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EXECUTIVE SUMMARY 
The research presented in this report develops a reference model of a predictive eco-cruise 
control (ECC) system that intelligently modulates vehicle speed within a pre-set speed range to 
minimize vehicle fuel consumption levels using roadway topographic information. The study 
includes five basic tasks: (a) develop a vehicle powertrain model that can be easily implemented 
within eco-driving tools; (b) develop a simple fuel consumption model that computes 
instantaneous vehicle fuel consumption levels based on power exerted; (c) evaluate manual 
driving and conventional cruise control (CC) driving using field-collected data; (d) develop a 
predictive ECC system that uses the developed vehicle powertrain and fuel consumption models; 
and (e) evaluate the potential benefits of the proposed predictive ECC system on a pre-trip and 
fleet-aggregate basis.  

A vehicle powertrain model is closely related to eco-driving research since a vehicle’s 
ability to accelerate with reasonable accuracy and excellent computational efficiency is an 
important factor in eco-driving techniques. There have been a significant number of studies on 
the modeling of vehicle engines and controls. Specifically, these models were developed with a 
focus on engine design, analysis, and control. While these models are sufficient for their intended 
purposes, they are not adequate for use in microscopic traffic simulation software for two 
reasons. Ni and Henclewood [3] indicate that typical engine models are computationally intensive 
and cannot be integrated within car-following, lane-changing, and gap acceptance algorithms 
which are critical for traffic simulation models. Second, these models require proprietary 
parameters that are difficult to obtain and, in some instances, require gathering field data for the 
entire envelope of operation of a vehicle. Thus, the development of a vehicle powertrain model 
that can be utilized for traffic simulation models is a new challenge for traffic engineers.   

The research presented in this study develops a simple vehicle powertrain model that can 
be easily implemented in other applications such as fuel consumption models and microscopic 
traffic simulation software. A key input to the powertrain model used in this study is the driver 
throttle input. This study focuses on the modeling of a vehicle powertrain system assuming that 
the driver input is known.  

The proposed powertrain model starts with the driver throttle and brake input. Using the 
driver’s throttle input, the engine speed is computed utilizing a simple regression model that was 
developed in this study using field observations of engine speed and throttle level. In the case of a 
manual transmission system the gear selection is made directly using the engine speed. 
Alternatively, in the case of an automatic transmission system the torque converter is modeled 
prior to the transmission system. The engine speed and torque are then used to compute the 
vehicle power using a parabolic vehicle engine model that was developed by Ni and Henclewood 
[3]. The vehicle acceleration is then computed considering a point mass vehicle dynamics model. 
The vehicle speed and position are estimated by solving the second order differential equation. 
This simple model can be calibrated using engine and powertrain parameters that are publicly 
available without the need for field data collection. The model was demonstrated to produce 
vehicle acceleration, speed, and position that are consistent with field observations. The 
developed powertrain model estimated the vehicle power within reasonable accuracy. The model 
estimates instantaneous vehicle power within 1.7 to 20.2 percent error range when compared to 
the field measured power data for test vehicles. 

A new power-based microscopic fuel consumption model is also developed in this study. 
While various eco-driving tools have been developed recently, most models use traditional fuel 
consumption models to estimate the benefit of their eco-driving system. However, traditional fuel 
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consumption models typically use the average speed as an input variable, which may not be 
enough to quantify sharp accelerations and aggressive driving behaviors. Consequently, this study 
develops a fuel consumption model that can estimate instantaneous fuel consumption in order to 
improve the accuracy of fuel estimation.  

There are a number of tools available that can estimate vehicle emissions and fuel 
consumption levels. Most of these models use vehicle tractive power and/or velocity as 
explanatory variables. These models appear to be simple and easy to implement; however, the 
calibration of the model parameters is not a simple task and typically requires vehicle-specific 
data that are not publicly available. Some of the factors are almost impossible to obtain. 
Compromising between simplicity and accuracy has always been a difficult task for any model. 
Consequently, the research focuses on developing a simple fuel consumption model that can be 
calibrated using publicly available data and also can be implemented within energy-saving 
driving assistance tools or microscopic traffic simulation software.  

This study presents a new power-based microscopic fuel consumption model entitled the 
Virginia Tech Comprehensive Power-based Fuel Consumption Model (VT-CPFM). The 
developed fuel consumption model overcomes two major drawbacks of existing fuel consumption 
and emission models, namely: (a) they produce a bang-bang control through the use of a linear 
power model (i.e., the optimum fuel consumption requires a full throttle acceleration); and (b) the 
calibration of model parameters cannot be done using publicly available data, thus necessitating 
in-laboratory or field data collection. The research presented in this paper develops two simple 
fuel consumption models. Specifically, the models produce a continuously variable (non-bang-
bang) control and are calibrated using the U.S. Environmental Protection Agency (EPA) city and 
highway fuel economy ratings in addition to publicly available vehicle and roadway pavement 
parameters.  

The models estimate vehicle fuel consumption rates consistent with in-field measurements 
(coefficient of determination above 0.90). The study validates the VT-CPFMs by comparing the 
field-measured fuel consumption rates with the model estimates. Six light-duty vehicles, 
including four sedans and two sport utility vehicles (SUVs), were tested on a section of Interstate 
81. From the comparison results, the VT-CPFMs calibrated using the city and highway fuel 
economy values provide reliable fuel consumption estimates. The study found that the peaks and 
valleys on the test run profiles in the fuel consumption estimates are consistent with the field data, 
demonstrating that both estimates and measurements have the same pattern depending on the 
engine load conditions. In addition, the models estimate CO2 emissions that are highly correlated 
with field measurements (correlation coefficient greater than 0.98). The development of the VT-
CPFMs attempts to bridge the existing gap between traditional power-based fuel consumption 
models and vehicle operational control systems such as fuel-optimized CC systems, real-time 
eco-driving systems, and adaptive CC systems. The proposed model can be integrated within a 
traffic simulation framework to quantify the energy and environmental impacts of traffic 
operational projects.  

This study performed a field experiment to compare conventional CC driving and manual 
driving with regard to fuel economy. The field experiment was conducted using five vehicles on a 
section of Interstate 81, which comprises ±4% uphill and downhill sections. Using an Onboard 
Diagnostic II reader, instantaneous fuel consumption rates and other driving parameters were 
collected during the field tests with or without the CC enabled. The collected data were compared 
with regard to fuel economy, throttle control, and travel time. The study found that the CC 
driving improves fuel efficiency as compared to the manual driving, although there were some 
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variations in the differences depending on the driver, the vehicle, and the direction of travel 
(northbound versus southbound). The average fuel economy enhancement across all the field tests 
was 3.3%. It is interesting to note that using CC on downhill sections resulted in better fuel 
economy than using it on uphill sections. The study also found that manual driving and CC 
driving were not significantly different from each other with regard to travel time. Statistical tests 
were conducted to ascertain if the differences in fuel consumption between CC driving and 
manual driving were statistically significant. A multiple linear regression model was fitted to the 
field-measured fuel consumption data to reveal the relationship of the fuel economy to other 
contributing factors.  

This study investigates a possible fuel-saving and greenhouse emission reduction strategy 
using a predictive ECC system. The newly developed powertrain model and fuel consumption 
model are implemented into the predictive ECC system. Roadway grades have a significant 
impact on vehicle fuel consumption and CO2 emission rates. On upgrade sections, vehicles exert 
additional power to overcome the grade resistance force, thus consuming more fuel compared to 
driving on a flat surface. Studies have shown that roadway grade results in significant increases in 
vehicle fuel consumption and emission levels [4, 5]. Park and Rakha (2006) demonstrated that a 
6-percent increase in the roadway grade could increase vehicle fuel consumption levels in the 
range of 40 to 94 percent, and a 1-percent grade could cause 13- to 18-percent increases in fuel 
consumption levels [5]. A recent study claimed that the overall fuel economy of the flat route is 
superior to that of the hilly route by approximately 15 to 20 percent [6]. Thus, energy-efficient 
operations on hilly roads could produce significant savings in fuel consumption usage.  

A conventional CC system allows the driver to maintain a desired speed by adjusting the 
vehicle throttle level. However, these traditional CC systems can result in excessive fuel usage by 
attempting to maintain a desired speed on upgrade and downgrade roadway segments. It is known 
that a small portion of trips that involve high engine load operations are responsible for a 
disproportionate contribution of trip emissions and fuel consumption levels [7]. Thus, if a vehicle 
attempts to maintain a pre-set speed on a steep uphill section, this segment could consume 
significant amounts of fuel and produce significant greenhouse gas (GHG) emissions.  

This study develops a predictive ECC system that can save fuel and reduce CO2 emissions 
using road topography information. The predictive ECC system consists of three components: a 
fuel consumption module, a powertrain module, and an optimization algorithm. The developed 
system generates an optimal throttle and speed control plan using roadway grade information 
obtained from a high-resolution digital map to control the vehicle speed within a pre-set speed 
window in a fuel-saving manner. The study found that the heuristic search algorithm finds the 
optimum plan more quickly with a gap in the objective function of less than 1 percent when 
compared to the shortest path algorithm. The performance of the system is tested by simulating a 
vehicle trip on a section of Interstate 81 in the state of Virginia. The results demonstrate fuel 
savings of up to 15 percent with execution times within real time. The simulation made 
assumptions for an easier interpretation of the system performance, which include: no errors in 
the vehicle control and topographical information feeding, and no interference by other vehicles. 
 Finally, the study quantifies the potential benefits of the predictive ECC system 
considering the variations in roadway grades, as compared to the conventional CC system. Based 
on the simulation results, the study found that the benefits of the predictive ECC system are 
maximized when vehicles travel on hillier terrains rather than mild terrains. Also, the predictive 
ECC system saves more fuel when the test vehicles are operated at higher target speeds as 
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opposed to lower target speeds. Specifically, the test vehicles showed the best performance with 
regard to fuel consumption saving at the target speed of 120 km/h.  
 The study also examines the impacts of using the predictive ECC system over a New 
York City to Los Angeles route and found that the system can save fuel consumption in a range 
of 4.7 to 6.7 percent, without increasing the total travel time, when a vehicle utilizes the 
predictive ECC. The simulation results demonstrate that the introduction of various speed range 
schemes during the predictive ECC trips can significantly improve the performance of the system, 
enhancing vehicle fuel efficiency without increasing the total travel time.  

The study quantified the potential benefits of the predictive ECC over a conventional CC 
system considering different roadway grade scenarios. The simulation study found if a predictive 
ECC system is applied to all vehicles in the United States, the average potential fuel savings were 
projected to be 1.04 billion gallons per year, which is equivalent to $3.12 billion per year when 
assuming that the price of gasoline is $3.00 per gallon. In addition, the ECC system can result in 
9.2 million fewer metric tons of CO2 released into the atmosphere, assuming that 1 liter of fuel 
produces 2.33 kg of CO2.  

The study demonstrates that the predictive ECC system can significantly improve vehicle 
fuel economy along various terrain sections. Since the road grade effect certainly plays a 
significant role in fuel consumption and CO2 emissions, it is expected that the implementation of 
the predictive ECC system can help achieve better fuel economy and improve air quality.  
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1. SIMPLE VEHICLE POWERTRAIN MODEL FOR MODELING INTELLIGENT 
VEHICLE APPLICATIONS 
This section develops a vehicle powertrain model that is utilized for traffic simulation software 
and integrated with vehicle fuel consumption and emission models. There have been several 
studies on the modeling of vehicle engines and controls [8-15]. Specifically, these models were 
developed with a focus on engine design, analysis, and control. While these models are sufficient 
for their intended purposes, they are not adequate for use in microscopic traffic simulation 
software for two reasons. Ni and Henclewood [3] indicate that typical engine models are 
computationally intensive and cannot be integrated within car-following, lane-changing, and gap 
acceptance algorithms which are critical for traffic simulation models. Second, these models 
require proprietary parameters that are difficult to obtain and, in some instances, require gathering 
field data for the entire envelope of operation of a vehicle. Thus, the development of a vehicle 
powertrain model that can be utilized for traffic simulation models is a new challenge for traffic 
engineers.   

Driving an automobile is complex, given that drivers must perform lateral-directional loop 
closure, longitudinal loop closure, information gathering, and hazard detection. In the case of 
lateral directional loop closure, drivers use the steering wheel to control lane position and 
heading. Alternatively, in the case of longitudinal loop closure, drivers use the accelerator and 
brake pedal, as well as the gear shift lever and clutch in manual transmission vehicles, to control 
the vehicle’s longitudinal position and speed. At the same time, drivers must attend to additional 
in-vehicle tasks associated with the instrument panel and related comfort/convenience items. 

Microscopic traffic simulation software uses car-following models to capture the 
longitudinal motion of a vehicle and its interaction with the preceding vehicle traveling in the 
same lane [16, 17]. The first equation characterizes the motion of the Following Vehicle (FV) 
with respect to the behavior of the Lead Vehicle (LV). The second set of equations constrains the 
car-following behavior by ensuring that vehicle accelerations are realistic. The model can be 
presented by either characterizing a relationship between a vehicle’s desired speed and the 
vehicle spacing (speed formulation), or alternatively by describing a relationship between the 
vehicle’s acceleration and speed differential between the FV and LV (acceleration formulation). 
The latter formulation is typical of the well-known GM car-following models with a control 
variable (acceleration), a stimulus variable (speed differential), and a driver sensitivity parameter. 
Rakha et al. [16] demonstrate that the speed formulation is a more appropriate formulation. 

In order to ensure feasible vehicle accelerations one may consider a vehicle kinematics 
model, a constant power vehicle dynamics model [1], a variable power vehicle dynamics model 
[2], or a more sophisticated gear-shifting model. A vehicle dynamics or gear-shifting modeling 
approach is better because the model parameters can be adjusted to reflect different weather, tire, 
and roadway surface conditions without the need to gather any field data.  

The research presented in this paper enhances vehicle longitudinal motion modeling by 
developing a simple vehicle powertrain model that can be easily implemented within traffic 
simulation software and can be integrated with power-based vehicle fuel consumption and 
emission models. A key input to the powertrain model is the driver throttle input. A driver’s 
aggressiveness is one of the important elements to represent real-world driving conditions in 
traffic simulation models. Thus, this study utilized the driver throttle level as a key input variable 
to characterize the driving behaviors on roadways. Intra- and inter-driver variability is likely 
present depending on the surrounding traffic conditions and the driver’s psychological state (e.g., 
fatigued, in a hurry, or distracted). This paper, however, focuses on the modeling of a vehicle 
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powertrain system assuming that the driver input is known. Research is currently underway to 
characterize driver throttle input depending on the vehicle, roadway, and surrounding traffic 
conditions. 

1.1 Model Description 
The model starts with the driver throttle and brake input, as illustrated in Figure 1. Using the 
driver’s throttle input the engine speed is computed employing a simple regression model that 
was developed in this study via field observations of engine speed and throttle level. In the case 
of a manual transmission system, the gear selection is made directly by using the engine speed. 
Alternatively, in the case of an automatic transmission system, the torque converter is modeled 
prior to the transmission system [18]. The engine speed and torque are then used to compute the 
vehicle power using a parabolic vehicle engine model that was developed by Ni and Henclewood 
[3]. The vehicle acceleration is then computed considering a point mass vehicle dynamics model. 
The vehicle speed and position are estimated by solving the second order differential equation. 
The specifics of each of the components of the model are described in the following sections. 

 
Figure 1: Proposed Model Structure 

Throttle/Engine Speed Modeling 
As was mentioned earlier, the task of driving an automobile is demanding given that drivers must 
perform lateral-directional loop closure, longitudinal loop closure, information gathering, and 
hazard detection. In the case of longitudinal loop closure, drivers use the accelerator and brake 
pedal, as well as the gear shift lever and clutch in manual transmission vehicles, to control the 
longitudinal position and speed of the vehicle. At the same time, drivers must attend to additional 
in-vehicle tasks associated with the instrument panel and related comfort/convenience items. The 
driver accelerator pedal input in turn affects the throttle level of the vehicle engine. The modeling 
of driver input entails modeling the driver accelerator pedal level and its effect on the throttle 
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level. This two-level process can be modeled using a single model without the need to capture the 
accelerator pedal position. The advantage of the latter approach is that data can be gathered using 
On-board Diagnostic (OBD) readers without the need for cameras to capture the accelerator pedal 
position. This approach is used in this study. 

The driver-selected throttle level results in a change in the engine speed. In an attempt to 
establish a relationship between the throttle level (f(t)) and engine speed (we(t)) at any instant (t), 
field data were gathered using a 1999 Ford Crown Victoria. The vehicle was powered by a 4.6 L, 
V-8 engine using an 87 octane fuel, rated at 200 hp @ 4250 rpm, with an electronic 4-speed 
automatic overdrive transmission. The vehicle, which was owned by the Virginia Tech 
Transportation Institute (VTTI), had a mileage of 9,500 miles at the start of the tests. An OBD 
reader was used to gather the driver input and engine speed. The data were gathered for typical 
driving along the Route 460 Bypass and Main Street in Blacksburg, VA. The 460 Bypass is a 7 
km, limited access, divided highway between Christiansburg and Blacksburg, VA, while Main 
Street is a signalized arterial. A total of 13 trip repetitions were made in order to ensure that 
sufficient data were available. The data were then sorted and binned based on the throttle level. 
The average engine speed within each throttle level bin was then computed, and a relationship 
between the throttle level and engine speed was derived, as illustrated in Figure 2. 

A Least Squared Error (LSE) regression was applied to the data considering the throttle 
level as the response variable and the engine speed as the explanatory variable. The developed 
model, which had a high coefficient of determination (R2= 0.92), is of the form 

   
  

 min

ln

lne t idle t

f t
w t w w w

f
     (1) 

Where we(t) is the engine speed (rpm) at any instant t; wt is the engine speed at maximum 
torque (rpm); widle is the idling engine speed (rpm); f(t) is the throttle position at any instant t 
(0~100 percent); and fmin is the minimum throttle position (0~100 percent). The model requires 
the calibration of three vehicle-specific parameters, namely: the engine speed at idling, the engine 
speed at maximum torque, and the minimum throttle level. The first two parameters can be easily 
obtained from auto manufacturer websites, while the latter parameter can either be obtained by 
gathering engine data using an OBD reader or assumed to be approximately 10 to 15 percent. The 
data demonstrated that the throttle level ranged between 15 and 65 percent for typical driving 
conditions. 

It should be noted that additional engine data are required in order to characterize the 
functional relationship between the throttle level and engine speed for different vehicle types, 
engine sizes, engine technologies, and vehicle age/mileage. It is recommended that further 
research be conducted to gather these field data. 
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(a) Field Mean and 95% Confidence Limits 

 
(b) Model Predictions vs. Field Observations 

Figure 2: Example Throttle vs. Engine Speed Relationship 

Engine Modeling 
Ni and Henclewood [3] indicate that although there has been a wealth of literature published 
about the modeling of internal combustion (IC) engines, these models were developed with a 
focus on engine design, analysis, and control. While these models are sufficient for their intended 
purposes, they are not adequate for use in traffic simulation software for two reasons. First, they 
are computationally intensive and cannot be integrated within car-following, lane-changing, and 
gap acceptance algorithms. Second, these models require proprietary parameters that are difficult 
to obtain and, in some instances, require gathering field data for the entire envelope of operation 
of a vehicle. Ni and Henclewood [3] summarize the desired attributes of such a model as: 
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• Accuracy: The engine model must provide reasonable accuracy to predict engine 
performance with throttle and engine speed as inputs and engine power and torque as 
outputs. In this study accuracy is defined as providing ideal approximation for the engine 
behavior with quality repeatability for different engines. 

• Computational efficiency: The engine model must be simple enough to facilitate on-board 
computing with high frequency in real time. 

• Accessibility: To assist wide deployment across different vehicle platforms, the engine 
model should not rely on proprietary parameters and variables that are difficult to 
measure. All the information needed to run the model should be publicly available. 

• Formulation: The engine model should be analytical. Engine models based on look-up 
tables are not only prohibitive to prepare for each individual vehicle but also resource-
demanding in computation. 

• Calibration: The engine model should be simple in order to ensure that the model 
calibration is easy. 
Ni and Henclewood [3] presented three simple engine models. The first of these models is 

a polynomial model that was developed by Genta [19]. This model uses a polynomial to 
empirically approximate the relationship between engine power, Pe (KW), and engine speed, ωe 
(rpm), as 

3

1

i
e i e

i

P C 


   (2) 

where Ci, i = 0, 1, 2, 3 are coefficients and can be estimated from empirical engine curves. These 
coefficients can be estimated as 

     2 3max max max
1 2 32 3

1000 60 , 1000 60 , 1000 60
p p p

P P P
C C C

  
        (3) 

where Pmax (KW) is the peak power and ωp (rpm) is the engine speed at peak power. 
The second model that was developed by Ni and Henclewood assumes a parabolic 

relationship between the engine torque, Te (N-m), and engine speed, ωe (rpm). Using this 
assumption, the relationship between engine power and speed can be written as 

   2max max

2 2
3

2 2 ( )
e p t e e t e

p p p t

P P
P w    

   
   


 (4) 

where ωt is the engine speed at peak torque (rpm). The engine torque, Te (N-m), can be computed 
as 

60000
2

e
e

e

P
T


   (5)  

The final model developed by Ni and Henclewood [3] is based on Bernoulli's principle. 
Because this model is more complicated than the other two models the model equation is not 
presented here. The interested reader can refer to Ni and Henclewood’s paper for more detailed 
information [3]. 

Ni and Henclewood validated the three models using empirical curves for four automotive 
engines: a 2008 Mercedes CLS, a 2006 Honda Civic, a 2006 Pagani Zonda, and a 1964 Chevrolet 
Corvair. The study concluded that, in terms of computational efficiency, the three models are all 
acceptable with the polynomial and parabolic models being particularly efficient. In terms of 
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accessibility, the polynomial and parabolic models were found to be excellent because they do 
not require any proprietary parameters or difficult-to-measure variables. All three models were 
equally good in terms of analytical formulation. Given that the Bernoulli model requires much 
effort to calibrate, while the other two models involve minimal calibration effort, the authors did 
not recommend the use of the Bernoulli model. The authors concluded that the parabolic model 
appeared to be the best among the three models when all evaluation criteria were considered. 
Consequently, the proposed framework uses the parabolic model that is presented in Equation (4). 
Torque Converter Modeling 

As was mentioned earlier, automatic transmission passenger car vehicles in North America are 
typically equipped with a torque converter. Wong [18] indicates that a “torque converter consists 
of at least three rotary elements known as the pump (impeller), the turbine, and the reactor.” 
Wong also mentions that “the pump is connected to the engine shaft, and the turbine is connected 
to the output shaft of the converter, which in turn is coupled with the input shaft of the multispeed 
gearbox. The reactor is coupled to an external casing to provide a reaction on the fluid circulating 
in the converter. The function of the reactor is to enable the turbine to develop an output torque 
higher than the input torque of the converter, thus to obtain a torque multiplication. The reactor is 
usually mounted on a free wheel (one-way clutch) so that when the starting period has been 
completed and the turbine speed is approaching that of the pump, the reactor is in free rotation. At 
this point, the converter operates as a fluid coupling, with a ratio of output torque to input torque 
equal to 1.0.” Wong summarizes the advantages of a torque converter as follows: 

1. When properly matched, it will not stall the engine. 
2. It provides a flexible coupling between the engine and the driven wheels (or sprockets). 
3. Together with a suitably selected multispeed gearbox, it provides torque-speed 

characteristics that approach the ideal. 
The performance characteristics of a torque converter are usually described in terms of 

four parameters: (a) the speed ratio, Csr, which is the ratio of the output to input speed; (b) the 
torque ratio, Ctr, which is the ratio of the output to input torque; (c) the efficiency, ηc, where 
ηc=CsrCtr; and (d) the capacity factor, Ktc = speed/(torque)0.5. 

