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Abstract  

 

 Although splitting shipments across multiple delivery or transportation modes typically 

increases total shipping costs as a result of diseconomies of scale, it may offer certain benefits 

that can more than offset these costs. These benefits include a reduction in the probability of 

stock-out and in the average inventory costs, as well as a concurrent reduction in transportation 

congestion. We consider a single-stage inventory replenishment model that includes two 

transportation modes: a cheaper, less reliable mode that is congested, and another, more 

expensive but perfectly reliable mode. The high-reliability mode is only utilized in replenishment 

intervals in which the lead time of the less-reliable mode exceeds a certain value. This permits 

substituting the high-reliability mode for safety stock, to some degree. We characterize optimal 

replenishment decisions with these two modes, as well as the potential benefits of simultaneously 

using two delivery modes. 
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Executive Summary  

 

This project focuses on analysis and validation of the benefits of the strategic use of mode 

splitting in freight delivery.  Mode splitting is a form of batch splitting used in inventory control 

(Thomas and Tyworth, 2006, Minner, 2003). The basic idea of batch splitting is simple and can 

be described as follows.  Suppose a business customer orders Q units of a product from a 

supplier.  When faced with such an order, the supplier often waits until the entire batch is 

produced, and then ships the Q units to the supplier.  Alternatively, the supplier may send 

smaller shipments before the entire batch is produced (for example, two batches at twice the 

frequency, each of size Q/2).  The latter approach implies more frequent deliveries of smaller 

batch sizes, and may have substantial impacts on a number of factors that affect the total 

operations costs incurred by both the supplier and customer.  Moreover, this splitting strategy 

may result in negative externalities in the form of increased use of transportation resources and 

the resulting contribution to traffic congestion.   

This research considers how firms make transportation mode choices in freight shipping, 

how the collective mode selection decisions of these firms contribute to traffic congestion, and 

whether a more comprehensive view of mode choice decisions can enable both better operations 

performance for firms and reduced stress on the capacity of transportation networks.  Textbook 

approaches to mode selection decisions employ highly simplified quantitative analysis, 

considering the average unit costs of transportation and inventory.  These approaches typically 

also make the simplifying assumption that delivery lead times between locations are 

deterministic, failing to account for uncertainty in transportation times.   

This work emphasizes the fact that inventory replenishment and transportation related costs 

are inter-related, and that inventory replenishment decisions influence transportation costs 

incurred in making inventory deliveries.  Thus, while we focus on the implications of inventory 

policies, we account for associated transportation costs of different modes and, indirectly, 

congestion impacts that drive these transportation costs.  Our generic use of the term “supply 

mode” may therefore refer to any of a number of transportation modes. 

The goal of this research then is to explore the potential benefits of delivery mode splitting.  

In order to do this, we will lay a foundation that formalizes the relationships among these 

variables within a mathematical model.  Then, using this model, we will demonstrate how a 

complete analysis of these factors can lead to decisions that may run counter to current practice, 

and may provide operational cost performance benefits while reducing the burden on 

transportation network capacity and congestion. 

 



1 Background

The three main criteria of cost, quality, and delivery reliability are of paramount importance in
evaluating supplier performance, where delivery reliability is typically a function of the supplier’s
lead-time performance, as stated by Minner [10]. All else being equal, lower cost shipping modes
imply both longer and less reliable delivery lead-time performance. Using such suppliers therefore
tends to necessitate at least an occasional use of quick-response suppliers who can fill the gaps when
the low-cost supplier’s lead time is too long. Even if a single supplier is preferred for sourcing, a
variety of different delivery modes are typically available to shippers, depending on the product
type. That is, a wide range of package carriers and third-party logistics providers may be used
to fulfill orders. Because of the uncertainty in delivery performance of different modes, it is not
immediately clear which mode, or what mix of different modes, should be used when ordering from
a supplier or from multiple suppliers.

This research focuses on the benefits of delivery mode diversification as a strategy to reduce
inventory replenishment and delivery costs. We consider a system in which a “buyer” uses two
different delivery modes for inventory replenishment. These modes may correspond to entirely
different suppliers, or they may imply different transportation modes employed by a single supplier.
In particular, we consider an inventory replenishment model where the buyer uses a continuous
review (Q, r) replenishment policy and has a constant, deterministic demand rate λ. Our model
assumes that the buyer does not permit shortages, and may use two different shipping modes within
each inventory replenishment cycle. One of these modes comes at a low cost, but is less reliable,
reflected by a stochastic delivery lead time (with a finite upper bound). In addition, a higher cost,
perfectly reliable shipping mode is available if needed.

We assume that the uncertainty in the delivery time of the less reliable supply mode results to
a large extent from a high utilization of the associated transportation mode. Our model considers
the effect that an increase in the utilization of a stressed shipping or transportation mode has on
delivery performance by expressing the less reliable supply mode lead time as a stepwise nonde-
creasing function of the order size. We can think of the less reliable supply mode as traversing
an already congested transportation route, where sending a larger quantity via this mode might
require increasing the number of trucks using the route (or the frequency at which trucks utilize
the route). As a result, more capacity is consumed and the expected value and variability of the
travel time along the route increases. Alternatively, an increase in order quantity would also likely
increase the required production time, which leads to an increase the delivery lead time for the
order. For the perfectly reliable transportation mode, we assume that it has a sufficient degree of
excess capacity, and therefore, it will not be affected by the quantity ordered.

This work emphasizes the fact that inventory replenishment and transportation related costs
are inter-related, and that inventory replenishment decisions influence transportation costs incurred
in making inventory deliveries. Thus, while we focus on the implications of inventory policies, we
account for associated transportation costs of different modes and, indirectly, congestion impacts
that drive these transportation costs. Our generic use of the term “supply mode” may therefore
refer to any of a number of transportation modes.

Our work falls within a stream of literature on multiple sourcing inventory models. Following
the characterization that Minner [10] presented in his review of multiple-supplier inventory models,
we identify two main lines of research based on the assumptions regarding supplier lead times.
First, we will review inventory models with n supply modes with deterministic lead times, where
the general assumption is that L1 < L2... < Ln and c1 > c2... > cn, where Li and ci are the lead
time and unit purchasing cost for supply mode i, respectively. The main focus of most of the works
that use this assumptions is to define optimal replenishment policies or to define policy parameters

6



for a specific replenishment policy. After discussing these works, we will review models that assume
multiple delivery options with stochastic lead times. Those models are primarily concerned with
order splitting, where an order is placed at the beginning of a replenishment cycle and is split
among different suppliers.

Among the studies that assume the use of supply modes with deterministic lead times, Moin-
zadeh and Nahmias [11] consider a model with a continuous review policy, two supply modes and
random demand; their goal is to find the order quantities and reorder points for each supply mode
in order to minimize total inventory costs. Later, Moinzadeh and Schmidt [12] presented a model
based on a one-for-one (S − 1, S) inventory policy with two supply options, where the decision
on whether to place an order with the regular or emergency supplier depends on the age of the
outstanding order. In contrast with our model, these works assume deterministic lead times for
both supply modes and allow inventory shortages.

Several past works on multiple sourcing consider a fast, emergency supplier, which can be
used to avoid shortages by placing an emergency order (based on some triggering condition). For
example, Tagaras and Vlachos [17] assume an emergency order is placed when the probability of
stockout is high; Chiang and Gutierrez [3] propose an ‘indifference level’ for inventory that triggers
a second order; in Johansen and Thorstenson [6], the reorder point for the emergency supplier is a
function of the time until the regular order arrives. Our model is similar in spirit to these works,
except that an order is placed with the ‘emergency supplier’ only when reaching a given time point
in the replenishment cycle, and only if the order from the primary (cheaper) supply mode has not
arrived by this time point.

Instead of using multiple supply modes, Chiang and Chiang [2] propose an inventory model
with one supplier and multiple deliveries. They assume the use of a continuous review policy with
Normally distributed demand, constant lead time and a predetermined service level. In their model
an order of size Q is placed at the beginning of the replenishment cycle, which is split between n
deliveries with interarrival times Li for i = 1, 2, ..n. We find a similar approach in Chiang [1], who
proposes the use of one supply mode and multiple deliveries for periodic review (R,S) inventory
systems. In both of these papers, the cost reduction, when compared with a single delivery model,
results from a reduction in cycle stock. Unlike the previous works in the literature, we propose the
use of multiple supply modes with different ordering and purchasing costs and different levels of
delivery reliability. Our model does not place orders with the two supply modes at the beginning of
the replenishment cycle; on the contrary, we decide wether to place a second order with the more
reliable and expensive supply mode at a specific time during the replenishment cycle, only if the
first order has not arrived by that time.

Past works on models that assume stochastic lead times and multiple delivery options are
primarily concerned with order splitting. In order splitting, an order is placed at the beginning of
the replenishment cycle, and is split among different suppliers. The main benefit of using order
splitting is the reduction in the effective lead time (the time until the first order arrives), which
leads to a reduction in the safety stock level required to meet a given service level. This effect
was demonstrated by Sculli and Wu [16] and Kelle and Silver [7], when each order is split between
two suppliers. Later, Pan et al. [13], based on order statistics, presented expressions to estimate
the parameters for the distributions of the the effective lead time and time between arrivals when
two supply modes with identical lead times distributions are used. As an example, they considered
three lead time distributions: Normal, Uniform, and Exponential, and observed a reduction in the
the mean and variance of the first effective lead time, compare with the use of a single supply mode.

Most of the relevant models that assume stochastic lead times also assume (Q, r) inventory
policies, and seek the optimal order quantity, reorder point and the proportion of order splitting,
as in Lau and Lau [8] and Lau and Zhao [9], the latter accounting for stochastic demands in their

7



model. These works showed that most of the savings from order splitting result from a reduction in
cycle stock, which often exceeds the cost savings due to associated safety stock reduction. Ramasesh
et al. [14] showed that, under the assumption of identical lead time distributions for the different
supply modes, an optimal solution is found when the order is split equally, and that the savings come
from reduced holding and backordering costs. A different approach was presented by Ganeshan,
Tyworth and Guo [5], who proposed a discounting option for the less reliable supplier, and presented
exchange curves to define when it is beneficial to split the order, as well as the percentage discount
necessary to make the model attractive.

Our model differs from previous literature as it considers one (cheaper, less reliable) supply
mode with a stochastic lead time and another with a perfectly reliable (deterministic) lead time.
This more closely reflects typical cases in which a buyer uses a primary delivery mode that is
not perfectly reliable, but may expedite deliveries (via, e.g., overnight shipping) when stockouts
become imminent. In contrast with order splitting models, our work does not place an order with
two shipping modes at the beginning of every replenishment cycle. Instead, we seek the optimal
reorder point and order quantity such that the long-run expected inventory ordering, holding and
purchasing costs are minimized without any shortages (i.e., with a 100% service level). Note that
a distinguishing feature of our model is reflected in the fact that we need not always place an order
with the reliable delivery mode. That is, if the order from the unreliable supplier arrives sufficiently
early in the cycle, we need not place an order with the reliable supply mode. In other words, we can
‘wait-and-see’ whether a second order is needed in each cycle, allowing us to incorporate specific
information about the unreliable supplier’s performance in each cycle before determining whether
a second order is needed.

