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ABSTRACT 
The transportation system in the United States is disjointed and inefficient as a result of the 

different transportation modes in use and their respective industries which have developed 

independently. In addition, public transportation is not well used in passenger trips compared to 

other developed countries. For example, public transportation accounts for 20% of passenger trips 

in large U.S. cities compared to 50% in Europe. Also, development of the passenger intermodal 

transportation system has lagged behind development of the freight transportation system.  

To improve utilization of intermodal transit and efficiency in the U.S, we developed an 

intelligent decision support system for passenger travel decisions using real-time general transit 

feed specifications (GTFS) data. In our system, an automatic data collection strategy was created 

to collect GTFS and flight data across different platforms, and an “all-in-one” database was 

designed to store the data. The database was used to: 1) construct intermodal transit networks using 

a “node-link” scheme, and 2) estimate travel time and travel time reliability for links and transit 

routes. Using this real-time data, a data-driven travel decision model was developed to determine 

the best route based on passenger preferences. Several chance constraints were added in the 

decision model to guarantee the reliability of the travel route under uncertainties. Additionally, a 

user-friendly interface was developed in Python to allow travelers to plan their trips, and a 

geographic information system (GIS), Google Earth, was employed to allow users to visualize the 

optimized route options. 

The proposed system was validated using real-time GTFS data collected in Tucson, AZ, and 

Boston, MA. This validation demonstrated that the system can determine optimal travel routes for 

passengers. In addition, three sets of sensitivity analysis experiments were developed to investigate 

three model considerations: 1) the effect of chance constraints on path choice, 2) the effect of 

confidence levels on path choice, and 3) the difference between weekend and weekday travel 

planning. The results suggested that the optimal anticipated travel time increases with an 

increasing on-time arrival confidence level, and walking is preferred by passengers instead of 

transferring buses during peak hours. As an example, approximately 30% additional time serves 

as a reference for allocating travel buffer time to ensure a higher on-time arrival confidence level 

for transit trips to the Tucson International Airport. 
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1.!INTRODUTION 
Travelers across the country have been encouraged to switch travel modes from private 

vehicles to public transportation. A decrease in vehicle traffic can lead to carbon emission 

reductions and alleviation of traffic congestion. Transit service improvements including accessible 

stops, reliable trips, and mobility provisions provide travelers with incentive to switch to transit 

[1]. In addition to the development and maintenance of transit facilities, emerging transportation 

management information technologies have also been developed. Many transit agencies in the U.S. 

and Canada have adopted these technologies and created advanced public transportation systems 

(APTS) to improve their operational efficiency and service safety [2,3]. Therefore, transit systems 

are increasingly playing an important role in surface transportation. 

One of the primary goals of transit operation is to increase ridership. Transit agencies have 

utilized APTS to release up-to-date transit information (e.g. changes in routes or timetables). A 

recent survey [4] suggested that the overall satisfaction and usability of transit systems would be 

improved by providing passengers with up-to-date transit information. Moreover, this information 

could also help transit passengers plan their trips to save travel time and expenses. Related trip 

planning applications can be found in [5–7]. The benefit of releasing up-to-date transit information 

is dependent on the quality of data collection. Conventional transit data collection approaches 

primarily include manual collection at pre-defined points (e.g. bus transfers and terminals) and 

transit-related surveys. Additionally, various technologies have been applied to automatically 

collect transit data. One of these technologies is GPS, which assists transit agencies and passengers 

in tracking and locating transit fleets in real-time. The ease of transit data collection using GPS 

ensures that transit information is up-to-date, simplifies the trip planning process, and makes 

planned trips reliable. 

Reliable trip planning has been studied with the objective of saving transit passengers travel 

time and cost. Most transit agencies have developed their own trip planning systems for their riders. 

For example, Sun Tran [8] has developed a trip planning system based on its scheduled trips in 

Tucson, Arizona. Another trip planning framework is OneBusAway, [9] which integrates transit 

networks and schedule information in five cities. Although these trip planning systems can be 

easily accessed using webpages or apps on mobile devices, few academic studies have addressed 

their trip planning algorithms and models. Yan et al. [10] sought to minimize the expected values 

of random schedule deviations (specifically the sum of expected values), and their results showed 
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that optimal scheduled travel time depends on bus drivers’ schedule recovery behavior and 

decision makers’ scheduling philosophies. In order to minimize wait times at transfer stations, 

Shafahi and Khani [11] formulated the issue of transit trip planning as a mixed integer 

programming model and presented a genetic algorithm approach to more efficiently find optimal 

transit trips in larger networks. 