The torque converter was modeled as follows: 
1. The capacity factor is computed as tc e e eK K T  , where ωe is the engine 

(input) speed and Te is the engine (input) torque. The engine speed is computed 
using Equation (1) and the engine torque is computed using Equations (4) and (5). 

2. The speed ratio (Csr) is computed from the relationship between Ktc and Csr. This 
relationship is derived from curves in the literature [18]. 

3. The torque converter speed and torque ratios are computed using the relationship 
between Csr and Ctr and Csr and ηc, respectively. Again, these relationships were 
derived from the literature [18]. 

4. The torque converter output speed (ωtc) and torque (Ttc) are computed as ωtc=Csrωe 
and Ttc=CtrTe. 

5. The power leaving the torque converter (Ptc) is computed as 2

60000
tc tc

tc

T
P

 
 . 

Gear Selection Modeling 

Once the powertrain speed is computed the next step is to evaluate the need to shift gears through 
the modeling of a transmission system. Wong [18] indicates that “the term ‘transmission’ 
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includes all of those systems or subsystems employed for transmitting the engine power to the 
driven wheels or sprockets. There are two common types of transmission for road vehicles: the 
manual gear transmission, and the automatic transmission with a torque converter. Other types of 
transmissions, such as continuous variable transmission (CVT) and hydrostatic transmission, are 
also in use.” 

Wong [18] indicates that the principal requirements for the transmission are: (a) to 
achieve the desired maximum speed with an appropriate engine; (b) to be able to start, fully 
loaded, in both forward and reverse directions on a steep gradient, typically 33 percent; and (c) to 
properly match the characteristics of the engine to achieve the desired operating fuel economy 
and acceleration characteristics. 

A manual gear transmission usually consists of a clutch, a gearbox, a propeller shaft, and 
a drive axle with a differential (to allow relative rotation of the driven tires during turning 
maneuvers). The gearbox provides a number of gear reduction ratios ranging from 3 to 6 for 
passenger cars and 5 to 16 or more for commercial vehicles. The number of gear ratios is selected 
to provide the vehicle with the propulsive effort-speed characteristics as close to the ideal as 
possible in a cost-effective manner. The gear ratio for the highest gear is computed as 

 1 1e
n

max ax

n r i

v





  (6) 

where ξn is the gear ratio of the highest gear in the gearbox for an n-speed vehicle; ne1 is 
the engine speed corresponding to the maximum speed (about 10 percent higher than the speed at 
maximum power); r is the rolling radius of the tire; i is the tire slip (2 to 5 percent); vmax is the 
maximum desired speed; and ξax is the gear ratio in the drive axle. 

The lowest gear ratio is computed so that a vehicle can accelerate on a grade at a desired 
acceleration rate. The formula for computing this gear ratio varies depending on whether the 
vehicle is front- versus rear-wheel drive. Once the highest and lowest gear ratios are determined, 
the remaining gear ratios are selected to establish the following relationship 

2 3

1 2 1

n
g

n

K
  
   

     (7) 

where 1
1

n
g nK   . 

Gear shifting is typically controlled by shift maps that provide electronic shift points. The 
gear control is typically governed by various factors that include: (a) the engine speed, (b) the 
throttle position, (c) the pedal position, and (d) the vehicle speed. The proposed model only 
considers the engine speed in shifting gears. The model assumes that drivers/transmission system 
makes gear shifts when the vehicle reaches the engine speed at peak torque, ωt. Downshifts are 
made when the vehicle reaches an engine speed of 1,500 rpm based on typical values provided in 
the literature (1,000 to 2,000 rpm). 

Vehicle Acceleration Modeling 
Once the power generated by the powertrain is computed, the vehicle acceleration at any instant t, 
a(t) can be estimated as 

 2
0

( ) ( )
( )

1.04 0.0025 ( )

F t R t
a t

m t

    
  

  (8) 
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where F(t) is the vehicle propulsive force at instant t (N); R(t) is the sum of resistance forces at 
instant t acting on the vehicle (N); m is the vehicle mass (kg); and ξ0(t) is the final gear ratio at 
instant t. The powertrain propulsive force is computed as the minimum of the engine or torque 
converter propulsive force and the maximum frictional force that can be sustained between the 
vehicle’s wheels on the propulsive axle and the roadway surface as 

( ) min 3600 , 9.8066
( )d ta
P

F t m
v t

 
 
       

 (9) 

where ηd is the driveline efficiency; P is the propulsive power (equal to Pe if manual transmission 
or Ptc if automatic transmission); v is the vehicle speed one time step earlier (km/h); mta is the 
mass on the propulsive axle (kg); and μ is the coefficient of roadway adhesion. 

The resultant resistance force acting on the vehicle at any instant t is computed as the sum 
of the aerodynamic, the rolling, and the grade resistance forces. The first resistance force is the 
aerodynamic resistance that varies as a function of the square of the air speed. Although a precise 
description of the various forces would involve the use of vectors, for most transportation 
applications scalar equations suffice if the forces are considered to only apply in the roadway 
longitudinal direction. The second resistance force is the rolling resistance, which is a linear 
function of the vehicle speed and mass. The final resistance force is the grade resistance force, 
which is a function of the vehicle mass and roadway grade at instant t, G(t). Using the three 
resistance forces, the resultant resistance force can be computed as 

2
5 6( ) ( ) 9.8066 ( ) 9.8066 ( )

25.92 D h f rR t C C A v t mC c v t c mG t
        (10) 

where ρ is the density of air at sea level and a temperature of 15ºC (59ºF) (equal to 1.2256 
kg/m3); CD is the drag coefficient (unitless); Ch is a correction factor for altitude (unitless); A is 
the vehicle frontal area (m2); and Cr, c5 and c6 are rolling resistance parameters that vary as a 
function of the road surface type, condition, and vehicle tires [20]. Generally, radial tires provide 
a resistance that is 25 percent less than that for bias ply tires. 

Given that the air density varies as a function of altitude, H (m), the Ch factor can be 
computed as 

51 8.5 10hC H    (11) 

Typical values of vehicle frontal areas for different vehicle types and typical drag 
coefficients are provided in the literature [20]. Similarly, typical values for the coefficient of 
roadway adhesion and the rolling resistance coefficients are provided in the literature [2, 20]. 

Once the acceleration is computed, the vehicle speed and position can then be computed 
by solving the second-order Ordinary Differential Equation (ODE) of Equation (8) numerically 
using a first-order Euler approximation as 

( ) ( ) ( )v t t v t a t t     and ( ) ( ) ( )x t t x t v t t     (12) 

Finally, the engine speed can be computed as 

 
01000 ( )

( ) min max , ,
120 1 idle red

v t t
t t

r i


  



                         
 (13) 

where ωred is the redline or maximum engine speed. This parameter can be easily obtained from 
automotive websites. 
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1.2 Model Validation 
The validation of the proposed powertrain model was conducted using data gathered earlier along 
the Virginia Smart Road test facility at VTTI [1, 2]. In addition to documenting all available 
information about the vehicle and roadway characteristics, the data were gathered under 
conditions in which vehicle accelerations were not constrained by surrounding traffic. 
Furthermore, the drivers accelerated at the maximum possible acceleration level; thus the f(t) 
parameter was calibrating while assuming it to be constant. This section summarizes the key 
parameters associated with the test facility, the test vehicles, and the data collection procedures. 

Test Facility 
Testing of vehicles was performed on a 1.6-km (1-mile) section of the Smart Road test facility at 
VTTI in Blacksburg, VA. The selected test section featured a relatively straight horizontal layout 
with a minor horizontal curvature that had no effect on vehicle speeds, a good asphalt roadway 
surface, and a substantial upgrade that ranged from 6 percent at one end to 2.8 percent at the other 
end. Since no flat sections of significant length were available, vehicle accelerations were 
measured by driving vehicles uphill.   

An equation characterizing the grade of the test section was derived from the elevations of 
15 stations along the test section. The vertical profile of the test section was then generated by 
interpolating between station elevations using a cubic spline interpolation procedure at 1-m (3.28-
ft) increments. The cubic spline interpolation ensured that the elevations, slopes, and slope rate of 
change were identical at the boundary conditions (in this case, every meter). The grade was then 
computed for each 1-m (3.28-ft) section.  A polynomial regression model was fit to the grade data 
(R2 of 0.951) to ensure a smooth transition in the roadway grade while maintaining the same 
vertical profile, as demonstrated in Equation (8). The regression equation also facilitated the 
solution of the ODE by ensuring that the grade function was continuous.  

6 8 2 11 3( ) 0.059628 3.32 10 3.79 10 1.42 10G x x x x          (14) 

Here x is the distance from the beginning of the test section (m) and G(x) is the roadway grade 
(m/100 m) at any location x. 
Test Vehicles 

Thirteen light-duty test vehicles were used in the study.  These vehicles were selected to cover a 
wide range of light-duty vehicle combinations, as summarized in Table 1. As indicated in the 
table, the selected vehicles represent a range of sizes and a variety of U.S. Environmental 
Protection Agency (EPA) vehicle classes.  

Table 1 presents the main characteristics of each of the light-duty vehicles and related 
parameters for use in the powertrain model described earlier. Below is a description of each of the 
parameters listed in the table and how the values used in the study were obtained:  

• Vehicle Engine Power: The engine power was obtained from the vehicle specifications. 

• Engine Efficiency: Power losses in the engine due to internal friction and other factors 
generally account for 5 to 10 percent of the engine losses for light-duty vehicles [18]. The 
losses were assumed to be 6 percent. 

• Vehicle Mass: Vehicle mass is an important parameter in the model as it determines the 
force required to accelerate a vehicle. Vehicle weights were conducted using General 
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Electrodynamics Corporation (GEC) weigh scales with an advertised accuracy of 98 
percent. 

• Percentage of Vehicle Mass on the Tractive Axle: Each axle was weighed separately. In 
the case of light-duty vehicles, typical values for front-wheel drive vehicles are in the 
range of 50 to 65 percent, reflective of the high weight of the engine sitting on top of the 
axle. For rear-wheel drive vehicles, the mass on the tractive axle typically ranges between 
35 to 50 percent of the total mass.  

• Frontal Area: The frontal area of the vehicle was approximated as 85 percent of the 
height times the width of the vehicle (if the frontal area was not given directly in the 
vehicle specifications). 

• Air Drag Coefficient: The air drag coefficient is given in the vehicle specifications. 
Typical values for light-duty vehicles range from 0.30 to 0.35, depending on the 
aerodynamic features of the vehicle. These values were also obtained from the vehicle 
specifications. 

Table 1: Summary of Light-Duty Test Vehicle Characteristics 
Vehicle EPA Class P (kW) η Mass (kg) mta/m (%) A (m2) Cd Throttle 

Level 
1996 Geo Metro Hatchback Subcompact 41.0 0.65 1130 0.380 1.88 0.34 83% 
1995 Acura Integra SE 105.9 0.68 1670 0.515 1.94 0.32 89% 
1995 Saturn SL 

Compact 
92.5 0.72 1240 0.560 1.95 0.33 84% 

2001 Mazda Protégé LX 2.0 97.0 0.70 1610 0.525 2.04 0.34 92% 
2001 Plymouth Neon 98.5 0.75 1650 0.495 2.07 0.36 87% 
1998 Ford Taurus 

Midsize 
108.2 0.80 1970 0.575 2.26 0.30 88% 

1998 Honda Accord 111.9 0.75 1770 0.610 2.12 0.34 57% 
1995 BMW 740I 210.4 0.70 2370 0.515 2.27 0.32 85% 
1995 Dodge Intrepid Large 120.1 0.68 2040 0.535 2.30 0.31 66% 
1999 Ford Crown Victoria 149.2 0.70 2300 0.590 2.44 0.34 80% 
1998 Ford Windstar LX Minivan 149.2 0.65 2270 0.550 2.73 0.40 59% 
1995 Chevy S-10 Pickup 145.47 0.72 1930 0.605 2.31 0.45 55% 
1995 Chevy Blazer SUV 145.47 0.65 2310 0.560 2.49 0.45 63% 

Data Collection Procedures 

Each of the test vehicles was subjected to the same set of tests. The test runs involved 
accelerating the vehicles from a complete stop at the maximum acceleration rate over the entire 
length of the 1.6-km test section from 0 km/h to the maximum attainable speed within the test 
section. Depending on the type of vehicle, maximum speeds attained by the end of the test section 
for light-duty vehicles varied between 128 and 160 km/h (80 and 100 mph) and were much lower 
for the heavy-duty trucks. In conducting the study, a minimum of five repetitions were executed 
for each test set in order to provide a sufficient sample size for the validation analysis.  

In each test run, the speed and position of the vehicle was recorded using a portable 
Global Positioning System (GPS) receiver connected to a laptop. Outputs from the GPS receiver 
included latitude, longitude, altitude, speed, heading, and time stamp once every second. Nominal 
position accuracy was specified with a 25-m (82-ft) spherical error probability, while nominal 
velocity accuracy was specified within 0.1 m/s (0.31 ft/s) error probability. Consequently, the 
error in acceleration estimates was within 0.1 m/s2 given that they were computed every 2 
seconds. 
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Roadway Parameters 
To apply the vehicle dynamics model, five parameters linked to roadway characteristics must be 
determined: pavement type, pavement coefficient of friction, roadway grade, rolling coefficients, 
and altitude of roadway. 

• Pavement: The pavement type and condition are required to determine several 
parameters. The selected test section on the Smart Road facility had a Pavement 
Serviceability Index greater than 3.0 and thus was classified as “good.”  The pavement 
condition affects the coefficient of friction and rolling coefficients, as described in detail 
by Rakha et al. [20]. Consequently, a coefficient of friction of 0.8 and values of 1.25, 
0.0328, and 4.575 were selected for the coefficients Cr, c5, and c6, respectively. 

• Grade: The roadway grade was computed using Equation (14) at each vehicle position. 

• Altitude: This is the altitude above sea level for the testing location, in meters. Since the 
Smart Road sits at an altitude of 600m, this led to determination of an altitude coefficient 
of 0.95, as described by Rakha et al. [20]. 

Validation Results 
Using the roadway and vehicle parameters, the proposed model was used to compute the 
evolution of the vehicle powertrain parameters over time. Given that the level of throttle input 
provided by the driver (human-in-the-loop) was unknown, this parameter was optimized to 
minimize the sum of squared error (E) between the model and the field-observed speed and 
position predictions as 

   2 2

0 0

ˆ ˆ
T T

t t t t
t t

v v x x

E
v x

 

 

 
 

 (15) 

where T is the total travel time (s), hat variables (^) are model-estimated parameters, and non-hat 
variables are field observations. The sum of squared error is normalized by dividing by the 
average field-observed speed and distance traveled in order to ensure that the error is 
dimensionless. 

The optimum throttle level values that were estimated for the 13 test vehicles, which are 
summarized in Table 1, ranged from 55 to 92 percent with an average throttle level of 76 percent 
and a standard deviation of 14 percent. In capturing the vehicle behavior, Figure 3 demonstrates a 
quality match between the model estimates and field measurements. The various symbols in the 
figure reflect the different runs that were executed on the test facility. The first of the subplots in 
the figure illustrates the variation in the vehicle speed as a function of the travel time. This figure 
clearly demonstrates a quality match between the estimated and observed speed profiles. The 
second subplot compares the temporal variation in predicted vehicle acceleration levels against 
the field observations. Again, the figure clearly demonstrates an ideal match between field and 
simulated behavior. The third subplot demonstrates an excellent match between field-observed 
and model-estimated vehicle trajectories. The temporal variation in the transmission gear 
demonstrates that the vehicle travels in the first gear for approximately 8 seconds before 
upshifting to the second gear. The vehicle remains in the second gear for approximately 4 
seconds before shifting to the third gear; finally, the vehicle shifts to the fourth gear after 32 
seconds. 
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Figure 3: Model Validation against Field Measurements (Ford Crown Victoria) 

Similar matches to the field data are observed for a compact vehicle (Mazda Protégé), as 
illustrated in Figure 4, and a midsized vehicle (BMW 740i), as illustrated in Figure 5. A 
comparison of the various vehicle behaviors demonstrates that larger vehicle engines are able to 
make gear shifts later in time and at higher speeds, while smaller engines require gear shifts at 
lower speeds. 
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Figure 4: Model Validation against Field Measurements (Mazda Protégé) 

 

 
Figure 5: Model Validation against Field Measurements (BMW 740i) 
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1.3 Model Test II 
The second validation of the proposed powertrain model was conducted comparing field data 
which were collected on Interstate 81. A 22-km section between mileposts 132 (Roanoke, VA) 
and 118 (Christiansburg, VA) which ranges from an elevation of 350 m to 629 m above mean sea 
level was selected. In the southbound direction, the maximum grade along the study section is 4 
percent, and the maximum downhill grade is -5 percent with an average grade of 0.6 percent; 
more downhill grade sections are observed in the northbound direction. Both southbound and 
northbound trips were collected and analyzed for the study. The test vehicles’ driving-related data 
were collected using an OBD II data logger. 

Cruise control (CC) operation data were utilized for this validation section. The target 
speed was set to 104 km/h (or 65 mph). Figures 6, 7, and 8 illustrate the measured instantaneous 
vehicle power rate of the southbound and northbound sections of Interstate 81 and the estimated 
power from the proposed model. The results clearly demonstrate a good agreement between the 
instantaneous power estimates and field measurements. Three test vehicles (Chevy Malibu, 
Chevy Tahoe, and Toyota Camry) were utilized for the validation study. As illustrated in the 
figures, the predicted power generally follows the peaks and valleys of the measured data except 
for a few high power points. Specifically, the 2007 Chevy Malibu generated 13,297 kW of power 
along the southbound section of Interstate 81 while the proposed model estimated 13,871 kW of 
power using the same speed and road topographic profile, which is approximately 4.3 percent of 
error. Overall, the developed powertrain model estimated the vehicle power within reasonable 
accuracy. The model estimates instantaneous vehicle power within 1.7 to 20.2 percent error range 
when compared to the field measured power data for test vehicles. 

 

 
(a) Interstate 81 – Southbound 

 
(b) Interstate 81 – Northbound 

Figure 6: Instantaneous Model Validation (2007 Chevy Malibu) 

0

10

20

30

40

50

60

0 5000 10000 15000 20000

Po
we

r (
kW

)

Distance (s)

Field data

Model

0

10

20

30

40

50

60

0 5000 10000 15000 20000

Po
we

r (
kW

)

Distance (m)

Field data

Model



Rakha, Ahn, and Park  22 

 
(a) Interstate 81 - Southbound  

 
(b) Interstate 81 - Northbound 

Figure 7: Instantaneous Model Validation (2008 Chevy Tahoe) 
 

 
(a) Interstate 81 - Southbound  

 
(b) Interstate 81 - Northbound 

Figure 8: Instantaneous Model Validation (2011 Toyota Camry) 
Figure 9 illustrates the power distributions of the model estimates and the field data for 

southbound and northbound sections of Interstate 81 trips for the Chevy Malibu test vehicle. The 
figures illustrate a good fit between the model estimates and the field measurements. Specifically, 
the predictions typically follow the power distribution trend for both southbound and northbound 
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trips except for a few cases. As shown in the figures, the southbound trips (which involve uphill 
grade sections) require more vehicle power than the northbound trips.  

 
(a) Interstate 81 - Southbound  

 
(b) Interstate 81 - Northbound 

Figure 9: Power Distribution (2007 Chevy Malibu) 

1.4 Conclusions 
The research developed a simple vehicle powertrain model that can be integrated with car-
following models within microscopic traffic simulation software. This simple model can be 
calibrated using engine and powertrain parameters that are publicly available without the need for 
field data collection. The model uses the driver throttle level input to: compute the engine speed; 
model the transmission system (manual and automatic); and compute the vehicle’s acceleration, 
speed, position, and fuel consumption level. The model was demonstrated to produce vehicle 
acceleration, speed, position, and fuel consumption estimates that are consistent with field 
observations.  
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2. VIRGINIA TECH COMPREHENSIVE POWER-BASED FUEL CONSUMPTION 
MODEL: MODEL DEVELOPMENT AND VALIDATION 
This section presents a new power-based microscopic fuel consumption model entitled the 
Virginia Tech Comprehensive Power-based Fuel Consumption Model (VT-CPFM). The 
transportation sector consumes approximately 30% of the total energy in the United States, which 
is mostly petroleum-based products including gasoline and diesel fuels. Significant emissions of 
CO2, a GHG linked to climate change, are also attributed to the transportation sector. However, it 
would be difficult to imagine modern life without motorized transportation. Alternative 
transportation energy sources such as hybrid-electric technologies, bio-ethanol, and hydrogen fuel 
cells are emerging and are being broadly investigated as replacements for the conventional 
internal combustion engine. However, these new alternatives have not been able to replace 
petroleum-powered engines because of challenges that relate to availability, cost, convenience, 
lack of technology, and accessibility. 

One of the key strategies for improving vehicle fuel efficiency is extracing more miles 
from each liter or gallon of fuel. A recent report estimated that teaching consumers to eco-drive 
can improve actual fuel efficiency by an average of 17% [21]. Eco-driving comprises driving 
behaviors that maximize fuel economy and correspondingly reduce GHG emissions. A simple, 
accurate, and efficient fuel consumption model is required to optimize the vehicle throttle and 
gear level in order to minimize the vehicle fuel consumption level over a future horizon (a 
predictive eco-cruise control [ECC] system).  

