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1   INTRODUCTION 
 
The National Aeronautics and Space Administration (NASA), Langley Research Center 
(LaRC) and the Environmental Measurement and Modeling Division of the Department 
of Transportation’s Volpe National Transportation Systems Center (Volpe) conducted a 
noise measurement study to examine aircraft sound level directivity patterns behind the 
start-of-takeoff roll.  The study was conducted at Washington Dulles International 
Airport (IAD) from October 4 through 20, 2004.   
 
1.1 Background 
 
The Society of Automotive Engineers (SAE) Aircraft Noise Committee (A-21) initiated 
an activity to update the behind start of take-off roll algorithm in SAE AIR 1845, 
Procedure for the Calculation of Airplane Noise in the Vicinity of Airports1, which is 
based on the 1980 report, Analysis of Selected Topics in the Methodology of the 
Integrated Noise Model2.  AIR-1845 is the foundation on which the Federal Aviation 
Administration’s (FAA) Integrated Noise Model (INM3, 4) is based, as well as other 
aircraft noise prediction models.  The INM, first released in 1978, is a software program 
designed to model noise in the vicinity of airports.  It will be replaced by the FAA’s next 
generation of environment modeling tool; the Aviation Environmental Design Tool 
(AEDT), which is currently under development.  Both AEDT and INM model take-off 
noise using two parameters; (1) aircraft- and operation-specific noise data; and (2) a fleet-
average behind start of take-off roll (SOTR) directivity adjustment.  The aircraft and 
operation-specific noise data consist of noise-power-distance (NPD) data and one-third 
octave-band spectral data for each aircraft in the INM/AEDT database that are routinely 
updated by aircraft manufacturers and acoustic consultants, and have been strictly vetted 
through a verification and validation process.  The SOTR directivity adjustment was not 
aircraft-specific, and it was based on now out-of-date aircraft fleet data. 
 
The current SOTR directivity adjustment is represented in the following equations: 
 
  
  
           (1) 
 
 
           (2) 
 
The SOTR directivity adjustment is 0.0 dB for azimuth angles between 0 and 90 degrees, 
and is symmetrical on either side of the aircraft.  The current SOTR directivity 
adjustment is shown in Figure 1.  The graphic presents aircraft sound level data 
corrections to be applied during SOTR as a function of polar angle and distance behind 
the aircraft.  The pattern shows a “notch” of decreased sound level directly behind the 
aircraft which smoothes out as a function of distance behind SOTR.  Note also that the 
directivity pattern is symmetrical about the axis defined by the aircraft fuselage.   

°<≤° 4.14890 θFor

( ) ( ) ( )32 000047173.0015147.0553.144.51 θθθ −+−=ADJDIR

°<≤° 1804.148 θFor

( ) ( ) ( )32 000044193.00045545.05802.218.339 θθθ +−−=ADJDIR
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Figure 1.  Plots of Current Directivity Algorithm 
 
In INM/AEDT the SOTR directivity adjustment is applied to the noise levels associated 
with the first segment of an aircraft departure according to the azimuth angle behind the 
aircraft.  It is also applied to noise from aircraft run-up operations.  In addition, a 
smoothing algorithm is applied to the noise levels for receivers at distances behind the 
start of take-off roll greater than 2500 ft. 
 
The current algorithm is based on measurements of older-generation, low by-pass ratio 
aircraft, primarily configured with fuselage-mounted engines.  Since most modern jet 
aircraft are configured with wing-mounted engines, which tend to have higher by-pass 
ratios as well as operate at higher thrust levels, measurements to collect updated data 
were needed to better represent modeling of the current and anticipated future aircraft 
fleet.  Additionally, directivity data for 4-engine commercial jet aircraft (which was 
limited to a single 747 event in the 1980 study), as well as propeller-driven aircraft were 
needed.   
 
In October 2004, the National Aeronautics and Space Administration (NASA), Langley 
Research Center (LaRC), with support provided by the Volpe National Transportation 
Systems Center (Volpe), conducted a study at Dulles International Airport (IAD) to 
update the directivity algorithm in AIR-1845.  In conjunction with the joint NASA/Volpe 
Behind Start of Take-off Roll study, the FAA’s Partnership in Aviation Noise and 
Emissions Reduction (PARTNER) Center of Excellence (COE) conducted a 
simultaneous low frequency noise study at IAD.  The low frequency noise study was 
designed to determine the effects of aircraft take-off noise on nearby structures as well as 
to study thrust reverser noise5.  Although the NASA/Volpe and COE study shared 
instrumentation and ultimately utilized some of the same data, this report focuses on the 
NASA/Volpe study. 
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1.2 Objective 
 
The objective of the joint NASA/Volpe study was to modernize the behind start of take-
off roll sound level directivity algorithm in AIR-1845.  This was accomplished by 
conducting field measurements at one or more large U.S. airports with a large variety of 
aircraft, analyzing the data to confirm and/or update the AIR-1845 algorithm, and 
recommending updated algorithms, potentially dependent on several variables, including 
aircraft-type.
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2 SITE SELECTION AND LOGISTICS 
 
2.1 Candidate Airport Selection 
 
A total of 983 U.S. commercial airports were evaluated as potential measurement sites.  
In selecting candidate sites, several key factors were considered, including airport 
operations, fleet mix, runway configuration, and practical field measurement 
considerations, e.g., geographic location, accessibility and site terrain.  Note that each 
factor has an associated set of benefits and/or detriments.  For example, to minimize 
contamination from other aircraft, airports with a single runway might be considered 
ideal.  The tradeoff in this example case would be the likely decrease in overall airport 
operations (and possibly fleet mix) due to the existence of only a single runway.  To 
select appropriate candidate airports for measurements, key factors and tradeoffs were 
evaluated.  This section presents a list of prioritized, candidate measurement sites and the 
methodology used to identify these sites.  Based on the considerations documented 
herein, the goal was to identify at least ten candidate airports. 
 
In selecting potential measurement sites, characteristics of each airport were examined 
and evaluated.  These characteristics, which were used to narrow the list of potential 
measurement sites, include: 
 

1. Geographic Location 
2. Airport Elevation 
3. Airport Fleet Mix 
4. Site Terrain 
5. Runway Configuration 
6. Meteorological Conditions 
7. Other Factors (i.e., NASA acoustic van accessibility, runway usage, etc.) 
 

2.1.1 Geographic Location 
 

Airports in Alaska and Hawaii were removed from the list of potential measurement sites 
to minimize obvious travel and logistical costs. 

 
2.1.2 Airport Elevation 
 
Airports at elevations of greater than 2,000 ft were removed from the list of potential sites 
to minimize the effect of altitude on aircraft performance. 
 
2.1.3 Airport Fleet Mix 

 
Airport fleet mix data were obtained by querying departure operations for 2003 from the 
Official Airline Guide (OAG) schedule.  Fleet mix was examined for each airport.  Three 
main types of aircraft were considered in rating airport fleet mix, starting with the highest 
priority:  1) Large commercial jet aircraft with wing-mounted engines such as the Boeing 
737 and Airbus A320; 2) Large commercial jet aircraft with fuselage-mounted engines 



Behind Start of Take-off Roll Sound Level Directivity Study                                                   Site Selection and Logistics                    
  

_____________________________________________________________________ 
 
  

5 
 

such as the McDonnell Douglas DC9; and 3) Four engine commercial jet aircraft and 
miscellaneous aircraft, such as the Boeing 747, Airbus A340, Embraer and Bombardier 
Canadair Regional Jet.  Consideration was also given to airports with a wide variety of 
turboprop operations.  Fleet mix for each airport was then evaluated and rated using the 
following method: 

 
Table 1.  Fleet Mix Rating Methodology 

 
Priority Aircraft Category Rating  Points 

High Large jet aircraft with wing-
mounted engines 

Excellent  9 
Average 6 
Poor 3 

Medium Large jet aircraft with 
fuselage-mounted engines 

Excellent 6 
Average 4 
Poor 2 

Low 
Four engine jet aircraft and 

miscellaneous aircraft, 
including turboprops 

Excellent 3 
Average 2 
Poor 1 

 
Points for each category were then totaled to obtain an overall fleet mix score.  Airports 
that were considered to have high fleet mix scores were selected for final screening.   
 
After considering fleet mix and removing airports due to elevation and geographic 
criteria, candidate airports were reduced to 48. 
 
2.1.4 Site Terrain, Near Runway 
 
Figure 2 presents ideal microphone locations, relative to a conceptual runway end, for 
behind start of take-off roll measurements.  In general, the most complete microphone 
array would be located at the 1,000 ft radial.  Fifteen microphones, each separated by 15 
degrees, would be positioned along the 1,000 ft radial as shown in the illustration.   
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Figure 2.  Ideal Microphone Array 

 
Candidate measurement sites that allowed for the placement of microphones along a 
radial of approximately 1,000 ft behind the runway were considered acceptable.  
Additionally, an unimpeded line of sight from the microphone arc to the start of the 
runway was desired.   
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Using USGS aerial photos of the 48 candidate airports and a modified version of standard 
Geographic Information Systems (GIS) software, a semi-circle of 1,000 ft radius was 
superimposed on the start of each candidate runway.  Figure 3 presents a representative 
photo for Runway 35L at Austin-Bergstrom Airport.  

 

 
Figure 3.  Aerial Photo of Runway 35L at Austin-Bergstrom Airport 

 
The semi-circle behind the runway represents the nominal microphone line.  The area 
within the semi-circle was visually surveyed for obstructions such as buildings, parking 
lots, heavy vegetation, bodies of water, and noticeable changes in elevation.  This was 
done for runway ends at each of the remaining 48 candidate airports.  This process also 
revealed other sources of practical problems, including highways, roadways, cross- 
runways and taxiways in close proximity.  
 
Figure 4 shows an example of what was considered to be an ideal measurement site.  The 
area behind the runway is obstacle free within a 1,000 ft radius and does not appear to 
have other noise sources in the immediate vicinity.  
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Figure 4.  An Aerial Photo of Runway 1R at Dulles International Airport 

 
Figure 5 shows a runway that was eliminated as a potential measurement site, given the 
close proximity of a major roadway, building and what appears to be a parking lot.  
 

 

 
Figure 5.  An Aerial Photo of Runway 9 at Tampa International Airport 
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2.1.5 Site Terrain, Distant 
 
The need to quantify the directivity characteristics, as a function of increasing source-to-
receiver distance, necessitated the addition of microphones at locations on semicircles 
2,000 to 4,000 ft behind the runway.  As depicted in Figure 2, nine microphones, also 
separated by 15 degrees, would ideally be utilized at 2,000 ft in order to help quantify 
aircraft directivity characteristics as a function of distance. “Centerline” microphones 
would also be placed directly behind the aircraft at approximately 1,500, 3,000 and 4,000 
ft to further quantify the distance dependence.  Accordingly, red semi-circles with radii 
equal to the 2,000 and 4,000 ft distances were superimposed on runway-end aerial 
photographs as shown in the example in Figure 6. 