Beyond transit trip planning, several previous studies on general transportation trip planning 

are also summarized below. Travel time is one of the most important criteria when planning a trip. 

Travelers are commonly concerned with how long will their trip take. Thus, travel time is an 

essential factor for finding optimal trip paths. Recent studies [12–14] also suggested that  travel 

time reliability (also known as travel time uncertainties) could be considered as “risks” of late 

arrival, because late arrivals caused by travel time variations would excessively inconvenience 

travelers (e.g., missed flights). Thus, travelers would desire to know how reliable their planned trip 

path would be. For example, airline passengers appear to depart early to create a “safe margin” to 

minimize the chance of missing their flight. This safe margin is usually called buffer time. 

Appropriate buffer time for different traveler routes could be provided to support better trip 

decisions depending on the departure time period on a specific day. Therefore, both travel time 

and travel time reliability are essential factors for trip planning. 
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2.!OBJECTIVE 
The main research goals of this project are to improve the efficiency of intermodal passenger 

transportation, improve the utilization of public transportation modes, and reduce transportation 

cost and travel time for passengers.  
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3.!SCOPE 
To attain the objectives listed above, an efficient and effective database was designed to 

provide an “all-in-one” data platform for storing static and dynamic information of different 

transportation modes (e.g., bus, flight, etc.). An automatic data collection approach was developed 

to collect real-time data and store it in the database. 

Next, to help passengers reliably arrive at the airport on-time, both bus transit measures (travel 

time and travel time reliability) were incorporated in the proposed chance constrained decision 

model to obtain optimal paths at a predefined on-time arrival confidence level. 

Finally, based on the database and the travel decision model, a user-friendly interface was 

developed to allow passengers to search for and schedule their travel plans. To visualize the 

optimized route options, Google Earth was used to display different routes.  
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4.!METHODOLOGY 
4.1!Data Collection 
4.1.1! GTFS Data  

The transit data followed the general transit feed specification (GTFS) format and was reported 

to Google in two types: GTFS static and GTFS real-time, with definitions and applications of each 

shown below. 

•! “The GTFS defines a common format for public transportation schedules and associated 

geographic information” [15]. GTFS has several fields, including “stop time”, which refers 

to transit scheduled timetable, “route”, “trip”, and “stops”, which contain the existing 

transit facility information. These fields are necessary to calculate the earliness/lateness of 

buses at stops. The field “shapes” provides the spatial references to locate transit fleet on 

roadways. Time-space diagrams can be plotted using the travelled mileages transformed 

from the real-time transit fleet locations. 

•! “GTFS real-time is a feed specification that allows public transportation agencies to 

provide real-time updates about their fleet to application developers. It is an extension 

to GTFS, an open data format for public transportation schedules and associated 

geographic information” [16]. It provides not only transit fleet information but also 

estimated trip status. Because this study aimed to measure reliability at the stop-level, only 

the real-time transit fleet locations contained in the field “VehiclePosition” were used. The 

update frequency of the GTFS real-time data was 30 seconds. 

Figure 1 depicts the GTFS data flow where GTFS static and GTFS real-time can be accessed 

by different approaches. Transit agencies usually implement and release GTFS static data files on 

static webpages. Anyone can directly download these files from the webpages. GTFS real-time 

data is updated at a specific time interval and released through web service definition language 

(WSDL) technology. Users usually have to develop computer programs to grab the real-time data. 

Since GTFS real-time is encrypted with “protocol buffer” [17], GTFS real-time data should be 

decrypted before further processing. After downloading and grabbing the GTFS static and GTFS 

real-time data files, a customized computer program is developed to parse these files and import 

the parsed data into a database. Figure 2 lists the attributes in GTFS real-time data. 

!
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FIGURE 1   GTFS data overview!
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FIGURE 2   Real-time data attributes!
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4.1.2! Transit Agency Data 

Transit service data assists transit agencies in making decisions with respect to transit 

operations and planning. Manually collecting transit service data has been a popular approach in 

the past several decades. Recently, emerging techniques have allowed decision makers and 

researchers to automatically collect transit service information. For instance, GPS is able to locate 

transit fleets in real-time. The automated vehicle location (AVL) system is built based on GPS. 

