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Abstract 

 
An incident influences traffic not only in the incident direction but also in the 

opposite direction.  There has been research on the influence of incidents on the traffic in 

the incident direction.  However, research relating to the influence on the opposite 

direction of traffic is rare.  Previous research has shown that congestion due to incidents 

account for 60% of the total congestion on a freeway system.  These incidents cause the 

freeway system to operate inefficiently.  By determining which variables contribute to the 

“non-recurrent” congestion and also the impact on traffic, mitigation techniques may be 

applied to minimize these effects.        

In this study the impact of incidents on the traffic in the opposite direction was 

investigated with focus on rubbernecking likelihood, delay, and capacity reduction.  To 

achieve this study certain objectives were met.  First, a database consisting of incident 

information, traffic and other related variables was developed.  The next step was to 

determine whether the rubbernecking impact on the opposite direction traffic was 

significant.  Factors that influence the impacts of rubbernecking likelihood were 

identified.  Recommendations of effective countermeasures were developed to possibly 

reduce rubbernecking impacts.  Traffic data was investigated while congestion delay as 

well as capacity reduction calculations were performed.  This study is the first attempt to 

evaluate the rubbernecking impact of accidents on traffic in the opposite direction based 

on archived traffic and accident data.   
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Chapter 1: Introduction 

 
Freeway incidents cause major congestion throughout the United States every 

year.  These incidents are often vehicle-vehicle crashes, which many times cause major 

backups, sometimes for miles, along freeways.  These overcrowded situations are costly 

gridlocks, costing the travelers time and money.  Other costs incurred especially due to an 

incident include increased potential for secondary accidents, additional wear and tear on 

vehicles, and environmental pollution.  Historical statistics show that more than 50% of 

urban freeway congestion is caused by incidents (Lindley, 1989).  Reducing the amount 

of congestion with various Intelligent Transportation Systems (ITS) or other methods is 

an important area of research.  Through the research and implementation, time and 

money and even lives can be saved.  In the past, research has been focused on 

determining and modeling the impacts of incidents in the direction of traffic of the 

incidents.  The results from the research can be used to determine system performance 

measures such as delay, capacity reduction and travel times.  

Although the modeling of incident traffic in the same direction is important, it 

deals with only half of the traffic problem.  Accidents also have an impact on the 

opposite direction of traffic.  Even though there are no lane blockages in the opposite 

direction of an accident, there are reasons to believe that an impact exists on traffic.  This 

impact is due to rubbernecking.  According to the Webster Dictionary “rubbernecking” 

means to look about, stare, or listen with exaggerated curiosity.  Individuals driving in the 

opposite direction of an accident are often distracted by the incident.  It is the curiosity of 

the event that leads to distraction, and then causes a reduction in vehicle speeds.  This 



2

reduction in vehicle speeds begins to create congestion.  Although a significant part of 

rubbernecking is attributed to various human factors, there are other factors such as 

presence of barriers that influence the form of rubbernecking.   

 

This thesis investigates the impact of traffic in the opposite direction of travel 

from a vehicle accident. To accomplish this investigation, there are certain objectives to 

accomplish.   

1. Determine whether the rubbernecking impact on the opposite direction 

traffic is significant. 

2. Investigate traffic data and calculate traffic delay and capacity 

reduction in the opposite direction of travel. 

3.      Identify the factors that influence the impacts in terms of  

   rubbernecking likelihood, traffic delay and capacity reduction. 

4.     Recommend effective countermeasure on rubbernecking in the    

  opposite direction. 

 

To determine whether rubbernecking impact is significant, occupancy vs. time 

plots are created for each incident.  Significant changes in occupancy are observed 

visually and documented.  Once these significant impacts were documented the 

rubbernecking likelihood (a probability of rubbernecking occurrence), delay (veh*hr) and 

capacity reduction (percentage of capacity loss) are derived using various methods.   

These results for delay and capacity reduction for the Hampton Roads area are then 

compared with the delay and capacity reduction in other comparative studies.  To identify 
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the influencing factors, linear and binary regression models are developed.  The variables 

that are statistically significant in these models are identified as outstanding.  Based on 

the identification of the influencing factors, mitigation measures are recommended.       

The area focused in this study is the freeway system in the Hampton Roads area 

in Virginia. This freeway system consists of approximately 10 miles of Interstate 64 from 

I-564 down south to Indian River Road and also Interstate 264 eastbound from the I-64 

interchange.  Incident and associated accident data has been collected by the Hampton 

Roads Smart Traffic Center and archived by the University of Virginia’s Smart Travel 

Lab.  The incident type and year examined in this study are limited to vehicle accidents in 

the year 2000.  

 The remaining parts of this thesis include background information, previous 

research on incident delays and modeling, methodology explanation, results, analysis and 

findings, and finally conclusions and recommendations.  

 

 Chapter Two consists of background information and previous research done on 

the various measures this study investigated.    

 Chapter Three consists of the methodology used in this study.  A detailed list of 

different techniques attempted and used in this study is laid out.   

 Chapter Four contains the results and evaluation of the different measures 

described in the methodology.   

 Chapter Five documents the analysis of the results section, including regression 

models, prediction models, and summary. 

 Chapter Six includes conclusions and recommendations. 
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Chapter 2:  Background Review 

 
 An incident is a traffic event that has an impact on traffic conditions.  Incidents 

come in many forms, including disabled vehicles, abandoned vehicles, various spills and 

debris, environmental events (weather), and probably the most influential, vehicle 

accidents. These incidents decrease flow and add additional congestion to the already 

crowded urban freeways.  This causes the Level of Service (LOS) to decrease and also 

adds to causes of additional incidents.  Previous research has been done on traffic impacts 

of incidents, incident management, incident prediction, and other topics pertaining to 

these random events.  Although the information gathered for these studies is typically for 

traffic in the same direction as the incident, it is still valuable for this study.   

 

2.1 Flow / Occupancy (Density) Relationships 

 The flow and density relationship has been explored since the publication of the 

L-W-R theory Lighthill and Whitman in 1955 and Richards in 1956.  In general, flow is 

defined as the number of vehicles to pass a point during a certain time.  Density is 

referred to as the number of vehicles per roadway length.  Many models have been 

developed in an attempt to determine the correlation between flow and density.  Some 

models such as the Greenshield model use single regime non-linear approach (see Figure 

1), while others use multi-regime complex models. 
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Figure (2-1): Greenshield's Flow vs. Density Model 
 
 
 

The model developed by a Northwestern University research team, takes into 

consideration a two-regime linear model.  The first regime considers a positive slope 

linear relation of flow and occupancy during non-congested conditions.   

capacityOCC OCC≤  

The other regime considers a negative slope linear relation of flow and occupancy for 

congested conditions.    

capacityOCC OCC>  

Note that occupancy measures the percentage of time vehicles occupy a section of 

roadway where a loop detector is installed. It is often used in place of density because it 

is directly proportional to density based on a factor of average vehicle length.  This two- 

regime linear model is diagramed below.  
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Figure (2-2): Two-Regime Flow vs. Occupancy Model 

 

 

2.2 Traffic Delay       

Congestion delay is referred to as the difference between actual travel time and 

the free-flow time on a section of freeway (Hall, 1992).  It can be determined for a wide 

variety of traffic situations such as freeway and arterial systems.  In freeway systems, 

delay is often thought about in terms of “recurrent” and “non-recurrent” delays.  