 

 
Figure 6.  Aerial Photo of Runway 17R at Austin-Bergstrom Airport 

 
As with the 1,000 ft semi-circle (in yellow), areas within the red semi-circles were 
visually inspected for obstructions.  However, the entire area within the red semi-circles 
did not necessarily have to be obstruction free.  As seen in Figure 2, microphones were 
only anticipated for placement at limited positions along the 2,000 ft semi-circle and at 
centerline locations at 1,500 ft, 3,000 ft and 4,000 ft.  Only areas where microphones 
were planned for deployment were evaluated.  Depending on the results obtained at 1000 
ft, it was hypothesized that the data measured on one half of the 2,000 ft semicircle could 
be “reflected” over the centerline axis, if necessary i.e., the directivity pattern is 
symmetrical to the left and right side of the aircraft. 
 
After completing an aerial photo analysis of the local terrain at near and distant runway 
ends, 18 additional airports were eliminated, leaving 30 potential candidate sites. 
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2.1.6 Runway Configuration  
 

Any candidate airport runway that had another runway within a 5,000 ft arc behind it was 
eliminated because of:  1) potential noise contamination from aircraft on the cross 
runway, 2) the inability to place microphones on the cross runway, and 3) the inability to 
run cables across the cross runway.  Airports were then grouped by number of eligible 
runways, where fleet mix scores were re-evaluated in the final selection of candidate 
airports. Although particular runways were eliminated, none of the 30 candidate airports 
were removed from the list.   
 
2.1.7 Other Factors Considered 

 
Due to their ability to collect 10 channels of time-synchronized acoustic data, the NASA 
acoustic vans were considered strong candidates for use in the measurement study.  The 
vans, however, require a measurement site that is free of roadways, runways, and 
taxiways, to facilitate cable runs between the vans and microphones.  Microphone 
systems at locations the NASA vans cannot access were to be instrumented with Volpe 
portable acoustic measurement systems.   
 
It was also necessary to evaluate airport operations data to determine runway usage 
specific to departures.  The OAG data do not provide runway usage information, simply 
total airport operations.  It was possible for a candidate runway to be used mainly for 
aircraft arrivals, which would make the runway less desirable for this study.  Therefore 
individual airport tower logs were needed. 
 
2.1.8 Site Selection Results 

 
Airports were ranked by fleet mix and number of eligible runways.  The top ten candidate 
airports for measurements were as follows:  
 
1. Seattle-Tacoma International (SEA), Washington 
2. Cincinnati/Northern Kentucky (CVG), Kentucky  
3. Dulles International (IAD), Washington D.C.  
4. Portland International (PDX), Oregon  
5. Orlando International (MCO), Florida 
6. Minneapolis-St. Paul International (MSP), Minnesota 
7. Raleigh-Durham International (RDU), North Carolina 
8. Kansas City International (MCI), Missouri 
9. Indianapolis International (IND), Indiana 
10. Charlotte/Douglas International (CLT), North Carolina 
 
2.1.9 Meteorological Data 

 
In general, outdoor acoustic measurements require minimal winds in the vicinity of the 
measurement site.  Accordingly, meteorological data were obtained and evaluated for the 
top ten candidate airports.  Surface meteorological data for the years 1984, 1989, and 
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1992 were downloaded from an EPA website6.  The data provided hourly averaged wind 
speeds throughout the year.  The wind data for the three years were then averaged.  
Results showed that winds at the ten airports were relatively similar.  None of the 
candidate airports were eliminated as a result of the wind speed data. 
 
2.1.10 Selection of Study Airport 
 
In the above list of candidate airports, IAD was considered the preferred choice, given 
Volpe’s familiarity with the airport due to recent measurements, the team’s knowledge of 
key personnel at IAD, and Langley’s relatively close proximity to the airport.   
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Figure 7.  Airport Diagram of Dulles International Airport (IAD) 
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2.2 Measurement Site Logistics 
 
2.2.1 Primary Runway for Measurements 
 
Subsequent to approval from airport management to conduct the study, further 
communication with appropriate personnel, specifically IAD Air Traffic Control (ATC) 
was conducted.  The purpose of the communications was to gather information regarding 
runway usage as discussed in Section 2.1.7.  Information on airport traffic operations at 
IAD (Table 2) led to the conclusion that Runway 30 would be the target runway for 
measurements.  These data suggest that the majority of aircraft take-off operations occur 
on Runway 30.   
 

Table 2.  IAD Runway Usage Data 

Condition How often (rarely, 
sometimes, mostly) ?

1L 1R 19L 19R 12 30

Landing to the North (high departures demand) mostly L L/T x x x T
Landing to the North (high arrivals demand) mostly L L T
Landing to the South (high arrivals demand) mostly L/T L L
Landing to the South (high departures demand) mostly T L x T
Landing to the South (winds prohibit 30 departs.) sometimes L/T L/T x x
Landing to the North (strong NW winds) rarely x L L/T
Landing to the North (strong NW winds) rarely x x L/T
Landing to the South (strong E-SE winds) extremely rare   x x L/T

T = Take-off
L = Landing
x = not used

Dulles International Airport Traffic Operations

 
 
2.2.2 Aircraft Departure Schedule 

IAD airport operations data for a week in October were obtained from the 2003 OAG 
schedule.  The data, presented in Figure 8 suggest that peak operations occur during the 
time blocks of 8:00-10:00, 12:00-14:00, 16:00-18:00, and 20:00-22:00.  Operations data 
obtained from Federal Aviation Administration's System for assessing Aviation’s Global 
Emissions (SAGE)7 showed generally consistent trends in departure operations.  
Observations during the preliminary site survey (described in the next Section) also 
confirmed the overall trend.   
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Figure 8.  Departure Flights at IAD During 10/1/03-10/7-03 

Wing-mounted 4 engine aircraft were of particular interest in the study.  Figure 9 
indicates that IAD generally has a small number of Boeing 747 departures.  Figure 10 
also shows a small number of flights for the Airbus A340.  The majority of the wing-
mounted, 4 engine aircraft departures in October (i.e., the planned month for the study) 
occurred during the time period of 16:00 to 22:00.   
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Figure 9.  Boeing 747 Departure Flights at IAD During 10/1/03-10/7-03 
 

Figure 10.  Airbus A340 Departure Flights at IAD During 10/1/03-10/7-03 
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As a result of these findings, measurements were targeted for the time periods of 8:00 to 
14:00 or 12:00 to 18:00.  The specific time period for each measurement day was chosen 
depending on meteorological conditions e.g., if more suitable weather was forecast in the 
evening hours then measurements that day would be scheduled for the 12:00 to 18:00 
time period.  Measurements were not conducted after 18:00 because of the inability to 
use the aircraft video tracking system (described in Section 3.2) and to identify aircraft 
tail numbers. 
 
2.2.3 Preliminary Site Survey 
 
A preliminary site survey was conducted prior to measurements to identify site 
instrumentation locations behind Runway 30 at IAD (see Section 3.1.2).  Coordinates of 
the microphone array were saved onto a laptop computer and used with a differential 
Global Positioning System (dGPS, described Section 3.5) to locate the predetermined 
coordinates to within a few inches.  Once the locations were found, a short stake with 
surveying tape was fixed to the ground for easy identification during deployment.
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3 INSTRUMENTATION 

The primary instrumentation used during measurements is listed in Table 3.  For clarity, 
instrumentation specifications and locations are described in more detail in Sections 3.1 
through 3.5.  Measurement procedures are described in Section 4.  A detailed layout of 
the instrumentation used in the study can be found in Appendix A.  Angle, X and Y 
coordinates of the instrumentation locations are based on the local Cartesian coordinate 
system as described in Section 3.1.2 

Table 3.  Summary of Primary Instrumentation  
 

Instrumentation Quantity Responsible 
Organization Purpose Comments

DGPS System 1 Volpe Survey of 
instrumentation 
locations

In addition to maps and aerial photos, 
the dGPS system was used to survey 
the location of instrumentation to an 
accuracy of better than a meter

Acoustic Vans 2 NASA Collection of acoustic 
data

Microphone system (up to 10 
microphones per van)

Portable Acoustic 
System

8 Volpe Collection of acoustic 
data

Portable microphone system

Digital Video 
Tracking System

2 Volpe Tracking of aircraft 
position and 
acceleration profile

This system will define the break 
release point, liftoff point and 
acceleration profile

Portable Weather 
Station: TAMS 

System

1 Volpe Collection of position- 
specific 
meteorological data

This information will supplement the 
airport tower meteorological data and 
allow for a much more detailed 
definition of meteorological 

 
 
3.1 Acoustic Instrumentation 
 
Acoustic instrumentation used during measurements consisted of a combination of 
NASA and Volpe microphone systems.   
 
The NASA microphone system consisted of two separate vans for acoustic data 
acquisition.  NASA Van 1, designated as GMC/19, was deployed to collect data from 
nine microphones in the 900 ft array and the centerline microphone at 1350 ft.  NASA 
Van 2, designated as Barth/72 (Figure 11), was deployed to collect data from six 
microphones in the 1950 ft array, two microphones at 2500 ft, and one microphone at 
3450 ft  Portable Volpe acoustic measurement systems were deployed to facilitate data 
collection at remote locations.   
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3.1.1 Specifications 
 
3.1.1.1 NASA Acoustic Vans 
 
Each of the NASA acoustic vans were outfitted with a Digital Acquisition Measurement 
System (DAMS) capable of collecting ten independent channels of acoustic data.  For 
each channel of the system, the signal was digitized at the microphone, transmitted via 
cable to the van, multiplexed with time and test run information, and then recorded on a 
hard disk drive.  The sample rate at each microphone was 25 kHz with the anti-aliasing 
frequency set at 12.5 kHz.  The data were transferred from the hard disk drive to a PC for 
signal processing.  The digital acoustic time domain data were transformed to the 
frequency domain at one second intervals using the average of eleven 4096-point fast 
Fourier transforms (FFTs) with a Hamming window and 50 percent overlap applied, 
resulting in 0.983-second blocks of data.  These FFTs were used to compute narrowband 
data, which were converted to 1/3-octave band data.  The processed data were stored on 
digital video disks (DVD) for later off-line reduction and analysis.   
 