This study develops and evaluates a new power-based microscopic fuel consumption 
model, VT-CPFM. The new model overcomes two main deficiencies of current models by 
addressing the following two issues: (a) the ability to produce a control system that does not 
result in bang-bang control [22], and (b) is easily calibrated using publicly available data. There 
are four major criteria to be considered for the proposed fuel consumption model: real-time 
computation, accuracy, model structure, and model calibration simplicity. First, the model must 
provide real-time computations instead of aggregated trip fuel consumption estimates. Second, 
the model should provide reasonable accuracy with the fewest input variables while not 
producing a bang-bang control strategy. Third, the model should be simple to reduce the 
computational load. Finally, the proposed model should be applicable for general vehicle 
populations, and should be calibrated using publicly available data. The proposed models that are 
presented in this paper satisfy all four criteria. 

2.1 State-of-the-Art Microscopic Fuel Consumption Modeling Tools 
Vehicle fuel consumption levels are typically derived from a relationship between instantaneous 
fuel consumption rates and instantaneous measurements of various explanatory variables 
including vehicle power, force (or tractive effort), acceleration, speed, and/or roadway grade. 
Numerous fuel consumption models have been developed that incorporate different explanatory 
variables in order to satisfy their specific objectives. One variable that stands out is vehicle power 
or vehicle-specific power (VSP), which is the power exerted per unit mass. Vehicle power can be 
computed as the product of the total force exerted by the vehicle and the vehicle velocity. The 
total force includes both the net force and the force that is required to overcome the aerodynamic, 
rolling, and grade resistance forces. Assuming that the vehicle fuel consumption rate is 
proportional to the vehicle power, the fuel consumption can be estimated by computing the forces 
acting on the vehicle.  



Rakha, Ahn, and Park  25 

Post et al. [23] developed a fuel consumption model that is a linear function of the 
instantaneous power demand. The model was built from chassis dynamometer experiments of 
177 in-use vehicles [23]. This model was subsequently enhanced in later publications [24, 25]. 
The Comprehensive Modal Emissions Model (CMEM) is another model that estimates the 
instantaneous fuel consumption rate based on power, engine friction, engine speed, and vehicle 
engine size (or displacement) [26, 27]. Another fuel consumption model that makes use of 
topographic and gear shifting information was developed by researchers from Linkőpings 
University [28-31].  

While the majority of fuel consumption models were developed as power-demand 
models, the VT-Micro model was developed as a statistical model from experimentation with 
numerous polynomial combinations of speed and acceleration levels to construct a dual-regime 
model [32, 33].  

Apart from the VT-Micro model, all models described in the literature produce a bang-
bang type of control system. This occurs because the partial derivative of the fuel consumption 
rate with respect to the engine torque (T) is not a function of torque [22] or ( )F T f T   . A 
model that results in a bang-bang control system would indicate that the optimum fuel economy 
control would be to accelerate at full throttle in order to reduce the acceleration time. This type of 
control, which is obviously incorrect, would recommend that the driver drive as aggressively as 
possible in order to minimize the fuel consumption level. 

In addition, all existing models require the calibration of their parameters by collecting 
vehicle-specific in-laboratory or field data. This exercise is time-consuming, expensive, and does 
require vehicle instrumentation to gather the required data. The proposed model attempts to 
address these two deficiencies in existing models, namely: the ability to result in a non-bang-bang 
control and the ability to calibrate the model parameters using publicly available fuel 
consumption and vehicle driveline data. The proposed modeling framework is described in the 
following section. 

2.2 Proposed Comprehensive Fuel Consumption Modeling Framework 
Vehicle fuel consumption depends on many factors that may not be captured easily by a single 
mathematical model. Some of the factors include: engine design, vehicle age, driver behavior, 
road topography, fuel properties, resistive forces on the vehicle, ignition technology, cylinder 
head design, friction inside the engine, temperature, humidity level, and many other factors [34]. 
Compromising between simplicity and accuracy has always been a difficult task for any modeler 
so the challenge is to identify the key parameters for consideration in a model without creating a 
complicated model that poses a major calibration challenge. 

One of the popular fuel consumption models that is presented in the mechanical 
engineering literature [34] is formulated in Equation (16), where the vehicle power is computed 
using Equation (17). 

( )
( ) ( )

2000
ek t d

FC t P t



         

(16) 

 2( ) ( ) 1.04 0.0025 ( )
( ) ( )

3600 d

R t ma t t
P t v t





          
 (17) 

Here FC(t) is the fuel consumption rate (l/s) at time t; µ is the specific fuel consumption 
(kg/kJ/s), which varies with the engine condition; k is the engine friction in kilopascals (kPa); 
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ωe(t) is the engine speed in revolutions per second (rev/s) at time t; d is the engine displacement 
(l); and P(t) is the total power exerted by the vehicle driveline (kW) at time t and is computed 
using Equation (17), where R(t) is the total resistance force (N), m is the vehicle mass (kg), a(t) is 
the vehicle acceleration (m/s2) at time t, v(t) is the vehicle speed (km/h) at time t; ξ is the gear 
ratio at time t, and ηd is the driveline efficiency. This model, however, produces a bang-bang 
control system as was demonstrated earlier. 

Engine friction (k) is generally proportional to the engine speed during a trip [35]. 
However, it is difficult to obtain a relationship between engine friction (k) and engine speed for 
most vehicles without assistance from vehicle manufacturers. Consequently, it is typically 
assumed to be constant. The resistance force on the vehicle is computed as the sum of the 
aerodynamic, rolling, and grade resistance forces. The typical values of vehicle coefficients are 
provided in the literature [20].  

The specific fuel consumption, which is the amount of fuel used per power unit produced, 
is typically observed from an engine performance graph, which is vehicle-specific [36]. In 
general, the specific fuel consumption varies as a function of the engine speed and has a parabolic 
shape. As engine speed increases, the specific fuel consumption rate decreases to a minimum 
value at engine speeds ranging between 2,000 to 3,500 rpm depending on the engine load, and 
then increases again for higher engine speeds. This is because the engine is developed to produce 
its best performance and highest efficiency in the 2,000 to 3,500 rpm range. In addition, engine 
friction loss is significantly higher at high engine speeds, causing an increase in the specific fuel 
consumption rate. The specific fuel consumption rate is also related to vehicle throttle levels. In 
the real world, vehicles do not typically operate at full engine load, but frequently change the 
throttle level. Even though the specific fuel consumption is a good concept to consider in the 
estimation of the fuel consumption rate, it is extremely difficult to measure.  The data that were 
gathered using an OBD reader demonstrate that, for positive power conditions, the fuel 
consumption function is convex and could be modeled using a second-order polynomial model. 

 
Figure 10: Typical Power vs. Fuel Consumption Functional Form 

Consequently, two power-based second-order polynomial models are proposed in this 
paper. These models are entitled the Virginia Tech Comprehensive Power-based Fuel 
Consumption Model-1 and -2 (VT-CPFM-1 and VT-CPFM-2). The use of a second-order model 
with a positive second-order parameter is required in order to ensure that a bang-bang control 
does not result from the application of the model, as was described earlier in the paper. Addition 
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of higher than second-order parameters would add to the complexity of the model and thus not 
allow for model calibration using the EPA city and highway cycles. Consequently, a second-order 
model provides a good compromise between model accuracy and applicability.  

The two VT-CPFM models are formulated as 
2

0 1 2

0

( ) 0( ) ( )
( )

( ) 0

P tP t P t
FC t

P t
  


  
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 
, and  (18) 
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P tt P t P t
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   
 

  


 
. (19) 

Where α0, α1, α2 and β0, β1, and β2 are vehicle-specific model constants that are calibrated for 
each vehicle and ωidle is the engine idling speed (rpm). In the case of the VT-CPFM-1 model the 
power exerted at any instant t is computed using Equation (20). 

( ) 1.04 ( )
( ) ( )

3600 d

R t ma t
P t v t



       
. (20) 

The first model does not require any engine data given that the power exerted by a vehicle 
is a function of the vehicle speed and acceleration level, which can be measured directly using 
non-engine instrumentation such as, for example, a GPS. This model is ideal for implementation 
within microscopic traffic simulation software. This model, however, cannot be used to develop 
predictive eco-gear-shifting strategies given that changes in a vehicle’s gear that results in 
changes in the engine speed would not be reflected in the fuel consumption estimates. The second 
model requires engine data in addition to external data and thus can be used to model eco-gear-
shifting strategies but does require the explicit modeling of the vehicle driveline. Each of these 
models is described in detail in the following sections. 
2.2.1 VT-CPFM-1 Model 

As was mentioned earlier, the first model does not require engine data to estimate vehicle fuel 
consumption rates. The idling fuel consumption rate for the VT-CPFM-1 model is estimated 
using Equation (21) and bounded based on Equation (22) to ensure that the functional form is 
convex, as will be discussed later in the paper. The idling fuel consumption rate in Equation (21) 
is an average operating point method that was proposed by Guzzella and Sciarretta [14]. It should 
be noted that, in reality, the idling fuel consumption rate constantly fluctuates; however, the 
proposed model assumes, for simplicity purposes, that the rate remains constant. 
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 (22) 

Here Pmfo is the idling fuel mean pressure (400,000 Pa); ωidle is the idling engine speed 
(rpm); d is the engine displacement (liters); Q is the fuel lower heating value (43,000,000 J/kg for 
gasoline fuel); N is the number of engine cylinders; Fcity and Fhwy are the total fuel consumed for 
the EPA city and highway drive cycles (liters), respectively (computed using Equations (23) and 
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(24), respectively); Tcity and Thwy are the durations of the city and highway cycles (1875s and 
766s, respectively); and Pcity and P2

city are computed as the sum of power and power squared 
exerted each second over the entire cycle (computed using Equations (25) and (26), respectively). 
Similarly, Phwy and P2

hwy are estimated in the same manner for the highway cycle (computed 
using Equations (25) and (26), respectively). The ε term ensures that the second-order parameter 
(α2) is greater than zero. Experimentation with the model revealed that a minimum value of 1E-
06 ensures that the optimum fuel economy cruising speed is in the 60 to 80 km/h range which is 
typical of light-duty vehicles. 
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It should be noted that the EPA started the use of additional drive cycles in 2008. These 
new tests—they had, in fact, been in use since the late 1990s but for emissions purposes only—
are the US06 high-speed (80 mph max) cycle; the SC03, or “A/C,” cycle, which is very similar to 
the city cycle but runs in 95-degree heat with the vehicle’s air conditioning active; and the cold 
FTP test, which is exactly the same as the city cycle but runs at a temperature of 20˚C. Until the 
2012 model year, automakers ran the tests on the old drive cycles but reported the fuel-economy 
ratings for the new cycles using Equations (27) and (28) developed by the EPA. Here FEcity and 
FEhwy are the fuel economy estimates for the old cycles while FE′city and FE′hwy are the estimates 
for the new drive cycles. It should be noted that the units of FE are in mi/gal in the case of U.S. 
cycles. 
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In order to ensure that the fuel consumption versus vehicle power relationship is convex, 
as illustrated in Figure 10, a constraint is introduced. Specifically, this constraint ensures that α2 is 
positive and the α1 can then be computed, as demonstrated in Equations (29) and (30). The 
parameter α2 has to be greater than zero in order to ensure that the model does not produce a 
bang-bang control [22].  

2
0 2

1
hwy hwy hwy

hwy

F T P

P

 


 
  (29) 



Rakha, Ahn, and Park  29 

0

2
2 2

10E-06

city city
city hwy city hwy

hwy hwy

city
city hwy

hwy

P P
F F T T

P P

P
P P

P



 

                 
  



 (30) 

Once α0 is computed, the remaining two model coefficients (α1, α2) can be estimated using 
the fuel economy ratings for the EPA city and highway drive cycles. As shown in Equation (31), 
the two variables α1 and α2 can be computed by solving a system of two linear equations as  
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A MATLAB code has been developed that allows the user to input various vehicle 
parameters to calibrate the model coefficients, as illustrated in Figure 11. The user has the ability 
to input both U.S. and European fuel economy ratings. In the case of the U.S. drive cycles the 
standard city and highway cycles are used with the adjustments derived in Equations (32) and 
(33) for 2008 and later model years.  
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In the case of European vehicles the European drive cycles are used. The New European 
Drive Cycle (NEDC) is a driving cycle consisting of four repeated ECE-15 driving cycles and an 
Extra-Urban driving cycle, or EUDC. The NEDC attempts to represent the typical usage of a 
vehicle in Europe and is used, among other things, to assess the emission levels of car engines. It 
should be noted that in the case of the European cycles the fuel ratings are reported in liters per 
100 km.  

Figure 11 and Table 2 show the input parameters for a 2010 Honda Accord vehicle. The 
data include parameters for the estimation of the various resistance forces in addition to gear data 
that are used for the VT-CPFM-2 model in order to compute the engine speed as a function of the 
vehicle speed and engaged gear. It should be noted that the data values and sources are 
summarized in Table 2. Some model parameters may be assumed, as will be described. The 
engine efficiency accounts for the power losses in the engine due to internal friction and other 
factors. The engine efficiency factor ranges between 15 and 5% for light- and heavy-duty 
vehicles. The frontal area of the vehicle can be approximated as 85% of the vehicle height 
multiplied by its width if it is not given directly in the vehicle specifications. The air drag 
coefficient is typically provided on auto manufacturer websites; however, if this parameter is not 
available, typical values for light-duty vehicles range from 0.30 to 0.35, depending on the 
aerodynamic features of the vehicle. Heavy-duty vehicles have much higher drag coefficients 
ranging from 0.58 to 0.78. The tire size for a Honda Accord is reported as P215/60 R16 on the 
Honda website. The 215 parameter is the tire width in millimeters, measured from the bottom of 
the bead to the bottom of the bead; the 60 is the sidewall aspect ratio, the ratio of sidewall height 
to tire width at the tread (indicating that the sidewall height is 60% of the tread width); and the 16 
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is the wheel rim diameter in inches. Consequently, in this example, the tire radius is computed as 
33.22 cm ( 21.5 0.6 16 2.54 / 2   ). 

 
Figure 11: Illustration of VT-CPFM Calibration Tool 
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Table 2: List of Parameters Required for Model Calibration 
Parameter Required for VT-

CPFM-1? 
Required for VT-
CPFM-2? 

Value Source 

Model Year Yes Yes  Auto website 
Wheel Radius No Yes  Auto website 
Idling Speed No Yes 600-750 rpm Auto website 
Redline Speed No Yes  Auto website 
Downshift Speed No Yes 1500 rpm Field data 
Upshift Speed No Yes 3400 rpm Field data 
Vehicle Mass [kg] Yes Yes  Auto website 
Drag Coeff (CD) Yes Yes  Auto website 
Frontal Area (Af) Yes Yes 0.85x heightxwidth Auto website 
Rolling Coefficient (Cr) Yes Yes 1.75 [20] 
c1 Yes Yes 0.0328 [20] 
c2 Yes Yes 4.575 [20] 
Driveline Efficiency Yes Yes 85 to 95% [20] 
Wheel Slippage Yes Yes 2 to 5% [34] 
Number of Cylinders Yes Yes  Auto website 
Engine Size [L] Yes Yes  Auto website 
Number of Gears No Yes  Auto website 
Various Gear Ratios No Yes  Auto website 
Final Drive Ratio No Yes  Auto website 
Altitude [m] Yes Yes  GPS receiver 
Pmfo [Pa] Yes Yes 400000 [18] 
Q [J/kg] Yes Yes 43000000 [18] 

 
2.2.2. VT-CPFM-2 Model 

The VT-CPFM-2 model that was presented earlier in Equation (19) can be calibrated in a similar 
fashion. The engine speed coefficient is computed as 
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The two remaining parameters can then be calibrated using the EPA fuel economy ratings 
for the city and highway cycles using Equations (35) and (36).  
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All terms are similar to the earlier definitions except for the ωcity and ωhwy parameters that 
are computed using Equations (37) and (38). 
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Again, the MATLAB code provides an automated tool for the calibration of the model 
parameters for both North American and European vehicles. 

2.3 Model Validation  
The validation of the proposed fuel consumption models was conducted considering validation of 
instantaneous fuel consumption measurements, validation of trip fuel consumption estimates, and 
validation of optimum cruise speeds. This section presents the results of the various validation 
efforts. 
2.3.1. Validation of Instantaneous Fuel Consumption Estimates 

For validation purposes, the model was calibrated to three vehicles using the procedures 
described in the previous section. The three vehicles included a Ford Explorer (4.0L, 2,223 kg), a 
Saturn SL (1.9L, 1,240 kg), and a Honda Accord (2.2L, 1,605 kg). These vehicles were selected 
to include a light-duty truck (Ford Explorer) and two light-duty passenger cars. The vehicles were 
run on three drive cycles on a chassis dynamometer: the arterial level of service (LOS) A cycle, 
the LA92 cycle, and the New York cycle. These three cycles were selected for validation 
purposes because they represent a wide range of real-world driving conditions. The arterial LOS 
A (ARTA) drive cycle involves several full and partial stops in addition to travel at a fairly high 
speed (in the range of 100 km/h), representing the normal driving conditions of arterial and/or 
collector roads. The LA92 cycle, often called the unified driving schedule, was developed as an 
emission inventory improvement tool by the California Air Resources Board (CARB). Compared 
to the FTP, the LA92 has a greater top speed, a greater average speed, less idle time, fewer stops 
per distance, and a greater acceleration level. Finally, the New York cycle features low-speed, 
stop-and-go traffic conditions and involves more aggressive and realistic driving behavior for 
congested urban areas.  

The instantaneous measured and estimated fuel consumption rates were compared by 
running the test vehicles on the three drive cycles, as illustrated in Figure 12 and Figure 13. 
Superimposed on the figures are the VT-CPFM-1 model estimates, which were computed using 
each of the vehicle-specific parameters. In order to capture the temporal autocorrelation in fuel 
consumption levels, an exponential smoothing filter was applied. The smoothing process 
combines α % (smoothing parameter) of the newly estimated instantaneous fuel consumption 
level from the VT-CPFM model with (1-α) % of the fuel consumption of the previously 
smoothed estimate. The smoothing parameter was optimized by minimizing the sum of squared 
error between estimated and field-measured fuel consumption levels. In the case of the Honda 
Accord and Saturn SL test vehicles, the optimum smoothing factor was 45%; and it was 15% for 
the Ford Explorer. Based on experimentation with various vehicles, a smoothing factor of 20% 
was found to provide a level of autocorrelation consistent with field observations. 
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(a) Arterial LOS A Cycle 

 
(b) LA92 Cycle 

 
(c) New York Cycle 

Figure 12: Instantaneous Model Validation, Honda Accord 
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(a) Ford Explorer  

 
(b) Saturn SL  

Figure 13: Instantaneous Model Validation, City Cycle 

As illustrated in Figure 12 and Figure 13, the predicted fuel consumption rates generally 
follow the peaks and valleys of the measured data and demonstrate a good agreement with field 
measurements. While it appears that the proposed model slightly overestimates some fuel 
consumption rates for the City cycle, in general, the model predictions follow the field-collected 
fuel measurements with high correlation coefficients (94% to 98%), as illustrated in Figure 14. 
Specifically, in the case of the New York cycle, in which a line slope of 1.0 indicates a close 
match between predicted and measured fuel consumption levels, the figure illustrates that the 
slopes of the lines are between from 93% to 98%.  
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(a) Honda Accord  

 
(b) Saturn SL 

Figure 14: Instantaneous model validation, New York Cycle 

2.3.2. Trip Level Validation 

In order to evaluate the accuracy of the proposed model, model estimates were compared to field-
collected fuel consumption data.  The field measurements were gathered by the EPA. The 
validation effort involved an aggregated trip level comparison over 16 drive cycles using three 
test vehicles that were utilized for the instantaneous model validation, as illustrated in Figure 15. 
The database includes many off-cycle (non-FTP) fuel data over different facility types and 
therefore provides a good assessment of the quality of model estimates for different roadway 
types and different levels of congestion. 
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Figure 15 illustrates the model estimates and two EPA’s field data for different driving 
cycles. One data set (measured 1) represents the fuel consumption data under FTP ambient 
conditions using the standard vehicle certification test fuel. The second data set (measured 2) 
represents extreme conditions that consume more fuel than normal driving conditions. In 
addition, the red bars illustrate the proposed model’s fuel economy estimates using the three test 
vehicles. The figure clearly illustrates a good fit between the model estimates and the field 
measurements. Specifically, the predictions typically lay within the two field measurements 
(except for a few cases). Furthermore, the model estimates generally follow the average field data 
of the test vehicle’s fuel economy under different driving conditions.  Furthermore, it is noted that 
Fwy AC, High Speed, and Hwy D cycles generate good fuel economy trips while the fuel 
economy values of ART E and New York cycles are relatively lower than the other trip cycles.   
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(c) Saturn SL 

Figure 15: Simulated Fuel Economy for Different Driving Cycles 
 
2.3.3. Optimum Cruise Speed Validation 

The next validation effort established the validity of the model predictions of the optimum cruise 
speeds. In validating the model, a comparison was made to the VT-Micro model estimates for the 
Oak Ridge National Laboratory (ORNL) average vehicle. The ORNL test vehicles were driven in 
the field in order to verify their maximum operating boundary. Subsequently, vehicle fuel 
consumption and emission rates were measured in a laboratory on a chassis dynamometer within 
the vehicle’s feasible vehicle speed and acceleration envelope.  Data sets were generated that 
included vehicle energy consumption and emission rates as a function of the vehicle’s 
instantaneous speed and acceleration levels.  Several measurements were made in order to obtain 
an average fuel consumption and emission rate [37].  The eight normal-emitting vehicles included 
five light-duty automobiles and three light-duty trucks.  These vehicles were selected in order to 
produce an average vehicle that was consistent with average vehicle sales in terms of engine 
displacement, vehicle curb weight, and vehicle type [37].  Specifically, the average engine size 
was 3.3 L, the average number of cylinders was 5.8, and the average curb weight was 1497 kg 
(3300 lbs).  Industry reports show that the average sales-weighted domestic engine size in 1995 
was 3.5 L, with an average of 5.8 cylinders. 