Recurrent delays are delays experienced in everyday travel based on historical data.  

Non-recurrent delays are delays caused by an event or an incident and it can be broken up 

into two periods, immediate delay and residual delay.  Immediate delay is the part of the 

delay incurred during the duration of the incident.  The residual delay is the delay 

sustained after the incident has cleared.  It is estimated that 60% of all freeway delay is 

attributed to incident producing non-recurrent delay (Lindley, 1989).   
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Incident-induced delays have been calculated using a variety of methods.  

Morales (1986) developed a cumulative volume approach to calculating freeway delays.    

In this approach, two cumulative volume curves (one for arrival and the other for 

departure at an incident site) are plotted on a time axis.  The area between these two 

curves represents the extra delay due to an incident.  This is shown below in Figure 2-3. 

 

 

 

Figure (2-3): Cumulative Volume Diagram - Delay due to an Incident 
 

In addition to this delay calculation based on the cumulative curves, it has been 

suggested to adjust one or both of these curves.  Daganzo (1997) proposes a ‘virtual’ 

arrival curve be used to determine delays.  This virtual arrival curve is a translation of the 
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actual arrival curve based on the “number of items that would have been seen directly 

upstream of the restriction” by the beginning of the incident duration.  The actual arrival 

curve is translated to the right by a value of τ, representing the travel time between 

observers, or stations.  This new method of determining delays is just one of the recent 

methods used.    

Al-Deek et al (1994) developed a new method and made improvement to 

Morales’ approach by looking at delays in time slices.  They incorporated vehicle speeds 

in conjunction with traffic volumes to develop a delay formula.  Assumptions they made 

include: 

• Traffic speed and volume data are determined from the loop stations on a 

roadway segment and these data are homogeneous throughout the segment 

• Incident delay is calculated with respect to a reference (or base) average speed 

which reflects normal conditions that may or may not be congested.  The 

reference speed represents a historical speed profile which may be used to 

segregate (distinguish between) incident and non-incident (recurring) 

congestion.  

   

A drawback to this approach is that it required one-minute speed averages.  Smaller 

interval averages (less than one minute) could lead to “noisy” data, while larger intervals 

(greater than one minute) do not allow for accurate estimation of queue boundaries.  The 

delay was then calculated using the formulas shown below.  Different from the queuing 

diagram approach where incident duration, capacities before and after an incident and 

traffic demand are used to calculate delay, the incident delay is determined using the 
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time-slice method by Al-Deek (1994).  The individual slices are summed up to form the 

total delay shown at the bottom of the reference below. 

,

1 1
60

i i
k k k i i r

k k

TD L F
V V∂

⎛ ⎞∆
= −⎜ ⎟

⎝ ⎠
 for  ,0 i i r

k kV V< <                                                                   (1) 

2

60
i i
k k

TD F ∆⎛ ⎞= ⎜ ⎟
⎝ ⎠

 for   0i
kV =                (2) 

0i
kD =  for 

,i i r
k kV V>                (3) 

where 

i
kD  = Delay on freeway segment “k” during time slice “i” (vehicle-hours) 

kL  = Length of segment k (miles) 

T∆  = Length of time slice “i” (minutes) 

i
kF  = Flow (from loops) on segment “k” during time slice “i” (vehicles per hour) 

i
kV  = Speed (from loops) on segment “k” during time slice “i” (miles per hour) 

,i r
kV  = Reference average speed on segment “k” during time slice “i” (miles per hour). 

 

The total delay on the freeway section that is caused by the incident is given by: 

1 1

m n
i
k

i k
TD D

= =

= ∑∑                                                                                                           (4) 

In addition to the queuing diagram and real-time traffic data based approach 

computer simulation is another effective way in modeling traffic delays during incidents.  
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2.3 Capacity Reduction 

 The Highway Capacity Manual (HCM) defines freeway capacity as “the 

maximum hourly rate at which persons or vehicles can reasonably transverse a point or 

uniform section of a lane or roadway during a given time period.”  During this time 

period, typically 15 minutes, the freeway must be operating under ‘ideal conditions’.  

When these ideal situations are not present, typically during an incident, the capacity is 

reduced.  The HCM provides an equation for capacity reduction caused by basic non-

ideal conditions (lane width, heavy vehicle factor, number of lanes, etc), but not for 

incident situations.  The HCM states that a capacity reduction of 10-20 percent is 

characteristic of rainy weather.  A separate study by Jones and Goolsby (1970) revealed a 

14 percent loss of capacity due to rain.  This capacity loss is based on the maximum 

number of vehicles able to pass a section of roadway in a given time.  Although the 

maximum possible flow should not change, the actual amount of vehicles passing a 

section of roadway would be reduced.   

The reduced capacity used in incident modeling is called the ‘effective capacity’ 

and is referred to the “expected roadway capacity, over time, after accounting for the 

occurrence of incidents.” (Hall, 1992)  Having an effective capacity formula based on 

incident characteristics would be an ideal solution of calculating capacity reduction.  

However, such a formula would not hold for situations for which more than one incident 

is present.  It has been proposed that in the case of multiple incidents, the incident that 

has the largest impact on capacity should be used in the analysis.  This is to say that the 

capacity reduction “is not the sum of their magnitudes, but their maximum.”  The 

research by Goolsby in 1971 and Lindley in 1986 developed capacity reductions for 
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certain lane and shoulder blockages.  It was concluded that “the effective capacity loss 

due to incidents is far less than the effective loss due to removing a single lane on a four-

lane roadway.” 

 

2.4 Rubbernecking Effects 

 It is a result of a human response to the surroundings such as freeway signs, 

scenery, billboard ads, and many other visual “eye-candy”.  From a traffic operations 

standpoint, rubbernecking is a serious issue that can sometimes create traffic congestion 

and even traffic incidents.  On the other hand, the attention of the driver is focused on 

these surroundings and less attention is on the roadway, making rubbernecking a safety 

issue as well as a traffic congestion issue. 