The NASA microphones were the Bruel and Kjaer (B&K) Model 4134.  These are 
condenser microphones requiring a polarization voltage.  The polarization voltage was 
supplied by either a B&K Model 2669 or 2619 preamplifier and a modified version of the 
B&K Model 2804 power supply.  Battery powered booster boxes, consisting of a 
transceiver in and a transceiver out, provided polarization voltage to microphones at far 
distances.  Digitization of the acoustic signal was performed using a Burr-Brown Model 
ADC 76KG A-to-D converter.  A B&K Model 0238 3.5 inch (9 cm) diameter foam 
windscreen was placed atop each microphone to reduce the effects of wind-generated 
noise on the microphone diaphragm.  Microphones were installed on tripods at a height 
of 4 ft above ground level (Figure 12).  
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Figure 11.  NASA Acoustic Van 2, Designated as “Barth/72” 

 

 
Figure 12.  NASA Microphone System with Power Booster Box 
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3.1.1.2 Volpe Acoustic Measurement Systems 
 
The Volpe acoustic measurement system is a specialized measurement system, which 
may be used to conduct unattended, long-term (30+ days) and continuous 1/3-octave 
band noise measurements in outdoor environments.  The system is designed to be 
compact, light, rugged, and can run for 96 hours with external battery power, or 
continuously with solar panels, thus, making the system able to store significant amounts 
of data.  The system uses G.R.A.S. Model 40 AE or Model 40AQ ½-inch electret 
microphones and is powered by a G.R.A.S. Model PRM902 preamplifier.  A B&K Model 
0237 3.5 inch (9 cm) diameter foam windscreen was placed atop each microphone.  Each 
microphone is interfaced to a Larson Davis Model 824 real-time analyzer/sound level 
meter.  Data are stored on an Itronix Husky Fex21 handheld computer.  The system also 
includes a FT Technologies Model 702 ultrasonic anemometer to measure wind speed 
and direction.  The output of the anemometer is also stored on the handheld computer.  
The system collected 1/3-octave acoustic data along with wind speed and direction data 
at 1-second intervals.  Both the microphones and anemometers were installed on tripods 
at a height of 4 ft above the local ground surface (Figure 13).  Appendix D displays in 
more detail a diagram of the Volpe acoustic measurement system set up. 
 

 
Figure 13.  Volpe Acoustic Measurement System 

 
3.1.2 Locations 
 
Runway 30 has three taxiway turning points (Y, Z, Q in Figure 14).  The turning point 
used for the majority of take-offs is crucial since it would be ideal to define the origin of 
the microphone array based on the location of the start of take-off roll for the majority of 
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operations.  IAD air traffic control indicated that taxiway turning point Q is used most 
frequently during departures.   
 

 
Figure 14.  Taxiway Turning Points Y, Z, Q on IAD Runway 30 

 
As a result, a local Cartesian coordinate system (x, y, z) was established with the origin 
(0, 0, 0) at 300 ft from the end of Runway 30, where aircraft taxiing from turning point Q 
were observed to begin take-off roll.  The centerline of Runway 30 was designated as the 
x-axis such that positive x values increase throughout the ground roll. 
 

 

 
Figure 15.  Local Cartesian Coordinate System Used on Runway 30 

Local coordinates were calculated for the corresponding microphone locations depicted 
in Figure 2.  Coordinates for alternate microphone locations were also calculated in case 
a site survey led to some revisions of microphone locations e.g., a new location was 
necessary if the preferred location was obstructed from view of the runway.  As a result 
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of this precaution, “zones” of where microphones could be placed were superimposed 
onto an aerial photograph of Runway 30.  Figure 16 shows a range of potential 
microphone locations.  The semicircle zones are 200 ft wide and are centered at 1,000, 
2,000, and 4,000 ft radii from the origin. 

 
Figure 16.  Microphone Location Zones Behind Runway 30 

The primary and a set of alternate coordinates were then saved onto a laptop computer 
and used in conjunction with dGPS to identify and mark instrumentation positions (see 
Section 2.2.3).  The microphone location zones proved useful when a site survey 
discovered unforeseen terrain complications and obstructions at 1000 and 2000 ft.  The 
1000 and 2000 ft radials were moved to 900 and 1950 ft, respectively.  A taxiway at the 
left side of the arc on Runway 30 disallowed the placement of microphones at 90 and 105 
degrees.  The microphone at 900 ft and 135 degrees, designated as N2, was placed in a 
location with an approximate 5 ft depression.  Line-of-sight blockage was observed at 
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this location.  As a precaution, an additional microphone, N2A, was placed at 900 ft and 
140 degrees, which did not have line-of-sight blockage.  

As mentioned in Section 2.1.5, centerline microphones were to be ideally placed directly 
behind the aircraft at approximately 1,500, 3,000 and 4,000 ft to quantify the drop-off in 
sound level.  However, to assist the FAA PARTNER COE low frequency noise study, the 
3,000 ft centerline microphone was moved to a location at 3,600 ft.  As a result, the 4,000 
ft centerline microphone was moved to 4,600 ft.  An additional centerline microphone 
was also added at 2,600 ft.  The resulting IAD, Runway 30-specific microphone setup is 
shown in Figure 17.   
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Figure 17.  Final Instrumentation Locations 
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3.2 Aircraft Tracking System 
 
A digital video tracking system was used to determine location of the aircraft brake 
release point, point of lift-off and aircraft acceleration profile.  The system utilized the 
local Cartesian coordinate system discussed in the previous Section.  The X, Y, and Z 
position of the aircraft must be known to track the aircrafts’ movement on the runway.  
The assumption that the aircraft followed the runway centerline during take-off roll 
indicated that the Y-coordinate would be at a constant value of zero.  The digital video 
tracking system is capable of defining the X and Z coordinates of the aircraft during take-
off roll. 
 

 
Figure 18.  Digital Video Tracking System 

 
3.2.1 Specifications 

The digital video tracking system uses two Canon Optura digital video cameras.  The 
cameras have a 720 by 480 pixel Charged Couple Device (CCD) and create a video 
image stored on the mini-DV tape medium.  Installed on the cameras are Kenko wide-
angle lenses (Model VC-050Hi), which allow for a usable viewing angle of 
approximately 60 degrees.   

For determination of an aircraft acceleration profile, the tracking system required a time 
coordination sub-system.  The time coordination sub-system is comprised of a TrueTime 
time code generator (Model 705-326), a laptop computer, and a LED box mounted in 
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view of the camera.  The basic principle of the timing coordination system is that for 
every tracked object, the exact time of all the frames in both cameras must be known.  To 
accomplish this, DOS software was developed and installed onto a laptop computer to 
communicate with the TrueTime time code generator and LED box.  The DOS software 
instructs the time code generator to send a precisely known timing pulse to the LED box.  
When the time code generator receives the signal, a voltage is sent to the LED box, the 
LED illuminates, and the camera captures this image.  The DOS software records the 
time at which the timing pulse is sent to the LED box. 

Optical targets are manually placed in the field of view of the cameras.  Each camera 
must have two targets in its field of view during the entire event of interest.  One target, 
referred to as the Direct Target, determines the pitch and yaw of the camera relative to 
the coordinate system.  The other target, referred to as the Angle Target, is used together 
with the Direct Target to determine the roll of the camera relative to the coordinate 
system.  An important feature of the system is that the cameras can be rotated between 
events of interests - as long as two targets are in view of the camera, the system software 
can determine the roll, pitch and yaw of the camera.  The Optical Targets are 2 ft square 
plywood boards with alternating 1 ft black and white squares on one side and a support 
and mounting structure on the other side.  The Optical Targets are designed to mount on 
top of standard consumer-grade photography tripods.  When mounted, the Optical 
Targets were two to three feet above the ground.   

3.2.2 Locations 

A digital video tracking system camera (TRACK1 in Figure 17) was placed at 
approximately 1100 ft from the southern side of Runway 30’s centerline.  TRACK1 
captured the aircraft at its brake release point within its field of view.  A second digital 
video tracking system camera (TRACK2) was placed approximately 2500 ft from the 
northern side of Runway 30.  This setup allowed a combined field of view of about 5,500 
ft of the runway allowing the cameras to capture the entire take-off roll profile and lift-off 
points for the majority of aircraft types. 

3.3 Portable Weather Stations 
 
3.3.1 Specifications 
 
A Qualimetrics Transportable Automated Meteorological Station (TAMS) was used to 
measure wind speed, wind direction, relative humidity, and air temperature at one-second 
intervals.  A complete TAMS system consists of a sensor unit and a control/display unit 
that displays real time meteorological data.  The battery-powered stations are portable 
and well suited for remote sampling.  Wind speed can be measured from a stall speed of 2 
mph, to a maximum of 55 mph, with an accuracy of 1 mph or 5% of range (whichever is 
greater) and a resolution of 1 mph.  Wind direction can be measured a full 360 degrees 
with a root mean standard error of 18 degrees and a resolution of 10 degrees. 
Temperatures can be measured from –9 to 110 degrees Fahrenheit with an accuracy and 
resolution of 1 degree.  Relative humidity is accurate to within 3%, with a resolution of 
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1%.  The unit was placed on a tripod at a height of 4 ft.  Data from the control unit is 
automatically saved onto a Hewlett Packard Model 200LX palmtop computer.  
 

 
Figure 19.  Transportable Automated Meteorological Station (TAMS) 

 
3.3.2 Locations 
 
TAMS was positioned at the Test Director’s location (TD/ TL in Figure 17) so that wind 
speeds could be monitored before and during an event.  The Test Director was able to 
easily determine if an event was good/no good based on pre-determined wind speed 
criteria. 
 
3.4 Tail Logging Instrumentation 
 
3.4.1 Specifications 
 
Standard binoculars were used to log tail numbers during measurements.  Aircraft tail 
numbers, event start/stop times, event identification, aircraft and engine types were 
handwritten onto a log sheet (see sample in Appendix C). 
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Figure 20.  Primary Tail Number Logger 

 
3.4.2 Locations 
 
Two field personnel observed and logged the tail number of each test aircraft.  The 
primary logger was positioned alongside the Test Director.  A secondary logger was 
positioned at the digital video tracking system location south of Runway 30.   
 
3.5 Other Instrumentation 
 
The differential global positioning system (dGPS) was used prior to measurements to 
identify instrumentation locations to within a few inches.  Section 2.2.3 and 3.1.2 
discusses the use of this system. 
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Figure 21.  Differential Global Positioning System (dGPS) Receiver Antenna 

 
3.5.1 Specifications 

 
The dGPS is designed around two single-frequency Novatel Model RSAAB SF3400E 
GPS receivers and two GLB Model SNTR150 transceivers.  The two 25-watt GLB radio 
transceivers are tuned to a frequency of 136.325 MHz and together with a graphical user 
interface (GUI) installed on a laptop computer, allow system initialization, real-time 
position display, and data storage.  More detailed specifications of the dGPS can be found 
in the Differential Global Positioning System User’s Guide8.  
 
3.5.2 Locations 
 
The dGPS system was used for conducting the pre-measurement site survey as discussed 
in Section 3.1.2. 
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4   MEASUREMENT PROCEDURES 

The following section describes the procedures for a typical day of measurements.  
Measurements took place during October 2004 and consisted of 10 days of data 
collection.  Figure 22 below summarizes the measurement schedule.   

 
 

Figure 22.  Measurement Schedule 
 
4.1 NASA Acoustic Vans 
 
4.1.1 Deployment 
 
Prior to measurements each day, a calibration tone comprised of a sine wave of 124 dB at 
250 Hz was applied to each NASA microphone and the resultant signal was recorded.  
White noise was then passed through the system and also recorded.  The system clocks 
were automatically time synchronized using GPS.  The Test Director was notified once 
calibration was complete and that the acoustic vans were standing by for data collection. 
 
