all other paths connecting the same O-D pair, i.e. the value of the Lagrange 
multiplier is the marginal travel time on the used paths between this O-D pair. (2) The last two conditions satisfy the 
flow conversation and non-negativity constraints, respectively. 

The proof can further be explained as follows, paths connecting O-D pair (r-s) can be divided into two groups, (1) 
Paths with zero flow, and are characterized by a total marginal travel time which is either greater than or equal to the 
marginal travel time of the used networks (or the Lagrange multiplier). (2) Paths with non-negative flows, and are 
characterized by equal marginal travel times. 
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In order to prove that the SO program has only one solution, as was the case with the user equilibrium program, it is 
sufficient to prove that the objective function is strictly convex in the vicinity of the solution point, convex everywhere 
else (within the feasible solution region), and that the feasible region (defined by the constraints) is convex. 

It is known that linear equality constraints assure a convex feasible region, and that the addition of the non-negativity 
constrains does not alter this fact. The convexity of the objective function, with respect to link flows, can be proven if 
the Hessian matrix of the objective function is positive definite. 

Recalling that, 

2
2

2
2 for

0 Otherwise

n n n n
m m n

a a a m m m n n
am n n m n m

dt (x ) d t (x )
z x dt x x  m  n
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. 

As in the user equilibrium program, the Hessian matrix for the objective function can be calculated to be as  
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This Hessian matrix is positive definite if all the diagonal terms are positive, which is manifested if the link 
performance functions are positive. Based on the earlier discussion in the user equilibrium section, it was 
demonstrated that link-performance functions are convex, and thus demonstrating that the objective function is 
strictly positive, and subsequently, has a unique minimum solution – with respect to link flows. 

It is worth noting that user equilibrium and system optimum produce identical results in any of the following: (1) If 

congestion effects were ignored, i.e. '
a a at (x ) t  (a constant value per arc) or (2) In case of minimal traffic volumes, 

that would have negligible effects on the arc specific travel times, ( )a at x . 

Dynamic Traffic Assignment Solution Approach 
The extension from a static to a dynamic formulation involves the introduction of two time indices into the 
formulation. The first time index identifies the time at which the path flow leaves its origin while the second time 
index identifies when the path flow is observed on a specific link. Unfortunately, the introduction of these time indices 
deems the objective function non-convex and thus two approaches are considered in solving this problem. The first 
approach is to divide the analysis period into time intervals while assuming that conditions are static within each time 
interval (time-dependent static or quasi static). The duration of these intervals are network dependent and should be 
sufficiently long enough to ensure that motorists can complete their trip within the time interval. The static UE and SO 
mathematical programs can then be solved for each time interval using the standard static formulations that were 
presented earlier. The mathematical solution approach requires a closed form solution using an analytical modeling 
approach. Analytical modeling of the network aims at finding the correct mathematical presentation of DTA models 
that would realistically reflect the real world problem with minimum compromises in the modeling of traffic 
behavior. The solution of such models should guarantee theoretical existence, uniqueness, and stability. Analytical 
models are valuable because theoretical insights can be analytically derived. Different analytical network modeling 
may include mathematical programming formulations, optimal control formulations, and variational inequality 
formulations (Srinivas Peeta 2001). Literature within this area of research is extensive. In general, models within the 
group may be classified into (Srinivas Peeta 2001): i) mathematical programming formulations, as the works of 
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Merchant and Nemhauser (Merchant 1978; Merchant 1978), Ho (Ho 1980), Carey (Carey 1986; Carey 1987; Carey 
1992), Janson (Janson 1991; Janson 1991), Birge and Ho (Birge 1993), Ziliaskopoulos (Ziliaskopoulos 2000), Carey and 
Subrahmanian (Carey 2000); ii) optimal control formulations, as in the works of Friesz et al. (Terry L. Friesz 1989), Ran 
and Shimazaki (Ran 1989; Ran 1989), Wie (Wie 1991), Ran et al. (Ran 1993), Boyce et al. (Boyce 1995); and iii) 
variational inequality formulations, as with the works of Dafermos (Dafermos 1980), Friesz et al. (Terry L. Friesz 
1993), Wie et al. (Byung-Wook Wie 1995), Ran and Boyce (Bin Ran 1996), Ran et al. (Bin Ran 1996), Chen and Hsueh 
(Huey-Kuo Chen 1998). 

Alternatively, the second approach involves the use of a simulation solution approach.  Simulation models on the 
other hand, in spite of solving the DTA problem within a simulation environment, still use some form of mathematical 
abstraction of the problem. According to Peeta (Srinivas Peeta 2001), “the terminology simulation-based models may be a 
misnomer. This is because the mathematical abstraction of the problem is a typical analytical formulation, mostly of the 
mathematical programming variety in the current literature. However, the critical constraints that describe the traffic flow 
propagation, and the spatio-temporal interactions, such as the link-path incidence relationships, flow conservation, and vehicular 
movements are addressed through simulation instead of analytical evaluation while solving the problem. This is because analytical 
representations of traffic flows that adequately replicate traffic theoretic relationships and yield well-behaved mathematical 
formulations are currently unavailable. Hence, the term simulation-based primarily connotes the solution methodology rather 
than the problem formulation. A key issue with simulation-based models is that theoretical insights cannot be analytically derived 
as the complex traffic interactions are modeled using simulation. On the other hand, due to the inherently ill-behaved nature of the 
DTA problem, notions of convergence and uniqueness of the associated solution may not be particularly meaningful from a 
practical standpoint. In addition, due to their better fidelity vis-à-vis realistic traffic modeling, simulation-based models have 
gained greater acceptability in the context of real-world deployment”.  

One of the early simulation DTA tools is the Simulation and Assignment in Urban Road Networks (SATURN) 
approach. The SATURN algorithm utilizes an equilibrium technique which optimally combines a succession of all-or-
nothing assignments (i.e. it is an iterative equilibrium assignment based on iterative traffic loading) (Bolland et al. 
1979; Hall et al. 1980; Van Vliet 1982). This model treats platoons of traffic rather than individual vehicles but delays 
vehicles but delays at intersections are treated in considerable detail. The model consists of two parts: a simulation 
component and a traffic assignment component. The traffic simulation component fits a delay-flow power curve to 
three points, namely: zero flow, current flow, and capacity. This delay-flow curve is used by the assignment model to 
route vehicles. For each traffic signal four cyclic flow profiles are considered: the IN pattern, the ARRIVE pattern, the 
ACCEPT pattern, and the OUT pattern. SATURN can account for delays caused by opposing flows, delays caused by 
vehicles on the same roadway, the shape of the arriving platoon, the effect of traffic signal phasing structure and 
offsets, and individual lane capacities. Arrival rates that exceed capacity are assumed to form queues that build up at 
constant rates. SATURN can model networks at two levels of detail, namely: inner and buffer. The model was used in 
studies in the U.K., Australia, and New Zealand. The limitations of the model include: (a) it assumes steady-state 
conditions for periods of 15-30 minutes and thus is a time-dependent dynamic assignment approach; (b) queues are 
modeled vertically and thus they cannot spillback to upstream intersections; (c) it is unsuitable for freeways; (d) it 
cannot model over-saturated conditions explicitly. 

Another early simulation DTA that was developed in the late 1970s is the CONTRAM model (CONtinuous TRaffic 
Assignment Model). CONTRAM is similar to SATURN in that it combines traffic assignment with traffic simulation 
(Leonard et al. 1978). CONTRAM is a computer based time-varying assignment and queuing model. Unlike 
SATURN, vehicles are grouped within CONTRAM into packets where each packet is treated in the same way as a 
single vehicle when assigning it to its minimum path. Time varying flow conditions are modeled by dividing the 
simulation period into a number of consecutive time intervals, which need not be of the same length, and the packets 
leave each origin at a uniform rate through each such interval. The assignment is an incremental iterative technique 
where during the first iteration; packets are routed based on link-travel times of previous packets. However, in 
successive iterations, they are routed based on link travel times that reflect a weighting of travel times during previous 
iterations and previous packets. Prior to routing a packet, the packet volume is removed from its previously used 
links. An advantage of this assignment model is that it takes into account the effects of packets leaving later on the 
routing of packets which leave earlier. Thus, it decides upon the path based on a fully loaded network, rather than on 
one in which has only been loaded to the extent of any previous increments. This model is more dynamic than most 
models because vehicles are able to change their routing decisions while en-route, if traffic conditions alter. 
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Satisfactory convergence is usually achieved in 5 to 10 iterations. The limitations of the model are: (a) introduction of 
signal optimization makes the model unable to converge; (b) vehicles queue vertically on a link; (c) no limitation of the 
storage capacity of a link is introduced; (d) it is unsuitable for freeway networks; and (e) it can only assign vehicles 
based on Wardrop’s first principle. 

A number of contemporary DTA models were developed using the basic CONTRAM concept, including the 
INTEGRATION (Van Aerde 1985; Van Aerde et al. 1988; Van Aerde et al. 1988; Rakha et al. 1989; Van Aerde et al. 
1989; Rilett et al. 1991; Rilett et al. 1991; Rilett et al. 1991; Rilett et al. 1993; Rakha et al. 1998; Van Aerde et al. 2007; Van 
Aerde et al. 2007), DYNASMART (Jayakrishnan et al. 1990; Jayakrishnan et al. 1991; Peeta et al. 1991; Jayakrishnan et 
al. 1993; Abdelghany et al. 1999; Abdelghany et al. 2000; Srinivasan et al. 2000; Abdelfatah et al. 2001; Abdelghany et 
al. 2001; Chiu et al. 2001) and DYNAMIT (Koutsopoulos et al. 1995; Ben-Akiva et al. 1998; Yang 2000; Balakrishna et 
al. 2005) modeling approaches. In this section the INTEGRATION dynamic traffic assignment and modeling 
framework is briefly described as an example illustration of a microscopic traffic assignment and simulation 
approach. The INTEGRATION model is similar to the CONTRAM model in that it models individual vehicles 
(packets of unit size). Unlike, other traffic assignment models, the INTEGRATION traffic simulation logic is 
microscopic in that it models vehicles at a deci-second level of resolution. The software combines car-following, 
vehicle dynamics, lane-changing, energy, and emission models. Thus, mobile source emissions can be directly 
estimated from instantaneous speed and acceleration levels. Furthermore, the traffic and emission modeling modules 
have been tested and validated extensively. For example, the software, which was developed over the past two 
decades, has not only been validated against standard traffic flow theory (Rakha et al. 1996; Rakha et al. 2002), but has 
also been utilized for the evaluation of real-life applications (Rakha et al. 1998; Rakha et al. 2000). Furthermore, the 
INTEGRATION software offers unique capability through the explicit modeling of vehicle dynamics by computing 
the tractive and resistance forces on the vehicle each deci-second (Rakha et al. 2001; Rakha et al. 2002; Rakha et al. 
2004).  

The INTEGRATION software uses car-following models to capture the longitudinal interaction of a vehicle and its 
preceding vehicle in the same lane. The process of car-following is modeled as an equation of motion for steady-state 
conditions (also referred to as stationary conditions in some literature) plus a number of constraints that govern the 
behavior of vehicles while moving from one steady-state to another (decelerating and/or accelerating). The first 
constraint governs the vehicle acceleration behavior, which is typically a function of the vehicle dynamics (Rakha et al. 
2002; Rakha et al. 2004). The second and final constraint ensures that vehicles maintain a safe position relative to the 
lead vehicle in order to ensure asymptotic stability within the traffic stream. A more detailed description of the 
longitudinal modeling of vehicle motion is provided by (Rakha et al. 2004). Alternatively, lane-changing behavior 
describes the lateral behavior of vehicles along a roadway segment. Lane changing behavior affects the vehicle car-
following behavior especially at high intensity lane changing locations such as merge, diverge, and weaving sections. 

The INTEGRATION model provides for 7 basic traffic assignment/ routing options: (a) Time-Dependent Method of 
Successive Averages (MSA); (b) Time-Dependent Sub-Population Feedback Assignment (SFA); (c) Time-Dependent 
Individual Feedback Assignment (IFA); (d) Time-Dependent Dynamic Traffic Assignment (DTA); (e) Time-
Dependent Frank-Wolf Algorithm (FWA); (f) Time-Dependent External; and (g) Distance Based Routing. 

The derivation of a time series of MSA traffic assignments involves analyzing each time slice in isolation of either 
prior or subsequent time slices (time-dependent static or quasi static). The link travel times, upon which the route 
computations are based, are estimated based on the prevailing O-D pattern and an approximate macroscopic travel 
time relationship for each link. Multiple paths are computed in an iterative fashion, where the tree for each 
subsequent iteration is based on the travel times estimated during the previous iterations. The weight assigned to each 
new tree is 1/N where N is the iteration number.  

In the case of the feedback assignment vehicles base their routings on the experience of previous vehicle departures 
(incremental traffic assignmnent). In the case of the SFA assignment all drivers of a specific type are divided into 5 
sub-populations each consisting of 20% of all drivers. The paths for each of these sub-populations are then updated 
every t seconds during the simulation based on real-time measurements of the link travel times for that specific 
vehicle class. The value of t is a user-specified value. Furthermore, the minimum path updates of each vehicle sub-
population are staggered in time, in order to avoid having all vehicle sub populations update their paths at the same 
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time. This results in 20% of the driver paths being updated every t/5 seconds. In the case of the IFA assignment all 
paths are customized to each individual driver and may therefore be unique relative to any other drivers. This 
incremental traffic assignment accounts the effect of earlier vehicle departures on the travel time of later which is very 
similar to the CONTRAM approach. However, unlike CONTRAM no iterations are made to re-assign all the vehicles.  

The INTEGRATION DTA computes the minimum path for every scheduled vehicle departure, in view of the link 
travel times anticipated in the network at the time the vehicle will reach these specific links. The anticipated travel 
time for each link is estimated based on anticipated link traffic volumes and queue sizes. This routing involves the 
execution of a complete mesoscopic DTA model prior to the simulation of the traffic. During this DTA, the routes of 
all vehicles are computed using the above procedure. Upon completion of this DTA, the actual simulation simply 
implements the routings computed as per the DTA. 

Clearly the validity of any of these modeling approaches hinges on the ability of the traffic simulation model to reflect 
real-life behavior and capture all the complexities of traffic modeling. Clearly, no modeling approach can claim that it 
is capable of capturing every aspect of empirical traffic flow behavior and thus the output of such models should be 
interpreted within the context of how they model the spatio-temporal behavior of drivers. 

It should also be noted that the models that were described in this section are heuristic approaches attempting to solve 
the mathematical formulations that were presented earlier and thus there is no guarantee that they converge to a 
single (unique) solution for UE and/or SO assignment problems for a complex dynamic network. Furthermore, it is 
not clear if drivers actually attain such an equilibrium state in such networks. Consequently, research is needed to 
study and develop models on how drivers select routes, how they respond to the dissemination of traffic information, 
and how their routing decisions vary temporally in the short- and long-term. 

VI. TRAFFIC MODELING 

A key component of a DTA is the modeling of traffic stream behavior in order to predict traffic states into the near 
future and compute link travel times and various measures of effectiveness, as was illustrated earlier in Figure 2. This 
section briefly summarizes the various state-of-the-practice approaches to traffic modeling. Researchers have 
demonstrated that these approaches are unable to predict empirical spatio-temporal aspects (Kerner 2004) observed in 
the field. Conversely, others have argued that these approaches, while not perfect, capture the main aspects of 
empirical data. While our objective is not to argue either way, it is sufficient to note that these tools are being used by 
transportation professionals to assess dynamic networks and thus are presented in this section. These approaches can 
be classified into three categories, which include: macroscopic, mesoscopic, and microscopic approaches. Each of these 
approaches is briefly described in this section. Again the description is by no means comprehensive but does provide 
a general overview of these approaches. The interested reader should consider reading the wealth of literature on this 
topic. 

Prior to describing the specifics of the various modeling approaches it is important to note that with the exception to 
research conducted by Kerner (2004), most existing approaches are based on the famous one-dimensional kinematic 
waves (KW) theory, which was proposed by Lighthill and Witham (Lighthill et al. 1955) and independently proposed 
by Richards (Richards 1956). The key postulate of the theory is that there exists a functional relationship between the 
traffic stream flow rate q and density k that might vary with location x but does not vary with time t (this contradicts 
the definition of dynamic given that within a dynamic process variables vary spatially and temporarily). It should be 
noted that in microscopic approaches, as will be described later, the fundamental diagram various temporally as a 
function of the traffic composition, thus overcoming some of the drawbacks o f this approach. The fundamental 
hypothesis of all traffic flow theories is the existence of a site-specific unique relationship between traffic stream flow 
and traffic stream density, commonly known as the fundamental diagram, the traffic stream motion model, or the car-
following model at the microscopic level. The assumption is that all steady-state model solutions lie on the 
fundamental diagram and thus are referred to as fundamental diagram approaches (Kerner 2004). Given that traffic 
stream space-mean speed can be related to traffic stream flow and density, a unique speed-flow-density relationship 
(in the macroscopic approach) is derived from the fundamental diagram for each roadway segment. This relationship 
can also be cast at the micro-level by relating the vehicle speed to its spacing, given that vehicle spacing is the inverse 
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of traffic stream density. Some researchers have argued that the fundamental diagram approach cannot capture the 
spontaneous traffic stream failure that is observed in the field and thus these researchers have proposed other 
theories.  

One of these theories is the three-phase traffic flow theory proposed by Kerner (2004), which attempts to explain 
empirical spatiotemporal features of congested patterns. The theory divides traffic into three phases: free-flow, 
synchronized flow, and wide moving jams. The free-flow phase is consistent with the uncongested regime on a 
fundamental diagram and thus is not discussed further. The synchronized flow phase involves continuous traffic flow 
with no significant stoppage. The word “flow” reflects this feature. Within this phase there is a tendency towards 
synchronization of vehicle speeds and flows across the different lanes on a multilane roadway, and thus comes the 
name “synchronized.” This synchronization of speeds is a result if the relatively low probability of passing within this 
phase. The third phase, wide moving jam, is a phase that involves traffic jams that propagate through other states of 
traffic flow and through any bottleneck while maintaining the velocity of the downstream jam front. The phrase 
moving jam reflects the propagation as a whole localized structure on a road. To distinguish wide moving jams from 
other moving jams, which do not characteristically maintain the mean velocity of the downstream jam front, Kerner 
uses the term wide moving jam. Kerner indicates that if a moving jam has a width (in the longitudinal direction) 
considerably greater than the widths of the jam fronts, and if vehicle speeds inside the jam are zero, the jam always 
exhibits the characteristic feature of maintaining the velocity of the downstream jam front. 

Kerner distinguishes his three-phase traffic flow theory from fundamental diagram approaches in a number of 
aspects. He demonstrates that the fundamental diagram approach cannot capture two key empirically observed 
phenomena in traffic, namely: (a) the probabilistic nature of free-flow to synchronized flow transition (flow 
breakdown), and (b) the spontaneous formation of general patterns (GP), which include moving and wide moving 
jams. Alternatively, it could be hypothesized that by modeling individual driver behavior (micro or nano modeling), 
capturing vehicle acceleration constraints, and introducing stochastic differences between drivers that this may be 
sufficient to model these two key phenomena. 

Macroscopic Modeling Approaches 
In order to solve for the three traffic stream variables (q, k, and u) three equations are introduced. The first is the 
functional relationship between flow and density, or what is commonly known as the fundamental diagram. Typical 
functions include the Pipes triangular function (3 parameters), the Greenshields parabolic function (Greenshields 
1934) (2 parameters), or the Van Aerde (Rakha et al. 2002) function (4 parameters). The second equation is the flow 

conservation equation (equation of continuity) that can be expressed as ( , ) , 0k x t t q x t x , considering 

no entering or exiting traffic. The third and final equation relates the traffic stream flow rate (q) to the traffic stream 
density (k) and space-mean speed (u) as q = ku. The numerical solution of the KW problem involves partitioning the 
network into small cells of length Δx and discretizing time into steps of duration Δt. For numerical stability Δx=u Δt. 
The problem is solved by stepping through time and solving for the variables in every cell using the incremental 
transfer (IT) principle (essentially explicit finite difference method). Extensions to the standard KW solution have 
introduced IT solutions for each lane along a freeway where the freeway is modeled as a set of interacting streams 
linked by lane changes. Lane-changing vehicles can be treated as a fluid that can accelerate instantaneously, however 
this approach does not capture the reduction in capacity that is associated with lane changes. Consequently, further 
improvements have been introduced through the use of a hybrid approach (Laval et al. 2006) that combines 
microscopic and macroscopic models. Specifically, slow vehicles are treated as moving bottlenecks in a single KW 
stream, while lane changing vehicles are modeled as discrete particles with constrained motion. The model requires 
identifying a lane-change intensity parameter in addition to the functional relationship parameters that were 
described earlier. It is not clear how such a parameter is derived. The major drawbacks of this modeling approach are 
that it does not account for the dynamic changes in roadway capacity (e.g. the capacity of a weaving section varies as a 
function of the traffic composition), it cannot capture the spontaneous traffic stream failure that is observed in the 
field, it cannot capture the impact of opposing flows on the traffic behavior of an opposed flow (e.g. how the capacity 
of an opposed left turn movement is affected by the opposing through movement), and it ignores the stochastic nature 
of traffic.  
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Mesoscopic Modeling Approaches 
The mesoscopic analysis tracks individual vehicles as they travel through the network along a sequence of links that 
are determined by the traffic assignment. The level of tracking involves computing the vehicle's travel speed on each 
link based upon the density on the link together with a user specified speed/density relationship. The vehicle is then 
held on the link for the duration of its travel time. At the vehicle's scheduled departure time, the vehicle is allowed to 
exit the link if the link privileges permit it to leave; otherwise, the vehicle is held on the link until the link privileges so 
permit. Link exit privileges may be controlled by traffic signals at the downstream end of the link or by any queues 
that may be present on the lane. Queues are stored for each lane separately to account for any queue length 
differentials that may occur (e.g., longer queues on left turn opposed lanes). The mesoscopic analysis captures the 
operational level of detail (e.g., the reduction in lane capacity as a result of an opposed flow) without having to track 
each vehicle's instantaneous speed profile. This means that the computational requirements for such a type of 
modeling are more than that required by a macroscopic analysis, but less than that required by a microscopic analysis. 
The INTEGRATION 1.50, DynaSMART, and DynaMIT models are examples of such modeling approaches. This 
approach suffers from similar drawbacks as identified in the macroscopic analysis procedures, namely an inability to 
capture correct spatiotemporal propagation of congestion, a failure to capture dynamic changes in capacity, a failure 
to capture for spontaneous breakdown in a traffic stream, and failure to capture the stochastic nature of traffic. 

Microscopic Modeling Approaches 
The third approach to modeling traffic is the microscopic analysis, which tracks each vehicle as it travels through the 
network on a second-by-second or deci-second level of resolution using detailed car-following and lane-changing 
models. Microscopic simulation software use car-following models to capture the longitudinal interaction of a vehicle 
and its preceding vehicle in the same lane. The process of car-following is modeled as an equation of motion for 
steady-state conditions (also referred to as stationary conditions in some literature) plus a number of constraints that 
govern the behavior of vehicles while moving from one steady-state to another (decelerating and/or accelerating). The 
first constraint governs the vehicle acceleration behavior, which is typically a function of the vehicle dynamics. The 
second and final constraint ensures that vehicles maintain a safe position relative to the lead vehicle in order to ensure 
asymptotic stability within the traffic stream. A more detailed description of the longitudinal modeling of vehicle 
motion is provided by (Rakha et al. 2004). While there are a number of commercially available software packages that 
simulate traffic microscopically (CORSIM, Paramics, FREEVU, VISSIM, AIMSUN2, and INTEGRATION), these 
approaches are computationally intensive and cannot run in real-time. The INTEGRATION software has been able to 
capture the stochastic nature of traffic stream capacity by randomly modeling vehicle-specific car-following models. 
Furthermore, the model captures the capacity loss associated with recovery from breakdown through the vehicle 
acceleration constraints. The stochastic nature of car-following and lane-changing behavior may allow the model to 
capture spontaneous breakdown in traffic stream flow. 

The amount of computation and memory necessary for simulating a large transportation network at a level of detail 
down to an individual traveler and an individual vehicle may be extensive. Hence a microscopic massively parallel 
simulation approach entitled “cellular automata” (CA) is sometimes proposed to simulate large networks. The cellular 
automata approach essentially divides every link on the network into a finite number of cells. At a one second time 
step, each of these “cells” is scanned for a vehicle presence. If a vehicle is present, the vehicle position is advanced, 
either within the cell or to another cell, using a simple rule set (Nagel et al. 1992; Nagel et al. 1995; Nagel 1996). The 
rule set is made simple to increase the computational speed necessary for a large simulation. Vehicles are moved from 
one grid cell to another based on the available gaps ahead, with modifications to support lane changing and plan 
following, until they reach the end of the grid. There, they wait for an acceptable gap in the traffic or for protection at a 
signal before moving through the intersection onto the next grid. This continues until each vehicle reaches its 
destination, where it is removed from the grid. Reducing the size of the “cell”, expanding the rule set, and adding 
vehicle attributes increases the fidelity of the simulator, but also greatly affects the computational speed. The size of 
7.5 meters in length and a traffic lane in width is often chosen as a default size for the “cell” as was applied with the 
TRANSIMS software (Nagel et al. 1992). This approach suffers from a number of drawbacks including the inability to 
capture the dynamic nature of roadway capacity, the inability to capture spontaneous breakdown of traffic stream, 
and the inability to capture opposing flow impacts on opposed flow saturation flow rates (e.g. the impact an opposing 
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through movement flow has on the capacity of a permitted left turn movement that has to find a gap in this opposing 
flow). 

VII. DYNAMIC TRAVEL TIME ESTIMATION 

As was demonstrated earlier in the paper, the DTA requires arc (link) travel times in order to compute minimum 
paths. There are several systems commercially available that are capable of estimating real-time travel times. These 
can be broadly classified into spot speed measurement systems, spatial travel time systems, and probe vehicle 
technologies. Spot speed measurement systems, specifically inductance loop detectors, have been the main source of 
real-time traffic information for the past two decades. Other technologies for measuring spot speeds have also 
evolved, such as infrared and radar technologies. Regardless of the technology, the spot measurement approaches 
only measure traffic stream speeds over a short roadway segment at fixed locations along a roadway. These spot 
speed measurements are used to compute spatial travel times over an entire trip using space-mean-speed estimates. In 
addition, new approaches that match vehicles based on their lengths have also been developed (Coifman 1998; 
Coifman et al. 2001; Coifman et al. 2002; Coifman et al. 2003). However, these approaches require raw loop detector 
data as opposed to typical 20- or 30-second aggregated data. Alternatively, spatial travel time measurement systems 
use fixed location equipment to identify and track a subset of vehicles in the traffic stream. By matching the unique 
vehicle identifications at different reader locations, spatial estimates of travel times can be computed. Typical 
technologies include AVI and license-plate video detection systems. Finally, probe vehicle technologies track a sample 
of probe vehicles on a second-by-second basis as they travel within a transportation network. These emerging 
technologies include cellular geo-location, Global Positioning Systems (GPS), and Automatic Vehicle Location (AVL) 
systems. 

Traffic routing strategies under recurring and non-recurring strategies should be based on forecasting of future traffic 
conditions rather than historical and/or current conditions. In general the traffic prediction approaches can be 
categorized into three broad areas: (i) statistical models, (ii) macroscopic models, and (iii) route choice models based 
on dynamic traffic assignment (Ben Akiva et al. 1992; Birge 1993; Peeta 1995; Moshe Ben-Akiva 1997; Moshe Ben-
Akiva 1998). Time series models have been used in traffic forecasting mainly because of their strong potential for 
online implementation. Early examples of such approaches include (Ahmed et al. 1982) and more recently (Lee et al. 
1999) and (Ishak et al. 2003). In addition, researchers have applied Artificial Neural Network (ANN) techniques for 
the prediction of roadway travel times (Park et al. 1998; Park et al. 1998; Abdulhai et al. 1999; Park et al. 1999; Park et 
al. 1999; Park 2002). These studies demonstrated that prediction errors were affected by a number of variables 
pertinent to traffic flow prediction such as spatial coverage of surveillance instrumentation, the extent of the loop-back 
interval, data resolution, and data accuracy. 

An earlier publication (Dion et al. 2006) developed a low-pass adaptive filtering algorithm for predicting average 
roadway travel times using Automatic Vehicle Identification (AVI) data. The algorithm is unique in three aspects. 
First, it is designed to handle both stable (constant mean) and unstable (varying mean) traffic conditions. Second, the 
algorithm can be successfully applied for low levels of market penetration (less than 1 percent). Third, the algorithm 
works for both freeway and signalized arterial roadways. The proposed algorithm utilizes a robust data-filtering 
procedure that identifies valid data within a dynamically varying validity window. The size of the validity window 
varies as a function of the number of observations within the current sampling interval, the number of observations in 
the previous intervals, and the number of consecutive observations outside the validity window. Applications of the 
algorithm to two AVI datasets from San Antonio, one from a freeway link and the other from an arterial link, 
demonstrated the ability of the proposed algorithm to efficiently track typical variations in average link travel times 
while suppressing high frequency noise signals. 

Within the filtering algorithm, the expected average travel time and travel time variance for a given sampling interval 
are computed using a moving average (MA) technique. As shown in Equations 17 and 18, it estimates the expected 
average travel time and expected travel time variance within a given sampling interval based on the set of valid travel 
time observations in the previous sampling interval and the corresponding previously smoothed moving average 
value using an adaptive exponential smoothing technique. In both equations, calculations of the smoothed average 
travel time and travel time variance are made using a lognormal distribution to reflect the fact that the distribution is 
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right skewed (skewed towards longer travel times). Field data from the San Antonio AVI system demonstrated that 
this assumption is reasonable. 
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It should be noted that ti,k is the observed average travel time along link i within the kth sampling interval (s), ,i kt  is the 

smoothed average travel time along link i in the kth sampling interval (s), 2
,i k is the variance of the observed travel 

times relative to the observed average travel time in the kth sampling interval (s2), 2
,i k  is the variance of the observed 

travel times relative to the smoothed travel time in the kth sampling interval (s2), ni,k is the number of valid travel time 
readings on link i in the kth sampling interval, and α=1-(1-β)ni,k for all i and k  is an exponential smoothing factor that 

varies as a function of the number of observations ,i kn within the sampling interval, where β is a constant that varies 

between 0 and 1. 
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Figure 6: Sample Application of AVI Travel Time Estimation Algorithm (Dion et al. 2006) 
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Figure 6 shows an example application of the algorithm using AVI data along I-35 in San Antonio, TX. The figure 
illustrates the average travel time estimate (thick line), the validity window bounds (thin lines), what are considered to 
be valid data (circular), and the observations that are considered to be outliers (triangles). The figure clearly illustrates 
the effectiveness of the algorithm in estimating roadway travel times for low levels of market penetration of AVI tags. 

Once link travel times have been estimated, the expected trip or path travel times can be computed by summing the 
relevant smoothed link travel times.  In addition, the trip travel time reliability, which is the probability that a trip can 
reach its destination within a given period at a given time of day, can be computed for use in traffic routing. Travel 
time reliability is a measure of the stability of travel time, and therefore is subject to fluctuations in flow (Bell and Iida, 
1997). Typically, when flow fluctuations are large, travel time is often longer than expected. As levels of congestion in 
transportation networks grow, generally the stability of travel time will have greater significance to transportation 
users. The trip travel time reliability can be computed as the probability P(T<=t) that the trip travel time (T) is less than 
some arbitrary travel time (t), using the cumulative distribution function estimated from an analysis of AVI field data. 
The current state-of-the-art in predicting trip travel time variability is to assume that the travel times on all the links 
along a path are generated by statistically independent normal distributions. Consequently, the trip variance can be 
computed as the summation of the link travel time variances for all links along a path.  As part of the proposed 
research effort, different statistical techniques (not assuming independent normal variates) will be devised to estimate 
the trip travel time variance, as discussed in the Proposed Research Tasks section. These techniques will be tested 
using data from the video detection system that is currently implemented in the Blacksburg Area. 

In addition, research has been conducted to estimate the optimum locations of surveillance equipment for the 
estimation of travel times. Specifically, an earlier publication developed an algorithm for optimally locating Automatic 
Vehicle Identification tag readers by maximizing the benefit that would accrue from measuring travel times on a 
transportation network (Sherali et al. 2006). The problem is formulated as a quadratic 0-1 optimization problem where 
the objective function parameters represent benefit factors that capture the relevance of measuring travel times as 
reflected by the demand and travel time variability along specified trips. An optimization approach based on the 
Reformulation-Linearization Technique coupled with semi-definite programming concepts was designed to solve the 
formulated reader location problem. Alternatively, a Genetic Algorithm (GA) approach was developed to optimally 
locate the AVI readers (Arafeh et al. 2005). 

VIII. DYNAMIC OR TIME-DEPENDENT ORIGIN-DESTINATION 

ESTIMATION 

As was demonstrated earlier the Bechmann UE and the SO formulations do not provide unique path flows and thus a 
synthetic O-D estimator is required to estimate the path flows from the unique link flows. The techniques used to 
estimate O-D demands can be categorized based on different factors, as will be discussed in detail. The first 
categorization, of the available O-D estimation techniques, relates to whether the O-D’s to be estimated are static, and 
apply to only one observation time period, or whether estimates are required for a series of linked dynamic time 
periods. The next breakdown relates to whether the estimation is based on information about the magnitude of trip 
ends only, or whether information is available on additional links along the route of each trip. The former problem is 
commonly referred to as the trip distribution problem in demand forecasting, while the latter problem is commonly 
referred to as the synthetic O-D generation problem. Both problems are discussed, but this section will focus on the 
latter synthetic O-D generation problem. The former is viewed simply as a simpler subset of the latter. 

Within the overall static synthetic O-D generation problem, there are two main flavors. The first exists when the routes 
that vehicles take through the network are known a priori. The second arises when these routes need to be estimated 
concurrently while the O-D is being estimated.  A priori knowledge of routes can arise automatically when there is 
only one feasible route between each O-D pair, or when observed traffic volumes are only provided for the zone 
connectors at the origins and destinations in the network. The first condition is common when O-D’s are estimated for 
a single intersection or arterial, or a single interchange or freeway. The second condition is the default for any trip 
distribution analysis. This section will initially focus on situations where the routes are known a priori. Subsequently, 
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a solution to the more general problem which involves an iterative use of the solution approach when routes are not 
known a priori will be discussed. 

Within the static/dynamic synthetic O-D generation problem, for scenarios where routes are known a priori (or are 
assumed to be known a priori) there exist two sub-problems. The first of these problems relates to situations where 
flow continuity exists at each node in the network, and multiple O-D matrices can be shown to match these observed 
flows exactly. In this case, the most likely of these multiple O-D matrices needs to be identified. The second sub-
problem relates to situations where flow continuity does not exist at either the node level or at the network level. In 
other words, the observed traffic flows are such that no matrix exists that will match the observed flows exactly. In 
this case, Van Aerde et al. (Van Aerde et al. 2003) introduced a new set of complementary link flows that maintain 
flow continuity by introducing minimum alterations to the observed flows to solve the maximum likelihood problem. 

The static synthetic O-D generation problem, for scenarios where flow continuity does exit, can be formulated in two 
different ways (Willumsen 1978; Van Zuylen et al. 1980). The first of these considers that the fundamental unit of 
measure is the individual trip, while the second considers that the fundamental unit of measure is the observation of a 
single vehicle on a particular link. The availability of a seed or target O-D matrix is implicit in the latter formulation, 
but can be dropped in the former formulation, as was demonstrated in an earlier publication (Van Aerde et al. 2003). 
However, only when a seed matrix is properly included in the former formulation is it guaranteed to yield consistent 
results with the latter formulation. In other words, the absence of a seed matrix in the trip based formulation can be 
shown to yield inconsistent results, at least for some networks in which the multiple solutions result in a different 
number of total trips.  

An additional and related attribute, of the trip-based formulation of maximum likelihood, is the presence of a term in 
the objective function that is based on the total number of trips in the network. This term, referred to as T, is often 
dropped in some approximations. However, it can be shown that dropping this term can yield solutions that represent 
only a very poor approximation to the true solution (Rakha et al. 2005). In contrast, approximations involve the use of 
Stirling’s approximation, for representing the logarithm of factorials, were shown to yield consistently very good 
approximations (Rakha et al. 2005). This finding is critical because use of Stirling’s approximation is critical to being 
able to compute the derivatives that are needed to numerically solve the problem (it is difficult to take derivatives of 
terms that include factorials). 

Other examples from literature include the works of Cremer and Keller (Cremer 1987), Cascetta et al. , Wu and Chang 
(Wu 1996), Sherali et al. (Sherali 1997), Ashok and Ben-Akiva (Ashok 2000), Hu et al. (Hu 2001) , Chang and Tao 
(Chang 1999), Pavlis and Papageorgiou (Pavlis 1999), Peeta and Zhou (Peeta 1999; Peeta 1999), Peeta and Yang (Peeta 
2000; Peeta 2003), Yang (Yang 2001), Peeta and Bulusu (Peeta 1999). 

Comparison of Synthetic O-D and Trip Distribution Formulations 
Within the four-step planning process O-D matrices are estimated in the trip distribution step. Several methods are 
used for trip distribution including the gravity, growth factor, and intervening opportunities models. The gravity 
model is most utilized because it uses the attributes of the transportation system and land-use characteristics and has 
been calibrated and applied extensively to the modeling of numerous urban areas. The model assumes that the 
number of trips between two zones i and j (Tij) is directly proportional to the number of trip productions from the 
origin zone (Pi) and the number of attractions to the destination zone (Aj) and inversely proportional to a function of 
travel time between the two zones (Fij) as  

j ij ij
ij i

j ij ij
j

A F K
T P

A F K
. (19) 

Typically the values of trip productions and attractions are computed based on trip generation procedures. The values 
of Fij are computed using a calibration procedure that involves matching modeled and field trip length distributions. 
The socio-economic adjustment factors (Kij) values are used when the estimated trip interchange must be adjusted to 
ensure that it agrees with observed trips by attempting to account for factors other than travel time. The values of K 
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are determined in the calibration process, but considered judiciously when a zone is considered to possess unique 
characteristics. 

Because the O-D problem is under-specified, multiple O-D demands can generate identical link flows. For example, if 
one attempts to estimate an O-D matrix for a 100 zone network with, say 1000 links, one has more unknowns to solve 
for than there are constraints. In the case of the trip distribution process, there are 100x100 O-D cells to estimate, and 
only 2x100 trip end constraints. In the case of the synthetic O-D generation process, there are again 100x100 O-D cells 
to estimate, and only 1000 link constraints. Given the possibility of multiple solutions, both the trip distribution 
process and the synthetic O-D generation process invoke additional considerations to select a preferred matrix from 
among the multiple solutions.  

In the case of synthetic O-D generation, the desire is to select from among all of the possible solutions, the most likely. 
This approach requires one to define a measure of the likelihood of each matrix. In general, there are two approaches 
to establish the likelihood of a matrix. One of them treats the trip as the basic unit of observation, while the other 
considers a volume count as the basic unit of observation. The first approach will be discussed in detail, while the 
interested reader might refer to the literature (Van Aerde et al. 2003) for a more detailed description of the various 
formulations. It suffices to indicate that for any matrix with cells Tij, the likelihood of the matrix can be estimated 
using a function L=f(Tij,tij), where tij represents prior information. The prior information is often referred to as a seed 
matrix, and can be derived from a previous study or survey. In the absence of such prior information, all of the cells in 
this prior matrix should be set to a uniform set of values. 

In the case of the trip distribution process, the additional information that is added is some form of impedance. For 
example, the original gravity model considered that the likelihood of trips between two zones was proportional to the 
inverse of the square of the distance between the two zones. Since that time, many more sophisticated forms of 
impedance have been considered, but for the purposes of this discussion, all of these variations can be generalized as 
being of the form Fij, where Fij = f(cij) or the generalized cost of inter-zonal travel. What is less obvious, however, is the 
fact that the use of this set of impedance factors Fij, is essentially equivalent to the use of a seed matrix tij.  

Van Aerde et al. (Van Aerde et al. 2003) demonstrated that solving the trip distribution problem, using zonal trip 
productions and attractions as constraints, together with a trip impedance matrix, is essentially the same as solving 
the synthetic O-D problem using zone connector in and out flows as constraints, and utilizing a seed matrix based on 
Equation (20). 

ij
ij

ij
ij

F
t T

F
 (20) 

Static Formulations 
Entropy maximization and information minimization techniques have been used to solve a number of transportation 
problems (Wilson 1970). The application of the entropy maximization principles to the static O-D estimation problem 
was first introduced by Willumsen (Willumsen 1978; Van Zuylen et al. 1980). Willumsen demonstrated that by 
maximizing the entropy, the most likely trip matrix could be estimated subject to a set of constraints. 

The trip-based approach to defining maximum likelihood considers that the overall trip matrix is made up of 
uniquely identifiable individual trip makers. The most likely matrix is one where the likelihood function is maximized 
as 

1
!

Max.
!ij

ij
ij

T
Z T

T
. (21) 

The above formulation does not take into account any prior information, from for example a previous survey.  While 
the seed matrix does not necessarily have to satisfy the observed link flows, the seed matrix can be utilized to expand 
the maximum likelihood function to 
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It can be noted that the likelihood of an individual trip from i to j is tij/ΣΣtij, based on the above seed matrix. 
Consequently, the probability of Tij trips being drawn is ( tij/ΣΣtij)T

ij.  