 A 2003 study by the Virginia Commonwealth University’s Transportation Safety 

Training Center (TSTC) revealed that rubbernecking was the leading cause of vehicle 

crashes.  These rubbernecking accidents were not caused by landmarks or other scenery; 

they were caused by drivers looking at other vehicle crashes and other roadside traffic 

incidents.  Rubbernecking caused by vehicle crashes and other incidents accounted for 

sixteen-percent of all vehicle crashes, while the total number of outside the car 

distractions accounted for 35-percent.  There has been research performed on calculating 

rubbernecking effects of traffic in the same direction of travel as the incident, including 

studies by.  These effects are due to rubbernecking of adjacent lanes and shoulders.  

Although preliminary findings of this  suggest significant rubbernecking effects on the 

opposite direction of travel, there is no documentation available on this topic. 
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2.5 Physical Factors 

 Drivers cannot be distracted by events or objects they cannot see.  To mitigate 

rubbernecking in the opposite direction, this statement calls for barriers that block vision 

to opposite direction traffic conditions.  The Hampton Roads freeway system, consisting 

of I-64 and I-264, implements a variety of different barrier techniques.  Certain segments 

along the freeway system have only guardrails and a grass median dividing the freeway 

traffic.  Certain sections of the Hampton Roads freeway are implemented with standard 

42” concrete barriers, while other sections have double stacked concrete barriers.  Below 

are pictures from the Hampton Roads freeway system and the median barriers associated 

with it.  By having the data on the availability of the different types of barriers on 

roadway segments, it is possible to investigate its relationship with the rubbernecking 

impact on opposite traffic conditions.  The derived information could help develop 

mitigations to reduce rubbernecking impacts on opposite direction traffic conditions.  
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Figure (2-5): Barrier Guardrail System on a Section of Roadway on I-64 

 

 
Figure (2-5): A Standard Concrete Barrier on I-264 
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Figure (2-6): A Double Stacked Concrete Barrier on I-64 
 

 

2.6 Summary  

This chapter provided an overview of previous work done related to this study.  

From the initial research in the 1950’s to the complex traffic modeling of the 21st 

century, traffic studies attempt to provide a safer and more efficient roadway.  Previous 

research in Flow vs. Density modeling, delay calculations, capacity reduction, and 

rubbernecking have all contributed as background information for this study.  The next 

chapter will show the procedure taken to complete this study.     
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Chapter 3: Methodology 

In this study, the following procedure is adopted:   

 

 1.   Extract incident data from Hampton Roads freeway system 

 2.   Filter data by limiting type of incidents to “accidents” 

 3.   Determine appropriate traffic data to collect for given incidents. 

 4.   Plot occupancy each vehicle accident 

 5.   Determine significant impacts on both the same and opposite direction of 

accidents 

 6.   Determine location of incidents at station level 

7.   Use Binary Logit Model for determining incident impact modeling 

7.   Plot cumulative volume for identified significant impact accidents 

 8.   Calculate delay for identified significant impact accidents 

 9.   Determine capacity by retrieving historical data 

 10.  Plot Flow rate vs. Density (Occupancy) for incidents 

 11. Compare of historical capacity and incident capacity 

 12. Calculate capacity reduction  

 13. Use Linear Regression Modeling for delay and capacity reduction results      

 15. Evaluation of results and recommendations based on analysis 
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3.1 Data Source 

Data for the Hampton Roads freeway system operated by Hampton Roads Smart 

Traffic Center (HRSTC) were collected for this study. This freeway system consists of 

approximately 20 miles of Interstate 64 from I-564 down south to Indian River Road and 

Interstate 264 eastbound from the I-64 interchange (See Figure 3-1).   

 

 

 

Figure (3-1): Area Map of Hampton Roads Freeway System 
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The HRSTC uses technology to improve motorist safety and convenience, reduce 

area traffic congestion and decrease motorist travel time in the Hampton Roads area.  

There are closed circuit television cameras overlooking the 20 miles of freeway traffic.   

These cameras assist in incident management as well as any other traffic tie up.  These 

incidents are then documented into a database with a variety of information regarding the 

incident.  In addition to the  cameras loop detectors are installed along freeway system.  

From these detectors, real-time traffic data are collected and sent to the Center.  These 

loop detector data is accessible through the Smart Travel Lab at the University of 

Virginia, in Charlottesville.   

 

3.2 Incident Data 

Specifically, the incident database was retrieved from the Smart Travel Lab’s 

hr.incident table in the Oracle 8i database.  This table contains information on each 

incident and includes sub-tables with additional information.  The information on 

incidents include incident identification number, incident begin time (including date/time 

in MM/DD/YYYY HH24:MI format), incident duration (in minutes), incident type, 

weather, detection source, and a brief description of the incident.  Sub-tables include 

information such as the roadway of occurrence, direction, location, number of lanes and 

shoulders blocked, and information about the vehicle(s) involved (make/model/color/etc).  

The incident identification number is listed as a TMS Call Number including a year and a 

identification number (Example, ‘2000-00001’).  The duration of the incident is defined 

as the time from when the incident is detected until the clearance of the incident.  The 

weather during the incident is documented and includes conditions such as rain, snow, 
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sleet, clear, cloudy and even ice.  A complete layout of the hr.incident table can be 

viewed below.  A brief description of the incident is sometimes given.  This brief 

description may include the number of personal injuries or a more accurate location of 

the incident.  A summary of the database can be seen below. 
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TMS_Call_Number
Type

hr.inc_assist TMS_Call_Number
Begin
Duration
Type
Weather
Detection_Source
Description

hr.incident

TMS_Call_Number
Road
Direction
Lane
Location

hr.inc_roadway

TMS_Call_Number
Make
Model
Color
Tow_Company
State

hr.inc_automobile

TMS_Call_Number
Name

hr.inc_agency

Location
Roadway
City
Description
Camera

hr_inc_location

 

Figure (3-2): The hr.incident Table Available from the University of Virginia STL 
(Smith, 2001) 

 

 

Though, useful in other studies, some of this information is not pertinent.  The 

relevant information used in this  included the incident identification number, incident 
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begin time, roadway, direction, location, duration of incident, weather, number of lanes 

and shoulders blocked, and description.  Incidents of the year 2000 were pulled from the 

hr.incident table.  During this time period, available incident types included the 

following: 

• Abandoned Vehicles  

• Vehicle Accidents 

• Bridge Incidents 

• Debris  

• Disabled Vehicles 

• Severe Weather Conditions 

• Other 

 

It was decided that impacts due to rubbernecking would most likely only occur 

during vehicle accidents.  The acquired incidents were then filtered to only include 

incident whose type was ‘accident’.  Information about each accident is given in the 

database.    

  

3.3 Traffic Data 

Traffic data were collected based on the date, time, and location of each incident 

that are included in the database.  Note that the exact sites of the incidents cannot be 

readily known from the location code of the incident in the the hr.incident database.   