4.1.2 During Measurements 
 
When the Test Director announced the event number and “data on” (see Section 4.6.2) 
over 2-way radio, data collection commenced on both NASA acoustic vans.  Field 
personnel from the vans recorded the event number.  Real time data were monitored to 
make certain systems functioned normally and to detect potential contamination.  At the 
end of each measurement day, the same calibration tone used at the beginning of the day 
was applied to the microphones and recorded to ensure the system’s input sensitivity had 
not changed. 
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4.2 Volpe Acoustic Measurement Systems 
 
4.2.1 Deployment 

Prior to measurements each day, a calibration tone comprised of a sine wave of 94 dB at 
1 kHz was applied to each portable acoustic system and the resultant signal was recorded.  
A microphone simulator, used to measure the noise floor of the system, was then applied 
to the system and recorded.  The system clocks were then synchronized.  Time 
synchronization was accomplished using a digital wristwatch, synchronized to the 
TrueTime time code generator used in the digital video tracking system (Section 3.2.1).  
Data acquisition began upon completion of calibration and time synchronization.  The 
Test Director was then notified that calibration was complete and measurements with the 
portable acoustic systems had been initiated. 

4.2.2 During Measurements 

The portable acoustic measurement system recorded data continuously from deployment 
until the end of the measurement day.  During periods where no measurements were 
made (e.g., when aircraft did not depart from Runway 30), functionality of the systems 
was periodically checked.  These quality assurance checks consisted of a power check, 
cable connection check, and data recording check.  At the end of the measurement day, 
the same calibration tone used at the beginning of the day was applied to each portable 
acoustic measurement system and recorded to ensure the system’s input sensitivity had 
not changed. 

4.3 Digital Video Tracking System 
 
4.3.1 Deployment 
 
Prior to measurements, a manual survey of the vertical positioning of the cameras and 
optical targets was completed.  Using a transit (and its associated tripod and leveling 
devices) and a measuring stick, the vertical positions of the cameras and targets were 
measured.  Measured positions were noted in a log sheet to be used for latter data 
processing.   

At the beginning of each measurement day, camera systems were set up, heights of the 
center of the camera lens and targets were measured, and the clock on each camera was 
checked to ensure the correct time was displayed.  The system laptop computer and the 
TrueTime time code generator were then set-up and the LED indicator was tested for 
functionality.  Upon completion of deployment and testing, the Test Director was notified 
that deployment was complete and the Digital Tracking System was ready for data 
collection. 
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4.3.2 During an Event 

When the Test Director transmits over two-way radio that an event was about to begin, 
camera operators immediately used the DOS program (see Section 3.2.1) to send an LED 
signal to the cameras.  Operators confirmed the LED indicators and entered the event 
number into the laptop computer.  The laptop computer automatically logged the time 
associated with the LED indicator.   

4.4 Meteorological Station 
  
4.4.1 Deployment 

The TAMS meteorological system was set up at the Test Director’s location.  The system 
clock was synchronized using a TrueTime time code generator.  The TAMS unit began 
collecting data immediately after the system was deployed.   

4.4.2 During an Event 

The TAMS system recorded data continuously from deployment until the end of the 
measurement day.  Real time wind speed was also displayed on the control unit.  The 
Test Director used the TAMS system as a guide to help judge whether an event was 
good/no good due to wind speeds.  As recommended by AIR 1845, any event in which 
the wind speed exceeded 15 knots (approximately 18 mph) was considered no good.   

4.5 Aircraft Tail Number Loggers 
 
4.5.1 Deployment 

Prior to measurements both tail number loggers positioned themselves in a location that 
provided clear view of the aircraft tail numbers.  Once both loggers were in position, the 
Test Director was notified. 

4.5.2 During an Event 

During an event, both tail loggers noted the event start time, which was when the Test 
Director announced, “data on.”  The tail loggers also recorded the end time, event ID, tail 
number, airline, number of engines, body type, engine configuration, starting point (see 
Section 3.1.2), and type of take-off roll (see paragraph below) onto log sheets.  The tail 
number loggers noted their best guess of the aircraft type as well.  An example of the log 
sheet is included in Appendix C. 

There were three types of start of take-off roll: rolling, static, and continuous as follows:   

• A rolling start occurred when the aircraft reached the runway end to initiate take-
off and came to a full stop.  Brakes were then released and engine run-up began.  
The aircraft begins its ground roll as engine power was spooled up.  In this 
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scenario the aircraft may not achieve take-off thrust until several hundred feet 
down the runway as a result of the engines’ spool-up time.  This was the most 
common type of take-off roll.   

• A static start occurred when the pilot applied full take-off power, holding the 
aircraft brakes until take-off power was achieved, then released the brakes and 
initiated ground roll.  In this scenario, take-off power was achieved closer to the 
end of the runway.  This was more common for larger aircraft such as the Boeing 
747 and 777. 

• The third type of take-off roll, continuous, occurred when the aircraft approached 
the runway but did not come to a full stop.  Engine run-up was noticed midway 
during the aircraft’s turn onto the runway.  The aircraft remained in motion from 
the turning point and throughout the entire ground roll.  In this scenario the 
aircraft may not achieve take-off thrust until several hundred feet after alignment 
on the runway, due to the combination of the aircraft moving and the engines’ 
spool-up time. 

There was a considered possibility that the take-off roll type could affect the 
characteristics of a directivity pattern.  As a result, the tail number loggers noted the type 
of take-off roll for each event. 

4.6 Test Director 
 
4.6.1 Deployment 
 
The position of the Test Director was chosen to be in the vicinity of the end of Runway 
30 where a potential event could be spotted and external contamination could be most 
easily judged.  This location was also far enough away from the microphones to avoid 
external contamination of the data. 

Prior to deployment, the Test Director synchronized his watch with the TrueTime GPS 
time code generator.  Communications with field personnel at all systems were facilitated 
by the Test Director to determine when all systems were deployed and ready for data 
collection.  Once the Test Director acknowledged all systems are ready, a 2-way radio 
broadcast was sent to field personnel informing them that all systems are “go” and 
measurements were to commence. 

4.6.2 During an Event 

The Test Director announced twice to all field teams, via 2-way radio, the start of an 
event and the event number.  The Test Director then watched and listened for external 
noise contamination during the event.  The director also monitored the wind speed in real 
time via the TAMS meteorological system.  If the event was deemed “no good” (due to 
potential external contamination or high wind speeds), the Test Director broadcast this 
message to all field personnel.  The Test Director also noted in the log sheet (included in 
Appendix B), the event ID, start and end times, average wind speed, idling aircraft in 
close proximity to the event aircraft, and any comments on external noise.   
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Figure 23 below summarizes the task sequence during an event. 
 

Turn on acoustic
instrumentation for

recording

Begin recording, activate
LEDs, and confirm LEDs

have lit properly

Record aircraft tail number
and event number

Potential Event Sighted Before Event After EventDuring Event

Test Director Annouce event number and
event time twice,

hand log event number
event time, average wind
speed, and nearby idling

aircraft

Note event time and
event number

Enter in event number in
laptop

Note the event time, airline,
number of engines, engine
configuration, aircraft type,

and starting point

Watch and listen for
external contamination to

determine if event is good/
no good

Continue recording,
maintain radio silence

Ensure digital cameras are
recording,

maintain radio silence

Maintain radio silence

Repeat event number,
declare event is good/no

good, hand log any
comments on potential
contamination and also

issues on field equipment

Confirm event number,
turn off acoustic
instrumentation,

report to test director
contamination/

instrumentation issues

Confirm event number, stop
recording on cameras,
report to test director

contamination/
instrumentation issues

Confirm event number,
report to test director

contamination/
instrumentation issues

Announce incoming
potential event

Test
Director

NASA
Acoustic

Vans

Video
Tracking
System

Tail Number
Loggers

 
 

Figure 23.  Task Sequence for Each Event 
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4.7 Communications 

Person-to-person communication within individual organizations was facilitated using 
Nextel 2-way radios.  Event information and group broadcasts were facilitated using 2-
way CB radios.  During an event, there were no radio communications, unless the Test 
Director deemed the event “no good.” 

4.8 Quality Assurance 
 
Throughout field measurements, logs were maintained for each system.  For example, 
calibration data were not only recorded by the system, but also manually included in field 
logs.  Field logs also contained information on file names, measurement times on each 
file, the dates and times of measurements and event numbers.  To help supplement the 
field logs, field photography, diagrams, and maps were used. 
 
Special attention was given to detecting external contamination.  Test directors noted any 
noise sources, e.g., overhead aircraft, construction and airport vehicles that could 
potentially contaminate an event.  Times when the potential contamination event 
occurred were also noted.   
 
For all instrumentation, raw data were backed up as appropriate at the end of each 
measurement day to prevent loss of data. 
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5 DATA REDUCTION AND ANALYSIS 
 
During field measurements data were collected for a total of 508 departure events.  Of the 
508 events, 390 events were identified as “good events.”  Good events were those in 
which field personnel did not observe any potential noise contamination (e.g., noise from 
overhead aircraft, construction, or airport security vehicles, etc.).  The 390 events 
included a wide variety of aircraft types from turbo-propeller aircraft to four-engine, wide 
body aircraft.  A summary of the events is presented in Tables 4 through 6. 
 

Table 4.  Totals for Recorded Departure Events 
 

Aircraft Model 
No. of 
Events 

No. of 
Engines 

Wing / 
Fuselage 
Mounted 

Engine 
Type 

Airbus A310 1 2 Wing Turbo-Jet 
Airbus A319 20 2 Wing Turbo-Jet 
Airbus A320 48 2 Wing Turbo-Jet 
Airbus A330 4 2 Wing Turbo-Jet 
Airbus A340 5 4 Wing Turbo-Jet 
Boeing 717 3 2 Fuselage Turbo-Jet 
Boeing 737 22 2 Wing Turbo-Jet 
Boeing 747 7 4 Wing Turbo-Jet 
Boeing 757 14 2 Wing Turbo-Jet 
Boeing 767 27 2 Wing Turbo-Jet 
Boeing 777 14 2 Wing Turbo-Jet 

Bombardier CL-600 108 2 Fuselage Turbo-Jet 
McDonnell Douglas DC-9 25 2 Fuselage Turbo-Jet 

Turbo-Props 14 2 Wing Turbo-Prop 
Other 78 varies varies varies 

Total: 390 
    

 
 

Table 5.  Totals for Turbo-Propeller Aircraft Events 
 

Aircraft Model 
No. of 
Events 

No. of 
Engines 

Wing / Fuselage 
Mounted Engine Type 

Beech B1900D 1 2 Wing Turbo-Prop 
Cessna 425 1 2 Wing Turbo-Prop 

Rockwell 690B 2 2 Wing Turbo-Prop 
Saab-Scania SF340A 10 2 Wing Turbo-Prop 

Total: 14 
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Table 6.  Totals for Aircraft in the “Other” Category 
 

Aircraft Model 
No. of 
Events 

No. of 
Engines 

Wing-
mounted / 
Fuselage 
mounted Engine Type 

Hildebrand Glaster 1 1 Nose Reciprocating 
P Z L Koliber 150A 1 1 Nose Reciprocating 

Cessna 310Q 1 2 Wing Reciprocating 
Piper PA-31-235 Navajo 1 2 Wing Reciprocating 

Piper PA-31-350 1 2 Wing Reciprocating 
BAE 125 SERIES 800A 4 2 Fuselage Turbo-Jet 

