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EXECUTIVE SUMMARY 

 
Pavement performance models describe the deterioration behavior of pavements. They are 
essential in a pavement management system if the goal is to make more objective, reliable, 
and cost-effective decisions regarding the timing and nature of pavement maintenance 
activities. The general objective of Task 2 was to develop performance models for a variety 
of pavement families and pavement preservation treatments used by the Missouri 
Department of Transportation (MoDOT). 

Using the data collected in Task 1, linear least-squares regression techniques were 
used to generate deterministic models that predict the International Roughness Index (IRI), 
the pavement condition measure most widely used today. Family IRI-prediction models were 
developed for full-depth asphalt (FDA), concrete (PCC), and composite (Comp) pavements. 
Treatment IRI-prediction models were developed for 1-in. overlays on FDA pavements, chip 
seals on FDA pavements, and 3.75-in. overlays on PCC pavement.  

Predictor variables consistently shown to be highly significant in predicting IRI for 
both FDA and Comp pavements were initial IRI (IRIo or the IRI value right after treatment) 
and pavement surface age (SA). The majority of the PCC pavement sections selected were so 
old that IRIo could not be determined (or estimated with any confidence), therefore SA was 
the dominant predictor variable in the PCC pavement family model. Terminal IRI (IRIt which 
was the IRI just prior to a treatment) was also a significant predictor of IRI and was directly or 
indirectly included in the FDA and Comp family and treatment models. Additional significant 
IRI predictors (depending on the model) were the climate parameters DT32 (days/year that 
air temperature was below freezing), FT (freeze/thaw cycles per year), and DP01 (days/year 
that precipitation was at least 0.1–in.), subgrade soil parameters P200 (percent passing the 
#200 sieve) and Pclay (percent clay-size soil), and LstTrtThk (the last treatment thickness).  

Although the literature indicated that traffic is a significant factor affecting treatment 
service life, neither Annual Average Daily Traffic (AADT) nor Annual Average Daily Truck 
Traffic (AADTT), both measured by direction of travel (one-way), showed significance as 
predictors on their own. Even accumulated traffic, the product of SA and AADT (or AADTT), 
seldom showed significance and/or possessed the expected sign on the regression 
coefficient. The theory is that a compounding of inaccuracies occurs in the traffic data due to 
a series of assumptions by MoDOT in the assignment of traffic volume to pavement sections, 
and possibly  subsequent decisions by the Task 1 researchers regarding traffic volume 
fluctuation over time. Another reason that could explain why increasing traffic did not show 
up significantly in the models as a cause for increasing IRI could be that some variables that 
reduce deterioration are associated with traffic level and actually increase along with 
increasing traffic: thickness, quality of materials and construction, and maintenance quality; 
an increase in these variables will counteract to a certain degree the deteriorating action of 
increasing traffic. 
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1 INTRODUCTION 

 
Pavement performance models describe the deterioration behavior of pavements. They are 
essential in a pavement management system (PMS) if the goal is to make more objective, 
reliable, and cost-effective decisions regarding the timing and nature of pavement maintenance 
activities. 

The purpose of a performance model is to predict pavement condition, primarily as a 
function of time. Models for pavement families (groups of pavements with similar 
characteristics and conditions) and preservation treatments are relied upon as tools in 
pavement management decision-making. For this reason, development of reliable pavement 
performance models is of the utmost importance in this project. 

1.1 Objectives 

The primary objectives of Task 2 were to: 

 Perform a literature review to determine how transportation agencies or other 
researchers have approached pavement performance modeling 

 Collaborate with the Missouri Department of Transportation (MoDOT) to obtain 
information needed to understand MoDOT’s experience with performance modeling 
and expectations for any newly developed models 

 Compile data collected by the Task 1 team into a usable format and generate pavement 
performance models and preservation treatment models 

1.2 Scope 

The Pavement Preservation Research program study scope was limited to “minor” roads. It was 
somewhat difficult to determine exactly what the definition of “minor” roads is in terms of 
AADT. This is an important distinction because of the way the pavement families were 
determined for model-building. For this study, the cut-off of less than 3500 AADT was used. 

Selection of roadway segments was conducted in close coordination with Task 2, which 
developed pavement family and treatment models. Originally, roads were classified as to 
“Design Pavement Name” because it is the best system for delineating design features: traffic 
levels, internal drainage, widened travelways, and type of shoulders. However, this effort was 
abandoned because of so many missing records in SS Pavement. Ultimately, pavement families 
were comprised of two-lane, undivided highways, and further defined by pavement type (full-
depth asphalt, concrete, or composite) and traffic level (for the full-depth asphalt family, there 
were four traffic levels based on AADT: less than 400, 400-750, 750-1700, 1700-3500). “Full-
depth” was defined as an asphalt pavement with no concrete in the cross-section. Very few 
“Full-Depth” asphalt pavements were truly full-depth, but actually had some unbound granular 
base beneath the asphalt. 
 Ten candidate full-depth asphalt routes for data collection were identified for each of 
the four traffic levels using ArcMap with SS Pavement data. At the recommendation of the 
MoDOT Research leadership, for most pavement families, all full-depth routes were selected 
from the Central District to serve as a model of how the rest of the state pavement system 
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should eventually be modeled. Routes for each traffic level were selected from across the 
district, usually three north of the Missouri River and seven south of the Missouri River, to 
provide some geographic, subgrade, and climate variability. 
 Additionally, 13 composite segments at up to 12,000 AADT were evaluated over a larger 
geographic area to garner a sufficient number of segments. There were no concrete-only 
segments that satisfied the above requirements for a separate dataset. Ultimately, routes in 24 
counties across six districts (Central, NE, NW, Kansas City, SE, and SW) were sampled to cover 
the three different pavement types. 

After the potential routes were identified, they were screened with ARAN Viewer to 
delineate continuous and homogenous segments of at least 1 mile in length. Homogeneity was 
defined as having no change in surface type (e.g. overlays or chip seals, bridges, etc.) and no 
change in speed (speed limits, stop signs, etc.). This step resulted in a total of 40 full-depth 
asphalt segments and 13 composite pavement segments. Because each route segment was 
two-lane, undivided, the actual number of “traveled lane” segments for modeling purposes was 
80 full-depth (20 per traffic level) and 26 composite (and, thus, concrete prior to first asphalt 
overlay) routes. 
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2 LITERATURE REVIEW 

 
The purpose of the literature review was to determine how transportation agencies and other 
researchers have approached pavement performance modeling. Identification of the pavement 
condition parameters (the model response or dependent variable) and model main effects (the 
predictor or independent variables) that are commonly utilized in pavement performance 
modeling, and the various model forms, was a necessary first step in formulating a strategy for 
developing MoDOT’s models based on the types of data available. 

2.1 AASHTO Pavement Management Manual  

The American Association of State Highway and Transportation Officials (AASHTO) published 
the second edition of its guide to pavement management in 2012. A 2011 draft of this 
document (Zimmerman et al. 2011) was the first document reviewed for guidance on Task 2 
work within the MoDOT Pavement Preservation Project. Chapter 5 of the AASHTO guide 
describes the types of data required for modeling, different approaches to modeling such as the 
type of pavement condition measures to be predicted, the various model types (probabilistic, 
Bayesian, deterministic, or expert-based) and forms (e.g. linear, power, logarithmic, sigmoid), 
the various applications of performance models (e.g. pavement family models, preservation 
treatment models, or remaining service life), and the statistical requirements for any model 
that is considered. 
 The Bayesian and expert-based model types rely to some degree on subjective data 
which may be appropriate when empirical data is not readily available. That is not the case for 
this project task. The probabilistic approach does not predict a single pavement condition value 
but gives a likelihood or probability that a pavement will be in one of several condition states. 
This feature is advantageous in that it does account for pavement variability, but the model 
does not lend itself easily to implementation into pavement management software. The 
deterministic model is the most common model type for pavement performance modeling and 
is generated using regression analysis procedures. 

2.2 MoDOT 

Donahue (2002) performed pavement performance modeling for various pavement families 
based on pavement type and functional classification. The linear model form was utilized with 
surface age (X1) as the only predictor variable (Eq. 1). However, several pavement condition 
measures were used as the response variable: IRI, condition score, ride score, present 
serviceability rating (PSR), and specific distress indices such as rut depth and cracking index. 

 
      (  ) (Eq. 1) 
 



 

11 

 

2.3 Other State DOTs 

2.3.1 Pennsylvania DOT 

Wolters and Zimmerman (2010) developed a recommended pavement performance modeling 
option for the Pennsylvania Department of Transportation (PennDOT). Their investigation 
included a 2009 survey of state agencies regarding current modeling practice, and summarized 
some of the key state survey results as case studies in developing PennDOT’s recommended 
modeling option. Although the concept of individual roadway section models was discussed, 
the recommended modeling option was for creating an overall condition index for each 
pavement family in the PennDOT system, which would result in 37 models. The recommended 
model type was deterministic, but no specific model of any form was actually developed. The 
work of data collection and model building was left to PennDOT to pursue.  

2.3.2 Mississippi DOT 

George (2000) authored a report about pavement family prediction models used by the 
Mississippi DOT’s pavement management system (PMS). Model types utilized were mostly 
deterministic but some Bayesian modeling was generated. Deterministic models were of the 
general power form (Eq. 2). Predictor variables of significance were age, traffic, modified 
structural number/slab thickness, and overlay thickness. Predicted pavement condition 
parameters included IRI, a composite condition index (PCR or pavement condition rating), and 
various distress indices such as alligator cracking in asphalt pavements and punch-outs in 
continuously reinforced concrete pavements. 

 
      (  )

 (  )
  (Eq. 2) 

 

Of interest in the George report was one of the predicted asphalt or composite 
pavement distresses: the 85th percentile rutting distress. A primary maintenance trigger can 
simply be user discomfort (quality of the ride). The driving public does not usually wait until an 
entire stretch of roadway is bad before complaining; just a few deep ruts or other forms of 
distress in a roadway can trigger phone calls to customer service. Modeling deterioration of the 
poorest sections of a roadway could be beneficial to maintenance planners. 

2.3.3 Louisiana DOT 

Khattak et al. (2000) issued a report addressing performance models used in Louisiana’s PMS. 
Family and preservation treatment performance models were developed. Families were based 
on pavement type and functional classification. Preservation treatments modeled were chip 
seals, 2-in. overlays, and micro-surfacing. Model forms evaluated were polynomial, power, 
exponential, and logarithmic, with the general power form shown in Eq. 2 ultimately being 
utilized but the only predictor variable was surface age. Pavement condition measures to be 
predicted were IRI, rutting, various forms of cracking, and patching. Models were developed for 
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the lower, middle, and upper 1/3 percentiles for select distresses, a concept also reported in 
the Mississippi study (George 2000). 

2.3.4 Colorado DOT 

Colorado (2012) models (curves) are both of the site-specific and family varieties. Models 
predict five types of distress and smoothness, and are a function of surface age. As shown in 
Fig. 2.1, a non-linear-type function is fit to distress/performance data and remaining surface life 
(RSL) is estimated through extrapolation. RSL is a relatively common pavement management 
parameter in the literature. 
 
 

 
Fig. 2.1—Colorado DOT model example for determining RSL. 