In particular, our model sets a reorder point r = λτ̄ , where τ̄ is an amount of time that may be
less than the upper limit of the lead time the lower cost shipping mode (assuming this lead time
distribution is bounded from above). If an order is placed at time zero, then τ̄ is the time at which
the current on-hand inventory will reach zero, i.e., the inventory ‘run-out’ time. Suppose that at
the beginning of each replenishment cycle (at time zero for the cycle), the buyer orders from the
less reliable shipping mode. If the order has not been received by time τ̄ −L2, where L2 is the lead
time of the perfectly reliable shipping mode, the buyer will need to place a second order with the
faster, reliable shipping mode, which will be received at time τ̄ , thereby avoiding any shortages.

Another important attribute that differentiates our model from previous works is that we ac-
count for the impact that a variation in the utilization level of a congested supply mode has on
delivery performance. We assume that the lead time of the less reliable supply mode follows a
continuous distribution that is supported on a bounded interval, and that as we increase the size
of the order placed with this supplier, the upper bound on its delivery time may also increase;
therefore, there is a corresponding increase in the variance of the delivery time.

We are interested in the degree to which using the reliable, quick-response supply mode can
reduce inventory-related costs when compared with the use of a single shipping mode. We are also
interested in characterizing the circumstances and system parameter values under which the use
of both supply modes is beneficial. The reminder of this paper is organized as follows. Section
2 presents our model description, where expressions for the cost functions are derived. Section
3 presents a numerical analysis and shows the circumstances under which our proposed model is
preferable to using only a single shipping mode, and Section 4 summarizes our work and discusses
future research directions.
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2 Research Approach

This section first describes the costs associated with the use of a single shipping mode and then
with the use of two shipping modes for inventory replenishment.

2.1 Single-mode Model

We first consider the cost of using each shipping mode independently, which will permit bench-
marking the performance of the model with two delivery modes.

2.1.1 Shipping Mode with Uniformly Distributed Lead Time

We consider an inventory replenishment model where a buyer uses a continuous review (Q, r)
policy, with constant demand rate λ, where no order crossing is permitted. The buyer orders from
a supplier with unlimited capacity who ships via a mode with a stochastic lead time, called shipping
mode 1. We assume that this delivery lead time follows a Uniform distribution, where L1 is the
random variable for mode 1 lead time, and τl and τu denote the lower and upper limits for L1 (note
that our later numerical tests will consider a more general class of lead-time distribution, namely
a Beta distribution).

We assume that the buyer desires a zero probability of stockout; therefore, Q ≥ r and the
reorder point, r, must equal λτu, when the supplier uses mode 1 exclusively. Figure 1 shows a
realization of the model, assuming without loss of generality that an order is placed at time zero.

Figure 1: Single-mode model, where L1 ∼ U (τl, τu).

Since the lead time is Uniformly distributed, the probability of an order arrival before or at time
t is P {L1 ≤ t} = t−τl

τu−τl where t ∈ [τl, τu]. Based on this probability we can compute the expected
inventory level at any time t ∈ [0, T ], where t = 0 is the time when an order is placed, i.e., when
the inventory level is equal to r, and T = Q

λ is the length of the replenishment cycle.
To find the expected inventory level at any time t ∈ [0, T ], we divide the cycle into three different

intervals: [0, τl) , [τl, τu) , [τu, T ]. The first interval starts at time zero, when the inventory level is
equal to r and an order of size Q is placed. From this time until the end of the cycle the inventory
level will be depleted at a constant rate λ per unit of time due to demand. Since the order will

9



arrive at or after time τl, we have that P {L1 < τl} = 0, and the expected inventory level during
the interval [0, τl) is λτu − λt.

Given that the arrival time is Uniformly distributed between τl and τu, at any time t ∈ [τl, τu]
the expected inventory level increases (with respect to the level during the interval [0, τl)) by

QP {L1 ≤ t}; therefore, during the interval [τl, τu) the expected inventory level is λτu+Q
(
t−τl
τu−τl

)
−

λt. For the remaining interval, the order of size Q has been received with probability one, and
therefore, the expected inventory level is λτu +Q− λt.

As a result, the expected inventory level is:

E [I(t)] =


λτu − λt 0 ≤ t < τl

t
[

Q
τu−τl − λ

]
+
[
λτu − Qτl

τu−τl

]
τl ≤ t ≤ τu

(Q+ λτu)− λt τu < t ≤ T

As shown in Appendix A we need Q ≥ λ (τu − τl) to prevent order crossing. Also, in order to
prevent shortages, the size of the order has to be at least the size of the reorder point, i.e., Q ≥ λτu.
Based on the previous conditions for the size of Q, we can see that the expected inventory during
t ∈ [τl, τu] will have a positive slope. Figure 2 shows the expected inventory level as a function of
time.

Figure 2: Expected Inventory as a function of time for the single-mode model, where
L1 ∼ U (τl, τu).

We next determine the average inventory level in a replenishment cycle. In order to find the
average total inventory per cycle, denoted by IT , we integrate the expected inventory level over the
cycle, which is equal to:

IT =
Q2

2λ
+
Q (τu − τl)

2
.

To obtain the average inventory level per unit time, denoted by Î, we divide the average total
inventory by T , which gives

Î =
Q

2
+

1

2
λ (τu − τl) .
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As we can see, this model has a safety stock of 1
2λ (τu − τl) since, on average, orders will be

received at time 1
2 (τu + τl) and the inventory position at that time is I

(
t = τu−τl

2

)
= r− 1

2λ (τu + τl),
which is equal to 1

2λ (τu − τl).
To compute the total relevant cost per cycle we consider a fixed order cost, inventory holding

cost, and variable purchasing cost. We define A1 as the cost of placing an order using shipping
mode 1, h as the inventory holding cost per unit per unit time, and c1 as the unit purchasing cost
when using mode 1. For this model, the average total cost per replenishment cycle is

TC1 (Q) = A1 + h

(
Q2

2λ
+
Q (τu − τl)

2

)
+ c1Q.

The average cost per cycle is equal to the total cost divided by the length of the cycle, which
equals

G1 (Q) = A1
λ

Q
+ h

(
Q

2
+

1

2
λ (τu − τl)

)
+ c1λ. (2.1)

Since the second derivative of the average cost function, ∂2G1
∂Q2 = 2A1λ

Q3 , is non-negative ∀Q > 0,
we conclude that the function is convex for Q > 0 and will reach its minimum at Q such that
∂f
∂Q = 0, which implies

Q∗1 =

√
2λA1

h
. (2.2)

The above equation implies that the order quantity corresponds to the economic order quantity
(EOQ). Using Q∗1 in G1 (Q) we have a minimum average cost per cycle of

G1 =
√

2λA1h+
λh∆τ

2
+ λc1, (2.3)

where ∆τ = τ2 − τ1. We may view the second term above, λh∆τ
2 , as the incremental cost over that

of the standard EOQ Model, due to the uncertainty in the delivery mode 1 lead time.
We next consider the possibility that the degree of uncertainty in the delivery time of shipping

mode 1 may be affected by the level of utilization of this mode. Therefore, we would like to account
for the potential effect that a change in the utilization of mode 1 has on delivery performance. To
approximate this effect, we define the upper limit on mode 1 lead time, τu, as a step function of
the order size Q, such that, τu = τ iu if qi ≤ Q < qi+1 for i = 1, 2, ..n where qi < qi+1, τ iu < τ i+1

u and
n is the number of intervals for Q. Figure 3 shows a graph of τu as function of Q.

Figure 3: Lead time upper bound as a stepwise function of the order quantity.
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The procedure to find the optimal order size Q under the assumption that τu is a stepwise
function of the order size is similar to the one used by Chopra and Meindl [4] to find the optimal
order quantity under an all units quantity discount scheme.

Observe from Equation (2.2) that the optimal order size under supply mode 1 is independent
of τu. Consequently, as we increase the value of τu, all else being equal, the value of Q that
minimizes the average inventory cost will not change, but the average inventory cost will increase
by 1

2λh
(
τ i+1
u − τ iu

)
for i = 1, ..n− 1, where n is the number of intervals for τu. Figure 4 shows the

average inventory cost function when τu follows a step function of Q.

Figure 4: Average inventory cost when lead time upper bound is a function of quantity ordered.

Based on the previous observation, the optimal value of Q when τu is a step function of the
order size is either on the (unique) interval where Q1, obtained from (2.2), is feasible, or at one
of the break points to the left of Q1. Appendix B presents a detailed description of the solution
procedure to find Q∗1 when shipping mode 1 is used exclusively.

An alternative approach to account for the impact that utilization has on the delivery perfor-
mance of mode 1 would be to define the lead time upper bound of mode 1 as a linear function of Q,
such that τu = τ̂u + γQ, where τ̂u is the base level for the lead time upper bound of mode 1, and γ
is the factor by which the lead time increases per unit ordered. The procedure to find the average
inventory cost per unit time when τu is a linear function of Q, represented by Gγ1 , is similar to the
one used when τu is fixed. As result we obtain:

Gγ1 (Q) = A1
λ

Q
+ h

(
Q

2
+

1

2
λ (τ̂u + γQ− τl)

)
+ c1λ.

Observe that when the lead time upper bound is a linear function of the order size Q, then
as we increase the quantity ordered we will have an increase in the average inventory holding cost
equal to 1

2hλγQ, due to the increase in safety stock.

The average inventory cost per unit time is a convex function in Q, since
∂2Gγ1
∂Q2 = 2A1λ

Q3 > 0
∀Q > 0, the order size that minimizes the average inventory cost is equal to

Qγ∗ =

√
2λA1

h (1 + λγ)
,

and the minimum average inventory cost is

G1 =
√

2λA1h (1 + λγ) +
hλ∆τ

2
+ λc1.
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For the remainder, we will assume that the lead time upper bound for delivery mode 1, τu, is
a step function of Q, since we believe this provides a better approximation of the effect that the
order quantity has on the delivery time of a stressed supply mode. That is, a step function allows
for changes at discrete quantities, as may be the case when an additional truck is required for a
highly congested route or an additional production batch is required on a capacitated production
line.

