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ABSTRACT 

 

 In this project, we consider the planning of terminal locations for intermodal 

transportation systems. For a given number of potential terminals and coexisted multiple 

service pairs, we find the set of appropriate terminals and their locations that provide the 

economically most efficient intermodal operation.  

 The first part of this project is to develop a two-layer Markov Chain Monte Carlo 

(MCMC)-based method to implement the terminal location planning. The lower-layer is an 

optimal routing algorithm for all service pairs that considers both efficiency and fairness for a 

given planning. The upper-layer is a planning algorithm based on MCMC with a stationary 

distribution mapped from the transportation cost function. This method has shown, as tested 

in various network scenario, better performance than a recently developed method using a 

greedy randomized adaptive search procedure together with a heuristic search procedure 

(GRASP-HEP).   

 In the second part of the project, we bring the probabilistic nature in transportation 

networks into consideration. Estimates of traffic needing to use the network, capacity of 

terminals and costs of using portions of the network vary time to time. Effects of these 

variations have not been previously studied in the literature. We characterize the uncertainty 

of the system parameters with probability density functions (PDFs) based on prior 

information, while map the cost function into a likelihood function. Then, the design problem 

can be converted into a Bayesian inference problem of finding parameter set solutions with 

high posteriori probability that is proportional to the product of the prior PDF and the 

likelihood. We have developed theoretic methods for uniform sampling multi-dimensional 

simplex volume and implemented the Nested Sampling method to rank solutions based on 

their evidence values.  

 This project has broader impact. Since the probabilistic features are inherent in 

transportation, the design model based on Bayesian inference with MCMC has the potential 

to provide a unified framework not only for the location planning but also for many other 

optimization problems in intermodal transportation systems. In addition, to enhance higher 

education, a graduate student in the PhD level has been recruited and educated through this 

project to focus on the probabilistic modeling and analysis of various problems in the 

intermodal transportation.  
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INTRODUCTION 

 Intermodal transportation can significantly increase the economic competitiveness, by 

improving productivity and efficiency with reduced delay, congestion and operational cost 

compared to current transportation systems. According to [2][3], the transportation system is 

responsible for about 30% of the total greenhouse gas emission. Therefore, design of 

efficient intermodal transportation systems also helps to sustain a more amiable environment 

by significantly reducing the total CO2 emissions.  

 Considering the interconnection of the road mode and other modes such as railway 

transportation via terminals so that the road mode focuses more on many low-flow localized 

services and the railway mode acts as the major backbone for high capacity and large range 

services, one specific problem is to decide on the number of terminals and their locations 

given a set of potential terminals and to determine the route paths of difference services. The 

current research in this area has considered different intermodal representation models [3]–

[5] and different heuristic optimization methods [6]–[9]. In [3], an overview of the most 

prominent research efforts within operational research in the intermodal transportation has 

been provided. Compared with simulation-based techniques [4], using network models 

becomes more popular in research. In [5] an overview is provided on several network models 

based on which the optimization process is then carried out. As proven in [9], this terminal 

location planning problem is an NP-hard problem and hence the deterministic methods are 

impractical when the size of the network grows. As a result, when the number of nodes 

increases, an optimization method based on the heuristic search are applied, such as using 

simulated annealing [6], genetic algorithms [7], Tabu search [8] and greedy randomized 

adaptive search procedure and attribute-based hill climber [9]. 

 Despite research progress in this area, there are two prominent issues that have either 

not been completely solved or not studied. First, one key issue in heuristic methods is to find 

the candidate solutions iteratively. Solutions generally are generated randomly and then 

passed for some criteria tests to decide whether they should be discarded or put into a pool. 

This process is often very time consuming and is done case-by-case in different heuristic 

methods. It is more desired to develop a unified technique that can guide this “random walk” 

in the multi-dimensional decision space so that candidates are generated more efficiently 

based on their potential contribution to the final solution. Second, all current work assumes 

that the parameters in the transportation network are stationary. In fact, these parameters can 

change significantly either continuously or from time to time. For example, the loads of 

demand from one city to another may be different in different time. In addition, the capacity 

of roads and the terminals can also change due to construction and maintenance. Therefore, 

the parameter variation is an inherent probabilistic feature in a transportation network and 

should be considered in the terminal planning. This issue, not being considered in the 

literature yet, is important particularly because the terminal planning, once being decided, is 

associated with a long-term operation.  
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OBJECTIVE 

 

 

 

Fig. 1. Intermodal transportation system 

 We consider an intermodal transportation system consisting of two modes as shown in 

Fig. 1 that are interconnected with terminals. For simplicity, they can be perceived as road 

and railway transportation modes, respectively. In such a system, services are offered be- 

tween a certain number of origin-destination locations, such as represented by service nodes 

1 to 9. In general, the direct delivery service using a specific carrier is very expensive and the 

number of direct deliveries is often limited. In order to improve the economic 

competitiveness, low-volume demands can be moved to a consolidation terminal, such as 

represented by nodes A,B,C, via the road mode. In these terminals, the large number of low-

volume freight will be consolidated into high-volume flows that will be routed to other 

terminals through high-frequency, high-capacity services that could be operated in the 

railway mode. The large number of lower frequency services, often operated with smaller 

vehicles, are used between the terminals and the origin/destination nodes. Without the loss of 

generality, we also allow the customized direct service using paths between an origin node 

and a destination node that does not go through any consolidation terminals.  