 

2.3.5 Virginia DOT 

Virginia (2007) uses IRI as its pavement smoothness parameter but developed models that used 
load- and non-load-related distress indices (LDR and NDR, respectively) to characterize 
pavement condition. LDR and NDR values are assigned to several different types of distress, 
such as alligator cracking, and those indices become the response variable in a regression 
analysis where surface age is the only predictor variable and is in the “deduct point” term of the 
model (Eq. 3). 
 
             ( )

 
 (Eq. 3) 
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 where: 0 = Index immediately after rehabilitation (age zero) 

e = Euler's number 
a, b, c = regression coefficients 
t = natural log of (1/Age); i.e. ln(1/Age) 

 

2.3.6 South Dakota DOT 

South Dakota (2011) developed 168 pavement performance models using the linear, power, 
and polynomial forms where surface age is the only predictor variable. Response variables were 
individual distress condition indices and a composite condition index. Models covered various 
pavement types. 
 

2.4 Researchers 

2.4.1 Khattak et al. 

Khattak et al. (2013) developed treatment models for an asphalt overlay on: 1) an asphalt 
pavement and 2) a composite pavement. The natural log of IRI was the predicted response. The 
model form was multiple-linear; i.e. a multiple-X form of Eq. 1. The predictor variables were a 
mixture of natural-log transformed values and non-transformed values. The predictor 
parameters were surface age, the IRI just prior to treatment, cumulative equivalent single-axle 
loads (ESAL), precipitation and temperature indices, layer thicknesses (hot mix asphalt [HMA] 
and concrete), and functional classification. 
 

2.4.2 Liu et al. 

Liu et al. (2009) evaluated chip seal data in Kansas and developed multiple-linear models that 
predict IRI and rut depth based on initial IRI or initial rut depth (respectively), surface age, and a 
coded dummy variable for roadway classification (depending on the response variable). Models 
were also developed to predict transverse and fatigue cracking based on the initial cracking 
distress measurement, surface age, the roadway classification dummy variable, and cumulative 
ESALS (depending on the model). The initial distress values were taken a year after the actual 
chip seal treatment. 

2.5 Literature Review Summary 

The literature review included several more studies than those discussed above. Many studies 
included extensive literature reviews of pavement performance/deterioration modeling; the 
Mississippi DOT report referenced above is an example of one such study (George, 2000), as 
well as a Pierce and Kebede (2015) analysis for the Washington state DOT on the best practices 
of chip seal performance measures. Additionally, personal communication with state DOT 
personnel responsible for pavement management and modeling was performed via phone and 
e-mail. Based on the review and personal communications, 1) deterministic model types are 
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predominant with preference to the linear least-squares and power forms, 2) pavement 
families are generally based on pavement type and roadway classification system, and 3) the 
primary pavement condition measure is IRI although specific pavement distress parameters and 
condition indices are still in use. 

It has been shown in the Task 1 report (Vol. II) that the longevity of pavement 
maintenance treatments depends upon: 
 

 Original pavement type 

 Layer thicknesses 

 Base characteristics, including internal drainage 

 Specific design features 

 Subgrade type 

 Condition prior to treatment 

 Initial condition after treatment 

 Quality of treatment 

 Climate 

 Accumulated traffic, especially truck traffic 

 Interim maintenance procedures 

 Surface age 
 

However, not all of the above factors can always be used as predictor variables, usually because 
sufficient quantities of good quality data are not available.  
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3 INVESTIGATION 

 
This chapter describes the procedure followed for generating three pavement family and three 
treatment performance models that predict IRI. No models are presented for MoDOT’s former 
20-point Condition Index, and there was not enough data collected to develop models for the 
new PASER (10-point) system. 

3.1 Task 1 Data Reduction and Configuration 

The following steps describe the method for configuring the Task 1 supplemented data files 
(again, still in raw or unit form; each record represented ~0.02 miles) into a form that allowed 
for importation into statistical software. 

1. Each Task 1 pavement section file first received the following treatment:  

a. Cleaned up the file by removing Task 1 notes, plots, other annotations, unnecessary 
rows/columns, etc. 

b. Created and populated additional columns: e.g. Assumed Last Treatment Date, Last 
Treatment Thickness, Surface Age, Unit IRI, and Pdiff. The Assumed Last Treatment 
Date column was created in the day/month/year format and may have been, 
ultimately, different than the “Last Treatment Date” determined by the Task 1 team 
(see Steps 1c and 1d, next). Last Treatment Thickness (LstTrtThk, expressed in 
inches) was taken directly from documentation or estimated based on surface 
widths and asphalt tonnage per mile (NOTE: all chip seals were assigned a thickness 
of 0.375 inches). Surface Age (SA, expressed in years) is the difference between the 
date the ARAN data was collected (ARAN table field labeled as DATE0) and the 
Assumed Last Treatment Date. The Unit IRI (representing ~0.02 miles of roadway) is 
the average of the passenger and driver IRI (fields extracted from the ARAN 
Inventory tables during Task 1). Pdiff is defined as the percent difference between 
the passenger IRI and the driver IRI, and is explained in further detail in Step 5, 
below. 

c. Task 1 Last Treatment Dates were double-checked if the SA (or plots of the 20-point 
Condition Index as a function of DATE0) indicated that there may have been a 
pavement treatment missing in the Task 1 data.  

d. If the Task 1 Last Treatment Date was given as a year only (no month or day), July 31 
was taken as the Assumed Last Treatment Date for that particular year (i.e. the 
approximate middle of the construction season). Other assumptions for 
dd/mm/yyyy values may have been made for logical reasons; e.g. missing ARAN 
Viewer years, missing surface treatments found and added, etc. 

2. After Step 1 was complete, the section file was saved with another name (or in another 
folder) indicating its status in the data reduction strategy. 
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3. Removed any pre-1993 data as IRI data was not collected prior to 1993. Also, based on 
information from MoDOT’s Transportation and Planning division, all 1997 to 2001 
(inclusive) IRI data was removed due to an algorithm error during ARAN collection for those 
years. This data was either removed prior to sending the ARAN inventory table data to the 
Task 1 team or after the verified/supplemented Task 1 section files were returned to the 
Task 2 team.  

4. For all section files, double-checked that irrational IRI (e.g. IRI=999 or identical IRI and/or CI 
values through entire section length) were removed during the Task 1 ARAN table querying 
and retrieval. 

5. Removed all data for a given year/section where passenger and driver IRI were extremely 
different; i.e. a potential error had occurred in IRI collection for that year/section.  

Generally, the passenger IRI will be higher than the driver IRI due to its measurement 
location next to the shoulder of two-lane, undivided roadways (debris, etc.) and potentially 
lower compaction (density) due to lower confinement at the edge of the mat. There were 
instances where the difference was so great that there was concern this large differential was 
due to mechanical/digital errors during data collection and would falsely affect the Unit IRI, 
which would ultimately adversely affect the average IRI for that section (Note: the average 
section IRI is the base response variable in all regression analyses, and each analysis is weighted 
based on the section length). Plotting the passenger, driver, and Unit IRI as a function of the 
year helped identify particular trends, but the question that needed to be answered was how 
large a differential is too large? Fig. 3.1 shows a plot generated that displays this concept. The 
data is associated with a section of MO 21 in Washington County. The Travelway ID (TWID; the 
unique sequence number for the route that each SS Pavement record resides on), is 16 for the 
southbound lane and 17 for the northbound lane.  
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Fig. 3.1— Interval plot of driver (D), Unit (U), and passenger (P) IRI. 
 

Fig. 3.1 shows that the passenger and driver IRI differential is significant for the 2006 
data and is completely different from the other years between the 2003 and 2009 overlay (OL) 
treatments (e.g. SL=surface leveling plant mix; BP-2=bituminous pavement plant mix). Note that 
the data is plotted not only as function of year, but a function of direction (N=North, S=South, 
in this example); this is another source of variability that needed to be taken into account when 
deciding whether data was to be removed (Note: the 1997 to 2001 IRI data, inclusive, was 
eventually removed from all analyses; see Step 3, above). One could subjectively decide to 
discard the 2006 data because it is so obviously problematic (even relative to the 2009 data 
that was obtained traveling in the same direction), but some passenger-driver IRI differentials 
were not quite so dramatic. Therefore, a systematic solution for the IRI differential evaluation 
was applied that used the percent difference between the passenger and driver IRI as a criteria 
for deciding whether the differential was too large. The percent difference, Pdiff, was 
calculated as follows: 
 
 

      
(                          )

        
      (Eq. 4) 

 
 
The calculated Pdiff values were plotted using a run chart which is shown in Fig 3.2. 
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Fig. 3.2— Run chart of Pdiff for IRI differential evaluation. 

 
The black dots in Fig. 3.2 are the individual Pdiff values associated with each data record 

(data row or Unit IRI), and the red square is the average Pdiff (Pdiffmean) for that year’s data (red 
squares are connected by the dashed lines). Also indicated in the plot is the median Pdiff 
reference line that is based on all years’ data. The 2006 Pdiffmean of 56.9% is significantly 
different from the adjacent years’ Pdiffmean values. After several IRI differential evaluations for 
other selected roadway sections, a Pdiffmean value of 40% was chosen as the criteria for likely 
removal from the dataset. However, it was not only the absolute value of Pdiffmean that was 
considered in culling data but how far Pdiffmean fell from the median Pdiff line, relative to the 
other Pdiffmean values. The following is a summary of data removal based on the IRI differential 
(IRIdiff) evaluations for all 40 full-depth asphalt (FDA) sections and the 13 composite (Comp) 
and concrete (PCC) pavement sections. Note that the Comp and PCC sections were actually the 
same and delineated only by the year the first asphalt overlay was applied to the existing PCC 
sections. 
 
FDA: 1700-3500 one-way AADT: 

 MO 21, Washington County, TWIDs 16 (Southbound=SB) and 17 (Northbound=NB). 
o 2006 data removed based on significant IRIdiff evaluation. Pdiffmean = 56.9%. Last 

treatment was 1.75-in. BP-2 done in 2003. 

 Rt T, Pulaski County, TWIDs 1911 (SB) and 1912 (NB). 
o 2003 data removed based on significant IRIdiff evaluation. Pdiffmean = 56.2%. Last 

treatment was 1.25-in. BP-2 done just a couple of months before the date IRI 
data was collected via the ARAN van (i.e. DATE0). 

 MO 124, Boone County, TWIDs 3577 (Eastbound=EB) and 3578 (Westbound=WB). 
o 2009 data shows driver IRI switching over and becoming higher than the 

previously available data from 2006. However, the 2009 data was NOT removed 
as the overall trend for the UnitIRI was reasonable. Last treatment was a 1-in. SL 
done in 2002. 
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 Rt F, Callaway County, TWIDs 7234 (EB) and 7235 (WB). 
o No data removed. 

 Rt BB, Phelps County, TWIDs 1488 (EB) and 1489 (WB). 
o No data removed. However, the EB data from 2004 through 2010 is pretty 

erratic. 2005 Pdiffmean = 44.7% and 2008 Pdiffmean = 40.3%. Note that the last 
treatment was a chip seal. It should be noted that chip seals affect ride, as a 
function of time, in unusual ways. Therefore, chip seal IRIdiff data was NOT 
subjected to as stringent an analysis when determining whether it should be 
removed.  