Each location code is a section of roadway typically 2 miles long and having three or four 

detector stations within.  Thus, traffic data had to be collected for all stations within the 
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location code of the incident.  Total volumes, average speeds, and average occupancy 

were collected for an extended period, starting from one hour before the incident 

beginning time and ending one hr after the duration of the incident.  This period accounts 

for the time period where traffic is operating normally before the incident and where 

traffic is recovering and once again operating normally after the duration of the incident.  

By collecting data for this extended period of time it is ensured that the full effects of the 

incident are captured.  A working SQL code was developed to expedite this long process.  

A copy of this code can be found in Appendix A. 

 

3.4 Determination of Incident Location and Significance of  

 Rubbernecking Impacts 

After the traffic and incident information for each incident had been collected, the 

incidents were grouped together into a single spreadsheet.  The next step was to 

determine whether each incident had significant impacts on traffic in the same and 

opposite direction as the incident.  This is determined based on visual observations of 

occupancy vs. time plots of the incidents.  An example is shown in Figure 3-3.  
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Figure (3-3): Example of Incident Occupancy 
 

 

In this study, such a plot was created for both the incident direction and the 

opposite direction.  The plots show whether a significant increase or decrease in 

occupancy was present in both travel directions.  This beginning and ending points were 

visually determined for each incident.  These cutoffs represent the effective duration of 

the incident.  The effective duration observed does not factor in the time required for the 

shockwave of the traffic to reach the immediate upstream station.  This would cause the 

duration to be shifted by the shockwave travel time.  This incident duration assumes a 

station detection technique rather than a point detection approach.  The visual 
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observations used to determine occupancy change significance is an arbitrary process.  

One person’s visual significance may be different from another person’s.  The duration of 

each incident was observed and documented accurately.     

As mentioned before, the HRSTC incident database only gives a vague location 

as to where the incident took place.  The ‘location code’ given is a section of roadway 

consisting of multiple stations.  There is no documentation as to which stations between 

which the incident happened.   Using Figure 3-4, the exact location of each accident can 

be determined based on observing the patterns of the changes in occupancies.  

Specifically, it was perceived that the immediate upstream station from each accident 

would have the earliest and largest occupancy impact.  Subsequent upstream stations 

should also show an impact, but at a later time due to the backward moving shockwave. 
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Figure (3-4): Incident-caused Occupancy at Multiple Stations 
 

 

Note that the occupancy plot of multiple stations in Figure 3-4 indicates the 

immediate upstream station of the incident.  It can be seen that the impacts of occupancy 

increase reach Station A prior to reaching Station B and Station C.  This pattern shows 

that Station A is the immediate upstream station of the accident.  Precautions have been 

made in dealing with this traffic data.  Multiple incident periods can give misleading 

results.  Once the accident database was developed and traffic data was collected, it was 

checked whether the accidents were isolated events with no other incidents affecting the 

target area.  Queries were run to determine whether additional incidents were involved 

during the time period and location of the incidents.  Multiple incidents occurring during 

these accident times were not used in the analysis.  
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It is possible to use other traffic data to determine these traffic impacts.  Vehicle 

speed data could be used to replace occupancy.  As occupancy increases due to an 

incident, vehicle speeds would decrease.  The observation of a significant decrease in 

speeds may indicate the presence of an incident or rubbernecking.  Speeds are collected 

and averaged from loop detectors. These speeds have maximum limits and often do not 

capture an accurate display of actual vehicle speeds.  In addition to occupancy and speed 

data, vehicle volumes could also be used.  The vehicle flow during an accident tends to 

decrease.  This is evident in any traffic jam.  A visual observation of a decrease in flow 

could possibly be due to an accident.  Although speed and volumes (flow) may be 

possible variables to use, occupancy was chosen to be the significant impact variable in 

this study.   

 

3.5 Congestion Delay Calculations 

 In this study, incident delay is derived based on the cumulative volume plots 

(mentioned earlier), where upstream and downstream station volumes are used.  As 

shown in a previous graph, the area between the two curves represents the increased 

delay due to an accident.  In this study, this area is measured by taking the integral of the 

difference of the curves over the duration of the impact of the accident.  This duration 

should not be confused with the database documented ‘duration’.  The database duration 

is the time between the arrivals of service vehicles and the complete clean up of the 

incident.  The duration used in the integral should be looked at as the duration of the 

impact and recovery of the incident.  The integral can be written as follows: 

                                                                                                        (5) 
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Note that using the integral to calculate delays requires the functions of the 

cumulative curves, which are unavailable in this case of traffic delay calculation.  This 

problem was solved by using the properties of the area function.  This is a routine used to 

estimate areas under complex functions.  In order to find the area under a curve, smaller 

rectangles can be made.  These smaller rectangles are added together to determine the 

area under the curve.  An example of this procedure is show below. 

 

 

 

Figure (3-5): Example of Rectangular Area Approach 
 

 

 

 The figure on the left is using the rectangle area approach with a certain x value.  

The area under the curve is better approximated as the x value decreases.  This is shown 

by the figure on the right.  The application of this principle is quite simple.  The 

difference between the arrival curve and the departure curve for each time slice of data 

represents the number of vehicles unable to pass through the bottleneck, or in this case, 
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the ‘rubberneck’.  The time-step used in this  corresponds to the quality of data collected.  

Since the study used one-minute aggregate data, the respective time-step for the delay 

integral is one-minute.  The y-axis direction represents the difference in the arrival and 

departure curves of the incident.  The x-axis represents the time-step or data collection 

interval.  An example of applying the rectangular area approach to this  is shown below 

in Figures 3-6 and 3-7.   
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Figure (3-6): Example of Cumulative Arrival and Departure Curves 
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Rectangular Area Integral Estimation 
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Figure (3-7): Application of Integral Estimation on Delay Calculation 
 

 

By multiplying the cumulative volume difference and time-step dimensions, the 

area of a time slice is formed.  This time slice area represents the delay due of the time 

slice.  Summing all of the time slice delays represents a close estimate of the total delay 

due to the accident.  This total delay calculation is shown below. 

 

 

      [ ]. .Arrival DepartureDelay CumVol CumVol TimeSlice⎡ ⎤= −⎣ ⎦                                                 (6) 
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The additional development of a ‘virtual arrival curve’ (Daganzo, 1997) is not 

appropriate in this study.  The travel time τ between ¼ or 1/3 mile station gaps based on 

60 mph free flow speeds would be approximately 15-20 seconds.  A 20-second lateral 

translation of the arrival curve would not be a significant change to the curves.   

 

3.6 Capacity Reduction  

Reduction of capacity due to incidents was derived based on the two-regime 

linear model. After accurate locations were established for the accidents, historical 

volume data was collected for the corresponding detector stations.  In order to determine 

capacity of the freeway sections five days worth of historical data were retrieved for each 

accident’s respective upstream station.  Due to the presence of incident(s) during the day 

of interest, other incident-free days were selected to act as historical periods.  This 

historical data came from surrounding days and weeks depending on weekday/weekend 

information from the accident.  From these data, flow vs. occupancy graphs were created 

from which the data points for non-congested situation and the congested situation can be 

distinguished using visual inspection.  Regression analysis was performed on the two sets 

of data (non-congested/congested).  This regression developed two intersecting lines, one 

from each of the regimes.  Freeway capacity of the location was determined by the 

intersection of the two regression lines.  