The transit service data collected from the AVL system contains not only fleet location information 

but also travel-related information (e.g. trip, route, and bus stop arrival time). However, specific 

transit agencies may define AVL data formats to satisfy their operation and planning requirements, 

without adhering to a common format. Google encourages transit agencies to follow the data 

format defined in GTFS to exchange and share transit service information. GTFS data is becoming 

more popular throughout the nation.  

Figure 3 shows an overview of bus stops in Tucson, Arizona. This data was used to build a 

network for trip planning and path choice. The real-time transit fleet information was encrypted in 

the GTFS real-time format. Sun Tran, which manages transit service (including over 30 routes and 

over 2,000 bus stops) in Tucson, AZ, has implemented the two GTFS data formats and made them 

accessible to the public. Both types of GTFS data were collected from August 2014 to June 2015 

and used in our study. 

Two commonly used transit service measures were estimated using the GTFS data, including 

the mean value of link travel time (also known as stop-to-stop travel time) and transit service 

reliability. Transit service reliability is defined as the variance of link travel time. Travel time 

reliability is typically measured by time of day (TOD) and day of week (DOW) [18]. Sun Tran 

adopted two timetables (one for weekdays and one for weekends) because of the significant 

differences in transit demand between weekdays and weekends. Therefore, the transit service 

reliability is measured by TOD and weekdays or weekends. A dummy variable!"  is used to 

indicate either weekdays or weekends.  
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where!## and ##5 are average and variance of link travel time given 9:, ;, <=>, and "; 
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9: represents the route number; 

; represents the lth link on Route!9:; 

" is 0 and 1 for weekends and weekdays, respectively. 

? is the kth estimated link travel time given 9:, ;, <=>, and "; 

 
 

FIGURE 3   Bus stops and transit network in Tucson 

(Background image is from the OpenStreetMap) 

4.2!Database Schema 
According to the attributes of GTFS static and GTFS real-time, Figure 4 shows the database 

schema design. GTFS static data includes trip, route, stop&time, stop, and shape information. The 

primary keys are labeled in tables. All tables are connected by primary keys. For example, a trip 

is connected with the primary keys route ID and shape ID in Route and Shape tables, respectively. 

Figures 5-6 give examples of tables in database. 
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FIGURE 4   Database schema design 

 
(a) Route table 

 
(b) Shape table 
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(c) Stop & time table 

 
(d) Stops 

 
(e) Trips 

FIGURE 5   Parsed GTFS static data in database 
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(a) Trip update table 

 
(b) Vehicle position table 

FIGURE 6   Parsed GTFS real-time data in database 

4.3!Network Construction 
Multiple transport modes were considered in our intercity passenger traveling problem. To 

model this multimodal transport network and optimize route selection according to passenger 

preferences, it was helpful to build the network in an efficient way. Different network-building 

methods have been studied since multimodal networks can be viewed from many aspects [19]. 

Networks can be viewed as physical systems and classified as road, rail, water, and air, or they can 

be viewed as functional systems, classified into private modes (e.g. foot, bike and car) and public 

modes (e.g. bus, train, metro). Two major network structures have been used extensively in 
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transportation planning: node-based [20] and link-based [21] networks. Recently, trip-based 

network representation was proposed in [22], in this case transit vehicle trips are used as network 

edges and transfer stop hierarchy is taken into account. Another lane-based network presented in 

[23] could serve as a more realistic platform to provide a geospatial context for traffic simulations 

to be performed at the level of individual vehicles. A new super-network platform was constructed 

[24], which was an expanded network in which activity links were introduced into the conventional 

time-space network. 

In our multimodal network, transit buses, walking, and flights were considered within two 

cities, Boston and Tucson. In order to fit and make better use of the GTFS data format in our SQL 

database (see Section 4.1), individual transit bus networks were established for the two cities 

initially, and then these two networks were flattened to integrate walking and transit, and finally 

the two networks were connected by the flight network. This network building process was 

accomplished using the package ‘NetworkX’ developed for the Python programming language 

[25]. Database interaction between SQL and Python can be found in [26] using package ‘pymssql’. 