BAC 1-11 419/EP 1 2 Fuselage Turbo-Jet 
Cessna 560XL 1 2 Fuselage Turbo-Jet 

Cessna 560 1 2 Fuselage Turbo-Jet 
Cessna 750 3 2 Fuselage Turbo-Jet 

Dassault FALCON 20 1 2 Fuselage Turbo-Jet 
Dassault FALCON 2000 1 2 Fuselage Turbo-Jet 

Embraer EMB-135 1 2 Fuselage Turbo-Jet 
Embraer EMB-135KL 1 2 Fuselage Turbo-Jet 

Embraer EMB-145 2 2 Fuselage Turbo-Jet 
Embraer EMB-145LR 19 2 Fuselage Turbo-Jet 
Embraer EMB-145XR 1 2 Fuselage Turbo-Jet 

Grumman G-1159 1 2 Fuselage Turbo-Jet 
Gulfstream G-1159A 2 2 Fuselage Turbo-Jet 

Gulfstream G-IV 5 2 Fuselage Turbo-Jet 
Gulfstream G-V 1 2 Fuselage Turbo-Jet 

Hawker Siddely 125 SERIES 
700A 1 2 Fuselage Turbo-Jet 

Israel Aircraft 1124A 1 2 Fuselage Turbo-Jet 
Israel Aircraft G-200 1 2 Fuselage Turbo-Jet 

Lear Jet 24D 1 2 Fuselage Turbo-Jet 
Lear Jet 45 1 2 Fuselage Turbo-Jet 
Lear Jet 55 1 2 Fuselage Turbo-Jet 
Lear Jet 60 2 2 Fuselage Turbo-Jet 

McDonnel Douglas MD-88 4 2 Fuselage Turbo-Jet 
Raytheon 400A 2 2 Fuselage Turbo-Jet 

Dassault FALCON 900 EX 1 3 Fuselage Turbo-Jet 
Dassault FALCON 900B 3 3 Fuselage Turbo-Jet 

Dassault MYSTERE-FALCON 50 3 3 Fuselage Turbo-Jet 
Vickers VC-10 1 4 Fuselage Turbo-Jet 

DORNIER 328-300 4 2 Wing Turbo-Jet 
Embraer ERJ 170-100 1 2 Wing Turbo-Jet 

BAE 146 SERIES 200A 1 4 Wing Turbo-Jet 
Total: 78 
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5.1 Data Reduction Process 
 
Continuous, one-third octave-band acoustic data, aircraft position information, tail 
numbers, and meteorological data were collected and processed.  This section discusses 
data reduction and aggregation. 
 
5.1.1 Acoustic Data 
 
Acoustic data collected by the NASA acoustic vans and portable acoustic measurement 
systems were processed using a Volpe-developed software program, NoiseloggerTM Data 
Analysis Tool (NDAT).  NDAT is a Windows-based program that uses one-third octave 
spectral time history data and event times as input and plots the overall sound pressure 
levels for each event.  The tool allows the user to visually inspect the recorded data for 
contamination not detected by field personnel.   
 

 
 

Figure 24.  NDAT Software Program 
 
The program also imports and displays all pertinent event information recorded in the 
field, including aircraft type, number of engines, and Test Director’s comments to aid the 
user.  Once the user has visually inspected the data for an event and has fine-tuned the 
event duration for metric computation, the program computes Sound Exposure Levels 
(LE) and Equivalent Sound Levels (Leq) for multiple averaging times.  The program is 
capable of computing results with multiple weighting options (A-weighting, C-weighting, 
Z-weighting -- or no weighting).  The majority of aircraft noise prediction models based 
on SAE-AIR-1845 use the A-weighted Sound Exposure Level (LAE) metric.  As a result, 
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LAE was the primary metric used for this study.  An analysis (discussed in Section 5.3) 
later indicated there is little sensitivity to the use of either LAeq or LAE. 
 
5.1.2 Aircraft Tail Numbers 
 
Aircraft tail numbers bridged the relationship between the measured acoustic data and 
specific aircraft type.  Tail numbers obtained from field loggers were entered into an 
aircraft registration website9 to identify the aircraft type for each event.  Comments noted 
by the primary and secondary tail loggers such as aircraft type, number of engines, engine 
configuration, and best guess of aircraft model were compared to results from the 
registration website to ensure the proper aircraft was identified.    
  
5.1.3 Meteorological Data 
 
Meteorological data obtained during the study characterized the wind speed and direction 
at the measurement site.  Aside from a single day where measurements were postponed 
because of high winds, wind conditions during the measurement period were relatively 
calm.  As noted in Section 4.4.2, AIR-1845 recommends that data should not be collected 
when wind speeds exceed 15 knots (approximately 18 mph).  Test Directors monitoring 
the TAMS meteorological unit did not detect wind exceeding 18 mph during 
measurements of any of the events.  An analysis of the meteorological data confirmed 
that at no time during the measurement period did wind speeds exceed 13.3 mph.  Figure 
25 displays the highest instantaneous wind speed recorded each day during 
measurements.   
 

 
Figure 25.  Maximum Wind Speeds during Measurement Days 
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5.1.4 Quality Assurance 
 
The quality of the measured data is crucial since the data will be used in development of 
the updated AIR-1845 directivity algorithm as well as in future versions of INM/AEDT.  
Aircraft tail numbers recorded by the primary and secondary tail number loggers were 
compared to ensure the proper aircraft were identified.  Special care was given to 
inspecting the acoustic data during processing to ensure no external contamination was 
included during calculations of LAE and LAeq.  For quality assurance purposes, the 
following data were not included in final analysis: 
 

• Data from events for which contamination was evident during visual inspection of 
the event’s sound level time history 

• Data from events for which aircraft departed after turning from taxiway “Z” (i.e., 
the taxiway approximately 600 ft west of the most commonly used taxiway, “Q”) 

• Unavailable data during the malfunction of microphones, as identified by field 
personnel 

• Data collected from microphone N2 (see Section 5.1.5.3) 
• Data for aircraft in the “Other” category since there was either not a sufficient 

(i.e., representative) pool of events for each aircraft type or the aircraft type only 
represented a small part of the 2005 fleet 

 
5.1.4.1 Take-off Roll Type 
 
As discussed in Section 4.5.2, there was a considered possibility that the take-off roll type 
of an aircraft may affect the directivity pattern.  Field personnel noted the type of take-off 
roll for each event.  An investigation was conducted to determine if events with different 
take-off roll types affected directivity patterns.  Airbus A320 and Boeing 767 events were 
used for this investigation since these aircraft types had the largest sample of events in 
the Study.  Results were inconclusive.  Some tests showed “continuous roll” events 
exhibiting lower overall levels while other tests did not, but in general the results seemed 
to be somewhat random.  As a result, all take-off roll types were included in processing 
of final data. 
 
5.1.4.2 Line-of-Sight Blockage 
 
It was suspected that microphone N2 (900 ft microphone at 135 degrees) may be affected 
by line-of-sight blockage (see Section 3.1.2).  Completion of data processing confirmed 
that line of sight blockage significantly affected measured levels at this microphone.  
Overall sound levels at this location consistently showed lower levels than the adjacent, 
alternate microphone N2A (900 ft microphone at 135 degrees).  As a result, data 
collected from microphone N2 were excluded when developing directivity patterns. 
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5.1.4.3 Idling Aircraft and Terminal Noise   
 

Individual events where field personnel observed idling aircraft in the queue were 
compared to known acoustically clean events (i.e., those without idling aircraft).  The 
Airbus A320 and Boeing 767 events were again selected for this investigation.  The 
resulting comparisons did not show conclusive evidence that data collected was affected 
by idling aircraft in the queue. 
 
A preliminary investigation was also undertaken on individual events at microphone N1 
(900 ft microphone at 120 degrees) to investigate why there are often higher sound levels 
at this position, as compared to V1 (900 ft microphone at 240 degrees).  N1 and V1 are 
symmetrically located with respect to the runway centerline (Figure 26).  A comparison 
of LAeq spectral data was performed for microphones N1 and V1 in an attempt to quantify 
any potential effects.  Initial results showed that N1 was exposed to more sound level 
energy at certain frequencies.  This effect may be due to the fact that microphone N1 is 
physically located in closer proximity to noise emanating from the airport terminal, but 
further investigation is warranted.   

 

 
Figure 26.  Symmetrical Microphones N1 and V1 at 900 ft 

 
5.1.4.4 Data Collected at 1950 ft 
 
Data collected at 1950 ft were not compared to AIR-1845 but are included in Appendix E 
of this report.  This data were not included in the detailed final analysis because of 
insufficient signal to noise ratio due to: 1) Microphones at 1950 ft were partially located 
in the vicinity of building construction during measurements; and 2) Microphones V5 and 
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V6 were located in close proximity to the airport terminal.  Because symmetrical 
microphones were not present at 1950 ft as they were at 900 ft, data were unavailable for 
further investigation.   
 
 
5.2 Deriving Directivity Patterns 
 
Directivity patterns were created for each aircraft model measured during data collection.  
The following steps were used to derive the directivity patterns: 

 
1) Calculated LAE for data recorded at each microphone using the methodology 

explained in Section 5.1.1; 
2) Grouped resulting LAE by aircraft type; 
3) For individual aircraft types, calculated the arithmetic mean LAE for events at 

each microphone; and 
4) For individual aircraft type, plotted the arithmetic mean LAE at each microphone 

location on polar plots as shown in the example Figure 27.   
 

 
Figure 27.  Mean LAE at 900 ft Microphone Locations for the Airbus A319 

 
5.2.1 Noise Metrics  
 
During processing of the acoustic data, several different metrics were derived, including 
A-weighted equivalent sound level LAeq (for multiple averaging times), A-weighted 
Sound Exposure Level (SEL, denoted by LAE) and un-weighted exposure level (LZE).  An 
analysis was undertaken to compare data processed using the different metrics.  Example 
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results, displayed in Figures 28 and 29, indicate there is little sensitivity to the use of 
either LAeq or LAE.  This may also suggest that the level at LASmx predominantly defines 
the directivity pattern.  Analysis using the un-weighted exposure level showed more of a 
pronounced indent at 180 degrees. 
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Figure 28.  Comparison between Different Metrics Used to Process A320 Events 

 
Figure 29.  Comparison between Different Metrics Used to Process B767 Events  
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5.2.2 Normalizing Data to 285-Degrees 
 
The current AIR-1845 directivity pattern (shown in Figure 30) is presented as 
“corrections” as opposed to absolute levels.   
 