 Once a historical capacity of the area was established, the accident traffic data 

was evaluated using the same two-regime linear regression analysis.  The accident traffic 

data was plotted on flow vs. occupancy graphs and similar regression was performed on 

the data.  The capacity of the accident is determined from this analysis.   
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Figure (3-8): Example of Capacity Reduction Calculation 
 

 

Each accident in the database has a historical capacity and an accident (or actual) 

capacity associated with it.  Capacity reduction is commonly viewed as a percentage of 

reduction from the actual capacity.  By dividing the difference between historical 

capacity and accident capacity by the historical capacity, the result is the percentage of 

capacity reduced by the accident: 

]%/[][ histacchist CapCapCapCapred −=                                                               (7) 
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3.7 Binary Logit Model 

Whether an accident causes impacts of rubbernecking is a binary variable.  To 

identify the factors that are associated with such a binary variable, binary logit model is 

usually adopted.  

According to the binary logit model, the “utility” for an accident to cause 

rubbernecking impact on the opposite direction traffic can be written as: 

inininU ε+= xβ'                    (8) 

where inx  represents the independent variable, inε represents the error in the model 

and β  represents a vector of coefficients for explanatory variables included in the vector 

inx  and inε is denoted as the error of the “utility”, inU .  The maximum likelihood 

estimation method can be used to determine the coefficients of the model. 

The rubbernecking likelihood for an accident can be calculated as follows: 

( )
1

1 0
1

n

n n

U

U U

eP i
e e

= =
+                                                                                               (9) 

where 1 represents rubbernecking, and 0 denotes not. 

 

3.8 Linear Regression 

In this study, linear regression models were used to identify the factors that 

significantly determine the amount of traffic delay and capacity reduction to the opposite 

direction traffic. In the modeling, the measures of traffic delay and capacity reduction 

serve as response variables; while the characteristics that may lead to delay and capacity 

reduction are the independent or predictor variables.  These variables include v/c ratios 
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prior to an incident, duration of the incident, weather, number of lanes and shoulders 

blocked, peak hour/non-peak, day/night, weekend/weekday, and visual barriers.  In 

general, the linear regression model takes the form of:   

0 1 1 2 2 k kY X X Xβ β β β= + + + +L                                                                  (10) 

 

where y denote delay or capacity reduction ratio, X represents influencing variables, and 

β is the coefficients. 
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Chapter 4: Results and Analysis 

 

4.1 Incident Data 

 Initially, incident data were collected for the years 2000 and 2001.  These 

incidents were filtered to only include ‘accident’ type incidents.  It was soon brought the 

attention of this study that traffic data from the Hampton Roads Smart Traffic Center 

were missing for a good part of the 2001 year.  Thus, 2001 accident and traffic data was 

removed from the database, leaving only year 2000 accident and traffic data.  In 

summary, 36769 total incidents occurred in the Hampton Roads freeway system in the 

year 2000, with 2175 being accidents.  During that year, accidents accounted for 5.9% of 

the total incidents.  Many of these accidents do not provide any location data, so they 

were thrown out.  The analysis conducted in this study was based on the 840 accidents 

with sufficient incident data information.  

 

4.2 Significant Impacts        

 By visually observing occupancy behaviors in all 840+ documented accidents, 

significant impacts could be distinguished.  Significant impacts due to accidents are fairly 

easy to make out.  Typically a sharp increase of occupancy occurs soon after the accident 

begins.  This increased occupancy is usually held fairly constant for the duration of the 

incident.  After the incident has cleared the occupancy returns to its normal values.  This 

process of distinguishing significant impacts was described in the methodology.  Out of 
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the 840 accidents in the year 2000, the results of significant impacts can be seen in Table 

4-1. 

 

Table 4.1: Statistics of Significant Impacts of Occupancy due to Accidents 

 
Number of 
significant 

impacts 
Percentage (%) 

Total Accidents 840 100 

Same Direction as Accident 201 23.9 

Opposite Direction as 
Accident 102 12.1 

Significant Impact in both 
SAME and OPPOSITE 

Directions 
84 10.0 

    

 

 This table shows that 201 out of the 840 accidents had an impact on traffic 

occupancy in the same direction as the accident.  102 out of the 840 showed significant 

changes in occupancy for the opposing traffic.  Out of these accidents, 84 showed a 

significant impact in both directions.  These 84 cases are the most important accidents, 

where there are significant impacts in both the same and opposite directions based on 

visual observations of occupancy.  As seen in the table, this situation makes up 10% of 

the total number of incidents.  An interesting statistic in the table is the number of 

incidents which showed a significant impact of opposite direction traffic, but showed no 

impact in the same direction.  Only eighteen of the 840 total accidents showed this 



35

phenomenon.  Different factors could lead to this dilemma.  Greater volumes in opposite 

direction of the accident could possibly have a greater impact.  Different geometric 

designs of the freeway could possibly have an effect on traffic in the opposite direction 

and not in the same direction.  Whatever the case may be, only a very small proportion of 

the total number of accidents showed this occurrence.       

 Statistical analysis was performed on the 840 total incidents.  This analysis uses a 

binary logit model to determine the rubbernecking likelihood of an accident and also to 

determine outstanding variables that cause rubbernecking.  Table 4.2 lists the results of 

binary logit model.  Table 4.3 shows the quality of the fitted binary logit model.  It can be 

seen that four variables significantly influence whether an accident impacted the traffic in 

the opposite direction: peak, weather, presence of barriers, and weekend.  The t-statistic 

is a significance test used to determine whether a certain variable is significant or not.  

Critical t-stat values with percentiles used in this study are shown below.   

# observations 80th 85th 90th 95th 

84 0.847 1.044 1.294 1.668 

840 0.842 1.036 1.282 1.645 

 

The coefficient for variable Peak is negative, which implies that an incident 

occurred in peak periods was less likely to cause rubbernecking impact to the opposite 

direction.  It might be reasonable because motorists are in the rushes of homeward bound 

or work bound travel.  Under this condition, the curiosity of the motorists to know the 

accidents in the other direction may be under certain control. The coefficient for weather 

(rain/snow/ice) is negative. It indicates that an accident occurred in rain might be less 

likely to cause the attentions of motorists traveling in the other direction.  It might be 



36

reasonable to expect that the bad weather demanded more attention of motorists on their 

travels and left lesser chances for them to care about the events happening in the other 

direction.  The coefficient for Weekday is positive.  It suggests that an accident occurred 

in a weekday would be more likely to cause rubbernecking in the opposite direction than 

it occurred in weekends.  It may be due to the high volume of traffic in weekdays than 

weekends.  Under high volume condition, the potential number of motorists to 

rubberneck would be more than that under the low volume condition.  As far as the factor 

of barrier is concerned, the coefficient is negative.  It implies that the presence of barriers 

on an accident scene decreased the likelihood of rubbernecking in the opposite direction.  