 The objective of this project is to solve the intermodal terminal location planning 

problem through Bayesian inference method with Markov Chain Monte Carlo (MCMC). 

There are two technical goals in this project. One is to design a MCMC-based method that 

can solve the terminal location planning problem when the network parameters are fixed as 

assumed in all existing work. The other is to design the Bayesian inference method that 

brings the inherent probabilities features in transportation network into the consideration of 

terminal planning. In addition, the project also has an education objective that recruits and 

involves a PhD student into the research in intermodal transportation systems with focus on 

optimal system design. 
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SCOPE 

 To illustrate the research problem, we adopt the basic model proposed in [9] and 

describe the transportation with a graph network. Let I be the set of all origin-destination 

service pairs and K the set of all potential terminal locations in the network. Each origin-

destination pair (𝑖, 𝑗) has associated with it a positive and fixed amount 𝑞𝑖𝑗 of goods that 

need to be transported (𝑞𝑖𝑖 =  0). The variable 𝑥𝑖𝑗 represents the fraction of the demand 𝑞𝑖𝑗 

transported uni-modally, whereas the set of variables 𝑥𝑖𝑗
𝑔𝑘

 relate to the fraction of the demand 

𝑞𝑖𝑗 transported intermodally using terminals 𝑔, 𝑘 ∈ 𝐾. Let 𝑐𝑖𝑗
𝑔𝑘

 be the unit cost of transporting 

demand between i and j through terminals g and k and 𝑐𝑖𝑗 be the unit cost of transporting 

demand directly from i to j without any intermediate intermodal operations. 𝑐𝑖𝑗
𝑔𝑘

 is generally 

much less than 𝑐𝑖𝑗 due to the encouragement of intermodal transportation and the high cost of 

direct transportation. For each potential terminal location 𝑘 ∈ 𝐾, it has been associated with a 

positive and fixed capacity 𝐶𝑘, a fixed cost 𝐹𝑘 proportional to the capacity, and a decision 

variable 𝑦𝑘 which is “1” when terminal k is open and “0" otherwise. Then the overall cost 

function is given as 

 

 This objective function represents the total transportation cost associated with all 

transportation flows within the network. Therefore, the terminal planning problem becomes 

to find the decision variables 𝒚𝒌 , 𝒙𝒊𝒋 and 𝒙𝒊𝒋
𝒈𝒌

 that minimize the function of J, subject to the 

following constraints: 

 

 The objective function (1) represents the total transportation cost associated with all 

transportation flows within the network and consists of the sum of three terms. The first term 

represents the cost of flows through the intermodal transportation. The second term refers to 

the cost of the flows using the uni-modal transportation. The third term denotes the operation 

cost for all the terminals. Constraints (2) and (3) ensure that one flow can only go through 

those opened terminals. Constraint (4) shows that the sum of flows transported from 



 

 

 

4 

intermodal and uni-modal network must be equal to the overall demand associated with each 

origin-destination pair. Constraint (5) means that the overall flow going through a terminal 

cannot exceed the capacity of the terminal. Constraint (6) ensures that the amount of flow is 

non-negative and one flow cannot go through one terminal only. Constraint (7) means that 

one terminal is either used (open) or not used (not open). 

 Note that the above formulation also involves an underlying operation that 

simultaneously determines the optimal route paths for each service pair (𝑖 𝑗), given a set of 

selected terminal locations. That is, 𝑥𝑖𝑗
𝑔𝑘

 and 𝑥𝑖𝑗 are in fact related to the route paths 

associated with 𝑦𝑘 and other variables Ω = {𝑞𝑖𝑗, 𝐹𝑘, 𝐶𝑘}, 𝑘 ∈ 𝐾. For given Ω, there are two 

issues. 

 Depending on a particular terminal planning, i.e., the open/close status of potential 

terminals, determine the optimal routing paths for all service pairs simultaneously. 

 Determine the set of the most appropriate terminals that minimizes the overall cost 

function.  

 The first task of the project is to design a MCMC-based method to implement the 

terminal location planning problem and compare with the state-of-the-art method.  