The above formulations of objective functions for expressing likelihood require additional constraints in order to be 
complete (Willumsen 1978; Van Zuylen et al. 1980). The simplest of these constraints indicate that the sum of all trips 
crossing a given link must be equal to the link flow on that link as 

a
a ij ij

ij

V T p a . (23) 

As will be shown later, the simplest mechanism, for including the above constraints in the earlier objective functions, 
is to utilize Lagrange multipliers. These multipliers permit an objective function with equality constraints to be 
transformed into an equivalent unconstrained objective function. 

This simple set of equality constraints, while making the formulation complete, may at times also render the problem 
infeasible. A more general formulation that was proposed in the literature (Van Aerde et al. 2003) is to minimize the 
link flow error, rather than eliminate the error. In other words, rather than finding the most likely O-D that exactly 
replicates the observed link flows, the problem is re-formulated as finding the most likely O-D matrix from among all 
of those that come equally close to matching the link flows. One expression that is proposed to capture the error to be 
minimized is shown in Equation (24), and is subject to the flow continuity constraints in Equation (25). The constraints 
in Equation (25) can be introduced in Equation (25) to yield an unconstrained objective function, yielding a set of 
complementary link flows V’a. These complementary flows are those which deviate the least from the observed link 
flows, while satisfying link flow continuity. Given that these complementary link flows do satisfy flow continuity, 
they can now be added in as rigid equality constraints to the objective function (21) or (22), and be guaranteed to yield 
a feasible solution. 

2
3Min. ij a a

a

Z T V V  (24) 

a
a ij ij

ij

V T p a  (25) 

Alternatively, one can incorporate Equations (25) into Equation (24) to yield 

2

4Min. a
ij a ij ij

a ij

Z T V T p . (26) 

This equation should be minimized concurrently to maximizing the objective function (21) or (22). Unfortunately, it is 
not easy to combine one expression that desires to maximize likelihood with another that desires to minimize link 
flow error, as a Lagrangian can only add equality constraints to a constrained objective function. Van Aerde et al. 
proposed a solution to this problem which involves taking the partial derivatives of Equation (26) with respect to each 
of the trip cells that are to be estimated as 

2

4 0 ,a
ij a ij ij

a ijij ij

Z T V T p i j
T T

. (27) 

0 2 ,a a a
a ij ij xy xy

a a xy

V p p T p i j  (28) 
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This yields as many equations as there are trip cells, as shown in Equation (27). Furthermore, setting these derivatives 
equal to 0 is equivalent to minimizing Equation (27). However, while equation (24) could not be added to the 
maximum likelihood objective function, the equalities in Equation (28) can. This produces an unconstrained objective 
function that always yields a feasible solution computed as 

!
Max. 2

ijT
ij a a a

ij a ij ij xy xy
ij ij a a xyij

ij

tT
V p p T p

T t
, (29) 

where: ij
ij

T T  and ij
ij

t t . 

The net result, of the above process, is to suggest that most synthetic O-D generation problems consist of two sub-
problems. One of these involves finding a new set of complementary link flows that do produce link flow continuity, 
at which point the maximum likelihood problem can be solved as before.  Alternatively, one can compute the partial 
derivatives, that will yield link flow continuity, while deviating by the least amount from the observed link flows, and 
then utilize them directly in the maximum likelihood formulation using Lagrange multipliers. Both solutions can be 
shown to yield identical results. 

A first challenge with maximizing Equation (29) is that it yields very large numbers that are difficult to work with. 
Further more, as it is common to maximize objective functions by taking their derivatives, and as it is more difficult to 
contemplate the derivative of a discontinuous expression, such as those including factorials, a simple approximation is 
made. This approximation involves taking the natural logarithm of either objective function Equation (21) or (22). 
Taking the natural logarithm of the objective function both makes the output easier to handle and permits the use of 
Stirling’s approximation as a convenient continuous equivalent to the term ln(x!) as 

ln( !) lnT T T T  (30) 

The resulting converted objective function using the Stirling approximation on the original objective function of 
Equation (22) is computed as 

Max. ln ln 2ij a a a
ij ij ij a ij ij xy xy

ij ij a a xyij

TT
T T T T V p p T p

t t
. (31) 

Expanding and simplifying the various terms we derive 

ln ln ln lnij ij
ij ij ij

ij ijij ij

T TT T
T T T T T T

t t t t
. (32) 

When Equation (32) is augmented with the previously mentioned partial derivatives that minimize the link flow error 
we derive 

Max. ln ln 2ij a a a
ij ij a ij ij xy xy

ij ij a a xyij

TT
T T V p p T p

t t
. (33) 

This equation, when solved, yields the most likely O-D matrix of all of those matrices that come equally close to 
matching the observed link flows.  

It should be noted that the objective function of Equation (33) is composed of two components. The first being the 
error between the field observed flows and the flows that satisfy flow continuity with minimum difference from 
observed flows. The second component represents the likelihood of an O-D matrix table. The objective is to find the O-
D matrix with the maximum likelihood. In the case that the seed matrix is the optimum matrix the likelihood 
component resolves to zero. 
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Dynamic Formulations 
The above formulations assume that the vehicles are assigned to all links simultaneously (i.e. a vehicle is present on all 
links along its path simultaneously). In order to address the dynamic nature of traffic, the analysis period can be 
divided into equally spaced time slices. Origin-destination demands are then indexed by the time slice they depart 
and the time slice they are observed on a link, as 

Max. ln ln 2rijr sa sa sa
r rij rij sa rij rij rxy rxy

rij rij sa sa rxyr rij

TT
T T V p p T p

t t
. (34) 

Where Tr is the total demand departing during time-slice r, tr is the total seed matrix demand departing during time-
slice r, Trij is the traffic demand departing during time-slice r traveling between origin i and destination j, trij is the seed 
traffic demand departing during time-slice r traveling between origin i and destination j, λrij is the Lagrange multiplier 
for departure time-slice, origin, and destination combination rij, Vsa is the observed volume on link a during time slice 
s, and psa

rij is the probability of a demand between origin i and destination j during time-slice r is observed on link a 
during time-slice s. The solution of Equation (34) is computationally extensive and has been demonstrated to not 
produce significantly better results than generating time-dependent O-D demands, as will be discussed. 

Alternatively, the more common approach is to generate time-dependent O-D demands by solving Equation (33) for 
each time-slice independently assuming that O-D demands can travel from the origin to destination zone within a 
time-slice (i.e. the trip travel time is less than the time-slice duration) without considering the interaction between time 
slices. This approach is computationally simpler and easier to implement and thus will be discussed in more detail. 
The formulation can written as 

Max. ln ln 2rijr a a a
r rij rij a rij rij rxy rxy

ij ij a a xyr rij

TT
T T V p p T p r

t t
. (35) 

Here the Trij are solved for independent of other time-slices. It should be noted, that the approach ignores the 
interaction of demands across various time-slices which is a valid assumption if the network is not over-saturated. 
However, if the network is oversaturated the assumption of time slice independence may not be valid. The duration of 
the time-slice should be selected such that steady-state conditions are achieved within a time-slice. 

Solution Algorithms 
The solution of the set of equations presented in (35) is hard given that the objective function is nonconvex and that in 
many cases the pa

rij are not available and thus the problem becomes to solve for Trij and pa
rij that maximize the objective 

function. 

Here we present a numerical heuristic that solves the above formulation for large networks when the number of 
equations and unknowns becomes extremely computationally intensive. This special purpose equation solver has 
been developed and implemented in the QUEENSOD software. This solver fully optimizes the objective function of 
Equation (35). The software has been shown to produce errors less than 1% for the range of values and derivatives 
being typically considered in the problem. A sample application of the QUEENSOD software is presented later in the 
paper, however, initially the heuristic approach is described. 

The numerical solution begins by building a minimum path tree and performing an all-or-nothing traffic assignment 
of the seed matrix, as illustrated in Figure 7. A relative or absolute link flow error is computed depending on user 
input. Using the link flow errors O-D adjustment factors are computed and utilized to modify the seed O-D matrix. 
The adjustment of the O-D matrix continues until one of two criteria are met, namely the change in O-D error reaches 
a user-specified minimum or the number of iterations criterion is met. If additional trees are to be considered, the 
model builds a new set of minimum path trees (loop 2) and shifts traffic gradually to the second minimum path tree. 
The minimum objective function for two trees is computed in a similar fashion as described for the single tree 
scenario. The process of building trees and finding the optimum solution continues until all possible trees have been 
explored.  The proposed numerical solution ensures that in the case that the seed matrix is optimum no changes are 
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made to the matrix. In addition, the use of the seed matrix as a starting point for the search algorithm ensures that the 
optimum solution resembles the seed matrix as closely as possible while minimizing the link flow error. In other 
words, the seed matrix biases the solution towards the seed matrix. 

Nodes

Links

Seed O-D

Observed Link 
Flows

Turning 
Movements

Input Module

Build All-or-Nothing Tree

Assign Traffic

Compute Link Flow Error

Refine O-D Demand

Loop 1

Update Travel Times

Build New AON Tree

Shift Demand

Loop 2

 

Figure 7: QueensOD Heuristic O-D Estimation Approach (Synthetic O-D Estimator) 

In order to demonstrate the applicability of the QUEENSOD software, a sample application to a 3500-link network of 
the Bellevue area in Seattle is presented. Other applications of the QUEENSOD software are described in detail in the 
literature (Rakha et al. 1998; Dion et al. 2004). The O-D demand for the Bellevue network was calibrated to AM peak 
Single Occupancy Vehicle (SOV) and High Occupancy Vehicle (HOV) flows. The seed matrix was created using the 
standard four-step transportation planning process by applying the EMME/2 model. The Seattle network was 
converted from EMME/2 format to INTEGRATION format. 

The calibration of the O-D demand to tube and turning movement counts was conducted using the QUEENSOD 
software using the planning trip distribution O-D matrix as the seed solution. The calibration resulted in a high level 
of consistency between estimated and field observed link flow counts (coefficient of determination of 0.98 between the 
estimated and observed flows), as illustrated in Figure 8. Figure 8 demonstrates that in calibrating the O-D matrix to 
observed traffic counts, the trip distribution O-D matrix (seed matrix) was modified significantly (coefficient of 
determination of 0.56 between trip distribution and synthetic O-D matrix). Consequently, it is evident that a 
modification of the trip distribution matrix was required in order to better match observed link and turning 
movement counts. It should be noted however, that the total number of trips was increased by only 4 percent as a 
result of the synthetic O-D calibration effort. Consequently, the illustrated calibration effort resulted in a significant 
modification of the trip table with minor modification to the total number of trips. 
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Figure 8: Example Application of QUEENSOD to the Bellevue Network in Seattle 

In addition to the above mentioned research, a significant number of problem formulations and applications have 
been documented in the literature. To name a few (in chronological order) Cascetta et al (Cascetta et al. 1993) tested a 
method based on two generalized least squares estimators on the Brescia-Verona-Vicenza-Padua motorway in Italy. 
They found that the accuracy of their model depended heavily on the number of links with observed traffic counts. 
Van Aerde et al. (Van Aerde et al. 1993) introduced the QUEENSOD method and demonstrated its applicability on a 35-
km section of Highway 401 in Toronto, Canada. Ashok (Ashok 1996) evaluated the use of a Kalman filtering-based 
method, which was first presented by Okutani (Okutani 1987) and estimates unobserved link traffic counts from 
observed link traffic counts. The method used was formulated by Ashok and Ben Akiva (Ashok et al. 1993) and Ashok 
(Ashok 1996) and was evaluated using actual data from the Massachusetts Turnpike, Massachusetts, a stretch of I-880 
near Hayward, California and a freeway encircling the city of Amsterdam, Netherlands. Later, Hellinga and Van 
Aerde (Hellinga et al. 1998) compared a least square error model and a least relative error model on a 35-km section of 
Highway 401 in Toronto, Canada. Zhou and Sachse (Zhou et al. 1997) compared the use of three different O-D 
estimators and on a motorway network in Europe. They concluded that the models, although characterized by 
different computational loads, produced satisfactory results. They also commented on the need to decide on locations 
of detectors and aggregation time intervals. Van Der Zijpp and Romph (Van Der Zijpp et al. 1997) experimented their 
model on the Amsterdam Beltway. They tested their model using two different days worth of data and compared 
their model results with real and historical average data. While their model performed better in cases of accidents, the 
historical average data did, at least as good, in normal traffic. They stressed on the importance of correct modeling of 
the network and traffic flow characteristics for the production of good results. Kim et al. (Kim et al. 2001) introduced a 
genetic algorithm based method to overcome the shortcoming of the bi-level programming method when there is a 
significant difference between target and true O-D matrices. They tested their model on a small network of 9 nodes. 
Bierlaire and Crittin (Bierlaire et al. 2004) formulated a least-square based method to overcome some of the 
shortcomings of the Kalman filter approach. They tested their method on a simple network as well as two real 
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networks: a medium scale network, Central Artery Network, Boston, MA, and a large scale network, Irvine Network, 
Irvine, CA. Yun and Park developed a genetic algorithm based method with the purpose of solving dynamic O-D 
matrices for large networks. They compared their model’s results with the results of QUEENSOD, and they tested their 
method on the City of Hampton network using the PARAMICS microscopic traffic simulation software. Nie et al. (Nie 
et al. 2005) developed a formulation that incorporates a decoupled path flow estimator in a generalized least squares 
framework with the objective of developing an efficient, simplified solution algorithm for realistic size networks. 
They tested their method on a small (9-node) and mid-size (100 nodes) network. Zhou and Mahmassani (Zhou et 
al. 2006) developed a multi-objective optimization framework for the estimation of the O-D matrices using 
automatic vehicle identification data. They tested their method on a simplified Irvine testbed network (31 nodes). 
Finally, Castillo et al. (Castillo et al.) developed a method for the reconstruction and estimation of the trip matrix 
and path flows based on plate scanning and link observations. They tested their method on the Nguyen-Dupius 
Network, and concluded the superiority of plate scanning on link counts. 

It should be noted at this point that the O-D estimation formulations and techniques that were presented and 
described in this section are heuristics and thus there is no mathematical proof that the algorithms converge to the 
unique optimum solution either in the static or dynamic context. While we have demonstrated that the solution 
matches the observed link flows for complex networks (Figure 8), unfortunately the actual O-D demand is typically 
not available for real-life applications and thus it is not possible to measure how good the solution compares to the 
unique optimum O-D matrix. 

IX. DYNAMIC ESTIMATION OF MEASURES OF EFFECTIVENESS 

Dynamic assessment of traffic network performance requires the estimation of various measures of effectiveness in a 
dynamic context. This section provides a brief overview of the procedures for estimating delay, vehicle stops, and 
vehicle energy consumption and emissions. 

Estimation of Delay 
A key parameter in the dynamic assessment of traffic networks is the estimation of vehicle delay. The computation of 
delay requires the computation of travel times. Significant research has been conducted to develop analytical models 
for estimating delay especially at signalized intersections. Examples of such research efforts are provided for the 
interested reader (Catling 1977; Cronje 1983; Cronje 1983; Cronje 1986; Rouphail 1988; Brilon et al. 1990; Rouphail et al. 
1992; Cassidy et al. 1993; Tarko et al. 1993; Akcelik et al. 1994; Cassidy et al. 1994; Li et al. 1994; Brilon 1995; Daniel et 
al. 1996; Engelbrecht et al. 1996; Fambro et al. 1996; Lawson et al. 1996; Newell 1999; Colyar et al. 2003; Fang et al. 
2003; Hagring et al. 2003; Krishnamurthy et al. 2004; Daganzo et al. 2005; Flannery et al. 2005). 

Roadway travel times can be computed for any given vehicle by providing that vehicle with a time card upon its entry 
to any roadway or link. Subsequently, this time card is retrieved when the vehicle leaves the roadway. The difference 
between these entry and exit times provides a direct measure of the roadway travel time experienced by each vehicle. 
The delay can then be computed as the difference between the actual and free-flow travel time.  

Alternatively, vehicle delay can be computed microscopically every deci-second as the difference in travel time 
between travel at the vehicle’s instantaneous speed and travel at free-flow speed, as 

1 i
i

f

u t
d t t i

u
. (36) 

The summation of these instantaneous delay estimates over the entire trip provides an estimate of the total delay. 
This model has been validated against analytical time-dependent queuing models, shockwave analysis, the 
Canadian Capacity Guide, the Highway Capacity Manual (HCM), and the Australian Capacity Guide procedures 
(Dion et al. 2004). The procedure has also been incorporated in the INTEGRATION traffic simulation software 
(Van Aerde et al. 2007; Van Aerde et al. 2007) and utilized with second-by-second Global Positioning System (GPS) 
data (Rakha et al. 2000; Dion et al. 2004). 
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Estimation of Vehicle Stops 
Numerous researchers have dealt with the problem of estimating vehicle stops especially at signalized intersections.  
An important early contribution is attributed to Webster (Webster 1958), who generated stop and delay relationships 
by simulating uniform traffic flows on a single-lane approach to an isolated intersection.  In particular, the equations 
that Webster derived have been fundamental to traffic signal setting procedures since their development. Later, 
Webster and Cobbe (Webster et al. 1966) developed a formula for estimating vehicle stops at under-saturated 
intersections assuming random vehicle arrivals. Other models were developed by Newell (Newell 1965) and Catling 
(Catling 1977). Catling adapted equations of classical queuing theory to over-saturated traffic conditions and 
developed a comprehensive queue length estimation procedure that captured the time-dependent nature of queues to 
be applied to both under-saturated and over-saturated conditions. In addition, Cronje (Cronje 1983; Cronje 1983; 
Cronje 1983; Cronje 1986) developed stop and delay equations by treating traffic flow through a fixed-time signal as a 
Markov process. The approach assumed that the number of queued vehicles at the beginning of a cycle could be 
expressed by a geometric distribution. These models, however, were not designed to account for the partial stops that 
vehicles may incur. Furthermore, the models that account for partial stops do not estimate vehicle partial and full 
stops for over-saturated conditions. A study by Rakha et al. (Rakha et al. 2001) developed a procedure for estimating 
vehicle stops while accounting for partial stops, as  

1
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The sum of these partial stops is also recorded. This sum, in turn, provides a very accurate explicit estimate of the total 
number of stops that are encountered along a roadway. Again the model can be implemented within a microscopic 
traffic simulation software or applied to second-by-second speed measurements using a GPS system. 

Estimation of Vehicle Energy Consumption and Emissions 
Estimating accurate mobile source emissions has gained interest among transportation professionals as a result of 
increasing environmental problems in large metropolitan urban areas. While current emission inventory models in the 
U.S., such as MOBILE and EMPAC, are capable of estimating large scale inventories, they are unable to estimate 
accurate vehicle emissions that result from operational-level projects. Alternatively, microscopic emission models are 
capable of assessing the impact of transportation projects on the environment and performing project-level analyses. 
Consequently, the focus of this discussion will be on these microscopic and also mesoscopic models. Two models that 
are emerging include the Comprehensive Modal Emissions Model (CMEM) and the Virginia Tech Microscopic (VT-
Micro) model. These models are briefly described in terms of their structure, logic, and validity. 

Comprehensive Modal Emission Model 

The Comprehensive Modal Emissions Model (CMEM), which is one of the newest power demand-based emission 
models, was developed by researchers at the University of California, Riverside (Barth et al. 2000). The CMEM model 
estimates LDV and LDT emissions as a function of the vehicle's operating mode. The term "comprehensive" is utilized 
to reflect the ability of the model to predict emissions for a wide variety of LDVs and LDTs in various operating states 
(e.g., properly functioning, deteriorated, malfunctioning).  

The development of the CMEM model involved extensive data collection for both engine-out and tailpipe emissions 
of over 300 vehicles, including more than 30 high emitters. These data were measured at a second-by-second level of 
resolution on three driving cycles, namely: the Federal Test Procedure (FTP), US06, and the Modal Emission Cycle 
(MEC). The MEC cycle was developed by the UC Riverside researchers in order to determine the load at which a 
specific vehicle enters into fuel enrichment mode. CMEM predicts second-by-second tailpipe emissions and fuel 
consumption rates for a wide range of vehicle/technology categories. The model is based on a simple parameterized 
physical approach that decomposes the entire emission process into components corresponding to the physical 
phenomena associated with vehicle operation and emission production. The model consists of six modules that 
predict engine power, engine speed, air-to-fuel ratio, fuel use, engine-out emissions, and catalyst pass fraction. Vehicle 
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and operation variables (such as speed, acceleration, and road grade) and model calibrated parameters (such as cold 
start coefficients, engine friction factor) are utilized as input data to the model.  

Vehicles were categorized in the CMEM model based on a vehicle’s total emission contribution. Twenty-eight vehicle 
categories were constructed based on a number of vehicle variables. These vehicle variables included the vehicle’s fuel 
and emission control technology (e.g. catalyst and fuel injection), accumulated mileage, power-to-weight ratio, 
emission certification level (tier0 and tier1), and emitter level category (high and normal emitter). In total 24 normal 
vehicle and 4 high emitter categories were considered (Barth et al. 2000).   

The Virginia Tech Microscopic Energy and Emission Model (VT-Micro Model) 

The VT-Micro emission models were developed from experimentation with numerous polynomial combinations of 
speed and acceleration levels. Specifically, linear, quadratic, cubic, and fourth degree combinations of speed and 
acceleration levels were tested using chassis dynamometer data collected at the Oak Ridge National Laboratory 
(ORNL). The final regression model included a combination of linear, quadratic, and cubic speed and acceleration 
terms because it provided the least number of terms with a relatively good fit to the original data (R2 in excess of 0.92 
for all measures of effectiveness [MOE]). The ORNL data consisted of nine normal-emitting vehicles including six 
light-duty automobiles and three light-duty trucks. These vehicles were selected in order to produce an average 
vehicle that was consistent with average vehicle sales in terms of engine displacement, vehicle curb weight, and 
vehicle type. The data collected at ORNL contained between 1,300 to 1,600 individual measurements for each vehicle 
and MOE combination depending on the vehicle’s envelope of operation (Ahn et al. 2002).  

This method has a significant advantage over emission data collected from a few driving cycles because it is difficult 
to cover the entire vehicle operational regime with only a few driving cycles. Typically, vehicle acceleration values 
ranged from −1.5 to 3.7 m/s2 at increments of 0.3 m/s2 (−5 to 12 ft/s2 at 1-ft/s2 increments). Vehicle speeds varied 
from 0 to 33.5 m/s (0 to 121 km/h or 0 to 110 ft/s) at in increments of 0.3 m/s (Ahn et al. 2002).  

The model had the problem of overestimating HC and CO emissions especially for high acceleration levels. Since this 
problem arose from the fact that the sensitivity of the dependent variables to the positive acceleration levels is 
significantly different from that for the negative acceleration levels, a two-regime model for positive and negative 
acceleration regimes was developed as (Ahn et al. 2002; Rakha et al. 2004) 
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Where MOEe is the instantaneous fuel consumption or emission rate (ml/s or mg/s); Ke
i,j is the model regression 

coefficient for MOE “e” at speed power “i” and acceleration power “j”; Le
i,j is the model regression coefficient for MOE 

“e” at speed power “i” and acceleration power “j” for positive accelerations; Me
i,j is the model regression coefficient for 

MOE “e” at speed power “i” and acceleration power “j” for negative accelerations; u is the instantaneous speed 
(km/h);  and a is the instantaneous acceleration rate (km/h/s). 

Additionally, the VT-Micro model was expanded by including data from 60 light-duty vehicles (LDVs) and trucks 
(LDTs). Statistical clustering techniques were applied to group vehicles into homogenous categories using 
classification and regression tree (CART) algorithms. The 60 vehicles were classified into five LDV and two LDT 
categories (Rakha et al. 2004). In addition, HE vehicle emission models were constructed using second-by-second 
emission data. In constructing the models, HEVs are classified into four categories for modeling purposes. The 
employed HEV categorization was based on the comprehensive modal emission model (CMEM) categorization. The 
first type of HEVs has a chronically lean fuel-to-air ratio at moderate power or transient operation, which results in 
high emissions in NO. The second type has a chronically rich fuel-to-air ratio at moderate power, which results in 
high emissions in CO. The third type is high in HC and CO. The fourth type has a chronically or transiently poor 
catalyst performance, which results in high emissions in HC, CO, and NO. Each model for each category was 
constructed within the VT-Micro modeling framework. The HE vehicle model was found to estimate vehicle 
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emissions with a margin of error of 10% when compared to in-laboratory bag measurements (Ahn et al. 2004). 
Furthermore, all the models were incorporated into the INTEGRATION software, and made it possible to evaluate the 
environmental impacts of operational level transportation projects (Park et al. 2006). 

X. USE OF TECHNOLOGY TO ENHANCE SYSTEM PERFORMANCE 

Due to the recent extensive developments within the fields of artificial intelligence, communications, and computation 
algorithms, transportation and traffic engineers’ goals have evolved. As mentioned earlier in the paper, current spatio-
temporal distribution of trips is far from being optimum, either with respect to driver satisfaction and/or network 
performance. A part of the contemporary DTA research is directed towards influencing, as opposed to modeling, 
dynamic spatio-temporal trip distributions. Advanced Traveler Information Systems (ATISs) are definitely the main 
tool for such influence, and understanding driver behavior is critical to the design and implementation of such 
systems. Research with is directly related to the possibility of enhancing system performance through the use of 
technology may be categorized in the following main areas of research: 

 Validation of models, lab experiments and real world behavior, which is the area concerned with verifying 
the different theories and their implicit assumptions with regards to real-life situations. Due to the extreme 
complexity and questionable possibility of this task, several attempts have been made to verify the models 
with respect to lab experiments rather than the real world behavior. Moreover, comparison and verification of 
spatial and temporal transferability of the models might as well fall within this area. Examples of current 
literature include the works of Chang and Mahmassani (Chang 1988) and Mahmassani and Jou (Mahmassani 
2000). 

 Calibration of algorithms and models, which as the name suggests, is the area related to the calibration of the 
algorithms and model parameters. This also entails spatial and temporal calibration, for certain models 
and/or parameters might only be valid for certain locations and time periods rather than others. Examples of 
current literature include the works of Chang and Mahmassani (Chang 1988) and Rakha and Arafeh (Rakha 
et al. 2007). 

 Real time deployment, which focuses on the possibility of deploying DTA models into the real world. This 
area of research is concerned with developing deployable DTA algorithms. Current literature states that 
although “a mathematically tractable analytical model that is adequately sensitive to traffic realism vis-à-vis 
real-time operation is still elusive”, yet even with currently available models there is a tradeoff between 
solution accuracy and computational efficiency. Other real-time deployment issues include computational 
tractability; consistency checking; model robustness, stability,  and error and fault tolerance; and demand 
estimation and prediction (Srinivas Peeta 2001). Examples of current literature include the works of 
Mahmassani et al. (Mahmassani 1993; Mahmassani 1998; Mahmassani 1998; Mahmassani 1998), Ben-Akiva et 
al. (Moshe Ben-Akiva 1997; Moshe Ben-Akiva 1998), Mahmassani and Peeta (Mahmassani 1992; Mahmassani 
1993; Mahmassani 1995), Peeta and Mahmassani (Peeta 1995), Hawas (Hawas 1995), Hawas et al. (Hawas 
1997), Hawas and Mahmassani (Hawas 1995; Hawas 1997), Cantarell and Cascetta (Cantarella 1995), 
Anastassopoulos (Anastassopoulos 2000), and Jha et al. (Jha 1998). 

 Issues of uncertainty, which is, as mentioned earlier, a fundamental feature in most transportation 
phenomena.  Uncertainty can be represented in trip makers’ knowledge of different route travel times, in the 
compliance rates of drivers to information, in the accuracy of the disseminated control information, in the 
driver’s perception of disseminated information reliability, in the controller’s predicted and/or refined 
dynamic travel times and/or O-D matrices, among others. Uncertainty-related research issues have been 
addressed through several approaches, like stochastic modeling, fuzzy control, and reliability indices. 
Examples of current literature include the works of: Birge and Ho (Birge 1993), Peeta and Zhou (Peeta 1999; 
Peeta 1999), Cantarell and Cascetta (Cantarella 1995), Ziliaskopoulos and Waller (Ziliaskopoulos 2000), Waller 
and Ziliaskopoulos (Waller 2006), Waller (Waller 2000), Peeata and Jeong (Srinivas Peeta 2006), Jha et al. (Jha 
1998), Peeta and Paz (Peeta 2006). 
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 DTA control, which is the area of research concerned with modifying how trips are distributed on the 
network. Research within this area focuses on capturing current network performance, and works on 
modifying the system elements, such as drivers route, and/or departure time selection, as well as mode 
choice (possibly through pricing and information dissemination); and traffic management (primarily through 
signal operation), in order to optimize system performance. Examples of current literature include the works 
of Peeta and Paz (Peeta 2006). 

 Realism of other system characteristics, which is the research area concerned with capturing other system 
realities that are not considered in current available literature. Examples of such realities may include 
(Srinivas Peeta 2001), 

o Person rather than driver assignment. It is an undeniable fact that many people tend to make their 
mode choices based on daily, real-time decisions, i.e. this is a dynamic and not a static process. It is 
further anticipated that with the current (and predicted) maturity of information technology within 
the transportation arena, would require explicit modeling within DTA models.   

o The effect of interaction between the different vehicle classes and road infrastructure. It is beyond 
doubt that certain vehicle classes (such as trucks and busses for example) will not be able to comply 
with certain diversion-requesting disseminated information, due to road infrastructure constraints. 
However, in other occasions, these vehicle classes might be able to divert routes, yet with travel time 
penalties (example if the turning radius was inadequate) that might not only affect these vehicle 
classes, but all other diverting vehicles as well. 

o Capturing latest traffic control technology and strategies. Traffic control technology and strategies 
have been rapidly developing during the past couple of decades. Examples of this include transit 
signal preemption, real-time adaptive signal traffic control, electronic toll collection, etc. For efficient 
DTA control, DTA algorithms should be able to sufficiently capture and consider them.  

Examples of current literature include the works of Ran And Boyce (Ran 1996), Peeta et al. (Peeta 2000), 
Ziliaskopoulos and Waller (Ziliaskopoulos 2000), Dion and Rakha (Dion et al. 2004), Sivananden et al. 
(Sivanandan et al. 2003), Rakha et al. (Rakha et al. 2000; Rakha et al. 2005), Rakha and Zhang (Rakha et al. 
2004). 

XI. RELATED TRANSPORTATION AREAS 

Research within the following two transportation areas definitely precedes DTA research. However, their significance 
to the DTA field is based on the fact that DTA theories are mostly dependent on older theories stemming from these 
two areas. Hence, advances within these two areas could probably significantly affect the advances within the DTA 
arena.  

 Traffic flow models encompass the mathematical representation, or perhaps simulation of the traffic flow 
characteristics, such as modeling traffic flow propagation, queue spillbacks, lane-changing, signal operation, 
travel time computation, etc. are crucial in determining driver expectations and behavior. In addition, these 
are also fundamental in the calculations of travel times, which are vital in the combined problem of departure 
time and route choice. The quantity of research available in this area is probably as big as the quantity of 
research done in the area of DTA all together, if not even more. However, as mentioned earlier, all of the 
research done within this area has direct influence on the realization of the traffic flow models, which are also 
used within the DTA models. 

 Planning applications, which in spite of being a quite under-researched area at the moment, is a vitally 
important one. There is no doubt DTA models are superior to static models, hence, it is probably only a 
matter of time before the industry abandons static models for dynamic models. “Dynamic models are simply 
the natural evolution in the transportation field that like any other new effort suffers from early development 
shortcomings” (Srinivas Peeta 2001). Examples of current literature within this area of research include the 
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works of Li (Li 2001), Friesz et al., Waller (Waller 2000), Waller and Ziliaskopoulos (Waller 2006), 
Ziliaskopoulos and Waller (Ziliaskopoulos 2000), Ziliaskopoulos and Wardell (Ziliaskopoulos 2000). 

XII. FUTURE DIRECTIONS 

Future research challenges and directions include: 

 Enhance traffic flow modeling and driver behavior modeling. These include the modeling of person as 
opposed vehicle route choices, the separation of driver and vehicle within the traffic modeling framework, the 
explicit modeling of vehicle dynamics, enhancing car-following, lane-changing, and routing behavior. 

 Develop more efficient algorithms that would be suitable for real-time deployment, without making any 
compromises in the computational accuracy, i.e. without trading-off the solution accuracy for the 
computational efficiency. In precise, without compromising any dimension of the traffic flow theory, nor 
driver behavior assumptions. As a matter of fact, further research should be done to capture more of the 
traffic, as well as the driver behavior theory. Hence, this should help in improving the realism of the available 
DTA models.  

 Conduct more research on the driver behavior theory. Especially, since human factors cognitive research has 
significantly improved in the previous couple of decades, then modeling driver behavior from this 
perspective might lead to valuable outcomes. 

 Critical examination of the validity of network equilibrium as a framework for network flow analysis 
(Nakayama et al. 2001). Many of the current algorithms are based on the assumption that drivers become 
rational and homogeneous with learning. Hence, resulting in network equilibrium. A number of recent 
research efforts suggest that some drivers remain less rational, and heterogeneous drivers make up the 
system; drivers’ attitudes toward uncertainty become bipolar; and some drivers are sometimes deluded. 
Further research is required to characterize and model such behavior. 

 Validate current models by comparing current model outputs with real world experiments, and possibly with 
controlled lab experiments (as mid-way experiments before conducting real world evaluations). 

 Enhance traffic modeling tools within DTA models to capture the effect of diversion compliance of different 
vehicle modes (especially heavy vehicles) to more geometrically restrictive highways.  

 Possibly calibrating hybrid fuzzy-stochastic models and comparing results to traditional models. According 
to the work done by Chen (Chen 2000), probabilistic methods are better than possibility-based methods if 
sufficient information is available, on the other hand, possibility-based methods can be better if little 
information is available. However, when there is little information available about uncertainties, a hybrid 
method may be optimum. 

 Conduct further research on the dynamic synthetic O-D estimation from link flow measurements and vehicle 
probe data. Further research is required to quantify the impact of erroneous or missing data on the accuracy 
of O-D estimates. 

 Conduct further research on the temporal distribution of demand, analyzing and modeling it. Then, including 
the estimation and forecast of time-dependent demand within the planning process, in addition to the 
dynamic traffic management and control processes. This should, hopefully, help to fill-in the gap between the 
three mentioned processes. 

 Incorporating person assignment, rather than mode assignment in the DTA and planning models, for as 
mentioned earlier, mode split is currently more of a daily real-time dynamic, rather than a static decision. 

 Research is needed to develop models for driver behavior to different ATIS systems: (types and/or scenarios). 
Current literature is mainly based on stated preference surveys, which are known for their lack of accuracy. 
Before the deployment of ATIS systems, stated preference surveys were the best approach for prediction and 
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modeling drivers’ reactions. However now, after the deployment of many ATIS systems, more research is 
needed to capture the actual (possibly revealed) drivers’ behavior, rather than the stated behavior. 

 Develop approaches that are capable of realistically capturing traffic flow, traffic control, and their 
interactions; and simultaneously optimizing traffic flow routing and control. In other words, developing 
algorithms that are actually capable of capturing real-time driver behavior, and are able to control it, in order 
to improve network performance.   
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Appendix 

TERM ABBREVIATIONS 

ANN Artificial Neural Networks 

ATIS Advanced Traveler Information System 

AVI Automatic Vehicle Identification 

AVL Automatic Vehicle Location 

DTA Dynamic Traffic Assignment 

FHWA Federal Highway Administration 

GA Genetic Algorithm 

GPS Global Positioning System 

HCM Highway Capacity Manual 

HOV High Occupancy Vehicle 

ITS Intelligent Transportation Systems 

LDV Light Duty Vehicle 

LMC Link Marginal Cost 

LP Linear Programming 

MOE Measure of Effectiveness 

NLP Non-Linear Programming 

O-D Origin – Destination 

PMC Path Marginal Cost 

SO System Optimum 

SOV Single Occupancy Vehicle 

TT Travel Time 

UE User Equilibrium 

VMS  Variable Message Sign 
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 

Abstract— Within the context of transportation 

modeling, driver route choice is typically captured using 

mathematical programming approaches, which assume 

that drivers, in attempting to minimize some objective 

function, have full knowledge of the transportation 

network state. Typically, drivers are assumed to either 

minimize their travel time (user equilibrium) or 

minimize the total system travel time (system optimum). 

Given the dynamic and stochastic nature of the 

transportation system, the assumption of a driver’s 

perfect knowledge is at best questionable. While it is well 

documented in psychological sciences that humans tend 

to minimize their cognitive efforts and follow simple 

heuristics to reach their decisions, especially under 

uncertainty and time constraints, current models assume 

that drivers have perfect or close to perfect knowledge of 

their choice set, as well as the travel characteristics 

associated with each of the choice elements. Only a few of 

the many route choice models that are described in the 

literature are based on observed human behavior. With 

this in mind the research presented in this paper 

monitors and analyzes actual human route choice 

behavior. It compares actual drivers experiences, 

perceptions and choices, and demonstrates that (a) 

drivers perceptions are significantly different from their 

actual experiences, and that drivers’ choices are better 

explained by their perceptions than their experiences; (b) 

drivers perceive travel speeds better than travel times (c) 

perceived travel speeds seem to influence route choice 

more than perceived travel times, and (d) drivers’ route 

choice behavior differs across different driver groups. 

I. INTRODUCTION 

n an effort to mitigate the impacts of traffic congestion, 

transportation engineering research is rich in literature 

directed towards understanding driver travel behavior. 

Because to the wide application of driver route choice 

models in transportation engineering and planning, dynamic 
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traffic assignment, advanced area-wide signal control, 

advanced traveler information and electronic route guidance 

systems, among others, driver route choice models probably 

rank among the most influential models [1, 2]. This paper 

attempts to extend this wealth of research by observing 

actual driver route choices and evaluate the interactions 

between drivers’ experiences, perceptions and choices. 

Some studies show that most commuters use only one 

route to get to work or school [3], other research efforts 

show that most drivers select more than one route to get to 

their destination to avoid congestion and minimize travel 

time. A recent study concluded that 40 percent of the 

commuters used only one route for their commute and the 

remaining 60 percent of commuters used at least two routes 

[4]. Accordingly, assuming that around half of the drivers 

use only one route for their commute seems a reasonable 

assumption. 

Modeling human route choice can be complicated. The 

number of available alternative routes from an origin to a 

destination can be vast, and the cognitive task of route 

choice is not easy and requires decisions about how to reach 

a destination while satisfying various limitations and 

obligations. Also, the experience of earlier route choices can 

affect the probability of the route being selected again. 

Furthermore, the characteristics of each alternative route do 

not have the same importance in a driver’s final decision [4]; 

how commuters select their routes may be affected by many 

other factors such as age, gender, time, distance, special 

events, bad weather, and the behavior of other drivers [5]. 

Although in all route choice models drivers are assumed to 

behave rationally and to have a certain level of knowledge 

about their travel network, little has been done to investigate 

the actual cognitive abilities and rational behavior of drivers. 

Studies performed to measure route choice and driving 

performance can be categorized into different groups, such 

as: mathematical network models [2, 6] and evolving 

psychological driver behavior models [7, 8]; simulator-

based, closed-course, and on-road studies [9, 10]; time-of-

day, day, and trip purpose models; survey-, simulation-, and 

GPS- based studies [11-13], and with and without 

information provision [14]. Yet, there remains no perfect 

model available to explain the way drivers make route 

choice decisions. All techniques are characterized with 

strengths and weaknesses. Data collection and real-life 

validation of proposed models, nonetheless, significantly 

add to the challenge.  

Most route choice models assume that drivers constantly 

evaluate and remember the travel times on the routes they 

travel, and use this information to select the travel route that 

maximizes some utility function. It assumes that drivers are 
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constantly conscious and rational of their route choices. 

According to the HOT cognition theories, however, human 

behavior and decisions are highly dependent on humans’ 

personal perceptions. For example, it is rather common for 

humans to behave irrationally based on erroneous personal 

perceptions, or beliefs. It is well documented in human 

psychological behavior that humans tend to minimize their 

cognitive efforts, and follow simple heuristics to reach their 

decisions, especially under uncertainty and time constraints, 

and with repetition, cognitive activities become habitual and 

could reach automaticity. Hence, minimizing the required 

cognitive resources [15]. 

Unlike most route choice research that is based on rational 

behavior assumptions, and is primarily focused on the end 

product of route choice, this research attempts to investigate 

the validity of these assumptions. It explores the accuracy of 

drivers’ perceptions and examines the reasons for route 

choice based on drivers’ perceptions. Drivers’ perceptions 

are compared to their choices, In an attempt to weigh the 

fidelity of drivers’ perceptions, this work also captures the 

drivers’ actual experiences and cross examines them with 

their perceptions. To the best of the authors’ knowledge, no 

previous research has examined the extent of validity of 

rational route choice behavior. The authors anticipate that 

this work could provide insights into driver route choice 

behavior and that more unexplained variation in modeling 

driver route choice behavior can be uncovered. For example, 

drivers’ compliance to disseminated traffic information has 

been reported to vary according to age, gender, driving 

experience, and other factors [16, 17]. Although unexplained 

variation still exists, the authors believe that incorporating 

drivers’ cognitive characteristics can improve route choice 

models [18]. 

In the following sections, the authors present the 

objectives of the study, followed by a detailed explanation of 

the study approach: participants, instruments and materials, 

procedures, and limitations. In the third section, the authors 

present the experimental results and discussion, and in the 

fourth section the paper ends with the conclusions of the 

study and recommendations for further research. 

II. OBJECTIVES 

The objectives of this study are to demonstrate that: 

(a) drivers perceptions can be significantly different from 

their actual experiences, and that drivers’ choices are better 

explained by their perceptions than their experiences; 

(b) drivers can perceive travel speeds better than travel times 

(c) perceived travel speeds seem to influence route choice 

more than perceived travel times, and (d) drivers’ route 

choice behavior differs across different driver groups. 