2.1.2 Deterministic Lead Time Mode

We next consider the cost of using a shipping mode, called mode 2, that has a deterministic lead
time L2. In this case we can use the EOQ model where Q∗2 is equal to

Q∗2 =

√
2λA2

h
,

A2 is the fixed cost of placing an order when using mode 2, h is the inventory holding cost per
unit per unit time, and λ is the constant demand rate. We recognize that a more general model
would permit holding costs that depend on the variable purchase cost. However, this difference in
holding cost is typically very small in practice, and the resulting model in which holding costs do
not depend on purchase cost permits obtaining much more in the way of analytical results.

Letting c2 denote the unit purchasing cost for mode 2 and ∆c = c2 − c1, the average cost per
replenishment cycle is equal to:

G2 =
√

2λA2h+ λ (c1 + ∆c) . (2.4)

In order to compare the average cost of exclusively using shipping mode 1 versus mode 2, we
subtract (2.4) from (2.3). Assuming that A1 ≤ A2 and ∆c ≥ 0 we obtain:

G1 −G2 ≤
λh∆τ

2
− λ∆c = ω, (2.5)

where ω = λh∆τ
2 − λ∆c. Note that when ω ≤ 0 mode 1 should be chosen as the preferred single

mode. Later we will use this expression during the computation of the average inventory cost per
replenishment cycle for the dual-mode model.

2.2 Dual-Mode Model

We next present a model where the buyer may use two different shipping modes, implying a positive
(expected) order quantity for both modes. We will then compare our proposed dual-mode model
with the single-mode model and choose the one with the minimum expected cost per unit time.

Our proposed model assumes that in addition to mode 1, the buyer may place a second order
that will use an expedited shipping mode, called mode 2, with deterministic lead time, L2. In
this case, in order to reduce the required safety stock, the buyer may define a different reorder
point r = λτ̄ , where τ̄ ∈ [L2, τu), and where Q ≥ r in order to avoid shortages. Note that for
the dual-mode model, τ̄ is strictly less than τu (in other words, the expected order quantity via
mode 2 is strictly positive; the case in which the expected order quantity is zero corresponds to the
single-mode case with only mode 1). Using τ̄ to define the reorder point increases the probability

of stockout to P{L1 ≥ τ̄} = τu−max{τl,τ̄}
τu−τl , which is strictly greater than zero, since τ̄ < τu.

Given that the buyer desires a zero probability of stockout, this may require using mode 2,
which will be used as a backup in cases where L1 > τ̄ − L2. Note that τ̄ − L2 is the time at which
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the buyer must place a second order using mode 2 if the mode 1 order has not arrived. If this
is the case, then the buyer must place an order for λ (τu − τ̄) units that will be sent via mode 2.
This second order will arrive at time τ̄ , which is the inventory run-out time, and must contribute
enough inventory to avoid stocking out in the case that L1 = τu, which is the worst-case delivery
time for mode 1.

Note that we assume that τu is a step function of Q, as shown in Figure 3. This means that the
lead time upper bound for mode 1 will increase for increasing values of the quantity ordered. In the
following section we first develop the expressions for the average inventory cost for the dual-mode
model, and after that we will present a procedure to find an optimal solution for our proposed
model when τu is a step function of Q.

Observe that if τ̄ − L2 < τl, then the buyer must decide on whether to place an order via
mode 2 before any information regarding the value of L1 can be obtained (i.e., before time τl). In
this case, the supplier must place an order with mode 2 (otherwise, the probability of a stockout is
positive, violating the 100% service level). On the other hand, if τ̄−L2 ≥ τl, then there is a positive
probability that no order will be placed via mode 2 in a cycle. Because there are two distinct cases
based on the relative values of τ̄ − L2 and τ1, the following subsections will consider these cases
separately.

2.2.1 CASE 1: τ̄ ∈ [L2, τl + L2)

At time τ̄−L2, the buyer must determine whether the mode 1 order has arrived to evaluate whether
it is necessary to place a mode 2 order. When τ̄ ∈ [L2, τl + L2) we have that τ̄ − L2 < τl, and,
therefore, the buyer will always place a mode 2 order. Figure 5 shows an example of the model
realization.

Figure 5: Dual-mode model realization. Case 1: τ̄ ∈ [L2, τl + L2).

Observe that the replenishment cycle starts when the inventory level reaches r = λτ̄ units.
During the cycle the buyer orders Q units via mode 1 and λ (τu − τ̄) units via mode 2. Therefore,
the cycle will restart at time T = Q

λ + (τu − τ̄).
To analyze the expected inventory level at any time t, we divide the replenishment cycle into

four intervals: [0, τl) , [τl, τ̄) , [τ̄ , τu) , [τu, T ]. Assume without loss of generality that the cycle starts
at time t = 0, when the inventory level is λτ̄ and an order of size Q is placed with mode 1. This
order will be received at some time t ∈ [τl, τu]; therefore, the probability of receiving the order
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during the first interval is P {L1 < τl} = 0.
During the replenishment cycle, the inventory level will decrease at a constant rate λ per unit

time due to demand, and hence the expected inventory level during t ∈ [0, τl) is λτ̄ − λt.
During the second interval t ∈ [τl, τ̄), the expected inventory level is equal to λτ̄+QP {L1 ≤ t}−

λt, where P {L1 ≤ t} = t−τl
τu−τl , as in the single-mode model.

A shift in the expected inventory function occurs at t = τ̄ , when the order of size λ (τu − τ̄)
shipped via mode 2 arrives, and hence the expected inventory level during the third interval is
λτu +QP {L1 ≤ t} − λt.

By time t = τu the order from supplier 1 has arrived with probability one and the expected
inventory level is Q+ λτu − λt until the end of the cycle.

A summary of the expected inventory level as a function of time is presented below.

E [I(t)] =


λτ̄ − λt 0 ≤ t < τl

t
[

Q
τu−τl − λ

]
+
[
λτ̄ − Qτl

τu−τl

]
τl ≤ t < τ̄

t
[

Q
τu−τl − λ

]
+
[
λτu − Qτl

τu−τl

]
τ̄ ≤ t < τu

(Q+ λτu)− λt τu ≤ t ≤ Q
λ + (τu − τ̄)

Figure 6 shows the expected inventory level as a function of time.

Figure 6: Expected Inventory as function of time, Case 1: τ̄ ∈ [L2, τl + L2).

Recall that because we assume Q ≥ λ (τu − τl) (that is, we assume no order crossing; see
Appendix A), the slope of the function for t ∈ [τl, τu] is non-negative.

We can integrate the expected inventory level curve over the cycle to find the average total
inventory per cycle, which gives

IT =
Q2

2λ
+
Q (τu − τl)

2
+
λ

2
(τu − τ̄)2 .

The average inventory per cycle is the average total inventory divided by T , which equals

Î =
Q2 +Qλ (τu − τl) + λ2 (τu − τ̄)2

2 [Q+ λ (τu − τ̄)]
.

For the dual-mode model, the fixed order cost has two components: A1, which is the fixed order
cost incurred by the buyer when placing the first order via mode 1; and Ā, which is the additional
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order cost incurred when placing an expedited order via mode 2. Note that the expedited order
may be placed with the same supplier or may be planned when placing the first order; we therefore
assume that Ā ≤ A2, since part of the associated fixed order cost is incurred when placing the first
order in the cycle.

The total cost per cycle includes the fixed order cost, A1 + Ā, the inventory holding cost per
unit per unit time, h, and the purchasing cost per unit shipped by modes 1 and 2, denoted by c1

and c2, respectively. This implies an average total cost per cycle equal to:

TCI =
(
A1 + Ā

)
+ h

(
Q2

2λ
+
Q (τu − τl)

2
+
λ

2
(τu − τ̄)2

)
+ (Qc1 + λ (τu − τ̄) c2) .

The average cost per cycle is equal to the total cost per cycle divided by the cycle length T ,
which equals

GI (Q, τ̄) =
λ
(
A1 + Ā

)
+ h

2

(
Q2 +Qλ (τu − τl) + λ2 (τu − τ̄)2

)
+ c1Qλ+ c2λ

2 (τu − τ̄)

Q+ λ (τu − τ̄)
.

Without loss of generality we let A = A1 + Ā and β = (τ2 − τ̄). Observe that λβ = Q2, i.e.,
the quantity delivered via mode 2. Thus, the total order quantity in a cycle equals Q+ λβ.

Noting that Q and β are decision variables, the average cost per unit time is given by

GI (Q, β) =
λA

(Q+ λβ)
+
h (Q+ λβ)

2
+

λhQ

(Q+ λβ)

(
∆τ

2
− β

)
+

λ

(Q+ λβ)
(c1Q1 + c2λβ) . (2.6)

From Appendix C, we have that GI (Q, β) is convex ∀Q > 0 and β > 0 if 4λAh > ω2, where
ω = λh∆τ

2 − λ∆c (Appendix C also provides an argument as to why this condition is likely to be
mild and non-restrictive in practice). Therefore we find a stationary point for GI (Q, β) using the
conditions ∂GI

∂β = 0 and ∂GI
∂Q = 0.

As result, we have that for a given β, assuming the convexity condition is met, the optimal Q
and minimum average inventory cost per cycle are:

Q∗ (β) = −λβ +

√
2λ2β2 − λ2β∆τ +

2λ2β∆c

h
+

2λA

h
(2.7)

GI (β) = h

√
2λ2β2 − λ2β∆τ +

2λ2β∆c

h
+

2λA

h
+ λh

(
∆τ

2
− β

)
+ λc1 (2.8)

Using ∂GI
∂β = 0, we arrive at the following stationary point solution for β:

β∗ =
1

2λh

√4λAh−
(
λh∆τ

2
− λ∆c

)2

+

(
λh∆τ

2
− λ∆c

) .
Substituting ω = λh∆τ

2 − λ∆c and α = 4λAh, we have

β∗ =
1

2λh

[√
α− ω2 + ω

]
, (2.9)

and the optimal value for Q can then be expressed as

Q∗ =
1

2h

[√
α− ω2 − ω

]
. (2.10)
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Assuming the stationary point solution is feasible, because the total order quantity per cycle
equals Q∗ + λβ∗, Equations (2.9) and (2.10) indicate that the total order quantity per cycle at
optimality equals

Q∗ + λβ∗ =

√
α− ω2

h
. (2.11)

Based on (2.9) through (2.11), we observe that the quantities shipped via modes 1 and 2 (and the
total order quantity per cycle) are concave functions of ω. The total order quantity per cycle will
attain its maximum when ω = 0, which results in Q∗ = λβ. This means that when the incremental
holding cost due to the uncertainty in the lead time of mode 1 is equal to the additional purchasing
cost per unit of mode 2, the dual-mode model will order the same quantity from both supply modes,
assuming the stationary points for (2.6) are feasible, i.e., Q > 0 and β ∈ [τu − τl − L2, τu − L2).