 MO 5, Moniteau County, TWIDs 1975 (SB) and 1976 (NB). 
o 2006 data removed based on significant IRIdiff evaluation. Pdiffmean = 58.6%. Last 

treatment was a 1-in. SL done in 2000. 
o 2010 data removed based on the passenger IRI dropping significantly from the 

overall trend. Pdiffmean = 11.1% in 2010 whereas it was 38.6% in 2009 and 38.3% 
in 2011. Last treatment was a 1-in. SL done in 2000. 

 MO 28, Gasconade County, TWIDs 7829 (EB) and 7830 (WB). 
o 2005 data removed based on significant IRIdiff evaluation. Pdiffmean = 46.7%. Last 

treatment was, supposedly, a scrub seal done sometime between 1998 and 2000 
(per the maintenance superintendent’s memory). Scrub seal treatment date was 
assumed to be July 31, 1999.  

o Although the 2009 data has a somewhat odd driver side AvgIRI, the 2009 data 
was NOT removed. 

 MO 32, Laclede County, TWIDs 1056 (EB) and 7824 (WB). 
o No data removed. 

 MO 52, Morgan County, TWIDs 52 (EB) and 53 (WB). 
o 1995 data removed based on IRIdiff evaluation. Pdiffmean = 9.4%. Last treatment 

was 1.25-in. SL in 1991. This was one of the very first IRIdiff evaluations before 
the criteria of 40% Pdiffmean was established. The data was NOT restored once 
deleted. 

o 2003 data removed based on IRIdiff evaluation. Pdiffmean = -25.2%. Last 
treatment was 1.25-in. SL in 1991. Again, this was one of the very first IRIdiff 
evaluations. The data was NOT restored once deleted. 

 Rt C, Cole County, TWIDs 3550 (EB) and 3551 (WB). 
o No data removed. 

 
FDA: 750-1700 one-way AADT: 

 MO 47, Washington County, TWIDs 50 (SB) and 51 (NB). 
o 1993 data removed based on significant IRIdiff evaluation. Pdiffmean = 47.6%. Last 

treatment was 1.25-in. BP-2 OL earlier in 1993. 

 MO 19, Gasconade County, TWIDs 54 (SB) and 55 (NB). 
o 1993 data removed based on significant IRIdiff evaluation. Pdiffmean = 58.9%. Last 

treatment was 1.25-in. BP-2 OL earlier in 1993. 
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o 2006 data removed based on significant IRIdiff evaluation. Pdiffmean = 58.5%. Last 
treatment was 1-in. SL in 2000. 

 MO 17, Pulaski County, TWIDs 58 (NB) and 59 (SB). 
o 1995 data removed based on significant IRIdiff evaluation. Pdiffmean = 43.7%. Last 

treatment was 1-in. SL in 1993. 

 MO 32, Dent County, TWIDs 1056 (EB) and 7824 (WB). 
o 2005 data removed based on significant IRIdiff evaluation. Pdiffmean = 43.3%. Last 

treatment was a limestone chip seal (verified during visit to Charlie Schroyer) just 
a month or so before DATE0 2005. 

o 2006 data removed based on significant IRIdiff evaluation. Pdiffmean = 64.3%. Last 
treatment was a limestone chip seal (verified during visit to Charlie Schroyer) just 
a month or so before DATE0 2005. 

 MO 7, Camden County, TWIDs 1966 (NB) and 1967 (SB). 
o No data removed. Although borderline, 2006 Pdiffmean = 36.9%, general trend for 

UnitIRI is reasonable. 

 MO 135, Cooper County, TWIDs 2015 (SB) and 2016 (NB). 
o 2003 data removed based on identical driver and passenger IRI values. 

 MO 64, Laclede County, TWIDs 2063 (EB) and 2064 (WB). 
o No data removed. 

 Rt E, Boone County, TWIDs 3539 (SB) and 3540 (NB). 
o No data removed. 

 MO 240, Howard County, TWIDs 5053 (EB) and 5054 (WB). 
o 1995 data removed based on significant IRIdiff evaluation. Pdiffmean = 53.1%. Last 

treatament was 1-in. (calculated based on mat width and tonnage/mile data in 
asphalt summary) SL in 1985. 

o 2003 data removed based on significant IRIdiff evaluation. Pdiffmean = -40.4%. 
Last Trtmnt was 1-in. (assumed) SL in 1996. 

 Rt C, Callaway County, TWIDs 7119 (NB) and 7120 (SB). 
o 2009 data removed based on unreasonably high driver IRI values which drove 

the UnitIRI higher than reasonably expected…same direction as the years before 
and after (2007 and 2010). 

 
FDA: 400-750 one-way AADT: 

 MO 185, Washington County, TWIDs 20 (SB) and 21 (NB). 
o No data removed. 

 Rt T, Osage County, TWIDs 48 (SB) and 49 (NB). 
o No data removed. 

 MO 17, Miller County, TWIDs 58 (NB) and 59 (SB). 
o 1995 data removed based on significant IRIdiff evaluation. Pdiffmean = 54.7%. 

Last treatment was resurfacing of unknown thickness (1-in. SL, perhaps?) in 
1973. 

 MO 133, Pulaski County, TWIDs 60 (SB) and 61 (NB). 
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o No data removed. 

 Rt F, Phelps County, TWIDs 1490 (EB) and 1491 (WB). 
o No data removed. However, the 2008 Pdiffmean was 41.3% but the median 

Pdiffmean for the 8 years of data was 31.5%. So, because the 2008 data was not 
considerably different than the median value, it was left in the overall data. 

 Rt W, Morgan County, TWIDs 1997 (SB) and 1998 (NB). 
o No data removed. 

 Rt J, Laclede County, TWIDs 2633 (EB) and 2634 (WB). 
o No data removed. 

 MO 3, Howard County, TWIDs 4988 (SB) and 4989 (NB). 
o 2002 data was removed because IRI data was the same. Median Pdiff = 11.2%. 

 Rt N, Boone County, TWIDs 7271 (SB) and 7272 (NB). 
o 2002 and 2003 data was removed because IRI data was the same within each 

year. Median PDiff = 27.7%. 

 Rt B, Callaway County, TWIDs 7461 (EB) and 7462 (WB). 
o 2002 and 2003 data was removed because IRI data was the same within each 

year. Median PDiff = 28.6%. 
 
FDA: <400 one-way AADT: 

 MO 133, Osage County, TWIDs 60 (SB) and 61 (NB). 
o No data removed. 

 Rt M, Crawford County, TWIDs 1265 (SB) and 1266 (NB). 
o No data removed. 

 Rt K, Dent County, TWIDs 1781 (SB) and 1782 (NB). 
o 2007 data removed based on significant IRIdiff evaluation. Pdiffmean = 44.7%. Last 

treatment was a chip seal a few months earlier in 2007. It should be noted that 
the median Pdiff = 19%, and 7 of the 8 years of data deviated very little from the 
median. Because the chip seal was very new in 2007, that could account for the 
large jump in Pdiffmean to 44.7% in 2007.   

 Rt J, Camden County, TWIDs 2779 (SB) and 2780 (NB). 
o No data removed. 

 Rt J, Cooper County, TWIDs 4862 (EB) and 4863 (WB). 
o No data removed. 

 MO 87, Howard County, TWIDs 5051 (SB) and 5052 (NB). 
o No data removed. 

 Rt E, Cole County, TWIDs 7077 (EB) and 7078 (WB). 
o No data removed. 

 Rt HH, Boone County, TWIDs 7113 (EB) and 7114 (WB). 
o No data removed. 

 Rt D, Callaway County, TWIDs 7115 (WB) and 7116 (NB). 
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o 1994 data removed based on significant IRIdiff evaluation. Pdiffmean = 45.7%. Last 
treatment was a SL of unknown thickness in 1977. This is another instance where 
the median Pdiff was quite high: 31.2%. 

 Rt Y, Gasconade County, TWIDs 7285 (EB) and 7286 (WB). 
o No data removed. 

 
Comp: Typical one-way AADT levels are given for each section: 

 US 67, Butler County, TWIDs 14 (NB) and 15 (SB). AADT ≈ 2300. 
o 2010 data removed based on average section IRI being significantly low relative 

to 2009 and 2011 data even though data was obtained traveling southbound all 
3 years. 

 US 63, Phelps County (North of Rolla), TWIDs 56 (NB) and 57 (SB). AADT ≈ 2600. 
o No data removed as only 2013 data was obtained. 

 US 63, Phelps County (South of Rolla), TWIDs 56 (NB) and 57 (SB). AADT ≈ 1800. 
o 2008 data removed based on extremely high average section IRI. Construction 

was still occurring at the time the ARAN data was collected. 
o 2013 data removed based on very low average section IRI relative to the 

preceding 2 years of data. 

 US 63, Schuyler County, TWIDs 56 (NB) and 57 (SB). AADT ≈ 2400. 
o No data removed. 

 MO 8, St. Francois County, TWIDs 1054 (EB) and 1055 (WB). AADT ≈ 5000. 
o No data removed. 

 MO 32, St. Francois County, TWIDs 1056 (EB) and 7824 (WB). AADT ≈ 900. 
o No data removed. 

 US 65, Grundy County, TWIDs 2009 (SB) and 2010 (NB). AADT ≈ 900. 
o 2006 data removed based on significant IRIdiff evaluation. Pdiffmean = 57.8%. 

 MO 174, Lawrence County, TWIDs 2289 (EB) and 2290 (WB). AADT ≈ 1300. 
o No data removed. 

 US 50, Pettis County, TWIDs 3507 (EB) and 3508 (WB). AADT ≈ 3300. 
o No data removed. 

 MO 6, Grundy County, TWIDs 3556 (EB) and 3557 (WB). AADT ≈ 1100. 
o No data removed. 

 US 24, Monroe County, TWIDs 3562 (EB) and 3563 (WB). AADT ≈ 900. 
o No data removed. 

 Rt M, Cooper County, TWIDs 4133 (SB) and 4134 (NB). AADT ≈ 200. 
o No data removed. 

 MO 87, Cooper County, TWIDs 5051 (SB) and 5052 (NB). AADT ≈ 2100. 
o No data removed. 

 
PCC: Because the sections are the same as the Comp, only those PCC sections that had data 
removed are listed below: 

 US 63, Schuyler County, TWIDs 56 (NB) and 57 (SB). AADT ≈ 2400. 
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o 1995 data removed based on significant IRIdiff evaluation. Pdiffmean = 56.8%.  

 MO 8, St. Francois County, TWIDs 1054 (EB) and 1055 (WB). AADT ≈ 5000. 
o 2007 data removed based on significant IRIdiff evaluation. Pdiffmean = 42.5%. 

 MO 32, St. Francois County, TWIDs 1056 (EB) and 7824 (WB). AADT ≈ 900. 
o 2006 data removed based on significant IRIdiff evaluation. Pdiffmean = 51.9%. 

 MO 174, Lawrence County, TWIDs 2289 (EB) and 2290 (WB). AADT ≈ 1300. 
o 1993 data removed because average section IRI is ≈ 25% higher than all 

subsequent yearly data. Not able to determine whether diamond-grind or some 
other treatment occurred between 1993 and 1994. 