III. METHODOLOGY 

A. Participants 

The research involved a total of fifty participants. All 

participants had valid driver’s licenses, a normal or corrected-

to-normal vision and perfect color vision. As presented in 

Table 1, participants were selected from different groups to 

ensure variability in their personal attributes.  

TABLE I 

BREAKDOWN OF PARTICIPANTS BY GROUP 

Criteria Groups Count 

Age 
Age1: 17 – 25 years 32 

Age2: 26 – 56 years 18 

Gender 
Gen1: Males 33 

Gen2: Females 17 

Ethnicity 
Eth1: European/American (White) 28 

Eth2: Non European/American (Non-White) 22 

Education 
Ed1: Bachelor Degrees 26 

Ed2: Graduate Degrees 24 

Driving 

Years 

Yrs1: < 4 years 25 

Yrs2: > 4 years 25 

Annual  

Miles* 

Mil1: <12,000 miles/year 31 

Mil2: >12,000 miles/year 18 

* One participant did not report his/her annual driven miles.   

B. Instruments and Materials 

Driving Performance: The experiment was conducted using 

the STISIM driver simulator software that was developed by 

Systems Technology Inc. (STI). STISIM Drive is an 

interactive program that is capable of recording numerous 

performance measures. The program offers the investigator 

control over development of driving scenarios, ensuring that 

all participants encounter the same events and conditions 

while driving. It also offers the investigator with possible 

partial randomization in the simulated scenario and events. 

The simulated driving program operates on a vehicle-similar 

structure with a 48 cm (19 in.) monitor. The vehicle-similar 

structure is equipped with a vehicle chair, a steering wheel, 

and gas and brake pedals. Software limitations are discussed 

in the limitations section. 

Driving Network: As depicted in Figure 1, the research 

used a network composed of two geometrically-identical 

routes with nearly identical (but statistically biased) routes, 

with mean travel times of 3 to 4 minutes with an average 

speed of approximately 56 to 40 km/h (35 to 25 mph), 

respectively. Although all intersections were priority 

controlled by four-way stop signs, for clearer presentation 

the stop signs are not shown on Figure 1. As discussed later 

in the limitations, no landmarks were placed at any location. 

Initial Questionnaire: Participants were asked to fill a 

short questionnaire before performing the driving tasks. The 

questionnaire collected information about their age, gender, 

ethnicity, education, vision problems, driving years, and 

average number of miles driven per year. 

Final Questionnaire: Participants were asked to fill a short 

questionnaire after performing all the driving runs. The 

questionnaire was designed to capture the participants’ 

cognition of the different sections of this study. The 

questionnaire collected information about their perceptions 

of differences in travel characteristics between the two 

routes, and reasons for their route choice. 

C. Experiment Procedure 

After participants read and signed the consent forms, they 

were asked to fill an initial questionnaire, which collected 

their general information (as described earlier).  Then, 

participants were given a 15-minute drive on practice routes. 

The practice routes were characterized by different terrains 

and driving schemes, with the objective of allowing the 

drivers to be familiar with the simulator driving motor skills. 
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Fig. 1.  Sketch of the simulated network 

 

Afterwards, participants were introduced to the research 

route. They were handed a draft sketch showing the network 

and the points of origin and destination. The participants 

were asked to drive from the point of origin to the point of 

destination. They were asked to imagine moving to a new 

city, where the origin point was home, and the destination 

point was work/school. They were asked to drive similar to 

how they would drive in the real world. Participants were 

asked to repeat driving from home to work many times, and 

most participants ended up driving twenty times from origin 

to destination. Participants were allowed as many 

intermediate breaks as they liked, and were instructed to 

report any signs of nausea or fatigue. 

At the end, participants were asked to fill a post-task 

questionnaire where they were asked to report their route 

choices and network perceptions (as described earlier). 

D. Study Limitations 

To place the results of this study in context, the limitations 

of this research effort are summarized. The STISIM driver 

simulator dynamics lacked some realism. A noticeable 

difference was observed between real-life steering and 

breaking, and in the simulator experience. As an example, 

Modeling of T-intersections was not possible using the 

STISIM software; so, construction cones were placed to 

prevent participants from continuing through at the 4-leg 

intersections. However, although participants’ vehicles 

would crash if driven into a construction cone, other 

simulated vehicles were not smart enough to recognize 

construction cones and drove into the cones with no harm. 

Also, the STISIM software does not support “If, Then” 

logic. Accordingly, it was not possible to build a different 

scenario based on “If” the participant turned right or left at 

the different intersections, and as a result, no landmarks 

were added to the network. Due to lack of landmarks, a 

small number of participants made wrong turns and got lost 

a few times. The total number of trials that involved crashes 

or missed turns, however, was less than 10% of total runs. 

IV. RESULTS 

A. Drivers Experiences 

Figure 2 presents a cumulative distribution of experienced 

travel times by the fifty participants. On average, the right 

route was 5% shorter in travel time than the left one. Based 

on a t-test and an F-test, both travel time means and standard 

deviations, respectively, were significantly different (p-

value<0.01). Based on a Monte-Carlo simulation, probability 

of the right route having a shorter travel time was 60%. 

 
Fig.  2: Cumulative Frequency Distributions of 

Experienced Travel Times on Each Route 

Table 2 shows the average experienced values of traffic 

conditions encountered by drivers on both routes. Three 

measures were selected to reflect experienced traffic 

conditions; namely, the number of vehicles encountered, the 

closest experienced car-following distance, and the average 

car-following distance experienced per trial. T-tests and F-

tests indicated significant mean and variance differences for 

all three measures. As presented in Table 2, although, on 

average, the left route was characterized with slightly lighter 

traffic, vehicles were following at closer distances than the 

right route. Due to this discrepancy, drivers’ perceptions of 

traffic volumes were more erroneous than their travel time 

and speed perceptions. Therefore, in the following sections 

less focus is placed on drivers’ traffic volume perceptions. 

TABLE 2 

DRIVERS’ EXPERIENCED TRAFFIC VOLUMES ON THE TWO ROUTES 

 Route 

Average 

Number of 

Vehicles 

Encountered  

Average Min. 

Experienced 

Car Following 

Distance (m) 

Average Avg. 

Experienced 

Car Following 

Distance (m) 

Left 8.5 23 237 

Right 9.0 27 296 

B. Drivers Perceptions 

Figures 3.a and 3.b show drivers’ perceptions of travel 

times, and travel speeds, respectively. Differences between 

drivers’ travel time and travel speed perceptions are 
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particularly interesting, because since distances were equal, 

perceptions of travel times and speeds should have been the 

same. Given that humans allocate more attention to more 

important events [19], this difference in perception can be 

useful in identifying the more important route choice factor.  

Two possible alternative explanations for the obvious bias 

in travel speed perceptions favoring the left route over the 

right route are the primacy effect and the short gains 

strategy; because in order to choose the left route, drivers 

had to cross oncoming traffic at the first intersection. 

Perception differences between driver groups, observable 

from Figures 3.a, and 3.b, should be noted. Although 

differences between driver groups have been repeatedly 

reported in many driving related areas, they still have not 

been fully incorporated in route choice models. 

 
Fig.  3.a: Drivers Perceptions of Experienced Travel Times on Both 

Routes; Broken Down by Driver Groups 

 
Fig.  3.b: Drivers Perceptions of Experienced Travel Speeds on Both 

Routes; Broken Down by Driver Groups 

Table 3 shows drivers perceptions of the three traffic 

parameters on both routes. It is noted that while perceptions 

of travel time and speed were close, traffic perceptions were 

a little different. Because several research efforts concluded 

that travel speed could be a better indicator of route choice 

than travel time, the difference between travel time and 

travel speed perceptions are studied further. 

TABLE 3 

DRIVERS’ PERCEPTION OF TRAFFIC CONDITIONS 

ON THE TWO ALTERNATIVE ROUTES 

Perception Travel Time Speed Traffic 

No Difference 76% 85% 55% 

Right Better 18% 15% 30% 

Left Better 6% 0% 15% 

C. Drivers Experiences vs. Perceptions 

Table 4 shows a comparison between drivers’ perceptions 

and experiences. It can be seen that while 76% of the drivers 

were unable to perceive travel time differences, only 12% of 

the drivers were able to correctly perceive their experienced 

travel times, and conversely, 12% perceived the opposite of 

their experience. While this result signifies the usefulness of 

traveler information systems, the small difference between 

the two travel times should be noted. The experienced travel 

time was calculated as the average travel time per participant 

on all trials. Table 4 also shows that, as expected, average 

signal strength (experienced travel time difference) was 

stronger for correct than for opposite perceptions. 

TABLE 4 

BREAKDOWN OF PARTICIPANTS’ TRAVEL TIME PERCEPTIONS BASED ON 

THEIR ACTUAL EXPERIENCES  

 

Travel Time Experiences 

Left 

Faster 

Right 

Faster 

All 

Drivers 

T
ra

v
el

 T
im

e 

P
er

ce
p

ti
o
n

s 

Left 

Faster 

% of Drivers 0% 6% 6% 

% Avg. LeftTT – RightTT N/A 5% 5% 

Right 

Faster 

% of Drivers 6% 12% 18% 

% Avg. LeftTT – RightTT -5% 8% 4% 

No 

Differ. 

% of Drivers 33% 43% 76% 

% Avg. LeftTT – RightTT -4% 8% 3% 

* Bold Italic Cells: Correct Perception, Underline Cells: Incorrect 

Perception, Highlighted Cells: Opposite Perception. 

D. Drivers Choices 

Two different measures of choices were observed. First 

the drivers’ reported choices in the post-task questionnaire, 

referred to as declared choices, and second, the observed 

choices on each individual trial, referred to as trial choices. 

Results of both measures were the same; therefore, only 

declared choices are presented in Figure 4. 

 
Fig.  4: Percentage of Drivers Choosing Right Route, Left Route and not 

Making a Decision; Broken Down by Driver Groups 

E. Drivers’ Experiences vs. Choices 

Table 5 compares trial choices (Table 5.a) and declared 

choices (Table 5.b) to experienced travel times. It is shown 

that in either case about 50% of the drivers did not choose 

the minimum experienced travel time route. Again, this 

result demonstrates the potential benefits of traveler 

information systems. 
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TABLE 5 

DRIVERS EXPERIENCES VERSUS CHOICES* 

TABLE 5.A 

ROUTE TRIAL CHOICES VERSUS 

TRIAL EXPERIENCES 

TABLE 5.B 

ROUTE REPORTED CHOICES VERSUS 

ROUTE EXPERIENCES** 

 Trial 

Choices  
Left 

Driven  
Right 

Driven  
Right 
Faster  66% 67%  
Left 
Faster  34%  33% 

 

 Reported 

Choices  
Left 

Chosen  
Right 

Chosen  
Right 
Faster  60% 64%  
Left 
Faster  40%  36% 

 

* Highlighted Cells: drivers choosing longer travel time routes. 

** Driver experience calculated as average travel time of all trials per 

driver. 

F. Drivers’ Perceptions vs. Choices: 

Table 6 compares perceptions of travel time (Table 5.a), 

travel speed (Table 5.b), and traffic volume (Table 5.c) to 

reported choices. Three types of behaviors were identified in 

the table: logical behavior reflects drivers choosing better 

perceived routes, cognitive behavior reflecting drivers 

choosing a route in spite of not perceiving a difference 

between both routes, and irrational behavior reflecting 

drivers choosing worse perceived routes. Cognitive behavior 

is in line with human psychology hypotheses postulating that 

humans always minimize their cognitive loads. 

TABLE 6: DRIVERS PERCEPTIONS VERSUS REPORTED CHOICES* 

TABLE 6.A: REPORTED CHOICES VS. TRAVEL TIME PERCEPTIONS 

Choice 
Perception of Travel Time 

Sum 
No Differ. Right Faster Left Faster 

None 33% 6% 3% 42% 

R 36% 12% 0% 48% 

L 6% 0% 3% 9% 

Sum 76% 18% 6% 100 
 

TABLE 6.B: REPORTED CHOICES VS. TRAVEL SPEED PERCEPTIONS 

Choice 
Perception of Travel Speed 

Sum 
No Differ. Right Faster Left Faster 

None 39% 3% 0% 42% 

R 36% 12% 0% 48% 

L 9% 0% 3% 9% 

Sum 85% 15% 0% 100 
 

TABLE 6.C: REPORTED CHOICES VS. TRAFFIC VOLUME PERCEPTIONS 

Choice 
Perception of Traffic Volume 

Sum 
No Differ. Right Lower Left Lower 

None 30% 6% 6% 42% 

R 21% 24% 3% 48% 

L 3% 0% 6% 9% 

Sum 55% 30% 15% 100 
 

* Italic Cells: Logical Behavior, Underlined Cells: Cognitive Behavior, 

Highlighted Cells: Irrational Behavior 

Figures 5.a and 5.b show the breakdown of drivers 

reported choices versus perceptions of travel time, and travel 

speed, respectively, by driver group. Again, differences 

between driver groups are evident and incorporating these 

differences in route choice models seems a promising arena. 

Figure 5 implies that travel speed is a better variable in 

predicting driver choices in comparison to travel time, since 

it is characterized with a clear reduction in the percentage of 

irrational decisions; in total and across all driver groups. 

 
Figure 5.a: Percentage of Drivers Making Logical, Cognitive, and Irrational 

Choices Based on Travel Time Perceptions; Broken Down by Driver 

Groups 

 
Figure 5.b: Percentage of Drivers Making Logical, Cognitive, and Irrational 

Choices Based on Travel Speed Perceptions; Broken Down by Driver 

Groups 

V. CONCLUSIONS AND FURTHER WORK 

While the results of this experiment should not be 

considered conclusive for all driver populations; because of 

limitations in the sample size and experiments, the results do 

demonstrate that driver choices are not necessarily identical 

to their perceptions and that modeling route choice based on 

driver experiences invokes errors in route choice models. 

Accordingly, incorporating drivers’ perceptions to route 

choice models rather than experiences, if possible, could 

improve model accuracy. 

About half of the drivers did not choose their minimum 

experienced travel time routes. This finding may be 

attributed to the small travel time difference between both 

routes (5%) and the high travel time variance. This 

difference, however, could reflect real life situations; even in 

longer trips where on many occasions as part of a longer trip 

drivers may be faced with the option of choosing between 

two short alternative travel legs. It is documented in 

wayfinding literature that drivers may consider short 

segments sequentially, instead of the entire travel route [20]. 

It appears that drivers can perceive travel speeds better 

than travel times and route choice decisions are more 

influenced by travel speeds than travel times. Hence, it 

might be useful to include travel speed variables including 

the number of stop signs and traffic signals along a route in 
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route choice models. Nevertheless, even when considering 

both travel speed and travel time perceptions, irrational route 

choice behavior, although small, continues to exist. This 

implies the existence of other unidentified variables (e.g. 

reliability). 

In accordance with current research standings, in this 

work, differences between driver groups were observable, 

and incorporating these differences in route choice models 

could improve model accuracy. 

Finally, a few possible future research directions include: 

modeling route choice with different signal strengths and in 

more complicated networks and analyzing the effect of each 

variable on the driver route choice task; investigating the 

possible effects of primacy and recency on route choice 

behavior, use of better driving simulators with higher fidelity 

levels to overcome the earlier mentioned limitations; 

examining route choice behavior in real environments; and 

comparing the differences between simulator and real-life 

results, with respect to drivers’ experiences, perceptions and  

route choices. 
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 

Abstract— Most driver route choice is typically 

captured using mathematical programming approaches 

which assume that drivers choose their routes to 

minimize some objective function, and in the late stages 

of typical route choice models, drivers are assumed to 

have perfect, or close to perfect, knowledge of their 

choice set, as well as the travel characteristics associated 

with each of the choice elements. It is, however, well 

documented in human psychological behavior that 

human perceptions are often different from actual 

reality, and that humans tend to minimize their cognitive 

efforts, and follow simple heuristics to reach their 

decisions; especially under uncertainty and time 

constraints. In addition, while only a few of the many 

route choice models are based on observed human 

behavior, the quality of route choice models is usually 

judged based on some simulation-based conversion 

criteria whose fidelity has not been comprehensively 

established. With this in mind, unlike most route choice 

research that is primarily focused on the end result of the 

route choice task, this research effort traces the evolution 

of route choices with driving experience and network 

knowledge. The research presented in this paper 

monitors and traces actual human route choice, and 

demonstrates that (a) drivers’ route choice evolution 

varies; while some drivers do not evaluate the various 

alternative routes others do not decide on a specific 

route, (b) although there appears to be possible evidence 

to conclude that drivers learn the network conditions by 

experience, it appears that drivers perceptions over 

estimate the benefits, (c) drivers’ route choice behavior 

differs between different driver groups, and (d) soliciting 

drivers’ route choice based on observing choices over a 

period of time with reasonable accuracy is possible. 

I. INTRODUCTION 

he number of available alternative routes from an origin 

to a destination can be vast and because of the social 
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nature of traffic, most traffic decisions are not independent 

[1]. Hence, the cognitive task of route choice is not easy 

requiring decisions about how to reach a destination while 

satisfying various requirements. In addition, the experience 

of earlier route choices can affect the probability of the route 

being selected again. Furthermore, the characteristics of each 

alternative route do not have the same importance in a 

driver’s final decision [2]; how a commuter selects which 

route to take may be affected by many other factors such as 

age, gender, driving experience, time, distance, special 

events, bad weather, and the behavior of other drivers [3]. 

While some commuters switch back and forth between 

routes, others consistently take one route until some external 

factor forces them to alter their route of travel. Route choice 

is a main concern that commuters face and make a decision 

about on a daily basis [2]. While some studies show that 

most commuters use only one route to get to work or 

school [4], other research efforts show that most drivers 

select more than one route to travel to work or school to 

avoid congestion and minimize travel time. On average, 

assuming that approximately 50 percent of the drivers use 

only one route for their commute seems to be a reasonable 

assumption. 

Unlike most route choice research that is primarily 

focused on the end product of route choice, this research 

explores the development of route choice from being a 

conscious to a subconscious task. Conscious route choice 

assumes that drivers constantly evaluate and remember their 

travel times on the routes they travel, and use this 

information to select the travel route that maximizes some 

utility function [5, 6]. However, it is well documented in 

human psychological behavior that human perceptions are 

often different from actual reality [7], and that humans tend 

to minimize their cognitive efforts, and follow simple 

heuristics to reach their decisions, especially under 

uncertainty and time constraints. In addition, with repetition, 

cognitive activities become habitual and could reach 

automaticity. Hence, minimizing the required cognitive 

resources [8]. 

It is hypothesized that subconscious route choice 

constitutes a significant percentage of commuter travel; 

especially during under-saturated traffic conditions, and in 

the absence of information provision. This paper suggests 

that the activity of route choice starts as a conscious 

cognitive task, during which drivers consciously evaluate the 

different alternative travel routes. However, at a certain 

point in time, the route choice activity becomes habitual and 

possibly descends to the subconscious domain; where 

drivers choose only one route and seize to consciously 

evaluate the different alternatives, unless something 
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significant happens (such as an accident) that raises the route 

choice activity back to the conscious level. 

To the best of the authors’ knowledge, no previous 

research has examined the evolution of route choice from 

being conscious to subconscious level. Drivers’ compliance 

to disseminated traffic information has been reported to vary 

according to age, gender, driving experience, and other 

factors [9, 10]. Still, though, unexplained variation continues 

to exist. The authors hope that by exploring the evolution 

process of the route choice process, some explanation for the 

remaining unexplained variability may be addressed. For 

example, the authors believe that a driver would probably 

comply with disseminated information if s/he was driving a 

certain route for the first time, i.e. route decision process is 

still conscious. On the other hand, if a driver has been 

driving on the same route and never switched for years, then 

this person’s route choice process is undoubtedly highly 

subconscious, and the chances that s/he would comply to the 

disseminated information is highly unlikely. In addition, 

route choice models typically include simulation-based 

convergence criteria that have not been comprehensively 

evaluated against actual observed human behavior. The 

authors hope that the findings of this research could add to 

such criteria. 

There remains no perfect model available to explain the 

way drivers make route choice decisions, and although all 

techniques are characterized with strengths and limitations, 

data collection and real life validation of proposed models 

significantly add to the challenge. Studies performed to 

measure route choice and driving performance can, however, 

be categorized into different groups, such as: mathematical 

network models [6, 11] and evolving psychological driver 

behavior models [12, 13]; simulator-based, closed-course, 

and on-road studies [14, 15]; time-of-day, day, and trip 

purpose models; with and without information 

provision [16], and survey-, simulation-, and GPS- based 

studies [17, 18]. Stated preference studies, nonetheless, have 

been specifically overly criticized, and GPS-based ones 

seem very promising. With the increasing usage of GPS-

based studies, algorithms capable of identifying drivers’ 

route choice preference based on GPS observed data seem 

potentially useful. 

In the following sections, objectives of the study are 

presented, followed by a detailed explanation of the study 

approach: participants, instruments and materials, procedure, 

and limitations. The third section presents the experiment 

results and discussion, and in the fourth section the paper 

ends with conclusions of the study and recommendations for 

further research. 

II. OBJECTIVES 

The objectives of this study are to investigate (a) the 

possibility of identifying patterns of drivers’ route choice 

evolution, (b) the possibility of soliciting drivers’ route 

choice based on observing choices over a period of time (or 

GPS data), (c) the evolution of network performance with 

drivers’ learning, , and (d) any differences in route choice 

behavior between different driver groups. 

III. METHODOLOGY 

A. Participants 

The research involved a total of fifty participants. All 

participants had valid driving licenses, a normal or corrected-

to-normal vision and perfect color vision. As presented in 

Table 1, participants were selected to ensure variability in 

their personal attributes.  
TABLE I 

BREAKDOWN OF PARTICIPANTS BY GROUP 

Criteria Groups Count 

Age 
Age1: 17 – 25 years 32 

Age2: 26 – 56 years 18 

Gender 
Gen1: Males 33 

Gen2: Females 17 

Ethnicity 
Eth1: European/American (White) 28 

Eth2: Non European/American (Non-White) 22 

Education 
Ed1: Bachelor Degrees 26 

Ed2: Graduate Degrees 24 

Driving 

Years 

Yrs1: < 4 years 25 

Yrs2: > 4 years 25 

Annual  

Miles 

Mil1: <12,000 miles/year 31 

Mil2: >12,000 miles/year 18 

B. Instruments and Materials 

Driving Performance: The experiment was conducted using 

the STISIM driver simulator software that was developed by 

Systems Technology Inc. (STI). STISIM Drive is an 

interactive program that is capable of recording numerous 

performance measures. The program offers the investigator 

control over development of driving scenarios, ensuring that 

all participants encounter the same events and conditions 

while driving. It also offers the investigator with possible 

partial randomization in the simulated scenario and events. 

The simulated driving program operates on a vehicle-similar 

structure with a 48 cm (19 in.) Dell monitor. The vehicle-

similar structure is equipped with a vehicle chair, a steering 

wheel (with a horn and a turning signal arm), and gas and 

brake pedals. Software limitations are discussed in the 

limitations section. 

Driving Network: As depicted in Figure 1, the research 

used a network composed of two routes with a total of 7 

nodes and 9 links. Each route was composed of 5 links and 

4 intersection nodes, and of a total length of 2,804 m (9,200 

ft), i.e. a travel time of 3 to 4 minutes with an average speed 

of around 56 to 40 km/h (35 to 25 mph), respectively. All 

links were two-lane two-way links, with passing restricted at 

all sites due to the short lengths of links between 

intersections. With the exception of the first link which was 

around 1,067 m (3,500 ft) in length and the last link which 

was approximately 91 m (300 ft) long, all links were 

approximately 518 m (1,700 ft) in length. All links had 64 

km/h (40 mph) speed limit signs, and “intersection ahead” 

warning signs. All intersections were priority controlled by 

four-way stop signs. For clearer presentation, the stop signs 

are not shown on Figure 1. 

Both routes were identical: having equal distances and 

speed limits. Both routes were characterized by an equal 

number of right and left turning movements (2 lefts and 2 

rights), so that participants wouldn’t choose a route based on 

turning preference. Both routes were also characterized by 
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equal traffic volumes in all directions: with-flow, contra-

flow, as well as in intersecting directions. However, the 

exact times and distances where the other traffic were to 

appear were randomized. This randomization resulted in the 

right route being 5% shorter (significant difference of 8 

seconds), on average, when compared to the left route. Also 

the shapes, colors and types of the other traffic were 

randomized. As discussed later in the limitations section, no 

landmarks were placed at any location. 

 

Fig. 1.  Sketch of the simulated network 

 

Initial Questionnaire: Participants were asked to fill-in a 

short questionnaire before performing the driving tasks. The 

questionnaire collected information about their age, gender, 

ethnicity, education, vision problems, driving experience, 

driving frequency, average number of miles driven per year, 

and use of cellular phones while driving. 

Final Questionnaire: Participants were asked to fill a short 

questionnaire after performing all the driving runs. The 

questionnaire was designed to capture the participants’ 

cognition of the different sections of this study. The 

questionnaire collected information about the number of 

repetitions the participants believed they would need before 

deciding on a preferred route from home to work/school in a 

new city and the number of repetitions they needed in the 

performed experiment, about their perception of differences 

in travel characteristics between the two routes, about their 

route choice, and reasons for their route choice. 

C. Experiment Procedure 

After participants read and signed the consent forms, 

they were first asked to fill an initial questionnaire, which 

collected their general information (as described earlier).  

Then, the participants were given a 15-minute drive on 

several practice routes. The practice routes were 

characterized by different terrains and driving schemes and 

scenarios, with the objective of allowing the drivers to be 

familiar with the simulator driving motor skills. 

Afterwards, participants were introduced to the research 

route. They were handed a draft sketch of the network 

showing the network and the points of origin and 

destination. The participants were asked to drive from the 

point of origin to the point of destination. They were asked 

to imagine that they moved to a new city, and that the origin 

point was home, while the destination point was 

work/school. They were asked to drive similar to how they 

would drive in the real world. Participants were asked to 

repeat driving from home to work many times, and most 

participants ended up driving twenty times from origin to 

destination. Participants were allowed as many intermediate 

breaks as they liked, and were instructed to report any signs 

of nausea or fatigue. 

At the end of the experiment, participants were asked to 

fill a post-task questionnaire where they were asked to report 

their route choices and network perceptions (as mentioned 

earlier). 

D. Study Limitations 

To place the results of this study in context, the 

limitations of this research effort are summarized. The 

STISIM driver simulator dynamics lacked some realism. A 

noticeable difference was observed between real-life 

steering and breaking and the simulator experience. As an 

example, Modeling of T-intersections was not possible using 

the STISIM software. So, construction cones were placed to 

prevent participants from continuing through at the 4-leg 

intersections. However, although participants’ vehicles 

would crash if driven into a construction cone, other 

simulated vehicles were not smart enough to recognize 

construction cones and drove into the cones with no harm. 

Also, the STISIM software does not support “If, Then” 

logic. Accordingly, it was not possible to build a different 

scenario based on “If” the participant turned right or left at 

the different intersections, and as a result, no landmarks 

were added to the network. Due to lack of landmarks, a 

small number of participants made wrong turns and got lost 

a couple of times. The total number of trials that involved 

crashes or missed turns, however, was less than 10% of the 

total runs. 

IV. RESULTS 

A. Drivers Route Choice Evolution 

Observing the drivers’ individual evolution of route 

choice, four patterns were identified. Table 2 presents 

sample figures demonstrating each of the four patterns 

together with the percentage frequency of each pattern. On 

the figures a 0 represents a driver choosing one of the routes 

while a 1 represents a choice of the other route. 

In the first pattern drivers make no route choice 

switches. These drivers select one of the routes, are satisfied 

with their experience, and repeat the same choice over and 

over again while never investigating alternative routes (14% 

of the total sample). In the second pattern, drivers start by 

arbitrarily picking one of the routes, repeat their choice a 
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few times and are not satisfied with their experience. These 

drivers switch to the other route, and either feel satisfied 

with their new choice or switch back to their initial choice, 

and never switch again. These drivers account for 16% of 

the sample. The third group is drivers who alternate their 

route choices continuously but have a preference for one of 

the routes. These drivers account for 38% of the sample size. 

The last group of drivers alternate between routes with no 

preference for a specific route. 

TABLE 2 

INDIVIDUAL PATTERNS OF ROUTE CHOICE EVOLUTION 

P
at

te
rn

 

Sample Figure 
Frequency Percentage 

and Description 

1 

 

Frequency = 14% 

A driver starting by 

arbitrarily picking a 

route, is apparently 

satisfied with the 

experience, and 

continues making the 

same choice for the 

entire 20 trials; till the 

end of the experiment. 

2 

 

Frequency = 16% 

A driver starting by 

arbitrarily picking a 

route, is apparently not 

satisfied with the 

experience, tries the 

other route, and 

decides that the first 

route was better. So, 

switches back to the 

first choice, and 

continues with this 

choice till the end of 

the experiment. 

3 

 

Frequency = 36% 

A driver switching 

between the two 

alternative routes till 

the end of the 

experiment. The 

driver, however, drives 

on route 1 much more 

than s/her drives on 

route 0. This reflects 

his/her preference for 

route 1. 

4 

 

Frequency = 32% 

A driver switching 

between the two 

alternative routes 

during the entire time 

of the experiment. The 

driver drives both 

routes with 

approximately equal 

percentages. This 

reflects the lack of 

preference towards any 

of the alternatives. 

These results can be useful in identifying driver 

tendencies to comply with a route guidance system. For 

example, drivers that have established preferences for a 

certain route – as in patterns one, two, and three – would 

probably be more willing to comply with information that 

favors their preferred choice – especially when compared to 

drivers of pattern four. Alternatively, it would be more 

challenging to encourage drivers to use a route other than 

their preferred choice. The same challenge can be true for 

drivers of pattern four. Probably depending on their 

perception of the reliability of the provided information, they 

might decide to comply with the information, or depend on 

their personal experience-based knowledge. 

B. Eliciting Drivers Route Choice 

In an attempt to investigate the possibility of identifying 

choice preference based solely on observing drivers choices, 

two simple choice criteria were examined. The first criterion 

assumed that if a driver repeats the same choice for a certain 

number of consecutive trials, this may be used as an 

indication of a choice preference. The second criterion, on 

the other hand, is based on the percentage a single route is 

chosen in a certain number of trials. It assumes that if in a 

certain number of trials a driver chooses a route for more 

than a certain percentage this could reflect a preference for 

that route. For example, it assumes that if  (in a certain 

number of trials) a driver chooses the right route more than a 

certain percentage, X (which has to logically be greater than 

50%), then this driver has established preference towards 

that route. In order to optimize the models, different values 

of X were examined, and only the results based on the 

optimum X are shown in Table 3. The process for obtaining 

the optimum X values is demonstrated in Figure 2. 

Table 3 shows that three different values were examined 

for the first criterion, namely, 3, 4 and 5 consecutive trials. 

The second criterion, however, examined the percentage of 

times the right route is chosen in the first 10, 15, and 20 

trials. The values in the table reflect the number of times the 

adopted model is correct and the number of times the model 

is incorrect. Being correct involves two cases. The first case 

is when both the stated choice and the model indicate the 

same choice for the driver (case 1 in Table 3), i.e. the model 

predicted a correct choice. The second case is when both the 

stated choice and the model indicate that the driver did not 

reach a decision (case 4 in Table 3). Being incorrect, on the 

other hand, involves three cases. The first case is when the 

driver states making a choice while the model predicts that 

the driver did not make a choice (case 2 in Table 3). The 

second case is the opposite of the first one: when the driver 

states not making a choice while the model predicts that the 

driver made a choice (case 3 in Table 3). Finally, the third 

error results when both the model and the driver state that 

the driver made a choice; however, the driver states 

choosing a certain route, and the model predicts that the 

driver chose the other route (case 5 in Table 3). 

Table 3 shows that the best performance is achieved 

using the sixth model (84% correct predictions), which is 

based on the second criterion. The other two second criterion 

models produce correct predictions of 72% and 42%; 

however, perform worse than the three first criteria models 
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(correct predictions of 78%, 76%, and 78%). 

TABLE 3 

CRITERIA AND PERFORMANCE OF MODELS FOR PREDICTING DRIVERS’ ROUTE 

CHOICE  

M
o
d

el
 #

 

C
ri

te
ri

a 

L
im

it
 

% Correct % Incorrect 

R
an

k
 

T
o
ta

l 

1 4 

T
o
ta

l 

2 3 5 

1 

C
o

n
se

cu
ti

v
e 

T
ri

al
s 

3 0.78 0.64 0.02 0.22 0.18 0.14 0.02 3 

2 4 0.76 0.58 0.10 0.24 0.14 0.18 0.00 4 

3 5 0.78 0.58 0.10 0.22 0.12 0.20 0.00 2 

4 

N
u

m
b

er
 o

f 

T
ri

al
s 

10* 0.42 0.30 0.32 0.58 0.20 0.12 0.06 6 

5 15* 0.72 0.50 0.18 0.28 0.10 0.22 0.00 5 

6 20* 0.84 0.68 0.00 0.16 0.16 0.16 0.00 1 

 * Based on optimum limit: for 10 (L<0.20, R>0.80), for 15 (L<0.40, R>0.60), 

and for 20 (L<0.44, R>0.56) (See Figure 5) 

Figure 2 shows the process used to derive the 

percentage limits that optimize the predictions of the second 

criteria models. The figure depicts the performance of the 

models versus the different percentage values, X. The figure 

shows that the best performance of the 20 trials model is 

when X (a person is assumed to choose the right route when 

the percentage of times this driver selects the right route) is 

greater than 56%. The figure also shows that the best 

performance of 15 and 20 trials models is any value between 

57% and 63%, and at the value of 80%, respectively. 

 

Fig. 2.  Performance of Second Criteria, Number of Trials, 

Models According to Percentage Limit to Reflect Choice 

C. Network Evolution 

While validation of route choice models and traffic 

simulation runs have been usually dependent on model 

convergence as the primary factor, the analyses presented in 

this paper can be used as additional validation criteria. 

Furthermore, such models for predicting route choice and 

preference based on observance of drivers’ route choice 

behavior can be significantly useful in GPS-based data 

collection methods. 

Figure 3 depicts the aggregate evolution of drivers’ 

route choice over trials. This evolution reflects the aggregate 

learning curve of all drivers at the network level. Statistical 

analysis of the slope of the curve with respect to the trial 

number shows that the trial number is significant (p-value = 

3.5%) for the determination of the percentage of drivers 

choosing the right, faster, route. The regression formula 

reflects that, on average, an increase of 0.5% of drivers 

choosing the right route is achieved with every new 

experience. Although this possibly proves that drivers 

aggregately learn and change their behavior according to 

system evolution, the learning curve is relatively shallow. 

This may be attributed to the difficulty in observing the 

small difference in travel time between the two alternative 

routes. Surprisingly, however, the aggregate percentage of 

drivers choosing the right route on the first trial was almost 

70%, which is significantly higher than 50%. This may be 

due to drivers avoiding turning through oncoming traffic at 

the first intersection, which was repeatedly reported as the 

reason for choosing the right route in the post-task 

questionnaire. Regardless, this high percentage of drivers 

choosing the shorter travel time route on the first trial could 

be contributing to the relatively shallow learning curve. As 

mentioned in the suggested future work section, it would be 

interesting to observe the system’s learning curve if the 

situation had been reversed, i.e. if the left route was the 

shorter travel time route. 

 

Fig. 3: Aggregate Evolution of Route Choice over Trials 

 

Comparing the percentage of drivers choosing the right 

route over the left route to the probability of the right route 

being shorter than the left route reveals other intriguing 

results. Based on a Monte Carlo simulation of all 

experienced travel times, the right route was shorter than the 

left one 60% of the time; hence, implying an aggregate 

drivers’ route choice evolution curve that is asymptotic with 

60% of drivers choosing the right route. Interestingly, 

however, based on the 20 experiment trials, the aggregate 

evolution curve in Figure 3 does not follow such a trend, and 

overshoots the 60% line. Again, as mentioned above, this 

might be explained by the drivers’ reported reason of 

choosing the right route to avoid turning through traffic at 

the first intersection. However, while this could be a rational 

reason on the first trial, where drivers lack any knowledge 

regarding the network, it does not seem rational in later 

trials, where drivers would have arguably established perfect 

knowledge of the system. Hence, such behavior could 

alternatively be explained as drivers basing their decisions 
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on short-term gains; possibly due to the small average travel 

time difference between both routes. 

D. Driver Group Differences 

In order to characterize the effects, if any, of the 

independent variables on the evolution of route choice, the 

aggregate evolution was computed per driver group (age, 

gender, ethnicity, driving years, and annual driven miles), as 

presented in Figure 4 (Figures 4.a thru 4.f, respectively). 

 
Fig. 4.a: Choice Evolution by Age 

 
Fig. 4.b: Choice Evolution by Gender 

 
Fig. 4.c: Choice Evolution by Ethnicity 

 
Fig. 4.d: Choice Evolution by Education 

 
Fig. 4.e: Choice Evolution by Driving Years 

 
Fig. 4.f: Choice Evolution by Annual Driven Miles 

Fig. 4: Aggregate Effect of Independent Variables on 

Route Choice Evolution 

Figure 4 shows that the percentage of drivers choosing 

the right, shorter travel time route increases for drivers of all 

groups. Figure 4.a shows that young drivers are more 
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inclined to adapt and choose the minimum travel time route 

(a slope of 0.0066), in comparison to females (a slope of 

0.0012); Figure 4.c shows that European/American (white) 

are more inclined to adapt and choose the minimum travel 

time route (a slope of 0.0083) in comparison to non-

European/American (a slope of 0.0006); and likewise, 

Figure 4.d shows graduate students are more adaptive (a 

slope of 0.0062) in comparison to undergraduate students (a 

slope of 0.0045), Figure 4.e shows drivers with short driving 

experience (a slope of 0.0071) are more adaptive than 

drivers with longer experience (a slope of 0.0031), and 

Figure 4.f shows drivers driving less annual miles (a slope of 

0.0058) are more adaptive in comparison to those driving 

more annual miles (a slope of 0.0025). 

Figure 4 also shows that the group that is most adaptive 

to learning evolution is the European/American (white) 

drivers (a slope of 0.0083), followed by drivers with short 

driving experience (a slope of 0.0071). Alternatively, the 

non-European/American (non-whites) drivers are 

characterized with least learning evolution towards choosing 

the minimum travel time routes (a slope of 0.0006) followed 

by the female drivers (a slope of 0.0012). Interestingly, 

though, since the probability of the right route to be shorter 

is 60% (Monte Carlo simulation) these two groups are the 

same groups that are not significantly over estimating the 

benefits of the right route. 

V. CONCLUSIONS AND FURTHER WORK 

While the results of this experiment should not be 

considered conclusive for all driver populations; due to the 

small sample size, from the results of the experiments it can 

be concluded that drivers’ route choice evolution is not 

identical. It has been observed that while some drivers do 

not explore other alternative routes, others are unable to 

select a specific route. The research identified four major 

route choice evolution patterns. These identified patterns 

could have a multitude of benefits. For example, inclusion of 

these different patterns in route choice models can help 

improve the models by decreasing unexplained variation. 

Also, the possible identification of drivers following these 

different patterns and their compliance to travel information 

can be extremely useful in identifying target groups for 

marketing dynamic electronic route guidance systems. 

With respect to the possibility of eliciting route choice 

based on route choice observations, high percentages of 

correct predictions were obtained based on the simple 

criteria used in the experiment. Although these values could 

significantly improve by incorporating more advanced data 

mining techniques, it should be noted that these values were 

descriptive and not predictive. In case of a predictive model, 

model performance would probably be less. 

There appears to be some evidence to support aggregate 

learning evolution of systems, possibly towards choice of 

minimum travel time routes; however, the process seems to 

be imperfect, relatively slow and is definitely affected by 

other factors that require further investigation. Drivers’ route 

choice behavior seems to be influenced by short-term gains, 

more than strategic evaluations, and it appears that drivers’ 

route choice might be overestimating the benefits of shorter 

travel time routes. 

These results of drivers’ route choice evolution and 

network learning can be very useful if considered as criteria 

for models validation. While most route choice model 

validation has been primarily based on convergence of the 

solution, results of this research could be incorporated into 

the validation process. Again, to reiterate, there is no doubt 

that these findings are only preliminary, and that more 

research needs to be done before considering these results 

conclusive. 

From observing the aggregate evolution trends of the 

different driver groups, it appears that drivers’ route choice 

behavior is also affected by the demographic factors. The 

extent of the effect of these factors on aggregate route choice 

behavior, undoubtedly, necessitates further investigation. 

Finally, a few possible future research directions 

include: modeling route choice with different signal 

strengths and in more complicated networks and analyzing 

the effect of each on drivers’ route choice patterns and 

network evolution, use of better driving simulators with 

higher fidelity levels and that overcome the earlier 

mentioned limitations, examining route choice patterns in 

real environments, examining the effect of route guidance 

systems on the compliance of drivers with different 

evolution patterns as well as on the aggregate system 

evolution, incorporating the differences between drivers with 

different route choice patterns in a hierarchical route choice 

model and evaluating the benefits, and comparing the 

differences between simulator and real-life results, with 

respect to drivers’ route choice patterns and network 

evolution. 
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 

Abstract— Since their emergence, route choice models 

have been continuously evolving; particularly because of 

their wide application and consequent influence in the 

transportation engineering arena. Although early 

versions of route choice models were based on theories of 

rational behavior and neglected limitations of human 

cognition, later closer observance of human behavior 

resulted in better modeling frameworks such as Bounded 

Rationality and Prospect Theory. Nonetheless, recent 

developments in Intelligent Transportation Systems have 

increased the demand for more exploration, modeling 

and validation of behavioral route choice models. This 

work presents statistical models of route switching based 

on a real-time driving simulator study of 50 drivers. The 

research presented in this paper demonstrates that 

(a) different driver learning patterns have significant 

route choice effects, (b) driver route choice behavior 

significantly changes with driver network experience, 

and (c) disaggregate route choice models based on either 

driver learning patterns or network experience 

outperform aggregate route choice models.  