 The location problem is even more difficulty when Ω varies. For the second task of 

this project, we solve the problem under varying Ω through the Bayesian inference. We 

model the probabilistic feature with Gaussian probability density functions (PDF) as the prior 

information and calculate the Bayesian evidence of possible solutions. This work also 

includes the design of sampling methods uniformly in the prior. 
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METHODOLOGY 

 The mathematical technology used in this research is the Bayesian interference 

method with MCMC.  

 

For Fixed Network Parameters 

 Define 𝒚 = {𝑦𝑘 , 𝑘 ∈ 𝐾} as the selection of terminals; 𝒙 = {𝑥𝑖𝑗
𝑔𝑘

, 𝑥𝑖𝑗 , (𝑖, 𝑗) ∈ 𝐼;  𝑔, 𝑘 ∈

𝐾} as the routing of service loads. Then 𝐷 = {𝒚, 𝒙} is the decision variables, while Ω  is the 

network parameters. We first need to map the cost function into a probability function. This 

is represented as  

 

where S is a scalar used to adjust the shape of the probability function. 𝑍𝑆 is the 

normalization constant to ensure that the function is a probability distribution. 𝐽(𝐷|Ω)  is the 

cost function for one set of decision variables D, given system setup parameters Ω. . Clearly a 

small routing cost gives a large probability value in this inference/optimization problem. The 

purpose is to find a specific decision instance D that maximizes 𝑃𝑆. We solve the problem 

with a two-layer strategy.  

 lower-layer: a table-based method that finds 𝒙, given 𝒚 , i.e., finding the route paths 

for all services pairs simultaneously, given a particular terminal planning. 

 upper-layer: a MCMC-based method that finds 𝒚 that maximizes 𝑃𝑆. 

 

Lower-layer algorithm  

 For each service pair (𝑖, 𝑗), we first construct a routing information table 𝑀𝑖𝑗, and 

then based on all these tables we find the final routing result for each service pair and store 

the information in a table 𝑅𝑖𝑗. Table structure is shown in TABLE 1 

 

 

 Each row of this table stores one possible routing path for service (𝑖, 𝑗). 𝑇1 and 𝑇2 are 

intermediate terminals. When 𝑇1 = 𝑇2 = 0, the path corresponds to the uni-modal 

transportation. All tables are listed from the most efficient path to the least efficient path. For 

a particular path that is demanded by multiple service pairs, an urgency factor is defined as 

the ratio of the routing cost through current path and the cost through the next best path. This 

factor is utilized in a way that path of interest can be shared by multiple service pairs both 
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fairly and efficiently. 

Upper-layer algorithm  

 This algorithm uses a MCMC method. Given the current candidate planning 𝒚𝟏, 

whether to accept next planning 𝒚𝟐 is based on the probability of 

 

This is termed as the Metropolis-Hastings process [10] that guarantees that samples drawn 

from MCMC converge to the PDF of 𝑃𝑆. To generate 𝒚𝟐 that has high accepting probability, 

slice sampling method presented in [11,12] is further employed. 

 

For Varied Network Parameters  

 We capture the variation of network parameters Ω with model as a PDF Π(Ω). 

Gaussian distribution is used in this work. Therefore, our purpose now is to find a D that 

maximizes  

𝑍 = ∫ Π (Ω)𝑃𝑆(𝐷|Ω)𝑑Ω. 

Z is also called the evidence of D in Bayesian inference. This task is complete by mapping 

and using Nested Sampling method [13]. To start Nested Sampling, a key point is to generate 

the uniform samples in a multi-dimensional simplex volume.  

 

                                                        

 

Fig. 2. Simplex volume (tetrahedron in 3-D) 

 

As shown in Fig. 2, suppose there are three service pairs, each with traffic flow 𝑥1, 𝑥2, 𝑥3 

going through a specific terminal. Since the terminal capacity is fixed. With normalization, 

we have 𝑥1 + 𝑥2 + 𝑥3 ≤ 1. Nested sampling requires that we must be able to generate 
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(𝑥1, 𝑥2, 𝑥3) uniformly inside the simplex volume (i.e., the tetrahedron OABC in Fig. 2). The 

process becomes very complicated in a higher dimension when a large number of service 

pairs are involved. Through this project, we also solved this problem mathematically [14] by 

calculating a joint PDF for a function of multiple random variables. With this method, the 

Nested sampling can be further employed effectively to calculate the evidence of each 

possible location planning.  
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DISCUSSION OF RESULTS 

 The developed method and software (in MATLAB) has been tested in various 

network scenarios.  

Considering Fixed Network Parameters  

 We have tested various random networks and compared with a recently developed 

method [9]. 