As illustrated in Figure 16, the VT-CPFM-1 and VT-CPFM-2 models are consistent with 
the VT-Micro predictions of optimum cruise speeds and produce the same bowl-shaped curve as 
a function of vehicle cruise speed. Specifically, the optimum speed ranges between 60 and 80 
km/h for the two test vehicles (2010 Honda Civic and 2010 Honda Accord). It should be noted 
that the VT-CPFM fuel consumption estimates are lower because the vehicles that were modeled 
are newer and, thus, are more efficient vehicles. 
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Figure 16: Impact of Cruise Speed of Vehicle Consumption Rate 

2.4 Estimation of CO2 Emissions  
CO2 emissions are directly associated with fuel consumption rates. As demonstrated in 
Equation (13), CO2 emissions can be estimated from the carbon balance equation using fuel 
consumption and HC and CO emissions. Since the absolute value of CO2 emissions is 
significantly higher than HC and CO emissions, the prediction of CO2 emissions is primarily 
affected by the fuel consumption level. In an attempt to calibrate the CO2 emission rate, a Ford 
Crown Victoria test vehicle was tested using on-board emission measurement (OEM) equipment. 
The data were collected from the Route 460 Bypass between Christiansburg and Blacksburg, 
Virginia. The field data collection involved running the test vehicle at a constant speed (104 
km/h) along the Route 460 Bypass. The test vehicle was accelerated from a complete stop and 
continued to accelerate until the vehicle reached a speed of 104 km/h at a normal acceleration 
level and decelerated to a complete stop. A total of 11 valid trip repetitions were made in order to 
ensure that sufficient data were available. Equation (39) was utilized to estimate the CO2 
emission level for all 11 trips. It is interesting to note that the value of the estimated parameter is 
almost identical to the value derived from the carbon balance equation without HC and CO 
emissions.  The θ parameter was found to be 2330 when CO2 emissions are in g/s and fuel 
consumption estimates are in l/s. 
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Two different data sets were employed in Figure 17 to compare the measured CO2 emissions 
to the estimated CO2 emissions. The data from Figure 17(a) are the data that were collected along 
Route 460, and the second data set was collected on a dynamometer by the EPA along the LA04 
cycle, also known as the city cycle. The figure demonstrates good agreement between the 
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predicted and measured CO2 emissions. Specifically, the proposed model estimated the CO2 
emissions within a 2% error range, and the coefficients of correlation of the two examples were 
measured at up to 99% along the Route 460 trips and LA04 cycle.  

 

 
(a) Ford Crown Victoria: Route 460 OEM Data 

 
(b) Ford F150 Truck: LA04 Cycle 

Figure 17: CO2 Estimation Using Fuel Consumption Rate 

2.5 VT-CPFM Calibration and Validation 
The VT-CPFM provides reliable estimates compared to the field-measured fuel consumption 
rates. However, the aforementioned validation efforts mostly rely on chassis dynamometer tests 
and predefined drive cycles. Given that the objective of the VT-CPFM development is to use the 
model as a critical component for eco-friendly systems such as a predictive ECC system, it would 
be beneficial to assess its performance relative to actual roadway measurements under real-world 
driving conditions. Furthermore, the performance evaluation is meaningful in the sense that fuel 
consumption rates under manual and conventional CC driving conditions may be of interest. 
Therefore, this section quantifies the performance of the VT-CPFM considering various vehicles 
on real roadway sections under either manual or conventional CC driving scenarios. 
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2.5.1 Collection of Field Data 
Experiments were conducted on a section of Interstate 81 between mile markers 118 and 132 in 
order to collect fuel consumption rates under actual driving conditions. The test section was 
selected because it comprises various uphill and downhill sections and thus provides a suitable 
environment to test different engine load conditions under manual and conventional CC driving 
scenarios. Specifically, the northbound and the southbound directions can be considered a 1.3% 
downhill and a 1.3% uphill section, respectively, as the difference in altitude between the start 
and end points of the section is approximately 280 m across 22.4 km (14 miles). However, the 
roadway grade on the section varies between ± 4%. There are two 4% uphill sections that have an 
additional truck-climbing lane.  

For the test, six light-duty vehicles, including four passenger cars and two sport utility 
vehicles (SUVs), were used during the experiments: a 2001 SAAB 95, a 2006 Mercedes R350, a 
2008 Chevy Tahoe, a 2007 Chevy Malibu, a 2008 Chevy Malibu Hybrid, and a 2011 Toyota 
Camry. The six vehicles were selected to test different manufacturers, model years, and types. 
The Chevy Tahoe is the heaviest and most powerful vehicle while the Malibu is the lightest and 
least powerful car. The SAAB 95 is the oldest car and has a turbocharged engine so it generates 
relatively more power than the other passenger cars when considering their engine sizes.  
 For the collection of vehicle operation variables and fuel consumption rates an OBD II 
reader (the DashDaq XL device that is manufactured by Drew Technologies, Inc.) was used. The 
DashDaq can be easily attached to a window using a shield mount and can log and save up to 16 
user-defined parameters [40]. This study selected the following 16 signals to record: absolute 
throttle position, fuel economy across distance, engine speed, vehicle speed, acceleration level, 
vehicle power, GPS-calculated speed, latitude, longitude, torque, calculated mass air flow, 
altitude, air flow rate from mass air flow, accelerator pedal position, fuel economy over time, and 
fuel level. The signals were saved to a Secure Digital (SD) card with a timestamp. The vehicle 
signals continued to be displayed on the screen as they were being saved to the card. 
 Given that the DashDaq provides the fuel economy in units of miles per gallon (MPG) 
along with a timestamp, instantaneous fuel consumption rates can be calculated from the recorded 
data. Specifically, the DashDaq calculates the fuel economy using the vehicle speed and mass air 
flow signals together with two assumptions. The first assumption is that the stoichiometric ratio, 
also called air-fuel ratio, is 14.7. The density of fuel is assumed to be 720 grams per liter. The 
fuel economy can then be calculated using Equation (40). Note that the first assumption is not 
100% accurate given that the air-fuel ratio does not remain constant and can vary depending on 
the required power levels. In other words, it does not capture fuel-rich and fuel-lean conditions 
accurately, so the fuel estimation from this approach may slightly deviate from the true value. 

vsdFE
a

=  (40)  

Where FE is the fuel efficiency in MPG, v is the velocity of the vehicle in miles per hour 
(mph), s is the stoichiometric ratio, d is the density of fuel in grams per gallon, and a is the mass 
air flow in grams per hour. 
 The experiments were conducted during off-peak hours between 9 a.m. and 3 p.m. in 
order to reduce conflicts with other vehicles and secure freedom of driving. Each vehicle was 
driven 10 times (circulations between mile markers 118 and 132) by two different drivers: five 
times with the CC enabled and five times with the CC disabled. Consequently, four data sets were 
obtained for each vehicle: the northbound with and without CC enabled and the southbound with 
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and without CC enabled. There was an exception with the Toyota Camry due to a roadway 
maintenance event. Only six circulations were completed, and the last of the experiments could 
not be conducted due the limited use of the roadway. The drivers participating in the study were 
educated about the overall procedures before the experiments. Specifically, the drivers were 
directed to maintain a 65 mph speed in a typical driving manner while the CC was not used 
(manual). However, some deviations from the target speed were allowed as needed in order to 
secure the driver’s safety. For the CC driving experiments, the target speed was also set to 65 
mph. The drivers were allowed to turn off the CC system for their safety as needed.  

2.5.2 Calibration of the VT-CPFM 
The specifications of the test vehicles were gathered using publicly available data sources, which 
included the vehicle manuals, the official sites of the vehicle manufacturers, and other car review 
sites [41]. Additionally, information about the vehicles was retrieved using the vehicle 
identification numbers (VINs) [42]. The specification information collected from different data 
sources was verified before calibrating the coefficients of the VT-CPFMs. For cases in which the 
specifications could not be obtained from the aforementioned sources, typical values were used 
during the calibration [20]. These included the coefficients of roadway friction and the 
coefficients of rolling resistance. 

The specifications that were used to calibrate the VT-CPFMs are shown in Table 3 along 
with the data sources. Given the specifications, the VT-CPFMs for the test vehicles were 
calibrated using the calibration tool that was developed in the MATLAB environment. Additional  
details about the tool are available in the literature [39]. 
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Table 3: Specifications of the Test Vehicles 

Description Saab 95 Mercedes 
R350 Tahoe Malibu Malibu 

Hybrid Camry Source 

Trim 4dr Sedan 
base Base LS 2WD LS Base LE 

Auto 
website 

Model Year 2001 2006 2008 2007 2008 2011 
Wheel Radius 0.32145 0.36865 0.4014 0.32375 0.3322 0.3322 
Redline RPM 6000 6400 7000 6000 6000 6300 

Drag Coefficient 0.29 0.31 0.39 0.34 0.34 0.28 
Frontal Area (m2) 2.288 2.911 3.456 2.318 2.313 2.424 
Wheel Slippage 0.035 0.035 0.035 0.035 0.035 0.035 

Number of Cylinders 4 6 8 4 4 4 
Engine Size (L) 2.3 3.5 5.3 2.2 2.4 2.5 

Number of Gears 4 7 4 4 4 6 
First-gear Ratio 3.67 4.38 3.06 2.96 2.96 3.54 

Second-gear Ratio 2.1 2.86 1.63 1.62 1.62 2.05 
Third-gear Ratio 1.39 1.92 1 1 1 1.38 
Fourth-gear Ratio 1 1.37 0.7 0.68 0.68 0.98 
Fifth-gear Ratio - 1 - - - 0.74 
Sixth-gear Ratio - 0.82 - - - 0.66 

Seventh-gear Ratio - 0.73 - - - - 
Final Drive Ratio 2.56 3.9 3.23 3.63 3.63 3.82 

Mass (kg) 1601 2190 2388 1440 1604 1500 
City Fuel Efficiency 21 16 14 24 24 22 
Hwy Fuel Efficiency 30 21 20 34 32 33 

Rolling Coefficient (Cr) 1.75 1.75 1.75 1.75 1.75 1.75 Rakha et al., 
2001 

 

c1 0.0328 0.0328 0.0328 0.0328 0.0328 0.0328 
c2 4.575 4.575 4.575 4.575 4.575 4.575 

Driveline Efficiency 0.92 0.92 0.92 0.92 0.92 0.92 
Pmfo(Pa) 400000 400000 400000 400000 400000 400000 Wong, 

2001 Q (J/kg) 43000000 43000000 43000000 43000000 43000000 43000000 
Idling Speed (rpm) 820 700 600 680 660 660 Field Data 

 

2.6 Validation of the VT-CPFM 
2.6.1 Instantaneous Fuel Consumption Rates 
Given the calibrated VT-CPFM parameters, the fuel consumption estimates and measurements 
were compared to validate the performance of the VT-CPFM and the calibration procedure. In 
order to calculate the instantaneous fuel consumption rates, the power levels were first computed 
given that they are required as inputs to the model. Roadway grade, which is used to compute the 
grade-resistance force, was initially calculated using the x, y coordinates and height signals 
collected by the GPS unit. However, the resolution of the GPS height signal was found to not be 
sufficiently accurate for computational purposes. Thus, higher resolution geographical data were 
obtained from NAVTEQ and were used to compute the grade-resistance force. 
 Given the field-measured fuel consumption rates and model estimates, the quality of the 
fuel estimates were first assessed using scatter plots. Specifically, the field-measured fuel 
consumption rates were plotted along the x-axis, and the model estimates were plotted along the 
y-axis. A regression line was then fitted to the scattered data points so that one can visually 
determine that the estimates are close to the field measurements, as illustrated in Figure 18.  Note 
that the regression line was forced to intersect with the origin (0, 0) when fitting to the data. The 
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slope of the line indicates whether the VT-CPFM overestimates or underestimates the field 
measurements. The coefficient of determination indicates the degree of error that the model 
produces. For example, the slope of the regression line in Figure 18  is 0.93, which means that the 
model underestimates the fuel consumption levels by 7 percent (on average). The R2 value of the 
regression line is 0.9817, which is very close to 1. This implies that the model has a marginal 
error of less than 2 percent.  

 
Figure 18: Fuel Measurements versus Fuel Estimates Scatter Plots with a Regression Line 

 
The instantaneous estimated and measured fuel consumption levels for each of the trips 

(i.e., the speed profiles along the study section) are compared and summarized in Table 4. The 
slope and R2 values were averaged by vehicle type (six vehicles), driving direction (southbound 
and northbound), and driving type (manual driving and CC driving). The results demonstrate that 
the performance of the VT-CPFM mainly depend on the vehicle type regardless of the driving 
direction and driving type. It is demonstrated that the fuel consumption rates estimated by the 
VT-CPFM-1 models were generally greater than those estimated by the VT-CPFM-2 models.  

The VT-CPFM model estimates for the SAAB 95 and the Mercedes R350 appeared to be 
overestimated. However, their R2 values were still very close to 1, demonstrating that the models 
provided ideal estimates that follow the same trends as observed from the OBD reading estimates. 
Figure 19 shows that the fuel estimates follow the same peaks and valleys observed during the 
field measurements, although the fuel consumption rates estimated by the R350 model are higher 
than the fuel measurements. Overall, the VT-CPFMs were shown to provide ideal estimates given 
that the R2 values were very close to 1. All R2 values were greater than 0.85. Specifically, the 
profile shown in Figure 19(b) is one that has the lowest R2 values, but it still shows a good match 
to the field measurements.  
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Table 4: Average Slope and R2 Values for the Regression Lines 

Classification VT-CPFM-1 VT-CPFM-2 
Slope R2 Slope R2 

95 
Southbound Manual 1.40 0.95 1.18 0.96 

Cruise 1.43 0.96 1.19 0.97 

Northbound Manual 1.37 0.95 1.19 0.97 
Cruise 1.42 0.96 1.22 0.98 

R350 
Southbound Manual 1.61 0.95 1.46 0.96 

Cruise 1.62 0.96 1.46 0.96 

Northbound Manual 1.56 0.93 1.42 0.95 
Cruise 1.62 0.96 1.48 0.97 

Tahoe 
Southbound Manual 1.04 0.95 0.92 0.95 

Cruise 1.02 0.94 0.90 0.94 

Northbound Manual 1.11 0.95 0.99 0.95 
Cruise 1.13 0.94 1.00 0.93 

Malibu 
Southbound Manual 1.26 0.95 1.01 0.95 

Cruise 1.32 0.97 1.04 0.97 

Northbound Manual 1.29 0.96 1.04 0.98 
Cruise 1.29 0.97 1.04 0.97 

Malibu Hybrid 
Southbound Manual 0.97 0.94 0.82 0.95 

Cruise 0.93 0.98 0.79 0.97 

Northbound Manual 0.97 0.96 0.85 0.98 
Cruise 0.94 0.97 0.82 0.98 

Camry 
Southbound Manual 0.94 0.92 0.72 0.91 

Cruise 0.96 0.90 0.74 0.90 

Northbound Manual 0.98 0.90 0.76 0.83 
Cruise 1.02 0.87 0.79 0.80 
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(a) Mercedes R350 

 
(b) Camry 

Figure 19: Fuel Consumption Profile on a Test Run 
 
2.6.2 Comparison of Fuel Economy 

The fuel economy values estimated using the VT-CPFM models were compared to the field-
measured values in order to quantify how consistent the aggregated estimates were when 
compared with the field data. The average fuel economy values and relative differences are 
summarized in Table 5. Given that some of the models overestimated the fuel consumption levels, 
the fuel economy estimated by the models was lower than the field measurements. Specifically, 
the differences in fuel efficiency estimates between the VT-CPFM-1 model and OBD estimates 
ranged from 36 to 11 percent, while those of the VT-CPFM-2 model ranged from 30 to 36 
percent. Consequently, it appears that the VT-CPFM-2 model produced greater differences as 
compared to the field measurements. 
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Table 5: Fuel Economy and Relative Difference 

Classification 
Fuel Efficiency (km/l) Relative Difference 

OBD-II CPFM-1 CPFM-2 CPFM-1 CPFM-2 

95 
SB Manual 10.9 8.0 9.3 -27% -14% 

Cruise 11.4 8.1 9.6 -29% -16% 

NB Manual 17.9 14.0 15.1 -22% -16% 
Cruise 19.9 15.2 16.2 -24% -19% 

R350 
SB Manual 8.2 5.2 5.8 -36% -30% 

Cruise 8.4 5.3 5.9 -36% -30% 

NB Manual 14.0 10.0 10.6 -29% -24% 
Cruise 15.3 10.3 11.0 -33% -28% 

Tahoe 
SB Manual 7.5 7.2 8.1 -3% 9% 

Cruise 7.4 7.3 8.3 -1% 11% 

NB Manual 14.0 11.9 13.4 -15% -4% 
Cruise 14.6 12.1 13.5 -17% -7% 

Malibu 
SB Manual 11.8 9.4 11.7 -20% 0% 

Cruise 12.3 9.5 11.9 -23% -4% 

NB Manual 19.9 16.2 19.1 -19% -4% 
Cruise 20.0 16.0 19.0 -20% -5% 

Malibu  
Hybrid 

SB Manual 11.0 11.6 13.5 5% 22% 
Cruise 10.9 11.9 13.7 9% 26% 

NB Manual 17.8 19.2 20.8 8% 17% 
Cruise 18.9 21.1 22.4 11% 18% 

Camry 
SB Manual 11.9 12.4 16.2 5% 36% 

Cruise 12.0 12.2 15.8 2% 31% 

NB Manual 21.1 19.9 24.7 -6% 17% 
Cruise 21.5 19.3 24.1 -10% 12% 

 
Given that the fuel consumption models are used for comparison of alternative scenarios, the fuel 
economy estimates are compared in terms of relative differences. In other words, it is important 
to evaluate the effectiveness of the models in identifying the optimum scenario. For this analysis, 
the manual driving and CC driving scenarios were compared with regard to fuel economy. 
Additionally, driving on Interstate 81 Northbound and Southbound was tested. The fuel economy 
values that were averaged across all vehicles by the driving direction and the driving type are 
summarized in Table 6. The field data indicate that the fuel economy was 4.1 percent greater 
when the CC system was engaged, demonstrating that the conventional CC driving is better than 
manual driving in terms of fuel economy. The VT-CPFM-1 and -2 model estimates also 
demonstrate that the CC driving is better than manual driving with regard to fuel economy (2.3 
and 1.8 percent improvement, respectively). 

The field data showed that the fuel economy of driving along the northbound test section 
of Interstate 81 was 73.8 percent greater than driving in the southbound direction. The VT-
CPFM-1 and -2 model estimates also resulted in consistent outcomes given that the fuel economy 
values for driving along the northbound direction were estimated to be 71.1 and 61.9 percent 
greater, respectively, as illustrated in Figure 20.  
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Table 6: Fuel Economy Averaged across All Vehicles 

Classification Fuel Efficiency (km/l) 
OBD-II CPFM-1 CPFM-2 

SB Manual 10.21 8.98 10.76 
Cruise 10.41 9.06 10.84 

NB Manual 17.46 15.20 17.28 
Cruise 18.38 15.67 17.71 

 

 
Figure 20: Comparison of Field Data with the VT-CPFM Estimates 

2.6.3 Comparison to Coefficients Calibrated using Field Data 
Since the VT-CPFMs, which are calibrated using the EPA ratings (referred to as EPA models 
hereafter), tended to overestimate fuel consumption levels, the calibration of the models was 
conducted using the second-by-second OBD-gathered data (referred to as Field models hereafter) 
in order to ascertain the reason for these differences. Thus, the VT-CPFMs were first fitted to the 
field measurements as shown in Figure 21. Specifically, the field-measured fuel consumption 
rates were plotted versus the vehicle power estimates. A second-order polynomial was then fitted 
to the data. As seen in the figure, the EPA models for the Saab 95, the Mercedes R350, and the 
Malibu appear to be inconsistent with the field measurements while the Field models fit well to 
the measurements.  

The differences in the fuel estimation are demonstrated in Figure 22, which features 
scatter plots and fuel consumption rates across the distance traveled. The scatter plots show the 
fuel consumption rates estimated by each of the EPA and Field models for the Mercedes R350 
across the fuel consumption measurements. As can be seen in the figure, the Field model shows a 
significant improvement in the fuel estimation when compared to the EPA model. The subplots (c) 
and (d) also demonstrate that the fuel consumption estimated using the Field model is consistent 
with the field measurements. 
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Figure 21: EPA, Field, and Recalibrated Models 
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Figure 22: Comparison of Fuel Consumption Estimates on a Test Run (Mercedes R350) 
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Given that the Field models fit well to the field measurements, the city and highway fuel 
economy ratings estimated using the Field models were recomputed. The results demonstrate 
significant differences in the fuel economy ratings for some cases, as demonstrated in Table 7. 
For example, the highway fuel economy of the Mercedes R350 is rated at 21.0 MPG by the EPA, 
but it is estimated at 29.6 MPG by running the Field model on the EPA drive cycles. These 
results reveal that the fuel economy ratings by the EPA are not consistent with what was observed 
in the field for some vehicles. These differences can either be attributed to errors in the 
computation of the fuel rates based on the fuel-to-air ratio, or could be attributed to errors in the 
EPA ratings, or errors in both. In this analysis, the OBD fuel estimates were assumed to be 
correct and the EPA ratings were adjusted to match the field measurements. 

Table 7: Comparison of Fuel Economy Ratings 

Vehicle 
Fuel Economy Rated by 

EPA (MPG) 
Fuel Economy Estimated 

by Field Model (MPG) Relative Difference 

City Highway City Highway City Highway 
Saab 95 21.0 30.0 23.3 38.9 11% 30% 

Mercedes R350 16.0 21.0 18.7 29.6 17% 41% 
Tahoe 17.3 27.7 23.7 28.1 37% 1% 
Malibu 24.0 34.0 26.1 42.7 9% 26% 

Malibu Hybrid 30.7 45.1 24.6 39.7 -20% -12% 
Camry 28.0 46.6 28.5 44.2 2% -5% 
 
In order to ascertain that the VT-CPFM framework is valid, the VT-CPFMs (referred to as 

Recalibrated models hereafter) were calibrated using the fuel economy ratings estimated based on 
the field measurements using Equations (4) through (7) then compared to the instantaneous field 
measurements. Once both sets of the models were consistent with each other with regard to the 
fuel consumption estimation, it was concluded that the structure of the VT-CPFM is valid. As can 
be seen in Figure 21, the Recalibrated models fit well to the field measurements, as do the Field 
models. Additionally, the slopes and R2 values of the regression lines are fitted to the scatter plots 
of the fuel estimates computed by the Recalibrated models and the field measurements are as 
close to 1 as those of the Field models. The average slopes and R2 values are summarized in 
Table 8 by test vehicle and model. As seen in Table 8, the Recalibrated models show a significant 
improvement in the fuel consumption estimation when compared to the EPA models. In other 
words, it can be concluded that the structure of the VT-CPFM provides a practical, valid method 
to estimate fuel consumption rates. However, the fuel economy ratings quantified by the EPA 
show discrepancies when compared to those estimated by the Field models. 
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Table 8: Summary of Average Slopes and R2 Values 

Vehicle EPA Model Field Model Recalibrated Model 
Slope R2 Slope R2 Slope R2 

Saab 95 1.41 0.95 0.97 0.97 0.97 0.97 
Mercedes R350 1.60 0.95 0.98 0.98 1.10 0.96 

Tahoe 1.07 0.95 1.05 0.96 1.12 0.96 
Malibu 1.29 0.96 1.00 0.97 0.99 0.97 

Malibu Hybrid 0.95 0.96 1.00 0.97 1.00 0.97 
Toyota Camry 0.97 0.90 1.02 0.90 0.93 0.84 

 

2.7 Conclusions 
The study develops two simple fuel consumption models that do not result in a bang-bang control 
system and that can be calibrated easily using publicly available data. Specifically, the models 
can be calibrated using the EPA city and highway fuel economy ratings that are publicly 
available. The models are demonstrated to estimate vehicle fuel consumption rates consistent 
with in-field measurements (coefficient of determination above 0.90). Also, a procedure for 
estimating CO2 emissions is developed, producing emission estimates that are highly correlated 
with field measurements (greater than 0.98). This study also validates the VT-CPFMs by 
comparing the field-measured fuel consumption rates with the model estimates. From the 
comparison results, the VT-CPFMs calibrated using the city and highway fuel economy values 
are proven to generally provide reliable fuel consumption estimates. More importantly, both 
estimates and measurements have the same behavioral changes depending on engine load 
conditions. The study shows that the values of the coefficient of determination are close to 1, 
demonstrating the consistency of the VT-CPFM. The proposed model can be integrated within a 
traffic simulation framework to quantify the energy and environmental impacts of traffic 
operational projects. Furthermore, the proposed models can be used to develop a predictive ECC 
system. 
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3. COMPARISON OF MANUAL DRIVING AND CONVENTIONAL CRUISE 
CONTROL  
This section quantifies the fuel efficiency impacts of using a CC system relative to manual 
driving based on field driving tests. CC (or autocruise) is a device or system that is frequently 
used while driving, especially on highways, as it automatically controls the speed of a vehicle as 
set by the driver. Consequently, using CC reduces the driver’s fatigue and improves comfort. As 
fuel prices change significantly, the fuel savings that result from the use of CC have recently 
attracted attention. From a fuel-saving perspective, CC use is recommended as one of the eco-
driving tips by many organizations . 
 CC was invented in 1945 by Ralph Teetor, and the system was initially installed into the 
Chrysler Imperial in 1958 [24]. Automotive electronic CC, which is the electrical version of CC 
that uses digital memory, was invented by Daniel Aaron Wisner in 1968. An extensive adaptation 
of CC was achieved following development by Motorola, Inc. of an integrated circuit. Most cars 
currently manufactured in the United States are fitted with a CC system that uses a specific 
control algorithm that depends on the manufacturers.  