We also observe that when ω < 0 we will have Q∗ > λβ. The reason for this is that a negative
value of ω indicates that the average inventory cost when using shipping mode 1 exclusively is less
than the average inventory cost of using shipping mode 2, and therefore, the dual model model
will increase the use of shipping mode 1. The opposite happens when ω > 0, when the incremental
cost of using shipping mode 2 over the standard EOQ model is smaller than the incremental cost
of using shipping mode 1, and as a result λβ > Q∗.

Using (2.9) and (2.10), the minimum average inventory cost is

G∗I =
1

2

[√
α− ω2 + ω

]
+ λc2. (2.12)

Note that when the stationary point solution β∗ is feasible, i.e., β∗ ∈ (τu − τl − L2, τu − L2] we
will use (2.10) and (2.12) for Q∗ and G∗I , respectively; otherwise the optimal value of β will be at an
end point of the interval and we will use (2.7) and (2.8) at the appropriate value of β to determine
Q∗ and G∗I , respectively.

Now that we have an expression for the average inventory cost for the dual-mode model when
τ̄ ∈ [L2, L2 + τ1), we can derive a method for determining optimal order quantities for modes 1
and 2 when τu is a step function of Q, such that τu = τ iu if qi ≤ Q < qi+1 for i = 1, 2, ..n, where
qi < qi+1, τ iu < τ i+1

u , and n is the number of intervals for Q.
Note that because an increase in τu increases the uncertainty in the arrival time of the order

placed with mode 1, we expect to observe an increase in the average inventory holding cost for
increasing values of τu. However, in some cases, when the stationary point solution for β is not
feasible, and therefore, the optimal β is found at one of the end points of the interval (in particular,
β = τu−L2), the average inventory cost may actually decrease as τu increases. The reason for this
is that, in this case, it is preferable to increase the size of the order placed with mode 2, (λ (τu − τ̄));
as a result, as we increase the value of τu, an increased order quantity with supply mode 2 may
actually decrease the average inventory holding cost.

As in the single-mode case, our solution procedure is similar to the one used by Chopra and
Meindl in [4] to find the optimal order quantity under the all units quantity discount scheme;
however, because GI may increase or decrease for increasing values of τu, as explained above, when
we analyze an interval i, if the stationary point for Q is not feasible for that interval, we still need
to evaluate the value of Q at one of the breakpoints, depending on whether Q > qi+1 or Q < qi.
Algorithm 1, in Appendix D, provides a detailed description of the solution procedure to find the
minimum average inventory cost for the dual-mode model when τu is a step function of Q.

2.2.2 CASE 2: τ̄ ∈ [τl + L2, τu)

In our dual-mode model, at time τ̄ − L2 the buyer must determine whether or not to place a
second order via mode 2 if the first order has not yet arrived. Since Case 2 considers the interval
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Figure 7: Dual-mode model realization (Case 2.1: τ̄ ∈ [τl + L2, τu) and L1 ≤ τ̄ − L2).

τ̄ ∈ [τl + L2, τu), we have that τ̄ − L2 ≥ τl, and the probability of placing a second order is

P {L1 ≥ (τ̄ − L2)} = τu−(τ̄−L2)
τu−τl .

When L1 ≤ τ̄ −L2 there is no need to place an expedited order using mode 2, and therefore the
total amount ordered in the cycle isQ. This occurs with probability P {L1 ≤ (τ̄ − L2)} = (τ̄−L2−τ1)

τu−τl .
Figure 7 shows an example of this case.

When L1 > τ̄ − L2, a second order of size λ (τu − τ̄) is placed at time t = τ̄ − L2, which
will be shipped using mode 2 and will be received at time τ̄ . This occurs with probability
P {L1 > (τ̄ − L2)} = τu−(τ̄−L2)

τu−τl . Figure 8 shows an example of this case.

Figure 8: Dual-mode model realization (Case 2.2: τ̄ ∈ [τl + L2, τu) and L1 > τ̄ − L2).

Based on the probability of each of these sub-cases, we can compute the expected inventory
as a function of time. As in the previous section we will divide the replenishment cycle into four
intervals: [0, τl) , [τl, τ̄) , [τ̄ , τu) , [τu, T ], where T , the cycle length, is now a random variable, and
E [T ] is the expected cycle length, i.e.,

E [T ] =
Q

λ
P {L1 ≤ τ̄ − L2}+

(
Q

λ
+ (τu − τ̄)

)
P {L1 > τ̄ − L2} ,

where, after substituting P {L1 ≤ τ̄ − L2} =
(
τ̄−L2−τl
τu−τl

)
, we have

E [T ] =
Q

λ
+ (τu − τ̄)

(
τu − τ̄ + L2

τu − τl

)
. (2.13)
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The replenishment cycle starts at time t = 0, when the inventory level is λτ̄ and an order of size
Q is placed, which will be sent via mode 1 and received at some time t ∈ [τl, τu]; the probability of
receiving the order during the first interval is P {L1 < τl} = 0.

During the replenishment cycle, the inventory level decreases at a constant rate of λ per unit
time due to demand, and hence the expected inventory level during t ∈ [0, τl) is λτ̄−λt. During the
second interval, t ∈ [τl, τ̄), the expected inventory level is equal to λτ̄ + QP {L1 ≤ t} − λt, where
P {L1 ≤ t} = t−τl

τu−τl . If, at time t = τ̄ −L2, the buyer does not place an expedited order using mode
2, this means that the mode 1 order has been received, and the inventory level for t ∈ [τ̄ , τu) is equal
to λτ̄+Q−λt, which occurs with probability P {L1 ≤ τ̄ − L2}. With probability P {L1 > τ̄ − L2},
however, the buyer places a second order via mode 2 at time t = τ̄ −L2 for λ (τu − τ̄) units, which
will be received at time τ̄ .

For the latter case, when the second order with mode 2 was placed at time t = τ̄ − L2, we can
have two situations for the interval t ∈ [τ̄ , τu):

1. L1 > t, where the inventory level is λτ̄ + λ (τu − τ̄)− λt, for t ∈ [τ̄ , τu);

2. L1 ≤ t, where the inventory level is λτ̄ + λ (τu − τ̄) +Q− λt, for t ∈ [τ̄ , τu).

Therefore, for t ∈ [τ̄ , τu), the expected inventory level is:

E [I (t|τ̄ ≤ t < τu)] = P {L1 ≤ τ̄ − L2} (λτ̄ +Q− λt) + P {L1 > t} (λτ̄ + λ (τu − τ̄)− λt)
+ P {τ̄ − L2 < L1 ≤ t} (λτ̄ + λ (τu − τ̄) +Q− λt) ,

which results in

E [I (t|τ̄ ≤ t < τu)] = t

(
Q

τu − τl
− λ

)
+

(
λτ̄ − Qτl

τu − τl
+ λ (τu − τ̄)

(
τu − τ̄ + L2

τu − τl

))
.

The last interval of the cycle is t ∈ [τu, T ]. By time t = τu the order from supplier 1 has arrived
with probability one, and we have two cases with respect to the second order:

1. If L1 ≤ τ̄ − L2, the inventory level is Q+ λτ̄ − λt, after time t = τu, and T = Q/λ+ τ̄ ;

2. If L1 > τ̄ − L2, the inventory level is Q + λτ̄ + λ (τu − τ̄) − λt, after time t = τu, and
T = Q/λ+ τu.

Therefore the expected inventory for t ∈ [τu, T ] is:

E [I (t)] = Q+ λτ̄ + λ (τu − τ̄)

(
τu − τ̄ + L2

τu − τl

)
− λt

A summary of the expected inventory level as a function of time is presented below.

E [I(t)] =



λτ̄ − λt 0 ≤ t < τl

t
[

Q
τu−τl − λ

]
+
[
λτ̄ − Qτl

τu−τl

]
τl ≤ t < τ̄

t
(

Q
τu−τl − λ

)
+
(
λτ̄ − Qτl

τu−τl + λ (τu − τ̄)
(
τu−τ̄+L2
τu−τl

))
τ̄ ≤ t < τu

Q+ λτ̄ + λ (τu − τ̄)
(
τu−τ̄+L2
τu−τl

)
− λt τu ≤ t ≤ T

Figure 9 shows the expected inventory level as a function of time.
The assumptions that the model does not allow shortages and order crossing require that Q ≥ λτ̄

and Q ≥ λ (τu − τl) (from Appendix A), respectively. Therefore, we can see that the slope of the
expected inventory function is non-negative for t ∈ [τl, τu].
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Figure 9: Expected inventory as function of time (Case 2: τ̄ ∈ [τl + L2, τu)).

In order to characterize the average total inventory per replenishment cycle, we integrate the
expected inventory function over the four intervals, and we obtain:

E [I] =
Q2

2λ
+

Q

2 (τu − τl)

[
(τu − τ̄)2 + 2 (τu − τ̄)L2 + (τ̄ − τl)2

]
+
λ
[
(τu − τ̄)2 + (τu − τ̄)L2

]2

2 (τu − τl)2

(2.14)

Our model can be analyzed as a renewal reward process (see Appendix F), and therefore, the

average inventory per unit time, E[I(t)]
t as t→∞, is equal to E[I]

E[T ] . Using (2.13) and (2.14) we have
that the average inventory per unit time is:

Î =
Q2 (τu − τl)2 + λ (τu − τl)Q

[
(τu − τ̄)2 + 2 (τu − τ̄)L2 + (τ̄ − τl)2

]
+ λ2

[
(τu − τ̄)2 + (τu − τ̄)L2

]2

2
[
Q (τu − τl)2 + λ (τu − τl)

[
(τu − τ̄)2 + (τu − τ̄)L2

]]
The expected total cost per cycle is composed of the expected fixed order cost, expected holding

cost and expected purchasing cost.
Using A1 as the cost of placing an order via mode 1 and Ā as the incremental cost of placing a

second order via mode 2, the expected fixed order cost is:

A1P {L1 ≤ τ̄ − L2}+
(
Ā+A1

)
P {L1 > τ̄ − L2} .

Substituting the probability values, we obtain an expected fixed order cost of

A1 + Ā

(
τu − τ̄ + L2

τu − τ1

)
.

The expected total inventory holding cost per cycle is

h

Q
2

2λ
+

Q

2 (τu − τl)

[
(τu − τ̄)2 + 2 (τu − τ̄)L2 + (τ̄ − τl)2

]
+
λ
[
(τu − τ̄)2 + (τu − τ̄)L2

]2

2 (τu − τl)2

 .

The expected purchasing cost in a cycle is given by

c1QP {L1 ≤ τ̄ − L2}+ (c1Q+ c2λ (τu − τ̄))P {L1 > τ̄ − L2} .
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Substituting the probability values, we obtain an expected variable purchase cost per cycle of

Qc1 + λ (τu − τ̄) c2

(
τu − τ̄ + L2

τu − τ1

)
.