 

 

  Fig. 3. A random network I8K8, and the service pairs   

 

 We denote “IaKb” as a random network that has “a” service nodes and “b” potential 

terminal locations. Terminal capacities are generated randomly and are associated with a 

proportional operation cost. Fig. 3 shows one instance for I8K8 and the service loads are also 

shown in the right of Fig. 3. The results by running our MCMC-based method for this 

example are shown in TABLE 2 where each row shows the routing information. 

TABLE 2. planning and routing results for an I8K8 instance 

 

 We have also compared the method with a recently developed state-of-the-art 
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method: Greedy randomized adaptive search procedure-Heuristic evaluation procedure 

(GRASP-HEP) [9] in varies network setups. As shown in TABLE 3, our method has shown 

consistent improvement in various testing scenarios. 

TABLE 3. Comparison with GRASP-HEP method 

 

 

Considering Parameter Variations 

 The kind of historical intermodal transportation data we need is not freely available, 

so we instead invented a test case that attempts to be realistic. As shown in Fig. 4, we 

consider 14 cities and 4 existing rail terminals in five states (Mississippi, Alabama, 

Tennessee, Arkansas, and Georgia). The rail lines and terminals are all part of the existing 

Norfolk Southern intermodal freight network. The four terminals are Nashville, Memphis, 

Birmingham, and Atlanta) and arriving at each of the other cities in the network. The amount 

of freight demand coming from these cities is proportional to their populations. The 

proportion of the demand coming from one city going to another city is proportional to the 

destination city’s population as a percentage of the total population of all the cities in the 

network. Terminal capacities and fixed costs are proportional to the population of the nearest 

large city. The amount of demands may change and the variation is assumed to be Gaussian 

random variable with variance being one tenth of the mean value. 

 With the use of existing four terminals, three configurations were tested: no 

additional terminals added, one added near Chattanooga, and one added near Meridian. The 

costs and capacities of terminals are shown in TABLE 4. With our method, the total cost and 

the log-evidence of each configuration are found and shown in TABLE 5. The results show 

that the proposed Chattanooga terminal absorbs much of the demand that is normally routed 

uni-modally from Nashville, so the cost is noticeably lower. The proposed Meridian terminal, 

however, is not well placed and its utility to the network is minimal. 
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Fig. 4. Map illustrating service nodes (‘o’) and terminals (‘x’) 

 

TABLE 4. Terminal capacity and cost 

Terminal Capacity (tons) Fixed Cost ($) 

Memphis 168,370 159,280 

Huntsville 47,219 44,671 

Birmingham 54,491 51,552 

Atlanta 114,050 107,890 

Chattanooga 96,349 96,800 

Meridian 37,187 37,361 

TABLE 5. Total Cost and Evidence of each configuration 

Terminal Cost ($) Log-Evidence 

None added 4,002,900 -4.0033e+10 

Chattanooga 3,820,600 -3.8221e+10 

Meridian 3,912,300 -3.9125e+10 
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CONCLUSIONS 

 Through this project, we have developed a MCMC-based method to solve the 

terminal location planning problem in intermodal transportation system. First, in the case 

without the consideration of network parameter variation as assumed in the literature, we 

have developed a two-layer MCMC-based method that that outperforms one state-of-the-art 

method in various testing scenarios. Second, in the case where the parameter variation is 

considered, we modal the variation with Gaussian priori probability distribution and study 

the terminal location problem based on their Bayesian evidence. This is a work not being 

found in the literature yet.  Both mathematical results and software programs in MATLAB 

have been developed. In addition to this technical work, throughout this project, we have also 

involved a graduate student in the PhD level for the education purpose.  

 This project has also generated six oral presentations, one post presentation and three 

conference proceeding papers. One paper [14] presented in the 33rd International Workshop 

on Bayesian Inference and Maximum Entropy Methods in Science and Engineering 

(MAXENT 2013) (Dec.15-20, Canberra, Australia) has won the Best Poster Award.
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RECOMMENDATIONS 

 

 Through this project, we can conclude that the Bayesian inference method with 

MCMC could provide a unified methodology for solving various operational optimization 

problems in intermodal transportation systems. Compared with other case-by-case heuristic 

methods. This proposed work has an advantage to guide the “random walk” in the multi-

dimensional decision space based on the samples’ contribution to a well-mapped stationary 

probability distribution. As a result, a better final solution can be approached, with a short 

time period. We highly recommend that this methodology can be fully appreciated by the 

research community in intermodal transportation systems.   
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ACRONYMS, ABBREVIATIONS, AND SYMBOLS 

 

MCMC  Markov Chain Monte Carlo 

GRASP  Greedy Randomized Adaptive Search Procedure 

HEP   Heuristic evaluation procedure 

IaKb   “a” number of service nodes and “b” potential terminal nodes.  
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