This may be due to blocking of the barriers for the motorists to view the accidents in the 

other direction.  Note that this variable is significant only on 70% level, not as significant 

as the other variables.  Retrospect the fact that the data on the presence of barriers were 

collected in 2004 while accident occurred in 2000. The barriers exist in 2004 may not 

presence in 2000.  Considering this possible error, the result is accepted as reasonable. 
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Table 4.2 Results of a Binary Logit Model 
 

Variable Coefficient Standard Error t-stat 

Constant -4.39220546 .65932825 -6.662 

PEAK -3.27492185 .49187300 -6.658 

WEATHER -.97968397 .42100950 -2.327 

BARRIER -.47736199 .43069356 -1.108 

WEEKDAY 5.17244375 .60798673 8.507 

  
 Log likelihood function         -130.1868      
 Restricted log likelihood        -281.3884      
 Chi squared                             302.4033      
 Degrees of freedom                       4 
Number of observations              840      

 

 

The frequencies of the actual and predicted outcomes of the discrete choice model 

are located below.  Additional analysis is also provided. 

 

Table 4.3 Discrete Choice Model Results 
 Predicted Total 

Actual 0 1  
0 713 43 756 
1 14 70 84 

Total 727 113 840 
 
0 = no significant impact 
1 = significant impact present  
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Based on 840 accidents, the discrete choice modeling predicted which accidents 

would impact opposing traffic.  Out of the 84 accidents that showed significant impacts 

on opposing traffic, 70 (or 83.3%) were selected by the discrete choice model to have 

such an impact.  The remaining 14 accidents were deemed insignificant.  The success of 

the model is also evaluated by the complete number of significant and insignificant 

impacts predicted.  The impacts of 783 (93.214%) out of the total number of accidents 

had been successfully predicted using this choice model. 

  

4.3 Rubbernecking Delay Calculations  

 Delays were calculated for the 84 accidents which showed significant impact on 

traffic in both the same and opposite directions.  These calculations were possible using 

cumulative volume plots as described in the methodology. While individual vehicle 

delays are typically measured with units in [veh*min], delays of freeway systems are 

typically measured in [veh*hr].  Delay calculations resulted in a range of 3.6 veh*hr to 

590.0 veh*hr.  A histogram of  the delay is presented in Figure 4-1.   
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Figure (4-1): Histogram of the Frequency of Delay 

 
 

 

The figure shows that lower delays are prevalent.  Specifically, 78.5 percent of traffic 

delays fall between 0 and 150 veh*hr.  This indicates that major congestion delay is not 

common.  Only 12 percent of the delays are over 200 veh*hr. 

 In modeling the delay using linear regression model, it was realized that delay 

cannot be used directly as the dependent variable. It is because the calibrated linear 

regression model cannot guarantee to produce a delay with a positive value, which would 

not be convenient if the model is used for forecasting. A regular approach to dealing with 

this situation is to use a natural log transformation of delay as the dependent variable in 

regression.  Figure 4-2 presents the histogram of Ln(Delay). 
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Figure (4-2): Histogram of the Frequency of the Natural Log of Delay 

 

 

  It can be seen that the natural log transformation of the delays is better distributed 

for normal distribution than that without the transformation.  Therefore, the regression 

analysis was performed on this newly adopted transformation.     

 In the calibration of the linear regression model, predictor variable used in this 

analysis include: 

 

• Duration – time period required to clear an incident 

• Weekday/Weekend – whether an accident happened during a weekday or 

weekend 

• Peak – whether an accident happened during an AM or PM peak rush 
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• Weather – inclement or clear weather 

• Barrier – presence of barriers 

• Day/Night – whether the accident happened during the day or at night 

• Lanes Blocked – number of lanes blocked by accident 

• Shoulders Blocked – number of shoulders blocked by accident 

• Volume/Accident Capacity Ratio – volumes before the accident are compared to 

the reduced capacity of the accident 

• Volume/Historical Capacity Ratio - volumes before the accident are compared to 

the reduced capacity of the accident 

 

Correlation matrix was developed for these variables, and the results are presented in 

Table 4.4. From this matrix, it can be seen that the following pairs of variables are highly 

correlated.  

 

Table 4.4: Correlation Coefficient Matrix 

Predictor Variable 1 Predictor Variable 2 Correlation 
Coefficient 

Weekday/Weekend Peak Period 0.494 

V/C Accident V/C Historical 0.797 

 

 

Table 4.4 lists the correlation coefficient matrix. It indicates that the following pairs of 

variables are highly correlated: (Weekday, Peak), and (V/C Accident, V/C Historical). 

This correlation does make sense.  Weekday traffic experiences a peak period of 
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congestion that weekend traffic does not.  The correlation shows that the significant 

accidents that happened during the weekday also happened during the AM or PM peak 

period.  The V/C value during the accident should be similar to the V/C value for 

historical data.  The capacity of opposite traffic due to the accident may be similar to the 

historical capacity of the same location.  Some predictor variable may be correlated with 

others on a case by case basis.  This correlation analysis only deals with the accidents that 

showed significant traffic impacts in both the same and opposite direction of the incident. 

 

 

 

After a correlation analysis, a model was calibrated with results presented in Table 4.5.  

 

 

Table 4.5: Congestion Delay Model Results 

Variable Coefficient Standard Error t-stat 

Constant 7.24118149 .46588171 15.543 
DURATION .01963081 .00218229 8.995 
BARRIERS -.25688358 .18161164 -1.414 
VOLCAP .72782444 .56328168 1.292 

 
Degrees of freedom   =         80 
R-squared            =   .5301680 
Adjusted R-squared   =   .5125493 
Number of observs.   =         84 
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It can be seen from the table that the coefficient of the variable incident duration 

is positive. It implies accidents with greater duration lengths will have a greater delay 

associated with it.  This result is consistent with our expectation. The variable Barrier is a 

binary variable where “0” means no barrier presented at an accident site while “1” the 

presence. The table indicates that the coefficient of Barrier is negative. It means that less 

delay would be incurred to the traffic in the opposite direction if barriers presented at an 

accident site. In the Hampton Road area, there are two types of barriers, each with 

different heights. Each of them can only block the views of a certain portion of motorists. 

Thus, the variable of barrier cannot be shown as strong as expected. Finally, the 

coefficient of V/C ratio (volumes before the incident vs. the capacity at incident site) is 

positive. It indicates that Higher V/C values account for greater delay. 