Adding the expected fixed order cost, expected holding cost and expected purchase cost, we
obtain the following expression for the total cost per cycle:

TCII = A1 + Ā

(
τu − τ̄ + L2

τu − τl

)
+Qc1 + λ (τu − τ̄) c2

(
τu − τ̄ + L2

τu − τl

)

+ h

Q2

2λ
+

Q

2 (τu − τl)

[
(τ2 − τ̄)2 + 2 (τu − τ̄)L2 + (τ̄ − τl)2

]
+
λ
[
(τu − τ̄)2 + (τu − τ̄)L2

]2

2 (τu − τl)2

 .
The expected cost per unit time, which we denote by GII , is equal to the expected total cost per
cycle divided by the expected cycle length, and we therefore have:

GII (Q, β) =
2λA1∆τ2 + 2λA2∆τ (β + LB) + 2λ∆τ2Qc1

2 [Q∆τ2 + λ∆τ (β2 + βLB)]

+
2λ2∆τβ (β + LB) c2 + hQ2∆τ2 + λ2h

(
β2 + βLB

)2
2 [Q∆τ2 + λ∆τ (β2 + βLB)]

+
hλ∆τQ

[
β2 + 2βLB + (∆τ − β)2

]
2 [Q∆τ2 + λ∆τ (β2 + βLB)]

,

(2.15)

where β = τu− τ̄ , ∆τ = τu− τl, and ∆c = c2− c1. Note that λβ is the quantity ordered via mode 2
when this order is placed. The decision variables in the above expected cost equation are therefore
Q and β.

In order to show the convexity of GII as function of Q, we consider its second derivative, which
is given by

∂2GII
∂Q2

=
λ2h∆τ

(
β2 + βL2

) (
2β∆τ −∆τ2

)
+ 2λ2∆τ2

(
β2 + βL2

)
∆c

[Q∆τ + λ (β2 + βL2)]3

+
2λ∆τ2 (∆τA1 +A2 (β + L2))

[Q∆τ + λ (β2 + βL2)]3
.

It is straightforward to show that the denominator of ∂2GII
∂Q2 is positive ∀Q > 0 and β > 0, and the

numerator is non-negative if:
A1 + Āp

βp
≥ ω − λhβ, (2.16)

where p = τu−τ̄+L2
∆τ is the probability that an order is placed via mode 2. Note that (2.16) presents

a convexity condition for GII as a function of Q for any β, and therefore we need to find the
value Q∗β for minimizing GβII (Q) for any given β, where β ∈ (0,∆τ − L2] (using, e.g., gradient
search techniques). Then, in order to find the optimal values of Q∗ and β∗ we define G∗II =

min
Q>0

{
GII

(
Q∗β, β

)
∀β ∈ (0,∆τ − L2]

}
. Although β is a continuous variable that corresponds to

the length of time that the order shipped through mode 2 should cover, we will assume that it is
sufficient to consider a discrete set of candidate values for β (typically in practice the value of β
will be measured in some discrete measure of time, such as days).
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We can see that the convexity condition for GII (Q) is not restrictive by observing that whenever
ω ≤ 0, i.e., when mode 1 is the preferred single mode, then (2.16) will always hold. We also note
that the left-hand side of (2.16) is the expected order cost in a cycle divided by the expected
extra time in the cycle if an order is placed via mode 2; the left-hand side is therefore an upper
bound on the fixed order cost per unit time. The right-hand side of the inequality is less than
ω, the amount by which the cost of buffering the uncertainty using mode 1 exceeds the cost of
buffering the uncertainty using mode 2. Therefore, even if mode 1 is not the preferred single mode
of operation, it is not unlikely for condition (2.16) to hold for a broad range of practical cases.

Since we assume that τu is a step function of Q such that, τu = τ iu if qi ≤ Q < qi+1 for
i = 1, 2, ..n where qi < qi+1, τ iu < τ i+1

u and n is the number of intervals for Q, we follow the
same procedure to find the minimum average cost that we developed in the previous section. In
Algorithm 2 (see Appendix E) we present the procedure to find the minimum average inventory
cost for the dual-mode model when τ̄ ∈ [τ1 + L2, τ1 + L2].

3 Findings and Applications

This section reports results of a set of numerical tests that characterize the benefits of the dual-mode
model. While we show numerous cases in which the dual-mode model outperforms the better of the
two single mode solutions, we also analyze how changes in the model parameters affect the average
inventory cost of the dual-mode model (recall that the minimum dual-mode average inventory cost
equals G∗ = min {G∗I , G∗II}).

Since the average purchasing cost per year is at least λc1 (whether we use the single or dual-mode
model), to compare the results of the dual-mode model against the single-mode model, we subtract
λc1 from the average inventory cost for both models. Therefore we will compare the percentage
of cost reduction over the inventory costs that can be modified when using an alternative ordering
policy. Hence, the percentage cost reduction is given by:

%CR =
min {G1, G2} −G∗

min {G1, G2} − λc1
× 100%,

where Gi is the minimum average inventory cost per unit time when the order is shipped by mode
i exclusively, i = {1, 2} and G∗ is the minimum average inventory cost for the dual-mode model.
We are of course particularly interested in characterizing conditions under which %CR > 0.

For our numerical analysis, we created problem instances with parameter values similar to the
cost structures that can be observed in practice, and also, where we can demonstrate the different
effects that changes in a particular parameter may have for the dual-mode model. Table 1 shows
the base parameter values used for the numerical analysis of our proposed model.

λ τl L2 h c1 A1 Ā A2

units/yr days days $/units · yr $/unit $/order $/order $/order

10,000 14 5 1.5 10 100 70 170

τ1
u τ2

u τ3
u τ4

u q1 q2 q3 q4

days days days days units units units units

50 55 60 65 0 1,000 2,000 3,000

Table 1: Base parameter values for numerical analysis.

Note that for the fixed order cost, we assume that the fixed cost for mode 1, A1, is less than
or equal to the fixed order cost of mode 2, A2. Also, assuming that the orders can be placed with

22



the same supplier, but using different shipping modes, we have that A1 + Ā ≤ A1 + A2, where Ā
is the additional order cost of placing a second expedited order, since a portion of the fixed order
cost was already incurred when the first order was placed.

Before analyzing the effects of the key parameters on the dual-mode model, we discuss some
properties of the optimal solution for our proposed model. As we will see, based on the results in
Tables 2 through 7, when ∆c = 0 and G1 < G2, we have that τ̄∗ ∈ [L2, τl + L2), and as ∆c increases
we then see τ̄∗ ∈ [τl + L2, τu). This means that in cases where the additional unit purchasing cost
for using the more reliable mode is sufficiently small, it is optimal to always plan to utilize both
suppliers during each replenishment cycle. As ∆c increases, the use of shipping mode 2 becomes
more expensive, and therefore, the model will increase the value of τ̄∗, such that the probability
of placing and order with delivery mode 2 is strictly less than one, while decreasing the order size
with mode 2.

However, even when supply mode 2 is the preferred single supplier mode, i.e., G2 < G1, and
∆c = 0, we find some cases where τ̄∗ occurs later in the interval, i.e., τ̄∗ ∈ [τl + L2, τu), as shown
in Tables 2 and 3. In other words, even though mode 2 is the cheaper single mode option, it is
not optimal to maximize the size of the order with supplier 2 in our dual-mode model. This occurs
because when ∆τ is sufficiently large, placing a large order with supplier 2 implies ordering early
within the interval, and thus a high probability of having to place the order with supplier 2, and a
correspondingly high expected cost of holding this order in inventory.

Since we do not have closed-form expressions for the optimal values of Q∗ and β∗ for the dual-
mode model, we perform numerical tests to evaluate how changes in key model parameters for
modes 1 and 2 may affect the optimal solution of the dual-mode model and its performance relative
the single-mode model. Sections 3.1 through 3.8 show how changes in a single parameter of interest
influence the relative performance of the dual-mode model, all else being equal. Following this, in
Section 3.9 we compare the results of the dual-mode model under various combinations of mode
delivery lead time and variable cost.

3.1 Impact of increasing τl

In order to analyze the effects of changes in the value of the lower limit on the lead time for delivery
mode 1, τl, we performed numerical tests where we increased the value of τl while holding all other
parameters equal.

When τl increases (for a fixed value of τu), the uncertainty in the lead time of mode 1 will
decrease, and therefore, the need for an emergency supplier will also decrease. As a result, for
increasing values of τl we expect to observe a decrease in the size of the order placed with delivery
mode 2, λβ, and therefore, an increase in τ̄∗. Since an increase in τl represents a decrease in the
value of ∆τ , we also expect to see a decrease in the average inventory cost.

Table 2 shows the optimal solutions for the dual-mode model and single-mode models and %CR,
for increasing values of τl.

As expected, we observe a decrease in the order size placed with delivery mode 2, except in the
cases when ∆c = 0. In this example, when ∆c = 0 it is beneficial to increase the use of delivery
mode 2, since we can benefit from using a more reliable mode without paying a premium in the
purchasing cost, and therefore we will observe increasing values for the size of the second order,
λβ.

We also observe a decrease in the average inventory cost per unit time, although the effect on
%CR will depend on which supply mode has the minimum average inventory cost. The average
cost of mode 1 decreases as we increase τl, since there is a reduction in the uncertainty in the
arrival time of the order, and therefore, in the safety stock required. The reduction in G1 is greater
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Dual-Mode Model Single-Mode Model CR
τl τ̄ λβ Q G∗ Q1 G1 Q2 G2 %

days days units units $/yr units $/yr units $/yr

∆c = 0
7 22 904 1315 102,050.0 1507 102,780.1 1506 102,258.3 9.22
14 5 1233 986 101,937.3 1507 102,636.2 1506 102,258.3 14.22
20 5 1233 839 101,875.2 1507 102,513.0 1506 102,258.3 16.97

∆c = 0.5
7 49 164 1343 102,730.0 1507 102,780.1 1506 107,258.3 1.80
14 50 137 1370 102,630.0 1507 102,636.2 1506 107,258.3 0.24
20 52 82 1425 102,540.0 1507 102,513.0 1506 107,258.3 -1.08

∆c = 1
7 53 55 1452 102,800.0 1507 102,780.1 1506 112,258.3 -0.72
14 53 55 1452 102,680.0 1507 102,636.2 1506 112,258.3 -1.66
20 54 27 1480 102,580.0 1507 102,513.0 1506 112,258.3 -2.67

Table 2: Effect of τl on the dual-mode model.

than the reduction in the average inventory cost of the dual-mode model, G∗, and therefore, when
G1 < G2, the value of %CR will decrease as we reduce the uncertainty in mode 1 lead time, making
the dual-mode model relatively less attractive for increasing values of τl. Because an increase in τl
does not affect the cost of mode 2, when G2 < G1, an increasing value of τl leads to an increase in
%CR, since G∗ decreases.