The example Python code is shown below: ‘host’ represents the IP address of the database server, 

‘1433’ is the default value of the connection port, ‘database’ is the name used for the database in 

database management system. 
SQL$=$pymssql.connect($
$$$$$$$host='xxx.xxx.xxx.xxx',$
$$$$$$$port=1433,$
$$$$$$$user='xxxx',$
$$$$$$$password='xxxx',$$$$
$$$$$$$database='xxxx'$$$$$$$$$$$
)$
$
SQL.cursor() 

Figure 7 shows detailed flow diagram of Python + SQL to generate the static multimodal transport 

network with corresponding static attributes (taking Tucson for example). Figure 8 shows a query 

example in SQL database server. 
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Connection start

Query all the route

Query all trips for each route

Query all stops for each trip

Build static network

pymssql connect SQL Cursor()

Cursor execute 
'select * from 

[SunTran].[dbo].[Suntran_Routes]'

Cursor execute 
'select * from 

[SunTran].[dbo].[Suntran_Trips]
              where [route_id]=...'

Cursor execute 
'select * from 

[SunTran].[dbo].[Suntran_Stops]
where [trip_id]=...'

Networkx.MultiDigraph()

Dictionary Tucson_route

Dictionary Tucson_trip

Dictionary Tucson_stop

Route short name
Route long name
All trips id
Route type

Route id
Trip headsign
Trip short name
Stop sequence

Stop id
Stop name
Stop latitude
Stop longitude 

…...

…...

…...

Multigraph with multiple links

 
FIGURE 7   Flow diagram of Python + SQL to generate static multimodal network 

 
FIGURE 8   Example in SQL to query all the information for route 11617 

After separate transport networks for the two cities were built, the overall intercity network 

was connected via airports and constrained by the flight network. Land-based travel modes 

between the two cities were considered impractical for most travelers. For a practical trip between 

Tucson and Boston, the most unalterable constraint is the flight network, which has a strong time-

property. Therefore, arriving with high reliability well before the flight takeoff time, which would 

be a parameter input by the user, was critical in trip planning.  
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It should be noted that for this established directed graph (Figure 9), only static attributes were 

assigned for nodes (e.g. identification number, name, coordinates, scheduled departure, and arrival 

time) and links (e.g. parent nodes, succeeding nodes, and scheduled travel time for this link). 

However, for the real-time optimization, real-time information about traffic interruption, possible 

delay, and all other unexpected alterations needed to be accessible. Accordingly, partial or entire 

networks needed to be updated once the real-time feedback information had been imported into 

the database. This updating process was completed by creating event alerts in the database to 

update automatically. 

Figure 9 demonstrates a simple transit network consisting of three routes and 13 stops. Multiple 

routes may travel on the same link and pass through the same stops. The link travel time and link 

travel time reliability are estimated by specific routes and links. For example, westbound routes A 

and C are designed to travel on a link consisting of Stops 1 and 2. ##
@,2

()*,+ and ##5
@,2

()*,+represent 

the travel time and travel time reliability on the first link, route A, given a TOD and ", respectively. 

#
A,2

()*,+  and ##5
A,2

()*,+  represent the travel time and corresponding travel time reliability on the 

same link, route C. The transit stop information was extracted from the GTFS static data and the 

links were constructed using two consecutive stops on a specific route. The link travel times and 

link travel time reliability were estimated using the GTFS real-time data. Then, a network was 

completed using the transit stops, constructed links, and corresponding link travel time and travel 

time reliability. 

 
 

FIGURE 9   Demonstration of transit network construction  
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4.4!Chance Constrained Decision Model 
Due to the complexity and randomness of real-world situations, it is difficult to determine 

travel time explicitly in a large-scale transit network. Additionally, walking is always involved in 

public transit and more complexity is added when taking into account the uncertainty of transfer 

time and waiting time. For our study, the airport was set as the destination considering that travelers 

are concerned about on-time arrival confidence level because of the significant inconvenience of 

missing a flight. Finding an optimal path to guarantee arriving the airport on time at high likelihood 

was a priori preference. Practically, in the stochastic transit network, the route with lowest travel 

time might not be the best choice for passengers to catch the flight during specific hours on specific 

day.  