As mentioned earlier, it is widely known that the use of CC on highways can save gas. 
However, it is difficult to find literature that proves CC’s effectiveness in a quantitative manner 
with regard to fuel savings even though this idea seems to be accepted by the public. One study 
conducted by Edmunds.com concluded that an average fuel economy savings of 7 percent 
resulted from the use of CC [45]. However, it is not clear how the effectiveness will vary if the 
system is used on uphill or downhill sections. It is recommended that CC be disabled on hilly 
terrain because the system tries to maintain even speeds on steep hills, thus resulting in high fuel 
consumption [41]. The literature indicates that experienced drivers can manually drive in a more 
fuel-efficient manner than by enabling CC driving [46]. Consequently, there is a need to test the 
effectiveness of using CC in a systematic way based on field driving tests. Specifically, the 
objectives of this study are to test: 1) if conventional CC driving can significantly save fuel 
compared to manual driving, and 2) whether fuel savings remain constant when driving on uphill 
and downhill sections of a roadway. The study utilized the data collected on a section of I-81, 
which was described earlier.  

3.1 Manual Driving and Cruise Control Driving Test Results  
3.1.1 Speed and Throttle Control 
The field test results show that the CC systems demonstrated a good ability to maintain a constant 
speed. Overall, the systems maintained the vehicle speed close to the target speed of 65 mph 
during most of the test runs. As shown in Figure 23 (which includes some sample speed profiles 
from the test runs), the speeds of the individual vehicles were maintained close to the target speed 
with marginal errors. However, it is interesting to note that the control logics of the systems are 
distinct from each other. Figure 23(c) clearly shows that the Chevy Tahoe, which is the heaviest 
car amongst the test vehicles, accelerated on the downhill sections and returned to the target 
speed after passing the downhill sections. Additionally, the Toyota Camry CC system also seems 
to have similar control logic to the Tahoe although the speed does not increase as much as that of 
the Tahoe. The speed profiles of the Tahoe and the Toyota Camry are different from the speed 
profiles of the other systems while driving on the downhill sections. The systems of the Tahoe 
and the Toyota Camry seem to allow the vehicle to utilize their gravitational force, which might 
affect fuel economy rather than braking to maintain the target speed. 
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Figure 23: Speed Profiles under Cruise Control System  
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Figure 24: Speed Profiles under Manual Driving 



Rakha, Ahn, and Park  55 

 Conversely, the drivers of the test vehicles were capable of manually maintaining the 
target speed. However, it was observed that manual driving cannot generally control the speed as 
precisely as a CC system. This can be clearly confirmed in Figure 24. The deviations of the 
manual driving test runs from the target speed appeared greater than those of the CC driving test 
runs. This fact can be reconfirmed since the standard deviations of the speed measurements of the 
manual driving test runs were greater than those of CC driving. However, it is demonstrated that 
some of the drivers manually achieved more precise control of the target speed than when using 
the CC system. For example, based on the test results of the Toyota Camry, the standard 
deviation of the CC driving tests on the southbound lanes was greater than that of the manual 
driving tests, as can be seen in Table 9.  

Table 9: Average Speed (Km/H) And Standard Deviation of the Speed Measurements 

Classification 
Southbound Northbound 

Manual Cruise Manual Cruise 

R350 Avg. Speed 102.8 102.8 102.8 101.9 
Std. Dev. 4.2 0.6 3.9 2.9 

TAHOE Avg. Speed 104.7 104.9 105.3 106.7 
Std. Dev. 2.7 2.0 3.4 4.5 

MALIBU Avg. Speed 102.7 104.9 104.7 104.7 
Std. Dev. 4.0 2.3 3.0 3.5 

MALIBU HYBRID Avg. Speed 103.9 103.9 103.9 104.1 
Std. Dev. 5.6 2.3 5.1 2.8 

TOYOTA CAMRY Avg. Speed 103.7 103.0 103.3 105.4 
Std. Dev. 2.7 3.5 3.0 3.0 

  
 With regard to throttle control, one would expect that the CC throttle control would be 
more stable than manual control (i.e., without significant abrupt changes in throttling) when 
compared to manual driving. Figure 25(a) clearly demonstrates that Driver-1 frequently 
alternated between pressing the accelerator pedal and the brake pedal, especially when driving on 
the uphill and downhill sections. Consequently, it can be concluded that Driver-1 is not a skilled 
driver at controlling the vehicle throttle. Interestingly, the throttle control profiles of the Driver-1 
manual and CC driving tests were similar to each other in the sense that the general patterns of 
throttle positions were identically sensitive to the gradients of the roadway. However, they are 
clearly distinct because the manual driving test had greater throttle positions. This is one of the 
critical reasons why using the CC systems generally saved gas. In terms of fuel economy, it was 
observed that the fuel economy values of the CC and manual driving tests plotted in Figure 25(a) 
were 21.3 MPG and 20.4 MPG, respectively. Thus, using CC for Driver-1 resulted in a 3-percent 
increase in vehicle mileage when compared to manual driving. Figure 25(b) is a profile of a 
different driver (Driver-2) who experienced the identical experimental setting as Driver-1. As can 
be seen, the Driver-2 throttle control was better than that of Driver-1 since the peaks in the 
throttle positions were generally lower than those of Driver-1.  
 There was another interesting result found with regard to throttle control. There may be 
several factors contributing to the throttle position controlled by the CC systems, such as vehicle 
specification, driving environment, CC logic, etc. However, it can be confirmed that the throttle 
control logic is one of the most critical factors that results in differences in the throttle positions. 
As can be seen in Figure 26, the Toyota Camry and Chevy Malibu ideally maintained the target 
speed of 65 mph during a test run, but the throttle position profiles of the two vehicles were 
clearly distinct from each other.  
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Figure 25: Throttle Profiles 
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Figure 26: Cruise Control Profiles of Malibu and Camry 

3.1.2 Fuel Economy 

The test results clearly demonstrated that using the CC systems resulted in a fuel economy 
enhancement. As can be seen in Table 10, the fuel economy values of the CC driving tests were 
greater than those of the manual driving tests, although there were some variations in the 
differences depending on the driver, the vehicle, and the direction of travel. The average fuel 
economy enhancement across all the field tests was 3.3 percent. It is interesting to note that using 
CC on the northbound section, which is mostly downhill as a whole, resulted in better fuel 
economy than using it on the southbound section. Another interesting finding was that the fuel 
economy enhancement ranged from 0.2% to 10.5%, demonstrating that changes in driving 
behavior significantly affect the vehicle fuel economy.  

Table 10: Fuel Economy of Manual Driving and CC Driving 

Classification Southbound Northbound 
Manual (MPG) Cruise (MPG) Relative Diff. Manual (MPG) Cruise (MPG) Relative Diff. 

R350 20.4 21.0 3.0% 32.0 35.3 10.5% 
TAHOE 18.8 18.8 0.2% 32.2 33.6 4.5% 
MALIBU 29.6 30.8 3.8% 46.0 46.7 1.7% 

MALIBU HYBRID 27.5 27.7 0.7% 41.0 43.5 6.0% 
CAMRY 30.1 30.5 1.5% 48.4 49.7 2.8% 
Average 25.3 25.8 1.9% 39.9 41.8 4.7% 

 
Based on the test results, manual driving and CC driving were not significantly different 

from each other with regard to travel time, as can be seen in Table 11. The relative differences 
ranged from -2.0% to 1.4%. Consequently, it can be concluded that using conventional CC 
devices can save a significant amount of fuel without a significant loss of travel time. 
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Table 11: Travel Times of Manual Driving and CC Driving 

Classification Southbound Northbound 
Manual Cruise Relative Diff. Manual Cruise Relative Diff. 

R350 616 616 0.0% 680 678 -0.3% 
TAHOE 605 613 1.4% 657 647 -1.4% 
MALIBU 611 604 -1.1% 660 658 -0.4% 
MALIBU HYBRID 610 615 0.8% 665 664 -0.1% 
CAMRY 611 615 0.7% 669 656 -2.0% 
Average 611 613 0.4% 666 661 -0.8% 

 
As illustrated in Figure 25, some differences were found in the throttle control levels 

between the various drivers. Figure 25 demonstrates that Driver-2 drove more efficiently with 
regard to fuel savings when compared to Driver-1. In order to assess the differences between the 
drivers, a comparison of fuel consumption by the different drivers was conducted, and a summary 
of the results is presented in Table 12. Specifically, the fuel consumption values in Table 12 were 
computed by averaging all test runs by the individual drivers; in some cases, the values were 
averaged across more than one test vehicle. As is clearly seen, the average difference between the 
CC and manual driving tests of Driver-1 was greater than that of Driver-2. Driver-3 was the most 
skilled driver amongst the subjects as the manual driving of Driver-3 resulted in less fuel 
consumption than the CC driving. This confirms the fact that skilled driving can save more fuel 
than using CC, which is addressed in the literature [46]. 
 

Table 12: Fuel Consumptions (L) by Test Vehicle Drivers 
Driver 
Index 

Northbound Southbound 
Cruise Manual Diff (%) Cruise Manual Diff (%) 

1 1.35 1.48 9% 1.98 2.07 5% 
2 1.29 1.37 7% 2.01 2.08 3% 
3 1.22 1.19 -2% 1.83 1.8 -1% 
4 1.35 1.43 6% 2.28 2.18 -4% 
5 0.94 0.97 3% 1.36 1.38 2% 
6 1.07 1.15 8% 1.53 1.53 0% 
7 1.07 1.12 4% 1.58 1.54 -3% 

 

3.2 Statistical Test Results - CC Driving versus Manual Control Driving 
The field-measured data demonstrate that CC driving is significantly effective with regard to fuel 
savings when compared to manual driving. A set of t-tests were then conducted at a 5-percent 
significance level (alpha = 0.05) to test if CC driving was statistically different from manual 
driving. Since fuel economy is sensitive to vehicle specifications and roadway conditions, the 
field test results (fuel consumption in liters) were classified by vehicle and roadway section and 
used during the t-tests. Based on the t-test results, it was demonstrated that CC driving is not, 
statistically, 100% different from manual driving, as can be seen in Table 13. For the R350, the 
difference between CC driving and manual driving was significantly different on the southbound 
and northbound sections because the confidence interval of the difference in the fuel use did not 
include zero. As it was previously found that CC driving saved more fuel on the northbound 
section, the differences between CC driving and manual driving were more evident on the 
northbound section. Overall, CC driving can be thought to be effective with regard to fuel savings, 
although the differences between CC driving and manual driving are not statistically significant 
for all test vehicles. If more test runs are conducted, the differences may be more significant. 
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Table 13: T-Test Results 

Classification 
Southbound Northbound 

P-value Confidence Interval (L) P-value Confidence Interval (L) 
Lower Bound Upper Bound Lower Bound Upper Bound 

R350 0.00 0.03 0.11 0.01 0.05 0.21 
Tahoe 0.68 -0.21 0.15 0.02 0.01 0.10 
Malibu 0.09 -0.01 0.11 0.97 -0.10 0.09 
Malibu Hybrid 0.65 -0.09 0.06 0.04 0.01 0.12 
Camry 0.31 -0.04 0.09 0.25 -0.03 0.07 

 
 Additionally, a multiple linear regression model was fitted to the measured fuel in order to 
gain insight into the relationship between the fuel use and other contributing factors. The 
framework of the regression model is formulated in Equation (41). 
 

0 1 2 3 4y A B C Dβ β β β β= + + + +  (41)  
Where βs are the coefficients, A is the driving classification (CC or manual driving), B is 

the vehicle classification, C is the roadway section classification (the southbound or the 
northbound section), and D is the driver classification.  
 Given that the dependent variables are non-numerical and qualitative variables, one of the 
categories of the dependent variables is used as the reference level. For example, Toyota Camry 
is used as the reference level of the B classification because “c” comes first in the alphabet. Given 
that the regression model has a multiple R-squared of 0.9349 and the p-value is less than 2.2e-16, 
the model is demonstrated to be significant and provides reliable estimates. The regression model 
demonstrates that manual driving consumes an average of 0.03 L more on the study sections than 
does CC driving, as can be seen in Table 14. However, this difference is not significant at the 5% 
significance level because the p-value of the β1 coefficient of the manual driving is 0.16. For the 
vehicles, the R350, the Tahoe, and the Malibu Hybrid are significantly different from Toyota 
Camry with regard to fuel consumption on the study sections. Driving on the southbound section 
consumed 0.57 L more than driving on the northbound section. 
   

Table 14: Coefficients of the Regression Model and Significances of the Coefficients 
Classification Estimate Std. Error t-value p-value 
β0 Intercept 0.838807 0.038179 21.971 < 2e-16 

 β1 
CC - - - - 
Manual 0.033761 0.023924 1.411 0.16208 

 β2 

R350 0.542127 0.04927 11.003 < 2e-16 
Tahoe 0.679716 0.05998 11.332 < 2e-16 
Malibu 0.036807 0.043883 0.839 0.404102 
Malibu Hybrid   0.186299 0.049265 3.782 0.000299 
Camry - - - - 

 β3 
Southbound 0.569075 0.023284 24.44 < 2e-16 
Northbound - - - - 

 β4 

Driver-1 0.057996 0.050551 1.147 0.254689 
Driver-2 - - - - 
Driver-3 0.049436 0.043087 1.147 0.254661 
Driver-4 -0.01282 0.065927 -0.194 0.846355 
Driver-5 - - - - 
Driver-6 -0.00605 0.049867 -0.121 0.903774 
Driver-7 - - - - 
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3.3 Summary of Findings  
This section investigated the fuel efficiency of a CC system compared with manual driving using 
field data along Interstate 81. The test section was selected given that it comprises various uphill 
and downhill sections. The study found that the CC driving improves vehicle fuel efficiency 
compared to the manual driving although there were some variations in the differences depending 
on the driver, the vehicle, and the direction of travel. The average fuel economy enhancement 
across all the field tests was 3.3%. It is interesting to note that using CC on the northbound 
section, which includes multiple downhill sections, resulted in better fuel economy than using it 
on the uphill sections. Also, the study found that manual driving and CC driving were not 
significantly different from each other with regard to travel time. Based on the multiple linear 
regression model used, it was demonstrated that manual driving consumes 0.03 L more fuel on 
the study sections than does CC driving; however, this difference was not found to be statistically 
significant at a 95-percent significance level. 
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4. PREDICTIVE ECO-CRUISE CONTROL SYSTEM: MODEL LOGIC AND 
PRELIMINARY TESTING  
Fuel saving is a concern for both individual drivers and the nation as a whole since fuel prices 
continue to change in an unpredictable manner, which affects the nation’s economy as well as 
that of its citizens. People seem to be especially sensitive to vehicle fuel consumption because 
pump prices are posted everywhere. People frequently seek solutions to enhance their fuel 
economy by changing the factors that affect fuel consumption. One of the attractive solutions is 
to avoid aggressive driving behavior; this is termed eco-driving. According to Ecodrive.org, eco-
driving leads to significant fuel savings. For example, an average fuel economy improvement of 
24% was observed from the tests conducted by Ford [47].  Given that the surface transportation 
sector consumes more than 20 million barrels of fuel in the United States on a daily basis, it is 
expected that the fuel savings would be significant [48].  

With regard to road network characteristics, roadway grade is among the biggest 
contributors to high fuel consumption levels because driving on a steep upgrade section requires 
additional power to overcome the grade resistance. Specifically, a study showed that fuel 
consumption rates increase by up to 18 percent on a roadway grade of 1 percent and up to 94 
percent on a grade of 6 percent when compared to a level roadway [5]. Given that the impact of 
roadway grade on fuel consumption levels is significant, it is expected that eco-driving on hilly 
roadways would produce significant savings in fuel consumption. The basic driving strategy can 
be described as minimizing the power levels required while maintaining the vehicle speed within 
an acceptable speed range and transit time. Specifically, if the current roadway grade is uphill, the 
vehicle should be controlled to use as little power as possible to maintain the minimum level 
required (in other words, the minimum throttle level or pedal level). If the roadway grade is 
downhill, the vehicle should be controlled in order to use the force of gravity without braking.   

As such, eco-driving on a hilly roadway would largely depend on the topographic 
information and vehicle controls.  In the present day it is very common to use GPS-based 
navigation systems to receive driving-assistant information; consequently, topographic 
information can be easily assembled. However, there has been a need to develop eco-vehicle 
control systems. Currently, CC is a widely used system that automatically regulates the speed of a 
vehicle. It is a closed-loop system that controls the throttle of the car to maintain a steady speed 
as set by the driver. Although it clearly provides a convenience to the driver, using CC on hilly 
roadways is not recommended from the fuel-saving standpoint because it results in excessive fuel 
consumption levels in attempting to maintain the steady speed. Consequently, there exists a need 
to develop a CC system that reduces fuel consumption while maintaining the vehicle speed within 
a range as set by the driver.   

The objective of this study was to develop a predictive ECC system that generates vehicle 
control plans for fuel-consumption reduction by utilizing topographic information.  The generated 
plans are expressed as a sequence of vehicle speed, throttle level, braking level, and gear 
selection over a certain distance or time period. Specifically, the system is a predictive control 
system that optimizes the vehicle controls in advance while satisfying the user-specified 
requirements. The study utilized the VT-CPFM-1 model and the powertrain model to develop a 
predictive ECC system.  
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4.1 Development of Predictive Eco-cruise Control System 
4.1.1 Framework 

The objective of this predictive ECC system is to generate an optimal vehicle control plan which 
will result in minimized fuel use for a given road topography in a predictive manner. Hellstrom 
developed a predictive CC system for heavy trucks [49]. This study employs the operational 
concept of the system from Hellstrom’s research in order to build a system.   

The operation of the system is conceptually illustrated in Figure 27. First, future 
topographic information is fed to the system from a navigational mapping system. Second, the 
user sets a target cruise speed and a speed range (or speed window) for the vehicle to operate 
within. Next, the system generates an optimal plan for throttle, braking levels, and gear selections 
over a predefined distance. The system then updates these procedures over the entire trip. 

- Fuel Consumption Estimation Module
- Powertrain Modeling Module
- Optimization Module

Predictive Eco-Cruise Control System

Topographical 
Information

User Input
- Target Speed to cruise

- Speed Range

Optimal Control
Throttle, Brake Levels, 

and Gear Selection
 

Figure 27: Conceptual Diagram 
 
The predictive ECC system consists of three building blocks: a powertrain module, a fuel 

consumption module, and an optimization module. These modules are closely connected with 
each other so that the system can simulate the vehicle operations under the given topographic 
information and characteristics of a testing vehicle, estimate the fuel consumption rates based on 
the vehicle operating conditions, and find an optimal control plan that minimizes the vehicle fuel 
consumption while satisfying the preset minimum vehicle speed levels using the optimization 
module.  

4.1.2 Optimization Module 
The optimization module is critical in defining the structure of the system. There are three system 
parameters used; namely: the unit distance, the optimization look-ahead distance, and the plan 
implementation distance, as illustrated in Figure 28. The unit distance, the first parameter, is also 
termed the stage length (ds). The stage length is the unit of discretization for solving the problem. 
A vehicle control plan remains constant for the duration of a stage. Any changes in input are 
made at the stage boundary. The optimization look-ahead distance (do), the second parameter, is 
the distance for which the optimization is performed. Finally, the plan implementation distance 
(df), the last parameter, is the distance for which the optimized plan is implemented. For example, 
assume that a driver plans a 5-km long trip and defines the stage length, look-ahead distance, and 
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plan implementation distance as 100 m, 1 km, and 500 m, respectively.  First, the system 
discretizes the 5-km long trip at 100 m stage lengths, which results in a 50-stage trip.  Then the 
optimization is carried out every 500 m using the road profile over the next 1 km.  In other words, 
the system calculates the optimal control over from 0 m to 1000 m at the beginning. Next, the 
system repeats the optimization at 500 m looking ahead from 500 m to 1500 m.  

 
Figure 28:  Illustration of Optimization 

Each optimization is performed over three steps. In the first step, the search space is 
defined, which entails determining the range of speed and gear levels which the vehicle is able to 
achieve based on its performance and the road topographic information. In the second step, the 
defined search space is discretized to form a state space (where a state is defined by the speed and 
gear level).  Next, a network is constructed by pairing (linking) a state to another state, which 
represents a transition from one state to another. For example, the transition from the speed of 63 
km/h at gear 3 at the end of stage i-1 to a speed of 65 km/h at gear 3 at the beginning of stage i 
can be represented by linking the two states.  Third, all transitions are evaluated with regard to 
fuel consumption levels and other penalties.  In the third step, an optimal control plan (which 
yields the minimum cost) is searched. The following section describes each step in further detail. 
It should be noted that the model assumes that transitions from one gear to another occur 
instantaneously at the stage boundaries and that the changes in speed occur over the stage length. 
STEP1: Defining the Search Space 

Simulation of the powertrain is required to define the physically achievable search space. In order 
to conduct the simulation, gear ratio information is required.  Given that it is possible that several 
gears generate an engine speed within the valid engine speed range, the gear that generates the 
maximum acceleration level is used to define the search space upper boundary of the gear state 
space.  Likewise, the gear that generates the minimum acceleration level is used to define the 
search space lower boundary.  In this study a 1/10 second time step was used as the simulation 
step size. 