3.2 Impact of increasing τu

When we increase τu while holding all other parameters equal, we increase the uncertainty of mode
1. As a result we expect to see an increase in the size of the order shipped via mode 2, since the
dual-mode model will attempt to mitigate the impact of the increased uncertainty in L1 by using
shipping mode 2. Note also that an increase in the uncertainty in the arrival time of an order placed
with supply mode 1 will increase the average inventory cost of using supply mode 1 exclusively, as
well as the average inventory cost of the dual-mode model, although it will not affect the inventory
cost associated with using supply mode 2 exclusively.

Table 3 shows the effect that increasing values of τu have on the dual-mode model and the
single-mode model, for a specific instance.

Dual Mode-Model Single-Mode Model CR
τ1
u τ2

u τ3
u τ4

u τ̄ λβ Q G∗ Q1 G1 Q2 G2 %
days days days days days units units $/yr units $/yr units $/yr

∆c = 0
30 35 40 45 5 685 1000 101,858.0 1000 102,078.8 1506 102,258.3 10.62
50 55 60 65 5 1233 986 101,937.3 1507 102,636.2 1506 102,258.3 14.22
60 65 70 75 31 932 1397 102,080.0 1781 102,945.1 1506 102,258.3 7.90

∆c = 0.5
30 35 40 45 35 0 1247 102,300.0 1000 102,078.8 1506 107,258.3 -10.64
50 55 60 65 50 137 1370 102,630.0 1507 102,636.2 1506 107,258.3 0.24
60 65 70 75 56 247 1534 102,810.0 1781 102,945.1 1506 107,258.3 4.59

∆c = 1
30 35 40 45 35 0 1247 102,300.0 1000 102,078.8 1506 112,258.3 -10.64
50 55 60 65 53 55 1452 102,680.0 1507 102,636.2 1506 112,258.3 -1.66
60 65 70 75 61 110 1671 102,920.0 1781 102,945.1 1506 112,258.3 0.85

Table 3: Effect of τu on the dual-mode model.
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As expected, for increasing values of τu we observe an increase in the size of the order placed
with mode 2 and an increase in the average inventory cost of the dual-mode model, G∗.

Note that when ∆c = 0, the increase in τu (and therefore, increase in ∆τ) has a different effect
on the quantity ordered by modes 1 and 2. As mentioned previously, when ∆c = 0 and for large
values of ∆τ when that G2 < G1, the dual-mode model will try to reduce the probability of using
supply mode 2 by choosing τ̄∗ ∈ [τl + L2, τu), and therefore, reducing λβ. Also, for increasing
values of ∆τ , the lower limit on the size of the order placed with supply mode 1 in order to avoid
order crossing, Q ≥ ∆τ (see Appendix A) increases, and therefore, we observe that this minimum
order size constraint is satisfied at equality.

We observe that the effect of increasing τu on %CR will depend on which supplier has the
minimum average inventory cost. Since the average inventory cost of using supply mode 1 exclu-
sively increases at a faster rate than the average inventory cost of the dual-mode model, G∗, when
G1 < G2, %CR will increase. However, when G2 < G1, the percentage cost reduction will decrease,
since G2 is independent of τu.

3.3 Impact of increasing mode 2 lead time, L2

We now analyze the effect of increasing the value of L2 (while keeping the other parameters equal)
on the dual-mode model. As L2 increases, the time when we need to make the decision on whether
to place the second order or not, τ̄ − L2, will be earlier in the cycle, and therefore, the probability
of placing the second order will increase. We can view the increase in L2 as a decrease in the
responsiveness on delivery mode 2, and as a result, the average inventory cost of the dual-mode
model will increase, and the model will be less beneficial.

Table 4 shows the effect of the increase in L2 on the performance of the dual-mode model. As
expected, the average inventory cost of our proposed model increases for increasing values of L2,
and since the average inventory cost of the single-mode mode is independent of L2, we observe a
decrease in %CR.

Dual-Mode Model Single-Mode Model CR
L2 τ̄ λβ Q G∗ Q1 G1 Q2 G2 %

days days units units $/yr units $/yr units $/yr

∆c = 0
5 5 1233 986 101,937.3 1507 102,636.2 1506 102,258.3 14.22
14 14 986 986 101,971.4 1507 102,636.2 1506 102,258.3 12.71
30 30 685 1123 102,181.4 1507 102,636.2 1506 102,258.3 3.40

∆c = 0.5
5 50 137 1370 102,630.0 1507 102,636.2 1506 107,258.3 0.24
14 54 27 1480 102,790.0 1507 102,636.2 1506 107,258.3 -5.83
30 55 0 1507 102,980.0 1507 102,636.2 1506 107,258.3 -13.04

∆c = 1
5 50 137 1452 102,680.0 1507 102,636.2 1506 112,258.3 -1.66
14 54 27 1507 102,790.0 1507 102,636.2 1506 112,258.3 -5.83
30 55 0 1507 102,980.0 1507 102,636.2 1506 112,258.3 -13.04

Table 4: Effect of L2 on the dual-mode model.

3.4 Change in demand rate: λ

In order to evaluate how the demand rate affects the performance of the dual-mode model we
performed numerical tests where we increased the value of λ, while holding other parameters equal.

As the demand rate increases we expect to observe an increase in the total quantity ordered
through modes 1 and 2, i.e., Q+λβ, and an increase in the average inventory cost for the dual-mode
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model as well as for the single-mode model.
Table 5 shows the optimal solution and average inventory cost for the dual-mode model and

single-mode model for increasing values of demand rate. Note that for these instances, because
the demand rates used were less than the base value of 10,000, we modified the break points at
which τu increases for increasing values of Q (see the caption of Table 5). This permitted analyzing
solutions with different values of τu, and showing how the value of λ affects the value of τu in the
optimal solution.

Dual-Mode Model Single-Mode Model CR
λ τ̄ λβ Q G∗ Q1 G1 Q2 G2 %

units/yr days units units $/yr units $/yr units $/yr

∆c = 0
500 50 0 270 5,442.7 258 5,424.3 337 5,505.0 -4.34
3000 5 411 527 31,042.9 500 31,196.9 825 31,237.0 12.87
7000 5 959 786 71,608.4 1055 72,044.5 1260 71,889.0 14.85
9000 5 959 1011 91,873.1 1356 92,439.0 1428 92,142.4 12.57

∆c = 0.5
500 50 0 270 5,442.7 258 5,424.3 337 5,755.0 -4.34
3000 51 33 681 31,236.0 500 31,196.9 825 32,737.0 -3.27
7000 51 77 1053 72,079.0 1055 72,044.5 1260 75,389.0 -1.69
9000 51 77 1258 92,447.0 1356 92,439.0 1428 96,642.0 -0.33

∆c = 1
500 50 0 270 5,442.7 258 5,424.3 337 6,005.0 -4.34
3000 55 0 659 31,241.0 500 31,196.9 825 34,237.0 -3.68
7000 54 19 1036 72,100.0 1055 72,044.5 1260 78,889.0 -2.72
9000 54 19 1332 92,488.0 1356 92,439.0 1428 101,140.0 -2.01

Table 5: Effect of demand rate on the dual-mode model.
q1 = 0 units q2 = 500 units q3 = 1, 500 units q4 = 3, 000 units

We observed that for increasing values of λ, when G1 < G2, the value of %CR increases.
Although we have not been able to prove it analytically, the reason is that for increasing values of
λ, the average inventory cost for supply mode 1 increases at a faster rate than the average inventory
cost for the dual-mode model, G∗. The opposite happens when we increase λ and G2 < G1. Since
G∗ increases at a faster rate than the average inventory cost for supply mode 2, the value of %CR
will decrease.

3.5 Change in holding cost per unit per time: h

To evaluate the effect of the holding cost per unit per unit time in the dual-mode model, we
performed numerical tests where we increased the value of h and held the rest of the parameters
fixed.

Table 6 shows the order quantities and average inventory cost for the single-mode model and the
dual-mode model. We observe that when h increases, the total quantity ordered in the dual-mode
model, Q+ λβ, decreases and the average inventory cost increases.

Through our numerical tests, we cannot predict the effects of the increase of h on %CR, since
it will depend on the relative value of h with respect to the other parameters.
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Dual-Mode Model Single-Mode Model CR
h τ̄ λβ Q G∗ Q1 G1 Q2 G2 %

$/unit · yr days units units $/yr units $/yr units $/yr

∆c = 0
0.8 5 1370 1173 101,387.4 1507 101,715.7 2062 101,649.2 15.88
1.2 5 1233 986 101,703.0 1507 102,241.7 1683 102,019.9 15.69
2.5 26 658 986 102,660.0 1507 103,951.3 1166 102,915.5 8.76

∆c = 0.5
0.8 54 27 1670 101,770.0 1507 101,715.7 2062 106,649.2 -3.17
1.2 52 82 1425 102,280.0 1507 102,241.7 1683 107,019.9 -1.71
2.5 45 274 1233 103,650.0 1507 103,951.3 1166 107,915.5 7.63

∆c = 1
0.8 55 0 1647 101,770.0 1507 101,715.7 2062 111,649.2 -3.17
1.2 55 0 1507 102,300.0 1507 102,241.7 1683 112,019.9 -2.60
2.5 50 137 1370 103,860.0 1507 103,951.3 1166 112,915.5 2.31

Table 6: Effect of holding cost on the dual-mode model.

3.6 Change in incremental fixed order cost for mode 2: Ā

When the incremental fixed order cost for using shipping mode 2 in the dual-mode model increases,
while holding all other parameters fixed, we expect to observe an increase in the average inventory
cost of the dual-mode model, since it is more expensive to place a second order.

Since the average inventory cost for the single-mode model is independent of the extra fixed
order cost of placing a second order, as we increase Ā the value of %CR will decrease, making the
dual-mode model less beneficial.

Table 7 shows the results of our numerical tests when we increase the value of Ā.

Dual Mode Model Single Mode Model CR

Ā τ̄ λ ∗ β Q G∗ Q1 G1 Q2 G2
%

$/order days units units $/yr units $/yr units $/yr

∆c = 0

70 5 1233 986 101,937.3 1507 102,636.2 1506 102,258.3 14.22
100 5 1233 986 102,072.5 1507 102,636.2 1506 102,258.3 8.23
150 5 1233 1000 102,297.4 1507 102,636.2 1506 102,258.3 -1.73

∆c = 0.5

70 50 137 1370 102,630.0 1507 102,636.2 1506 107,258.3 0.24
100 51 110 1397 102,680.0 1507 102,636.2 1506 107,258.3 -1.66
150 53 55 1452 102,740.0 1507 102,636.2 1506 107,258.3 -3.94

∆c = 1

70 53 55 1452 102,680.0 1507 102,636.2 1506 112,258.3 -1.66
100 54 27 1480 102,710.0 1507 102,636.2 1506 112,258.3 -2.80
150 55 0 1507 102,760.0 1507 102,636.2 1506 112,258.3 -4.69

Table 7: Effect of Ā on the dual-mode model.