 US 24, Monroe County, TWIDs 3562 (EB) and 3563 (WB). AADT ≈ 900. 
o 1995 data removed based on significant IRIdiff evaluation. Pdiffmean = 40.6%. 
o 2002 data removed based on significant IRIdiff evaluation. Pdiffmean = 40.2%. 

 

6. Combined all section files per pavement family (i.e. FDA, Comp, and PCC) into a single 
worksheet per family, and configured for proper importation into statistical software. 

7. Removed all yearly FDA section data with extremely high surface ages (SAs). These are FDA 
pavement sections that either did not actually receive any “total-width” surface treatment, 
or there were likely missing treatments in the data. 

Some FDA pavement sections had calculated SAs of 30+ years, which seemed unlikely. A 
histogram was generated to visualize the distribution of SAs for the resultant FDA pavement 
dataset. That histogram is given in Fig. 3.3. Frequency refers to the number of Unit IRI records 
and the bins represent SAs in years. 

 

 

Fig. 3.3— Histogram of FDA pavement sections surface ages (SAs). 
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Based on the distribution shown in Fig. 3.3 , and the fact that the overwhelming 
majority of SA values in the 19 – 20 year SA bin were 19 (when rounded to the nearest year), all 
data associated with SAs older than 19 years was removed. The resulting dataset was used for 
beginning the next step in the FDA pavement family and treatment model development. The 
removal of high-SA data for the Comp sections was not necessary as none of those were older 
than about 7 years. There was no removal of data for the PCC sections based on high SAs, which 
were considerable (e.g. SAmax ≈ 65 years).  

All files based on Unit (raw) IRI data were now ready to be transformed into average 
values using statistical software. The records in SS Pavement were not usable because there 
was just too little confidence in their accuracy for what was needed in the study. The SS 
Pavement records are dynamically-segmented meaning each record varied widely in length, the 
average IRI associated with each record could be based on invalid Unit IRI values (e.g. 999), the 
homogeneity of the section is not evident per record, etc. It became evident that the highest 
degree of confidence in the data could only be achieved if the raw data was obtained, cleansed, 
compiled, and analyzed.  A large part of the effort of Task 1 and Task 2 was spent preparing the 
data for model-building. 

3.2 Generating Pavement Section Averaged Data Files for Regression Analyses 

Performing regression analyses and developing models using the Unit (raw) IRI data was ruled 
out primarily because the initial IRI (IRIo) for a particular pavement section had to be expressed 
as an average value that represented the average smoothness of the entire length of the 
section. It would have been possible to determine the average IRIo for a section, add that value 
to every “Unit IRI” record as a potential predictor variable, and then perform regression 
analyses. However, early work during this study showed that the regression coefficients 
(parameter estimates) of a model generated using the “Unit” (~0.02 mile) data were very 
similar to the regression coefficients generated using “averaged” data, especially when the 
regressions using averaged data were weighted based on the pavement section length. The 
major difference when running regressions using Unit data versus averaged data was the 
resulting extreme difference in the goodness-of-fit statistics, specifically R2 (and adjusted R2 
when comparing models). Unit data regressions had very low R2 values relative to the averaged 
data regressions, primarily due to the extreme differences in number of observations (n) per 
dataset (e.g. tens of thousands when using Unit data versus hundreds using averaged data). 

Another reason that averaged data was used in the regressions was that almost all of 
the other potential predictor variables in the datasets were single values that were applied 
across the entire length of the pavement section of interest, e.g. all climate and subgrade soil 
parameters. The only parameters that varied in a given year across the length of a pavement 
section were IRI (and, possibly, the condition index) and, sometimes, the two traffic 
parameters, AADT and AADTT. 

Generating the averaged data files was a matter of importing the Unit data into a 
statistical software package, running a procedure that would export selected summary statistics 
(e.g. means or averages), and grouping the output based on a select variable or variables. An 
example of the described procedure is given below:      
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1. The 99,759 record (row) FDA dataset was reduced in size by averaging all numerical 
parameters into groups by County, Travelway Name (TW Name), and Year, in that order. For 
example, the Boone County MO 124 data was reduced from 2250 Unit records representing 
11 years of data to just 11 records where all parameters for each year of the Boone County 
MO 124 data were averages The original 99,759 record, FDA Unit data file was reduced to 
394 records of averaged data.  

2. The averaged data worksheet was augmented with additional parameters: section length 
(SecLength, expressed in miles), IRIo, terminal IRI (IRIt or the IRI just before a surface 
treatment), the last treatment thickness/type (if not determined during the Task 1 data 
configuration), the climate parameters, and the subgrade soil parameters. The IRIo and IRIt 
values were determined by one of two methods: 1) they were taken as the average IRI just 
after or just prior to treatment, respectively, if the IRI had been measured with the ARAN 
van within approximately a year from the assumed treatment date, or 2) they were 
estimated using extrapolation (forward or backward) based on at least two yearly average 
IRI values. Fig. 3.4 shows an image of a portion of the original FDA averaged data 
worksheet.   

 

 
Fig. 3.4— Portion of FDA averages dataset for two Boone County routes. 

 
Fig. 3.4 shows a portion of the original FDA averages dataset for two of the Boone 

County routes selected for analysis. The dotted horizontal lines indicate that a treatment 
occurred sometime between the records above and below the dotted line. Bolded, italicized 
values are estimates based primarily on extrapolation forward or backward in time. The Boone 

County TW Name SecLength Year TWID IRI IRIt IRIo SurfaceAge
BOONE 124 4.0 1996 3578 111.9 5.3
BOONE 124 4.0 2002 3577 82.1 82.1 0.1
BOONE 124 4.0 2003 3577 84.0 82.1 1.0
BOONE 124 4.0 2004 3578 90.6 82.1 2.5
BOONE 124 4.0 2005 3578 92.4 82.1 3.0
BOONE 124 4.0 2006 3578 98.2 82.1 4.1
BOONE 124 4.0 2007 3577 100.2 82.1 4.9
BOONE 124 4.0 2008 3577 102.0 82.1 6.0
BOONE 124 4.0 2009 3578 125.1 82.1 6.9
BOONE 124 4.0 2011 3577 118.7 82.1 9.2
BOONE 124 4.0 2012 3578 73.5 118.7 73.5 0.8
BOONE E 10.0 1993 3539 134.3 126.0 4.7
BOONE E 10.0 1995 3539 137.7 126.0 6.7
BOONE E 10.0 2003 3540 130.1 152.0 93.7 5.5
BOONE E 10.0 2004 3539 125.9 152.0 93.7 6.6
BOONE E 10.0 2005 3540 142.5 152.0 93.7 7.4
BOONE E 10.0 2006 3539 133.6 152.0 93.7 8.5
BOONE E 10.0 2007 3540 149.5 152.0 93.7 9.4
BOONE E 10.0 2008 3539 147.3 152.0 93.7 10.5
BOONE E 10.0 2009 3539 146.3 152.0 93.7 11.3
BOONE E 10.0 2010 3540 164.7 152.0 93.7 12.6
BOONE E 10.0 2011 3540 175.7 152.0 93.7 13.5
BOONE E 10.0 2012 3540 110.2 175.7 110.2 1.0
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County, Route E, data will be used to explain, for example, how the IRIt value of 152.0 in./mi 
(2003 – 2011) was estimated. The Task 1 team determined that there had been treatments on 
Route E in 1988 (assumed to be July 31) and December 1, 1997. SAs were calculated for all 
years in the Route E dataset (up through 2011) based on these two treatment dates. Through 
linear extrapolation, the 1993 and 1995 IRI and SA values were used to estimate a 1997 IRI 
value of 140.8 in./mi. However, 1997 data had actually been collected and the recorded IRI for 
1997 was 163.3 in./mi. Remember, though, that all 1997 – 2001, inclusive, IRI data was 
removed for regression analysis purposes due to reported errors in the IRI algorithm. 
Nevertheless, for this particular estimation, the average of 140.8 and 163.3, or 152.0 in./mi, 
was taken as the IRIt value for the years 1998 through 2011. The taking of an IRI estimate 
slightly higher than that of a straight-line estimation seemed valid in this case because 
deterioration becomes non-linear with time.  

Values that are underlined in Fig. 3.4 indicate that they are measured values but they 
come from data associated with travel in the opposite direction, i.e. the other Travelway ID 
(TWID). Again, the IRI value is the average of all Unit IRI for the associated SecLength. Table 3.1 
shows the number of observations, “n,” (records or rows) per dataset ultimately used during 
model development. Introduction of some variables into a given model, such as IRIt, sometimes 
reduced the number of available observations. 
 
Table 3.1— Number of Observations per Averages Dataset for Model Development 

Pavement Type FDA Comp PCC 

Original No. of Observations (n =) 394 54 111 

Inclusion of IRIo or IRIt IRIo IRIo & IRIt IRIo IRIo & IRIt NA 

Family Models      

No. of Observations (n =) 350 237 54 54 111 

Treatment Models      

1-in. Overlay: (n =)  216 119    

Chip Seal: (n =) 74 65    

3¾-in. Overlay: (n =)   40 40  

 
Treatment model datasets were created by subdividing the FDA and Comp pavement 

family files into subset files with similar treatment types/thicknesses. All regression analysis 
input files are presented in Appendices 2A through 2F. 

3.3 Regression Analysis Methodology 

Two different automated model selection methods were utilized to help determine the best 
model for the various datasets: stepwise and minimum R2 improvement. Stepwise is a 
procedure that adds and/or removes predictor variables based on a selected criteria for adding 
and/or keeping variables in the model. There are three basic stepwise procedures: backward 
elimination, forward selection, and mixed (or combined) which utilizes the backward and 
forward procedures. In backward elimination, all predictor variables are included in the model 
initially then removed one at a time based on the criteria to stay in the model and how well 



 

27 

 

each deletion improves the model. The model is evaluated with all variables, the least 
significant variable is removed, the model is re-evaluated, and the procedure is repeated until 
all variables left in the model meet the criteria. Forward selection finds the best or single most 
significant variable, evaluates the model, adds another variable that improves the model and 
meets the criteria, then repeats this process until no more variables meet the criteria for entry. 
Mixed stepwise uses both processes, testing at each step to determine if a variable stays or is 
removed. For this study, the mixed stepwise procedure was utilized and the criteria selected 
was the significance level as measured by the p-value. The significance level to enter the model 
(SLE) was set such that the p-value of the variable if included in the model must be ≤ 0.15, and 
the significance level to stay in the model (SLS) was set such that the p-value when included in 
the model must be ≤ 0.10. The mixed stepwise procedure would automatically stop once no 
more variables could be added/removed based on the selected SLE and SLS levels.  

An important concept to stress is that the statistical “significance” of a particular 
predictor (independent) variable is relative to the other predictors present in a model. A 
particular predictor may be very significant on its own in predicting (or explaining or correlating 
to) a particular response, but when combined with other predictors in a multivariate model 
may become insignificant if one or more of those additional predictors have a greater effect on 
the response (dependent) variable. 