In order to determine the maximum speed (Vsim_max) at the stage boundary, the simulation 
is conducted from the initial speed at the maximum throttle, which generates the maximum power.  
This study assumes 99 percent as the maximum throttle.  As illustrated in Figure 29, the user-
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defined upper (Vuser_max) and lower (Vuser_low) speed boundaries are also used to constrain the 
simulation results.  The simulated maximum speed is then compared with the user-defined upper 
boundary. If the maximum speed is greater than the upper boundary, the search space upper 
boundary is set to the user-specified upper boundary; otherwise, it is set to the maximum speed. 
In the next stage, the simulation is conducted from the search space upper boundary of the 
previous stage.  The simulation continues iterating until the user-defined distance is reached in 
order to define a set of maximum speeds over an optimization. 

The search space lower boundary is defined using the same simulation procedures with 
the minimum throttle level. The minimum throttle level is assumed to be 15 percent.  The 
simulation begins at the initial speed over the first stage. Then the simulated minimum speed 
(Vsim_min) at the end of the first stage is compared with the user-defined lower and upper 
boundaries to determine the search space lower boundary as follows. 

( )( )min maxlow sim_min user_min user_maxV V ,V ,V=  (42) 

In the next stage, the vehicle speed (V*) at the start of the simulation is determined based 
on the relationship between the simulated speed (Vsim_min), the user-defined target speed (Vref), and 
the lower boundary (Vuser_min).  If the simulated speed is greater than the target speed, then V* is 
set to the target speed. If the simulated speed is less than the lower boundary, then the speed V* is 
set to the lower boundary. This ensures that the initial speed is within the user-defined boundary. 

 
Figure 29: Illustration of Search Space 

 
Given the set of the search space lower and upper boundaries, the search space is 

discretized at a user-defined increment from the lower to the upper boundary. The study uses 1-
km/h as the increment unit.  For example, if the boundaries of the first stage are (63, 70) then the 
speeds of (63, 64, 65, 66, 67, 68, 69, 70) form the search space for the vehicle speed, and a set of 
possible gears that generate a valid engine speed at each of the speeds is then defined. For 
example, gears 2, 3, and 4 can be a valid gear set for the speed of 63 km/h if they generate a valid 
engine speed, which is between the minimum and maximum engine speeds, as illustrated in 
Figure 29.  
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STEP2: Building a Network 
The next step is connecting a state at the beginning of stage i to a state at the end of stage i, which 
means a transition in speed and gear over stage i.  For example, a potential transition can be 
described as connecting the state of (63 km/h @ gear 3 at the beginning of stage 1) to the one of 
(65 km/h @ gear 3 at the end of stage 1).  Once all the connections are completed, then a network 
(also referred to as a graph), which consists of states and connectors, is constructed.  The 
constructed network provides the convenience of easily implementing the shortest path algorithm 
in the optimization algorithm. 

In the course of constructing the network, the transitions need to be evaluated with regard 
to fuel consumption and other penalties using Equation (43). 

0 1

1
1 ( , ) 2 ( ) 3 1 0 ( )1

ref refv v v v
ref

vCost w FC w FC w g g FC
v

= × + × − × + × − ×   (43)  

Where w1 is the fuel consumption weight factor, w2 is the speed deviation weight factor, 
w3 is the gear change penalty weight factor, v0 is the initial speed, v1 is the final speed, vref is the 
target speed, g0 is the initial gear, g1 is the final gear, FC(v0,v1) is the fuel consumption to 
accelerate from v0 to v1 over the stage length, and FC(vref) is the fuel consumption at vref over a 
stage. 

The fuel consumption rates are calculated using the VT-CPFM-1 model. For the 
calculation of fuel consumption rates, the average speed of the two states is used, assuming that 
the acceleration level remains constant over the stage length.  If the difference in the gears over a 
stage i is greater than 1, the penalty is set to infinity in order to avoid unreasonable gear shifts. All 
the penalties are normalized by multiplying by the fuel consumption rate at the target speed.  

STEP3:  Finding an Optimal Vehicle Control Set 
Step 3 involves exploring the search space to compute an optimal set of vehicle controls.  First, 
this study employs Dijkstra’s algorithm that was developed by the Dutch computer scientist 
Edsger Dijkstra in the late 1950s [52]. It is a graph search algorithm that solves the shortest path 
problems using shortest path trees.  The algorithm finds the minimum cost path from a given 
source node (state) to every other node, thus it is widely used in routing problems.  Given that the 
structure of the system being discussed here is similar to those of shortest path problems, it is 
easier to solve these problems using Dijkstra’s algorithm.  States and transitions in this system 
can be thought of as nodes (vertices) and edges in shortest path problems. 

In addition to Dijkstra’s algorithm, a heuristic algorithm was developed as part of the 
research effort to enhance the execution time with a minimal loss of cost. Although Dijkstra’s 
algorithm provides a good performance for small search space problems, it requires significant 
computational time to solve large search space problems (such as using longer look-ahead 
distances and wide speed boundaries). While Dijkstra’s algorithm explores all the possible paths, 
the heuristic algorithm only searches a portion of the paths. The heuristic algorithm starts with the 
initial speed and finds an optimal solution for the first stage that produces the minimum cost. The 
solution for the first stage is then fixed and the algorithm starts with the final speed of the first 
stage and then finds an optimal solution for the second stage. The algorithm repeats this 
procedure until the final stage. In other words, the procedure finds the minimum for each stage 
and computes the total minimum as the sum of stage minima. A merit for using the heuristic 
algorithm is that it is possible to implement a constraint on the frequency of gear shifting to 
minimize frequent gear shifts. This is possible because it is easy to track the gear changes when 
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using the heuristic algorithm. Specifically, users can specify the minimum number of stages 
between gear shifts. The algorithm can then ensure that no gear shifts are spaced closer than the 
user-specified minimum spacing.   

4.2 Demonstration of the Predictive Eco-Cruise Control system 
For the demonstration of the predictive ECC system, a 2011 Toyota Camry was used in this study. 
The Toyota Camry has a 2.4 L engine and 8.9 and 13.2 kilometers per liter (21 and 31 MPG) 
EPA city and highway fuel cycles, respectively. The specifications of the vehicle, which are 
publicly available, were used to calibrate the fuel consumption and powertrain models. The 
details of the calibration procedures of the models are available in the literature [53]. 

The predictive ECC system was simulated on a 45-km section of Interstate 81 from 
Roanoke to Blacksburg in the state of Virginia.  Since the study section includes multiple uphill 
and downhill segments, with grades ranging from -4 percent to +4 percent (as illustrated in Figure 
30), it is appropriate to demonstrate the performance of the system. Specifically, it is possible to 
examine the behavior of the system on the uphill and downhill sections regarding speed, throttle, 
braking level, and gear selection. The simulation will show how the system optimizes fuel 
consumption rates when uphill sections are anticipated in a predictive manner and how the 
system maximizes the utilization of gravitational energy. 

A set of scenarios was prepared for each of the target speeds by varying the speed 
boundaries as described in Table 15. Given that the majority of the study section has a speed limit 
of 104 km/h (65 mph), it is reasonable to think that most drivers are likely to drive between 96 
km/h (60 mph) and 112 km/h (70 mph) at free-flow traffic conditions. Consequently, three speeds 
of 96 km/h, 104 km/h, and 112 km/h were used as the target speeds, and the speeds varying ± 8 
km/h (5 mph) from the target speeds were used as the lower and upper boundaries for the system. 
For the system configuration, 100 m, 1000 m, and 1000 m were used as the ds, do, and df system 
parameters, respectively. For the calculation of the cost for the optimization, only the fuel 
consumption was considered, which means that the weight factors of (w1=1, w2=0, w3=0) were 
used. Dijkstra’s algorithm was used to find the optimal solution in this simulation. 

It is worth noting that the predictive ECC system is assumed to have full control of the 
vehicle. Consequently, the system can save fuel even when the vehicle is cruising at a constant 
speed because the system can inject the exact amount of fuel needed to maintain the target speed. 
That is one of the reasons that the fuel efficiencies analyzed in this study are greater than the fuel 
efficiencies rated by the EPA. 

As seen in Table 15, each of the scenario sets has five scenarios that have different speed 
ranges. The scenario with the speed range of 0 km/h is the baseline (single target speed), which is 
compared with the other scenarios. Fuel consumption normally increased as the target speed 
increased. In addition, the fuel savings became larger as the speed range became wider. The 
simulation results demonstrated that using the predictive ECC system results in significant fuel 
savings. Specifically, the speed range of ± 8 km/h resulted in fuel savings of up to 15% when 
compared to the baseline for all of the target speeds. However, the execution time – which is the 
computational time to optimize the vehicle controls – significantly increased as the speed range 
became wider because there were significant increases in the number of feasible solutions from 
the initial state to the final state as the search space was extended. 
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Table 15: Simulation of Predictive Eco-Cruise Control System Integrated with Dijkstra’s 
Algorithm 

Target 
Speed 

Scenario 
Number Speed range 

Shortest Path Algorithm 

Fuel  
Consumed (L) 

Fuel Efficiency 
(Km/L & MPG) 

Relative  
Difference (%) in 
Fuel Efficiency to 

the Base Case 

Execution  
Time (min.) 

96 km/h 
(60 mph) 

1 0.0 km/h (0.0 mph) 
(base case) 3.18 14.29 km/h  

(33.61 MPG) - 1.7 

2 ± 2.0 km/h  
(1.3 mph) 3.07 14.79 (34.78) 3.5% 5.1 

3 ± 4.0 km/h  
(2.5 mph) 2.98 15.25 (35.86) 6.7% 14.0 

4 ± 6.0 km/h  
(3.8 mph) 2.90 15.68 (36.89) 9.7% 30.0 

5 ± 8.0 km/h  
(5.0 mph) 2.83 16.06 (37.78) 12.4% 53.2 

104 
km/h 

(65 mph) 

6 0.0 km/h (0.0 mph) 
(base case) 3.45 13.18 (31.00) - 1.4 

7 ± 2.0 km/h (1.3 
mph) 3.32 13.67 (32.15) 3.7% 4.9 

8 ± 4.0 km/h (2.5 
mph) 3.22 14.13 (33.23) 7.2% 13.8 

9 ± 6.0 km/h (3.8 
mph) 3.12 14.56 (34.25) 10.5% 27.9 

10 ± 8.0 km/h (5.0 
mph) 3.03 14.98 (35.24) 13.7% 42.4 

112 
km/h 

(70 mph) 

11 0.0 km/h (0.0 mph) 
(base case) 3.78 12.01 (28.26) - 0.8 

12 ± 2.0 km/h (1.3 
mph) 3.64 12.47 (29.33) 3.8% 1.7 

13 ± 4.0 km/h (2.5 
mph) 3.51 12.93 (30.41) 7.6% 5.5 

14 ± 6.0 km/h (3.8 
mph) 3.40 13.37 (31.44) 11.3% 12.4 

15 ± 8.0 km/h (5.0 
mph) 3.30 13.76 (32.38) 14.6% 21.8 

 
In Figure 30, the speed, throttle, and fuel consumption profiles are illustrated with the 

roadway grades.  The figure demonstrates that the predictive ECC system makes an effort to 
maintain the lowest possible speed when the vehicle is running on uphill sections in order to save 
fuel. Further, the system increases the vehicle speed prior to entering an upgrade section, 
preparing it for the upcoming climb. Alternatively, the system attempts to maximize the 
utilization of gravitational energy when the vehicle is running along downhill sections. The fuel 
savings are clearly seen in the subplot (d) as the vehicle uses the predictive ECC system with 
different speed ranges.  
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Figure 30: Speed, Throttle, and Fuel Consumption Profiles Along With Topographic 

Information of the Study Section (Target Speed = 104 km/h) 
 

4.3 Dijkstra’s Shortest path vs. Heuristic Algorithm 
Although the use of the predictive ECC system integrated with Dijkstra’s shortest path algorithm 
results in significant fuel savings, especially when the vehicle travels on hilly terrains, real 
applications of the system might be limited because the computational time is not within real time. 
For instance, the computational time for Scenario-5 (the target speed is 96 km/h and the speed 
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range is ± 8 km/h) for the entire 45km section is 53 minutes, which might be longer than the 
actual travel time (45 km / 96 km/h = 28 minutes). An optimal vehicle control plan should be 
provided to either the driver or the vehicle system in a timely manner so that the vehicle can be 
ready to follow the plan before it reaches the planned sections. The reason for the long 
computational time is attributed to the fact that Dijkstra’s shortest path algorithm finds all the 
minimum paths from the initial node (state) to the other nodes. 

As mentioned earlier, a heuristic algorithm was developed for this research. For 
comparison purposes, the same scenarios were tested using the predictive ECC system integrated 
with the heuristic algorithm, as seen in Table 16. The simulation results indicate that the heuristic 
method significantly improves the computation time but slightly reduces the fuel efficiency 
(approximately 1 percent). For instance, the differences in the MPG and the Execution Time 
between both simulations of Scenario-15 are -1.5 and -91.3 percent, respectively. Consequently, 
it is worthwhile to use the predictive ECC system integrated with the heuristic algorithm. 

Table 16:  Simulation of Predictive Eco-Cruise Control System Integrated with the 
Heuristic Algorithm 

Target 
Speed 

Scenario 
Number Speed range 

Fuel  
Consumed 

(L) 

Fuel Efficiency 
(Km/L & 

MPG) 

Execution  
Time (min.) 

Relative Difference (%)*  
to Shortest Path Algorithm 

Fuel Efficiency Execution 
Time 

96 
km/h 
(60 

mph) 

1 0.0 km/h (0.0 mph) 3.19 14.26 (33.53) 1.8 -0.2% 10.9% 
2 ± 2.0 km/h (1.3 mph) 3.09 14.7 (34.58) 2.0 -0.6% -61.3% 
3 ± 4.0 km/h (2.5 mph) 3.01 15.11 (35.53) 2.0 -0.9% -85.8% 
4 ± 6.0 km/h (3.8 mph) 2.93 15.5 (36.47) 2.2 -1.1% -92.7% 
5 ± 8.0 km/h (5.0 mph) 2.87 15.85 (37.29) 2.3 -1.3% -95.6% 

104 
km/h 
(65 

mph) 

6 0.0 km/h (0.0 mph) 3.46 13.13 (30.89) 1.6 -0.4% 10.3% 
7 ± 2.0 km/h (1.3 mph) 3.35 13.56 (31.89) 1.7 -0.8% -66.1% 
8 ± 4.0 km/h (2.5 mph) 3.25 13.98 (32.89) 1.7 -1.0% -87.3% 
9 ± 6.0 km/h (3.8 mph) 3.16 14.37 (33.81) 1.9 -1.3% -93.2% 

10 ± 8.0 km/h (5.0 mph) 3.07 14.78 (34.77) 2.1 -1.4% -95.1% 

112 
km/h 
(70 

mph) 

11 0.0 km/h (0.0 mph) 3.78 12.01 (28.25) 1.2 0.0% 55.4% 
12 ± 2.0 km/h (1.3 mph) 3.66 12.4 (29.17) 1.4 -0.5% -21.4% 
13 ± 4.0 km/h (2.5 mph) 3.55 12.8 (30.1) 1.6 -1.0% -70.7% 
14 ± 6.0 km/h (3.8 mph) 3.44 13.23 (31.11) 1.7 -1.0% -86.0% 
15 ± 8.0 km/h (5.0 mph) 3.35 13.56 (31.9) 1.9 -1.5% -91.3% 

 

4.4 Sensitivity of Weight Factor for Deviation from Target Speed 
The demonstration clearly showed that the predictive ECC system maintains the vehicle speed on 
the lower end of the target range when the vehicle travels on uphill sections. However, some 
drivers might want to maintain the vehicle speed slightly closer to the target speed even on uphill 
sections. In order to adjust the system to compromise the fuel efficiency and the deviation from 
the target speed, the sensitivity of the speed deviation weight factor (w2) was tested while 
considering the other weight factors constant (w1=1, w3=0). Specifically, Scenario-10 (Target 
speed = 104 km/h, Speed range = ± 8 km/h) was used as the sensitivity test scenario. The w2 
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weight factor was varied from 0 up to 0.8 in 0.1 increments and each of the results was compared 
to the baseline, which has the w2 of 0.0 as seen in Table 17. 

The fuel efficiency decreased as the w2 weight factor increased, as can be seen in Table 17. 
In particular, the fuel efficiency values remained the same and the speed profiles did not change 
from the w2 of 0.3 through 0.8. The vehicle speeds approached the target speed as the w2 weight 
factor was increased, as illustrated in Figure 31. Given that the fuel efficiency of Scenario-6 
described in Table 16 was 13.13 km/l (30.89 MPG), it could not be expected to show significant 
fuel savings if a w2 weight factor greater than 0.3 is used under the given circumstances. 
Consequently, it is recommended to select a weight factor after a sensitivity test to realize 
positive fuel savings. 

Table 17: Weight Factor (w2) Sensitivity Test Results 

Target  
Speed 

Speed  
Range 

Weight Factor 
(w2) 

Fuel  
Consumed (L) 

Fuel Efficiency 
(Km/L & MPG) 

Relative  
Difference (%) 
to Base Case 

104 km/h 
(65 mph) ± 8.0 km/h (5.0 mph) 

0.0 (Base case) 3.07 14.78 km/l (34.77 MPG) - 
0.1 3.09 14.71 (34.61) -0.5% 
0.2 3.29 13.81 (32.48) -6.6% 
0.3 3.45 13.17 (30.99) -10.9% 
0.4 3.45 13.17 (30.99) -10.9% 
0.5 3.45 13.17 (30.99) -10.9% 
0.6 3.45 13.17 (30.99) -10.9% 
0.7 3.45 13.17 (30.99) -10.9% 

0.8 3.45 13.17 (30.99) -10.9% 
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Figure 31: Speed Profiles for Different Weight Factors (w2) 

4.5 Sensitivity to Model Parameters 
Given that the system performance regarding the fuel savings and computational times might 
vary depending on the system parameters (ds, do, and df parameters), a sensitivity study was 
conducted to quantify the relationship between the parameter values from a practical standpoint. 
For the test, Scenario-10 that is described in Table 15 and Table 16 was used with the set of 
weight factors of (w1=1, w2=0, w3=0). The ds parameter was varied from 50 m to 200 m and the 
do and df parameters were varied from 500 m up to 3000 m, as demonstrated in Table 18. 

In general, the system integrated with the shortest-path algorithm resulted in greater fuel 
savings when compared to one integrated with the heuristic algorithm. Specifically, the maximal 
difference in fuel consumption between the two systems was 2.1 percent. However, the heuristic 
algorithm was found to be significantly superior to the shortest-path algorithm with regard to the 
execution time. For instance, the execution times were 1103 minutes (18.4 hours) and 15 minutes 
for Index-7, which has a set of system parameters of (50 m, 3000 m, 500 m), while using the 
shortest-path algorithm saved 0.06 L more as compared to the heuristic algorithm as seen in 
Table 18. 
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Table 18:  System Parameter (ds, do, and df ) Sensitivity Test Results 

Index ds 
(m) 

do 
(m) 

df 
(m) 

Shortest-Path Algorithm Heuristic Algorithm 

Fuel (l) Fuel Effi. 
MPG 

Total 
Exec. 
Time 
(min.) 

Exec. 
Time/ 
Opt.  
(sec.) 

Fuel (l) MPG 

Total 
Exec. 
Time 
(min.) 

Exec. 
Time/ 

Opt. (sec.) 

1 

50 

500 500 3.08 14.74 (34.67) 55 36.7 3.11 14.62 (34.38) 3 1.7 
2 1000 500 3.05 14.90 (35.05) 158 105.4 3.11 14.63 (34.42) 5 3.4 
3 1000 1000 3.05 14.88 (34.99) 78 103.4 3.11 14.63 (34.41) 3 3.5 
4 2000 500 3.05 14.92 (35.09) 494 329.3 3.11 14.62 (34.40) 10 6.6 
5 2000 1000 3.04 14.93 (35.13) 249 331.9 3.11 14.63 (34.42) 5 6.7 
6 2000 2000 3.05 14.91 (35.06) 131 350.6 3.10 14.64 (34.44) 3 6.7 
7 3000 500 3.05 14.92 (35.09) 1103 735.0 3.11 14.62 (34.40) 15 9.7 
8 3000 1000 3.04 14.93 (35.13) 538 717.6 3.11 14.63 (34.41) 7 9.8 
9 3000 2000 3.04 14.95 (35.16) 303 807.6 3.10 14.65 (34.45) 4 9.7 

10 3000 3000 3.05 14.91 (35.07) 204 817.8 3.10 14.65 (34.45) 3 10.3 
11 

100 

500 500 3.05 14.88 (35.01) 35 23.7 3.07 14.78 (34.76) 2 1.4 
12 1000 500 3.03 15.01 (35.29) 94 62.5 3.07 14.78 (34.76) 4 2.8 
13 1000 1000 3.03 14.98 (35.24) 47 62.8 3.07 14.78 (34.77) 2 2.8 
14 2000 500 3.03 15.01 (35.31) 209 139.0 3.07 14.81 (34.84) 8 5.5 
15 2000 1000 3.02 15.03 (35.34) 105 140.6 3.07 14.80 (34.81) 4 5.5 
16 2000 2000 3.03 15.00 (35.28) 55 146.8 3.07 14.79 (34.78) 2 5.6 
17 3000 500 3.03 15.01 (35.31) 373 248.7 3.07 14.80 (34.81) 12 8.0 
18 3000 1000 3.02 15.03 (35.34) 189 252.5 3.07 14.79 (34.78) 6 8.1 
19 3000 2000 3.02 15.03 (35.36) 106 282.9 3.07 14.80 (34.80) 3 8.1 
20 3000 3000 3.03 15.01 (35.31) 74 294.9 3.07 14.79 (34.79) 2 8.6 
21 

200 

1000 1000 3.03 14.98 (35.25) 34 45.4 3.06 14.86 (34.94) 2 2.4 
22 2000 1000 3.03 15.02 (35.33) 74 99.0 3.07 14.81 (34.83) 4 4.9 
23 2000 2000 3.03 15.00 (35.27) 39 104.2 3.06 14.86 (34.96) 2 4.7 
24 3000 1000 3.03 15.02 (35.33) 121 161.2 3.08 14.73 (34.65) 6 7.4 
25 3000 2000 3.02 15.03 (35.35) 65 174.2 3.07 14.81 (34.84) 3 7.4 
26 3000 3000 3.03 15.01 (35.30) 44 177.5 3.06 14.85 (34.92) 2 7.4 

 
In terms of the effects of the system parameters, the fuel savings increased as the ds 

parameter increased when using both algorithms. These results were different from what was 
expected since it is reasonable that a shorter ds would result in greater fuel savings. The results 
showed that the relationship is not straightforward but complex. It might be related to some other 
factors such as the quality of the topographic information. Additionally, a longer do and a shorter 
df parameter generally resulted in a reduction in fuel consumption levels, although it required 
more execution times for computing the optimal control plan.  