3.7 Change in purchasing cost when using shipping mode 2: c2

When we increase the purchasing cost per unit for supply mode 2, and keep all other parameters
fixed, we expect to observe an increase in the average inventory cost of the dual-mode model. Tables
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2 to 7 show the optimal solution for the dual-mode model and single-mode model for different values
of c2.

We observe that although it may be intuitive to conclude that as we increase c2 the use of the
dual-mode model will become less attractive, that is not always the case. The impact of the change
in c2 depends on which shipping mode has the minimum cost when they are used independently.
When shipping mode 2 is the preferred supply mode, as we increase c2, the cost of using it exclusively
also increases, but at a faster rate than the increase in the average inventory cost of the dual-mode
model, G∗, and therefore the percentage cost reduction obtained by using the dual-mode model
increases with increasing values of c2.

This increasing trend in %CR stops when c2 is large enough to make mode 1 the new preferred
shipping mode. When mode 1 is the preferred single supply mode, as we increase c2, the value of
G1 does not change, and %CR decreases. Therefore the maximum %CR for increasing values of
c2 is reached at the maximum value of c2 such that G2 ≤ G1.

3.8 Change in the lead team distribution for supply mode 1

For the development of our model we assumed that the lead time for supply mode 1 is Uniformly
distributed. When the mode 1 lead time follows a Uniform Distribution, L1 ∼ U (τl, τu), the
probability density of an order arrival at time t is equal for any time t ∈ [τl, τu], and the expected
arrival time is E [L1] = τl+τu

2 , which is equal to the midpoint of the interval.
We are interested in the effects that using a non-Uniform distribution for the mode 1 lead time

has on the dual-mode model. In particular, we assume that L1 ∼ {τl + ∆τBeta (a, b)}1 where
a = 2 and b > 2, and therefore the distribution is unimodal and positively skewed. Under this
assumption the probability of having an early arrival (before the middle point of the interval) is
higher than when a Uniformly distributed lead time is assumed.

Since we can no longer use the expressions found in Section 2, in order to find the optimal solu-
tion for the dual-mode model when we use a Beta distribution for L1, we need to use a simulation-
based optimization approach; in particular, we used the commercial package OptQuest from Arena.

Table 8 shows the optimal values and average inventory costs for the single-mode model and
dual-mode model when we assume that L1 ∼ {τl + ∆τBeta (a, b)}. The last two columns of Table
8 show the %CR values for the different assumptions for the distribution of L1.

We observed that we obtained higher %CR values when we assume that L1 follows a Beta
distribution, and the reasons for this are twofold: first, the average inventory cost of using supply
mode 1 exclusively is higher when we use a positive skewed Beta distribution for L1, compared
with the average inventory cost of assuming a Uniformly distributed lead time. This is because the
expected arrival time when L1 ∼ {τl + ∆τBeta (a, b)} is less than τl+τ2

2 , and therefore, the holding
cost due to safety stock (λτu − λE [L1]) is increased under the Beta distribution (when compared
to the Uniform); second, since the probability of an early arrival is higher when we assume that
L1 follows a Beta distribution, compared with the use of the Uniform distribution, the probability
of placing the second order with supply mode 2 decreases, and therefore, the average total cost of
using the dual-mode model will decrease.

In practice we expect that L1 follows a probability distribution with some positive skew, since
the unusually long cases typically lead to the skew in the distribution. Hence, based on the previous
analysis, we can expect to have higher %CR values than the ones observed under the assumption
of a Uniformly distributed lead time, and therefore, the dual-mode model may be more beneficial
in practice.

1We define L1 as a scaled Beta variable, since the Beta distribution is defined in the interval [0, 1] and we are
interested in general cases where L1 ∈ [τl, τu].
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Dual-Mode Model Single-Mode Model CR

λ τ̄ λβ Q G∗ Q1 G1 Q2 G2 % %
units/yr days units units $/yr units $/yr units $/yr L1 ∼ {τl + ∆τBeta (a, b)} L1 ∼ U(τl, τu)

∆c = 0

500 45 7 241 5433.6 258 5,440.1 337 5505.0 1.51 -4.34
3000 5 411 585 30987.9 500 31,292.0 825 31237.0 20.14 12.87
7000 7 921 604 71450.6 1055 72,297.2 1260 71889.0 23.23 14.85

∆c = 0.5

500 43 10 238 5428.3 258 5,440.1 337 5755.0 2.69 -4.34
3000 43 99 669 31196.1 500 31,292.0 825 32737.0 7.42 -3.27
7000 42 249 197 71980.2 1055 72,297.2 1260 75389.0 13.80 -1.69

∆c = 1

500 43 10 241 5430.9 258 5,440.1 337 6005.0 2.10 -4.34
3000 41 74 500 31181.7 500 31,292.0 825 34237.0 8.54 -3.68
7000 42 74 1013 72000.9 1055 72,297.2 1260 78889.0 12.90 -2.72

Table 8: Dual-mode model for L1 ∼ {τl + ∆τBeta (a, b)}.
q1 = 0 units q2 = 500 units q3 = 1, 500 units q4 = 3, 000 units

3.9 Comparing supply modes with different cost and lead time parameters

The analysis discussed in the previous sections shows how certain parameter changes affect the
benefits of the dual-mode model. This section considers how a buyer might evaluate multiple supply
mode options, where a given mode implies certain costs and lead time distribution characteristics.
For example, using the example in Figure 10, we can see how the buyer might compare different
perfectly reliable suppliers with different combinations of purchasing costs and lead times.

Figure 10: Percentage of cost reduction for different values of L2 and ∆c.
A2 = $150/order Ā = $50/order

In Figure 10 we observe that choosing the supply mode with the shortest lead time, while
keeping the other parameters equal, will provide the biggest %CR value. However, in practice, a
reduction in the lead time corresponds to an increase in the unit purchasing cost. As a result it
may be more beneficial to choose a shipping mode with a longer lead time but with a reduced unit
purchasing cost. In this way the buyer can negotiate purchasing costs based on delivery times.

Next we would like to compare different supply modes with different uncertainty levels. The
curves in Figure 11 represent different shipping modes with Uniformly distributed lead times, each
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with the same mean, but with different values of variance (where ∆τ = 41 days for the base case).
This means that we will compare shipping modes with equal values for the expected arrival time,
but with different values of ∆τ .

Figure 11: Percentage of cost reduction for different values of L2, ∆c and ∆τ .
A2 = $150/order Ā = $50/order

Although intuition suggests that the dual-mode model will be more beneficial as the uncertainty
in the lead time of shipping mode 1 increases, as shown in Figure 11, when ∆c = 0, this is not
always the case. When ∆c = 0 we obtain the greatest benefit when ∆τ = 29 days. The reason
for this is that, for this instance, when ∆c = 0, mode 2 is the preferred supplier (G2 < G1), and
therefore, as we decrease ∆τ the average inventory cost for supply mode 2 does not change, while
the average inventory cost of the dual-mode model decreases, and consequently %CR increases.

Next we consider the dual-mode model for different modes with Uniformly distributed lead
times and equal uncertainty levels, but increasing values of the expected delivery time. This means
that we are comparing shipping modes with equal values of ∆τ , but increasing values of E [L1],
while holding all other parameters equal. Figure 12 shows the results, where E [L1] = 34.5 days for
the base case.

Figure 12: Percentage of cost reduction for different values of L2, ∆c and L̂1.
A2 = $150/order Ā = $50/order

Note that the average inventory cost of using mode 2 exclusively is independent of E [L1];
therefore for instances with different expected lead times for supply mode 1, the value of G2 will
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not change.
For the single-mode model when we use mode 1 exclusively, in order to avoid stockouts we need

an order size at least as great as the reorder point, i.e., Q ≥ λτu; therefore for increasing values of
E [L1], the right hand side of the inequality increases and we will have increasing values of G1.

As expected, we have increasing values of %CR for increasing E [L1]. Note that when ∆c = 0
we have some cases when the %CR values are equal for for different E [L1]. There are two reasons
for this results: first, when ∆c = 0 supply mode 2 is chosen as regular supplier (G2 < G1), and
therefore, we will compare the dual-mode model against the same value for the average inventory
cost for the single-mode model, for different values of E [L1]; and second, for small values of L2 the
constraint on order size to avoid order crossing, Q ≥ λ∆τ , is more restrictive than Q ≥ λτ̄ , and
therefore for different values of E [L1] and equal values of ∆τ , the values of Q and λβ are equal for
different instances, which results in the same average inventory cost for the dual-mode model.

As we can see, the proposed model presents saving opportunities for the buyer, and it can be
used in a joint manner with the supplier to achieve inventory cost reductions for the buyer and
better resource allocation for the supplier.

4 Conclusions, Recommendations, and Suggested Research

When allocating orders to suppliers, there is often a tradeoff between cost and delivery perfor-
mance. The use of a cheaper supply mode often implies dealing with higher uncertainty levels
when compared with a more expensive mode. Assuming that shortages are highly undesirable,
if a cheap and less reliable delivery mode is used, it may be beneficial to consider supplementing
this with a secondary supply mode that is more reliable (and therefore more expensive). This
paper focused on the benefits of this dual-mode ordering strategy by modeling a buyer’s ordering
decisions with two delivery mode options. Our model allowed us to characterize the benefits of the
dual-mode supply strategy and compare the optimal dual-mode policy with the better of the two
single-supplier solutions.

Using numerical analysis, we characterized situations under which the use of the dual-mode
model is preferred over the single-mode model. We observed increasing benefits in our model
for increasing values in the mean and variance in the lead time of the less reliable supply mode
(assuming that supply mode 1 is used as the preferred single-mode supplier). We also observed
that when the supply mode 1 lead time follows a positively skewed probability distribution, which
is typically a more realistic assumption than a Uniform lead time, the percentage cost reduction
due to the dual-mode operation is greater compared with the results when we assume that supply
mode 1 lead time is Uniformly distributed.

Our model can be used by a manager who wants to analyze different combinations of shipping
modes in order to minimize inventory costs while guaranteeing zero stockouts. Our work shows that
a supplier that offers different shipping mode options with different delivery costs and reliability
levels may provide additional value to potential buyers. Further research may consider different
supplier pricing and incentives. For example, in order to increase the utilization of shipping modes
with available capacity, a supplier might offer quantity discounts for the use of those modes, making
shipping diversification more attractive for the buyer. Finally, we note that one dimension our
model does not account for is the risk preference of the decision maker, effectively assuming that
the buyer is risk neutral. An interesting extension of our work may include accounting for the way
in which different buyer risk profiles influence the allocation of order quantities to different supply
modes.