The minimum R2 improvement method uses only the R2 value as the model selection 
criteria. This procedure evaluates many more potential models than the mixed stepwise 
method. The output lists the best 1-variable, 2-variable, etc. models based solely on the R2 
value of the model. Using additional statistics given for each model, one had to evaluate the 
model of interest for validity and utility. Another point to keep in mind is that R2 is a function of 
the number of observations in the dataset used to generate a model. Therefore, one must be 
careful when comparing models generated with different numbers of observations. 

Major items of interest when evaluating any model were the predictor variable 
significance (preferably, p-values ≤ 0.05; the smaller the p-value, the more significant the 
predictor) and the sign on the regression coefficient (parameter estimate). The sign on the 
regression coefficient was important to watch because it indicates the relationship between the 
predictor variable and the predicted response. If the sign was positive, this means that as the 
predictor variable increases in magnitude, the predicted response also increases in magnitude. 
A negative sign on the regression coefficient indicates an inverse relationship between 
predictor variable and response variable. If the sign did not make sense based on known 
relationships, the regression was re-run and re-evaluated using different predictor variables. 
This concept of evaluating the signs on the regression coefficients is fairly straightforward when 
applied to an additive, linear model with two or more unique predictor variables, also called 
main effects, and no interactions. An interaction, for numerical variables, is the multiplicative 
product of two or more main effects. Having interactions in a model makes evaluation of that 
model much more complicated. An additional statistic of interest when evaluating a model is 
the variance inflation factor (VIF) associated with each predictor variable. The VIF is one 
measure of potential collinearity between one or more predictor variables. If multi-collinearity 
is sufficiently high, the regression coefficients could be unstable, meaning one might find that 
re-running the regression on the same data might generate different regression coefficients. 
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The general rule of thumb is that VIFs between 1 and 5 indicate moderately correlated 
predictor variables, and VIFs greater than 5 indicate highly correlated predictor variables. Again, 
VIFs are most useful when there are only main effects in the model and no interactions. 

For each model selection method, different pools of potential predictor variables were 
evaluated. Different variable pools were utilized based on a priori knowledge of relationships 
between certain variables that might exhibit multi-collinearity. For example, many of the soil 
parameters are mathematical functions of other soil parameters also being evaluated as 
potential predictor variables, therefore it was logical to avoid including potentially correlated 
predictor variables in a particular variable pool. An example is PI and liquid limit of soil. An 
additional check included generating correlation matrices to look at all variables and their 
correlation to each other, and especially the IRI. It should be noted that, occasionally, 
correlations between variables were not logical based on the significance of the correlation 
and/or the sign on the correlation constant (Pearson’s r), but when included in a multiple-linear 
least-squares regression, some of those non-logical relationships became logical and significant. 

Another recommendation in any model-building process is validation of the model by 
fitting it to an independent set of data and evaluating how well the model predicts that data. 
There are several methods in which the independent data could be acquired: 
  
1. Set aside data specifically for model validation during the initial data collection 
2. Use all collected data for model-building and validate the model with data collected at a 

later time 
3. Randomly select a portion of all collected data, use that portion for model-building, then 

use the remaining portion for model validation.  
 
Khattak et al. (2013) used a model validation procedure slightly different than method 3 

described above in that all the data was used for model-building and generation of regression 
coefficients, and validation of the model(s) was performed in a two-step procedure involving 
random extraction of portions of the original dataset. 75% of the original data used to develop 
each of their two final models was randomly extracted and a new regression was run on this 
partial dataset using the same final model predictor variables. This generated a new set of 
regression coefficients for those predictor variables. The modified-coefficients model was fit to 
the remaining 25% of the data and the quality of the prediction was evaluated. This procedure 
was repeated over one hundred times per final model. The distribution of the percentage error 
between the measured and predicted IRI for each of the many runs per model was evaluated to 
determine the predictive ability of the two final models.  

Although the Khattak et al. method was considered as a potential model validation 
procedure to be used in this study, the specific procedure described above as method 3 was 
preferred and initially pursued. Unfortunately, those initial pursuits of the method 3 procedure 
were ultimately abandoned due to recent decisions to add IRIt to the pool of predictor variables 
and re-evaluate all of the IRIo-only models already generated. Thus, the models presented later 
in this report have not been validated. MoDOT will need to validate the various models’ 
predictive ability based on method 2, described above; i.e. validate at the first instance 
additional field data is collected to be added to the model-generating databases.   



 

29 

 

4 REGRESSION ANALYSES RESULTS 

 
Six IRI-predictive models were generated and are presented in this section. Three are family 
models: one for FDA, one for Comp, and one for PCC. Three are treatment models: one for a 1-
in. overlay on a FDA pavement, one for a chip seal on a FDA pavement, and one for a 3.75-in. 
overlay on a Comp pavement. In four of the six models, the transformation of IRI to the natural 
log of IRI was actually the response in the regression analyses, but those particular models are 
presented below in a form such that IRI, and not the natural log of IRI is the predicted response. 
All regressions were performed using JMP® software and were weighted based on the length 
of the pavement section (SecLength in miles).  

4.1 Full-depth Asphalt (FDA) Pavement Models 

4.1.1 FDA Family Model 

The FDA family model is based on 237 observations, all from the Central District. The regression 
output is given in Fig. 4.1. 
 

 
 

Fig. 4.1— FDA family model regression output. 
 
It should be noted that of the variables listed in section 2.5 that should be in a model, many 
have been successfully included: existing condition prior to treatment, condition after 
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treatment, surface age, climate, subgrade soil, and treatment thickness. Also, original 
pavement type is inherent to the model. Traffic is not included explicitly, but is a major factor at 
work in surface age. The R2 value of 0.86679 for the FDA family model shown in Fig. 4.1 is very 
respectable. Note that the R2

adjusted value is also a goodness-of-fit parameter but is utilized 
primarily for comparing models during model selection that have different numbers of 
predictor variables. All predictor variables, with the exception of lnPclay, are highly significant 
in that their p-values (i.e. Prob>|t|) are much smaller than 0.05, which is a commonly used  
maximum for many scenarios involving the development of predictive equations. The 0.05 
“limit” is actually arbitrarily set; other studies have used limits as high as 0.10. Despite its 
borderline significance, the lnPclay parameter is still valuable as a predictor. The fact that it is 
one of the very few soil parameters that showed up in the model selection procedures with the 
correct sign on the regression coefficient (direction of effect) was enough to keep it in the 
model. Regarding the signs on the regression coefficients, a positive sign (or an absence of a 
negative sign) indicates that as the magnitude of the predictor increases, the predicted IRI 
(predicted roughness) also increases. The LstTrtThk predictor has a negative sign on the 
regression coefficient which indicates that as the thickness of the last treatment increases, the 
predicted IRI decreases; i.e. a thicker FDA surface treatment results in a smoother pavement 
over time, which makes sense. The VIF values indicate an acceptable (low to moderate) level of 
correlation between the predictor variables.  

The model shown in Fig. 4.1 has been mathematically manipulated such that the 
response, lnIRI (natural log of IRI), is now non-transformed and is given in Eq. 5 as IRIpred. 
 
                     (    )      (    )      (  )      (  )      (       )      (         ) (Eq. 5) 
 
 where: IRIpred = Predicted IRI (in./mi) 

IRIt = Terminal IRI prior to treatment (in./mi) 
IRIo = Initial IRI after treatment (in./mi) 
SA = Surface Age (years) 
FT = Freeze Thaw Cycles (number/year) 
lnPclay = natural log of Percent Clay (defined in Task 1 report) 
LstTrtThk = Last Treatment Thickness (in.) 

 
The intercept and regression coefficients (parameter estimates) in Eq. 5 have been truncated 
slightly from those in Fig. 4.1 to fit Eq. 5 on one line. Fig. 4.2 shows the actual (measured) IRI 
versus the predicted IRI according to Eq. 5.  
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Fig. 4.2— FDA family model: actual versus predicted IRI. 

 
The plot given in Fig. 4.2 shows a very good agreement between the actual and predicted IRI in 
that the linear trendline lies almost exactly on top of the line of equality with very little bias (i.e. 
over- or under-prediction, and/or skewness across the line of equality). The R2 value indicates a 
very good fit of the linear trendline to the data. The slight difference between the R2 value in 
Fig. 4.2 relative to the R2 value shown in the regression output in Fig. 4.1 may be due to the 
conversion from lnIRI in Fig. 4.1 to the non-transformed IRIpred in Eq. 5, and/or slightly different 
algorithms in Excel® versus JMP in fitting linear regression lines, and/or different precision 
levels in the displayed regression coefficients in Fig. 4.1 (used to generate predicted IRI in Fig. 
4.2) and those actually used by JMP to calculate R2. This discrepancy between R2 values in Excel 
and JMP is present in the remaining model presentations and will, therefore, not be discussed 
further. The dataset used to develop the FDA family model is given in Appendix 2A. 

4.1.2 FDA 1-in. Overlay Model 

The FDA 1-in. overlay model is based on 119 observations, all from the Central District. The 
regression output is given in Fig. 4.3. 
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Fig. 4.3— FDA 1-in. overlay model regression output. 
 
Again, a respectable R2 value for the FDA 1-in. overlay model shown in Fig. 4.3, good VIFs, and 
the predictor variables possess the expected signs on the coefficients and exhibit high-to-
borderline significance. The model shown in Fig. 4.3 has been mathematically manipulated such 
that the response, lnIRI, is now non-transformed and is given in Eq. 6 as IRIpred. 
 
                       (    )       (    )       (  )       (  )      (       ) (Eq. 6) 
 
 where: IRIpred = Predicted IRI (in./mi) 

IRIt = Terminal IRI prior to treatment (in./mi) 
IRIo = Initial IRI after treatment (in./mi) 
SA = Surface Age (years) 
FT = Freeze Thaw Cycles (number/year) 
lnPclay = natural log of Percent Clay (defined in Task 1 report) 

 
Again, the intercept and regression coefficients in Eq. 6 have been truncated slightly from those 
in Fig. 4.3 to fit Eq. 6 on one line. Fig. 4.4 shows the actual versus the predicted IRI according to 
Eq. 6. Both climate and subgrade soil are included. 
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Fig. 4.4— FDA 1-in. overlay model: actual versus predicted IRI. 

 
The plot given in Fig. 4.4 shows good agreement between the actual and predicted IRI in that 
the linear trendline, again, lies almost exactly on top of the line of equality with almost non-
existent bias. The R2 value indicates a good fit of the linear trendline to the data. The dataset 
used to develop the FDA 1-in. overlay model is given in Appendix 2B. 

4.1.3 FDA Chip Seal Model 

The FDA chip seal model is based on 65 observations, all from the Central District. The 
regression output is given in Fig. 4.5. 
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Fig. 4.5— FDA chip seal model regression output. 
 
Again, a very respectable R2 value for the FDA chip seal model shown in Fig. 4.5, good-to-fair 
VIFs, and all predictor variables exhibit high-to-borderline significance with expected signs on 
the coefficients. The response used in the regression analysis shown in Fig. 4.5 is the non-
transformed IRI, thus there was no need for mathematical conversion. The model in Fig. 4.5 is 
given in Eq. 7 as IRIpred. 
 