Indices -19 and -23 were the parameter sets that resulted in the best fuel economies when 
the shortest path and the heuristic algorithms were used, as demonstrated in Table 18. Although 
they were analyzed as the best sets, the fuel consumption levels were not significantly less than 
those for other sets. In other words, the variation in the fuel consumption due to changes in the 



Rakha, Ahn, and Park  73 

system parameters was not high. The coefficients of variation for the fuel consumption for each 
algorithm were 0.5 and 0.6 percent, respectively. However, the variation in the execution time 
was generally high, and higher when the Dijkstra shortest-path algorithm was used. Consequently, 
it is recommended to select system parameters that are superior with regard to the execution time. 
For example, indices -11 or -21 can be a good set because these showed a fast execution speed 
and a good efficiency when compared to the other parameter sets.  

4.6 Conclusions 
The research presented here developed a predictive ECC system, integrating the previously 
developed fuel consumption model and the powertrain model, to save fuel while maintaining the 
vehicle speed within a user-specified window. The study demonstrated that the developed 
predictive ECC system can generate an optimal vehicle control plan in real time. In addition, the 
study demonstrated that the heuristic search algorithm finds the optimum plan more quickly with 
a gap in the objective function of less than 1 percent when compared to the shortest path 
algorithm. Specifically, testing of the system showed that the largest fuel savings are achieved 
along hilly terrain sections. In addition, the study demonstrated that the penalty for the deviation 
from the target speed is used to control the degree of the deviation. For the selection of system 
parameters, it is recommended to select those that are superior with regard to the execution time 
because the system parameters do not significantly affect the optimum solution as much as the 
execution time. 

For future research efforts, there is a need to quantify the potential benefits of using the 
predictive ECC system in a systematic manner. It would be especially insightful to compare the 
performance of the predictive ECC system with that of the conventional CC system. 
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5. POTENTIAL BENEFITS OF PREDICTIVE ECO-CRUISE CONTROL SYSTEMS  
This section investigates the potential benefits of the developed predictive ECC system. In the 
previous section, the predictive ECC system was tested on a limited section of highway to 
demonstrate that the system is fully functional and also develop an optimal system parameter set 
that is used to configure the optimization procedures. Consequently, there is a need to evaluate 
the predictive ECC system in a comprehensive manner in order to fully quantify the potential 
benefits of the predictive ECC system.   

The objective of this section is to quantify the potential benefits of the system considering 
the variations in vehicle types and roadway grades when compared to the conventional CC 
system. This section also investigates the potential benefits for the entire United States. Finally, 
the study quantifies the fuel-saving benefits of using the predictive ECC over a New York City to 
Los Angeles route.  

 

5.1 Conventional Cruise Control Operations 
In order to quantify the potential benefit of using the predictive ECC system, this section first 
introduces traditional CC operations that were developed in a previous study [54] on hilly terrain 
roadways.  

In order to characterize the operation of conventional CC systems, a passenger car (a 2005 
Cadillac STS) was driven on a section of Interstate 81 in the state of Virginia while the 
conventional CC was activated. The study section runs from Roanoke, VA (milepost 143) to 
Christiansburg, VA (milepost 118) and is 45 km (28.1 mi) in length. The roadway grade ranges 
from -4 percent to +4 percent. The test vehicle had a 3.6L, V-6 engine with an electronic 5-speed 
automatic overdrive transmission. 

The majority of the test section had a speed limit of 96 km/h (60 mph) or 104 km/h (65 
mph). The driver was directed to cruise at the speed limit of the test section and the data were 
recorded using an OBD II data logger (as illustrated in Figure 32). The CC portion with the target 
speed of 104 km/h was extracted from the collected data in order to capture the variation in the 
control. From the extracted data, a speed variation of 1.5 percent was identified between the 
preset speed and actual cruise speeds. As can be seen in Figure 32, there were oscillations in the 
speed profiles because the closed-loop CC system attempted to maintain the preset target speed.  

Given the analyzed characteristics of the conventional CC system, a simulation module 
for the conventional CC operations was developed in order to compare it with the predictive ECC 
operation. The vehicle powertrain model, which is integrated with the predictive system, is also 
used for the simulation of vehicle movement. The system was designed to control the throttle or 
brake level to maintain its preset target speed within a speed range of 1.5 percent under the given 
topographic information. Specifically, if the current speed of a vehicle is higher than its target 
speed, then the minimal throttle level is applied. On the other hand, if the speed of a vehicle is 
lower than the target speed, then the vehicle is gradually accelerated. The level of acceleration is 
determined based on the difference between the vehicle speed and the target speed. Consequently, 
a greater difference leads to a higher acceleration level. 
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Figure 32: Traditional Cruise Control Operation along I-81 Test Section 

 

5.2 Potential Benefits of Predictive Eco-Cruise Control System 
5.2.1 Potential Benefits of an NYC to LA Route 
For the demonstration of the predictive ECC system on a real roadway, this section investigates 
the possible fuel savings of an artificial trip from New York City (NYC), NY to Los Angeles 
(LA), CA when a driver uses the predictive ECC for the entire trip. The trip starts from the 
intersection of Chambers St. and Broadway in Manhattan, NY and finishes at the intersection of 
West 1st St. and North Broadway in Los Angeles, CA. The entire route, 4464 km (or 2790 mi), is 
mostly highway sections except for a few hundred meters which were required to access from/to 
the origin and the destination. Figure 33 illustrates the map of the NYC to LA route which 
utilizes major U.S. highways such as I-80, I-76, I-70, I-15, and I-10. In order to simplify the 
simulation process, two major assumptions were made during the simulation runs. First, the study 
assumes that there is no interaction with other vehicles during the trip. Thus, the test vehicles use 
the predictive ECC mode for the entire trip. Consequently, this represents the upper bound of the 
potential benefits. Second, the predictive ECC uses the target speed of 104 km/h (65 mph) for the 
entire route in order to simplify the simulation setting.  
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Figure: 33  NYC to LA Route 

Table 19 demonstrates the simulation results of a trip from New York City to Los Angeles. 
Both conventional CC and predictive ECC scenarios were simulated using the MATLAB 
computing environment. Six test vehicles are selected for the study including four passenger cars 
and two light-duty trucks: a 2011 Ford F150, a 2011 Toyota Corolla, a 2009 Toyota Camry, a 
2008 Chevy Tahoe, a 2007 Chevy Malibu, and a 2008 Chevy Malibu Hybrid. The Chevy Tahoe, 
Chevy Malibu, Malibu Hybrid, and Toyota Camry are the same vehicles that were utilized in the 
previous sections. The Ford F150 and the Toyota Corolla were added to the fleet since the F150 
was the best-selling truck in the 2011 U.S. market and Toyota Corolla was the best-selling small-
size sedan in the 2011 U.S. market.  

Table 19: Fuel Savings of the NYC to LA Trip  

 

Conventional CC Predictive ECC 
Fuel 

savings Fuel 
(l) 

Fuel Economy 
(km/l - MPG) 

Fuel 
(l) 

Fuel Economy 
(km/l - MPG) 

Toyota Camry 252.8 17.6 (41.9) 227.2 19.7 (46.7) 10.1% 
Chevy Malibu 271.3 16.5 (39.1) 241.7 18.5 (43.9) 10.9% 
Malibu Hybrid 291.3 15.3 (36.4) 258.5 17.3 (41.0) 11.3% 
Chevy Tahoe 469.3 9.5 (22.6) 387.1 11.5 (27.4) 17.5% 

Ford F150 473.2 9.4 (22.4) 410.7 10.9 (25.8) 13.2% 
Toyota Corolla 232.7 19.2 (45.6) 211.6 21.1 (50.1) 9.1% 

Average 331.8 14.6 (34.7) 289.5 16.5 (39.15) 12.0% 
 
The table demonstrates fuel consumption and fuel economy results of conventional CC 

and predictive ECC operations when the test vehicles travel the NYC to LA route. The target 
speed was set to 104 km/h (65 km/h) with a maximum speed of 112 km/h (70 mph) and a 
minimum speed of 96 km/h (60 mph) for the entire NYC to LA route. The table shows that heavy 
and large vehicles such as the Chevy Tahoe and Ford F150 consume as much as twice the fuel 
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than a Toyota Corolla does for the conventional CC operational trip. It is noted that the fuel 
economy data of the conventional CC operations are higher than the EPA fuel economy data. For 
instance, in case of the 2011 Toyota Camry, the highway fuel economy rating is 33 MPG while 
the fuel economy of the simulation results is 41.9 MPG. It should be noted that the results of the 
conventional CC were simulated with a target speed of 104 km/h (65 mph) without any major 
speed variations. Thus, the simulated fuel economy should be expected to be better than typical 
driving conditions. Furthermore, the current highway EPA fuel economy rating is equivalent to 
47 MPG for the pre-2008 highway EPA fuel economy rating.  

The average fuel savings using the predictive ECC mode is 12 percent compared to the 
conventional CC operated trips. Heavier vehicles such as the Chevy Tahoe and the Ford F150 
save more fuel than the other vehicles when vehicles adopt the predictive ECC system. In 
particular, the Chevy Tahoe and the Ford F150 reduce the fuel consumption by 82 and 63 L of 
gasoline, respectively, while the Toyota Corolla saves 21 L of fuel over the entire NYC to LA 
route. The total fuel savings of the Chevy Tahoe and the Ford F150 over the NYC to LA route are 
equivalent to 17.5 percent and 13.2 percent, respectively, of the total fuel consumption of the 
conventional CC operated trips.  

Table 20 demonstrates the CO2 emission savings associated with a predictive ECC system 
over the NYC to LA trip. The predictive ECC trips significantly decrease the CO2 emissions 
compared to the conventional CC trips. Also, similar to the fuel consumption results, the Chevy 
Tahoe and the Ford F150 produce more GHG emission reductions compared to other vehicles. 
Since the fuel consumption rate is proportional to the CO2 emission rate, the percentages of 
relative CO2 savings are same as those of the fuel savings.   
 

Table 20:  CO2 Savings of the NYC to LA Trip  

 
Conventional CC 

CO2 
Predictive ECC 

CO2 
CO2 Saving 

Toyota Camry 564 507 10% 
Malibu 605 539 11% 

Malibu Hybrid 650 576 11% 
Chevy Tahoe 1047 863 18% 

Ford F150 1055 916 13% 
Toyota Corolla 519 472 9% 

Average 740 646 12% 
 

Table 21 summarizes the simulation results for travel time, average speed, and speed 
variation for both conventional and predictive ECC trips over the NYC to LA route. The results 
demonstrate that the usage of the predictive ECC system reduces the average speed of the trip 
from 103.4 km/h to 97.1 km/h. The average speed of 97.1 km/h is very close to the lower 
boundary speed (96 km/h) of the predictive ECC system since the predictive ECC system tries to 
maintain the lower boundary speed as much as possible in order to minimize fuel consumption. 
Also, the table demonstrates that the lower average speed of the predictive ECC mode increases 
the total travel time for the NYC to LA trip. Specifically, when vehicles utilize the predictive 
ECC mode the average travel time increases from 43 to 46 hours. The increased travel time 
represents a 7-percent increase in travel time. In summary, on average, using the proposed ECC 
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settings saves a vehicle 12 percent in fuel usage but at the same time increases its travel time by 7 
percent.      

Table 21:  Travel Time Increase of the NYC to LA Trip  

 

Conventional CC Predictive ECC 
Travel 
Time 

Increase 
Travel Time 

(Hr) 
Average 

Speed (km/h) 

Standard 
Deviation 

Speed (km/h) 

Travel Time 
(Hr) 

Average 
Speed (km/h) 

Standard 
Deviation 

Speed (km/h) 
Toyota Camry 43.0 103.8 1.1 46.0 97.1 3.1 7.0% 

Malibu 43.0 103.7 1.0 46.2 96.8 2.5 7.4% 
Malibu Hybrid 43.0 103.8 1.0 46.2 96.6 2.3 7.4% 
Chevy Tahoe 42.9 104.0 1.4 46.3 96.5 1.9 7.9% 

Ford F150 43.1 103.5 1.1 45.5 98.2 4.2 5.6% 
Toyota Corolla 43.0 103.7 1.0 45.9 97.3 3.3 6.7% 

Average 43.0 103.8 1.1 46.0 97.1 2.9 7.0% 
 
 The predictive ECC trips reduced the fuel consumption but increased the travel time 
significantly. The main reason for the increased travel times is the lowered average speed of the 
predictive ECC trips. Thus, Table 22 investigated the impacts of the speed deviation weight 
factor to reduce the speed variation from the target speed (104 km/h) during the NYC to LA trip. 
The Toyota Camry was utilized for the study. Three speed weight factors of 0.25, 0.50, and 0.75 
were introduced to evaluate the impact of the weight factors. The table demonstrates that, in 
general, as the weight factor increases, the fuel efficiency decreases and the vehicle speed 
increases. With a weight of 0.25 the travel speed approaches the target speed. The study found 
that using a weight factor significantly decreases speed variations, with positive fuel savings in 
the range of 2.2 to 3.5 percent.    

Table 22:  Impacts of Weight Factor (Toyota Camry) 

 Fuel (l) Fuel Economy 
(km/l - MPG) 

Fuel 
Saving 

Travel 
Time (Hr) 

Average 
Speed (km/h) 

Standard 
Deviation 

Speed (km/h) 

Travel 
Time 

Increase 
Conventional CC 252.8 17.5  43.0 103.8 1.1  
Predictive ECC 227.2 19.5 10.1% 46.0 97.1 3.1 7.0% 

0.50 Speed Factor 246.8 17.9 2.4% 42.9 104.2 0.8 -0.3% 
0.75 Speed Factor 247.2 17.9 2.2% 42.7 104.5 0.8 -0.7% 
0.25 Speed Factor 244.0 18.1 3.5% 43.0 103.7 1.0 0.1% 
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Table 23:  Simulation Results of the NYC to LA Route 

 Fuel (l) Fuel Economy 
(km/l - MPG) 

Fuel 
Savings 

Travel Time 
(Hr) 

Average Speed 
(km/h) 

Standard 
Deviation 

Speed (km/h) 

Travel 
Time 

Increase 
Toyota Camry  

Conventional CC 252.8 17.5(41.9)  43.0 103.8 1.1  
Predictive ECC (+8 and -

8 km/h range) 227.2 19.5(46.7) 10.1% 46.0 97.1 3.1 7.0% 

Conventional CC 
(Target: 97.1 km/h) 239.2 18.5(44.3) 5.4% 45.1 96.9 1.0 4.8% 

Predictive ECC (+8 and -
1.6 km/h range) 239.6 18.4(44.3) 5.2% 43.3 103.0 1.9 0.8% 

Chevy Tahoe  

Conventional CC 469.3 9.4(22.6)  42.9 104.0 1.4  
Predictive ECC (+8 and -

8 km/h range) 387.1 11.4(27.4) 17.5% 46.3 96.5 1.9 7.9% 

Conventional CC 
(Target: 96.5 km/h) 431.4 10.2(24.6) 8.1% 45.9 97.3 1.7 6.9% 

Predictive ECC (+8 and -
1.6 km/h range) 423.7 10.4(25.0) 9.7% 43.5 102.6 1.1 1.4% 

Chevy Malibu        
Conventional CC 271.3 16.3(39.1)  43.0 103.7 1.0  

Predictive ECC (+8 and -
8 km/h range) 241.7 18.3(43.9) 10.9% 46.2 96.8 2.5 7.4% 

Conventional CC 
(Target: 96.8 km/h) 253.8 17.4(41.8) 6.5% 46.3 96.5 1.0 7.7% 

Predictive ECC (+8 and -
1.6 km/h range) 256.4 17.2(41.4) 5.5% 43.4 102.8 1.6 1.0% 

Malibu Hybrid        
Conventional CC 291.3 15.2(36.4)  43.0 103.8 1.0  

Predictive ECC (+8 and -
8 km/h range) 258.5 17.1(41.0) 11.3% 46.2 96.6 2.3 7.4% 

Conventional CC 
(Target: 96.6 km/h) 275.1 16.1(38.5) 5.6% 46.4 96.3 1.0 7.9% 

Predictive ECC (+8 and -
1.6 km/h range) 274.0 16.1(38.7) 6.0% 43.4 102.8 1.5 0.9% 

Ford F150        
Conventional CC 473.2 9.3(22.4)  43.1 103.5 1.1  

Predictive ECC (+8 and -
8 km/h range) 410.7 10.8(25.8) 13.2% 45.5 98.2 4.2 5.6% 

Conventional CC 
(Target: 98.2 km/h) 439.9 10.0(24.1) 7.0% 45.6 97.9 1.0 5.8% 

Predictive ECC (+8 and -
1.6 km/h range) 441.5 10.0(24.0) 6.7% 43.1 103.6 2.6 0.0% 

Toyota Corolla        
Conventional CC 232.7 19.0(45.6)  43.0 103.7 1.0  

Predictive ECC (+8 and -
8 km/h range) 211.6 20.9(50.1) 9.1% 45.9 97.3 3.3 6.7% 

Conventional CC 
(Target: 97.3 km/h) 218.4 20.2(48.5) 6.1% 46.0 97.0 0.9 7.0% 

Predictive ECC (+8 and -
1.6 km/h range) 221.7 19.9(47.8) 4.7% 43.3 103.2 2.1 0.7% 
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 Table 23 demonstrates two simulation results: the impacts of using a lower target speed 
for conventional CC trips, and a different speed range for the predictive ECC trips. The 
simulation results of the conventional CC trips with a lower target speed are compared to the 
results of the predictive ECC with a speed range of ± 8 km/h. For instance, in the case of the 
Chevy Malibu, when the target speed was set to 104 km/h, the predictive ECC trip with a speed 
range of ± 8 km/h reduced the average speed to 96.8 km/h and saves 10.9 percent of total energy 
consumption. Thus, in order to compare to the performance of the predictive ECC trip, the 
conventional CC trip with a target speed of 96.8 km/h was simulated. The table demonstrates that 
the conventional CC trip with the lowered target speed consumed 253.8 L of fuel with an average 
speed of 96.5 km/h and a standard deviation of 1.0 km/h. The result confirms that the predictive 
ECC trips still significantly improve the vehicle fuel efficiency compared to the conventional CC 
trip with the similar average speed. Specifically, the Malibu with predictive ECC system (average 
speed: 96.8 km/h) can save 12.1 L of gasoline compared to the conventional CC trip with a 
similar average speed (96.5 km/h) over the NYC to LA trip. It is interesting to note that, in 
general, as the speed variation increases, the fuel efficiency of the trip decreases. However, the 
table demonstrates that the predictive ECC trips experience higher speed fluctuations compared 
to the conventional CC trips but the predictive ECC trips also use significantly less fuel during 
the NYC to LA trip.    
 The study also examines the impacts of using a different speed range for the predictive 
ECC trips as demonstrated in Table 23. In particular, the predictive ECC mode with +8 km/h and 
-1.6 km/h is investigated in order to increase the average speed of the NYC to LA trip. The table 
shows that the predictive ECC trips with the new speed boundary considerably increase the 
average speeds of the trips, which are very similar to those of the conventional CC trips. For 
example, when a Chevy Malibu utilized the predictive ECC system with a speed range of +8 and 
-1.6 km/h, the vehicle saves 5.5 percent of fuel (or 15 L) with a 1-percent increase in the total 
travel time compared to the conventional CC trip. Similarly, the other five test vehicles saved fuel 
consumption in the range of 4.7 to 6.7 percent without significantly increasing the travel time 
(between 0.0 and 1.4 percent increase) when an ECC system with a +8 and -1.6 km/h speed range 
were utilized. The simulation results demonstrate that the introduction of a different speed range 
scheme can significantly improve the performance of the system, enhancing vehicle fuel 
efficiency without increasing the total travel time.  
5.2.2 Potential Benefits of a section of Interstate 81 

This section investigates the potential benefits on a hilly roadway section. A trip was simulated 
along a section of Interstate 81 in the state of Virginia that was described in the earlier section.  
The study section contains the maximum grade of 4 percent and the maximum downhill grade of 
5 percent with an average grade of 0.6 percent. For the test, five vehicles were selected from the 
top 10 best-selling vehicles in the 2010 U.S. market, and a mini-van was added to this group in 
order to represent different types of vehicles with regard to engine size. The vehicles used in the 
study were: Ford F150, Toyota Camry, Honda Accord, Toyota Corolla, Honda CR-V, and Toyota 
Sienna. Given the specifications of each test vehicle, the fuel consumption and powertrain models 
were calibrated. 

Because the majority of the test section had a speed limit of 104 km/h (65 mph), the target 
speed of the predictive ECC system was set to 104 km/h with the speed range of ± 8 km/h. The 
study also investigates the predictive ECC mode with +8 km/h and -1.6 km/h. The simulation 
results were compared with regard to fuel efficiency as described in Table 24. 
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The test results demonstrated that the fuel savings resulting from the use of the predictive 
ECC system are significant when compared to the use of the conventional system. Specifically, 
the average fuel efficiency improvement of the predictive ECC system with the speed range of ± 
8 km/h was 17 percent. However, the table also demonstrates that the usage of the predictive 
ECC system with the speed range of ± 8 km/h reduces the average speed of the trip from 103.8 
km/h to 97.7 km/h on average, which is a speed reduction of 5.8 percent. The average speed of 
97.7 km/h is very close to the lower boundary speed (96 km/h) of the predictive ECC system.  

Similar to the analysis of the NYC to LA trip, the study also examined the effectiveness 
of the predictive ECC mode with +8 km/h and -1.6 km/h. The table shows when test vehicles 
utilized the predictive ECC system with a speed range of +8 and -1.6 km/h, the fuel efficiency 
was increased by 9.0 percent on average with less than a 1-percent speed changes compared to 
the conventional CC trip. In particular, all six test vehicles saved fuel consumption in the range of 
6.1 to 15.1 percent without significantly increasing the travel time. The Ford F150 achieved the 
most fuel saving: the fuel efficiency increased by 15.1 percent. On the other hand, the Corolla 
was found to be the vehicle with the least fuel saving among the test vehicles. The study found 
that heavy vehicles (e.g. Ford F150) can generally achieve more fuel savings when compared to 
light vehicles (e.g. Toyota Corolla). Similar to the NYC to LA trip case, the simulation results 
demonstrate that the ECC system with a +8 and -1.6 km/h speed range can significantly improve 
the performance of the system without reducing the vehicle average speed.  
 