I. INTRODUCTION 

oute choice models are extremely important in 

transportation engineering. For example, these models 

are used in transportation planning, dynamic traffic 

assignment, advanced traffic signal control, advanced 

traveler information systems, and electronic route guidance 

systems [1, 2]. With increased advancements in Intelligent 

Transportation Systems (ITSs), the importance of route 

choice models seems to only increase. This is especially 

evident by the increased interest in developing behavioral 

and user-specific route choice models. 

Earlier models of route choice were based on assumptions 

of rational behavior and resulted in an extensive literature of 

deterministic and stochastic equilibrium models. Recent 

work explored the possibility of attaining system optimum 

via alternating cooperation strategies [3]. Research, 

however, succeeded in uncovering significant limitations in 
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rational human behavior theories and highlighted the need 

for further empirical research that bases its findings on 

theories from behavioral science. Furthermore, recent 

developments in ITS and disappointing rates of user 

satisfaction with navigation systems underpinned the 

heterogeneity of drivers and increased the need for 

personalization of route guidance systems via the 

incorporation of user specific parameters [4].  

In the past few years, several empirical route choice 

studies were conducted and developments in route choice 

models in the direction of behavioral sciences are becoming 

a norm. For example, Bogers et al. [5] developed a 

framework for the joint modeling of learning, risk attitude 

under uncertainty, habit, and the impacts of advanced 

traveller information on route choice. In another study, 

based on travel simulator data, an empirical model was 

developed that incorporates parameters that represent both 

implicit and explicit learning [6]. Talaat and Abdulhai [7] 

explored the suitability of using Decision Field Theory 

(DFT) (which is a significantly advanced development of 

Random Utility Models) in route choice, based on empirical 

travel simulator experiment data. Iida et al. [8] performed an 

empirical route choice experiment on a travel simulator and 

concluded that “it is desirable to develop a model which is 

disaggregated by a type of driver because the route choice 

behavior varies by individual”. Similarly, in a series of 

publications based on micro-simulation, Nakayama et al. [9-

11] concluded that drivers are not homogeneous, may use 

different strategies at different times, and that even after a 

long process of learning drivers do not become homogenous 

or rational.  

In an attempt to better understand heterogeneity of route 

choice behavior, this research effort does not assume rational 

behavior and does not focus on the final outcome of route 

choices. The work attempts to investigate the validity of 

these assumptions by monitoring and tracking actual human 

route choices performed on a driving simulator. In an earlier 

publication the authors contrasted and presented 

discrepancies between driver experiences, perceptions and 

choices [12]. In another earlier publication, the authors 

investigated drivers learning behavior and identified four 

different driver learning patterns [13]. In this paper, the 

authors build on the previous work and examine differences 

in route switching models. 

In the following sections, the authors present the 

objectives of the study, followed by a brief explanation of 

the study approach: participants, instruments and materials, 

procedures, and limitations. In the third section, the authors 

present the experimental results and discussion, and in the 

fourth section the paper ends with the conclusions of the 

study and recommendations for further research. 
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II. OBJECTIVES 

The objectives of this study are to demonstrate that 

(a) different driver learning patterns have significant route 

choice effects, (b) drivers route choice behavior significantly 

changes with driver experience, and (c) disaggregate route 

choice models based on either driver learning patterns or 

network experience outperform aggregate route choice 

models. 

III. METHODOLOGY 

This section explains the methodology briefly. For more 

information readers are referenced to earlier publications 

[12, 13]. 

A. Participants 

A total of 50 participants were selected with variable 

personal attributes (age, gender, ethnicity, education, driving 

years, and annual driving miles). 

B. Instruments and Materials 

Driving Performance: The experiment was conducted using 

a low fidelity driving simulator. 

Driving Network: The research network was composed of 

two alternative geometrically-identical routes with nearly 

identical (but statistically biased) traffic. The mean travel 

times were 3 to 4 minutes based on average speeds of 

approximately 56 to 40 km/h (35 to 25 mph), respectively.  

Initial Questionnaire: Participants were asked about their 

age, gender, ethnicity, education, vision problems, driving 

years, and average number of miles driven per year. 

Final Questionnaire: Participants were asked about their 

perceptions of differences in travel characteristics between 

the two routes, and reasons of their route choice. 

C. Experiment Procedure 

Participants were asked to fill an initial questionnaire and 

were given a 15-minute practice drive. Then, participants 

were handed a draft sketch of the network and asked to drive 

from the point of origin to the point of destination. They 

were asked to imagine moving to a new city, where the 

origin point was home, and the destination point was 

work/school. Participants were asked to repeat driving from 

home to work many times, and most participants ended up 

driving twenty times from origin to destination. At the end, 

participants were asked to fill a final questionnaire. 

D. Study Limitations 

The low fidelity driving simulator was characterized with 

a number of limitations that are discussed in the earlier 

publications [12, 13]. 

IV. RESULTS AND DISCUSSION 

A. Drivers Experiences 

On average, the right route was 5% shorter in travel time 

than the left one. Based on a t-test and an F-test, both travel 

time means and standard deviations, respectively, were 

significantly different (p-value<0.01). Based on a Monte-

Carlo simulation, the probability of the right route having a 

shorter travel time was 60%. 

Discrepancies between driver experiences, perceptions 

and choices were observed and investigated in an earlier 

publication [12] and thus are not discussed further. 

B. Choice Evolution Patterns 

In an earlier publication, Tawfik et al. [13] categorized 

driver route choice evolution into four patterns; presented in 

Table 1. In addition to this categorization, the models 

presented below are based on four more categorizations. 

C. Route Choice Models 

Response Variable: the modeled response is the probability 

that driver i will switch his/her route choice on trial t. 

Independent Variables: The independent variables 

investigated in this work are presented in Table 2. Although 

the previous categorization of learning patterns was based on 

all observed trials, Cat4R20, the added four categorizations 

are based on fewer numbers of trials. The rational is to limit 

the dependence between the independent categorization 

variables and the modeled error terms. 

Model Data: in total there were 823 observations. However, 

all observations with missing data were dropped. This 

included all trials where drivers were not aware of the travel 

time on the alternative route. Hence, all observations of 

learning pattern 1 (in Cat4R20 and Cat4R10) were not 

considered in the following models. Because categorizations 

that are based on 5 runs cannot be as accurate as those based 

on more runs, some drivers were mistakenly categorized 

under learning pattern 1 in Cat3R5, and 0 number of switches 

in Cat5R5. As a result these two categories were not dropped 

from the data. A total of 605 observations were included in all 

the following models. All numeric variables used in the 

presented models were scaled; so that the magnitude of one 

(or more) variables would not over shadow other variable(s) 

and affect the solution. 

Model Structure: the route choice model proposed here is a 

mixed effects generalized linear model with a logit link 

function. Because each driver was asked to repeat his/her 

choice several times, one random parameter, the intercept, is 

estimated over all individuals instead of all observations. The 

model has the following structure. 

        (   ) 
     (   )     

      
    (   ) 
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TABLE 1 

INDIVIDUAL PATTERNS OF ROUTE CHOICE EVOLUTION 

P
at

te
rn

 

Sample Figure 

Frequency 

Percentage and 

Description 

1 

 

Frequency = 14% 

A driver starts by 

arbitrarily picking 

a route, is 

apparently satisfied 

with the 

experience, and 

continues making 

the same choice for 

the entire 20 trials. 

2 

 

Frequency = 16% 

A driver starts by 

arbitrarily picking 

a route, is 

apparently not 

satisfied with the 

experience, tries 

the other route, and 

decides that the 

first route was 

better. The driver 

makes a choice 

after trying both 

routes and does not 

change afterwards. 

3 

 

Frequency = 36% 

A driver switches 

between the two 

alternative routes 

till the end of the 

experiment. The 

driver, however, 

drives on route 1 

much more than 

s/her drives on 

route 0. This 

reflects his/her 

preference for 

route 1. 

4 

 

Frequency = 32% 

A driver switches 

between the two 

alternative routes 

during the entire 

time of the 

experiment. The 

driver drives both 

routes with 

approximately 

equal percentages. 

This reflects the 

lack of preference 

towards any of the 

alternatives. 

Three models were developed and are presented here. 

Model 1 explores the benefit of including the categorization 

as an independent variable in the general route switching 

model. Model 2 investigates the benefits of having a 

separate route switching model (disaggregate models) for 

each learning pattern. Model 3 as was the case with Model 1 

examines the entire population but develops separate models 

for early and later stages of driving. It examines whether 

drivers’ route switching behavior changes with driver 

experience and the benefits of having disaggregate models 

based on driver network experience. 

TABLE 2 

MODEL INDEPENDENT VARIABLES 

# 
Variable 

Name 
Variable Description 

Variable 

Values 

Variables of Driver Demographics 

1 Agei Age of participant i 17 to 56 

2 Genderi Gender of participant i M or F 

3 Ethnicityi Ethnicity of participant i 1 or 2 

4 Educi Education level of participant i 
3, 4, 5, 

or 6 

5 DrYearsi 
Number of years participant i has been 

a licensed driver 

0.33 to 

36  

6 Dr Milesi 
Annual number of miles participant i 

drives 
1 or 2 

Variables of Driver Learning Patterns 

1 Cat4R20i 
Pattern type (as presented in Table 1) 

of driver i based on 20 trials 

1*, 2, 3, 

or 4 

2 Cat4R10i 
Similar to Cat4R20, but categorization 

based on only 10 trials. 

1*, 2, 3, 

or 4 

3 Cat3R5i 

Similar to Cat4R20, but categorization 

based on only 5 trials, and patterns 3 

and 4 are combined into a single 

pattern. 

1**, 2, or 

3 

4 Cat2R5i 
Similar to Cat3R5, but patterns 1 and 

2 are combined into a single pattern. 
2 or 3 

5 Cat5R5i 

Five categories based on five trials. 

The categories are based on the 

number of switches driver i makes in 

the first 5 trials. 

0**, 1, 2, 

3, or 4 

6 Cat#R#-Xi 

Indicator variable indicating whether 

person i belongs to pattern X, 

according the Cat#R# category  

0 or 1 

Variables of Route Experience 

1 
Trial 

Number (t) 

The route choice trial number of the 

participant 
1 to 22 

2 TTit 
The travel time experienced by 

participant i on trial t 

151 to 

337 

3 Carsit 
The number of vehicles encountered 

by participant i on trial t 
4 to 11 

4 MinDit 
The closest car-following distance 

experienced by participant i on trial t 

0.1 to 

580.6 

5 AvgDit 
The average car-following distance 

experienced by participant i on trial t 

335 to 

1767  

6 
TTavgOther-

OverCurrentit 

The ratio of the average travel times 

(of the other route over the current 

chosen route) experienced by 

participant i up till trial t 

0.79 to 

1.31 

7 Inertiait 

The number of successive identical 

choices participant i has made right 

before trial t  

0 to 19 

8 
PrefOther-

OverCurrentit 

The ratio of the number of times 

(participant i has chosen the other 

route over the current chosen route) in 

all trials up till trial t 

0.14 to 

7.47 

* Because of missing data, all observations dropped out from analysis  
** Drivers incorrectly classified in this category and, as a result, 

category not dropped out from analysis.   

Model1: Table 3 presents the results of 5 route choice 

switching models based on 5 different driver learning 

patterns, where Table 3A presents the significant factors and 
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Table 3B presents the performance of the models according 

to the BIC and Deviance performance measures. 

Table3A shows logical model parameters. The negative 

sign of inertia indicates that as the inertia increases, the 

probability of a switch decreases. The positive sign of 

PrefOther-OverCurrent implies that as a driver drives one route 

more than the other, the probability of the driver switching 

back to that preferred route increases. It can also be seen that 

including the category variable in the model improves the 

BIC and deviance, and that drivers with learning patterns 3 

and 4 (in Cat4R20 and Cat4R10) and learning pattern 3 (in 

Cat2R5) have a higher probability of switching than drivers 

of learning patterns 2 and 1, respectively. Since drivers of 

learning pattern 4 seem indifferent between both routes, it is 

logical that the parameters of Cat4R20-4 and Cat4R10-4 are 

greater than the parameters of Cat4R20-3 and Cat4R10-3, 

respectively, i.e. drivers of learning pattern 4 have a higher 

probability of switching than those of learning pattern 3.  

It is not surprising that Cat5R5 was not significant. On 

one hand, a possible explanation of the former can be 

attributed to the difficulty in differentiating between learning 

patterns 3 and 4 in only 5 trials. On the other hand, a 

possible explanation of the latter is the random 

categorization that is not based on behavioral reasoning. The 

drivers that were incorrectly categorized in leaning pattern 1 

provide a plausible explanation that Cat3R5 was not 

significant; since their behavior is not significantly different 

from the drivers in the other two categories. 

TABLE 3A 

SIGNIFICANT VARIABLES IN ROUTE CHOICE SWITCHING MODELS 

BASED ON DRIVER LEARNING PATTERNS 

Significant 

Variables* 
Cat4R20 Cat4R10 Cat2R5 

Cat3R5 

and 

Cat5R5 

Intercept -2.9894 -2.3501 -1.0491 -0.4294 

Trial -0.2760 n/s n/s n/s 

Inertia n/s -0.5206 -0.6117 -0.6613 

PrefOther-

OverCurrent 
0.6621 0.6242 0.6038 0.5889 

Cat4R20-3 

Cat4R20-4 

2.3373 

3.6850 
- - - 

Cat4R10-3 

Cat4R10-4 
- 

1.9289 

2.5144 
- - 

Cat2R5-3 - - 0.9159 - 

Cat3R5 - - - - 

Cat5R5 - - - - 

* all variables are significant at 1% 

TABLE 3B 

PERFORMANCE OF ROUTE CHOICE SWITCHING MODELS 

Model 

Performance 
Cat4R20 Cat4R10 Cat2R5 

Cat3R5 

and 

Cat5R5 

BIC 685.1 708.6 727.7 729.5 

Deviance 646.6 670.2 695.7 703.9 

It is interesting that travel time was not significant in any 

of the models presented in Table 3A. A possible reason 

could be that the travel time difference between the two 

routes was not big enough to be perceivable, which is 

explored in an earlier publication [12]. Another possible 

explanation could be that travel time was not important to all 

the drivers. A third possible explanation could be that travel 

time was not important at all the experience stages. While 

the second explanation is further explored in model 2, the 

third explanation is explored in model 3. 

It is also interesting that none of the demographic 

variables was found to be significant in the route choice 

models. This is further explored in three other models: first, 

in model 2 to see if the demographic variables would appear 

within the learning pattern category route choice models; 

second, in model 3 to see if demographic variables could 

affect route choice at different learning stages, and last in 

Section D to see if it is possible to use the demographic 

variables to predict driver learning pattern memberships. 

The BIC and deviance measures presented in Table 3B 

show that the models that include learning pattern variables 

(Cat4R20, Cat4R10, and Cat2R5) outperform those that do 

not include learning pattern variables (Cat3R5 and Cat5R5). 

Model2a: Table 4 presents the results of modeling route 

switching based on disaggregate learning patterns of Cat4R20. 

Again, the results in Table 4A seem logical. It is 

specifically interesting that travel time turned out to be 

significant for drivers of learning pattern 3 and not for the 

other two learning patterns (especially learning pattern 2). It 

was hypothesized that drivers of learning pattern 3 are those 

who are continuously evaluating the alternative routes and 

choosing the best one; hence, it is appropriate that travel 

time is important for them. On the other hand, although it 

was hypothesized that drivers of learning pattern 2 were also 

evaluating the alternative routes and choosing the best route, 

since they made their choices very early, their evaluation 

accuracy is questionable. The insignificance of the travel 

time variable seems in line with this reasoning. 

Unlike the insignificance of the demographic variables in 

model 1, in this model a few demographic variables seem to 

affect the route choice switching behavior of drivers 

belonging to learning patterns 3 and 4. This is consistent 

with the conclusions of an earlier publication [12]. 

TABLE 4A 

SIGNIFICANT VARIABLES IN ROUTE CHOICE SWITCHING MODELS 

Significant 

Variables* 
Cat4R20 

Cat4R20-

2 

Cat4R20-

3 

Cat4R20-

4 

Intercept -2.9894 -3.2790 -1.0170 1.0042 

Ethnicity-2 n/s n/s 0.5275** n/s 

DrMiles-2 n/s n/s n/s -0.6678 

Trial -0.2760 n/s -0.6761 n/s 

TTavgOther-

OverCurrent 
n/s n/s -0.2824** n/s 

PrefOther-

OverCurrent 
0.6621 1.4589 0.7277 n/s 

Cat4R20-3 

Cat4R20-4 

2.3373 

3.6850 
- - - 

* unless otherwise stated, all variables are significant at 1% 
** significant at 10%  
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TABLE 4B 

PERFORMANCE OF ROUTE CHOICE SWITCHING MODELS 

Model 

Performance 
Cat4R20 

Cat4R20-

2 

Cat4R20-

3 

Cat4R20-

4 

BIC 685.1 39.25 298.6 340.1 

Deviance 646.6 25.92 265.2 323.5 

The BIC and deviance measures presented in Table 4B are 

lower than those presented in Table 3B. This could be a 

result of the smaller number of observations. 

Model2b: Table 5 presents the results of modeling route 

choice switching based on disaggregate learning patterns of 

Cat4R10. 

As in models 1 and 2a, the signs of the parameters 

presented in Table5A seem logical. In addition, as in the 

case of model 2a, a couple demographic variables seem to 

affect the route choice switching behavior of drivers 

belonging to the disaggregate models. Travel time, on the 

other hand, did not appear to be significant in this model. 

The differences between models 2a and 2b are explainable 

by the fact that drivers belonging to the learning pattern 

categories of Cat4R20 and Cat4R10 are not the same. It is 

reasonable to assume that categorization of drivers based on 

more trial observations should make more sense. 

Again, the BIC and deviance measures presented in Table 

5B are lower than those presented in Table 3B. This, too, 

could be a result of the smaller number of observations. 

TABLE 5A 

SIGNIFICANT VARIABLES IN ROUTE CHOICE SWITCHING MODELS 

Significant 

Variables* 
Cat4R10 

Cat4R10-

2 

Cat4R10-

3 

Cat4R10-

4 

Intercept -2.3501 -2.8935 -0.3168** 0.7022 

Ethnicity-2 n/s n/s n/s -0.6822 

Trial n/s n/s n/s -0.4210 

Inertia -0.5206 n/s n/s n/s 

PrefOther-

OverCurrent 
0.6242 1.3974 0.9272 n/s 

Cat4R20-3 

Cat4R20-4 

1.9289 

2.5144 
- - - 

* unless otherwise stated, all variables are significant at 1% 
** significant at 10%  

TABLE 5B 

PERFORMANCE OF ROUTE CHOICE SWITCHING MODELS 

Model 

Performance 
Cat4R10 

Cat4R10-

2 

Cat4R10-

3 

Cat4R10-

4 

BIC 708.6 50.23 254.3 395.1 

Deviance 670.2 36.36 238.2 372.4 

Model2c: Table 6 presents the results of modeling route 

switching based on disaggregate learning patterns of Cat2R5. 

As in models 1, 2a and 2b, the signs of the parameters 

presented in Table6A seem logical, and, as in the case of 

models 2a and 2b, a couple demographic variables seem to 

affect the route choice switching behavior of drivers 

belonging to the disaggregate models, but travel time, as in 

model 2b, did not appear to be significant in this model. The 

differences between models 2a, 2b and 2c, are explainable 

by the fact that drivers assigned to the disaggregate learning 

pattern categories of these models are not the same. In 

addition, the insignificance of travel time can be attributed to 

the pooling of the drivers of learning patterns 3 and 4 into 

one category, where it seems that while drivers of learning 

pattern 3 might be affected by travel time, those of learning 

pattern 4 are not. 
TABLE 6A 

SIGNIFICANT VARIABLES IN ROUTE CHOICE SWITCHING MODELS 

Significant 

Variables* 
Cat2R5 Cat2R5-2 Cat2R5-3 

Intercept -1.0491 -1.9797 0.6580 

Gender-2 n/s n/s -0.8450 

Ethnicity-2 n/s 2.0028 n/s 

Educ-2 n/s n/s -0.8605 

DrYears n/s -0.3848 n/s 

Trial n/s n/s -0.3256 

Inertia -0.6117 -0.5301** n/s 

PrefOther-

OverCurrent 
0.6038 0.6964 0.5467 

Cat2R5-3 0.9159 - - 

* unless otherwise stated, all variables are significant at 1% 
** significant at 10%  

TABLE 6B 

PERFORMANCE OF ROUTE CHOICE SWITCHING MODELS 

Model 

Performance 
Cat2R5 Cat2R5-1 Cat2R5-2 

BIC 727.7 196.2 541 

Deviance 695.7 164.5 505 

As in all the previous models, the BIC and deviance 

measures presented in Table 6B are lower than those 

presented in Table 3B. Again, this could be due to the 

smaller number of observations. 

Model3: Table 7 presents the results of modeling route 

choice switching based on early and late learning stages. 

As in all previous models, the signs of the parameters 

presented in Table7A seem logical. However, the results 

present further intriguing insights. Travel time appears to be 

significant at the early trials and insignificant at the mid and 

late stage trials. Inertia is significant at all stages, yet its 

effect decreases by experience. Preference, too, is significant 

at all trials, but its effect increases with experience. 

This possibly means that at the early learning stages 

drivers pick minimum travel time routes and their choices 

are also driven by inertia and preference. However, as 

drivers make subsequent choices their choices are no longer 

driven by travel time and are less driven with inertia; instead 

both factors are replaced with preference. In this case, 

preference may be described as habit. 

As in previous models, demographic variables seems to 

have a role in drivers route choices at the different learning 

stages, and the BIC and deviance measures presented in 

Table 7B are lower than those presented in Table 3B. 

D. Driver Learning Pattern Models 

None of the driver demographic variables was found to be 

significant in predicting the drivers learning pattern. 
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TABLE 7A 

SIGNIFICANT VARIABLES IN ROUTE CHOICE SWITCHING MODELS 

Significant 

Variables* 

Without 

Cat 

Early 

Trials 

Mid 

Trials 

Late 

Trials 

Intercept -0.4294 -0.6071 0.8554 -0.2949 

Gender-2 n/s n/s -0.7747 n/s 

Education-2 n/s n/s -1.5124 n/s 

DrYears n/s n/s 0.5352 -0.4230 

TTavgOther-

OverCurrent 
n/s -0.3457 n/s n/s 

Inertia -0.6613 -1.1223 -1.1209 -0.7862 

PrefOther-

OverCurrent 
0.5889 0.4716 0.6944 0.8851 

* unless otherwise states, all variables are significant at 1% 
** significant at 10% 

TABLE 7B 

PERFORMANCE OF ROUTE CHOICE SWITCHING MODELS 

Model 

Performance 

Without 

Cat 

Early 

Trials 

Mid 

Trials 

Late 

Trials 

BIC 729.5 297.9 230.3 244.6 

Deviance 703.9 271 193.8 218 

V. CONCLUSIONS AND FURTHER WORK 

While the results of this work should not be considered 

conclusive for all driver populations and for all route choice 

conditions, due to the limitations in the sample size and the 

experiment and route conditions, the results seem to 

highlight some important and promising route choice 

dimensions. 

As has been concluded in many earlier publications, it 

appears that driver demographics might play a role in route 

choice. This role still needs to be explored further. 

In accordance with current research standings, inertia and 

route preference have a significant role in route choice 

behavior. However, unlike the main stream of route choice 

models, in this experiment travel time was not an all-time 

major factor influencing route choices. This may be 

attributable to the small travel time difference between the 

alternative routes. Nevertheless, it is a plausible that in a 

real-world situations that travel time may not be important, 

and thus models need to reflect this behavior. 

The identified driver learning patters had a significant 

effect on route choices. Such factors were not explored in 

earlier studies. Hence, they need to be further investigated. It 

is unfortunate that this work was not able to identify 

significant factors that can successfully predict driver 

learning patterns. However, this is certainly a future 

direction that is worth exploring. 

It is interesting that route choice models changed 

significantly according to the driver learning stage. This too 

is a direction that could provide useful route choice insights 

if proven to be generalizable. 

Finally, all the formulated disaggregate route choice 

models; whether based on learning pattern groups or stage of 

learning, had lower BIC and deviance performance 

measures. Because the decrease in these measures is 

probably due to the smaller number of observations, further 

investigation is required to reach conclusive judgments 

about the benefits of disaggregating route choice models. 
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ABSTRACT 

The value of traveler information systems depends on two major assumptions: i) drivers are 

incapable of accurately acquiring information on their own, and ii) the provided information is 

relevant to the drivers’ choice rules. None of these two assumptions has ever been examined in a 

real-world experiment. In addition, although the second of the two assumptions has been 

addressed in numerous publications, the first assumption remains under-researched. Drivers’ 

perceptions of traffic conditions are undoubtedly an important factor in transportation 

engineering. Yet, little attention has been given to the capability of drivers to accurately perceive 

traffic conditions; such as travel distance, travel time, travel speed, and traffic levels. Because of 

cost and past technological limitations, most travel research is based on either stated preference 

surveys or travel simulators; both of which are characterized with serious limitations due to their 

inability to address the accuracy of travelers’ perceptions. To address this point this work is based 

on a real-world route choice experiment of a sample of 20 drivers and more than 2,000 real-world 

choices. Each of the drivers’ experiences, perceptions, and choices were recorded, analyzed and 

cross examined. The results of the experiment indicate that: a) correct perceptions were about 

only 60% accurate and drivers’ perceptions of travel speeds were more accurate than their 

perceptions of travel times; b) while drivers’ travel time perceptions was the most important 

factor in explaining driver choices, travel distance perceptions was the least important; c) there 

are significant discrepancies between stochastic user equilibrium and real-world route choices; d) 

drivers’ personality traits and demographic factors were found significant in predicting 

correctness of driver perceptions; and e) driver personality traits were found to be as important 

for correct perceptions as variables of travel experiences. 
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INTRODUCTION 

Researchers and travelers worldwide have great expectations for Intelligent Transportation 

Systems (ITSs). Intelligent Transportation Systems refer to transportation systems that make use 

of information technology and communication to tackle negative transportation impacts, such as 

to mitigate traffic congestion and to reduce accidents. Advanced Traveler Information Systems 

(ATISs) are the ITS branch that entail providing travelers with information to help them make 

informed decisions.  

The value of traveler information systems depends on two major assumptions: i) drivers 

are incapable of accurately acquiring the provided information on their own, and ii) the provided 

information is relevant to the drivers’ criteria of choice preference. None of these two 

assumptions has been examined in a real-world experiment. In addition, although the second of 

the two assumptions has been addressed in numerous publications [1], the first assumption 

remains under-researched; particularly when dealing with car drivers. Papinski and Scott [2] 

provide a good review of recent publications that have collectively explored more than twenty 

different variables to identify their relevance to drivers in route choice situations. On the other 

hand, in spite of the fact that driver perceptions of travel conditions is an important factor, it has 

not been given the same attention. Little attention has been given to the capability of drivers to 

accurately perceive traffic conditions; such as travel distance, time, speed, and traffic congestion 

levels. 

Because of cost and past technological limitations, most travel research, in general, and 

route choice, in particular, is based on either stated preference surveys [3, 4] or travel simulators 

[5, 6]; both of which are characterized with serious limitations due to their inability to address the 

accuracy of travelers’ perceptions. Stated preference surveys are surveys in which drivers answer 

questions about their behavior in hypothetical situations. Travel simulators are computer based 

programs that digitally display the choice situation and its characteristics for a participant. Then 

the participant makes his/her choice. There are guidelines to make these methods more realistic 

[7]. Nonetheless, since drivers do not actually live the choice situation, it is impossible for either 

of the two methods to capture drivers’ perceptions of real-world traffic conditions. 

Two other methods that have been gaining momentum for about a decade are driving 

simulators [8, 9] and GPS-based travel surveys [10, 11]. Driving simulators are vehicle-like 

structures that a person drives in a virtual environment. It uses a computer to display the 

environment exterior of the vehicle to the driver. In a driving simulator, the driver does actually 

drive through a virtual network in real-time. Alternatively, in a travel simulator, no driving 

happens. Driving simulators have been extensively used for safety research. Recently, however, 

researchers have started to use driving simulators for travel behavior analysis and research. GPS-

based surveys are surveys based on actively logging the individuals’ movements –usually– in a 

naturalistic setting. They are usually supplemented with a travel diary that is typically written by 

the participant. Limitations of GPS-based route choice surveys include the inability to infer the 

travel conditions on the alternative routes, nor to identify the choice set that the driver considers 

when making the route choice. 

It is interesting that different experiments lead to different conclusions about the 

importance of the different variables considered [2]. One possible explanation for this lack of 

consensus is the level of reality of these experiments. Humans have been repeatedly found to 

behave irrationally; partly because of human perceptions which are never as accurate as reality. 

Human time perceptions have been extensively studied in other branches of transportation 

engineering; particularly public transportation. For example Moreau has found that perceptions of 
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wait time can significantly differ from actual times [12]. Other studies have shown that travel 

time perceptions can vary according to whether the time is spent traveling or waiting [13], 

whether the waiting time is expected or not [14], and whether the traveler experiences time 

drag [12]. Another recent study showed that travel time perceptions can vary according to the 

drivers’ familiarity with the destination [15]. 

Surprisingly, although the capability of drivers to correctly perceive traffic conditions is 

critical in the value of traveler information systems, it remains an under-researched area. In a 

previous publication the authors analyzed driver experiences, perceptions, and choices in a 

driving simulator experiment [16] and identified four types of drivers [17]. However, no work 

exists that is based on a real-world experiment. This research effort was done with the intention 

of bridging this gap. This work is based on a real-world driving experiment where 20 drivers 

were asked to make more than 2,000 route choices in an actual in-situ experiment in real-world 

conditions. The drivers’ choices and the prevailing traffic conditions were recorded. Additionally, 

at the end of the experiment the drivers were asked to report their choices and their perceptions of 

travel distances, travel times, travel speeds, and traffic levels.  

In the following sections, the authors present the objectives of the study, followed by a 

detailed explanation of the study approach: study description, network and questionnaires. In the 

third section, the authors present the experimental results, perception models, and discussion. The 

fourth section ends the paper with the study conclusions and recommendations for further 

research. 

STUDY OBJECTIVES 

The main objectives of this study are to use actual real-world driving data to (a) evaluate the 

accuracy of driver perceptions of travel distance, travel time, and travel speed; (b) identify the 

factors affecting driver route choices; (c) compare between the expectations of stochastic user 

equilibrium and actual route choices; (d) explore whether correctness of driver perceptions can be 

predicted based on driver demographics, personality traits, and choice situation characteristics; 

and (e) identify factors that influence correctness of driver perceptions. 

STUDY APPROACH 

Study Description 

A total of 20 participants were involved in this study. Each participant was asked to complete 20 

experimental runs over 20 days during regular school week days of the academic spring semester 

of 2011. Experimental runs were scheduled only during one of three traffic peak hours: morning 

(7-8 am), noon (12-1 pm), and evening (5-6 pm). It should be noted that the 20 runs for a driver 

were done at the same time each day. During each experiment the participants were asked to 

drive research vehicles on the road network of the New River Valley. All participants were given 

the same five Google Map print outs. Each map representing one trip: one point of origin, one 

point of destination, and two alternative routes. For each experimental run, participants were 

asked to make these five trips assuming that the provided alternative routes were the only routes 

available between the points of origin and destination. The trips and the alternative routes were 

selected to ensure differences in the five choice situations (Table 1). All driver choices as well as 

the experienced travel conditions were recorded via a GPS unit placed on board of the vehicle 

and a research escort that always accompanied the participants. Participants were instructed to 

behave in the same manner they behave in real life. After completion of the 20 experiment runs, 

participants were asked to complete a post-task questionnaire. 
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It should be noted that in this experiment, each trip represented a choice situation for the 

participants. Hence, in many occasions in this paper the terms “trips” and “choices” have the 

same meaning and are used interchangeably.  

Incentives 

Since route choice behavior is documented to vary with trip purpose, a couple of measures were 

designed to ensure that participants will not consider the experiment as leisure. First, participants’ 

compensation was not a function of the time spent in the experiment; participants were provided a 

flat monetary amount per experiment regardless of how long it took them. Second, the 

experiment was not entertaining (experimental routes were not scenic, and participants were not 

allowed to listen to any entertainment, use their cellphone, or chat with the research escort). 

Hence, if any, participants had stealth incentives to reduce their experiment (and travel) times. 

Network 

Table 1 demonstrates the origin, destination, and alternative routes specific to each of the five 

choice situations. It also shows a brief description of each of the routes. More information about 

the routes can be seen in Figure 1 and are provided in Table 2. Figure 1 shows a map depicting all 

five points of trip origins and destinations as well as the ten alternative routes provided. 

Table 1: Description of the Five Trips 

Trip 

# 

Trip 

Origin 

Trip 

Destination 

Alternative Routes Route Description 

(and speed limits) Route # Route Name 

1 
Point 1 

(VTTI) 

Point 2 

(Walmart) 

Route 1 US460 Bypass Mostly a high speed (65 mph) freeway  

Route 2 US460 Business High speed (45 mph) urban highway   

2 
Point 2 

(Walmart) 

Point 3 

(Foodlion1) 

Route 3 Merrimac 
Mostly a shorter, low speed (30 mph) back road with a 

lot of curves 

Route 4 Peppers Ferry Mostly a longer, high speed (55 mph) rural highway 

3 
Point 3 

(Foodlion1) 

Point 4 

(Foodlion2) 

Route 5 US460 Bypass 
A longer high speed (65 mph) freeway followed by a 

low speed (25 mph) urban road 

Route 6 N. Main St. A shorter urban route (40 and 35 mph) 

4 
Point 4 

(Foodlion2) 

Point 5 

(Stadium) 

Route 7 Toms Creek 
A short urban route that passes through campus (25 and 

35 mph) 

Route 8 US460 Bypass 
Primarily a long high speed (65 mph) freeway and low 

speed (25 mph) urban roads 

5 
Point 5 

(Stadium) 

Point 1 

(VTTI) 

Route 9 S. Main St. A long urban road that passes through town (35 mph) 

Route 10 Ramble St. 
A short unpopular low speed (25 and 35 mph) back road 

that passes by a small airport. 

 

Pre-task Questionnaire 

The pre-task questionnaire collected information about the participants’ demographics (age, 

gender, ethnicity, education level, etc.) and driving experiences (number of driving years, annual 

driven miles, etc.). 

Post-task Questionnaire 

The post-task questionnaire was divided into two sections. The first section collected information 

about the participants’ perceptions of the traffic conditions on the alternative routes (distance, 
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travel time, travel speed, and traffic level), as well as the participants preference levels of the 

routes. In the second section the participants were asked to fill in a personality inventory, the 

NEO Personality Inventory-Revised [18], which measures five personality traits: Neuroticism 

Extraversion, Openness to Experience, Agreeableness, and Conscientiousness.  

 

Figure 1: Map of the Experiment Network (Source: Google Maps) 

RESULTS AND ANALYSIS 

This section starts with presenting the travel conditions that were experienced by the drivers 

during the experiment, followed by the drivers’ perceptions and choices. Next, the accuracy of 

the driver perceptions is evaluated by contrasting them against their experiences. After that the 

driver choices are matched against their experiences and their perceptions of the study travel 

variables. Lastly, models of travel perceptions are developed and presented. 

P

P

P

P

P

Key: 

 Point of Trip Origin and Destination 

 Route Number 

R2 

R1 

R4 

R3 

R9 

R1

0 

R7 

R6 

R8 

R# 

P

R5 
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Driver Experiences 

In this section the characteristics of the alternative routes as well as the recorded driver 

experiences of travel time and travel speed are presented. 

General Route Characteristics 

Table 2 presents the characteristics of the ten routes. As mentioned earlier and can be seen from 

the table, the trips and alternative routes were selected so that the characteristics of the 

alternatives were to vary across the five choice situations. 

Travel Times and Travel Speeds 

Table 3 presents the cumulative frequency distributions of the experienced travel times and travel 

speeds during the study. Table 3 also presents the probability, based on a Monte Carlo simulation, 

that the odd-number route is a better choice than the even-number route, either by being shorter in 

travel time (TT) or faster in travel speed (TS). It is worth noting that by design the shorter travel 

time routes were not necessarily the faster travel speed routes. 

Table 2: Characteristics of the Alternative Routes Per Trip 

Trip 

# 

Route 

# 

Distance 

(km) 

Avg. 

Travel 

Time 

(min) 

Avg. 

Travel 

Speed 

(kph) 

Number of Intersections 
Number 

of Left 

Turns 

Number 

of 

Merges 

and 

Diverges 

Number of 

Horizontal 

Curves Signalized Unsignalized 

1 
1 5.1* 8.5 36.4 10 3* 3* 1* 2* 

2 6.0 8.4* 43.3* 5* 4 4 5 3 

2 
3 11.1* 15.2* 42.6 5 2 3 1* 30 

4 17.4 16.7 63.2* 2* 2 2* 2 11* 

3 
5 5.8 7.7* 44.5* 5* 3 3 2 2 

6 5.5* 9.3 37.8 8 3 2* 1* 2 

4 
7 5.0* 10.2 29.5 5* 3 4 1* 0* 

8 7.7 9.6* 48.2* 6 2* 2* 4 1 

5 
9 5.8 10.5 33.3 8 4 4 1* 1* 

10 4.7* 8.0* 34.0* 3* 1* 3* 2 6 

*
 Better route 
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Table 3: Experienced Route Travel Times (TT) and Travel Speeds (TS) Per Trip 

Trip 
Travel Time Travel Speed 

Cumulative Distribution 
Monte Carlo 

Simulation 
Cumulative Distribution 

Monte Carlo 

Simulation 

1 

 

Prob. 

(TTR1<TTR2) 

= 48.3% 

 

Prob. 

(TSR1>TSR2) 

= 26.6% 

2 

 

Prob. 

(TTR3<TTR4) 

= 78.5% 

 

Prob. 

(TSR3>TSR4) 

= 0.1% 

3 

 

Prob. 

(TTR5<TTR6) 

= 85.4% 

 

Prob. 

(TSR5>TSR6) 

= 91.8% 

4 

 

Prob. 

(TTR7<TTR8) 

= 35.2% 

 

Prob. 

(TSR7>TSR8) 

= 0.2% 

5 

 

Prob. 

(TTR9<TTR10) 

= 5.0% 

 

Prob. 

(TSR9>TSR10) 

= 40.0% 
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Driver Perceptions 

Driver perceptions of route distances, travel times, travel speeds, and traffic levels are presented 

in Figure 2. The correctness of these perceptions is investigated later in this section. 

Driver Choices 

Driver choices were captured by two different measures: first, the choices that the drivers 

reported in the post-task questionnaire, and second, the choices that were made and recorded 

during the 20 runs of the experiment. Figure 3 presents both measures. The latter measure, 

however, is presented in two figures: one for the recorded driver choices on all 20 trials and 

another for the recorded choices in only the last 5 trials. It can be seen that the recorded choices 

on the last 5 trials are closer to the declared choices in the post-task questionnaire, than the 

choices made throughout the entire experiment. This is reasonable because a good percentage of 

the choices made early in the experiment were for exploratory rather than preference reasons. 

Experiences vs. Perceptions 

Comparing driver experiences to their perceptions is based on two groups of experiences and 

three groups of perceptions. The two groups of experiences are: i) drivers who tried both routes 

and as a result have recorded experiences on both routes, and ii) drivers who tried only one of the 

two alternative routes (they never tried the other route) and thus have recorded experiences for 

only one of the two alternatives. On the other hand, the three groups of driver perceptions are: 

i) drivers whose perceptions match their recorded experiences, ii) drivers whose perceptions 

contradict their recorded experiences, and iii) drivers who do not perceive a difference between 

the alternative routes. Figure 4a, 4b and 4c present the results of cross examining these two 

groups of experiences and three groups of perceptions over the entire experiment. It should be 

noted that it is not possible to judge the correctness of the perceptions of the drivers who have 

experienced only one of the two routes; because they have no recorded experiences on the other 

route. Figures 4d, 4e and 4f present the results for only the drives that experienced both 

alternatives in our experiment, broken down by choice situation.  

It is particularly surprising that driver perceptions of distance, which is a deterministic 

value, are the least accurate, and driver perceptions of travel time and travel speed, which are 

both stochastic variables, are more accurate. This, however, may be explainable by hypothesizing 

that distance was not an important factor in the study choice alternatives. Hence, drivers did not 

pay much attention to their travel distance perceptions. Nonetheless, it is worth noting that the 

percentage of opposite distance perceptions is lower than the corresponding percentages in travel 

time and travel speed. 

It is quite interesting that driver perceptions of travel speed were more accurate than their 

perceptions of travel time. Following the same explanation provided for the inaccuracy of 

distance perceptions: this could imply that travel speed was a more important factor than travel 

time in this study choice situations. Hence, the drivers paid more attention to their perceptions of 

travel speed than to travel time. In a different paper [19], both travel time and travel speed were 

found to be significant in explaining the probability of route switching. 