 
Figure 30.  AIR-1845 Directivity Pattern at 900 ft 

 
To allow comparison with the AIR-1845 algorithm, the computed directivity patterns had 
to be converted into directivity corrections.  This conversion was accomplished by using 
the LAE data from the current study and normalizing it, by subtracting the level at the 
285-degree microphone from the levels at all other microphones.  Since the 1980 
algorithm prescribes a 0 dB correction at 285 degrees, normalizing the current data to the 
LAE at 285-degree level readily allows for comparison of the new data with the older 
algorithm.  Figure 31 shows an example of converting the directivity pattern from Figure 
27 to directivity corrections.  Note that normalizing absolute LAE to the 285-degree 
microphone did not change the shape of the pattern. 
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Figure 31.  Directivity Pattern for the Airbus A319 at 900 ft 

 
To confirm the reasonableness of the 0 dB correction at the 285-degree microphone, an 
analysis was performed to compare the measured versus INM-modeled values at that 
angle.  Take-off weight, thrust configurations, aircraft speed and altitude were obtained 
from the Aircraft Communication Addressing and Reporting System (ACARS) of a 
major U.S. carrier operating at IAD during the study.  ACARS is a digital data link 
transmitted from the aircraft via VHF radio to individual airline archives.  Temperature 
data were obtained from the TAMS meteorological station.  These data were then entered 
into INM and computed for a variety of aircraft where ACARS data were available.  The 
resultant comparisons are presented in Table 7.  The analysis shows overall, good 
agreement between measured versus modeled results at 285-degrees. 
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Table 7.  Measured vs. INM-Modeled Comparison for a Microphone at 285-Degrees 
 

Event Aircraft Type Measured Modeled Delta
164 A319 88.3 89.1 -0.8
271 A320 88.3 91.1 -2.8
207 A320 88.8 91.0 -2.2
303 A320 88.9 92.0 -3.1
306 A320 89.1 92.0 -2.9
372 B737 87.0 88.1 -1.1
450 B747 96.3 97.4 -1.1
277 B757 89.9 91.3 -1.4
208 B757 90.7 91.3 -0.6
225 B767 95.0 97.0 -2.0

Average: 90.2 92.0 -1.8  
 

5.3 Comparison of Newly Developed Patterns with AIR-1845 
 
An analysis was conducted to determine if the newly developed directivity patterns were 
different from the AIR-1845 directivity patterns.  T-tests were utilized to determine if the 
data measured at each angular offset position were statistically different from the SAE-
1845 adjustment at that position.  These tests answered the question: “Is there at least a 
95% probability that the mean of the data is statistically similar to the value of the AIR-
1845 adjustment?” 
 
The average measured corrections and corresponding +-95% CI are plotted along with 
the AIR-1845 directivity pattern (displayed as a continuous, gray line) and shown in 
Figures 34-46.  Points which are statistically similar to the reference are shown in blue, 
points are not statistically similar to the reference are shown in red.   
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Figure 32.  Airbus A319 Directivity Pattern at 900 ft (16 Events) 

 
Figure 33.  Airbus A320 Directivity Pattern at 900 ft (48 Events) 
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Figure 34.  Airbus A330 Directivity Pattern at 900 ft (4 Events) 

 
Figure 35.  Airbus A340 Directivity Pattern at 900 ft (5 Events) 
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Figure 36.  Boeing 717 Directivity Pattern at 900 ft (3 Events) 

 
Figure 37.  Boeing 737 Directivity Pattern at 900 ft (20 Events) 
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Figure 38.  Boeing 747 Directivity Pattern at 900 ft (7 Events) 

 
Figure 39.  Boeing 757 Directivity Pattern at 900 ft (12 Events) 
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Figure 40.  Boeing 767 Directivity Pattern at 900 ft (27 Events) 

 
Figure 41.  Boeing 777 Directivity Pattern at 900 ft (12 Events) 
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Figure 42.  McDonnell Douglas DC9 Directivity Pattern at 900 ft (23 Events) 

 
Figure 43.  Bombardier CL600 Directivity Pattern at 900 ft (104 Events) 
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Figure 44.  Turbo-Propeller Aircraft Directivity Pattern at 900 ft (14 Events) 

 
An analysis of the comparisons concluded the following: 
 

• The majority of jet aircraft show similarity with the current standard around 180 
degrees, but differ in the “lobes” from 120-150 and 210-240 degrees 

• The Boeing 717 is the only aircraft, which exhibits statistical similarity at all polar 
angles with the AIR-1845 algorithm.  This , however, is a result of  the fact that 
there were only 3 events for this aircraft 

 
5.4 Proposed Updated Directivity Adjustment 
 
The proposed, updated SOTR directivity adjustments were computed from the data 
through a fleet-weighted average.  First, the arithmetic average noise level was computed 
for each aircraft type at each azimuth angle from 90 to 180 degrees (symmetrical 
directivity was assumed).  Then the SOTR directivity noise levels were normalized to 0.0 
dB at 285 degrees.    
 
Through the comparison of the average, aircraft-specific SOTR directivities, it became 
apparent that a single directivity adjustment would be insufficient in describing the 
behind SOTR noise levels of today’s fleet.  Since turboprop’s SOTR directivities were 
significantly different from the directivities of jet aircraft, they were evaluated separately.  
Two sets of SOTR directivity adjustments were developed; one for jet aircraft, and the 
other for turboprop aircraft.    
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For jet aircraft, a weighted-regression was used to compute the SOTR directivity 
adjustment.  The weighting factor was chosen to modify the regression such that aircraft 
were represented proportionate to their relative operational presence in the 2005 fleet*. 
The individual aircraft types measured represented 85% of the aircraft types in the 2005 
fleet. Descriptions of the aircraft fleet used for these derivations are presented in 
Appendix F of this report.   
 
For turboprop aircraft, a more standard regression fitting process was used to develop the 
SOTR directivity adjustment.  The regression was computed using all data from the 
events measured.  No weighting factor was applied, as the measured data set was smaller 
(14 events) and could not adequately represent the majority of the fleet of turboprop 
aircraft.    
 
This resulted in two sets of updated SOTR directivity adjustments.  The updated SOTR 
directivity adjustment for jet aircraft is represented by the following equation: 
 
 
 
 
 
           (3) 
 
 
 
 
 
 
The SOTR directivity adjustment for turboprop aircraft is represented by the following 
equation: 
 
 
 
 
 
 
           (4) 
 
 
 
 
 
For both jet and turboprop aircraft, the proposed SOTR directivity adjustments are 0.0 dB 
for azimuth angles between 0 and 90 degrees, and are symmetrical on either side of the 
                                                 
* AEDT Common Operations Database (COD) for the FAA Destination 2025 environmental inventory of 
the calendar year 2005. 
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aircraft.  The smoothing algorithm used at distances greater than 2500 ft for the current 
SOTR implementation was not used for the proposed implementation.   
  
The proposed and current SOTR directivity adjustments are presented in Figure 45.  
Furthermore, the differences between the proposed and current SOTR directivity 
adjustments are presented in Figure 46.    
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Figure 45.  The Current and Proposed behind Start of Take-off Roll Directivity 
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Figure 46.  The Differences between the Current and Proposed behind Start of 

Take-off Roll Directivity Adjustments for Jet and Turboprop Aircraft 
 
5.5 Additional Directivity Investigations 
 
Several alternative SOTR implementations for jet aircraft were investigated.  Using the 
IAD data set, the jet SOTR directivity data were grouped according to a variety of 
different parameters, and average SOTR directivity adjustments were developed for each 
of the groups.  The SOTR directivity data for turboprop aircraft were not further 
subdivided, because of the small number of turboprop departures measured at IAD.   
 
One approach was to group aircraft according to engine separation distance, working off 
the assumption that engine location was dominant influence on the SOTR directivity.  It 
was anticipated that aircraft with similar engine mounting configurations (i.e., fuselage-
mount and wing-mount) might have similar directivity patterns.  This analysis utilized t-
tests to determine if the measured data at each angular offset were similar from aircraft to 
aircraft.  For example, the mean correction at 120 degrees for the A319 was compared to 
the mean correction for the A320 at 120 degrees.  An independent sample t-test was 
performed to determine if the difference between these two means was statistically 
significant (i.e., ≠0) at the 0.05 level.  These tests answered the question: “Is there at least 
a 95% probability that the means of these two data sets are statistically similar?”  This 
test was performed at each offset angle for all possible aircraft combinations. 
 
Table 8 shows the number of angular offset points (out of a total of 11) where the average 
adjustments are similar for each combination of aircraft.  Those aircraft combinations that 
had 10 or 11 similar angles are highlighted in yellow.  Those with 9 similar angles are 
highlighted in a lighter yellow. 
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Table 8.  No. of Angular Offset Points which Exhibit Similarity between Aircraft 
 

AIR1845 CL600 DC9 B717 B737 A319 A320 B757 B767 A340 A330 B777 B747 Prop
AIR8145 2 2 11 7 8 1 5 1 4 3 2 2 4
CL600 2 3 11 3 4 2 2 1 3 1 0 1 5
DC9 2 3 10 4 1 2 2 1 3 2 2 3 2
B717 11 11 10 10 11 10 10 5 7 4 4 5 11
B737 7 3 4 10 11 11 10 3 9 3 1 3 9
A319 8 4 1 11 11 10 11 3 8 2 3 3 10
A320 1 2 2 10 11 10 11 3 8 2 1 2 8
B757 5 2 2 10 10 11 11 9 11 7 4 3 10
B767 1 1 1 5 3 3 3 9 11 7 5 8 6
A340 4 3 3 7 9 8 8 11 11 9 8 9 10
A330 3 1 2 4 3 2 2 7 7 9 11 10 4
B777 2 0 2 4 1 3 1 4 5 8 11 11 2
B747 2 1 3 5 3 3 2 3 8 9 10 11 2
Turbo-Prop 4 5 2 11 9 10 8 10 6 10 4 2 2  

 
From this table, five groups of aircraft with statistically similar directivity patterns 
emerge: 
 

1. Fuselage-mounted aircraft - DC9, B717, and CL600 
2. Small wing-mounted aircraft - B737, A319, A320 and B757 
3. Intermediate wing-mounted aircraft - B767  
4. Large wing-mounted aircraft - A330, B777, A340 and B747 
5. Turbo-propeller aircraft 

As anticipated, aircraft with similar engine mounting configurations exhibit statistically 
similar directivity patterns.  Group 1 consists of aircraft with fuselage mounted-engines.  
Groups 2, 3 and 4 all consist of aircraft with wing-mounted engines, but the size of the 
aircraft seems to be the contributing factor between the different groups.  Although turbo-
propeller aircraft exhibit some similarity to many of the other aircraft, they were 
considered separately because the general shape of the directivity pattern was not visually 
similar to any other (i.e., the directivity pattern for the turbo-propeller aircraft does not 
exhibit a “dip” at 180 degrees). Upon examination of these groupings,  the importance of 
horizontal separation distance between engines was explored as a means to quantify the 
differences between the above groups.  Table 9 presents the engine separation distances 
for each aircraft type. 
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Table 9.  Horizontal Separation Distances between Engines 
 

Group Aircraft Type

Approx. Distance 
Between Outer-Most 

Engines (ft)
1 CL-600-2B19 13.9
1 DC-9-40 18.4
1 DC-9-30 19.7
1 DC-9-50 20
1 B717-200 21
1 DC-9-82 21
2 B737-500 38
2 B737-700 38
2 B737-800 38
2 B737-300 42
2 A319-100 42.1
2 A320-200 42.3
2 B757-200 48
3 B767-300 56
4 B777-200 64
4 A330-200 68
4 A330-300 68
4 A340-300 66.0 (inner), 134.0 (outer)
4 B747-400  80.0 (inner), 136.0 (outer)  

 
The table shows that the same groupings exist for both aircraft directivity pattern and 
engine separation distance.  The groupings can be described by separation distance as 
follows: 
 
< 25 ft   - Group 1 type pattern 
35-50 ft  - Group 2 type pattern 
50-60 ft - Group 3 type pattern 
>60 ft   - Group 4 type pattern 
 
The majority of the aircraft fleet (73%) fell into Group 2.  As expected, this  resulted in a 
SOTR directivity adjustment curve very similar to the proposed jet SOTR directivity 
adjustment from Section 5.4 (within 1.5 dB).  While the SOTR adjustments for Groups 1, 
3 and 4 all differed from the proposed jet SOTR adjustment (up to 5 dB), the aircraft in 
these groups represent a small percentage of the fleet (12%, 5% and 10%, respectively).   
 