 

4.3 Capacity Reduction Modeling 

 For the 80+ accident, capacity reduction ratios were derived. The histogram for 

these ratios is presented in Figure 4-4.   
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Histogram of Reduction of Capacity Due to Rubbernecking
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Figure (4-4): Histogram of Capacity Reduction Percentage  
 

   

 

Similarly to histogram for delay, the majority of the results are skewed to the 

lower end.  In other words, 72 out of the 84 (86%) accidents have capacity reductions of 

20 percent or less.  For the same reason as that for delay, this variable was transformed 

into a log form. The histogram of the capacity reduction ratio after the natural log 

transformation is presented in Figure 4-5. 
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Figure (4-5): Histogram of Ln(Capacity Reduction) due to Rubbernecking 
    

 

A linear regression model was calibrated. The results of the calibration are 

presented in Table 4.6. It can be seen that the three variables: peak, duration and day are 

statistically significant.   It can be found that the coefficient for peak is positive. It means 

that relatively more capacity would be reduced if an accident occurred in a peak period. 

This result is understandable because the traffic in peak is vulnerable. A minor 

disturbance such as slowdown by rubbernecking could cause traffic stall. It can also be 

seen from the table that the coefficient for duration is positive. It implies that accidents 

with longer duration would cause more capacity reduced relatively. This result can be 

understood from the perspective of chance that motorists are exposed with different 

duration an accident exists on a roadway. The longer an accident stay on a roadway, the 
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higher likely motorists were attracted to the accident in the other direction. The 

slowdown effect of traffic can be cumulated to have a high capacity reduction ratio. 

Table 4.6 shows that the coefficient of Day is negative. It implies that higher capacity 

reduction ratio can be resulted in the opposite direction. Intuitively, motorists need more 

slowdown in a low visibility condition to observe accidents in the other direction than in 

a high visibility condition such as day time. 

 
Table 4.6 Capacity Reduction Model Outcome 

Variable Coefficient Standard Error t-stat  
Constant -2.6042853 .19724509 -13.203 
PEAK .94004556 .47265573 1.989 

DURATION .00617251 .00337886 1.827 
DAY -.39697424 .25537293 -1.554 

 
Number of observs.   =         84 
Degrees of freedom   =         80 
R-squared                  =   .1155236 
Adjusted R-squared   =   .8235576E-01 

 
 
  

 The capacity reduction model was developed to attempt to predict capacity 

reduction due to rubbernecking.  This model is a result of the data used in this study for 

the given scope.  Although this model may be used in other freeway systems, it is not 

guaranteed.  The variables used in this models may vary from freeway to freeway. 
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Chapter 5: Conclusions 

 
 
5.1 Conclusions 

 This study is the first attempt to evaluate the rubbernecking impact of accidents 

on traffic in the opposite direction based on archived traffic and accident data.  Three 

models were developed for determining the likelihood of occurrence of rubbernecking, 

traffic delay and capacity reduction caused by rubbernecking.  The data indicate that 

about 10 percent of accidents caused rubbernecking, average delay caused by 

rubbernecking is 107 veh*hr, and the average capacity reduction is 12.7 percent.  These 

statistics indicate that the rubbernecking impact is significant.  Certain mitigation 

measures have to be taken into consideration. 

 One of the variables used throughout this study is the duration time of the 

incident.  This duration time has no actual meaning in the models described.  The 

duration used in these models acts as a surrogate to the severity of the incident.  

Typically, a more severe incident would require a longer clearance process, making the 

duration of the incident longer.  Using the documented duration of each incident based on 

severity of the incident should be noticed.    

Based on the interpretation of the results of the regression models, it can be 

concluded that the rubbernecking likelihood is influenced by peak periods, weather, 

presence of barriers, and weekday travel; the delay is influenced by duration, presence of 

barriers, and V/C ratios of traffic before the occurrence of an incident; and the capacity 

reduction ratio is influenced by peak periods, duration, and day/night travel.  Based on 
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these identified factors, countermeasures can be developed targeting the time period and 

locations specified by these variables.  

 Barriers are an effective way to reduce the likelihood of rubbernecking in the 

opposite direction and the delay caused by the rubbernecking. This conclusion is drawn 

upon the coefficients of the variable barrier in the models for the likelihood of 

rubbernecking occurrence and traffic delay. The statistical significance of these 

coefficients in these models implies that barrier presence is a significant contributor to 

the occurrence of rubbernecking and the delay caused by the rubbernecking. Intuitively, 

installation of barriers can be thought of as a direct way to mitigate the occurrence of 

rubbernecking. Because it is costly if concrete barriers are installed along all the highway 

systems, cost-effective barriers can be investigated. 

 All the three models can be applied to data in other areas to evaluate the 

rubbernecking impacts.  It is reasonably to perceive that the required data for these two 

models can be collected for each incident in an area.  By plugging the values of the data 

into these three models, the likelihood of rubbernecking can be determined first, and then 

the delay and capacity reduction can be calculated correspondingly.  

   

5.2 Future Research 

    Rubbernecking is a major problem in highway systems throughout the United 

States.  The methodology and results can act as a basis of research on rubbernecking in 

future.  This research could be used to spark interest in  issues related to rubbernecking 

and their impacts.  The following issues have been identified for research in future: 

incident and traffic data quality, statistical modeling and human factor characteristics. 
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 First, more accurate information about incidents should be collected. In order to 

successfully utilize the incident data, locations of incidents must be exact. A more 

accurate location of the incident would aid in determining upstream and downstream 

stations, required for many traffic measures.  In addition to the total duration times of  

incidents, it would beneficial to have detection times, response times, duration times, and 

recovery times.  The descriptions of incidents in the database are often short and do not 

contain useful information.  A detailed description would help by providing useful 

information.  Another problem encountered was the number of lanes and shoulders 

blocked. There were accidents that had more than one shoulder blocked.  This number 

cannot be correct.  A more detailed description could help solve this problem.   

 More information about accidents such as types and number of vehicle involved 

should be collected. By having this information available, it is possible to identify 

whether this information contributes to the rubbernecking in the opposite direction. As a 

result, it can be identified exactly the items in accident scenes that attract motorists to 

slowdown causing rubbernecking. 