As expected, looking at the driver perceptions of the travel conditions per trip shows that 

the higher the difference between the two alternative routes is, the more accurate are the driver 

perceptions. In other words, the more salient the signal, the more likely it is to be correctly 

perceived. This is a well-established theory in human factors. 
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Figure 2a: Travel Distance Perceptions 

 

Figure 2b: Travel Time Perceptions 

 

Figure 2c: Travel Speed Perceptions 

 

Figure 2d: Traffic Level Perceptions 

Figure 2: Drivers Perceptions of Travel Distance, Travel Time, Travel Speed, and Traffic 

 

Figure 3a: Stated Route Choices in the Post-task Questionnaire  

 

Figure 3b: Recorded Choices in All Trials 

 
Figure 3c: Recorded Choices in Trials 16-20 

Figure 3: Driver Route Choices 
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Experiences vs. Choices 

Contrasting the driver experiences against their choices on an aggregate level reveals a rather 

interesting and important finding. According to the stochastic user equilibrium (SUE) theory, 

trips are distributed on the network in such a manner that the resulting probability of choosing a 

route over an alternative route equals the expected probability that the travel time on the chosen 

route is lower than the travel time on the alternative route. According to SUE, the travel time 

percentages based on a Monte Carlo simulation, presented in Table 3, are expected to equal the 

percentages of the choices presented in Figure 3. For convenience, the values of the Monte Carlo 

simulation (Table 3) and the choice percentages (Figure 3) are compiled and presented in Table 4. 

Analyzing Table 4 reveals that the SUE expectations seem to hold for trips 3 and 5, but do not 

hold for Trips 1, 2, and 4. This could be attributed to the fact that the difference in travel times 

between the alternative routes was high for trips 3 and 5 and thus drivers were able to perceive 

travel time differences between the two routes. For trip 4, although the travel time difference was 

also high, the difference between SUE expectations and actual choices could be attributed to 

travel time reliability. In the post-task questionnaire many of the drivers said they did not want to 

risk being caught in campus traffic. 

 

 

Figure 4a: Travel Distance 

 

Figure 4b: Travel Time 

 

Figure 4c: Travel Speed 

 

Figure 4d: Travel Distance Per Trip 

 

Figure 4e: Travel Time Per Trip 

 

Figure 4f: Travel Speed Per Trip 

Figure 4: Cross Examining Experiences and Perceptions of Drivers Travel Time, Travel 

Speed and Distance 
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Table 4: Difference Between SUE Expected Probabilities and Actual Choice Percentages 

Trip # 

Measure 
1 2 3 4 5 

SUE: Prob. (TTOdd-Route < TTEven-Route) 

based on Monte Carlo Simulation 
48% 79% 85% 35% 5% 

Percentage of drivers choosing odd-route  

based on reported choices in the post-task questionnaire 
11% 58% 84% 11% 5% 

Difference between SUE probability and actual choice 

percentages 
37% 21% 1% 24% 0% 

  

In an attempt to better understand the reasons behind the difference between SUE 

expectations and aggregate choice percentages, driver experiences are compared against their 

choices on a disaggregate level (as presented in Figure 5). This comparison reveals other 

interesting findings. Figure 5 shows that the driver reported choices in the post-task questionnaire 

are better explained by their travel time experiences than by their travel distance or travel speed 

experiences. This can imply that travel time may be a better explanatory variable in the study’s 

choice situations than the travel distance and travel speed. This implication contradicts the earlier 

explanation provided for the more accurate perceptions of travel speed, in comparison to the 

perceptions of travel time and travel distance. 

 

 

Figure 5a: Distance Experiences vs. Choices 

 

Figure 5b: Travel Time Experiences vs. Choices 

 

Figure 5c: Travel Speed Experiences vs. Choices 

 

Figure 5: Driver Disaggregate Experiences versus Reported Choices 

 

Certain Experience but No Choice

Opposite Experience and Choice

Identical Experience and Choice
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It is expected that if all drivers were to perceive travel times correctly, and to choose the 

minimum travel time routes, then the expectations of the SUE should coincide with the route 

choice percentages. It is interesting to note that this may in fact be observed from the results. 

Trips 3 and 5 (where the expectations of the SUE coincide with the percentage of actual choices) 

exhibit the least percentage of choices that are opposite to the driver travel time experiences. On 

the other hand, Trip 1 (where the expectation of the SUE is farthest from the percentage of actual 

choices) demonstrates the highest percentage of choices that are opposite to the travel time 

experiences. Furthermore, the last two trips (Trips 2 and 4) are almost equal in terms of the 

difference between: i) SUE expectations and actual choice percentages, and ii) percentage of 

choices that are opposite to travel time experiences. As mentioned earlier, a possible explanation 

for trips 3 and 5 is the relatively high difference in travel time between the alternative routes. In 

the case of trip 4, travel time reliability could provide a reasonable explanation. 

Figure 6 shows a comparison between drivers travel time experiences and their recorded 

choices during the experiment (not the reported choices in the post task questionnaire). As in 

Figure 4, the recorded choices are considered during the entire experiment (Figure 6a), and also 

considered in only the last five trials (Figure 6b) which reflects more network experience. As was 

noticed in Figure 4, the percentages of the last five trials are closer to those that are reported in 

the post task questionnaire (Figure 5b). This shows evidence of driver learning. 

 

Figure 6a: Travel Time Experiences vs. Recorded 

Choices in all Trials 

 

Figure 6b: Travel Time Experiences vs. Recorded 

Choices in Trials 16 to 20 

Figure 6: Driver Disaggregate Travel Time Experiences versus Recorded Choices 

It is worth noting that up till this point all driver experiences were based on the average of 

all previous trials. The following equation was used for the calculation of the average experienced 

travel time. The average experienced travel speed was calculated similarly. 

        
∑          

   
   

∑     
   
   

 

       
        is the average experienced travel time of person   on route   up till trial   

       if person   chooses route   at trial    and   otherwise 
     is the travel time experienced by person   at trial   

In a recent publication, Bogers et al. [5] found that 20% of driver perceptions of travel 

time came from their latest route experience. Calculating the experienced travel time as a Markov 

process according to the following equation results in percentages of identical and opposite 
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choices that are slightly different from the ones presented in Figures 5 and 6. Figure 7a presents 

the percentage of choices that are identical to the drivers’ (Markov-process) experienced travel 

times in the entire experiment based on different values of Lambda (Markov factor). It can be 

seen that in this study, the maximum percentage of identical experiences and choices is based on 

a Markov factor of 0.25. It is worth noting that comparing Figures 6a and 7b reveals that the 

usage of the Markov process experienced travel times improved the overall percentage of 

identical experiences and choices by only 1%. Furthermore, this improvement was not sustained 

across all choice situations. This implies that the Markov process updating of experienced travel 

times was not different from the average-based calculations. 

                             (          )             (   )             

       
       is the experienced travel time of person   on route   up till trial   

  is the Markov process factor 

       if person   chooses route   at trial    and   otherwise 
     is the travel time experienced by person   at trial   

 

 

Figure 7a: Percentage of Identical Choices and Travel 

Time Experiences as a Function of Lambda 

 

Figure 7b: Markov Process Travel Time Experiences vs. 

Recorded Choices in All Trials 

Figure 7: Driver Disaggregate (Markov Process) Travel Time Experiences versus Recorded 

Choices 

The percentage of choices that are opposite to the experiences in all cases explored in this 

section was always high and greater than one third of all choices; regardless of the measure used 

(aggregate or disaggregate; distance, travel time, or travel speed; and average-based or Markov 

process based travel time). Two possible explanations for such a behavior are either: i) drivers 

were unable to perceive the travel conditions correctly, or ii) drivers are not making their route 

decisions based on any of the above explored factors. To investigate the possibility of the first 

explanation, the following section compares driver choices to their perceptions. 

Perceptions vs. Choices 

Analyzing driver perceptions with their choices gives rise to three types of behavior: rational, 

irrational, and heuristic. Rational behavior connotes drivers who choose the route they perceive to 

be better, or perceive no difference between the alternative routes and make no choice. Irrational 

behavior signifies drivers who choose a route that they perceive to be worse, or who do not 

choose any of the routes in spite of perceiving one of the routes to be better. Last, heuristic 

behavior reflects drivers who perceive no difference between the routes, yet make a choice. 

Max Percentage 
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Figure 8 presents the percentages of these three types of behavior when contrasting driver choices 

against their distance, travel time, travel speed, and traffic perceptions. The figure demonstrates 

that driver choices can be best explained by their travel time perceptions; since it is characterized 

with the minimal percentage of irrational behavior. It also shows that while travel speed and 

traffic perceptions come second in explaining driver choices (after travel time), distance 

perceptions come last and are characterized with the highest percentage of irrational behavior. 

 

 

Figure 8a: Travel Distance Perceptions versus Choices 

 

Figure 8b: Travel Time Perceptions versus Choices 

 

Figure 8c: Travel Speed Perceptions versus Choices 

 

Figure 8d: Traffic Level Perceptions versus Choices 

Figure 8: Driver Choices versus Perceptions of Travel Distance, Time, Speed, and Traffic 

It is interesting that none of the drivers made any irrational choices in trips 1, 3, and 5 (based on 

travel time perceptions). Irrational behavior was identified only for trips 2 and 4. For trip 2 it is 

possible that the drivers –correctly – perceived route 3 to be the lower travel time route, yet for 

safety reasons (because route 3 has many vertical and horizontal curves) they decided to choose 

the longer travel time route. A possible explanation for the irrational behavior of trip 4, on the 

other hand, may be attributed to travel time reliability. It is possible that the drivers perceived 

route 8 to be the shorter travel time route. Yet, because route 8 passed through the school campus 

they were reluctant to choose this route and risk being caught in campus traffic. 

It is interesting to note that while travel time perception was, in general, the best 

explanatory variable of driver choices, other variables were better at explaining the choices for 

trips 1, 3, and 4. For example, in the case of trips 1 and 4, travel speed perceptions provide a 

better explanation for driver choices, and on trip 3, traffic perceptions provide a better 

explanation for drivers choices. In addition, for trip 5, traffic perceptions are at least as good as 

travel time perceptions. Examining the mean travel times of the alternative routes of trips 1 and 4 

reveals that they are the closest in comparison to the other three trips. This suggests the 
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possibility that in case of close travel time routes, drivers prefer the faster speed route. The traffic 

perception observation for trip 3 reinforces the reasoning given in the previous paragraph: drivers 

were choosing the other route to avoid campus traffic, or in other words drivers were picking the 

more reliable route. The same reasoning can partially apply to trip 5 where drivers were choosing 

the lower travel time route that also had less traffic.  

Recalling that driver perceptions of travel speeds were more accurate than their 

perceptions of travel times, and keeping this in mind while exerting a closer look at Figure 8 

reveals a number of intriguing findings. It could explain the lower percentage of heuristic 

behavior (drivers who perceived no difference and made a choice) and higher percentage of 

rational behavior in trips 1, 2 and 4 of Figure 8c (travel speed) as compared to those of Figure 8b 

(travel time).   

Perception Models 

According to the previous sections, travel perceptions seem to be a much better predictor for 

driver choices than travel experiences. Accordingly, identifying factors that influence travel 

perceptions could be very beneficial from two different perspectives. From the modeling 

perspective, incorporating models of driver perceptions in transportation models can improve the 

fidelity of the model outcomes. On the other hand, from the perspective of Intelligent 

Transportation Systems (ITS), identifying drivers that are less capable of achieving correct travel 

perceptions highlights a target market for ITS services. This section presents perception models 

for three travel variables: travel distance, travel time, and travel speed. 

Response Variable 

The modeled response is an ordinal three-level perception. The lowest level is an opposite 

perception, the middle level is a no-difference perception, and the highest level is a correct 

perception. Three different models were estimated: travel distance perceptions, travel time 

perceptions, and travel speed perceptions. 

Independent Variables 

The independent variables investigated in this work are presented in Table 5. As can be seen in 

the table, four groups of covariates are considered: driver demographics, driver personality traits, 

driver experiences, and driver stated familiarity with the choice situations prior to the experiment. 

Model Structure 

The model used is an ordered mixed effects generalized linear model with a probit link function. 

Because each driver was asked about his/her perception on five different choice situations, one 

random parameter, the intercept, is estimated over all individuals instead of all observations. This 

takes into account the average dependence effects between observations of the same driver. The 

model has the following structure. 

          (              ) 
      {   (   

     )}    {     (   
     )} 

    (   ) 

where, 
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Model Results 

Table 6 presents the results of the estimated models. It is satisfying that variables belonging to 

three of the investigated variable groups were found significant. The only group of variables that 

was not found significant is the driver stated familiarity with the choice situation prior to the 

experiment. This too is satisfying because it could imply that the twenty experiment runs were 

sufficient for the drivers to construct adequate experience with the choice situations. Furthermore, 

the number of switches seems to have a positive effect on constructing correct perceptions on 

travel distances; implying that the more times a driver experiences the alternative routes, the more 

accurate are the driver’s perceptions of the differences between the two routes. The same variable 

was possibly not found significant in travel time and speed perceptions because of the stochastic 

nature of these variables, which makes correct perceptions more difficult. 

None of the estimated model parameters seems to be illogical. In general as the signal 

strength for travel distance, time, or speed increased (i.e. became more salient), the more accurate 

were the drivers perceptions of travel distance, time, and speed, respectively. As the age of the 

drivers increased and as the number of driving years increased, drivers’ perceptions of travel time 

and distance decreased, respectively. Three possible explanations for this are: a) older drivers 

cognitive abilities are lower than those of younger drivers; b) older drivers have more to think 

about than younger drivers, therefore have less attention resources to assign to travel conditions; 

or c) as a driver becomes more accustomed to driving, the driver becomes less sensitive about 

driving a few extra minutes or miles and loses some interest in continuously trying to evaluate 

differences in travel conditions. 

The signs of the personality trait variables also seem logical. First it is probably expected 

that correct perceptions are positively related to conscientiousness. Similarly, agreeableness was 

found to be positively related to correct perceptions. Of all variables, this is probably the least 

intuitive relation. A possible explanation for this is that: as presented in Figures 4d, 4e and 4f, 

driver perceptions were generally more correct than not. Hence, if a driver relies more on the 

collective judgments of others, this driver is more likely to construct correct perceptions. On the 

other hand, driver perceptions seem to be inversely related to their openness to experience. 

Although this might not seem intuitive for a reader that is unfamiliar with the personality traits, 

the authors believe it is logical. Openness to experience measures six facets. These are: fantasy, 

aesthetics, feelings, actions, ideas and values. It seems logical that when a driver that is more 

open to experience switches and tries alternative routes, this driver will be focusing on other 

aspects that are more closely related to the six listed facets than focusing on comparing the travel 

conditions. In addition, in another article, openness to experience was found to be inversely 

related to the probability of route choice switching. Decreased switching implies decreased 

experience of the alternative routes, which in turn, can result in a decrease in the probability of 

correct perceptions. 
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Table 5: Perception Model Independent Variables 

# 
Variable 

Names 
Variable Description 

Variable 

Values 

Variables of Driver Demographics 

1 Agei
*
 Age of participant i 18 to 68 

2 Genderi Gender of participant i M or F
**

 

3 Ethnicityi Ethnicity of participant i W or NW
**

 

4 Educationi Education level of participant i G or NG
**

 

5 DrYearsi
*
 Number of years participant i has been a licensed driver 2 to 57  

6 Dr Milesi Annual number of miles participant i drives (thousands) 2 to 35 

7 Residencyi Number of years participant i has been residing in the area 1 to 56 

Variables of Driver Personality Traits 

1 Ni Neuroticism of participant i 7 to 30 

2 Ei Extraversion of participant i 19 to 43 

3 Oi Openness to experience of participant i 20 to 31 

4 Ai Agreeableness of participant i 22 to 42 

5 Ci Conscientiousness of participant i 26 to 47 

Variables of Driver Experience *** 

1 TDPrcc 
Percentage difference in experienced distance between the two alternative routes of 

choice situation c 
5.7 to 44.8 

2 TTPrcic
****

 
Percentage difference in mean experienced travel times by driver i between the two 

alternatives of choice situation c 
0.2 to 46.1 

3 TTVPrcic
****

 
Percentage difference in mean experienced travel time variances by driver i between 

the two alternatives of choice situation c 
2.9 to 180.5 

4 TSPrcic
****

 
Percentage difference in mean experienced travel speeds by driver i between the two 

alternatives of choice situation c 
0.1 to 49.0 

5 TSVPrcic
****

 
Percentage difference in mean experienced travel speed variances by driver i between 

the two alternatives of choice situation c 
0.9 to 188.9 

6 Switchesic Number of switches driver i made during his/her 20 experiment runs of situation c 1 to 13
*****

 

Variables of Driver-Choice Combination 

1 PriorAvgFamic 
Stated average familiarity of driver i with the two routes of choice c prior to 

experiment 
1 to 5 

2 PriorMaxFamic 
Stated maximum familiarity of driver i with the two routes of choice c prior to 

experiment 
1 to 5 

* 
Because of the high correlation between Age and DrYears, the two variables were not allowed to be in the same model at the same time  

** 
M: male, F: female, W: white, NW: non-white, NG: no post-graduate degree, G: post-graduate degree  

*** 
Percentage difference calculated as difference between experiences on the two routes divided by the average of the two routes 

**** 
All travel time and travel speed calculations are based on actual driver experiences; collected GPS data 

***** Drivers that have not experienced both routes were dropped from the analysis because of missing experience data 

 

The effect of travel speed and travel distance experiences seem to be inversely related to 

the correct perceptions of travel distance and travel speed perceptions, respectively. This seems 

logical given that in a previous section travel time was found to be the best variable that explains 
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route choices. Since travel time is directly proportional to distance and inversely proportional to 

speed, it seems logical that the effects of drivers travel distance and speed experiences are 

inversely related. Last, as differences in travel speed were more salient, drivers were more 

capable of perceiving travel time differences correctly. This finding might be specific to this 

experiment, because in this experiment faster speed routes were in aggregate also characterized 

with lower travel times, as presented in Table 3.  

To be able to compare the importance of the different variables on driver perceptions, all 

variable values were normalized (with the exception of nominal variables). Hence, the absolute 

values of the estimated model parameters can reasonably reflect the relative importance of these 

variables in the estimated models. With this in mind, it is extremely interesting that variables of 

personality traits seem to be as important as – and sometimes more important than – variables of 

travel experience. This finding underscores the possible benefits of incorporating variables of 

personality traits in travel behavior models. 

Table 6: Significant Variables of the Driver Perception Models
*
 

Variables 

Perception Models 

Travel Distance Travel Time Travel Speed 

Beta p-value Beta p-value Beta p-value 

(Intercept) 1.927 0.000 1.258 0.000 1.938 0.000 

Age n/s n/s -0.544 0.011 n/s n/s 

EducationG 2.090 0.001 n/s n/s n/s n/s 

DrYears -0.711 0.004 n/s n/s n/s n/s 

O -0.716 0.015 n/s n/s -0.950 0.008 

A 0.503 0.077 n/s n/s 0.577 0.096 

C n/s n/s 0.733 0.003 n/s n/s 

Switches 0.597 0.024 n/s n/s n/s n/s 

TDPrc 0.981 0.002 n/s n/s -1.285 0.001 

TTPrc n/s n/s 0.669 0.009 n/s n/s 

TSPrc -0.590 0.045 0.409 0.043 0.858 0.009 

   2.984 0.000 1.199 0.000 0.769 0.003 
* 

n/s stands for not significant  

STUDY CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER RESEARCH 

In this work, a real-world route choice experiment was conducted with the objective of 

investigating the capability of drivers to accurately perceive travel conditions (travel distance, 

time, and speed) and to explore the real-world reasons that govern driver route choice decisions. 

Route choice literature is dense with studies about reasons of route choices; however, only a few 

of these studies are based on a real-world experiment and, particularly in route choice, very little 

attention has been given to the accuracy of driver perceptions. This work was conducted on a 

sample of 20 drivers that were each faced with 5 route choice situations and who collectively 

made more than 2,000 real-world choices. All the driver choices and the prevailing conditions 
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were recorded, and in this work the drivers experienced travel conditions, reported perceptions, 

and recorded choices were contrasted and analyzed. 

It was found that driver perceptions were, in general, around only 60% accurate. The 

drivers were able to perceive travel speeds best and travel distances least; with travel time 

perceptions being in between. It was also observed that the greater the difference in a 

characteristic between the alternative routes, the more accurate was the driver perceptions. 

Comparing the aggregate distributions of experienced travel times to the actual choice 

percentages showed that the differences between expectations of the stochastic user equilibrium 

and reality ranged between 0% and 37%, with an average difference of approximately 15%,. On 

the other hand, comparing the experiences to the choices on a disaggregate level showed that 

travel times were, in general, the best factor to explain choices with a success rate of 70%, 

followed by travel speed. Travel distance was the worst of the three. 

Contrasting driver perceptions to their choices revealed that, in general, travel time was 

the best factor in explaining route choices, followed by travel speed, then traffic and lastly 

distance. However, the results indicated instances where travel speed and traffic perceptions 

explained driver choices better than travel time. These findings indicate that route choice should 

not be modeled based on travel time only. Although all travel times explored were based on the 

average of all previous trials, a Markov-process-based travel time was also explored. It was not 

found to represent driver experiences or perceptions any better than the use of average travel 

times. 

Finally, models of driver perceptions were estimated. Variables belonging to driver 

demographics, personality traits, and route experiences were found significant in predicting 

correct predictions of travel conditions. As expected, the salience of signal strength was found 

significant for correct predictions. However, it is extremely interesting that for correct 

predictions, variables of personality traits were found to be as important as variables of travel 

experiences. 

The findings of this work could be insightful; especially if successfully replicated. A 

number of further research directions include: the investigation of possible events that could 

result in the change of driver preference; examining if the same results could be replicated in a 

travel or a driving simulator; and examining the compliance of drivers to information in a real-

world experiment. 
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ABSTRACT 

Route choice models are a corner stone in many transportation engineering applications. Two 

main types of route choice models can be found in the literature: first, mathematical network 

oriented models such as stochastic user equilibrium, and second, behavioral driver oriented ones 

like random utility models. While the former models are much more widely used in the 

transportation engineering realm, evidence of its inadequacy is growing continuously. The degree 

of its inadequacy, however, remains debatable. Two major critiques for the theory are its 

unrealistic assumptions of human perceptions and its inability to incorporate driver heterogeneity. 

On the other hand, attempts to incorporate driver heterogeneity in the behavioral driver oriented 

route choice models, too, are still short. Another major limitation in all literature is that due to 

cost limitations, only few studies are based on real-life experiments. Most studies are based on 

either stated preference surveys or travel simulators. With this in mind, this work is done based 

on a real-world route choice experiment of a sample of 20 drivers who made more than 2,000 

real-world choices. Network and driver learning evolutions were recorded and analyzed. The 

findings of the experiment include the following: a) with learning and network experience, real-

world route choice percentages seem to be converging to specific values; however, these values 

are mostly very different than those derived using stochastic user equilibrium expectations; 

b) four types of heterogeneous driver- learning and choice evolution patterns are identified, and, 

c) the identified learning patterns are modeled and found predictable based on driver and choice 

situation variables. 
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INTRODUCTION 

With increased proof of the negative impacts of climate change and the peaking of oil prices, 

worldwide expectations from Intelligent Transportation Systems (ITS) are on the rise. These 

heightened expectations have resulted in a necessary move towards improving the accuracy of 

predicting driver behavior and developing more realistic driver oriented models. Route choice 

models are a corner stone in many transportation engineering applications. They are a part of all 

transportation planning models, traffic simulation software, area-wide traffic control, and also 

electronic route guidance systems.  

Two main groups of route choice models can be found in the literature. The first group 

encompasses mathematical network-oriented models such as deterministic and stochastic user 

equilibrium, system optimum, and dynamic traffic assignment models. In this group of models 

drivers are assumed to behave in a certain manner so that a certain objective function can be 

optimized at the network level. Comprehensive reviews of these kinds of models can be found in 

a number of publications [1-3]. The second group of models includes behavioral driver-oriented 

models. The main objective of these models is to accurately describe individual driver route 

choice behavior. As a result of the move towards developing more realistic driver oriented 

models, the second group of models has been recently gaining significant momentum. Examples 

of these models include random utility models [4, 5], random regret minimization models [6], 

probabilistic models [7], cognitive-psychology based models [8, 9], fuzzy models [10], and 

models based on data mining; sometimes referred to as user models [11-14]. 

While the models of the first group are much more widely used in the transportation 

engineering realm, evidence of its inadequacy is growing continuously [12, 13, 15]. The degree 

of its inadequacy, however, remains debatable. Two major critiques for the theory are its 

unrealistic assumptions of human perceptions [16, 17] and its lack of incorporation of driver 

heterogeneity [13]. On the other hand, attempts to incorporate driver heterogeneity in the 

behavioral driver oriented route choice models, too, are still short [18-20]. Another major 

limitation in the route choice literature is that due to cost limitations most studies are based on 

either stated preference surveys or travel simulators [13]. Studies based on real-life experiments 

such as [12, 13] are not many and are characterized with the limitations of identifying the drivers’ 

choice sets and estimating the prevailing traffic conditions on the alternative routes – which were 

not chosen.  

With these limitations in mind, this work is conducted by administering a real-world route 

choice experiment on a sample of 20 drivers who, in 20 trials, collectively made more than 2,000 

real-world choices. Both the aggregate evolution of the network as well as the individual 

evolution of each driver’s learning and choices were recorded throughout the experiment. In the 

following sections an analytical comparison between the drivers’ experiences and the network 

and driver evolution patterns is presented. In addition, a model of driver heterogeneity is also 

presented. Before proceeding with the paper, it is interesting and probably insightful to note an 

analogy between route choice and household location choice models. 

Reviewing the history of household location choice models reveals a rather interesting 

insight. A recent publication provides a good review of the history [21]. Apparently when these 

models were first started they, too, assumed that household decision makers were homogenous. 

Later, variables to incorporate the heterogeneity of the decision makers were introduced. The 

most common of these variables is “lifestyle”. However, other variables were also used, like 

“personality type”. At the beginning these variables were incorporated in a two stage approach, 

where models of the first stage were responsible for predicting the personality type and models of 
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the second stage used the predicted personality type to predict household location choice. 

Nowadays, however, both stages can be modeled simultaneously (as in the referenced paper). 

This notice is interesting because it appears that the authors have until this point been, 

unknowingly, following the same historical path. The authors are identifying driver types in one 

stage then using these identified types in the next stage in route choice models [7, 22].  

In the following sections, the authors present the objectives of the study, followed by an 

explanation of the study approach: study description, network and questionnaires. In the third 

section, the authors present the experimental results and discussion, and in the fourth section the 

paper ends with conclusions of the study and recommendations for further research. 

STUDY OBJECTIVES 

The main objectives of this study are to use actual real-world driving data to (a) evaluate the 

adequacy of the expectations of the stochastic user equilibrium theory (b) identify disaggregate 

patterns of individual driver learning and choice evolution, and (c) examine the possibility of 

predicting these patterns based on driver- and choice- specific variables. 

STUDY APPROACH 

Experiment Description 

This experiment is based on real-world GPS-recorded data of 20 participants; each making 100 

choices. It is also supplemented with a pre-experiment stated preference survey and a post-

experiment stated preference survey. 

Each participant was asked to complete 20 trials during regular school days of the 

academic spring semester of the year 2011. Trials were scheduled only during one of three traffic 

peak hours: morning (7-8 am), noon (12-1 pm), and evening (5-6 pm). During each trial each 

participant was asked to drive a research vehicle on the road network of the New River Valley 

and was required to make 5 route choices. At the beginning of the experiment, participants were 

given 5 Google Map print outs. Each map representing 1 trip: 1 point of origin, 1 point of 

destination, and two alternative routes. These maps were the same for all participants. On each 

trial, participants were asked to make these 5 trips assuming that the provided alternative routes 

were the only routes available between the points of origin and destination. The trips and the 

alternative routes were pre-selected by the researchers to ensure differences in the 5 choice 

situations (Table 1). All drivers’ choices as well as the travel conditions were recorded via a GPS 

unit placed onboard of the vehicle and a research escort that always accompanied the participants. 

Participants were instructed to behave in the same manner they behave in the real life. 

It should be noted that in this experiment, each trip represented a choice situation for the 

participants. Hence, in many occasions in this paper the terms “trips” and “choices” refer to the 

same thing and are used exchangeably.  

Participants and Incentives 

Experiment participants were selected to ensure variability over their demographic, and study 

network and route experiences (ranges of experiment variables can be seen in the third column of 

Table 7). 

Since route choice behavior is documented to vary with trip purpose, a couple of measures 

were designed to ensure that participants will not consider experiment time as leisure. First, 

participants’ compensation was not a function of the time spent in the experiment; participants 

were provided a flat monetary amount per trial. Second, the experiment was not entertaining 
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(experiment routes were not scenic, and participants were not allowed to listen to any 

entertainment, use their cellphone, or chat with the research escort). Hence, if any, participants 

had stealth incentives to reduce their travel times. 

Network 

Table 1 demonstrates the origin, destination, and alternative routes specific to each of the 5 trips. 

It also shows a brief description of each of the routes. More information about the routes can be 

seen in Figure 1 and are provided in Table 2. Figure 1 shows a map depicting all 5 points of trip 

origins and destinations as well as the 10 alternative routes provided. 

Table 1: Description of the Five Trips 

Trip 

# 

Trip 

Origin 

Trip 

Destination 

Alternative Routes Route Description 

(and speed limits) Route # Route Name 

1 
Point 1 

(VTTI) 

Point 2 

(Walmart) 

Route 1 US460 Business Mostly a high speed (65 mph) freeway  

Route 2 US460 Bypass High speed (45 mph) urban highway   

2 
Point 2 

(Walmart) 

Point 3 

(Foodlion1) 

Route 3 Merrimac 
Mostly a shorter, low speed (30 mph) back 

road with a lot of curves 

Route 4 Peppers Ferry 
Mostly a longer, high speed (55 mph) rural 

highway 

3 
Point 3 

(Foodlion1) 

Point 4 

(Foodlion2) 

Route 5 US460 Bypass 
A longer high speed (65 mph) freeway 

followed by a low speed (25 mph) urban road 

Route 6 N.Main A shorter urban route (40 and 35 mph) 

4 
Point 4 

(Foodlion2) 

Point 5 

(Stadium) 

Route 7 Toms Creek 
A short urban route that passes through 

campus (25 and 35 mph) 

Route 8 US460 Bypass 
Primarily a long high speed (65 mph) 

freeway and low speed (25 mph) urban roads 

5 
Point 5 

(Stadium) 

Point 1 

(VTTI) 

Route 9 S.Main 
A long urban road that passes through town 

(35 mph) 

Route 10 Ramble 
A short unpopular low speed (25 and 35 mph) 

back road that passes by a small airport. 

Pre-experiment Questionnaire 

The pre-experiment questionnaire collected information about the participants’ demographics 

(age, gender, ethnicity, education, level, etc), driving experiences (number of driving years, 

annual driven miles, etc.), and familiarity with the area (length of residency), and experiment 

routes (Likert Scale: 1 = never been there, 2 = used it once or twice, up to 5 = very familiar). 

Post- experiment Questionnaire 

The post- experiment questionnaire was divided into two sections. The first sections collected 

information about the participants’ perceptions of the traffic conditions on the alternative routes 
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(distance, travel time, travel speed, and traffic level), as well as participants’ preference of the 

routes. In the second section the participants were asked to fill in a personality inventory, the 

NEO Personality Inventory-Revised [23]. This is a psychological personality inventory that is 

based on the Five Factor Model. It measures five personality traits: neuroticism, extraversion, 

openness to experience, agreeableness, and conscientiousness. In addition, each personality trait 

measures six subordinate dimensions (sometimes referred to as facets). 

 

 

Figure 1: Map of the Experiment Network (Source: Google Maps)  

RESULTS AND ANALYSIS 

This section starts with presenting the characteristics of the choice alternatives. After that, the 

aggregate evolution of route choice with experience is explored and the results of the expected 

stochastic user equilibrium theory are compared to the actual evolution of choice percentages. 

Next, a disaggregate evaluation of the evolution of the percentage of non-TT-minimal choices is 

P
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examined. Following, an investigation of the individual evolution of learning and choice is 

performed where four types of heterogeneous driver behavior are identified. This section ends 

with a model capable of predicting the identified driver types based on personal, choice situation, 

and person-choice combination factors.  

 Table 2: Characteristics of the Alternative Routes Per Trip 

Trip 

# 

Route 

# 

Dist-

ance 

(km) 

Avg. 

Travel 

Time 

(min) 

Avg. 

Travel 

Speed 

(kph) 

Number of 

Intersections 

Number of 

Turns Number of 

Merges and 

Diverges** 

Number of 

Horizontal 

Curves** Signal-

ized 

Unsignal

-ized** 
Lefts Rights 

1 
1 5.1* 8.5 36.4 10 3* 3* 3* 1* 2* 

2 6.0 8.4* 43.3* 5* 4 4 4 5 3 

2 
3 11.1* 15.2* 42.6 5 2 3 2 1* 30 

4 17.4 16.7 63.2* 2* 2 2* 2 2 11* 

3 
5 5.8 7.7* 44.5* 5* 3 3 2 2 2 

6 5.5* 9.3 37.8 8 3 2* 2 1* 2 

4 
7 5.0* 10.2 29.5 5* 3 4 3 1* 0* 

8 7.7 9.6* 48.2* 6 2* 2* 3 4 1 

5 
9 5.8 10.5 33.3 8 4 4 3 1* 1* 

10 4.7* 8.0* 34.0* 3* 1* 3* 1* 2 6 

*
 Better route 

**
 Number of unsignalized intersections, number of merges and diverges and diverges, and number horizontal curves are potential indicators for 

route easiness and safety 

Network Characteristics 

In this section the characteristics of the alternative routes as well as the recorded drivers’ 

experiences of travel time are presented.  

General Route Characteristics 

Table 2 presents the characteristics of the 10 routes. As mentioned earlier and can be seen from 

the table, the trips and alternative routes were selected so that the characteristics of the 

alternatives were to vary across the 5 choice situations. 

Experienced Travel Times  

Table 3 presents the cumulative frequency distributions of the experienced travel times during the 

study. Table 3 also presents the probability, based on a Monte Carlo simulation, that the odd-

number route is a better choice than the even-number route, by being shorter in travel time (TT). 

Aggregate Choice Evolution 

This section starts by exploring the network evolution; represented by the aggregate evolution of 

drivers’ choices. Next in this section is an evaluation of the evolution of the drivers’ non-TT-

minimal choices; as determined by their experienced travel times. 
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Table 3: Route Travel Times (TT) and Aggregate Route Choice Evolution 

Trip 
Travel Time Cumulative 

Distribution 

Monte Carlo 

Simulation (SUE) 

Choice Evolution  

(and a log-fit) 

1 

 

Prob. (TTR1<TTR2) 

= 48.3% 

 

2 

 

Prob. (TTR3<TTR4) 

= 78.5% 

 

3 

 

Prob. (TTR5<TTR6) 

= 85.4% 

 

4 

 

Prob. (TTR7<TTR8) 

= 35.2% 

 

5 

 

Prob. (TTR9<TTR10) 

= 5.0% 
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Aggregate Evolution of Choice Percentages 

The third column of Table 3 presents the aggregate evolution of choice percentages on each of 

the five trips. A logarithmic curve is fitted to the choice percentages of each trip. The expected 

choice percentage according to the SUE theory is also shown on each graph. It can be clearly 

seen that the expectations of the SUE theory can be very different from the actual reality of 

choice percentages. The graphs show that while the evolution of choice percentages seem to be 

converging to the SUE expectations on trips 3 and 5 (where the travel time difference is high), 

they are way off in trips 1, 2 and 4. In fact, for trips 1 and 4, the actual choice evolutions seem to 

be heading away from (in the opposite direction of) the SUE expectations. This trend could be 

attributed to the small difference in travel time between the two routes. 

On each graph, the choice percentage trends seem to be converging, yet it could be argued 

that the 20 trials were not long enough for a complete convergence. Accordingly, the following 

section examines whether drivers’ learning has converged or whether changes were to be 

expected had the drivers made more trials. Alternatively, it may be rationally argued that the 

observed differences (between choice percentages and SUE expectations) could be a result of the 

aggregation of three different travel conditions (morning, noon, and evening peaks). However, 

results of investigation of these differences during each peak period, separately, were not 

different from the results presented here.  

Aggregate Evolution of Individual Non-TT-Minimal Choices 

Figure 2 presents the aggregate evolution of individual non-TT-minimal choices; in all trips 

(Figure 2a) and on each trip separately (Figures 2b thru 2f). Disaggregate travel time experiences 

and choices of each driver, on each trial are evaluated separately. Each decision by each driver is 

compared to the minimum experienced TT route by that driver in all previous trials, then all the 

non-TT-minimal decisions are summed together to find the aggregate evolution of individual 

non-TT-minimal choices. A non-TT-minimal choice is assumed to occur if a driver chooses a 

longer travel time route; based on this driver’s personal travel time experiences in the previous 

trials. The personal travel time experiences were calculated as the average travel times 

experienced in all previous trials, per the following equation. 

        
∑          

   
   

∑     
   
   

 

       
        is the average experienced travel time of person   on route   up till trial   

       if person   chooses route   at trial    and   otherwise 
     is the travel time experience by person   at trial   

Because a good percentage of the choices made early in the experiment were for 

exploratory rather than preference reasons, the figures show the percentage of non-TT-minimal 

choices made only in the last 10 trials of the experiment. Inspecting Figure 2 shows that, 

collectively (Figure 2a), it appears that the percentage of non-TT-minimal choices seem to be 

slowly continuing to decline with experience; even until the last trial. This trend, however, cannot 

be observed from the figures of the individual trips (Figures 2b thru 2f). On each individual trip it 

appears that the percentage of non-TT-minimal decisions has stopped improving and is randomly 

oscillating around some value. Based on these two contradicting observations, it appears 

reasonable to assume that the aggregate percentage of non-TT-minimal decisions could slightly 
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improve with more driver experience, but only slightly. Hence, it appears that given more 

experience, the observed discrepancies between the expectations of the SUE theory and the actual 

percentages of route choices would have continued and not gotten any different. Accordingly, for 

a better, more comprehensive understanding of network evolution the disaggregate evolution of 

driver learning and choice is explored in the next section. 

 

 

Figure 2a: Percentage of Non-TT-Minimal Decisions 

in All Trips 

 

Figure 2b: Percentage of Non-TT-Minimal Decisions 

in Trip 1 

 

Figure 2c: Percentage of Non-TT-Minimal Decisions 

in Trip 2 

 

Figure 2d: Percentage of Non-TT-Minimal Decisions 

in Trip 3 

 

Figure 2e: Percentage of Non-TT-Minimal Decisions 

in Trip 4 

 

Figure 2f: Percentage of Non-TT-Minimal Decisions 

in Trip 5 

Figure 2: Percentages of Non-TT-Minimal Decisions in the Last 10 Trials Based on 

Disaggregate Average Experienced Travel Time 
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Disaggregate Evolution 

The first part of this section explores drivers’ heterogeneity by investigating the individual 

evolution of drivers’ learning and choices. Four types of drivers are identified. The second part of 

this section presents a model to predict the identified driver types based on driver and choice 

situation variables. 

Driver Type 

In an earlier route choice study that was based on a driving simulator, four types of driver 

learning evolution patterns were identified [22], and in another study these patterns were found 

significant in predicting route choice switching [7]. These four patterns of driver learning and 

choice evolution are presented in Table 4. Whether these four identified patterns were a function 

of the driving simulator experiment or a legitimate real-life behavior was questionable. 

Interestingly, these same four patterns of driver learning and choice evolution were identified in 

this real-world experiment. Nonetheless, it was observed that these evolution patterns are not 

driver specific. 

In this paper these four identified learning and choice evolution patterns will sometimes 

be referred to as driver types. It will also be metaphorically assumed that driver aggressiveness in 

route switching behavior increases as a function of driver type, i.e. driver type IV is more 

aggressive than driver type III, and driver type III is more aggressive than driver type II, etc. 

In this experiment, it was observed that some drivers were obviously on the less aggressive side, 

and some other drivers were obviously on the more aggressive side. However, less aggressive 

drivers were not always of type I and more aggressive drivers were not always of type IV. Each 

driver’s behavior was a mixture of the different types. This discussion can probably be more 

obvious by checking Table 5. Table 5 presents four examples of observed driver evolution 

behavior. Each example represents the learning evolution behavior of a certain driver on each of 

the 5 trips. It can be seen that although the first driver seems to be less aggressive than the other 

drivers and the second driver seems to be less aggressive than the third and fourth drivers and so 

on, each driver’s behavior is a mixture of driver types. The first driver, for example, behaves as 

type I on all trips except trip 2. A possible explanation for this, which is explored in the next 

section, is that the learning evolution patterns are a function of both: a driver aggressiveness 

tendency as well as choice situation factors. 

Table 6 shows the percentage of driver types identified on each trip. Since the percentages 

are not constant across all trips, this too implies that the choice situation has an effect on the 

driver applied learning evolution pattern. To test this theory, the drivers’ learning evolution 

patterns are modeled against a number of personal, choice-situation, and person-choice 

combination factors in the following section. 

Model 

Response Variable 

The modeled response is the probability that driver i will adopt a type III-IV over a type I-II 

learning evolution pattern. Types I and II were consolidated into a single group (type I-II) and 

types III and IV were consolidated to one group (type III-IV) for two reasons. The first reason is 

to increase the number of observations per group and increase the power of the model. The 

second reason is to eliminate any possible classification arguments. While it is straightforward to 

classify a pattern as either a type I or a type II pattern, differentiating between types III and IV 

can sometimes be trickier. 
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Independent Variables 

The independent variables investigated in this work are presented in Table 7. As mentioned 

earlier and presented in Table 7, three main groups of variables were used: personal variables 

(demographic and personality), choice-situation variables, and person-choice combination 

variables. 