Another approach was to group the data according various engine parameters.  Average 
thrust level, fan/engine diameter, by-pass ratio, nacelle geometry (short or long exhaust 
duct), and peak frequency based on a Strouhal relationship (i.e., peak frequency ~ jet 
velocity/jet diameter) were all considered.  When comparing the directivities across 
different aircraft types, the aircraft with a peak frequency above 120 Hz had a prominent 
notch or drop-off in the noise levels directly behind the aircraft.  This same relationship 
was also seen in aircraft with average thrust values below 35,000 lb and aircraft with 
fan/engine diameters smaller than 2 meters.  This effect was independent of engine 
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mounting location, by-pass ratio and nacelle geometry.  Therefore the jet aircraft were 
sorted into two different categories: jets with a prominent notch (Group 5) and jets with 
an absent notch (Group 6).   The majority of the aircraft fleet fell into Group 5, which 
resulted in a SOTR directivity adjustment curve that was very similar to the proposed jet 
SOTR directivity adjustment from Section 5.4 (within 1.0 dB).  While the SOTR 
adjustments for Group 6 differed from the proposed jet SOTR adjustment (up to 5 dB), it 
represented a small percentage of the fleet (14%). 
  
The additional SOTR directivity adjustment investigations led to two significant 
observations.  First, the proposed jet SOTR directivity adjustment from Section 5.4 is a 
good  representation for the aircraft comprising the majority of the current fleet.  Second, 
depending on data availability, it may be worthwhile to investigate additional directivity 
curves or even aircraft-specific SOTR directivity curves.     

 
5.6 Case Studies 
 
5.6.1 Single Event Analysis 

 
The effects of the current and proposed update to the SOTR directivity adjustment (from 
Sections 1.1 and 5.4, respectively) were assessed on a single event basis in a prerelease, 
research version of AEDT (AEDT-alpha).  Individual departures for four jet aircraft 
(Boeing 737, Boeing 777, Airbus A320 and Airbus A330) and two turboprop aircraft 
(Beech 1900D and Saab SF340) from the IAD fleet were modeled in AEDT-alpha, and 
the sound exposure level (LAE) results were analyzed.  Because the behind SOTR 
adjustments are independent of aircraft type (other than the distinction between jet and 
turboprop engines), these six aircraft were chosen as representative aircraft, in order to 
illustrate the typical effect the proposed changes to the SOTR directivity adjustment.   
 
The LAE modeled results were computed at six different locations behind the start of 
take-off roll segment for each aircraft in AEDT (see Tables 10 and 11).  These analysis 
locations corresponded to measurement locations from the IAD study at different azimuth 
angles relative to the departure flight track.  The differences between the current and 
proposed SOTR adjustments are presented in Table 12.  These differences are equivalent 
to the expected difference between the SOTR algorithms presented in Equations 1 
through 4.  
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Table 10.  Modeled Noise Levels behind Take-off roll Using Current SOTR 
Adjustment 

 
  Mic (Angle Relative to Take-off Roll) 
Metric Aircraft V1 

(135º) 
V2 
(155º) 

V3 
(180º) 

V4 
(210º) 

V5 
(240º) 

V6 
(270º) 

LAE 
(dB) 

Boeing 
737 

98.1 97.7 89.6 98.2 97.2 96.0 

Boeing 
777 

106.1 105.9 97.7 106.2 105.1 103.5 

Airbus 
A320 

98.9 98.6 90.6 99.0 97.9 96.7 

Airbus 
A330 

103.0 102.7 94.6 103.1 102.0 100.9 

Beech 
1900D 

82.9 82.7 74.5 82.9 82.0 81.0 

Saab 
SF340 

91.4 91.0 82.7 91.3 90.6 89.7 

 
Table 11.  Modeled Noise Levels behind Take-off roll Using Proposed SOTR 

Adjustment 
 

  Mic (Angle Relative to Take-off Roll) 
Metric Aircraft V1  

(135º)  
V2 
(155º) 

V3 
(180º) 

V4 
(210º) 

V5 
(240º) 

V6 
(270º) 

LAE 
(dB) 

Boeing 
737 

97.0 94.4 89.1 95.6 95.9 95.5 

Boeing 
777 

105.0 102.5 97.1 103.7 103.8 103.1 

Airbus 
A320 

97.8 95.3 90.0 96.5 96.6 96.2 

Airbus 
A330 

101.9 99.4 94.0 100.5 100.8 100.4 

Beech 
1900D 

82.5 77.7 73.4 79.4 80.8 80.4 

Saab 
SF340 

90.8 85.9 81.7 87.6 89.5 89.3 
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Table 12.  Difference in Modeled Noise Levels for Two Different SOTR 
Implementations (Current – Proposed) 

 
  Mic (Angle Relative to Take-off Roll) 
Metric Aircraft V1 

(135º) 
V2 
(155º) 

V3 
(180º) 

V4 
(210º) 

V5 
(240º) 

V6 
(270º) 

∆LAE 
(dB) 

Boeing 
737 

1.1 3.3 0.6 2.6 1.3 0.5 

Boeing 
777 

1.1 3.4 0.6 2.5 1.3 0.4 

Airbus 
A320 

1.1 3.3 0.6 2.6 1.3 0.5 

Airbus 
A330 

1.1 3.4 0.6 2.5 1.3 0.5 

Beech 
1900D 

0.4 5.0 1.2 3.5 1.2 0.6 

Saab 
SF340 

0.5 5.0 1.0 3.7 1.1 0.4 

 
Table 12 verifies that the different SOTR adjustments were implemented consistently 
across all six aircraft analyzed.   
 
These single events were also run in a research version of INM 7.0a.  The SOTR 
adjustment implementation was confirmed to be consistent across INM and AEDT.  
Since AEDT-alpha does not support the capability to generate noise contours, noise 
contours were generated in the research version of INM 7.0a.   
 
LAE contours for the Boeing 737 jet aircraft were plotted in Figure 47, to illustrate the 
typical differences in sound level due using both the current and proposed SOTR 
directivity adjustment.  Similar results were observed for  Boeing 777, Airbus A320 and  
Airbus A330 jet aircraft.   
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Figure 47.  LAE Contours for the  Boeing 737 Jet Aircraft with the Current and 

Proposed behind Start of Take-off Roll Directivity Adjustments for Jet (70 to 85 
dB LAE in 5 dB increments) 

 
LAE contours for the Beech 1900D turboprop aircraft were plotted in Figure 48, to 
illustrate the typical differences in sound level due using both the current and proposed 
SOTR directivity adjustment.  Similar results were observed for the Saab SF340 
turboprop aircraft.  
 
 

 
Figure 48.  LAE Contours for the Beech 1900D Turboprop Aircraft with the 

Current and Proposed behind Start of Take-off Roll Directivity Adjustments for 
Turboprops (70 to 85 dB LAE in 5 dB increments) 

 

            Current SOTR 
 
            Proposed SOTR 

            Current SOTR 
 
            Proposed SOTR 
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For all six of the aircraft, the area for each of the 70 to 85 dB LAE contours decreased by 
0.5-2.0% with the proposed SOTR directivity adjustment when compared to the result 
with the current SOTR adjustment.  This decrease in contour area was limited to the area 
behind the start of take-off roll, as expected. 
 
5.6.2 Airport Analysis 
 
The effects of the proposed change to the behind start of take-off roll adjustment in 
AEDT and INM were investigated on a study-wide scale.  Three international airports 
(A1, A2, and A3) were modeled in the research version of INM 7.0a with both the 
current and the proposed SOTR directivity adjustment implementations.  All three 
airports have diverse fleet mixes with both jet and turboprop aircraft.   
 
The differences in day night sound pressure level (LDN) between the current and the 
proposed SOTR directivity implementation at three different airports are presented in 
Table 13.   
 

Table 13.  Difference in Modeled Noise Levels for Two Different                                                                                    
SOTR Implementations (Current – Proposed) at Three Different Airports 

 
Airport Level    

(dB LDN) 
Current SOTR 

(sq. mi.) 
Proposed SOTR 

(sq. mi.) 
Difference                         

(Current – Proposed, %) 
A1 55 84.517 83.948 -0.67% 
A1 65 14.448 14.288 -1.11% 
A2 55 70.449 70.02 -0.61% 
A2 65 12.815 12.648 -1.30% 
A3 55 92.991 92.486 -0.54% 
A3 65 16.188 16.1 -0.54% 

 
For all three airports, the area for each of the 55 and 65 dB LDN contours decreased by 
0.5-1.5%with the proposed SOTR directivity adjustment when compared to the result 
with the current SOTR adjustment.  This difference became smaller for quieter noise 
contours, which were farther away from the runways.  A similar trend was observed for 
maximum A-weighted sound pressure level (LASmx) contours at the three airports.   
  
While the overall area of each LDN contour is not drastically affected by the change of the 
SOTR directivity adjustment, the shape of the contour can be affected.  Contours near 
departure runway will be affected by the proposed SOTR directivity adjustment, as 
illustrated in Figure 49.  This would be particularly relevant at smaller airports dominated 
by turboprop operations.   
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  Figure 49.  LDN Contours at Airport A2 with the Current and Proposed behind 

Start of Take-off Roll Directivity Adjustments (55 to 75 dB LDN in 10 dB 
increments) 

            Current SOTR 
 
            Proposed SOTR 
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6 CONCLUSIONS AND RECOMMENDATIONS 
 
Based on the analysis of the data collected at IAD, it is concluded that the directivity 
patterns of modern aircraft appear to have only marginal similarities with the existing 
AIR-1845 directivity pattern.  A change in the behind start of take-off roll directivity 
adjustment implementation to the proposed implementation would benefit AEDT and 
INM.  The proposed adjustments would better represent the current aircraft fleet, and 
would allow for the directivity associated with jet and turboprop aircraft to be represented 
separately in the models.  While the effects of the proposed SOTR directivity adjustments 
may be negligible on some full-airport studies, it will allow for a more accurate 
representation of aircraft departure noise from the current fleet in communities and other 
noise sensitive areas located near airport runways.   
 