31



Appendices

A Order crossing condition

Assuming that we use a supply mode with a stochastic lead time, L1 ∼ U (τl, τu) and a constant
demand rate λ, if we use a continuous review (Q, r) policy, where r = λτu, we need Q ≥ λ (τu − τl)
to prevent order crossing. In order to prove this assertion, we assume for a contradiction that
Q < λ (τu − τl).

Note that the inventory position at any time t ≥ 0 is equal to Q+λτu−λt. When the inventory
position reaches the reorder point r = λτu, an order is placed. That is, when Q+ λτu − λt = λτu,
an order is placed. This implies that an order is placed at time t = Q

λ and by the assumption that
Q < λ (τu − τl), we have that:

t =
Q

λ
< τu − τl.

An order placed at time t will arrive at time t+L1, and with probability strictly greater than zero,
the order will arrive at time t+ τl, and since t < τu − τl, we have that:

t+ τl < τu − τl + τl = τu

Therefore, with probability strictly greater than zero the order may be received before τu, which
implies a positive probability of order crossing. Thus an absence of order crossing implies Q ≥
λ (τu − τl).

B Single-Mode Solution with Quantity Based Upper Bound

This section presents the solution procedure to find an optimal order quantity from mode 1, Q∗1, and
minimum average inventory cost, G∗1 for the single-mode model, when the lead time upper bound
for supply mode 1, τu, is a step function of the order size Q such that, τu = τ iu if qi ≤ Q < qi+i for
i = 1, 2, ...n where qi < qi+1, τ iu < τ i+1

u and n is the number of intervals.

1. Find Q∗1 using (2.2);
2. Find Gk1 (Q∗1), for τu = τku such that qk < Q∗1 ≤ qk+1, using (2.3). Set G∗1 = Gk1 (Q∗);
3. while k > 1 do
4. Find Gk−1

1

(
qk, τ

k−1
u

)
using (2.1), which is the average inventory cost per unit time using

the right break point for Q in the (k − 1)th interval;
5. if G∗1 ≤ G

k−1
1 then

6. Q∗1 is the optimal order quantity and the minimum average inventory cost is G∗1. Set
k = 1;

7. else
8. Set Q∗1 = qk, G

∗
1 = Gk−1

1 , k = k − 1;
9. end if

10. end while
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C Convexity conditions for GI (Q, β)

This section presents convexity conditions for the average inventory cost function for the dual-mode
model when τ̄ ∈ [L2, L2 + τl), represented by:

GI (Q, β) =
λ2β2h+ 2c2λ

2β + hQ2 + 2c1λQ+ hλQ (τu − τl) + 2λA

2 (Q+ λβ)

First, we analyze average inventory cost as a function of Q and β independently, and then, we
will present the convexity condition for GI as a joint function of Q and β.

To analyze the average inventory cost as a function of Q we need to find its first and second
derivatives:

∂GI
∂Q

=
hQ2 + 2λhQβ + hλ2β∆τ − 2λ2β∆c− λ2hβ2 − 2λA

2 (Q+ λβ)2

∂2GI
∂Q2

=
2λ2hβ2 − λ2hβ∆τ + 2λ2β∆c+ 2λA

(Q+ λβ)3

Since Q and β are strictly positive, the denominator of ∂2GI
∂Q2 is strictly positive as well. The

numerator can be analyzed as a quadratic function of β of the form h (β) = aβ2 + bβ + c, where
a = 2hλ2, b = 2λ2∆c− hλ2∆τ and c = 2λA.

Since a > 0, h (β) is convex, and the values of h (β) will depend on its discriminant δ = b2−4ac.

In particular, we are interested in the conditions under which h (β) ≥ 0, since we need ∂2GI
∂Q2 ≥ 0

for GI (Q) to be convex. Note, that when δ ≤ 0, h (β) has at most one real root, and therefore,
h (β) ≥ 0 ∀β, and when δ > 0, h (β) will have two real roots, β1 and β2, and h (β) will be positive
for β ∈ (−∞, β1]

⋃
[β2,∞), and negative otherwise.

In order to have δ ≤ 0 we need:

ω2 ≤ 4λhA, (C.1)

where ω = hλ∆τ
2 − λ∆c. This condition requires that the square of the upper bound on the

difference between the average inventory cost of using shipping mode 1 and the average inventory
cost of using shipping mode 2, must be less than or equal to twice the square of the ordering
and holding cost of the EOQ model with holding cost per unit per unit time h and ordering cost
A = A1 + Ā. Therefore, when condition (C.1) holds, we have that ∂2f/∂Q2 is non-negative for
Q ≥ 0 and β ≥ 0, and hence, GI is convex for Q ≥ 0 and β ≥ 0.

If condition (C.1) does not hold, we have that δ > 0; therefore h (β) will have two real roots:

β1 =
ω−
√

(−ω)2−4λhA
2λh and β2 =

ω+
√

(−ω)2−4λhA
2λh , and h (β) will be positive for β ∈ (−∞, β1]

⋃
[β2,∞).

We can see that the sign of β1 and β2 depends on the value of ω. When ω < 0, we have
β1 < β2 < 0, which means that the two real roots of h (β) are negative, and therefore h (β) > 0

∀β ≥ 0, and consequently ∂2f
∂β2 > 0. If ω > 0, we have that β2 > β1 > 0, and therefore, ∂2f

∂β2 ≥ 0

when β ∈ [0, β1]
⋃

[β2,∞).
Finally we can conclude that GI (Q) is convex ∀Q > 0 and β > 0 when (C.1) holds or when

ω < 0. If (C.1) does not hold and ω > 0, then GI (Q) is convex ∀Q > 0 and β ∈ [0, β1]
⋃

[β2,∞).
We next analyze the average inventory cost as function of β using its first and second derivatives:

∂GI
∂β

=
2λ2hβQ+ 2λ2Q∆c+ λ3β2h− λhQ2 − λ2hQ∆τ − 2λ2A

2 (Q+ λβ)2

∂2GI
∂β2

=
2λ2hQ2 − 2λ3Q∆c+ λ3hQ∆τ + 2λ3A

(Q+ λβ)3
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We observe that the denominator of ∂2GI
∂β2 is positive ∀Q > 0 and β > 0 and that the numerator

is a quadratic function of Q of the form k (Q) = aQ2 + bQ+c, where a = 2λ2h, b = hλ3∆τ −2λ3∆c

and c = 2λ3A with roots: Q1 = −ω−
√
ω2−4λAh
2h and Q2 = −ω+

√
ω2−4λAh
2h

Following the same analysis used for GI (Q), we have that GI (β) is convex ∀Q > 0 and β > 0
if condition (C.1) holds or if ω > 0. If condition (C.1) does not hold and ω < 0, GI (β) is convex
for Q ∈ [0, Q1]

⋃
[Q2,∞) and β > 0.

Note that (C.1) it is not restrictive, since the order cost is typically bigger than ∆c and than
the holding cost per unit during ∆τ . For the rest of this section we will assume that (C.1) holds,
and therefore GI (β) and GI (Q) are convex ∀β > 0 and Q > 0.

To establish convexity conditions for GI as a joint function of Q and β we need to analyze its
Hessian:

H =

[
∂2GI
∂Q2

∂2GI
∂Q∂β

∂2GI
∂β∂Q

∂2GI
∂β2

]
,

where:
∂2GI
∂β∂Q

=
λω (Q− λβ)− 2λ2hQβ + 2λ2A

(Q+ λβ)3

Since ∂2GI
∂β2 and ∂2GI

∂Q2 are non-negative when condition (C.1) holds, we need to transform H to the
form:

Hnew =

[
h11 h12

0 hnew22

]
In order to do the transformation we use F = −λω(Q−λβ)−2λ2hQβ+2λ2A

2λ2hβ2−2λωβ+2λA
, and we have that,

hnew22 = Fh12 + h22

=
λ2
(
4λAh− ω2

)
2λ2hβ2 − 2λωβ + 2λA

Substituting h (β) = 2λhβ2 − 2ωβ + 2A, we have:

hnew22 =
λ2
(
4λAh− ω2

)
h (β)

.

Because we assume that (C.1) holds, hnew22 ≥ 0, and this implies that H is positive semidefinite,
and therefore GI (Q, β) is convex ∀Q > 0 and β > 0.

D Algorithm for dual-mode model when τ̄ ∈ [L2, τ1 + L2)

Algorithm 1 shows a detailed description of the solution procedure to find the optimal order quan-
tities from modes 1 and 2, and minimum average inventory cost for the dual-mode model when
the lead time upper bound of mode 1, τu, is a step function of Q and τ̄ ∈ [L2, τ1 + L2). Note that
Algorithm 1 uses the expressions described in Section 2.2.1.

E Algorithm for dual-mode model when τ̄ ∈ [τ1 + L2, τu)

Algorithm 2 shows a detailed description of the solution procedure to find the optimal order quan-
tities from modes 1 and 2, and minimum average inventory cost for the dual-mode model when the
lead time upper bound of mode 1, τu, is a step function of Q and τ̄ ∈ [τ1 + L2, τ1 + L2]. Note that
Algorithm 2 uses the expressions described in Section 2.2.2.
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Algorithm 1 Minimum average inventory cost for the dual-mode model when τ̄ ∈ [L2, τ1 + L2).

1. i← 1
2. while i ≤ n do
3. Find β∗i and Q∗i for τ iu
4. if Q∗i ∈ (qi, qi+1] then
5. Find the minimum average inventory cost for the ith interval GiI
6. else if Q∗i < qi then
7. if GiI (qi, β (qi)) ≤ Gi−1

I (qi, β (qi)) then
8. The minimum average inventory cost for the ith interval is GiI (qi, β (qi))
9. else

10. The solution is not in the ith interval
11. end if
12. else Q∗i > qi+1

13. if GiI (qi+1, β (qi+1)) ≤ Gi+1
I (qi+1, β (qi+1)) then

14. The minimum average inventory cost for the ith interval is GiI (qi+1, β (qi+1))
15. else
16. The solution is not in the ith interval
17. end if
18. end if
19. end while
20. G∗I = min

{
GiI ∀i ∈ [1, n]

}
F Validity of average inventory expression for dual-mode model

when τ̄ ∈ [τl + L2, τu]

We consider our inventory model as a Renewal Reward Process, where the interarrival times Tn,
n ≥ 1, are equal to the length of the replenishment cycle, and each time a renewal occurs we receive
a reward In, n ≥ 1, equal to the average inventory in the cycle.

We observe that the pair (Tn, In), n ≥ 1 are independent and identically distributed and that
E [Tn] = E [T ] from (2.13), and E [In] = E [I] from (2.14). Using the result showed by Ross [15], we
have a Renewal Reward Process where E [T ] < ∞ and E [I] < ∞, and therefore, with probability
1,

E [I(t)]

t
→ E [I]

E [T ]
as t→∞.
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