                      (    )       (    )       (  )       (  ) (Eq. 7) 
 
 where: IRIpred = Predicted IRI (in./mi) 

IRIt = Terminal IRI prior to treatment (in./mi) 
IRIo = Initial IRI after treatment (in./mi) 
SA = Surface Age (years) 
FT = Freeze Thaw Cycles (number/year) 

 
The intercept and regression coefficients in Eq. 7 have been, again, truncated slightly from 
those in Fig. 4.5 to fit Eq. 7 on one line. Fig. 4.6 shows the actual versus the predicted IRI 
according to Eq. 7. Climate is included. 
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Fig. 4.6— FDA chip seal model: actual versus predicted IRI. 

 
The plot given in Fig. 4.6 shows very good agreement between the actual and predicted IRI in 
that the linear trendline, again, lies almost exactly on top of the line of equality with almost 
non-existent bias. The R2 value indicates a very good fit of the linear trendline to the data. The 
dataset used to develop the FDA chip seal model is given in Appendix 2C. 

4.2 Composite (Comp) Pavement Models 

4.2.1 Comp Family Model 

The Comp family model is based on 54 observations from six districts. The regression output is 
given in Fig. 4.7. 
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Fig. 4.7— Comp family model regression output. 
 
The Comp family model shown in Fig. 4.7 has a slightly less respectable R2 value relative to the 
FDA models, good-to-fair VIFs, and all predictor variables exhibit very high significance with 
expected signs on the coefficients. The model shown in Fig. 4.7 has been mathematically 
manipulated such that the response, lnIRI, is now non-transformed and is given in Eq. 8 as 
IRIpred. 
 
                       (    )       (         )       (  )       (    ) (Eq. 8) 
 
 where: IRIpred = Predicted IRI (in./mi) 

IRIt = Terminal IRI prior to treatment (in./mi) 
IRIimprov = IRI improvement; ratio of IRIt to IRIo 
SA = Surface Age (years) 
DT32 = Number of days/year that the air temperature was below freezing 

 
Note that the Comp family model has a couple of predictor parameters that are different from 
those in the FDA models: IRIimprov and DT32. Considerable effort went into trying to get both IRIo 
and IRIt to work in all of the models. Sometimes IRIo or IRIt were insignificant, on their own, as 
co-parameters in the multivariate models; this was the case with the Comp models. Therefore, 
using the ratio of IRIt to IRIo seemed like a potential method for indirectly including both 
parameters, and it worked, best, provided it was used in conjunction with IRIt as a co-
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parameter (or IRIo, as will be seen in the Comp 3.75-in. overlay model, below). DT32 is another 
climate parameter that showed up most often during all model selection processes as being 
significant with a positive effect on IRI. The intercept and regression coefficients in Eq. 8 have 
been truncated slightly from those in Fig. 4.7 to fit Eq. 8 on one line. Fig. 4.8 shows the actual 
versus the predicted IRI according to Eq. 8. 
 

 
Fig. 4.8— Comp family model: actual versus predicted IRI. 

 
The plot given in Fig. 4.8 shows very good agreement between the actual and predicted IRI in 
that the linear trendline lies almost exactly on top of the line of equality with almost non-
existent bias. The R2 value of the linear trendline fit on Fig. 4.8, as with the R2 value in Fig. 4.7, is 
less respectable than those for the FDA models, even though there are fewer observations 
(data points) in the Comp models than in the FDA models. The poorer R2 value is directly 
related to the few extreme data points on Fig. 4.8, some of which are delineated as a majority 
of the Grundy County, US 65 records. Of all the Comp pavement sections, the Grundy County, 
US 65 section showed the greatest rate of deterioration; i.e. the largest rate of IRI growth/year, 
much higher than the rest of the segments, which indicates that a structural issue was causing 
the accelerated deterioration. There was significant investigation into modeling with and 
without the five Grundy County, US 65 records. Without the Grundy County, US 65 values, the 
goodness-of-fit improved significantly, but some of the predictor variables that were preferred 
to be in the models would not work. The decision was made that it was more important to 
identify predictor variables that were significant in predicting IRI for Comp pavements than to 
produce a model with a somewhat higher R2 value. After all, these are essentially preliminary 
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models that will be improved in the future. The dataset used to develop the Comp family model 
is given in Appendix 2D.  

4.2.2 Comp 3.75-in. Overlay Model 

The Comp 3.75-in. overlay model is based on 40 observations from six districts. The regression 
output is given in Fig. 4.9. 
 

 
 

Fig. 4.9— Comp 3.75-in. overlay model regression output. 
 
The Comp 3.75-in. overlay model shown in Fig. 4.9 has an even smaller R2 value relative to the 
Comp family model, despite fewer observations. The VIFs are fair-to-borderline, but all 
predictor variables exhibit high-to-very high significance with expected signs on the 
coefficients. The model shown in Fig. 4.9 has been mathematically manipulated such that the 
response, lnIRI, is now non-transformed and is given in Eq. 9 as IRIpred. 
 
                      (    )      (           )       (  )       (    ) (Eq. 9) 
 
 where: IRIpred = Predicted IRI (in./mi) 

IRIo = Initial IRI after treatment (in./mi) 
lnIRIimprov = natural log of IRI improvement; ln(ratio of IRIt to IRIo) 
SA = Surface Age (years) 
DT32 = Number of days/year that the air temperature was below freezing 
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As indicated in the earlier Comp family model discussion, sometimes IRIo worked best in 
conjunction with IRIimprov instead of IRIt. This time, as is shown in Fig. 4.9 and Eq. 9, the natural 
log of IRIimprov showed greater significance in the model than the non-transformed IRIimprov. The 
intercept and regression coefficients in Eq. 9 have been truncated slightly from those in Fig. 4.9 
to fit Eq. 9 on one line. Fig. 4.10 shows the actual versus the predicted IRI according to Eq. 9. 
 

 
Fig. 4.10— Comp 3.75-in. overlay model: actual versus predicted IRI. 

 
The plot given in Fig. 4.10 shows good agreement between the actual and predicted IRI in that 
the linear trendline lies almost on top of the line of equality with very little bias. The R2 value of 
the linear trendline fit on Fig. 4.10 is smaller than those for the FDA treatment models, and 
smaller than the Comp family model trendline fit shown in Fig. 4.8, even though there are fewer 
observations in the Comp 3.75-in. overlay model than in the FDA treatment models or the 
Comp family model. Again, the poorer R2 value is directly related to the few Grundy County, US 
65 data points. It seemed important to keep these extreme values in the Comp 3.75ʺ overlay 
model for consistency since they had been included in the Comp family model. It is notable that 
40 of the 54 observations in the Comp family model dataset were 3.75-in. overlay treatment 
records, a large majority. The dataset used to develop the Comp 3.75-in. overlay model is given 
in Appendix 2E. 
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4.3 Concrete (PCC) Pavement Model 

4.3.1 PCC Family Model 

The PCC Family model is based on 111 observations from six districts. The regression output is 
given in Fig. 4.11. 
 

 
 

Fig. 4.11— PCC family model regression output. 
 
The PCC family model shown in Fig. 4.11 has a respectable R2 value, and all predictor variables 
exhibit very high significance with expected signs on the coefficients. The VIFs vary significantly 
from good to moderately severe. There seems to be some collinearity between all four 
predictors, especially DP01 and DT32. This is not entirely unexpected as both DP01 and DT32 
are climate parameters which are geographically related. The response used in the regression 
analysis shown in Fig. 4.11 is the non-transformed IRI, thus there was no need for mathematical 
conversion. The model in Fig. 4.11 is given in Eq. 10 as IRIpred. 
 
                      (  )       (    )       (    )       (    ) (Eq. 10) 
 
 where: IRIpred = Predicted IRI (in./mi) 

SA = Surface Age (years) 
DP01 = Number of days/year that precipitation was ≥ 0.1in. 
DT32 = Number of days/year that the air temperature was below freezing 
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P200 = Percent passing the #200 sieve (defined in Task 1 report) 
 
There are two more predictor variables in the PCC family model that have not been introduced 
earlier: DP01 and P200. It is interesting to note that during all of the model selection processes, 
DP01 showed significance in some of the interim models but rarely showed the proper sign on 
the regression coefficient. However, for this particular set of data, it exhibits both significance 
and expected effect on the IRI. The same is true for P200 except that it occasionally would 
exhibit the expected effect on the IRI but, depending on the co-predictors in the model, it 
would not show enough significance. The intercept and regression coefficients in Eq. 10 have 
been truncated slightly from those in Fig. 4.11 to fit Eq. 10 on one line. Fig. 4.12 shows the 
actual versus the predicted IRI according to Eq. 10. 
 

 
Fig. 4.12— PCC family model: actual versus predicted IRI. 

 
The plot given in Fig. 4.12 shows good agreement between the actual and predicted IRI in that 
the linear trendline lies almost on top of the line of equality with very little bias. The R2 value of 
the linear trendline fit on Fig. 4.12 is respectable given the fair number of observations and the 
influential group of data points associated with the only diamond grinding treatment identified 
in the PCC family dataset. The five record dataset associated with the diamond grinding 
treatment on US 63 north of Rolla has a maximum SA of about 3.8 years whereas the average 
minimum SA for the other sections in the PCC family model dataset is about 27 years. The 
diamond grinding treatment data has a heavy influence on the initial regression shown in Fig. 
4.11 because the SA for this data is so extreme at the bottom end of the SA data space. Because 
there was only one instance of surface treatment for the selected PCC pavement sections, no 
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PCC treatment model development was attempted. The dataset used to develop the PCC family 
model is given in Appendix 2F. 

4.4 Adjusted IRI vs SA Models 

The Task 5 team also required simple models that predicted IRI as a function of SA in order to 
rearrange the equation and solve for SA at specific IRI levels for the purpose of obtaining 
deterioration rates. To accomplish this requirement, it was necessary that the actual IRI and SA 
values in each modeling dataset (evaluated by direction, or TWID, within each pavement 
section) be adjusted (shifted) such that 1) the youngest or first adjusted IRI value be assigned 
the actual average IRIo associated with that particular modeling dataset, and 2) the first 
adjusted IRI value occur at one month of SA (0.08333 years). Note that the average IRIo used for 
the FDA and Comp models adjusted IRIs was a calculated value, but the PCC family model 
adjusted IRI used 60 in/mi as the average IRIo, a value estimated from viewing ARAN videos for 
several newly constructed PCC pavements and referencing the MoDOT smoothness 
specifications. There was no way to determine, with any confidence, the field IRIo for each PCC 
pavement section because they were so old. Fig. 4.13 shows an image of a portion of the 
dataset used to generate the FDA family model using this adjusted IRI and SA concept. 
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Fig. 4.13— Portion of FDA family dataset with adjusted IRI and SA concept. 

 
The table shown in Fig. 4.13 is a portion of the FDA family dataset and shows four 

different Boone County pavement sections, all delineated by solid lines. Within each section, a 
dotted line (if it is present) indicates that the data above and below the dotted line is associated 
with different pavement surfaces on that same section; i.e. a surface treatment occurred. The 
data within each treatment is first sorted by TWID (direction) then by year.  