 

Table 4: Four Identified Driver Types Based on Learning and Choice Evolution 

Driver 

Type 
Typical Behavior Type Description 

I 

 

A driver starts by arbitrarily picking a route, is 

apparently satisfied with the experience, and 

continues making the same choice for the entire 20 

trials. 

II 

 

A driver starts by arbitrarily picking a route, is 

apparently not satisfied with the experience, tries the 

other route, and decides that the first route was 

better. The driver makes a choice after trying both 

routes and does not change afterwards. 

III 

 

A driver switches between the two alternative routes 

till the end of the experiment. The driver, however, 

drives on route 1 much more than s/her drives on 

route 0. This reflects his/her preference for route 1. 

IV 

 

A driver switches between the two alternative routes 

during the entire time of the experiment. The driver 

drives both routes with approximately equal 

percentages. This reflects the lack of preference 

towards any of the alternatives. 

 

Page 121



Tawfik and Rakha, Network Route-Choice Evolution in a Real-World Experiment: A Necessary Shift from Network to Driver 

Oriented Modeling 

 

 Table 5: Examples of Driver Behavior Varying Within Driver Across Trips 

# Observed Choice Evolution Description 

1 

 

Driver mostly behaves as type I: driver behaves as 

type I in all trips except trip 2 where his/her 

behavior is characteristic of a type II. 

2 

 

Driver’s behavior appears to be a mixture between 

type I, type II and a mild type III: driver behaves 

as type I in trip 5, as type 2 in trip 3, and as a mild 

type III in trips 1, 2, and 4. The reason s/he is 

described as a mild type 3 is beacause s/he makes 

her/his mind and does not revisit her/his choice 

after trial number 4, 4 and 9 on trips 1, 2 and 4, 

respectively.  

3 

 

Driver’s behavior seems to be typical of type III: 

the driver has a clear route preference in all 5 

trips; however, the driver revisits his/her choice by 

switching to the other route once in a while on all 

5 trips.  

4 

 

The driver’s behavior appears to be a mixture 

between types III and IV: the driver behaves as a 

typical type III on trips 1 and 5; arguably either 

type III or IV on trips 2 and 3, and as a typical 

type IV on trip 4. 
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Table 6: Percentage of Driver Behavior Type per Trip 

Trip 
Percentage of Type 

I Behavior 

Percentage of Type 

II Behavior 

Percentage of Type 

III Behavior 

Percentage of Type 

IV Behavior 

1 24% 5% 48% 24% 

2 10% 24% 48% 19% 

3 14% 29% 38% 19% 

4 48%* 14% 14% 24% 

5 38% 14% 43% 5% 

 100% 100% 100% 100% 

 

Model Data 

As explained earlier in the paper, 20 drivers were recruited for the experiment and each driver 

was faced with 5 trips, i.e. in total there are around 100 observations of driver-choice 

combinations. All numeric variables used in the presented models were scaled so that the 

magnitude of one (or more) variables would not over shadow other variable(s), and the modeled 

coefficients can indicate the importance of the covariates. 

Model Structure 

The driver type model proposed here is a mixed effects generalized linear model with a logit link 

function [24]. Because each driver was asked to repeat his/her choice several times, one mixed 

parameter, the intercept, is estimated over all individuals instead of all observations. The model 

has the following structure. 

        (   ) 
     (   )     

      
    (   ) 

where, 
      if person i belongs to driver type        at choice situation c  
      if person i belongs to driver type      at choice situation c  
     is the  ernoulli distribution 
    is the probability that person i belongs to driver type        

     (   )  
   

     
 

    is the vector of covariates for person i and or choice situation c 
  is a vector of the parameters 
   is the random component of person i  
  is the  ormal distribution 
  is the variance 

 

Page 123



Tawfik and Rakha, Network Route-Choice Evolution in a Real-World Experiment: A Necessary Shift from Network to Driver 

Oriented Modeling 

Table 7: Model Independent Variables 

# 
Variable 

Names 
Variable Description 

Variable 

Values 

Variables of Driver Demographics 

1 Agei Age of participant i 18 to 68 

2 Genderi Gender of participant i M or F
*
 

3 Ethnicityi Ethnicity of participant i W or NW
*
 

4 Educi Education level of participant i G or NG
*
 

5 DrYearsi Number of years participant i has been a licensed driver 2 to 57  

6 Dr Milesi Annual number of miles participant i drives (thousands) 2 to 35 

7 Residencyi Number of years participant i has been residing in the area 1 to 56 

Variables of Driver Personality Traits 

1 Ni Neuroticism of participant i 7 to 30 

2 Ei Extraversion of participant i 19 to 43 

3 Oi Openness to experience of participant i 20 to 31 

4 Ai Agreeableness of participant i 22 to 42 

5 Ci Conscientiousness of participant i 26 to 47 

Variables of Choice Situation
** 

1 dTimePrcc
***

 Percentage difference in mean TT between the two alternatives of choice c 2.8 to 24.5 

2 dTimeVPrcc
***

 Percentage difference in TT variance between the two alternatives of choice c 7.4 to 56.7 

3 dDistPrcc Percentage difference in distance between the two alternative routes of choice c 5.7 to 44.8 

4 dSpdPrcc
***

 Percentage difference in mean travel speed between the two alternatives of choice c 2.1 to 48.1 

5 dSpdVPrcc
***

 Percentage difference in travel speed variance between the two alternatives of choice c 21.0 to 73.0 

6 dLinksPrcc Percentage difference in number of links between the two alternatives of choice c 0.0 to 54.5 

7 dSigPrcc 
Percentage difference in number of signalized intersections between the two 

alternatives of choice c 
18.2 to 90.9 

8 dUnsigPrcc 
Percentage difference in number of unsignalized intersections between the two 

alternatives of choice c 
0.0 to 120.0 

9 dTurnsPrcc 
Percentage difference in number of uncontrolled intersections between the two 

alternative routes of choice c 

66.7 to 

133.3 

10 dLeftsPrcc Percentage difference in number of left turns between the two alternative of choice c 28.6 to 66.7 

11 dRightsPrcc Percentage difference in number of right turns between the two alternative of choice c 0.0 to 100.0 

12 dCurvPrcc Percentage difference in number of curves between the two alternatives of choice c 0.0 to 200.0 

Variables of Driver-Choice Combination 

1 AvgFamic Average familiarity of driver i with the two routes of choice c 1 to 5 

2 MaxFamic Maximum familiarity of driver i with the two routes of choice c 1 to 5 

3 dFamPrcic 
Percentage difference of the familiarity of driver i with the two alternative routes of 

choice c 
0.0 to 133.3 

* 
M: male, F: female, W: white, NW: non-white, NG: not graduate, G: graduate 

** 
Percentage difference calculated as difference between the two routes divided by the average of the two routes 

*** 
All travel time and travel speed calculations are based on actual driver experiences; collected GPS data 
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Model Results 

Table 8 presents the results of the estimated model. It is satisfying that variables belonging to 

both the driver (both demographic and personality) as well as the choice situation were found to 

be significant. This reinforces the reasoning that was given in an earlier section. In addition, the 

signs of the significant variables seem to be logical. The model proposes that drivers from a white 

ethnicity are more likely to exhibit a type III or type IV learning pattern, and that the higher the 

number of annual miles a driver makes, the lower the chances that this driver will exhibit a type 

III or IV behavior. This can be explained by a couple of different reasoning. It can be explained 

by assuming that drivers who drive a lot are more confident in their judgments or are more 

experienced. Consequently, they can identify the better route from just a single driving trial or 

even by just looking at the map and without making any trials. Alternatively, it may be that 

experienced drivers do not care that much about driving a few extra minutes (or miles) as long as 

they are comfortable with their choice. Consequently, they do not really care that much about 

finding the minimum travel time route as much as they care about their comfort with the route. 

Accordingly, they do not need to try a route several times to evaluate the stochastic travel time. 

What they care about is comfort and one trial is enough for them to evaluate the comfort level of 

a route. 

Three out of the five explored personality traits were found to be significant. It was found 

that both extraversion and conscientiousness increased the drivers’ probabilities to exhibit a type 

III or a type IV pattern. Openness to experience, on the other hand, was found to decrease the 

drivers’ probabilities to exhibit a type III or a type IV pattern. 

Among the reasons that were given in the earlier driving simulator route choice study [22] 

and in this study for a driver to continuously switch, or to switch every now and then, between 

the alternative routes are: boredom and to explore what is happening around the town. Two of the 

personality dimensions that are measured by the extraversion trait are “activity” and “excitement 

seeking”. These dimensions clearly align with the two reasons given here. Hence, it seems logical 

that extraversion should increase the probability that a driver would exhibit a type III or a type IV 

behavior. 

Among the personality dimensions that are measured by the conscientiousness, on the 

other hand, are “achievement striving”, “self-discipline”, and “deliberation”. These three 

dimensions could imply that a driver with high conscientiousness could be more inclined to 

consciously deliberate the characteristics (travel times) of the alternative routes and strive to 

always make the best choice decision. Hence, implying that a driver would be inclined to always 

revisit and re-evaluate his/her perceptions of the travel characteristics on the alternative routes 

and, thus, trying the alternatives every now and then. 

On first sight, the sign of the openness to experience variable could seem illogical. 

Nonetheless, reviewing the personality dimensions that are measured by this trait helps clear the 

picture. The six personality dimensions measured by this trait are “fantasy”, “aesthetics”, 

“feelings”, “actions”, “ideas”, and “values”. All of these traits require active cognitive capacities. 

For a driver to fantasize about an idea or reflect on a certain feeling or dream of aesthetics 

requires cognitive capacities. Hence, it is probably logical that a driver that is high on these 

dimensions would seek to reduce his/her cognitive capacities that are dedicated to finding the best 

route choice and reallocate these cognitive capacities for other liberating thoughts. Hence, such a 

driver could be inclined to make an early route choice judgment, stick with it, and not revisit it 

again. Thus, such a driver would be more inclined to exhibit a type I or a type II learning pattern.  
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Table 8: Significant Variables of the Driver Learning Pattern Model
*
 

Significant Variables Estimate Std. Error z-value Pr(>|z|) 

(Intercept) 0.92 0.384 2.401 0.016 

EthNW -2.98 1.292 -2.303 0.021 

DrMls -0.97 0.443 -2.182 0.029 

E 1.14 0.437 2.619 0.009 

O -1.18 0.456 -2.589 0.010 

C 1.22 0.459 2.650 0.008 

dTimePrc -0.59 0.292 -2.005 0.045 

dSigPrc 0.62 0.292 2.117 0.034 
*
 Variables description is presented in Table 7 

Last, the choice-situation variables: difference in travel time and difference in number of 

signalized intersections. Logic would assume that the higher the difference in travel times 

between two alternative routes, the higher the degree of preference a driver would have for a 

certain route. The sign of the choice travel time variable agrees with this logic. Thus, the higher 

the difference in travel time, the higher the probability that a driver would exhibit a type I or a 

type II learning pattern. In contrast, the sign of the difference in the number of signals might not 

seem intuitive. Nonetheless, following are two possible explanations; the second of which is 

particularly relevant to this experiment. The first explanation is that the more traffic signals there 

are the more stochastic travel time is going to be. Hence, this necessitates that a driver travel the 

route several times before being able to get a feel of the travel time and its fluctuation. 

Furthermore, particularly relevant to this experiment (and many life choice situations) is that 

most routes that had many signals were more direct to the destination. Therefore, only by 

checking the map, drivers are inclined to these routes, yet upon trying them they may be 

disappointed with the number of signalized intersections. This tension between desire for 

directness and against signalized intersections inclines drivers to try the alternatives a number of 

times before making a decision and to revisit their choices every now and then. 

It is worth noting that although the two considered measures of travel reliability (TT and 

travel speed variances) were not statistically significant, their signs were negative. This agrees 

with the logic that when one route is more reliable than the other, drivers are more likely to have 

a route preference; indicated by the lower probability to exhibit a type III or IV behavior. On the 

other hand, a possible reason that none of these measures was significant is that as seen from the 

distributions presented in Table 3, except for Trip 3, variances of the alternative routes are not 

very different. 

STUDY CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER RESEARCH 

In this work, a real-world route choice experiment was conducted with the objective of 

investigating the degree of inadequacy of the expectations of the stochastic user equilibrium, and 

to explore the possibility of identifying predictable patterns of driver learning and choice 

evolution. Route choice literature is packed with studies; however, only a few of these studies are 

based on real-life experiments and very little attention has been given to differences between 

drives’ learning types. This work was done based on a sample of 20 drivers that were each faced 

with 5 different route choice situations and who collectively made more than 2,000 real-world 

choices. All drivers’ experiences and choices were recorded. In this work: the aggregate 
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evolutions of real-world choice percentages were compared to the expectations of the stochastic 

user equilibrium theory, the disaggregate evolutions of individual driver learning and choices 

were explored where 4 driver types were identified; and the possibility of predicting the identified 

driver learning types based on driver and choice variables was investigated.  

On the exploration of the aggregate evolution of choice percentages, it was found that the 

percentages of real-world route choices were converging to certain values. However, in 3 out of 

the 5 cases, these values were very different from the expectations of the stochastic user 

equilibrium theory (SUE). In addition, in 2 out of the 5 cases, the actual choice percentages were 

converging away from the SUE expectations.  

On analyzing the disaggregate evolution of individual learning and choices, four patterns 

were identified: drivers who repeated the same choice in all 20 trials, drivers who tried each 

alternative only once then made a decision which they never revisited, drivers who had an 

obvious preference but kept switching to the other route every once in a while, and drivers who 

were switching during the entire experiment and did not seem to have a clear preference. In a 

previous driving simulator experiment, it was hypothesized that these patterns are individual 

specific. In this experiment, however, it was found that these patterns depended on both the 

individual and the choice situation. 

A model was developed to predict the driver learning pattern based on driver-specific and 

choice-specific variables. Several driver-specific and choice-specific variables were found to be 

significant, but none of the explored driver-choice combination variables was found to be 

significant. Among the significant driver-specific variables were driver demographic variables 

(ethnicity and annual driven miles) as well as personal trait variables (extraversion, openness to 

experience, and conscientiousness). The significant choice-specific variables were the percentage 

travel time difference between the choice alternatives and the number of signalized intersections 

percentage difference between the choice alternatives. 

The findings of this work could be insightful; especially if successfully replicated. A 

number of further research directions include: incorporating the identified driver types in a route 

choice model; examining if the identified driver types have different compliance rates to 

information in a real-world experiment; and examining if the same results could be replicated in a 

travel or a driving simulator. 
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ABSTRACT 

The research presented in this paper develops a hierarchical two-level heterogeneous route choice 

model that is developed using real-world experimental data. Experiment reality and driver 

heterogeneity are two limitations in route choice literature. On the one hand, aside from random 

error components, almost all route choice models being used in transportation engineering 

practice assume that drivers are homogeneous in the way they make their route choices and in the 

way they respond to information. Although this paper is based on only the way drivers make 

route choices, the proposed framework is capable of incorporating the heterogeneity of driver 

responses to information. On the other hand, the models developed in this paper are based on a 

sample of 20 drivers who collectively made more than 2,000 real-world route choices. In the 

proposed model, the first level presents a model that uses driver demographic and personality 

traits, and the characteristics of the choice situation to predict a driver type. Within the context of 

this paper, a driver type connotes a metaphoric measure of driver aggressiveness in route 

switching behavior, and captures driver heterogeneity. The second level of the model uses the 

predicted driver type and the travel experiences of the driver to predict the driver’s route choice. 

The results of the developed models indicate that in general: 1) driver types can be predicted from 

driver demographics, personality traits, and choice situation characteristics, 2) the predicted 

driver types are significant in route choice models, and 3) route choice models based on the 

proposed framework demonstrate better fits than the general model.  

Page 131



Tawfik and Rakha, A Real-World Hierarchical Route Choice Model of Heterogeneous Drivers 

INTRODUCTION 

Over half a century ago, world famous science fiction author and Nobel Peace Prize Nominee, 

Arthur C. Clarke wrote that “the automobile of the day-after-tomorrow will not be driven by its 

owner, but by itself; indeed, it may one day be a serious offence to drive an automobile on a 

public highway” [1]. One day, this dream may become a reality; however, it is likely to happen 

only if we can develop intelligent systems that are capable of making choices in the same way we 

do them. This necessitates full understanding of how drivers make their choices. 

Route choice literature can be classified into two main groups. The first group 

encompasses mathematical network oriented models such as deterministic and stochastic user 

equilibrium, system optimum, and dynamic traffic assignment models. In this group of models 

drivers are assumed to behave in a certain manner so that a certain objective function can be 

optimized at the network level. Comprehensive reviews of these kinds of models can be found in 

a number of publications [2-4]. The second group of models includes behavioral driver oriented 

models. The main objective of these models is to accurately describe individual driver route 

choice behavior. As a result of a move towards developing more realistic driver oriented models, 

the second group of models has been recently gaining momentum. Examples of these models 

include random utility models [5, 6], random regret minimization models [7], probabilistic 

models [8], cognitive-psychology based models [9, 10], artificial intelligence models like fuzzy 

models [11] and artificial neural network models [12], and models based on data mining 

(sometimes referred to as user models) [13-16]. 

Experiment reality and driver heterogeneity are two limitations in route choice literature 

[15, 17]. On the one hand, aside from random error components, almost all route choice models 

being used in transportation engineering practice assume that drivers are homogeneous in the way 

they make their route choices and in the way they respond to information. On the other hand, due 

to cost and past technological limitations most route choice literature is based on either stated 

preference surveys or travel simulators. Travel simulators are PC-based systems that simulate the 

conditions of the choice situation and record the choice of the user. The user, however, does not 

drive and does not experience the travel conditions in real-time [18, 19]. Experiments based on 

driving simulators and GPS data, however, have been gaining momentum and seem promising. 

Limitations of the former include environment fidelity, and limitations of the latter include lack 

of information on the non-chosen routes and the necessity for assumptions about the drivers’ 

choice sets.  

With these limitations in mind, this paper presents a hierarchical two-level heterogeneous 

route choice model that is based on an in situ experiment in real-world conditions. Although this 

paper is based on only the way drivers make their route choices, the proposed framework is 

capable of incorporating the heterogeneity of driver responses to information. The models 

developed in this paper are based on a sample of 20 drivers that collectively made more than 

2,000 real life route choices. In the proposed model, the first level presents a model that uses 

drivers’ demographics and personality traits, and the characteristics of the choice situation to 

predict a driver’s type. Within the context of this paper, a driver type connotes a metaphoric 

measure of driver aggressiveness in route switching behavior, and represents driver heterogeneity 

[20]. The second level of the model uses the predicted driver type and the driver travel 

experiences to predict driver route choice. 

It is interesting and probably beneficial to note the similarity between route choice and 

household location choice literature. A recent publication provides a good review of the history of 

household location choice models [21]. Apparently, similar to the modeling framework proposed 
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by the authors in this work, when household choice location models first moved to incorporate 

individual heterogeneity, it, too, was based on two-stage models. Today, however, both stages 

can be modeled simultaneously (as in the referenced paper). This fact is interesting because it 

appears that the authors have until this point been, unknowingly, following the same historical 

path. 

In the following sections, the authors present the objectives of the study, followed by an 

explanation of the study approach: study description, network and questionnaires. In the third 

section, the authors present the experiment’s results, models, and discussion, and in the fourth 

section the paper ends with conclusions of the study and recommendations for further research. 

STUDY OBJECTIVES 

The main objectives of this study are to: (a) identify predictable measures that can reflect driver 

heterogeneity in a route choice context, (b) use the identified measures to propose a framework 

capable of incorporating driver heterogeneity in route choice models, (c) evaluate the 

performance of the proposed framework using real-world data. 

STUDY APPROACH 

Study Description 

Twenty participants were selected to participate in this study. The participants were first health-

screened via a phone conversation. Once the participants passed the health screening 

questionnaire, a time was scheduled for them to complete their pre-task questionnaire and to 

make their first experiment run. Each participant was asked to complete 20 experiment runs 

during regular school days of the academic spring semester of the year 2011. Experiment runs 

were scheduled only during one of three traffic peak hours: morning (7-8 am), noon (12-1 pm), 

and evening (5-6 pm). During each experiment run, participants were asked to drive research 

vehicles on the road network of the New River Valley. Participants were given 5 Google Map 

print outs. Each map representing one trip: one point of origin, one point of destination, and two 

alternative routes. All participants were given identical maps and were asked to make the same 5 

trips. On each experiment run, participants were asked to make these five trips assuming that the 

provided alternative routes were the only routes available between the points of origin and 

destination. The trips and the alternative routes were selected to ensure differences in the 5 choice 

situations (Table 1). All drivers’ choices as well as the travel conditions were recorded via a GPS 

unit placed on board of the vehicle and a research escort that always accompanied the 

participants. Participants were instructed to behave in the same manner they behave in the real 

life. After completion of the 20 trials, participants were asked to complete a post-task 

questionnaire. 

It should be noted that in this experiment, each trip represented a choice situation for the 

participants. Hence, in many occasions in this paper the terms “trips” and “choices” refer to the 

same thing and are used exchangeably. Similarly, “experiment runs” and “experiment trials” are 

also used exchangeably. 

Network 

Table 1 demonstrates the origin, destination, and alternative routes specific to each of the five 

trips. It also shows a brief description of each of the routes. More information about the routes 

can be seen in Figure 1 and are provided in Table 2. Figure 1 shows a map depicting all five 

points of trip origins and destinations as well as the ten alternative routes provided. 
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Table 1: Description of the Five Trips 

Trip 

# 

Trip 

Origin 

Trip 

Destination 

Alternative Routes Route Description 

(and speed limits) Route # Route Name 

1 
Point 1 

(VTTI) 

Point 2 

(Walmart) 

Route 1 US460 Business Mostly a high speed (65 mph) freeway  

Route 2 US460 Bypass High speed (45 mph) urban highway   

2 
Point 2 

(Walmart) 

Point 3 

(Foodlion1) 

Route 3 Merrimac 
Mostly a shorter, low speed (30 mph) back 

road with a lot of curves 

Route 4 Peppers Ferry 
Mostly a longer, high speed (55 mph) rural 

highway 

3 
Point 3 

(Foodlion1) 

Point 4 

(Foodlion2) 

Route 5 US460 Bypass 
Longer fast (65 mph) freeway followed by 

a low speed (25 mph) urban road 

Route 6 N.Main A shorter urban route (40 and 35 mph) 

4 
Point 4 

(Foodlion2) 

Point 5 

(Stadium) 

Route 7 Toms Creek 
A short urban route that passes through 

campus (25 and 35 mph) 

Route 8 US460 Bypass 
A long high speed (65 mph) freeway and 

low speed (25 mph) urban roads 

5 
Point 5 

(Stadium) 

Point 1 

(VTTI) 

Route 9 S.Main 
A long urban road that passes through town 

(35 mph) 

Route 10 Ramble 
A short unpopular slow (25 and 35 mph) 

back road that passes by a small airport. 

Pre-task Questionnaire 

The pre-task questionnaire collected information about the participants’ demographics (age, 

gender, ethnicity, education level, etc.) and driving experiences (number of driving years, annual 

driven miles, etc.). 

Post-task Questionnaire 

The post-task questionnaire was divided into two sections. The first section collected information 

about the participants’ perceptions of the traffic conditions on the alternative routes (distance, 

travel time, travel speed, and traffic level), as well as the participants preference levels of the 

routes. In the second section the participants were asked to fill in a personality inventory, the 

NEO Personality Inventory-Revised [22]. This is a psychological personality inventory that is 

based on the Five Factor Model. It measures five personality traits: neuroticism extraversion, 

openness to experience, agreeableness, and conscientiousness. In addition, each personality trait 

measures six subordinate dimensions (sometimes referred to as facets). 

Neuroticism measures the tendency of a person to experience negative emotions such as 

anxiety, guilt, frustration, and depression. Persons who score high on neuroticism are usually 

self-conscious, and are associated with low self-esteem and irrational thinking. The six 

subordinate dimensions of neuroticism are: anxiety, hostility, depression, self-consciousness, 

impulsiveness, and vulnerability to stress. Extraversion measures the tendency towards positive 
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emotionality. The six subordinate dimensions of extraversion are: warmth, gregariousness, 

assertiveness, activity, excitement seeking, and positive emotion. Openness to Experiences 

measures the imaginative tendency of individuals, their attentiveness to inner emotions, and their 

sensitiveness towards art and beauty. The six subordinate dimensions of openness to experience 

are: fantasy, aesthetics, feelings, actions, ideas, and values. Agreeableness measures the more 

humane aspects of the personality. The six subordinate dimensions of agreeableness are: trust, 

straightforwardness, altruism, compliance, modesty, and tendermindedness. Last, 

Conscientiousness measures personality tendencies towards being diligence, thoroughness and 

being governed by conscience. The six subordinate dimensions of conscientiousness are: 

competence, order, dutifulness, achievement striving, self-discipline, and deliberation. For further 

details about these personality traits, or about the Five Factor Model or the NEO Personality 

traits, the reader is referred to Wikipedia for general information, and to other publications for 

thorough theoretical discussions  [22-24] 

 

Figure 1: Map of the Experiment Network (Source: Google Maps)  
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RESULTS AND ANALYSIS 

This section starts by describing the real world experiment and presenting the characteristics of 

the choice alternatives. After that, driver types are presented as variables that reflect driver 

heterogeneity in route choice situations. Next, the two-level hierarchical modeling framework is 

explained. Then, the first level of the hierarchical model which models driver types is presented. 

This section ends with the second level of the hierarchical model which is the route choice model.  

Real-World Experiment 

In this section the characteristics of the alternative routes as well as the recorded drivers’ 

experiences of travel time are presented. 

General Route Characteristics 

Table 2 presents the characteristics of the 10 routes. As can be seen from the table, the trips and 

alternative routes were selected so that the characteristics of the alternatives were to vary across 

the 5 choice situations. 

Table 2: Characteristics of the Alternative Routes Per Trip 

Trip 

# 

Route 

# 

Distance 

(km) 

Avg. 

Travel 

Time 

(min) 

Avg. 

Travel 

Speed 

(kph) 

Number of Intersections 
Number 

of Left 

Turns 

Number 

of 

Merges 

and 

Diverges 

Number of 

Horizontal 

Curves Signalized Unsignalized 

1 
1 5.1* 8.5 36.4 10 3* 3* 1* 2* 

2 6.0 8.4* 43.3* 5* 4 4 5 3 

2 
3 11.1* 15.2* 42.6 5 2 3 1* 30 

4 17.4 16.7 63.2* 2* 2 2* 2 11* 

3 
5 5.8 7.7* 44.5* 5* 3 3 2 2 

6 5.5* 9.3 37.8 8 3 2* 1* 2 

4 
7 5.0* 10.2 29.5 5* 3 4 1* 0* 

8 7.7 9.6* 48.2* 6 2* 2* 4 1 

5 
9 5.8 10.5 33.3 8 4 4 1* 1* 

10 4.7* 8.0* 34.0* 3* 1* 3* 2 6 

*
 Better route 

Experienced Travel Times  

Table 3 presents the cumulative frequency distributions of the experienced travel times during the 

study. Table 3 also presents the probability, based on a Monte Carlo simulation, that the odd-

number route is a better choice than the even-number route, by being shorter in travel time (TT).  

Stochastic User Equilibrium 

In another publication it was found that the expectations of the stochastic user equilibrium (SUE) 

theory did not match with the observed percentages of route choices [25, 26]. This is presented in 

the third column of Table 3. A possible reason is that SUE does not consider driver heterogeneity. 
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Accordingly, this paper proposes a modeling framework where driver heterogeneity is modeled 

and incorporated in the route choice model. 

Table 3: Route Travel Times (TT) and Aggregate Route Choice Evolution 

Trip 
Travel Time Cumulative 

Distribution 

Monte Carlo 

Simulation (SUE) 

Choice Evolution  

(and a log-fit) 

1 

 

Prob. (TTR1<TTR2) = 48.3% 

 

2 

 

Prob. (TTR3<TTR4) = 78.5% 

 

3 

 

Prob. (TTR5<TTR6) = 85.4% 

 

4 

 

Prob. (TTR7<TTR8) = 35.2% 

 

5 

 

Prob. (TTR9<TTR10) = 5.0% 
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Driver Type 

In a recent driving simulator route choice study, four different types of drivers were identified, 

based on the evolution trends of their learning reflected by their choices [20]. Metaphorically, 

these types could be taken to represent a level of aggressiveness in route switching behavior, or 

alternatively a level of route preference. The four types are presented in Table 4. The same four 

driver types were also observed in the current route choice experiment. It was found that the 

identified types were a function of both driver characteristics as well as choice situation 

characteristics [25]. The following section presents a framework showing how it is proposed to 

use these driver types in a hierarchical two-level route choice model. 

Table 4: Four Identified Driver Types Based on Learning and Choice Evolution 

Driver 

Type 
Typical Behavior Type Description 

I 

 

A driver starts by arbitrarily picking a route, is apparently 

satisfied with the experience, and continues making the 

same choice for the entire 20 trials. 

II 

 

A driver starts by arbitrarily picking a route, is apparently 

not satisfied with the experience, tries the other route, 

and decides that the first route was better. The driver 

makes a choice after trying both routes and does not 

change afterwards. 

III 

 

A driver switches between the two alternative routes till 

the end of the experiment. The driver, however, drives on 

route 1 much more than s/her drives on route 0. This 

reflects his/her preference for route 1. 

IV 

 

A driver switches between the two alternative routes 

during the entire time of the experiment. The driver 

drives both routes with approximately equal percentages. 

This reflects the lack of preference towards any of the 

alternatives. 
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Model Framework  

Figure 2 presents a flowchart of the model framework. The flowchart shows that the proposed 

model is a hierarchical two-level model, where the first level of the model predicts the driver 

type, and the second level incorporates the predicted driver type in modeling driver route choices. 

Predictions of driver type (level 1) are a function of both individual characteristics (demographics 

and personality traits) as well as choice situation characteristics. The individual and choice 

situation characteristics considered in the proposed model are presented later in the paper (Table 

5). Predictions of the route choices (level 2) are a function of both driver types (predicted from 

level 1) and the experiences the drivers had in previous trials (ex. dTT: travel time difference 

between alternative routes, and dTS: travel speed difference between alternative routes, etc.). 

Driver type and route experience covariates considered in the route choice model are presented 

later in the paper (Table 7). Details of the driver type and route choice models are discussed in the 

following sections. 

Driver Personal 

Characteristics 

(Demographics 

and Traits.)

Choice Situation 

Characteristics 

(dTT, dTS, 

dTurns, etc.)

Driver 

Type

Driver Route 

Experience 

(AvgTT, 

AvgTS, etc.)

Driver 

Choice

Level 1: Driver Type ModelLevel 1: Driver Type Model

Driver Type

Model

Route Choice 

Model Level 2: Route Choice ModelLevel 2: Route Choice Model

Driver 

Demographics 

(Age, Gender, 

Ethnivity, etc.)

Driver Personality Traits 

(Conscientiousness, 
Extraversion, , 

Agreeableness, etc.)

 

Figure 2: Flowchart of Hierarchical Route Choice Model 
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Hierarchical Model Level 1: Model of Driver Type 

This section presents the first level of the hierarchical model. At this level variables of driver 

demographics and personality traits, and variables of the choice situation are used to predict driver 

types. 

Driver Types 

The four driver types presented in Table 4 are based on observing the driver route choices over a 

total of 20 trials. Hence, this classification is referred to as C4R20. The ‘C’ standards for the 

number of identified driver categories (types) and the ‘R’ stands for the number of experiment 

runs (trials) that were used to identify these categories (types). So, C4R20 connotes 

4 “C”ategories and 20 “R”uns. In addition, C4R20-3, for example, connotes drivers that exhibit a 

type-III behavior under a C4R20 classification, per Table 4. 

In this paper, a number of other driver type classification methods were used. C4R10 is 

based on classifying drivers into the same 4 categories presented in Table 4; however, based on 

observing driver choice evolutions in only the first 10 trials. C3R5 is based on classifying the 

drivers into 3 categories by observing their choice evolutions in only the first 5 trials. 

Classification of drivers into the first two categories of C3R5 is identical to their classification in 

C4R20 and C4R10. However, differentiating between a type-III behavior and type-IV behavior in 

only 5 trials was controversial. Therefore, both types were classified into a single category; 

C3R5-3. 

Another classification used in this paper is C5R5. In this classification, drivers were 

classified according to the number of choice switches they made in the first 5 trials: minimum 0 

and maximum 4; hence, 5 categories. Identical to the classification method used in C5R5 is 

C5R5L. The only difference is that drivers were classified according to the number of choice 

switches they made in the last 5 trials, instead of the first 5 trials. If the C5R5L classification is 

found to be significant in predicting route choices, it can be easily compared against real-life data. 

Since it is easy to observe or survey the last 5 route choices a driver makes in real-life. C5R5L-1 

identifies drivers who made no switches in the last 5 trials and C5R5L-5 identifies drivers who 

made 4 switches in the last 5 trials. 

Three main reasons could serve as rationale behind using classifications that are based on 

less number of runs. A first reason is to reduce dependency between the independent variable 

(driver type) and the response (route switching) in the route choice model. Driver type is an 

independent variable in the route choice model and is based on observing the evolution of driver 

route choices. On the other hand, the response of the model is to predict tendencies in route 

switching aggressiveness. Accordingly, to reduce this dependency, all added classifications are 

based on observing choice evolution in a fewer number of trials. 

Another reason for using the additional classification methods is to investigate the degree 

of robustness of the concept of driver types in route choice prediction. If, for example, all the 

used driver type covariates (regardless of the classification method) turned out to be significant in 

predicting route choices, then this would reinforce the legitimacy of using driver types as 

covariates in route choice models. On the other hand, if for instance only one of these different 

methods turned out to be significant, then this could signify a mere coincidence. 

One last reason for using the additional classification methods is to explore whether some 

classification methods are better than others. For example, whether three driver types can explain 

route choices better than five types or whether driver behavior with little experience at the 
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beginning of the experiment reflects driver types more than the behavior with more experience – 

at the last trials.  

It should be stressed that these driver types should be thought of as measures of driver 

personality, which is what qualifies them to be independent variables. They should be thought of 

as measures of how easy a driver gets convinced or bored with a route, or alternatively measures 

of a driver’s route switching aggressiveness. Since the objective is to measure a characteristic of 

the driver personality, it doesn’t matter whether the measure is based on the first or the last trials, 

or whether the routes are new or familiar to the driver. The following section supports this point 

by showing that it is possible to predict these driver types based on driver individual 

characteristics (demographics and personality traits) and characteristics of the choice situation. 

Response Variable 

The response is an ordinal variable of M levels. Levels of the response variable reflect levels of 

driver aggressiveness in route switching behavior. The lowest level reflects a driver that is least 

aggressive and rarely makes route switches. On the other end, the highest level reflects a driver 

that is always switching between alternative routes. Five different models were estimated: 

C4R20, C4R10, C3R5, C5R5, and C5R5L. The modeled response is the probability that driver i 

will exhibit a route switching behavior of level m, when faced with choice situation c. 

Independent Variables 

The independent variables investigated in this work are presented in Table 5. As presented in the 

table, four main groups of variables were used: driver demographics, personality traits, choice-

situation variables, and person-choice combination variables. 

Response Data 

As explained earlier, 20 drivers were recruited for the experiment and each driver was faced with 

5 trips, i.e. in total there are around 100 observations of driver-choice combinations. All numeric 

variables used in the presented models were standardized; so that the magnitude of one (or more) 

variables would not over shadow other variable(s) and affect the solution. In addition, this scaling 

allows for the identification of important model variables by comparison between absolute values 

of estimated parameters. 

Model Structure 

The model used is an ordered mixed effects generalized linear model with a logit link function. 

Because each driver exhibited a driver-type in five different choice situations, one random 

parameter, the intercept, is estimated over all individuals instead of all observations. This takes 

into account the average dependence effects between observations of the same driver. The model 

has the following structure. 

          (                ) 
      {   (   

     )}    {     (   
     )} 

    (   ) 

where, 
                                                                                                
                                       
                                                                                         
                        {       } 
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Table 5: Independent Variables of Driver Type Model  

# 
Variable 

Name 
Variable Description 

Variable 

Values 

Variables of Driver Demographics 

1 Agei Age of participant i 18 to 68 

2 Genderi Gender of participant i M or F* 

3 Ethnicityi Ethnicity of participant i W or NW* 

4 Educationi Education level of participant i G or NG* 

6 Dr Milesi Annual number of miles participant i drives (in thousands) 2 to 35 

7 Residencyi Number of years participant i has been residing in the area 1 to 56 

Variables of Driver Personality Traits 

1 Ni Neuroticism of participant i 7 to 30 

2 Ei Extraversion of participant i 19 to 43 

3 Oi Openness to experience of participant i 20 to 31 

4 Ai Agreeableness of participant i 22 to 42 

5 Ci Conscientiousness of participant i 26 to 47 

Variables of Choice Situation** 

1 dTTTpic Percentage difference in mean travel time between the alternatives of choice c 2.8 to 24.5 

2 dDistPrcc Percentage difference in distance between the alternative routes of choice c 5.7 to 44.8 

3 dSpdPrcc Percentage difference in mean travel speed between the alternatives of choice c 2.1 to 48.1 

4 dLinksPrcc Percentage difference in number of links between the two alternatives of choice c 0.0 to 54.5 

5 dSigPrcc 
Percentage difference in number of signalized intersections between the two 

alternative routes of choice c 

18.2 to 

90.9 

6 dUnsigPrcc 
Percentage difference in number of unsignalized intersections between the two 

alternative routes of choice c 

0.0 to 

120.0 

7 dTurnsPrcc 
Percentage difference in number of uncontrolled intersections between the two 

alternative routes of choice c 

66.7 to 

133.3 

8 dLeftsPrcc 
Percentage difference in number of left turns between the two alternatives of 

choice c 

28.6 to 

66.7 

9 dCurvPrcc Percentage difference in number of curves between two alternatives of choice c 0.0 to 200.0 

Variables of Driver-Choice Combination 

1 AvgFamic Average familiarity of driver i with the two routes of choice c 1 to 5 

2 MaxFamic Maximum familiarity of driver i with the two routes of choice c 1 to 5 

3 dFamPrcic Percentage difference of the familiarity of driver i with the two routes of choice c 0.0 to 133.3 
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Model Results 

Table 6 presents the results of the estimated models. It is satisfying that variables belonging to 

both the driver (both demographic and personality) as well as the choice situation were found to 

be significant. In addition, the signs of the variables are satisfying: first, they are consistent with a 

similar model that is discussed in another article [25]; and second, they are consistent across the 

five driver type categorization methods used. It is interesting that all modeled driver type 

classifications were found predictable. However, what is most interesting is the high importance 

of driver personal factors (demographics and personality traits), compared to variables of the 

choice situations. As explained earlier, since all variables (except nominal ones) were 

standardized, deduction about variable importance can be reasonably deduced from respective 

parameter estimates. 

The models suggest that drivers of a white ethnicity and drivers without post-graduate 

degrees are more likely to switch routes than their counterparts. On the other hand, it appears that 

the more miles a person drives per year, the less likely that person is going to be aggressive in 

route switching behavior. There are three possible explanations for this. It is possible that these 

drivers develop cognitive mechanisms that enable them to enjoy the drives they make, and 

therefore, a few extra miles or minutes do not bother them much. Another explanation could be 

that these drivers get used to driving to the extent that driving a few extra miles or waiting a few 

extra minutes does not bother them. One last explanation could be that these drivers get very 

experienced in driving that they can identify their preferred routes from only a few trials. 

Therefore, do not need to switch much. 

Table 6: Significant Variables of the Driver Type Model 
*
 

Significant 

Variables 

Driver Type Categorization Methods 

C4R20 C4R10 C3R5 C5R5 C5R5L 

Beta p-value Beta p-value Beta p-value Beta p-value Beta p-value 

(Intercept) -2.362 0.117 -1.150 0.337 0.039 0.897 -5.332 0.000 -1.952 0.000 

EthnicityW 3.729 0.021 2.643 0.037 n/s n/s 6.423 0.000 n/s n/s 

EducationNG 1.701 0.052 n/s n/s 1.570 0.005 n/s n/s 1.663 0.037 

DrMiles -0.723 0.087 -0.753 0.032 n/s n/s -1.375 0.000 n/s n/s 

N n/s n/s n/s n/s n/s n/s 1.357 0.001 n/s n/s 

E 1.186 0.022 0.879 0.025 0.705 0.019 1.112 0.003 n/s n/s 

O n/s n/s n/s n/s n/s n/s -1.389 0.000 n/s n/s 

A -1.175 0.025 -1.158 0.008 -0.680 0.032 n/s n/s n/s n/s 

C 0.715 0.099 n/s n/s 0.516 0.054 1.304 0.000 0.620 0.088 

dTT -0.798 0.041 n/s n/s -0.403 0.073 n/s n/s -0.663 0.059 

dTS -1.022 0.030 -0.756 0.054 -0.554 0.067 -0.474 0.083 n/s n/s 

dCurves -0.405 0.060 n/s n/s n/s n/s n/s n/s n/s n/s 

   1.215 0.000 1.049 0.000 1.174 0.000 0.858 0.000 0.695 0.004 

   4.314 0.000 3.467 0.000 n/a n/a 2.540 0.000 1.763 0.000 

   n/a n/a n/a n/a n/a n/a 4.487 0.000 3.962 0.000 

*
 n/s means not significant, n/a means not applicable 
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It is interesting that all of the five measured personality traits were significant. It appears 

that drivers that are characterized with higher measures of neuroticism, extraversion, and 

conscientiousness are more likely to switch between alternative routes. Four of the six facets 

measured by neuroticism are: anxiety, self-consciousness, and impulsiveness, and vulnerability to 

stress. Similarly, activity and excitement seeking are two of the six facets measures by 

extraversion. Last, three of the six facets measured by conscientiousness are: competence, 

achievement striving, and deliberation. It seems logical that these three variables imply higher 

aggressiveness in route switching behavior. On the other hand, openness to experience and 

agreeableness seem to be inversely related to route switching aggressiveness. Following a similar 

analysis: fantasy, feelings and ideas are three of the facets measured by openness to experience, 

and straightforwardness, compliance and modesty are three of the facets measured by 

agreeableness. It seems logical that drivers with increased levels of these characteristics will be 

less likely to pay attention to traffic conditions and accordingly less likely to switch routes. 