 An effort should be made to model the impact of barrier height on rubbernecking 

likelihood, traffic delay and capacity reduction. The results in the likelihood model 

indicate that barrier is not as significant as other variables. Also, the variable barrier is set 

as binary by which the height of barrier cannot be investigated. To derive information 

that is more helpful in practice on installing barriers, it would be beneficial to have a 

clear understanding of the relationship between barrier’s height and rubbernecking 

impact.  
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 It is also necessary to investigate the role of human factor on rubbernecking. As 

indicated in the analysis of this study, motorists in peak period tended to create less 

rubbernecking than in other periods. It seems that human factors were playing roles in the 

causes of rubbernecking impacts. By understanding the impact of human factors, the 

rubbernecking issue may be better addressed. 
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Appendix A:  SQL+ Code 

     

alter session set nls_date_format = 'DD-MON-YYYY HH24:MI'; 
 
set termout off; 
set linesize 220; 
set trimspool on; 
set wrap off; 
set pagesize 0; 
column type format a10; 
column weather format a16; 
column direction format a4; 
column location_code format a8; 
 
set serveroutput on; 
DECLARE 
   CURSOR my_cur IS 
      select a.tms_call_number, a.inc_begin, a.inc_type, a.duration, a.weather, b.direction,  

b.location_code       
      from incident a, inc_roadway b  where a.tms_call_number=b.tms_call_number and  

a.inc_type='ACCIDENT'  
      and to_char(a.inc_begin,'DD-MON-YYYY')='07-JAN-2000' and  

b.location_code='E264-02' and b.direction='EB';  
 
   c_rec my_cur%rowtype; 
   t1 hr.incident.inc_begin%TYPE; 
   t2 hr.incident.inc_begin%TYPE; 
   t3 hr.incident.inc_begin%TYPE; 
   t4 hr.incident.inc_begin%TYPE; 
   d1 hr.incident.duration%TYPE; 
   i number(4); 
 
 d date; 
 datex date; 
 t char(5); 
 ck number(7); 
 
BEGIN 
   FOR c_rec IN my_cur LOOP 
       d1 := c_rec.duration; 
       t1 := c_rec.inc_begin; 
 select calendar_key into ck from calendar where datex = to_char(to_date(t1,'DD-
MON-YYYY HH24:MI'),'DD-MON-YYYY'); 
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  select count(*) into i from station_flow where stationid=154 and calendar_key = 
ck; 
       Declare  
           CURSOR test_cur IS  
                select calendar_key, time_key,stationid,volume,speed,occupancy from 
station_flow 
                where stationid=154 and calendar_key = ck;          
           t_rec test_cur%ROWTYPE; 
 
       begin  
          for t_rec in test_cur loop 
 
  select datex into d from calendar where calendar_key=ck; 
  select time_string into t from timex where time_key = t_rec.time_key; 
 
  datex := to_date(concat(concat(to_char(d, 'DD-MON-YYYY'), ' '), t)); 
              insert into table4john values 
(c_rec.tms_call_number,c_rec.inc_begin,c_rec.inc_type, 
              c_rec.duration, 
c_rec.weather,c_rec.direction,c_rec.location_code,datex,t_rec.stationid, 
              t_rec.volume,t_rec.occupancy,t_rec.speed);                  
          end loop;  
       end; 
 
        dbms_output.put_line(c_rec.tms_call_number ||  '  ' || i );       
   END LOOP; 
   commit; 
END; 
/ 
 
spool z:\users\jpm7a\auto\new.txt 
 
select 
tms_call_number,inc_begin,inc_type,duration,weather,direction,location_code,datex,stati
onid, 
volume,speed,occupancy from table4john; 
 
truncate table table4john; 
spool off; 
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Appendix B: Coefficient Correlation Matrix 
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Appendix C: Table of Results 
 

TMS Call 
Number Delay Cap-Red 

 (veh*hr) (%) 
   

2000-00234 18.45 9.146341
2000-00429 56.86667 2.777778
2000-00738 242.7333 13.29114
2000-03167 45.81667 8.666667
2000-03279 191.85 11.14583
2000-03639 90.18333 11.53846
2000-04115 47.73333 14.361 
2000-04310 96.88333 9.452736
2000-04726 18.73333 0.769231
2000-04986 48.98333 5.851064
2000-05210 35.3 11.29032
2000-05248 61.56667 5.662983
2000-06043 50.55 17.94872
2000-06483 62.35 2.941176
2000-06634 217.2667 20 
2000-06688 31.65 2.158273
2000-06870 32.91667 16.47727
2000-07814 18.76667 2.733119
2000-07815 19.4 3.453689
2000-07893 75.08333 2.96875 
2000-08184 66.8 5.806452
2000-08185 79.46667 50 
2000-08622 98.08333 26.2069 
2000-08788 71.08333 7.843137
2000-08794 51.86667 10.46512
2000-09005 52.81667 33.07692
2000-09006 128.2 20.3125 
2000-09217 38.11667 3.08642 
2000-09915 3.6 8.93617 
2000-09968 269.0333 14.05405
2000-10516 226.9333 13.88889
2000-10565 99.9 8.382353
2000-10578 135.7833 19.09091
2000-10586 41.13333 7.756813
2000-10592 43.15 5.967742
2000-11268 3.85 8.974359
2000-11932 82.36667 15.24249
2000-12395 107.25 7.153729
2000-13610 44.6 4.936709
2000-13662 119.0833 0.01 
2000-13838 44.78333 11.96721
2000-13844 53.58333 19.81132
2000-14813 135.9167 3.90625 
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2000-15422 61.53333 6.666667
2000-15825 136.5833 10.41667
2000-16126 306.4667 12.17949
2000-16421 74.93333 55.66038
2000-18006 124.05 17.16418
2000-19137 112.5833 12 
2000-19144 124.3167 7.692308
2000-19670 140.5833 11.53846
2000-19786 33.4 8.928571
2000-20082 254.6167 39.83333
2000-21471 82.45 12.58065
2000-21496 83.63333 17.88235
2000-22418 33.06667 16.61017
2000-22602 146.8667 6.428571
2000-22956 84.66667 14.38849
2000-23318 359.0167 11.22449
2000-24855 232.9667 6.842105
2000-25055 20.41667 7.692308
2000-25399 85.45 23.33333
2000-25400 130.8667 4.090909
2000-26246 169.0667 10.29703
2000-26475 113.0667 9.384615
2000-26555 152.1833 13.65079
2000-26871 24.08333 8.90411 
2000-27134 174.2167 24.10714
2000-27201 26.96667 6.103896
2000-27685 133.9833 25.94595
2000-28243 9.016667 6.153846
2000-30216 114.25 15.94203
2000-31038 589.9833 19.89247
2000-31449 153.05 2.933333
2000-31496 16.25 9.166667
2000-31564 126.0833 13.39286
2000-31681 262.9333 21.69014
2000-31764 30.11667 3.960396
2000-32419 85.81667 26.47059
2000-33923 116.9667 2.380952
2000-34239 175.4333 15.45455
2000-34535 118.0333 34.05797
2000-34888 153.9333 5.928854
2000-35297 166.7667 8.461538
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Appendix D: Barrier Height Location Results 
 
 

Barrier Type Avg. Duration Avg. Delay Avg. Cap-Red 

None 36.875 6299.938 0.108882 

Standard 43.22222 6483.689 0.12724 

Double 39.82609 6413.217 0.139197 
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