Table 24:  I-81 Test Results 

Vehicle 

Conventional CC Predictive ECC 
(± 8 km/h) 

Predictive ECC 
( +8&-1.6 km/h) Fuel Saving (%) Speed Reduction 

(%) 
Fuel 

Efficiency  
Km/l 

(MPG) 

Average 
Speed 
(km/h) 

Fuel 
Efficiency  

Km/l 
(MPG) 

Average 
Speed 
(km/h) 

Fuel 
Efficiency  

Km/l 
(MPG) 

Average 
Speed 
(km/h) 

Pred. 
ECC (± 8 

km/h) 

Pred. 
ECC (+8 

&-1.6 
km/h) 

Pred. 
ECC (± 8 

km/h) 

Pred. 
ECC (+8 

&-1.6 
km/h) 

Camry 15.3(36.3) 103.6 17.5(41.6) 98.5 16.4(38.9) 103.8 14.5% 7.0% 4.9% -0.2% 
Corolla 15.9(37.9) 103.5 18.0(42.7) 98.3 16.9(40.2) 103.7 12.8% 6.1% 5.1% -0.1% 
Accord 15.4(36.7 103.7 17.8(42.2) 97.6 16.7(39.7) 103.3 15.1% 8.3% 5.9% 0.3% 
CRV 12.0(28.5) 103.7 14.0(33.2) 97.0 13.0(30.8) 102.9 16.5% 8.0% 6.4% 0.7% 
F150 6.7(16.0) 104.3 8.5(20.2) 97.6 7.8(18.4) 103.3 25.9% 15.1% 6.5% 0.9% 

Sienna 11.1(26.3) 103.7 13.0(31.0) 97.5 12.1(28.7) 103.3 17.8% 9.3% 6.0% 0.3% 
Average 12.7(30.3) 103.8 14.8(35.1) 97.7 13.8(32.8) 103.4 17.1% 9.0% 5.8% 0.3% 

 

5.3 Estimation of Potential Annual Benefits across the United State 
This section investigates potential annual benefits across the United State assuming all vehicles 
use the predictive ECC system with a speed range of +8 and -1.6 km/h. The accurate 
quantification of the potential benefits of an area of interest requires extensive efforts to collect 
relevant data sets such as vehicle fleet composition, traffic condition by the time of day, and 
vehicle-miles traveled (VMT) by road functional class. The benefit depends on the quality of the 
collected data sets. For example, suppose that the distribution of roadway grades is the single data 
set available in the area. The distribution is different from detailed roadway profiles. Designing 
synthetic roadway profiles, which follow the distribution, is one of the ways to represent the 
terrain of the area. 
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Given that the available data resources listed above were very limited, the potential annual 
benefits across the United States were roughly estimated. The objective of this benefit estimation 
was to provide insights into the potential fuel savings and the effect that terrains have on the 
savings. The procedures to calculate the potential benefits can be briefly described in a few steps. 
First, virtual roadway sections were designed and constructed so that they can represent different 
terrains. Specifically, three sets of roadway profiles were created based on the previously 
developed terrain scenarios. A trip was simulated along the constructed profiles once with the 
conventional system and once with the predictive system by using the six test vehicles that were 
used in the demonstration. The target speed of the simulation was varied from 72 km/h (45 mph) 
to 120 km/h (75 mph) in order to cover typical operations in urban and rural roadways. Based on 
national transportation statistics [55], the composite vehicle fuel consumption rates were 
calculated using the simulated fuel consumption rates of the test vehicles. Finally, the total fuel 
consumption was calculated by multiplying the fuel consumption rates and the U.S. VMT 
statistics [55].  

5.3.1 Scenario and Roadway Profile Development 
Three topography scenarios were created in order to provide insights into the effect of different 
terrains on overall fuel savings. The distribution of roadway grades for the three scenarios is 
summarized in Table 25. Scenarios 1, 2, and 3 were designed to represent three types of terrains 
in the United States. Specifically, Scenario-3 was generated using the roadway terrains in the 
states of Washington and Oregon and, thus, these numbers represent a hillier terrain compared to 
other states in the United States. 

Table 25: Proposed Topography Scenarios 

Grade 
Relative Frequency (%) 

Scenario-1 Scenario-2 Scenario-3 
0% 60% 45% 30% 
1% 15% 20% 25% 
2% 12% 17% 20% 
3% 10% 12% 15% 
4% 2% 3% 5% 
5% 1% 2% 3% 
6% 0% 1% 2% 
Sum 100% 100% 100% 

 
Given the proposed distributions, a total of 10 random realizations of 100-km roadway 

profiles were created for each scenario in order to quantify the effects of different combinations 
of roadway grades. In creating a profile, a sinusoidal wave for each grade bin (from 0 to 6 percent) 
was created, which was used to construct the 16-km synthetic roadway profiles. The profile was 
then created using a set of 100 random numbers to align a total of 100 1-km sinusoidal waves 
based on the desired distribution for each scenario. The profile for Scenario-3 consists of more 
high-grade sinusoidal waves when compared to the other profiles.  
5.3.2 Simulation Design and Results 

As mentioned earlier, the target speed was varied from 72 km/h (45 mph) to up to 120 km/h (75 
mph) in 8 km/h increments because it was assumed that those target speeds cover the operations 
on four roadway types: urban interstates, urban arterials, rural interstates, and rural arterials. 
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These four roadway types were selected because they are the functional classes employed in the 
national transportation statistics. For each target speed, each of the vehicles was then simulated 
on the 10 roadway profiles for each scenario, considering when an ECC system with a +8 and -
1.6 km/h speed range is utilized. 

In order to take the entire U.S. vehicle fleet composition into account in the potential 
benefit estimation, the simulated fuel consumption rates of the six test vehicles were mixed 
together based on the national transportation statistics for 2008 [55]. Specifically, a number of 
passenger cars and other two-axle 4-tire vehicles were used in the calculation of fleet composition. 
(Note that vehicles that have more than two axles were not considered in the calculation.) Given 
that 137,079,843 passenger cars and 101,234,849 other two-axle vehicles were registered in 2008, 
passenger cars and other vehicles account for 57.5 and 42.5 percent, respectively, of the two-axle 
vehicles registered in the United States. Consequently, an assumption was made that the 
passenger cars (which include Toyota Camry, Toyota Corolla, and Honda Accord) all combined 
account for 57.5 percent, with each passenger car accounting for 19.2 percent of the total fleet. 
Similarly, Honda CR-V, Toyota Sienna, and Ford F150 were each assumed to account for 14.2 
percent of the total fleet. 

The mean fuel and MPG estimates are summarized in Table 26. The variation in the fuel 
use due to the 10 100-km roadway profiles was not significant. All the coefficients of variation 
values were less than 1 percent when the predictive system was engaged, and 90 percent of the 
values were less than 2 percent when the conventional system was activated. The simulation 
results indicated that the fuel consumption generally increased when the vehicle traveled in hillier 
terrains, such as in Scenario-3. For instance, the fuel consumption of Scenario-3 for the target 
speed of 80 km/h was 0.3 liters greater than that of Scenario-1 when the conventional CC system 
was used. As the target speed was varied, the fuel consumption levels changed. Specifically, the 
vehicle showed the best performance with regard to fuel consumption at the target speed of 72 
km/h.  
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Table 26:  Simulation Results on 100-km Roadway Profiles 

Scenario Speed (km/h) 

Conventional CC Predictive ECC  
(+8 and -1.6 km/h range) 

Fuel savings Fuel 
l/100 km 

(gal/100 km) 

Fuel Efficiency 
km/l (MPG) 

Fuel 
l/100 km 

(gal/100 km) 

Fuel Efficiency 
km/l (MPG) 

1 

72 5.0 (1.3) 21.2 (50.4) 4.9 (1.3) 21.4 (50.8) 1.94% 
80 5.1 (1.3) 20.8 (49.4) 5.1 (1.3) 20.8 (49.3) 0.66% 
88 5.4 (1.4) 19.7 (46.8) 5.3 (1.4) 19.9 (47.2) 2.63% 
96 6.0 (1.6) 18.0 (42.8) 5.7 (1.5) 18.6 (44.2) 4.41% 
104 6.6 (1.7) 16.2 (38.5) 6.2 (1.6) 17.2 (40.9) 6.81% 
112 7.4 (1.9) 14.7 (34.9) 6.9 (1.8) 15.7 (37.3) 7.16% 
120 8.3 (2.2) 13.2 (31.3) 7.7 (2.0) 14.2 (33.6) 7.58% 

2 

72 5.1 (1.3) 20.7 (49.1) 5.0 (1.3) 20.8 (49.3) 1.64% 
80 5.3 (1.4) 20.2 (48.0) 5.2 (1.4) 20.3 (48.1) 0.71% 
88 5.6 (1.5) 19.1 (45.4) 5.4 (1.4) 19.4 (46.0) 2.66% 
96 6.1 (1.6) 17.6 (41.7) 5.8 (1.5) 18.2 (43.2) 4.27% 
104 6.8 (1.8) 15.9 (37.7) 6.3 (1.7) 16.9 (40.1) 6.68% 
112 7.5 (2.0) 14.5 (34.4) 7.0 (1.8) 15.4 (36.6) 6.88% 
120 8.4 (2.2) 13.0 (30.9) 7.8 (2.1) 13.9 (33.0) 7.09% 

3 

72 5.3 (1.4) 20.1 (47.7) 5.2 (1.4) 20.1 (47.6) 1.35% 
80 5.4 (1.4) 19.5 (46.3) 5.4 (1.4) 19.7 (46.7) 0.87% 
88 5.8 (1.5) 18.5 (43.8) 5.6 (1.5) 18.8 (44.7) 3.26% 
96 6.3 (1.7) 17.0 (40.4) 6.0 (1.6) 17.7 (42.1) 4.98% 
104 7.0 (1.8) 15.5 (36.7) 6.5 (1.7) 16.5 (39.2) 7.03% 
112 7.7 (2.0) 14.1 (33.5) 7.1 (1.9) 15.1 (35.9) 7.18% 
120 8.6 (2.3) 12.8 (30.3) 8.0 (2.1) 13.6 (32.3) 7.10% 

 
5.3.3 Calculations of Potential Annual Benefits 

In order to quantify the potential annual benefits, the simulated fuel consumption rates 
(gallons/mile) were multiplied by the 2008 annual VMT by functional class [55]. Since a CC 
system cannot be engaged continuously, some assumptions were made; as follows: 

 All rural interstate VMT are eligible for CC use because they were assumed to be 
congestion-free. 

 The uncongested portion of the urban interstate VMT is eligible for CC use. 
Specifically, 45 percent of trips were considered to be uncongested trips based on the 
2009 Mobility Report [56]. 

 50 percent of rural arterial VMT are eligible because it was assumed that 50 percent of 
rural arterials perform the function of interstate highways and they are congestion-free. 

 22.5 percent of urban arterial VMT are eligible because it was assumed that 50 percent 
of urban arterials perform the function of interstate highways and 45 percent of them 
are congestion-free. 



Rakha, Ahn, and Park  85 

Given these assumptions, the CC-eligible VMT were calculated and summarized in Table 
27 along with the total U.S. VMT. 

Table 27:  U.S. Total VMT (2008) and Cruise Control Eligible VMT 

Classification 
Urban VMT (million miles) Rural VMT (million miles) 

Total VMT Cruise Control 
Eligible VMT Total VMT Cruise Control 

Eligible VMT 
Interstate 476,091 214,241 243,290 243,290 

Other arterials 1,062,226 239,001 374,273 187,137 
Collector 175,389 - 241,158 - 

Local 269,385 - 131,697 - 
Total 1,983,091 453,242 990,418 430,427 

 
The total CC-eligible VMT were then stratified by target speeds, as summarized in Table 

28. The distribution of the target speeds was determined based on the distribution of the speed 
limits of the 50 states [57]. 

Table 28:  Distribution of Cruise Control Eligible VMT by Target Speeds 
Target 
Speed 
(km/h) 

Urban Interstate Urban Arterial Rural  Interstate Rural Arterial 

% VMT 
(mile) % VMT 

(mile) % VMT 
(mile) % VMT 

(mile) 
72 0% 0 2% 4780 0% 0 2% 3743 
80 2% 4285 8% 19120 0% 0 8% 14971 
88 24% 51418 50% 119500 0% 0 50% 93568 
96 16% 34279 4% 9560 2% 4866 4% 7485 
104 48% 102836 30% 71700 32% 77853 30% 56141 
112 10% 21424 6% 14340 42% 102182 6% 11228 
120 0% 0 0% 0 24% 58390 0% 0 

 
Finally, the fuel consumption was calculated by multiplying the fuel consumption rates in 

gallons per mile by the total VMT for each of the target speeds. In addition, the fuel savings were 
estimated in gallons and in dollars. For the calculation, the gas price was assumed to be $3.00 per 
gallon. The potential annual benefits were demonstrated to be significant, as seen in Table 29. 
Specifically, the average potential fuel savings over the three scenarios were projected to be 1.04 
billion gallons (or 33.5 million barrel) per year, which is equivalent to $3.12 billion saving per 
year. The results showed that the fuel savings were greater if the predictive ECC system is used 
in areas with hillier terrain (e.g. scenario-3) although the differences were within 0.5 percent. In 
addition, it would result in 9.20 million fewer metric tons of CO2 released into the atmosphere, 
assuming that 1 L of fuel produces 2.33 kg of CO2. 
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Table 29:  Summary of Fuel Consumption and Fuel Saving 

Classification 
Total Fuel (million gallons) Fuel Savings 
Conventional 

Cruise 
Predictive 

Cruise 
million  
gallons 

million  
dollars 

Sc
en

ar
io

-1
 Urban Interstate 5,276 5,040 236 (4.5%) 707 

Urban Arterial 5,536 5,369 167 (3.0%) 502 
Rural Interstate 6,929 6,488 441 (6.4%) 1,322 
Rural Arterial 4,335 4,204 131 (3.0%) 393 

Total 22,076 21,101 975 (4.4%) 2,924 

Sc
en

ar
io

-2
 Urban Interstate 5,397 5,151 246 (4.6%) 738 

Urban Arterial 5,677 5,494 183 (3.2%) 549 
Rural Interstate 7,046 6,615 431 (6.1%) 1,293 
Rural Arterial 4,445 4,302 143 (3.2%) 430 

Total 22,566 21,562 1,004 (4.4%) 3,011 

Sc
en

ar
io

-3
 Urban Interstate 5,556 5,275 281 (5.1%) 844 

Urban Arterial 5,858 5,636 222 (3.8%) 666 
Rural Interstate 7,218 6,757 461 (6.4%) 1,382 
Rural Arterial 4,587 4,413 174 (3.8%) 522 

Total 23,219 22,081 1,138 (4.9%) 3,415 
 

5.4 Conclusions 
The study quantifies the potential benefits of the predictive ECC system relative to a conventional 
CC system considering various roadway grades. The study examined the impacts of using the 
predictive ECC system over an NYC to LA route and found that the system can save fuel 
consumption in the range of 4.7 to 6.7 percent without significantly increasing the travel time 
considering an ECC system with a +8 and -1.6 km/h speed range. The simulation results 
demonstrate that the introduction of a different speed range scheme can significantly improve the 
performance of the system, enhancing the vehicle fuel efficiency but with a potential increase in 
the total travel time. Similarly, the study also examined the effectiveness of the predictive ECC 
mode on a hilly rural interstate highway section, which contains the maximum grade of 4 percent 
and the maximum downhill grade of 5 percent. The study found when test vehicles utilized the 
predictive ECC system with a speed range of +8 and -1.6 km/h, the fuel efficiency was increased 
by 9.0 percent on average with less than a 1-percent speed changes compared to the conventional 
CC trip.  

The study also found that heavy vehicles (e.g. Ford F150) can generally achieve more fuel 
savings when compared to light vehicles (e.g. Toyota Corolla) and the benefits of the predictive 
ECC system are maximized when vehicles travel on hilly terrains. In addition, the predictive ECC 
system saves more fuel when the test vehicles are operated at higher target speeds rather than 
lower target speeds. However, the test vehicles showed the best fuel efficiencies at the target 
speed of 72 km/h.  

The simulation study found that the U.S. could save approximately 1.04 billion gallons (or 
33.5 million barrel) per year, when the predictive ECC system is applied to all vehicles in the 
United States. The average potential cost savings were projected to be $3.12 billion per year 
when assuming that the price of gasoline is $3.0 per gallon. In addition, the ECC system can 
result in 9.2 million fewer metric tons of CO2 released into the atmosphere, assuming that 1 liter 
of fuel produces 2.33 kg of CO2.  
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6. CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER RESEARCH  
6.1 Summary of the Research 
The research presented in this report builds a framework for developing a predictive ECC system 
that can control vehicle speed within a pre-set speed range to minimize vehicle fuel consumption 
and CO2 emission levels using roadway topographic information. The study includes five basic 
tasks: (a) develop a vehicle powertrain model that can be easily implemented within eco-driving 
tools; (b) develop a simple fuel consumption model that uses instantaneous vehicle power; (c) 
evaluate manual driving and conventional CC driving using field-collected data; (d) develop a 
predictive ECC system that uses roadway grade information with the developed vehicle 
powertrain and fuel consumption models; and (e) evaluate the potential benefits of using the 
predictive ECC system. Key input variables to the predictive ECC system include roadway grade 
information obtained from a high resolution digital map, a target speed, and a maximum and 
minimum speed range. The results of this study support the following conclusions: 

a. The research developed a simple vehicle powertrain model that can be integrated with car-
following models within microscopic traffic simulation software. This simple model can 
be calibrated using engine and powertrain parameters that are publicly available without 
the need for field data collection. The model uses the driver throttle-level input to 
compute the engine speed; model the transmission system (manual and automatic); and 
compute the vehicle’s acceleration, speed, and position. The model was demonstrated to 
produce vehicle acceleration, speed, position, and fuel consumption estimates that are 
consistent with field observations.  

b. The study develops two simple fuel consumption models that do not result in a bang-bang 
control system and that can be calibrated easily using publicly available data. Specifically, 
the models can be calibrated using the EPA city and highway fuel economy ratings that 
are publicly available. The new fuel consumption model is entitled the Virginia Tech 
Comprehensive Power-based Fuel Consumption Model (VT-CPFM). Instantaneous 
vehicle power is used as a single input variable to estimate a vehicle fuel consumption 
level. The models are demonstrated to estimate vehicle fuel consumption rates consistent 
with in-field measurements (coefficient of determination above 0.90). In addition, a 
procedure for estimating CO2 emissions is developed, producing emission estimates that 
are highly correlated with field measurements (greater than 0.98).  

c. The study validated the VT-CPFMs by comparing field-measured fuel consumption rates 
with model estimates. The results demonstrated that the VT-CPFM model calibrated using 
the city and highway fuel economy ratings provide reliable fuel consumption estimates. 
More importantly, both estimates and measurements produce identical responses to engine 
load levels. The proposed model can be integrated within a traffic simulation framework 
to quantify the energy and environmental impacts of traffic operational projects. 

d. The study compared conventional CC with manual driving with regard to fuel economy 
using field tests. The study found that the CC driving improves fuel efficiency as 
compared to manual driving although there were some variations in the differences 
depending on the driver, the vehicle, and the direction of travel. Based on the test results, 
CC driving resulted in a fuel economy enhancement ranging from 0.2% to 10.5% when 
compared to manual driving. The average fuel economy enhancement across all the field 
tests was 3.3 percent; however, this was not statistically significant.  

e. This study developed a predictive ECC system that controls vehicle speed within a pre-set 
speed range to minimize the vehicle’s fuel consumption. The predictive ECC system 
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consists of three components: a fuel consumption module, a powertrain module, and an 
optimization algorithm. The performance of the system is tested by simulating a vehicle 
trip on a section of Interstate 81 in the state of Virginia. The results demonstrate fuel 
savings of up to 15 percent with execution times within real time. The simulation made 
assumptions for an easier interpretation of the system performance, including: no errors in 
the vehicle control, topographical information feeding, and no interference by other 
vehicles. 

f. The study also examined the impacts of using the predictive ECC system over a New 
York City to Los Angeles route and found that the system can save fuel consumption in 
the range of 4.7 to 6.7 percent without increasing the total travel time (considering a speed 
range of  +8 and -1.6 km/h). The simulation results demonstrate that the introduction of a 
different speed range scheme during the predictive ECC trips can significantly improve 
the performance of the system, improving vehicle fuel efficiency without increasing the 
total travel time. 

g. The study also found that heavy vehicles (e.g. Ford F150) can generally achieve more fuel 
savings when compared to light vehicles (e.g. Toyota Corolla) with the predictive ECC 
system and the benefits of the predictive ECC system are maximized when vehicles travel 
on hilly terrains. In addition, the predictive ECC system saves more fuel when the test 
vehicles are operated at higher target speeds rather than lower target speeds.   

h. The simulation study found if a predictive ECC system is applied to all vehicles in the 
United States, the average potential fuel savings were projected to be 1.04 billion gallons 
per year, which is equivalent to $3.12 billion per year when assuming that the price of 
gasoline is $3.00 per gallon. In addition, the ECC system can result in 9.2 million fewer 
metric tons of CO2 released into the atmosphere, assuming that 1 liter of fuel produces 
2.33 kg of CO2.  

6.2 Further Research 
The following areas of research should be pursued to expand the applicability of the eco-driving 
modeling framework developed in the context of predictive ECC system: 

a. The developed predictive ECC system assumes that there is no interaction with other 
vehicles. Further research should consider the interactions with other vehicles to quantify 
the potential benefits of the system. 

b. The study should be expanded to investigate the potential nationwide benefits of using the 
proposed system that can interact with other vehicles by facility type, speed limit, 
congestion levels, and location type (urban/rural area). The categorized fuel savings data 
will be generalized in order to estimate the potential nationwide benefits. The reduced 
GHG emissions will be converted to cost savings and will be combined with fuel cost 
savings in order to estimate the total nationwide benefits of the eco-driving system. 

c. Future study should design and develop the optimum user interface to convey the 
information provided from the predictive ECC system to the driver. The research should 
(1) identify system functionality and the user interface, (2) utilize human factors and 
driving safety design principles to identify candidate feedback interfaces, (3) develop 
prototype interfaces for on-road testing and design experiments, and (4) conduct on-road 
experiments to evaluate the performance of drivers with the algorithm and prototype 
interfaces in order to develop the user interface.  
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d. After completing the development of the user interface, the hardware should be developed 
and implemented into test vehicles. The field test will be performed to identify driving 
behavior and to study the adaptability of the predictive ECC system. 
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