Finally, it seems logical that drivers are less likely to switch between alternative routes as 

differences in travel time and travel speed between the alternative routes increase. As an extreme 

example: in a scenario where the travel times on two alternative routes are 5 minutes and 50 

minutes, it is highly unlikely that drivers will voluntarily switch between these two alternatives.  

Hierarchical Model Level 2: Model of Route Choice 

This section presents the second level of the model. After predicting driver types in the first level of 

the hierarchical model, the predicted driver types are used in the second level to predict driver route 

switching behavior. 

Response Variable 

The modeled response is the probability that driver i will switch his/her route choice at trial t. 

Independent Variables 

The independent variables investigated in this work are presented in Table 7. As can be seen in the 

table, two groups of covariates are considered: variables of driver type and variables of previous 

route experience. Driver specific variables were not included because they were used to predict 

driver types. It is worth mentioning that travel time and speed experiences are calculated as the 

arithmetic mean of all previous experiences. The following formula demonstrates how average 

previous travel time is calculated. 

        
∑          

   
   

∑     
   
   

 

       
        is the average experienced travel time of person   on route   up till trial   

       if person   chooses route   at trial    and 0 otherwise 
     is the travel time experience by person   at trial   

Response Variable 

In total there were more than 2,000 choice observations. However, all observations with missing 

data were dropped. This included all trials where drivers were not aware of the travel time on the 

alternative route. Hence, for example, all observations of driver type I in C4R20 were not 

considered in the following models. Because categorizations that are based on fewer runs cannot be 

as accurate as those based on more runs, some C4R20-1 drivers were categorized under type I in 
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C4R10 and type I in C3R5, for example. As a result these two categories were not dropped from the 

data. A total of 1255 observations were included in all the following models. All numeric variables 

used in the presented models were standardized. This helps avoid singular values in calculations for 

matrix inversion, and helps prevent that the magnitude of one (or more) variables would over 

shadow other variable(s) and affect the solution. However, as mentioned in the previous model, one 

big advantage of normalizing numerical variables is to be able to deduce variable importance from 

comparison of estimated parameters. 

Table 7: Independent Variables of the Route Choice Switching Model  

Variables of Driver Type  

1 C4R20ic Type (as presented in Table 4) of driver i in choice situation c based on 20 trials  
1

*
, 2, 3, 

or 4 

2 C4R10ic Similar to C4R20, but categorization is based on only 10 trials  
1, 2, 3, or 

4 

3 C3R5ic 
Similar to C4R20, but categorization is based on only 5 trials, and patterns 3 and 4 

are combined into a single type. 
1, 2, or 3 

4 C5R5ic 
Five categories based on five trials. The categories are based on the number of 

switches driver i makes in the first 5 trials. 

1, 2, 3, 4, 

or 5 

5 C5R5Lic Similar to C5R5, but categorization is based on the last 5 trials 
1, 2, 3, 4, 

or 5 

6 
C#R#(L)-

Xic 

Indicator variable indicating whether person i belongs to driver type X in choice 

situation c, according the C#R#(L) category 
- 

Variables of Route Experience 

1 Trialt The route choice trial number of the participant 1 to 20 

2 Inertiait The number of successive identical choices participant i has made right before trial t  0 to 19 

3 PrefOOCit 
The ratio of the number of times (participant i has chosen the other route over the 

current chosen route) in all trials up till trial t 

0.06 to 

16.00 

4 TTOOCit 
The ratio of the average travel times (of the other route over the current chosen 

route) experienced by participant i up till trial t 

0.50 to 

1.99 

5 TTVOOCit 
The ratio of the travel time variances (of the other route over the current chosen 

route) experienced by participant i up till trial t 

0.05 to 

10.89 

5 TSOOCit 
The ratio of the average travel speeds (of the other route over the current chosen 

route) experienced by participant i up till trial t 

0.47 to 

1.97 

6 TSVOOCit 
The ratio of the travel speed variances (of the other route over the current chosen 

route) experienced by participant i up till trial t 

0.03 to 

13.92 
* 

all records of C4R20 driver-type I were dropped out due to missing data about the other route. Because categories of the other classification 

methods were based on less number of trials, they were not as accurate and some C4R20-1 drivers were classified into the equivalent driver-type 

of the other methods (example: C4R10-1 and C3R5-1). 

Model Structure 

The route choice model proposed here is a mixed effects generalized linear model with a logit 

link function. Similar to the driver type model: because each driver was asked to repeat his/her 

choice several times, one random parameter, the intercept, is estimated over all individuals 

instead of all observations. This takes into account the average dependence effects between 

observations of the same driver. The model has the following structure. 
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Model Results 

Table 8a presents the results of the estimated models. It is appealing that almost all the driver 

types were found to be highly significant. The only variables that were not found significant are 

the indicator variables of C4R10-2, C3R5-2 and C5R5-2. The probable reason these three 

variables did not turn out to be significant is that based on the first 10, 5, and 5 observations, 

respectively, some drivers belonging to C4R20-3 were mistakenly classified as types C4R10-1 

and C4R10-2, C3R5-1 and C3R5-2, and C5R5-1 and C5R5-2, respectively. This is further 

demonstrated by the negative sign of C4R10-2 which incorrectly implies that C4R10-2 driver are 

less aggressive then C4R10-1 drivers. 

It is very pleasing that all driver types of the C5R5L classification were found to be 

significant. As mentioned earlier this is especially pleasing because it signifies that this 

hierarchical model can be estimated by observing naturalistic driver choices in real lives. This 

finding can be interpreted as proof that driver types reflect an actual truth about inherent 

aggressiveness in driver personalities for route switching behavior. The fact that the values of the 

estimated parameters for the 5 driver type levels of C5R5L increased as the driver type level 

increased reflects that the probability of switching consistently increased as the driver type level 

increased.   

The signs of all variables seem logical. It is logical that an increase in inertia (consecutive 

identical choices), reflects an increase in route preference. Hence, implies a lower probability of 

switching; reflected by the negative sign of the estimated parameter. Similarly, a high percentage 

of choice for a certain route reflects a high route preference. Therefore, if a driver switches to an 

alternative route of a lower choice percentage, the probability that this driver will switch back to 

his/her initial preferred route should be high; reflected by the positive sign of the PrefOOC 

parameter. On the other hand, signs of TTOOC and TSOOC reflect that drivers prefer lower 

travel time and higher travel speed routes.   

One finding that needs to be stressed upon is the significance of previous experienced 

travel speeds. As mentioned in the introduction, travel time and travel distance have typically 

received the highest attention in route choice models. It is interesting that while travel distance 

was not found significant in any of these models, travel speed was found significant in all of 

them. Although travel speed has not received as much attention in the literature, its significance is 
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not a surprise since there is a significant number of models in the literature that incorporate 

variables that are related to travel speed, such as the number of signalized intersections. 

Last, there is strong evidence in the literature about the significance of travel time 

reliability in route choice models. A possible reason why neither travel time nor travel speed 

variances were significant in the estimated models may be explained by the minor differences in 

travel time and travel speed variances between the alternative routes. Differences between travel 

time variances of the alternative routes can be observed Table 3.  

Comparing model performances (presented in Table 8b) reveals that driver-type route 

choice models outperform the general model (which does not include driver-type variables). All 

deviance measures are lower than in the general model. However, the deviance measure does not 

penalize for reduced model parsimony. Two statistics that penalize for reduced model parsimony 

are considered: AIC and BIC. The AIC statistic, like the deviance measures indicates that all 

driver-type route choice models outperform the general model. However, the BIC statistic which 

penalizes for reduced model parsimony more than the AIC measure indicates that the C5R5 and 

the C5R5L models do not outperform the general model. Formulas of the Deviance, AIC and BIC 

statistics are presented below. The formulas demonstrate that while the AIC measure penalizes 

reduced model parsimony with an increase of two AIC units for every model parameter, the BIC 

measure penalizes reduced model parsimony with an increase of BIC units that equal the natural 

logarithm of the number of observations, for each model parameter. In the present case the 

natural logarithm of 1255 observations equals 7.13. Hence, in the present case, the BIC statistic 

penalization for reduced model parsimony is more than triple that of the AIC statistic. 

               (  ( )    ( )) 

                 

               ( )    

where, 
                         
                         
                                                                          
                                    
                                     

 

STUDY CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER RESEARCH 

While experiment reality and driver homogeneity are two limitations in route choice models, this 

work addresses both limitations. This work proposes a two-level hierarchical model as a 

modeling framework for incorporating driver heterogeneity in route choice models. This work is 

based on a real-life route choice experiment where a sample of 20 drivers, faced 5 choice 

situations, and made a total of more than 2,000 real-world choices. The first level of the 

hierarchical model used driver individual characteristics (demographic and personality traits) and 

characteristics of the choice situation to categorize drivers into driver types. A driver type is 

assumed to be a metaphoric measure of driver aggressiveness in route switching behavior, or 

alternatively a measure of the ease by which a driver gets bored of (or used to) a route. The 

second level of the hierarchical model uses the identified driver type and the experiences a driver 

faces in the previous trials to predict driver route choices.  
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Table 8a: Significant Variables of the Route Choice Model 

Significant 

Variables 

Route Choice Models Based on Different Driver Type Categorizations 

Without 

Driver Type 
C4R20 C4R10 C3R5 C5R5 C5R5L 

Beta p-value Beta p-value Beta p-value Beta p-value Beta p-value Beta p-value 

(Intercept) -1.779 < 2e-16 -3.610 < 2e-16 -2.787 0.000 -2.230 0.000 -2.352 0.000 -2.067 < 2e-16 

Inertia -1.149 0.000 -0.911 0.000 -1.003 0.000 -1.090 0.000 -1.093 0.000 -1.058 0.000 

PrefOOC 0.374 0.000 0.325 0.000 0.375 0.000 0.425 0.000 0.443 0.000 0.366 0.000 

TTOOC -0.342 0.000 -0.307 0.000 -0.331 0.000 -0.330 0.000 -0.313 0.000 -0.301 0.001 

TSOOC 0.159 0.040 0.204 0.010 0.201 0.010 0.171 0.028 0.183 0.018 0.155 0.047 

C4R20-3 - 2.068 0.000 - - - - 

C4R20-4 - 2.832 0.000 - - - - 

C4R10-2 - - -0.429 n/s - - - 

C4R10-3 - - 1.366 0.086 - - - 

C4R10-4 - - 1.733 0.030 - - - 

C3R5-2 - - - 0.036 n/s - - 

C3R5-3 - - - 0.861 0.006 - - 

C5R5-2 - - - - 0.077 n/s - 

C5R5-3 - - - - 0.619 0.053 - 

C5R5-4 - - - - 1.189 0.000 - 

C5R5-5 - - - - 1.512 0.001 - 

C5R5L-2 - - - - - 0.525 0.047 

C5R5L-3 - - - - - 0.871 0.000 

C5R5L-4 - - - - - 1.126 0.000 

C5R5L-5 - - - - - 1.376 0.018 

      

Table 8b: Performance of the Route Choice Models 

Variables General C4R20 C4R10 C3R5 C5R5 C5R5L 

Deviance 1100 1042* 1057* 1077* 1076* 1078* 

AIC 1112 1058* 1075* 1093* 1096* 1098* 

BIC 1143 1100* 1122* 1134* 1147 1149 
* 

Driver type model performs better than the general model 

 

Based on observing the trends of evolution of driver choices over a specific number of 

trials, a number of evolution trends were identified. Drivers belonging to each of the identified 

evolution trends were branded as drivers of a certain type. This defines a certain classification 

method. Observing the evolution of the driver choices over a different number of trials resulted in 

identifying different trends and in drivers being classified into different groups; hence, defining a 

different classification method. In this article, five different classification methods were defined 

and used. It was found possible to predict the identified driver types of all five classification 
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methods based on driver and choice situation characteristics. It was found that drivers with white 

ethnicities and drivers with lower levels of education exhibit a more aggressive route switching 

behavior. Similarly, increased levels of neuroticism, extraversion, and conscientiousness 

increased the probability of exhibiting a more aggressive route switching behavior. On the other 

hand, drivers who drive more miles per year, drivers with higher levels of agreeableness, and 

drivers with higher levels of openness to experiences exhibited lower tendencies to 

aggressiveness in route switching behavior. In addition, an increased difference between the 

mean travel times or travel speeds of the alternative routes decreased the probability of exhibiting 

an aggressive route switching behavior. 

In the second level of the hierarchical model the identified driver types were used along 

with the drivers’ previous travel experiences to predict route choices. The identified categories 

were found to be highly significant in route choice predictions (along with inertia, route 

preference, average experienced travel time, and average experienced travel speed). The models 

that included driver category were characterized with a better data fit than the general model that 

did not include driver type variables; even with the AIC performance measure which penalizes 

for decreased model parsimony. 

In conclusion, the proposed hierarchical two-level framework for incorporating driver 

heterogeneity seems to be promising, and successful replications of this work could be very 

beneficial for the future modeling of driver heterogeneity in route choice models. A number of 

further research directions include: identifying other measures of driver heterogeneity; comparing 

the predictive rather than the descriptive abilities of the models; incorporating the effect of driver 

heterogeneity on the compliance rates to information; examining if the same results could be 

replicated in a travel or a driving simulator; and exploring whether the identified driver-types 

represent latent driver classes. 
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ABSTRACT 

This paper presents a route choice model of latent class heterogeneous drivers that is based on a 

real-world experiment. In previous publications the authors had presented findings about driver 

personal differences in route switching aggressiveness. These differences were described by 

“driver types”, which is a term developed by the authors to reflect aggressiveness in route 

switching behavior. Driver types were found predictable from driver demographics and 

personality traits, as well as choice situation characteristics. In addition, the identified driver 

types were found significant in predicting route choice behavior. Instead of a hierarchical model 

that models driver type on one level then uses the identified driver type to model route choice at a 

second level, this paper estimates both models simultaneously. In the estimated latent class choice 

models, the latent classes represent the driver types and the choice model is the route switching 

behavior. The models developed in this paper are based on a sample of 20 drivers who made 

more than 2,000 real world route choices. The results of the developed models indicate that: 

1) driver classes exist and seem to be very similar to the driver-types identified in the earlier 

publications, 2) latent driver classes depend on driver demographics, personality traits and choice 

situation characteristics, 3) different driver classes follow different route choice criteria, and 

4) incorporating driver types or latent classes improves route choice model performance, but 

latent class models perform better than hierarchical driver-type models. 
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INTRODUCTION 

In order the increase the efficiency of our transportation systems, it is important to improve our 

understanding and prediction of human travel behavior. This article presents example work for 

improving our understanding and prediction of route choice behavior via the incorporation of 

variables of driver heterogeneity.  

Driver heterogeneity is a limitation that has been repeatedly cited in route choice literature 

[1]. Example citations include: “it is desirable to develop a model which is disaggregated by a 

type of driver because the route choice behavior varies by individual” [2], “Drivers do not 

become homogeneous and rational, as equilibrium analyses presuppose; rather, there are fewer 

rational drivers even after a long process of learning, and heterogeneous drivers make up the 

system” [3], “studies that focus only on a rather rational description of day-to-day learning cover 

only a limited part of the way route choices are made over time” [4], and “The first [challenge 

facing route choice research] is to understand the underlying behavioral patterns exhibited in 

individual preferences” [5]. 

In general, the body of literature on travel behavior research has, until recently, been 

largely neglecting differences in human personality. Although personality differences like 

personal characteristics [6], attitude [7], and cognitive abilities [8] have often been cited in travel 

behavior research, quantifying their effect in general models of travel behavior has been 

challenging. Accordingly, almost all route choice and network assignment models that are used in 

practice do not incorporate these factors. More recent examples of personality differences that are 

incorporated in travel behavior literature include: personal traits in safety research  [9, 10], 

lifestyle in household location choice models [11, 12], driver type in traffic gap acceptance 

models [13], and driver type in route choice models [14-19]. 

This work comes as an extension to the driver-type-based route choice models mentioned 

above [14-19]. In earlier publications, based on two separate route choice experiments with two 

different experiment mediums, the authors identified four types of drivers. One of the 

experiments was based on a driving simulator, and the other was an in situ experiment in real-

world conditions. Within the context of this work, driver type is used as a metaphoric expression 

to reflect driver aggressive tendencies in route switching behavior. The four identified driver 

types were found predictable from driver demographics, personality traits, and were found to be 

significant in route choice models. In an earlier article, the authors developed a two-stage 

hierarchical model, where the first stage predicted the driver-type, and the second stage used the 

predicted driver type to model driver route choice behavior. Driver types were incorporated in the 

route choice models via two alternative methods [14, 19]. 

In the first method, driver types were included in the route switching models as additional 

indicator variables. Higher driver types increased the probability of route switching  [14, 19]. In 

the second method, separate route switching models were estimated for each driver type [19]. 

Different variables were found significant in the driver-type-specific route switching models [19]. 

This indicated the possibility of existing latent driver classes. 

One of the limitations of using driver types and the hierarchical model presented in the 

earlier work is that the researcher has to use personal judgment to classify drivers into a specific 

number of driver types and according to specific classification criteria. However, there is no 

guarantee that the chosen number of driver-types and classification criteria are optimum for 

explaining the modeled response. To address this limitation, latent class choice models are 

estimated in this paper. 
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It is interesting and probably beneficial to notice the developing similarity between route 

choice and household location choice literature. A recent publication provides a good review of 

the history of household location choice models [11]. Apparently, similar to the modeling 

framework proposed by the authors in the hierarchical model, when household choice location 

models first moved to incorporate individual heterogeneity, it, too, was based on two stage 

models. Today, however, both stages can be modeled simultaneously. This is interesting because 

it appears that the authors have been following the same historical path. 

In the following sections, the authors present the objectives of the study, followed by an 

explanation of the study approach: study description, network and questionnaires. In the third 

section, the authors present and discuss the results of estimating hierarchical and latent class route 

choice models, and in the fourth section the paper ends with conclusions of the study and 

recommendations for further research. 

STUDY OBJECTIVES 

The main objectives of this study are to: (a) investigate the existence and the number of latent 

driver classes that can improve route choice predications, (b) identify variables that are 

significant in defining these latent classes, and (c) evaluate and compare the performance of 

hierarchical and latent class route choice models. 

STUDY APPROACH 

Study Description 

Twenty participants were selected to participate in this study. Each participant was asked to 

complete 20 experiment runs during regular school days of the academic Spring semester of the 

year 2011. Experiment runs were scheduled only during one of three traffic peak hours: morning 

(7-8 am), noon (12-1 pm), and evening (5-6 pm). During each experiment run, participants were 

asked to drive research vehicles on the road network of the New River Valley. Participants were 

given 5 Google Map print outs. Each map representing one trip: one point of origin, one point of 

destination, and two alternative routes. All participants were given identical maps and were asked 

to make the same 5 trips. On each experiment run, participants were asked to make these five 

trips assuming that the provided alternative routes were the only routes available between the 

points of origin and destination. The trips and the alternative routes were selected to ensure 

differences in the 5 choice situations (Table 1). All driver choices as well as the travel conditions 

were recorded via a GPS unit placed on board of the vehicle and a research escort that always 

accompanied the participants. Participants were instructed to behave in the same manner they 

behave in the real life. After completion of the 20 trials, participants were asked to complete a 

post-task questionnaire. 

It should be noted that in this experiment, each trip represented a choice situation for the 

participants. Hence, in many occasions in this paper the terms “trips” and “choices” refer to the 

same thing and are used exchangeably. Similarly, “experiment runs” and “experiment trials” are 

also used exchangeably. 

Network 

Table 1 demonstrates the origin, destination, and alternative routes specific to each of the five 

trips. It also shows a brief description of each of the routes. More information about the routes 

can be seen in Figure 1 and are provided in Table 2. Figure 1 shows a map depicting all five 

points of trip origins and destinations as well as the ten alternative routes provided. 
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Table 1: Description of the Five Trips 

Trip 

# 

Trip 

Origin 

Trip 

Destination 

Alternative Routes Route Description 

(and speed limits) Route # Route Name 

1 
Point 1 

(VTTI) 

Point 2 

(Walmart) 

Route 1 US460 Business Mostly a high speed (65 mph) freeway  

Route 2 US460 Bypass High speed (45 mph) urban highway   

2 
Point 2 

(Walmart) 

Point 3 

(Foodlion1) 

Route 3 Merrimac 
Mostly a shorter, low speed (30 mph) back road 

with a lot of curves 

Route 4 Peppers Ferry 
Mostly a longer, high speed (55 mph) rural 

highway 

3 
Point 3 

(Foodlion1) 

Point 4 

(Foodlion2) 

Route 5 US460 Bypass 
A longer high speed (65 mph) freeway followed 

by a low speed (25 mph) urban road 

Route 6 N.Main A shorter urban route (40 and 35 mph) 

4 
Point 4 

(Foodlion2) 

Point 5 

(Stadium) 

Route 7 Toms Creek 
A short urban route that passes through campus 

(25 and 35 mph) 

Route 8 US460 Bypass 
Primarily a long high speed (65 mph) freeway and 

low speed (25 mph) urban roads 

5 
Point 5 

(Stadium) 

Point 1 

(VTTI) 

Route 9 S.Main 
A long urban road that passes through town (35 

mph) 

Route 10 Ramble 
A short unpopular low speed (25 and 35 mph) 

back road that passes by a small airport. 

Pre-task Questionnaire 

The pre-task questionnaire collected information about the participants’ demographics (age, 

gender, ethnicity, education level, etc.) and driving experiences (number of driving years, annual 

driven miles, etc.). 

Post-task Questionnaire 

The post-task questionnaire was divided into two sections. The first section collected information 

about the participants’ perceptions of the traffic conditions on the alternative routes (distance, 

travel time, travel speed, and traffic level), as well as the participants preference levels of the 

routes. In the second section the participants were asked to fill in a personality inventory, the 

NEO Personality Inventory-Revised [20]. This is a psychological personality inventory that is 

based on the Five Factor Model. It measures five personality traits: neuroticism extraversion, 

openness to experience, agreeableness, and conscientiousness. In addition, each personality trait 

measures six subordinate dimensions (sometimes referred to as facets).  

Neuroticism measures the tendency of a person to experience negative emotions such as 

anxiety, guilt, frustration, and depression. Persons who score high on neuroticism are usually 

self-conscious, and are associated with low self-esteem and irrational thinking. The six 

subordinate dimensions of neuroticism are: anxiety, hostility, depression, self-consciousness, 

impulsiveness, and vulnerability to stress. Extraversion measures the tendency towards positive 

emotionality. The six subordinate dimensions of extraversion are: warmth, gregariousness, 
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assertiveness, activity, excitement seeking, and positive emotion. Openness to Experiences 

measures the imaginative tendency of individuals, their attentiveness to inner emotions, and their 

sensitiveness towards art and beauty. The six subordinate dimensions of openness to experience 

are: fantasy, aesthetics, feelings, actions, ideas, and values. Agreeableness measures the more 

humane aspects of the personality. The six subordinate dimensions of agreeableness are: trust, 

straightforwardness, altruism, compliance, modesty, and tendermindedness. Last, 

Conscientiousness measures personality tendencies towards being diligence, thoroughness and 

being governed by conscience. The six subordinate dimensions of conscientiousness are: 

competence, order, dutifulness, achievement striving, self-discipline, and deliberation. For further 

details about these personality traits, or about the Five Factor Model or the NEO Personality 

traits, the reader is referred to Wikipedia for general information, and to other publications for 

thorough theoretical discussions  [20-22] 

 

Figure 1: Map of the Experiment Network (Source: Google Maps)  
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RESULTS AND ANALYSIS 

This sections starts by presenting the four driver types that were identified in the earlier 

publications. Then, a hierarchical model with driver-type-specific route choice models is 

estimated. Next, the authors present a short description of the latent models used, and the 

estimated latent class models are presented and discussed. 

Driver Type 

In two recent studies, four different types of drivers were identified, based on the evolution trends 

of their learning which is reflected by their choices [18]. Metaphorically, these types are taken to 

represent a level of aggressiveness in route switching behavior, or alternatively a level of route 

preference. The four types are presented in Table 3. These four driver types were observed in a 

driving simulator experiment and in a real-world experiment [14, 19]. It was found that the 

identified types were a function of both driver characteristics (demographics and personality 

traits) as well as choice situation characteristics [14] and are significant in route switching 

predications. The reader is strongly advised to recognize these four driver types because they are 

repeatedly referenced throughout this article. The following section presents a hierarchical route 

choice model that is based on these four types.  

Hierarchical Model 

Table 4 presents the results of an ordered multinomial generalized linear model with a logit link 

function. This model predicts the probability that a driver i will exhibit a driver type m at choice 

situation c. This presents the first stage in a hierarchical 2-stage model. For more discussion of 

this model, the reader is referred to an earlier publication [16]. However, these results are 

included in this article to be compared with the results of the latent class model which is 

presented in a following section. 

 

Table 2: Characteristics of the Alternative Routes Per Trip 

Trip 

# 

Route 

# 

Distance 

(km) 

Avg. 

Travel 

Time 

(min) 

Avg. 

Travel 

Speed 

(kph) 

Number of Intersections 
Number 

of Left 

Turns 

Number 

of 

Merges 

and 

Diverges 

Number of 

Horizontal 

Curves Signalized Unsignalized 

1 
1 5.1* 8.5 36.4 10 3* 3* 1* 2* 

2 6.0 8.4* 43.3* 5* 4 4 5 3 

2 
3 11.1* 15.2* 42.6 5 2 3 1* 30 

4 17.4 16.7 63.2* 2* 2 2* 2 11* 

3 
5 5.8 7.7* 44.5* 5* 3 3 2 2 

6 5.5* 9.3 37.8 8 3 2* 1* 2 

4 
7 5.0* 10.2 29.5 5* 3 4 1* 0* 

8 7.7 9.6* 48.2* 6 2* 2* 4 1 

5 
9 5.8 10.5 33.3 8 4 4 1* 1* 

10 4.7* 8.0* 34.0* 3* 1* 3* 2 6 

*
 Better route 
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Table 3: Four Identified Driver Types Based on Learning and Choice Evolution 

Driver 

Type 
Typical Behavior Type Description 

I 

C4R20-1 

 

A driver starts by arbitrarily picking a route, is 

apparently satisfied with the experience, and 

continues making the same choice for the entire 20 

trials. 

II 

C4R20-2 

 

A driver starts by arbitrarily picking a route, is 

apparently not satisfied with the experience, tries the 

other route, and decides that the first route was better. 

The driver makes a choice after trying both routes 

and does not change afterwards. 

III 

C4R20-3 

 

A driver switches between the two alternative routes 

till the end of the experiment. The driver, however, 

drives on route 1 much more than s/her drives on 

route 0. This reflects his/her preference for route 1. 

IV 

C4R20-4 

 

A driver switches between the two alternative routes 

during the entire time of the experiment. The driver 

drives both routes with approximately equal 

percentages. This reflects the lack of preference 

towards any of the alternatives. 

 

Once driver types are inferred from the 1
st
 stage of the hierarchical model, the modeler 

has two options for using the identified driver types in the 2
nd

 stage of the hierarchical model, the 

route choice model. The first option would be to add the driver type as an additional indicator 

variable in the general route choice model, as presented by the third column of Table 5a. The 

second option would be to use a different route choice model for each driver type, as indicated by 

columns 4, 5 and 6 of Table 5a. Table 5b presents four performance measures for the estimated 

models: log-likelihood, deviance, AIC and BIC. It can be seen that adding driver type covariate 

improves model performance, which can be deduced from comparing columns 2 and 3 of Table 

5b. Unfortunately, the same comparison cannot be applied to the driver type specific choice 

models; due to the difference in number of observations. 

It should be noted that all numeric variables were standardized, in order to be able to 

compare variable importance in the estimated models based on values of the estimated 
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parameters. Description of the variables explored in the hierarchical model are presented in Table 

6, where Table 6a presents the variables explored in the driver type model (1
st
 stage) and Table 

6b presents the variables explored in the route choice model (2
nd

 stage). 

Unlike earlier publications, the independent variables used in the hierarchical route choice 

model presented here are based on differences in experienced travel conditions. They are not 

based on ratios of experienced travel conditions, which is what was done in the earlier 

publications. The reason the route choice model presented here is based on differences rather than 

ratios, is to allow for comparability between the estimated hierarchical choice models and the 

latent class choice models. The estimated latent class choice models are based on the Random 

Utility Model, where each choice alternative is characterized with a utility function. As can be 

seen from the following derivation, probability calculations are based on differences and not 

ratios. 

The probability of choosing action a over action b equals, 

  (   )    (     ) 
   (           ) 
   (           ) 
   (   ) 
    ( ) 

     , 

                                       
       

   
        

                        (          )                                 

   
     

                 (             )                                 

  
                                 

                                            
                         
                           
                                             

One of the limitations of the hierarchical model is that the researcher has to decide on the 

classification method for driver types based on personal judgment. There is no guarantee that the 

researcher’s chosen classification method guarantees a better performance over a route choice 

model that does not include driver types. Furthermore, even if the classification method was 

found to improve model performance, there is no guarantee that it is the best classification 

method. The authors had elaborated on this in an earlier publication, where they classified drivers 

into driver types based on different classification criteria. In the earlier publication, performance 

of the C4R20 classification produced the best results. Therefore, it is the method the authors 

chose to include in the current work [16]. 

This limitation does not exist in latent class choice models. The following section explains 

the framework of latent class choice models. 
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Table 4: Significant Variables of the 1
st
 Stage of the Hierarchical Model 

(C4R20 Driver Type Model) 

Significant Variables Beta p-value 

Intercept -2.362 0.117 

EthnicityW 3.729 0.021 

EducationNG 1.701 0.052 

DrMiles -0.723 0.087 

E 1.186 0.022 

A -1.175 0.025 

C 0.715 0.099 

dTT -0.798 0.041 

dTS -1.022 0.030 

dCurves -0.405 0.060 

   1.215 0.000 

   4.314 0.000 
 

Table 5a: Significant Variables of the 2
nd

 Stage of the Hierarchical Model 

Based on Different Route Switching Models of the C4R20 Driver Type Classification 

Significant 

Variables 

Route Choice 

Model Without 

Categories 

With C4R20 

driver types 

as indicator 

variables 

Route Choice 

Model for 

C4R20-2 

Drivers Only 

Route Choice 

Model for 

C4R20-3 

Drivers Only 

Route Choice 

Model for 

C4R20-4 

Drivers Only 

Beta p-value Beta p-value Beta p-value Beta p-value Beta p-value 

Intercept -2.26 < 2e-16 -3.93 < 2e-16 -10.904 0.019 -1.95 < 2e-16 -0.25 0.270 

InertiaC -0.98 0.000 -0.85 0.000 -9.965 0.044 -0.77 0.002 n/s 

PrefOMC 0.63 0.000 0.50 0.000 n/s 0.47 0.001 0.31 0.083 

TTOMC -0.31 0.000 -0.32 0.000 n/s -0.55 0.000 n/s 

TSOMC 0.19 0.017 0.23 0.005 n/s 0.41 0.001 n/s 

C4R203 
- 

1.96 0.000 
- - - 

C4R204 2.64 0.000 

* ‘n/s’ means not significant and ‘-‘ means not applicable
 

Table 5b: Model Performance of the 2
nd

 Stage of the Hierarchical Model 

Based on Different Route Switching Models of the C4R20 Driver Type Classification 

Performance 

Measures 
General C4R20 C4R20-2 C4R20-3 C4R20-4 

Log-Likelih. -523.5 -501.1 -15.77 -273.1 -201.3 

Deviance 1047 1002 31.53 546.2 402.6 

AIC 1059 1018 37.53 558.2 408.6 

BIC 1090 1059 48.49 584.8 419.6 
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Table 6a: Independent Variables of Driver Type Model  

# 
Variable 

Name 
Variable Description 

Variable 

Values 

Variables of Driver Demographics 

1 Agei Age of participant i 18 to 68 

2 Genderi Gender of participant i M or F* 

3 Ethnicityi Ethnicity of participant i W or NW* 

4 Educationi Education level of participant i G or NG* 

6 Dr Milesi Annual number of miles participant i drives (in thousands) 2 to 35 

7 Residencyi Number of years participant i has been residing in the area 1 to 56 

Variables of Driver Personality Traits 

1 Ni Neuroticism of participant i 7 to 30 

2 Ei Extraversion of participant i 19 to 43 

3 Oi Openness to experience of participant i 20 to 31 

4 Ai Agreeableness of participant i 22 to 42 

5 Ci Conscientiousness of participant i 26 to 47 

Variables of Choice Situation 

1 dTTic Percentage difference in mean travel time between the alternatives of choice c 2.8 to 24.5 

2 dTDc Percentage difference in distance between the alternative routes of choice c 5.7 to 44.8 

3 dTSic Percentage difference in mean travel speed between the alternatives of choice c 2.1 to 48.1 

4 dLinksc Percentage difference in number of links between the two alternatives of choice c 0.0 to 54.5 

5 dSigc 
Percentage difference in number of signalized intersections between the two 

alternative routes of choice c 

18.2 to 

90.9 

6 dUnsigc 
Percentage difference in number of unsignalized intersections between the two 

alternative routes of choice c 

0.0 to 

120.0 

7 dTurnsc 
Percentage difference in number of uncontrolled intersections between the two 

alternative routes of choice c 

66.7 to 

133.3 

8 dLeftsc 
Percentage difference in number of left turns between the two alternatives of 

choice c 

28.6 to 

66.7 

9 dCurvesc Percentage difference in number of curves between two alternatives of choice c 0.0 to 200.0 

Variables of Driver-Choice Combination 

1 AvgFamic Average familiarity of driver i with the two routes of choice c 1 to 5 

2 MaxFamic Maximum familiarity of driver i with the two routes of choice c 1 to 5 

3 dFamPrcic Percentage difference of the familiarity of driver i with the two routes of choice c 0.0 to 133.3 

* 
M: male, F: female, W: white, NW: non-white, NG: no post-graduate degree, G: have a post-graduate degree 
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Table 6b: Independent Variables of the Route Choice Switching Model  

Variables of Driver Type  

1 C4R20ic Type (as presented in Table 4) of driver i in choice situation c based on 20 trials  
1

*
, 2, 3, 

or 4 

2 
C#R#(L)-

Xic 

Indicator variable indicating whether person i belongs to driver type X in choice 

situation c, according the C#R#(L) category 
- 

Variables of Route Experience 

1 Trialt The route choice trial number of the participant 1 to 20 

2 Inertiait The number of successive identical choices participant i has made right before trial t  0 to 19 

3 PrefOMCit 
The difference between the number of times (participant i has chosen the other route 

minus the current chosen route) in all trials up till trial t 

0.06 to 

16.00 

4 TTOMCit 
The difference between the average travel times (of the other route minus the current 

chosen route) experienced by participant i up till trial t 

0.50 to 

1.99 

5 TTVOMCit 
The difference between the travel time variances (of the other route minus the 

current chosen route) experienced by participant i up till trial t 

0.05 to 

10.89 

5 TSOMCit 
The difference between the average travel speeds (of the other route minus the 

current chosen route) experienced by participant i up till trial t 

0.47 to 

1.97 

6 TSVOMCit 
The difference between the travel speed variances (of the other route minus the 

current chosen route) experienced by participant i up till trial t 

0.03 to 

13.92 
* 

all records of C4R20 driver type 1 were dropped out due to missing data about the other route. 

Framework of the Latent Class Choice Model  

Figure 2 presents a flowchart of the latent class choice model framework. The latent class choice 

model is based on the assumption that drivers inherently belong to a number of different classes 

(driver types) and that these different driver classes make choices according to different 

functions. A possible example would be that some drivers belonging to a specific class choose 

routes that have lower travel times, and that another group of drivers (another class) choose 

routes that have shorter travel distances. Hence, a latent class model estimates class-specific 

choice functions.  

The biggest advantage of the latent class choice model over the hierarchical model is that 

the modeler does not need to make assumptions about the underlying driver types. Latent class 

models simultaneously estimate class membership functions and class-specific choice functions. 

It simultaneously breaks down drivers into classes and estimates the class-specific choice 

functions in the manner that maximizes model performance. 

Class membership functions estimate the probability that a certain driver i belongs to a 

certain class s (Pis), where the total number of classes equals S. Then, class specific choice 

functions estimate the probability that a driver belonging to a certain class s, faced with choice 

situation c, would choose action a (Psca). Finally the probability that driver i faced with choice 

situation c chooses action a equals an average of the probabilities of all the classes to make 

choice a weighted by the probabilities that driver i belongs to each of the classes, i.e. sum of the 

probability that driver i belongs to each class multiplied by the probability that a driver from this 

class makes choice a, as presented by the following equation. This is demonstrated further in the 

following section of the latent class choice models. 

     ∑(        )
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Figure 2: Flowchart of Latent Class Model Framework  

 

One of the limitations of latent class choice models is that the researcher has to decide on 

the number of latent classes. The model cannot determine the number of latent classes (driver 

types) automatically. This limitation is addressed via systematic estimation of latent class choice 

models based on different numbers of classes and choosing the model that performs best. This 

approach requires a performance statistic that penalizes for decreased model parsimony. The 

statistic chosen in this work is the rho-bar. 

Table 7 presents the rho-bar values of three estimated models: one model with no latent 

classes (i.e. all drivers belong to 1 class), one model with 2 latent classes and one model with 3 

latent classes. According the rho-bar statistic, the model with 3 latent classes performs best. It 
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should be noted that the data used for these models does not include drivers who did not 

experience traveling on both alternative routes (i.e. C4R20-1 drivers are not included in this 

analysis), due to missing data (experiences) on the alternative route. This is identical to the 

analysis of the hierarchical model presented earlier in this article. 

The reason that the log-likelihood statistic of the model without latent classes is lower 

than the corresponding statistic of the general model presented in Table 5b is the added variables 

of driver demographics and personality traits, as can be seen in Table 9. As expected, due to the 

earlier explained limitations of the hierarchical model which are addressed by the latent class 

choice model, the log-likelihood statistics of the latent class choice model with 3 latent driver 

classes is lower than the corresponding statistic of the hierarchical model. A discussion of the 

estimated models and their significant variables is presented in the following section. 

Table 7: Performance Measures of the Latent Class Choice Models 

 
Without 

Latent Classes 

With 2 

Latent Classes 

With 3 

Latent Classes 

Number of Estimated Parameters 14 13 16 

Log-Likelihood -513.7 -506.5 -487.9 

Rho-bar 0.369 0.379 0.397 

 

Latent Class Models 

Probabilities of class membership functions and class-specific choice functions are multinomial 

logit models. This section presents the latent class models estimated for models with: a) no latent 

classes – 1 class, b) 2 latent classes, and c) 3 latent classes.  

The investigated variables are the same variables presented in Tables 6a and 6b. However, 

due to notation difference, the explored variables are re-presented in Table 8. The significant 

variables of the three estimated latent choice models are presented in Table 9. Model 

formulations are presented in the following sections, where models estimations were done with 

the Biogeme2.1 software package [23, 24]. 

Model without Latent Classes (1 Class) 

This model is based on the assumption that all drivers belong to 1 latent class. The probability 

that driver i makes action a (not switch=0, or switch=1) at trial t is based on the multinomial logit 

framework where the probabilities and utilities of the two possible actions are as follows. 

     
      

        
 

      

           ( 
   )

     

           ( 
   )

   (   )      

(      )
  

 represents all route experience variables (inertia, preference, travel time, 

travel time variance, travel speed, and travel speed variance) on the current or other route. 