All initial IRI values (IRIo) for each roadway segment needed to be adjusted to the 
average IRIo of the data set. To understand the adjustment mechanism, begin by looking at the 
very first row or record; Boone County, MO 124, TWID 3577 (eastbound), Year 2002. The IRIadj 
for that row is taken as the actual average IRIo for the FDA family dataset, which is 91.1 in/mi 
(based on the IRIo-only FDA dataset; n = 350; see Table 1). The SAadj for that same row is set at 
0.08333 years (i.e. one month). Now look at the second row, Year 2003. The IRIdelta and the 
SAdelta values are the difference between the 2003 and 2002 actual IRI values (84.0 – 82.1 = 1.9), 

County TW Name SecLength TWID Year IRI IRI Delta IRIadj SA SA Delta SAadj
BOONE 124 4.0 3577 2002 82.1 0.0 91.1 0.1 0.00000 0.08333
BOONE 124 4.0 3577 2003 84.0 1.9 93.0 1.0 0.87945 0.96278
BOONE 124 4.0 3577 2007 100.2 16.2 109.1 4.9 3.94795 4.91073
BOONE 124 4.0 3577 2008 102.0 1.8 111.0 6.0 1.11233 6.02306
BOONE 124 4.0 3577 2011 118.7 16.7 127.6 9.2 3.16986 9.19292
BOONE 124 4.0 3578 2004 90.6 0.0 91.1 2.5 0.00000 0.08333
BOONE 124 4.0 3578 2005 92.4 1.8 92.9 3.0 0.50137 0.58470
BOONE 124 4.0 3578 2006 98.2 5.8 98.6 4.1 1.06027 1.64497
BOONE 124 4.0 3578 2009 125.1 26.9 125.6 6.9 2.83836 4.48333
BOONE 124 4.0 3578 2012 73.5 0.0 91.1 0.8 0.00000 0.08333
BOONE E 10.0 3539 1993 134.3 0.0 91.1 4.7 0.00000 0.08333
BOONE E 10.0 3539 1995 137.7 3.4 94.5 6.7 2.00822 2.09155
BOONE E 10.0 3539 2004 125.9 0.0 91.1 6.6 0.00000 0.08333
BOONE E 10.0 3539 2006 133.6 7.6 98.7 8.5 1.82740 1.91073
BOONE E 10.0 3539 2008 147.3 13.7 112.4 10.5 1.99178 3.90251
BOONE E 10.0 3539 2009 146.3 -1.0 111.4 11.3 0.84384 4.74634
BOONE E 10.0 3540 2003 130.1 0.0 91.1 5.5 0.00000 0.08333
BOONE E 10.0 3540 2005 142.5 12.4 103.4 7.4 1.91233 1.99566
BOONE E 10.0 3540 2007 149.5 7.0 110.4 9.4 1.95342 3.94908
BOONE E 10.0 3540 2010 164.7 15.3 125.7 12.6 3.24110 7.19018
BOONE E 10.0 3540 2011 175.7 11.0 136.7 13.5 0.90685 8.09703
BOONE E 10.0 3540 2012 110.2 0.0 91.1 1.0 0.00000 0.08333
BOONE HH 3.5 7113 2006 144.6 0.0 91.1 9.6 0.00000 0.08333
BOONE HH 3.5 7113 2008 175.0 30.4 121.4 12.4 2.79452 2.87785
BOONE HH 3.5 7114 1996 90.1 0.0 91.1 0.1 0.00000 0.08333
BOONE HH 3.5 7114 2004 138.7 48.6 139.6 8.5 8.39178 8.47511
BOONE HH 3.5 7114 2009 207.5 68.8 208.4 12.9 4.40000 12.87511
BOONE HH 3.5 7113 2012 126.9 0.0 91.1 2.0 0.00000 0.08333
BOONE HH 3.5 7114 2010 110.6 0.0 91.1 0.1 0.00000 0.08333
BOONE HH 3.5 7114 2011 114.9 4.3 95.3 1.0 0.87123 0.95456
BOONE N 5.4 7271 2004 112.5 0.0 91.1 0.2 0.00000 0.08333
BOONE N 5.4 7271 2006 134.1 21.6 112.7 1.9 1.71781 1.80114
BOONE N 5.4 7271 2007 139.1 5.0 117.6 3.0 1.11233 2.91347
BOONE N 5.4 7271 2008 142.3 3.2 120.8 4.0 1.04384 3.95730
BOONE N 5.4 7271 2009 143.8 1.5 122.3 4.6 0.52329 4.48059
BOONE N 5.4 7271 2010 154.0 10.2 132.5 6.0 1.45205 5.93265
BOONE N 5.4 7271 2011 153.6 -0.3 132.2 6.4 0.39178 6.32443
BOONE N 5.4 7271 2012 170.9 17.3 149.4 7.8 1.41096 7.73538
BOONE N 5.4 7272 2005 114.8 0.0 91.1 1.2 0.00000 0.08333
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and the difference between the 2003 and 2002 actual SA values (1.0 – 0.1 = 0.87945), 
respectively. The 2003 IRIadj and SAadj values are the sum of the 2002 IRIadj and SAadj values and 
the 2003 IRIdelta and SAdelta values (91.1 + 1.9 = 93.0; 0.08333 + 0.87945 = 0.96278). Note that 
the IRIdelta and SAdelta values for 2002 are zero because there is no change (delta) in IRI in 2002 
as it is the first year of the directional time-series. The calculations performed on the second 
row are repeated for all remaining years for the same TWID (direction) per treatment per 
section. In summary, for each directional set of data per treatment per section, the first row 
adjusted values are determined differently from the subsequent rows (provided there are more 
than one row per direction/treatment/section). Sections 4.4.1 through 4.4.6, below, give the 
TableCurve 2D® plots and the associated equations based on the same six pavement family 
and treatment modeling datasets analyzed previously, unless noted otherwise. The curve fitting 
in the following analyses was also weighted based on SecLength. 

4.4.1 FDA Family Model 

Fig. 4.14 shows the plot for the FDA family model using the adjusted IRI and SA concept. 
 

 
Fig. 4.14—FDA family model using IRIadj and SAadj concept. 

 
TableCurve 2D is a curve fitting program with 3,665 built-in equations. The area in the top of 
the TableCurve 2D plot shows the plot title, the model equation (along with the equation 
number and associated ranking based on all equations fit to the data), the regression statistics, 
and the regression coefficients. All equations fit to the data can be grouped by equation form 
such as simple, non-linear, polynomial, rational, etc., and viewed in the plot window. For 
purposes in this investigation, only simple and non-linear equations were reviewed. Within 
these groupings, the equations can be ranked according to various statistics such as R2. Models 
were selected such that they had the highest possible R2 (and adjusted R2) value, they were as 
simple as possible, and the curves were logical. 

IRI vs SA (adjusted) - FDA Family
Rank 1754  Eqn 3  y=a+bx^(1.5)

r^2=0.75804969  DF Adj r^2=0.75665517  FitStdErr=7.4235088  Fstat=1090.3119
a=92.065943 
b=1.6328955 
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 Fig. 4.14 shows the best “simple” model for the FDA family model “adjusted” data (n = 
350). The blue-colored data points are within ± 1 standard deviation (SD). The green data points 
are outside ± 1SD but within ± 2SD. The yellow data points are outside ± 2SD but within ± 3SD. 
The red data points are outside ± 3SD. The equation intercept (regression coefficient “a”) is 
91.1, when rounded to the nearest 0.1, which is expected. Remember that the actual average 
IRIo for the FDA family dataset was 91.1 in/mi. Technically, the intercept is the y-value of the 
equation when x = 0 but the lowest x-value in the adjusted data is really 0.08333. Note that 
there are 140 instances of x = 0.08333 and y = 91.1 on the plot, which really forces the curve 
through that particular point. The selection of 0.08333 years (one month) as the initial SAadj was 
beneficial because many of the 3,665 equations in TableCurve 2D would probably not work if 
there was an x = 0 value in the dataset. 
 As pointed out earlier in this section, selected equations/curves should be logical; i.e. 
they should make physical sense. For example, as SA increases, the predicted IRI should also 
increase. However, there is a general physical limit to how “rough” a pavement will get even 
with the most severe deterioration, meaning a deterioration (IRI or roughness) curve should 
begin to flatten out at some point in time. A function with this particular characteristic that is 
widely referenced in the literature for pavement deterioration is the sigmoid function 
(Zimmerman et al. 2011). During preliminary curve fitting of the FDA family model “adjusted” 
data used to generate the curve in Fig. 4.14, one of the logically and statistically superior 
functions was the sigmoid. Fig. 4.15 shows that plot with the SA extended out to 30 years. 
 

 
Fig. 4.15— FDA family IRIadj and SAadj concept model with sigmoid function. 

 
Relative to the Fig. 4.14 model, the sigmoid model shown in Fig. 4.15 has a slightly higher R2 
(and adjusted R2) and flattens out in time past the actual data used to generate the model. 
Under most scenarios, the sigmoid model would be preferred. However, the portion of the 
curve begins to flatten beyond the range of the data. In reality, the literature indicates that 
curves probably do not flatten until the pavement is in a much rougher condition, well over an 

IRI vs SA (adjusted) - FDA Family
Rank 522  Eqn 8011  Sigmoid(a,b,c,d)

r^2=0.7629094  DF Adj r^2=0.76016052  FitStdErr=7.3697861  Fstat=371.11924
a=79.244937 b=122.72131 
c=9.565381 d=4.3051855 

0 10 20 30
SA (years)

50

100

150

200

250

IR
I (

in
/m

i)

50

100

150

200

250

IR
I (

in
/m

i)



 

46 

 

IRI of 200 in./mi. Additionally, MoDOT has adopted  a threshold of 220 in./mi for certain 
treatment actions for low volume routes. Thus, the Task 5 team required the curve to extend 
further in the y-direction, to at least an IRI value of 220 in./mi. Fig. 4.16 shows the same model 
as that in Fig. 4.14 but with SA extended out to 30 years.  
 

 
Fig. 4.16— FDA family IRIadj and SAadj concept model (Fig. 4.14) with extended SA axis. 

 
As can be seen in Fig. 4.16, the “simple” model has a forever-increasing slope, which is not 
physically logical for pavement deterioration, but neither is flattening at 200 in./mi. 
Nevertheless, because the extent of necessary extrapolation was not extreme (out to ~18 
years), the model shown in Fig. 4.14 (and Fig. 4.16) was chosen. It is important to remember 
that extrapolation outside of the range of data utilized to generate a model can be risky and 
should be undertaken with caution. 

4.4.2 FDA 1-in. Overlay Model 

Fig. 4.17 shows the plot for the FDA 1-in. overlay model using the adjusted IRI and SA concept. 
 

IRI vs SA (adjusted) - FDA Family
Rank 1754  Eqn 3  y=a+bx^(1.5)

r^2=0.75804969  DF Adj r^2=0.75665517  FitStdErr=7.4235088  Fstat=1090.3119
a=92.065943 
b=1.6328955 
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Fig. 4.17— FDA 1-in. overlay model using IRIadj and SAadj concept. 

 
Fig. 4.17 shows the selected “non-linear” model for the FDA 1-in. overlay model “adjusted” 
data (n = 216). The form of the non-linear equation is given below in Eq. 11.  
 