Behind Start of Take-off Roll Sound Level Directivity Study                                                                    Future Research 
                   

_____________________________________________________________________ 
 
  

67 
 

7 FUTURE RESEARCH 
 
While the proposed changes to the SOTR directivity adjustment implementation will 
better represent the departure noise generated by the current fleet in AEDT and INM, 
several steps can be taken to further advance this area of research.  First, an additional 
sensitivity analysis could be done for individual aircraft types, to identify (a) if some jet 
aircraft are better represented by the current SOTR adjustment instead of the proposed 
SOTR adjustment, and (b) if certain jet aircraft are better represented by aircraft-specific 
SOTR directivity adjustments.  Second, the IAD data set could be reprocessed; in order to 
establish a set of criteria for determining under what circumstances should additional 
SOTR directivity adjustments be used.  This could include, but is not limited to, the 
further assessment of the following parameters: engine separation distance; nacelle 
geometry; engine or fan diameter; by-pass ratio; peak frequency; number of engines, and 
average thrust level.  Third, additional SOTR directivity data could be measured to 
supplement the Dulles data.  This could be especially useful for turboprop and 
smaller/low thrust jet aircraft, which were only sparsely represented in the IAD data. 
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APPENDIX A:  SUMMARY OF INSTRUMENTATION LOCATIONS 
 

Table 14.  Summary of Instrument Locations 
 

X (ft) Y (ft) Lat (deg) Long (deg)
NASA Acoustic Van 1 mic N1 120 900 -450 -779 38.93541308 -77.45424897 Acoustic
NASA Acoustic Van 1 mic N2 135 900 -636 -636 38.93486683 -77.45381874 Acoustic
NASA Acoustic Van 1 mic N2A 140 900 -689 -579 38.93466755 -77.45370824 Acoustic
NASA Acoustic Van 1 mic N3A 155 900 -816 -380 38.93403338 -77.45354325 Acoustic
NASA Acoustic Van 1 mic N4 165 900 -869 -233 38.93357914 -77.45356191 Acoustic
NASA Acoustic Van 1 mic N5 180 900 -900 0 38.93297614 -77.45373692 Acoustic
NASA Acoustic Van 1 mic N6 195 900 -869 233 38.93240412 -77.45412636 Acoustic
NASA Acoustic Van 1 mic N7 210 900 -779 450 38.93193052 -77.45469144 Acoustic
NASA Acoustic Van 1 mic N8 225 900 -636 636 38.93159738 -77.45539039 Acoustic
Volpe Acoustic System V1 240 900 -450 779 38.93141035 -77.45618147 Acoustic/Wind Speed/Wind Direction
Volpe Acoustic System V2 255 900 -233 869 38.93139111 -77.45701438 Acoustic/Wind Speed/Wind Direction
Volpe Acoustic System V3 270 900 0 900 38.93153509 -77.45782548 Acoustic/Wind Speed/Wind Direction
Volpe Acoustic System V4 285 900 233 869 38.93183678 -77.45854469 Acoustic/Wind Speed/Wind Direction
NASA Acoustic Van 1 mic N9 180 1350 -1350 0 38.93253624 -77.45225366 Acoustic
Volpe Acoustic System V5 105 1950 -505 -1884 38.93819808 -77.45270117 Acoustic/Wind Speed/Wind Direction
Volpe Acoustic System V6 120 1950 -975 -1689 38.93722718 -77.45140391 Acoustic/Wind Speed/Wind Direction
NASA Acoustic Van 2 mic N10 135 1950 -1379 -1379 38.93605635 -77.45044372 Acoustic
NASA Acoustic Van 2 mic N10A 140 1950 -1494 -1253 38.93561349 -77.45022118 Acoustic
NASA Acoustic Van 2 mic N11A 155 1950 -1767 -824 38.93424189 -77.44985674 Acoustic
NASA Acoustic Van 2 mic N12 165 1950 -1884 -505 38.93334105 -77.44985950 Acoustic
NASA Acoustic Van 2 mic N13 180 1950 -1950 0 38.93195737 -77.45028411 Acoustic
NASA Acoustic Van 2 mic N14 195 1950 -1884 505 38.93072243 -77.45112207 Acoustic
NASA Acoustic Van 2 mic N15A 140 2500 -1915 -1607 38.93610901 -77.44840779 Acoustic
NASA Acoustic Van 2 mic N16 180 2500 -2500 0 38.93142382 -77.44847377 Acoustic
NASA Acoustic Van 2 mic N17A 140 3500 -2681 -2250 38.93701187 -77.44508845 Acoustic
Volpe Acoustic System V7 180 3500 -3500 0 38.93045647 -77.44518064 Acoustic/Wind Speed/Wind Direction
Volpe Acoustic System V8 180 4400 -4400 0 38.92958475 -77.44222587 Acoustic/Wind Speed/Wind Direction
Video Tracking System 1 TRACK1 NA 1213 449.5 1126.2 38.93138737 -77.45957142 Aircraft Position
Video Tracking System 2 TRACK2 NA 3133 2617.2 -1722.9 38.94080657 -77.46317287 Aircraft Position
Meteorological Station MET NA 292 -250 -150 38.93212000 -77.45447000 Wind Speed/Wind Direction/Temp/RH/BP
Tail Logging System (Primary) LOG1 NA 292 -250 -150 38.93212000 -77.45447000 Aircraft Tail Numbers
Tail Logging System (Secondary) LOG2 NA 922 200 900 38.93138737 -77.45957142 Aircraft Tail Numbers
Origin Origin NA 0 0 0 38.93384721 -77.45670386 NA

Data TypeLocal Coordinates dGPS Actual CoordinatesIDInstrumentation Angle 
(deg) Distance
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APPENDIX B:  TEST DIRECTOR LOG SHEET 
 

Table 15.  Test Director Log Sheet 
 
 
        Volpe Center               Test Director Log 
        Acoustics Facility 
 
 

Test 
Director: 

 Date:  

Page      of  __ Location:  Start 
Time: 

 

End 
Time: 

 

 

Event 
ID 

Event 
Start 
Time 

Event 
End 
Time 

Avg. 
Wind 
Speed 
(mph) 

Idling 
Aircraft 
Nearby? 

(Y/N) 

Event 
Good? 
(Y/N) 

Comments 
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APPENDIX C:  TAIL NUMBER LOG SHEET 
 

Table 16.  Tail Number Log Sheet 
 
        Volpe Center               Aircraft Tail Number Log 
        Acoustics Facility 
 
 

Logger:  Date:  
Page          of        . Location:  Start Time:  

End Time:  
 

Event 
Start Time 

Event 
End Time 

Event 
ID 

Tail 
Number 

SOTR 
Type 

Airline 
 

Body Type 
No. of 

Engines 

Engine 
Config 

Comments Static 

R
olling 

R
egional 
Jets 

 

Turbo 
Props 

 

N
arrow

 
B

ody 
 

W
ide  

B
ody 
 

Tail 
M

ounted 

W
ing 

M
ounted 
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APPENDIX D:  VOLPE NOISELOGGER SYSTEM SETUP 
 
 

 
 

Figure 50.  Volpe NoiseLoggerTM System Setup
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APPENDIX E:  DIRECTIVITY PATTERNS AT 1950 FT 

 
Figure 51.  Airbus A310 Directivity Pattern at 1950 ft (1 Event) 

 
Figure 52.  Airbus A319 Directivity Pattern at 1950 ft (16 Events) 
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Figure 53.  Airbus A320 Directivity Pattern at 1950 ft (48 Events) 

 
Figure 54.  Airbus A330 Directivity Pattern at 1950 ft (4 Events) 
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Figure 55.  Airbus A340 Directivity Pattern at 1950 ft (5 Events) 

 

 
Figure 56.  Boeing 717 Directivity Pattern at 1950 ft (3 Events) 
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Figure 57.  Boeing 737 Directivity Pattern at 1950 ft (20 Events) 

 

 
Figure 58.  Boeing 747 Directivity Pattern at 1950 ft (7 Events) 
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Figure 59.  Boeing 757 Directivity Pattern at 1950 ft (12 Events) 

 

 
Figure 60.  Boeing 767 Directivity Pattern at 1950 ft (27 Events) 
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Figure 61.  Boeing 777 Directivity Pattern at 1950 ft (12 Events) 

 

 
Figure 62.  McDonnell Douglas DC9 Directivity Pattern at 1950 ft (23 Events) 
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Figure 63.  Bombardier CL600 Directivity Pattern at 1950 ft (104 Events) 

 

 
Figure 64.  Turbo-Propeller Aircraft Directivity Pattern at 1950 ft (14 Events) 
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APPENDIX F:  AIRCRAFT FLEET PERCENTAGE FOR DIRECTIVTY 
ADJUSTMENT DERIVATION 

 
Two sets of -weighted SOTR directivity adjustments were developed; one for jet aircraft, 
and the other for turboprop aircraft.    
 
For jet aircraft, a weighted-regression was used to compute the SOTR directivity 
adjustment.  The weighting factor was chosen to modify the regression such that aircraft 
were represented proportionate to their relative operational presence in the 2005 fleet*. 
The number of 2005 operations and corresponding percentage of each of the jet aircraft 
measured is presented in Table 17.  As shown in the rightmost column, the aircraft 
measured during this study represent  85% of the total operations in 2005.  
 
The weighting factor applied to the average noise level (in decibels) for each aircraft at 
each azimuth angle behind SOTR reflects the percentage of the measured jet fleet. As the 
measured jet fleet does not include all aircraft in the total fleet (15% of aircraft were not 
measured and 23% were propeller aircraft), weighting factors were adjusted to reflect 
only the portion of jet aircraft included in the measurement data. For example, the Airbus 
A319 represents only 5% of total operations in 2005, but 9% of operations when only 
those corresponding to aircraft in the measured jet fleet are considered.  Thus, weighting 
factor of 9 was applied to the data for the Airbus A319†. 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                 
* AEDT Common Operations Database (COD) for the FAA Destination 2025 environmental inventory of 
the calendar year 2005. 
† Weighting factors were entered as integers, and the total of all weighting factors equaled 100. 
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Table 17.  Jet Aircraft Fleet Percentages for Directivity Adjustment Derivation 
 

Aircraft  Number of 
Operations 

   % of Measured 
Jet Fleet 

 % of Total 
2005 

Operations       
Airbus A319    1423985 9% 5% 
Airbus A320    2372032 14% 9% 
Airbus A330    322430  2% 1% 
Airbus A340    190224  1% 1% 
Boeing 717    333272  2% 1% 
Boeing 737    7088418 43% 27% 
Boeing 747    595303  4% 2% 
Boeing 757    1162127 7% 4% 
Boeing 767    823779  5% 3% 
Boeing 777    453399  3% 2% 
McDonnell Douglas DC-9   339756  2% 1% 
Bombardier CL-600   1353937 8% 5% 
Propeller Aircraft   6040263 N/A 23% 
Not Measured 3834201 N/A 15% 

Total: 23274963 100% 100% 
 
 
For turboprop aircraft, a more standard regression fitting process was used to develop the 
SOTR directivity adjustment.  The regression was computed using all data from the 
events measured.  No weighting factor was applied, as the measured data set was smaller 
(14 events) and could not adequately represent the majority of the turboprop fleet.  As a 
result, the Saab SF340 is the predominant aircraft represented in this regression (10 of 14 
events), while the Cessna 425 (1 of 14 events), Rockwell 690B (2 of 14 events) and 
Beech 1900D (1 of 14 events) are represented to a lesser degree.   
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