(   )    represents all variables of non-route experience variables (demographics, 

personality traits, choice situation, and driver-choice combination variables). 
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Table 8: Description of Latent Class Choice Model Variables 

# 
Variable 

Name 
Variable Description 

Variable 

Values 

Variables of Route Experience (   )   

1 ASCa Alternative Specific Constant for Action a (0: no switching, 1: switching) - 

Variables of Route Experience 

1 Inertiait The number of successive identical choices participant i has made right before trial t  0 to 19 

2 Prefit The number of times participant i has chosen a route minus  0.06 to 16.00 

3 TTit The average travel time experienced by participant i on a route up till trial t 0.50 to 1.99 

4 TTVit The travel time variance experienced by participant i on a route up till trial t 0.05 to 10.89 

5 TSit The average travel speed experienced by participant i on a route up till trial t 0.47 to 1.97 

6 TSVit The travel speed variance experienced by participant i on a route up till trial t 0.03 to 13.92 

7 [Var]Subscript The subscript after the route experience variables refer to current, C, or other, O, route C or O 

Variables of Non-Route Experience(   )    

1 CSC Class Specific Constant - 

Variables of Driver Demographics 

1 Agei Age of participant i 18 to 68 

2 Genderi Gender of participant i M or F* 

3 Ethnicityi Ethnicity of participant i W or NW* 

4 Educationi Education level of participant i G or NG* 

6 Dr Milesi Annual number of miles participant i drives (in thousands) 2 to 35 

7 Residencyi Number of years participant i has been residing in the area 1 to 56 

Variables of Driver Personality Traits 

1 Ni Neuroticism of participant i 7 to 30 

2 Ei Extraversion of participant i 19 to 43 

3 Oi Openness to experience of participant i 20 to 31 

4 Ai Agreeableness of participant i 22 to 42 

5 Ci Conscientiousness of participant i 26 to 47 

Variables of Choice Situation** 

1 dTTTpic Percentage difference in mean travel time between the alternatives of choice c 2.8 to 24.5 

2 dDistPrcc Percentage difference in distance between the alternative routes of choice c 5.7 to 44.8 

3 dSpdPrcc Percentage difference in mean travel speed between the alternatives of choice c 2.1 to 48.1 

4 dLinksPrcc Percentage difference in number of links between the two alternatives of choice c 0.0 to 54.5 

5 dSigPrcc 
Percentage difference in number of signalized intersections between the two alternative 

routes of choice c 
18.2 to 90.9 

8 dLeftsPrcc Percentage difference in number of left turns between the two alternatives of choice c 28.6 to 66.7 

9 dCurvPrcc Percentage difference in number of curves between two alternatives of choice c 0.0 to 200.0 

Variables of Driver-Choice Combination 

1 AvgFamic Average familiarity of driver i with the two routes of choice c 1 to 5 

 

Checking the estimated model which is presented in columns 2 and 3 of Table 9 demonstrates 

that route utility increases with the increase in inertia, preference and travel speed, and with the 

decrease in travel time. It also shows that drivers of white ethnicities exhibited more route 
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switching tendencies than others, and that undergraduate students and drivers who drove more 

miles per year exhibited less route switching tendencies. Finally, drivers characterized with 

higher levels of neuroticism, extraversion and conscientiousness exhibited more switching 

tendencies and drivers who are more agreeable exhibited lower switching tendencies. In general, 

all of these findings are in line with the findings of the hierarchical model published earlier [14, 

16]. 

Model with 2 Latent Classes 

This model is based on the assumption that there are 2 different types of drivers: 2 latent classes. 

As explained earlier, the probability that driver i makes action a (not switch=0, or switch=1) at 

trial t is based on the sum product of the class membership probabilities and the class-specific 

choice probabilities. The framework of both probabilities is the multinomial logit framework, 

where the probabilities and utilities of the two possible classes and the two possible actions are as 

follows. 

      ∑(         )
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Description of the variables is as explained earlier and in Table 8 

Checking the estimated model which is presented in columns 4 through 7 of Table 9 

demonstrates that there are two classes of drivers. While drivers of the first class make their route 

choices based on inertia, travel time, and travel speed, drivers of the second class are only driven 

by route preference (which is reflected by the number of times a certain route has been chosen). 

In general, the former class seems to reflect driver types C4R20-2 and C4R20-3 

combined, and the latter class seems to reflect driver type C4R20-4. However, a few drivers seem 

to have apparently been differently classified. In general, parameter estimates of the class 

membership functions seem to be in line with the parameters of the class type model presented in 

Table 4. It appears that drivers of white ethnicities have higher route switching tendencies. 

Similarly drivers characterized with high extraversion and high conscientiousness have higher 

route switching tendencies. On the other hand, drivers who drive more miles per year and drivers 

with high openness to experience and high agreeableness have lower route switching tendencies. 

The only parameter that is different from the driver type model presented in Table 4 is education. 

While, in the driver type models, drivers with graduate degrees were found to exhibit higher route 

switching behavior, the current model (and the 1 class model) estimate lower route switching 

tendencies for driver with graduate degrees. There are two possible explanations for this. The first 

explanation, which is supported by the findings of the next section, is that a few drivers might 

have been differently classified between C4R20-3 and C4R20-4, which is highly possible due to 

the difficulty in classifying the behavior of some drivers as C4R20-3 or C4R20-4. The second 
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explanation is that this difference is a result of combining driver types C4R20-2 and C4R20-3 in 

a single class. 

Model with 3 Latent Classes 

This model is based on the assumption that there are 3 different types of drivers: 3 latent classes. 

As explained earlier, the framework of both probabilities is the multinomial logit framework, 

where the probabilities and utilities of the two possible classes and the two possible actions are as 

follows. 
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Description of the variables is as explained earlier and in Table 8 

Table 9: Significant Variables of the Latent Class Choice Models 

Significant 

Variables 

Without 

Latent 

Classes 

With 2 Latent Classes With 3 Latent Classes 

Class 1 Class 2 Class 1 Class 2 Class 3 

Beta p-value Beta p-value Beta p-value Beta p-value Beta p-value Beta p-value 

CSC - - -1.69 0.67 0.00 - -22.60 0.01 9.96 0.02 

Ethnicity 1.98 0.00 - 4.46 0.01 -3.17 0.00 n/s n/s 

Education -0.82 0.00 - -4.55 0.00 0.74 0.06 n/s n/s 

DrMiles -0.04 0.00 - -0.39 0.00 n/s -0.22 0.00 n/s 

N 0.05 0.04 - n/s n/s n/s n/s 

E 0.15 0.00 - 0.99 0.00 n/s 0.35 0.00 n/s 

O n/s n/s - -0.37 0.06 -0.29 0.08 n/s -1.02 0.00 

A -0.10 0.01 - -0.65 0.00 n/s n/s n/s 

C 0.07 0.00 - 0.22 0.00 -0.08 0.01 n/s n/s 

dTTV 7.95 0.00 - n/s -5.09 0.02 n/s n/s 

dTSV 2.07 0.00 - n/s n/s n/s n/s 

ASCNSwitch 0.00 - 0.00 - n/s 0.00 - 0.00 - 0.00 - 

ASCSwitch -7.90 0.00 0.27 0.03 0.27 0.03 0.61 0.00 0.61 0.00 0.61 0.00 

BInertia 0.20 0.00 0.74 0.00 n/s 0.47 0.00 1.45 0.01 n/s 

BPref 1.41 0.00 n/s 2.83 0.00 n/s n/s 2.67 0.00 

BTT -0.20 0.00 -0.45 0.00 n/s n/s -1.16 0.00 n/s 

BTS 0.02 0.02 0.07 0.01 n/s n/s 0.12 0.06 n/s 
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The estimated model, which is presented in columns 8 through 13 of Table 9, 

demonstrates that there are three classes of drivers. The first class of drivers makes their route 

choices based on inertia only. The second class makes their choices based on inertia, travel time, 

and travel speed. The last class includes drivers who are driven by route preference only. It 

appears that these three classes represent driver types C4R20-2, C4R20-3, and C4R20-4, 

respectively. This observation is further evident by contrasting the estimated parameters of the 

class membership functions against those of the driver type model presented earlier. 

It appears that while drivers of white ethnicities are less likely to exhibit a type C4R20-2 

behavior, drivers with graduate degrees are more likely to exhibit a type C4R20-2 behavior. In 

addition drivers with high levels of openness to experience and conscientiousness are less likely 

to exhibit a type C4R20-2 behavior. Furthermore, as the difference between TTV of alternative 

routes increases, drivers become more inclined to follow a C4R20-2 behavior. For the second 

class, it appears the drivers who drive less miles per year and drivers with high levels of 

extraversion exhibit higher probabilities of following a C4R20-3 behavior. Last, drivers with high 

levels of agreeableness are less likely to exhibit a C4R20-4 behavior. In general, these findings 

seem to align with the earlier ones. 

STUDY CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER RESEARCH 

This work is based on a real-world route choice experiment where a sample of 20 drivers, faced 

with 5 choice situations, made a total of more than 2,000 real-world choices. This work is an 

extension on earlier publications that attempted to improve driver route choice models via 

incorporating measures of driver heterogeneity that are based on driver personal demographics 

and personality traits. These earlier publications identified four driver types that were observed in 

two different experiments: a driving simulator and a real-world route choice experiment. The 

identified driver types represent a metaphoric description of driver aggressiveness in route 

switching behavior. Using a two-stage hierarchical model, these identified driver types were 

found predictable from driver personal characteristics (demographics and personality traits) and 

choice situation characteristics. In addition the identified driver types were found significant in 

route choice predilections; either by including the driver types as additional indicator variables in 

a general model of route choice, or by estimating a separate route choice model for each driver 

type. 

One limitation of the hierarchical model is that the classification of drivers into driver 

types is based on the modeler judgment. In addition to having different alternative classification 

methods and different possible numbers of classified driver types, there is no guarantee that any 

of these classifications is best in explaining driver route switching behavior. Accordingly, this 

work presented latent class choice models, as an alternative modeling framework that overcomes 

this limitation. 

Latent class route choice models assume that drivers belong to a number of classes, where 

each class places different weights on different variables in making their route choices, i.e. each 

driver class has a class-specific choice model. The advantage of the presented latent class route 

choice models is that models of driver classes (types) and the class-specific choice models are 

estimated simultaneously, in a manner that maximizes route choice predictions. One limitation of 

this framework, however, is that it does not inherently determine the optimum number of classes. 

This limitation was overcome by estimating latent class choice models for different numbers of 

classes and comparing models performance. 

This work presented a hierarchical model that is based on the previously four identified 

driver types and presented three different latent class route choice models: one with no driver 
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classes, one with 2 driver classes, and one with three driver classes. The results of the work 

provide proof that drivers do not follow the same principles in making their route choices. All 

models that included driver classes performed better than models that assumed all drivers were 

homogeneous. Evidence of driver differences that are attributable to driver demographics and 

personality traits were observed in the estimated parameters of all models. In addition, results of 

all the estimated models were highly conformable. Finally, similar to the findings of the 

hierarchical model, the latent class choice model with three classes (not including drivers that had 

no experiences on the alternative route, i.e. C4R20-I drivers) performed better than the two other 

models. 

In conclusion, the proposed latent class route choice framework for incorporating driver 

heterogeneity seems to be promising, and successful replications of this work could be very 

beneficial for future modeling of driver heterogeneity in route choice models. A number of 

further research directions include: identifying other measures of driver heterogeneity; comparing 

the predictive rather than the descriptive abilities of the models; incorporating the effect of driver 

heterogeneity on the compliance rates to information; and examining if the same results could be 

replicated in a travel or a driving simulator. 
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ABSTRACT 

This work uses data from a naturalistic real-life experiment to explore factors of driver route 

choice heterogeneity that can be attributable to variables of driver demographics, personality 

traits, and route choice characteristics. In a number of recent publications, the authors were able 

to identify significant relations between these variables and route choice behavior; both in a 

driving simulator experiment and in a real-world route choice experiment. In this work the 

authors explore the effects of the same variables on driver route switching behavior and driver 

choice set size, in a naturalistic real-life experiment. This work is based on more than 5,750 route 

choices made by 39 drivers in 68 choice situations. Most trips were commute trips. The results of 

the developed models are in accordance with the earlier publications and present evidence that 

driver demographics, personality traits and choice situation characteristics are significant in 

predicting route switching behavior and choice set size. 
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INTRODUCTION 

Since world transportation systems are responsible for 14% of global greenhouse gas emissions 

(and 60% of carbon dioxide emissions in the US) [1] and the consumption of 50% of global oil 

production, and given the heightening criticality of the challenges of climate change and the 

peaking of oil, it is imperative to improve the efficiency of our transportation systems. This can 

be achieved via better understanding and modeling of human travel behavior. Since the 

introduction of the technologies of global position systems (GPS) and geographic information 

systems (GIS), research on travel behavior has been making continual progress. 

Route choice models represent the foundation of traffic assignment models. They are 

widely used in many transportation engineering applications. Examples include transportation 

planning, traffic management, and intelligent transportation systems. Literature of route choice 

models can be classified into two primary groups: network-oriented models, and driver- oriented 

ones. The former group is older and much more widely used in transportation engineering 

practice. These models assign traffic in a manner that optimizes a certain objective function at the 

network level. Examples of these models include deterministic and stochastic user equilibrium, 

system optimum, and dynamic traffic assignment. Detailed reviews of these models can be found 

in several publications [2-4]. However, because of the unrealistic assumptions of these models, 

primarily assumptions about human rationality and driver homogeneity, research has been 

shifting towards the latter group, driver-oriented models. Real-world GPS-based studies, in 

particular, have been repeatedly identifying discrepancies between actual human behavior and 

predictions of this group of models [5, 6].  

Driver-oriented models follow a wide variety of modeling classes. Random utility models 

(RUM) are probably the biggest class in this group [7]. Other examples of driver-oriented models 

include random regret minimization models [8], probabilistic models [9-11], cognitive-

psychology based models [12, 13], fuzzy models [14], and models based on data mining; 

sometimes referred to as user models [5, 6, 15, 16]. Driver-oriented models try to replicate actual 

driver behavior and incorporate a variety of variables to improve model explanation of driver 

behavior. Examples of these variables include personal characteristics [17], attitude [18], and 

cognitive abilities [19]; in addition to variables of driver travel experiences like travel distance, 

average travel time, and inertia. However, probably because of challenges of quantifying the 

effects of the former groups of variables, only variables of travel experience seem to be used in 

practice. As a result, driver heterogeneity remains to be a limitation that requires further attention 

in route choice models [2, 20-23]. 

Recent examples in travel behavior literature that attempted to incorporate variables of 

driver heterogeneity include: personal traits in safety research  [24, 25], lifestyle in household 

location choice models [26, 27], driver type in traffic gap acceptance models [28], and driver type 

in route choice models [9-11, 29-31]. Findings of these attempts indicate that incorporating 

factors of driver heterogeneity improves model performance. 

Similarly, this work attempts to explore the possibility of improving models of route 

choice behavior via incorporating variables that can reflect driver heterogeneity. This work is an 

extension of a series of articles that are based on three different experiment mediums. The first 

experiment is a driving simulator experiment [9, 30, 31], the second is an in situ experiment in 

real-world conditions [10, 11, 29, 32], and this experiment is based on a real-life naturalistic 

study.  

In the following sections, the authors present the objectives of the study, followed by an 

explanation of the study approach: study description, questionnaires and terminology used. In the 
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third section, the authors present and discuss the results of estimating the route switching and 

choice set size models, and in the fourth section the paper ends with conclusions of the study and 

recommendations for further research. 

STUDY OBJECTIVES 

The main objectives of this study are to investigate the effect of driver demographics and 

personality traits on route choice behavior and choice set size, in a naturalistic real-life 

experiment. 

STUDY APPROACH 

Study Description 

The data used in this work is from the 100-Car Naturalistic Driving Study. This study “is the first 

instrumented-vehicle study undertaken with the primary purpose of collecting large-scale, 

naturalistic driving data. Drivers were given no special instructions, no experimenter was present, 

and the data collection instrumentation was unobtrusive”. “There is every indication that the 

drivers rapidly disregarded the presence of the instrumentation”. “The data set includes 

approximately 2,000,000 vehicle miles, almost 43,000 hours of data, 241 primary and secondary 

drivers, 12 to 13 months of data collection for each vehicle, and data from a highly capable 

instrumentation system including 5 channels of video and many vehicle state and kinematic 

sensors” [25]. The experiment site was limited to the Washington DC / Northern Virginia area. 

However, other sites that are distributed over the continental US are planned for the following 

phase of the project. 

Although safety was the primary objective for this study, other attempts have been made 

to use the data for research in other areas of travel behavior. In addition, this work uses this data 

to identify factors affecting route switching and choice set size in the travel behavior area. 

Questionnaires 

Participants of this study were required to answer two groups of questions that are relevant to the 

presented work. In the first group, participants were asked questions about their general 

demographic and driving information, like age, gender, ethnicity, level of education, number of 

years driving, and number of miles driven per year. In the second group, participants were asked 

to fill in a personality inventory, the NEO-FFI-3[33]. This is a psychological personality 

inventory that is based on the Five Factor Model. It measures five personality traits: neuroticism 

extraversion, openness to experience, agreeableness, and conscientiousness. In addition, each 

personality trait measures six subordinate dimensions (sometimes referred to as facets). 

Neuroticism measures the tendency of a person to experience negative emotions such as 

anxiety, guilt, frustration, and depression. Persons who score high on neuroticism are usually 

self-conscious, and are associated with low self-esteem and irrational thinking. The six 

subordinate dimensions of neuroticism are: anxiety, hostility, depression, self-consciousness, 

impulsiveness, and vulnerability to stress. Extraversion measures the tendency towards positive 

emotionality. The six subordinate dimensions of extraversion are: warmth, gregariousness, 

assertiveness, activity, excitement seeking, and positive emotion. Openness to Experiences 

measures the imaginative tendency of individuals, their attentiveness to inner emotions, and their 

sensitiveness towards art and beauty. The six subordinate dimensions of openness to experience 

are: fantasy, aesthetics, feelings, actions, ideas, and values. Agreeableness measures the more 

humane aspects of the personality. The six subordinate dimensions of agreeableness are: trust, 
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straightforwardness, altruism, compliance, modesty, and tendermindedness. Last, 

Conscientiousness measures personality tendencies towards being diligence, thoroughness and 

being governed by conscience. The six subordinate dimensions of conscientiousness are: 

competence, order, dutifulness, achievement striving, self-discipline, and deliberation. For further 

details about these personality traits, or about the Five Factor Model or the NEO Personality 

traits, the reader is referred to Wikipedia for general information, and to other publications for 

thorough theoretical discussions  [34-36] 

Terminology 

In this article, a choice situation refers to a specific pair of origin and destination that are linked 

with a number of possible alternative routes. For example, going from home to work and going 

from work to home are considered two different choice situations. The main reason for splitting 

choice situation incidents by direction of travel (home to work versus work to home) is due to 

differences in the directional route choice sets as dictated by traffic management. Examples of 

traffic management schemes that would result in different choice sets include one way routes, 

freeway exists that do not include both an off-ramp and an on-ramp, and traffic lights with 

different directional delays. As long as dependencies between choice situations with common 

origins and destinations are taken into consideration, this should not be a concern. 

On the other hand, a trip refers to the act of choosing one of the alternative routes in a 

choice situation. For instance, for each choice situation considered in this work, there are many 

observed trips. The analysis presented in the following sections of this article is based on a 

sample of 39 drivers, 68 choice situations, and more than 5,750 trips. The average number of 

observed trips per choice situation is 85 trips, i.e. about four working months. 

RESULTS AND ANALYSIS 

This sections starts by defining the response variables modeled in this work. Then, the considered 

independent variables are presented. Last, the authors present and discuss the findings of the 

estimated models. 

Response Variables 

The two response variables modeled in this work are a route switching model and a model of the 

size of the choice set. All routes chosen by each driver in each choice situation were first 

identified. Then the route that was chosen most in each choice situation was defined as the 

driver’s preferred route. The definition of the first response, route choice, is the probability that 

the driver chooses a route other than that driver’s preferred route. Obviously, the probability of 

choosing the preferred route plus the probability of choosing an alternative route equals one. The 

second response, choice set size, is defined as the number of alternative routes observed for a 

certain driver in a specific choice situation. 

It should be noted that given the high overlap and dependency between alternative routes 

of a certain choice situation, different route classification methods could arise that would result in 

different choice set sizes. For the work presented here, two routes were considered different if 

they did not overlap for as little as 10% of the total route length. Contrarily, routes with less than 

a difference of 10% were considered as one route. While the choice of a 10% difference was 

somewhat arbitrary, further analysis is being considered using different thresholds. 

Obviously, some level of positive correlation exists between the two modeled response 

variables. This correlation can be demonstrated by two extreme examples. In the first example, if 
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the size of the choice set of a certain driver is composed of a single route (minimum), then the 

probability of choosing an alternative route is zero (minimum). On the other hand, as the size of 

the choice set increases, the probability of choosing an alternative route also increases; because 

the maximum probability of choosing the preferred route decreases. In this case the max 

probability of choosing the preferred route decreases and equals to the following 

                                            = 

 
                                                  

                              
 

This probability would be true in the case that the driver chooses each of the alternative 

routes for only a single time.  

The distributions of the two response variables are presented in Figures 1a and 1b. 

Although the correlation between the two modeled responses equals 0.64, the joint distribution 

presented in Figure 1c, shows discrepancies between the two modeled variables. Furthermore, 

Figure 2 demonstrates different cases where drivers with large and small choice set sizes 

exhibited similar (high) and opposite (low) probabilities of route switching. 

 

 

 

Figure 1c: Joint Distribution of Probability of 

Route Switching and Choice Set Size 

Figure 1a: Frequency Distribution of Route 

Switching Probabilities 

 

 

Figure 1b: Frequency Distribution of Choice 

Set Size 

 

Figure 1: Marginal and Joint Distributions of the Response Variables  
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The frequency distribution of the route switching probabilities, Figure 1a, can imply a 

possibility of two types of drivers. There appears to be some drivers who have low route 

switching tendencies, within the range of 0 to 35%, and appear to follow a negative exponential 

trend. On the other hand, there appears to be another group of drivers who have higher route 

switching tendencies, within the range of 25% to 70%, and appear to follow a normal distribution 

kind of a trend. However, this could be false implication because of the small sample size. 

Accordingly, the models presented in this work assume all drivers belong to one group. The 

following section presents the independent variables considered in the models. 

  

Figure 2a: Low Switching Percentage (0%) 

and Small Choice Set Size (1) 

Figure 2b: Low Switching Percentage (5%) 

and Large Choice Set Size (7) 

  

Figure 2c: High Switching Percentage (42%) 

and Small Choice Set Size (3) 

Figure 2d: High Switching Percentage (45%) 

and Large Choice Set Size (10) 

Figure 2: Sample Images of Drivers with Low and High Switching Probability 

and Small and Large Choice Set Sizes 
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Independent variables 

Table 1 presents the independent variables considered in this work. The chosen independent 

variables belong to four groups: demographic variables, variables of personality traits, variables 

specific to the choice-situation, and variables of driver-choice combination. It should be noted 

that all numeric variables were normalized, so that the magnitude of the estimated parameters can 

reasonably reflect the importance of their respective variables in the model. This scaling has an 

additional computational benefit because it helps to avoid singularities when inverting matrices. 

Table 1: Models Independent Variables 

# 
Variable 

Name 
Variable Description 

Variable 

Values 

Variables of Driver Demographics 

1 Agei Age of driver i 19 to 57 

2 Genderi Gender of driver i F or M* 

3 Ethnicityi Ethnicity of driver i W or NW* 

4 Educationi Education level of driver i G or NG* 

7 Dr Yearsi Number of years driver i has been licensed to driver 2 to 42 

6 Dr Milesi Number of miles driver i drives per year (in thousands) 15 to 40 

Variables of Driver Personality Traits 

1 Ni Neuroticism of driver i 7 to 75 

2 Ei Extraversion of driver i 17 to 66 

3 Oi Openness to experience of driver i 14 to 53 

4 Ai Agreeableness of driver i 12 to 66 

5 Ci Conscientiousness of driver i 19 to 62 

Variables of Choice Situation 

1 TTc Expected travel time of choice situation c (in minutes) 8 to 95 

2 TSc Expected travel speed of choice situation c (in km/hr) 24 to 90 

3 TDc Expected travel distance of choice situation c (in kilometers) 6 to 108 

Variables of Driver-Choice Combination 

4 Obsic Number of trips observed for driver i in choice situation c 25 to 216 

* 
M: male, F: female, W: white, NW: non-white, NG: no post-graduate degree, G: have a post-graduate degree 

Route Switching Model 

Because the response is a percentage with a support range of [0,1], the chosen model is the Beta 

regression model. However, because the support range of the Beta distribution is (0,1), response 

values of 0 and 1 were increased and decreased by 110
-15

, respectively. The significant variables 

of the Beta regression model are presented in columns 2 and 3 of Table 2. 

The signs of the estimated variables seem logical and are in accordance with the results 

found from the previous real-world route choice experiment [10, 11]. The presented results 

indicate that drivers without post-graduate degrees and drivers who drive more miles per year are 

less likely to use alternative routes; they seem inclined to use their preferred routes more than 

other drivers. Similarly, drivers who are more open to experience seem to have the same 
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tendency. On the other hand, drivers who have higher scores of extraversion and 

conscientiousness seem to switch and use alternative routes more. Finally, it appears that as travel 

times and travel speeds increase and decrease, respectively, drivers seem to switch to alternative 

routes more. This seems reasonable, as drivers try to identify routes that have lower travel times 

or higher travel speeds. 

It is extremely interesting that magnitudes of the driver and personality trait variables 

seem to be at least as important as variables of travel experience (travel time and travel speed). It 

appears that drivers’ openness to experience is the most important variable in this model. 

Choice Set Size Model 

Because the response is the size of the choice set, which has a support range of the integers in the 

range [1,), the chosen model is a Gamma distribution generalized linear model with an inverse 

link function. The significant variables of the model are presented below; however, to avoid 

confusion about the relation between the response and the estimated parameters (as a result of 

using the inverse link function), the estimated parameter signs reported in Table 2 are negated. 

The significant variables of the Beta regression model are presented in columns 4 and 5 of 

Table 2. 

As with the results of the route switching model, the results of this model seem logical 

and are in accordance with the results of the previous model and the earlier results found from the 

real-world route choice experiment [10, 11]. Signs of the estimated parameters indicate that 

drivers without post-graduate degrees and drivers with higher scores of openness to experience 

seem to have smaller route choice set sizes. On the other hand, drivers with higher values of 

neuroticism and conscientiousness seem to have larger choice sets. In addition, as the travel 

speeds decreases, drivers seem inclined to seek more alternative routes – presumably with higher 

travel speeds. Finally, it is satisfying that the number of observations was found to marginally 

increase the choice set size. This could imply that as drivers are faced with the same choice 

situation over and over again, they will tend to face some probably unforeseen circumstances that 

would entice them to seek new alternative routes. 

Table 2: Models Significant Variables 

Significant 

Variables 

Route Switching Model Choice Set Size Model 

Beta p-value –  (Beta)* p-value 

(Intercept) -1.38 0.000 – 0.284 0.000 

EducationU -0.81 0.022 – 0.098 0.026 

DrMiles -0.30 0.033 n/s 

N n/s 0.049 0.084 

E 0.56 0.013 n/s 

O -0.97 0.000 – 0.25 0.000 

C 0.46 0.014 0.079 0.000 

TT 0.35 0.049 n/s 

TS -0.55 0.000 – 0.058 0.001 

Obs n/s 0.001 0.030 

* 
To avoid confusion about the relation between the response and the estimated parameters (as a result of using the inverse link function), 

the estimated parameter signs are negated 
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As was the case in the route choice switching model, it is extremely interesting that 

magnitudes of the driver and personality trait variables seem to be at least as important as 

variables of travel experience (travel speed). It appears that drivers’ openness to experience is the 

most important variable in this model 

STUDY CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER RESEARCH 

This work is an extension of two earlier experiments that explored driver heterogeneity in route 

choice behavior [9-11, 29-32]. One of the two earlier experiments was based on a driving 

simulator [9, 30, 31]and the other based on an in situ driving experiment in real-world conditions 

[10, 11, 29, 32]. In this work, significance of driver demographics and personality traits were 

investigated in route switching and choice set size models. The presented analysis is based on a 

naturalistic driving study that was performed in the Northern Virginia and Washington DC area, 

where the vehicles of more than 100 drivers were equipped with non-intrusive vehicle and driver 

tracking devises. The movement and driving behavior of these drivers were tracked for more than 

12 months, resulting in approximately 2,000,000 vehicle miles, almost 43,000 hours of data. The 

analysis presented in this paper is based on observing the route choices of 39 drivers, who 

collectively faced 68 route choice situations and made more than 5,750 route choices, i.e. an 

average of 85 trips per driver-choice situation. 

Two models of route choice behavior were estimated: a model of route switching behavior 

and a model of choice set size. In this work, route switching is defined as the probability that a 

driver selects a route other than her/his most preferred route. Although the two modeled 

responses (probability of route switching and choice set size) are correlated, discrepancies 

between drivers’ behavior were observed. The estimated models shared some of the same 

estimated significant variables. However, the significant variables were not identical.  

The results of the estimated models indicate that driver demographics, personality traits 

and trip characteristics are significant in predicting route choice behavior. The models indicate 

that route switching is positively related to driver education, extraversion, conscientiousness and 

travel time, and inversely related to driver annual driven miles, openness to experience and travel 

speed. On the other hand, choice set size is positively related to driver education, neuroticism, 

conscientiousness, and number of observations, and negatively related to driver openness to 

experience and trip travel time. It is very interesting that variables of driver characteristics and 

personality traits were found to be as important as variables of trip characteristics. In addition, it 

is assuring that the results of the estimated models are in accordance with the earlier models 

estimated in the two earlier experiments [9-11, 31].  

In conclusion, the proposed framework for incorporating driver heterogeneity seems to be 

promising, and successful replications of this work could be very beneficial for the future 

modeling of driver heterogeneity in route choice models. A number of further research directions 

include: exploring differences that can be attributed to trip purpose, identifying other measures of 

driver heterogeneity; comparing the predictive rather than the descriptive abilities of the models; 

incorporating the effect of driver heterogeneity on the compliance rates to information; and 

examining if the same results could be replicated in a travel or a driving simulator. 
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11.1 Summary of Conclusions 

As a general summary, driver perceptions were found to be significantly different from driver 

experiences, and driver perceptions were found to be a much better predictor of driver route 

choices than driver experiences. Discrepancies were observed between the predictions of the 

stochastic user equilibrium expectations and the actual driver choice percentages. Accordingly, 

research was geared towards driver- rather than network- oriented route choice models. Four 

measure of driver heterogeneity were investigated in the driver-oriented choice models: driver 

perceptions, learning trends and driver types, latent driver classes, and driver personality traits. 

All four of the investigated measures of driver heterogeneity were found significant in predicting 

driver route choice behavior. In addition, incorporating measures of driver heterogeneity in the 

route choice behavior models improved model performance, in spite of the decreased model 

parsimony and in spite of using statistics that penalize for decreased model parsimony. Evidence 

of the existence of latent driver classes that follow different rules of route choice were identified. 

All five personality traits of the NEO test were found to be highly significant in the route choice 

behavior models, and were found at least as important as variables of route experience (like 

travel time). Driver aggressiveness in route switching behavior was found to be positively related 

with neuroticism, extraversion and conscientiousness, and inversely related with agreeableness 

and openness to experience. Variables of route experience that were found significant in route 

choice behavior are inertia, route preference, travel time and travel speed. However, not all of 

these variables were significant for the different driver types and latent driver classes. Models 

estimated for each of the three different experiments are much in accordance. The three 

experiments are based on a driving simulator experiment, an in situ driving experiment in real-

world conditions, and a real-life naturalistic driving study. In total, this work is based on a 

sample of 109 drivers, who faced 74 choice situations and made 8,644 route choices. Results of 

this work seem highly promising for the future of understanding and modeling heterogeneity of 

human travel behavior, as well as for identifying target markets and the future of intelligent 

transportation systems. 

 

11.2 Detailed Conclusions 

This work attempted to address driver heterogeneity in route choice behavior. Driver 

heterogeneity has repeatedly been cited as a limitation that needs to be addresses in models of 

travel behavior. The presented work addressed driver heterogeneity from four different 

perspectives: driver perceptions, learning trends and driver types, latent driver classes, and 

variables of personality traits as captured by the NEO Personality Inventory-Revised (NEO PI-

R). No other work has attempted to address driver heterogeneity in the way that was addressed in 

this work. 

 

To address the different limitations of the different route choice experiment mediums, the work 

presented in this dissertation was based on three different experiments. The first experiment is a 

driving simulator experiment that is supplemented with a revealed preference survey. This 

experiment included 50 test subjects that faced one choice situation and collectively made 823 
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route choices. The second experiment is an in-situ driving experiment performed in real-world 

conditions that is supplemented with a revealed preference survey and a NEO PI-R personality 

questionnaire. It involved 20 test subjects that faced five choice situations and collectively made 

2,065 route choices. The last experiment is a real-life naturalistic driving study that was 

performed in the Northern Virginia – Washington DC area and tracker driver behavior for a span 

of 12 to 13 months. It is supplemented with several questionnaires, out of which only a few were 

used in this work. These are the NEO personality questionnaire and questionnaires that collected 

driver demographics and driving information. The used data reflects the behavior of 39 test 

subjects who collectively faced 68 choice situations and made 5,756 route choices. In total, the 

results presented in this dissertation are based on a sample of 109 drivers, who faced 74 choice 

situations and made 8,644 route choices. 

 

It is assuring that results of the models estimated for the different datasets were highly 

conformable. The results indicated significant contributions of all four of the considered 

measures of driver heterogeneity: perceptions, learning trends and driver types, latent driver 

classes and personality traits. The following paragraphs present the major findings of these 

heterogeneity measures in the three adopted experiments.  

 

The first measure considered for driver heterogeneity is driver perceptions. Findings of the first 

experiment, the driving simulator, are presented in Chapter 3. The results revealed that driver 

perceptions were significantly different from their experiences, and that driver experiences 

reflected only 50% of driver route choices. In addition, analysis demonstrated that driver 

perceptions of travel speeds were the most accurate, followed by travel time perceptions. It is 

surprising that although travel distance is a deterministic measure (unlike travel time and travel 

speed), travel distance perceptions were the least accurate. It was also surprising that travel speed 

perceptions were more accurate than travel time perceptions. This is surprising because 

according to theories of human cognition, humans tend to assign more attention resources to 

events that are more meaningful to them. This finding implied that drivers route choice decisions 

were influenced by travel speed more than travel time. This implication was proven correct when 

driver choices were contrasted against their perceptions. A possible explanation for this behavior 

is that the travel time difference between the two alternative routes was low. Moreover, it was 

observed that drivers belonging to different demographic groups demonstrated different 

percentages of correct perceptions. Models of driver perceptions were estimated for the results of 

the second experiment. 

 

The same analysis was performed for the results of the second experiment, the real-world driving 

experiment. This analysis is presented in Chapter 6. Contrasting drivers’ experiences, 

perceptions and choices in this experiment revealed that in general driver perceptions were only 

60% correct, and, again, driver perceptions of travel speed were more accurate than their travel 

time perceptions. In addition, travel distance perceptions were again the least accurate, in spite of 

being deterministic. However, in this experiment, drivers were faced with five different choice 

situations. Accuracy of driver perceptions were not consistent across the different choice 

situations. Contrarily to the findings of the previous experiment, travel time perceptions in 

general reflected driver choices more than travel speed, but by only 3%. This too was not 

consistent across all five choice situations. For some trips, travel speed and also traffic levels and 

travel distance perceptions reflected driver choices more than travel time. This finding implied 
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that depending on the choice situation, drivers placed different weights on these four measures, 

and probably on other measures that were not considered, such as measures of route comfort and 

legibility. 

 

Models of driver perceptions were estimated. These models indicated that driver perceptions 

improved as the signal strength of the parameter being measure increased. This finding is in 

accordance with a long standing theory of human cognition which states that perceptions are 

expected to improve as the signal becomes more salient. In addition, demographic variables such 

as age, level of education, and number of driving years, were found significant in determining 

the probabilities of correct perceptions. Finally, three of the five personality traits of the 

NEO PI-R were found to significantly affect travel perceptions. These are openness to 

experience, agreeableness and conscientiousness. As explained in the following paragraphs, 

driver perceptions were not found significant in predicting driver type behavior or in route 

switching models. However, as mentioned above, driver perceptions reflected route choices 

much better than driver experiences. It is expected that driver perceptions will turn to be highly 

significant if included in route choice rather than route switching models. 

 

The second considered measure of driver heterogeneity is driver learning and personality traits. 

Significant discrepancies were observed upon comparison of the expectations of the stochastic 

user equilibrium theory against the driver choice percentages observed in the first and second 

experiment, Chapters 4 and 7, respectively. Accordingly, analysis was geared towards 

identifying reasons for these observed discrepancies. With closer analysis of the driver choice 

trends when repeatedly faced with the same choice situation (which reflect trends of driver 

learning), four driver types were identified. Driver type is not commonly used in the vernacular 

of transportation engineering. It is a term that was developed in this work to reflect driver 

aggressiveness in route switching behavior, as demonstrated in the following paragraph. It may 

be interpreted as analogous to the common known personality-types (such as Myers-Briggs) but 

specifically applied to driver behavior. 

 

The first type of drivers represents those who tried one of the alternative routes on the first trial 

of a choice situation, where satisfied with their experience and repeated the same choice in all 20 

trials of this choice situation. The second type of drivers represents drivers who on the first two 

trials tried each alternative route once, then made a choice, and from the third till the last trial 

repeated the same choice without ever thinking of revisiting it. The third type represents drivers 

who had an obvious route preference but revisited their choice every now and then by switching 

and re-evaluating the alternative route. The last type represents drivers who kept switching 

between the alternative routes during the whole experiment and had no obvious route preference. 

These four identified driver types were observed in both the first and second experiments 

(Chapters 4 and 6, respectively). Because the data structure of the third experiment is different, 

no attempt was made to identify these four driver types. However, similar route switching 

tendencies were also identified in the third experiment (Chapter 10). 

 

Although drivers did not exhibit the same driver-type in the five choice situations of the third 

experiment, drivers seemed to have an inherent tendency towards following a less aggressive 

route switching behavior (as in driver-types I and II) or a more aggressive one (as in driver-types 

III and IV), Chapter 6. It seemed logical to imply that the exhibited driver types where influence 
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by driver as well as choice situation characteristics. For example, no matter how aggressive a 

driver is, it is highly unlikely that a driver will exhibit a type IV behavior if the travel times on 

the alternative routes were extremely different (for example if they were 5 and 50 minutes). This 

hypothesis was verified by the driver type models that were estimated. The significant variables 

indicated that driver demographics, personality traits, and choice situation characteristics 

influenced the adopted driver types (Chapter 7). 

 

Driver types were found to be highly significant in predicting route switching behavior, both in 

the first and the second experiment, Chapter 5 and 8, respectively. In addition, incorporating 

driver types improved the performance of the estimated route switching models (Chapters, 5, 8 

and 9). The effect of driver types on route switching behavior was examined through two 

alternative methods. In the first method, driver types were included in the route switching models 

as additional indicator variables. Higher driver types increased the probability of route switching 

behavior. In the second method, separate route switching models were estimated for each 

specific driver type. Different variables were found significant in the driver-type-specific route 

switching models. This indicated the possibility of existing latent driver class. 

 

A hierarchical two-stage route switching model was estimated in Chapter 8. The first stage used 

variables of driver demographics, personality traits and choice situation characteristics to predict 

driver types. In this model, different driver-type classification methods were adopted. They were 

all found predictable from variables of driver demographics, personality traits, and choice 

situation characteristics. The second stage used the predicted driver types and variables of driver 

previous route choice experiences to predict the probability of route switching. Almost all driver 

type classifications were found significant and improved the performance of the route switching 

model; in spite of the increase of the number of estimated parameters and of using performance 

measures that penalize for decreased model parsimony. 

 

Variables of driver experience that were found significant in route switching behavior are inertia, 

route preference, travel time and travel speed. Type II drivers were found to be driven with 

inertia; type III drivers are driven by inertia, route preference, travel time and travel speed; and 

type IV drivers are driven by route preference. It was surprising that travel speed (and not travel 

distance) was found to be highly significant, because in route choice literature, travel distance is 

given more attention than travel speed. 

 

The third considered measure of driver heterogeneity is latent driver classes, which is presented 

in Chapter 9. One of the limitations of using driver types and the hierarchical model presented in 

Chapter 8 is that the researcher has to use personal judgment to classify drivers into a specific 

number of driver types and according to specific classification criteria. However, there is no 

guarantee that the adopted specific number of types and classification criteria are optimum in 

maximizing model performance. To address this limitation, a latent class choice model was 

estimated. Findings of the estimated latent class choice model were in accordance with the 

findings of the hierarchical model. The findings enforced the implication of existing latent driver 

classes with different significant variables in the different class-specific route switching models. 

These models were very similar to the driver-type-specific route switching models estimated in 

the hierarchical model. However, as expected minor differences between these two groups of 

models were observed, which reflects that a few drivers were classified into classes different 
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from the classes that they were categorized into in the driver-type models of the hierarchical 

model. This was expected because differentiating between driver types III and IV depended on 

researcher judgment. Almost all of the significant parameters of the hierarchical model were 

found significant in the latent class choice model and had the same directional relation with the 

response. 

 

Variables of driver experience that were found significant in route switching behavior are inertia, 

route preference, travel time and travel speed. Class II drivers were found to be driven with 

inertia; class III drivers are driven by inertia, travel time and travel speed; and class IV drivers 

are driven by route preference. 

 

The fourth and last measure considered for driver heterogeneity is personality traits. It is very 

promising that all five factors of the personality traits were found significant in all estimated 

models in the second and third experiments. Unfortunately, personality traits were not measured 

in the first experiment. Personality traits were found significant in driver perception models 

(Chapter 6), in driver type models (Chapter 7, 8, 9 and 10), in route switching models (Chapters 

8, 9 and 10), and in choice set size models (Chapter 10). In addition, it is very intriguing that the 

personality traits variables were found to be at least as important as, and often more important 

than, variables of choice experience; like travel time, travel speed, inertia and route preference. 

In general, driver type, driver route switching behavior and choice set sizes were positively 

related to driver neuroticism, extraversion and conscientiousness, and negatively related to driver 

openness to experience and driver agreeableness. On the other hand, driver perceptions were 

found to be positively related to driver agreeableness and conscientiousness and negatively 

related with driver openness to experience. 

 

11.3 Possible Research Extensions 

Possible extensions of this work include investigating possibilities of successful replication of 

the findings of this work, exploring driver behavior in cases of larger choice set sizes; 

investigating the effect of driver heterogeneity in driver compliance to information; exploring 

driver heterogeneity in other models of travel behavior such as trip generation, departure time 

choice, travel mode choice, and dilemma zone decisions; and investigating effects of driver 

heterogeneity in different trip purposes. 
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