 

          (   
(
      
 

)) (Eq. 11) 

 
 where: IRIadj = Adjusted IRI (in/mi) 

SAadj = Adjusted SA (years) 
a, b, c = regression coefficients (values shown at top of Fig. 4.16) 

 
The non-linear function in Fig. 4.17, too, is not physically logical if extrapolation out in time is 
extreme. Again, however, there is very little extrapolation necessary in this case. 

4.4.3 FDA Chip Seal Model 

Fig. 4.18 shows the plot for the FDA chip seal model using the adjusted IRI and SA concept. 
 

IRI vs SA (adjusted) - FDA 1" Overlay
Rank 1333  Eqn 8002  Exponential(a,b,c)

r^2=0.80591049  DF Adj r^2=0.80316394  FitStdErr=7.4177107  Fstat=442.21591
a=68.98686 b=17.690206 

c=-6.6916652 
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Fig. 4.18— FDA chip seal model using IRIadj and SAadj concept. 

 
Fig. 4.18 shows the best “simple” model for the FDA chip seal model “adjusted” data (n = 74). It 
is the same form of equation as that used for the FDA family model.  

4.4.4 Comp Family Model 

Fig. 4.19 shows the plot for the Comp family model using the adjusted IRI and SA concept. 
 

 
Fig. 4.19— Comp family model using IRIadj and SAadj concept. 

 
 
 

IRI vs SA (adjusted) - FDA Chip Seal
Rank 67  Eqn 3  y=a+bx^(1.5)

r^2=0.55998659  DF Adj r^2=0.54759185  FitStdErr=5.4181639  Fstat=91.631378
a=115.59588 
b=1.5731067 
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IRI vs SA (adjusted) - Comp Family (Grundy US65 Out)
Rank 771  Eqn 1  y=a+bx

r^2=0.70762237  DF Adj r^2=0.6949103  FitStdErr=1.538327  Fstat=113.75101
a=57.363758 
b=1.6535615 
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Fig. 4.19 shows the selected “simple” model for the Comp family model “adjusted” data (n = 
49). Of all the available equations in the equation catalog, TableCurve 2D  equation #1, shown 
in Fig. 4.19, was the best model based on adjusted R2, while still being logical within limits (i.e. 
extreme extrapolation warning due to constant, positive slope). Also, note that the five Grundy 
County, US 65 extreme data points included in the multivariate Comp models presented earlier, 
were taken out for this particular analysis.  

4.4.5 Comp 3.75-in. Overlay Model 

Fig. 4.20 shows the plot for the Comp 3.75-in. overlay model using the adjusted IRI and SA 
concept. 
 

 
Fig. 4.20— Comp 3.75-in. overlay model using IRIadj and SAadj concept. 

 
Fig. 4.20 shows the selected “simple” model for the Comp 3.75-in. overlay model “adjusted” 
data (n = 35). For consistency, the five Grundy County, US 65 data points were also removed for 
this analysis. 

4.4.6 PCC Family Model 

Fig. 4.21 shows the plot for the PCC family model using the adjusted IRI and SA concept. 
 
 

IRI vs SA (adjusted) - Comp 3.75" Overlay (Grundy US65 Out)
Rank 671  Eqn 1  y=a+bx

r^2=0.80299676  DF Adj r^2=0.79068406  FitStdErr=1.2499647  Fstat=134.50994
a=55.422661 
b=1.5738369 
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Fig. 4.21— PCC family model using IRIadj and SAadj concept. 

 
Fig. 4.21 shows the selected “simple” model for the PCC family model “adjusted” data (n = 111). 
This family model includes the data for the one PCC surface treatment identified in the data for 
the selected sections in the PCC investigation: diamond grinding on US 63 in Phelps County, 
north of Rolla. 
 
 
 
 
 
 
 
 
 
 
  

IRI vs SA (adjusted) - PCC Family
Rank 71  Eqn 1  y=a+bx

r^2=0.47831839  DF Adj r^2=0.46865762  FitStdErr=7.9359556  Fstat=99.939701
a=59.421367 

b=1.44559 
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5 CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 Conclusions 

All of the pavement family and treatment performance models presented in this report have 
moderate-to-high R2 values with good significance statistics and expected signs on the 
regression coefficients. They were all based on averaged data that was applied to the entire 
homogenous section, the regressions were weighted based on the length of each section, and 
each section was a two-lane, undivided roadway. It is also important to remember that the 
models are most accurate when data applied to them are within the range of data used to 
develop them. The datasets used to generate each multivariate model presented are 
embedded as Excel® spreadsheets in Appendices 2A through 2F and show the maximum, 
minimum, average, median, and standard deviation statistics for each relevant response and 
predictor variables. 

The predictor variables that did end up in the models track with those cited in the 
literature (existing condition prior to treatment, condition after treatment, surface age, climate, 
subgrade soil, and treatment thickness). Original pavement types were inherent to the models. 
However, explicit traffic volume data (such as cumulative total (or truck) traffic), a parameter 
that is cited in the literature as highly significant in predicting pavement deterioration, did not 
show up in the results of these analyses. The traffic data was analyzed in various forms (AADT 
(or AADTT), annual total (or truck) traffic, and cumulative total (or truck) traffic), but almost 
always showed up in the regressions as insignificant and/or had the wrong sign on the 
regression coefficient. The theory is that the traffic data itself was inaccurate due to a 
combination of 1) the methodologies by MoDOT in its assignment of traffic volume values to 
different pavement sections/routes (although MoDOT reportedly follows FHWA guidelines in 
this regard) and possibly 2) the Task 1 team’s decision to apply the most recent traffic data to 
all years of data per section (and direction); i.e. not account for a possible change in traffic 
volume as a function of time. Another reason that could explain why increasing traffic did not 
show up significantly in the models as a cause for increasing IRI could be that some variables 
that reduce deterioration are associated with traffic level and actually increase along with 
increasing traffic: thickness, quality of materials and construction, and maintenance quality; an 
increase in these variables will counteract to a certain degree the deteriorating action of 
increasing traffic. 

During the FDA pavement analyses, and in response to the various traffic parameters 
not showing up in the regressions in the expected manner, a dummy variable was created 
called TrafLvl which was coded in such a way to account for the four different traffic levels as 
defined by AADT: 1700-3500 (coded as 1), 750-1700 (coded as 2), 400-750 (coded as 3), and 
<400 (coded as 4). The pavement sections associated with each of these four traffic levels was 
assigned the appropriate dummy code. Interestingly, but not necessarily surprisingly, this 
dummy variable did occasionally show up during the interim FDA family model selection 
procedures as significant and with the expected sign on the coefficient. Ultimately, however, 
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TrafLvl was not used due to its relative insignificance when combined with other, more 
impactful, predictors like IRIo, SA, and IRIt.  

Another dummy variable was created to attempt incorporation of total pavement 
thickness into the FDA family model. This dummy variable was also coded based on AADT levels 
where those sections with AADT levels ≥ 400 were coded as 0 (zero) and those with AADT levels 
< 400 were coded as 1. The theory was that the very low volume routes would be significantly 
thinner in cross-section than higher volume routes and more vulnerable to load-induced 
distress. The cutoff at 400 AADT was somewhat arbitrary but was partly based on discussions 
with MoDOT pavement engineers. This predictor, too, showed up in some of the interim FDA 
family model selection procedures as significant and with the expected sign on the coefficient. 
It, too, however, was not used in the end because the variables ultimately included in the final 
models overwhelmed it in the regressions.  

Regarding the parameters that did prove to be significant in predicting IRI, one should 
remember that the FDA data applied only to the Central District. Increasing the range of climate 
and subgrade soil parameter values by expanding the analyses to the entire state could not only 
improve the models but allow for additional parameters to play a role in predicting IRI. 
Although the Comp/PCC sections were selected from regions spread throughout the state, the 
number of homogenous sections was fairly limited which would also limit the probability of 
identifying additional parameters to predict IRI.  

The data quality checks, reduction, and configuration in preparation for regression 
analyses were the most time-consuming portions of Task 2. Follow-up verification or 
determination of treatment type, thickness, etc., determination of a more accurate date 
corresponding to the opening of the pavement to traffic, and culling of invalid IRI data are 
activities that were tedious. Hopefully, this process will become more efficient through 
automation and/or the use of new methodologies by MoDOT, such as the Pavement Tool. 

5.2 Recommendations 

The following are recommendations for improving future performance modeling activities for 
MoDOT’s lower volume routes: 
 

 The first order of business is for the models presented in this report to be validated with 
independent data. 

 Improve the accuracy of the traffic data: 
o Increase the instances of actual traffic counts on the lower volume routes. 
o Add additional criteria to, or further delineate the route categories when 

assigning actual traffic counts to “similar” routes per the FHWA guidelines. 
o Implement a system of traffic spectra, similar to, or the same as those defined in 

the AASHTOware M-E Pavement Design procedure, e.g. include impact of axle 
loads in addition to truck traffic (AADTT). 

 More precisely document the type of the latest full-width surface treatment, whether it 
be in-house or contract work. The “Surface Type” field in SS Pavement is not completely 
reliable as it may reflect shoulder work, etc., instead of the actual traveled-lane surface 
type.  
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 More precisely document the actual date that a pavement was opened to traffic after a 
treatment; this will increase the accuracy of any SA calculation. 

 More precisely document the actual thickness of a treatment. 

 In cases of “mill and fill,” be sure that the mill-depth is accurately and conspicuously 
documented. This will help with tracking accumulated total thickness. 

 Make an effort to somehow document total thickness and composition of existing FDA 
pavements, perhaps by retroactively updating through work performed for some other 
reason such as coring, culvert trenching, or non-destructive evaluation. 

 When adding sections to a dataset, be sure that they are homogenous sections. The 
dynamically-segmented sections in SS Pavement may not be “homogenous” as defined 
in the Task 1 report (i.e. similar cross-section and material type, traffic is relatively 
uniform across the section length and direction, and traffic moves at highway speeds 
with no stops/starts). 

 Automate the procedure for removing invalid Unit IRI data. 

 Continue to collect and compile data for the parameters used in the current models. 

 Also continue to collect and compile those parameters not used in the current models 
but included in the datasets given in Appendices 2A through 2F; e.g. AADT, AADTT 
(COM_VOL_BY_DIR field in SS Pavement), AFI50 (climate parameter), and the subgrade 
soil parameters. 

 Add potentially predictive parameters to the datasets where possible; e.g. bituminous 
mixture types, lift thicknesses and number of lifts per overlay. 
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APPENDIX 2A – FDA Family Model Dataset 
 

FDA Family (237 
n).xlsx

 
 

APPENDIX 2B – FDA 1ʺ Overlay Model Dataset 
 

FDA 1 inch OL (119 
n).xlsx

 
 

APPENDIX 2C – FDA Chip Seal Model Dataset 
 

FDA ChipSeal (65 
n).xlsx

 
 

APPENDIX 2D – Comp Family Model Dataset 
 

Comp Family (54 
n).xlsx

 
 

APPENDIX 2E – Comp 3.75ʺ Overlay Model Dataset 
 

Comp 3.75 inch (40 
n).xlsx

 
 

APPENDIX 2F – PCC Family Model Dataset 
 

PCC Family (111 
n).xlsx
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