For this kind of problem, chance constrained programming was developed as a means of 

describing constraints in mathematical programming models in the form of probability levels of 

attainment. Consideration of chance constraints allows decision makers to consider mathematical 

programming objective in terms of the probability of their attainment [27]. In this research, the 

uncertainties in travel time were considered and a deterministic model was extended to be a 

stochastic model with some chance constraints to guarantee the probability of on-time arrival. For 

clarity, the travel time between two adjacent stops by bus is termed as link travel time while travel 

time from the origin to the destination is referred to as path travel time. Accordingly, link travel 

time is the element for path travel time. 

Considering a stochastic and time-dependent network, total travel time is the objective function 

and mainly consists of link travel time, transfer time (same as waiting time), and walking time. 

However, for link travel time, transportation literature does not provide a universally valid model 

for bus movements in an urban environment since they are strongly affected by vehicular and 

passenger traffic conditions, road organization, traffic signal control management, company 

policies, etc. [28]. Therefore, using nonparametric probability distribution estimation methods 

could provide greater flexibility and increased fidelity with fewer assumptions. Details about 

estimated travel time distribution can be found in our previous research [18]. Specific calculation 

of mean value of link travel time is shown in the following data preparation section. All 

corresponding assumptions made for this study and the notations (Table 1) used for the model are 

summarized below. 
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1.! The modes studied here are transit bus and walking, and transfer mode is used as dummy 

mode for modeling convenience. Walking was not considered at original stops, which 

means walking was not chosen at the departure stop.  

2.! Link travel time, transfer time, and walking time between any consecutive nodes were all 

treated as random variables. The dependency was not considered. 

3.! Bus transfer time was assumed to follow uniform distribution, and the lower and upper 

limit were determined by scheduled bus timetable.  

4.! Walking time was computed based on distance between two nodes and walking speed 

which was assumed to follow a normal distribution B(C, D7). Reasonable values of C and 

D are 1.35m/s and 0.2m/s [29]. Since the first and second moment of reciprocal normal 

distribution does not exist, the mean of walking time was estimated by >EF<G:HI/C, and 

the standard deviation of walking time was estimated by the estimator >EF<G:HI ∗

(
2

LMN.PQRRS∗T
−

2

LUN.PQRRS∗T
)/1.34898 [30]. 

TABLE 1   All notations used in the model 
Notations Description 
B Set of nodes in the transit network, with index i, j 
Z Departure node 
[ Destination node 
\ Set of links in the multi-modal network 
] Set of travel modes in the multi-modal network, with index m 
^(,_`a Mean value of travel time for link (i, j) under mode m 
b[(,_`a Standard deviation of travel time for link (i, j) under mode m 
\# User-defined anticipated arrival time  
c# Current time  
H User-defined on-time arrival confidence level 
d$ Quantile of normal distribution at confidence level H 
e_`a Binary variable, selecting mode m for link (E, f) or not 

 
For this stochastic network, the objective of minimizing expected total travel time can be 

expressed as 

gE: ^# = e_`a^(,_`a

_,` ∈@,a∈i

!!! (3) 

For the constraints, the basic flow balance constraints should be included to generate feasible path 

which is given below.  
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e_`a

_,` ∈@,a∈i

− è _

`,_ ∈@,a∈i

=

1, Ej!E = Z

0, Ej!E ≠ Z!=9![

−1, Ej!E = [

 
 

(4) 

The chance constraint is introduced here to guarantee the on-time arrival probability which 

should be greater than pre-defined confidence level H. 

m ^# ≤ (\# − c#) ≥ H!!!!!! (5) 

Travel time uncertainties are typically represented by random distributions. If the travel time 

between any consecutive stops are independently distributed, the path travel time follows a normal 

distribution approximately following the central limit theorem. Based on the central limit theorem 

and independence assumption, the mean and variance values of all the arcs can be added together 

as mean and variance value of the path. Hence, the chance constraint can be formed in the 

following equivalent deterministic constraints according to [31].  

^# ≤ e_`a^(,_`a

_,` ∈@,a∈i

− d$ e_`a(b[(,_`a)
7

_,` ∈@,a∈i

 
 

(6) 

e_`a ∈ 0,1 !!!!! !!(7) 

Here, different random distributions could be included in this model, also it is more easily 

implemented based on existing efficient shortest path algorithms.   

4.5!Solution Method 
Up to this point, the model with chance constraints had been transformed to a classic network 

model which is similar to a shortest path problem with an extra travel time upper limit constraint. 

Numerous algorithms have been developed for this problem category in static and stochastic 

networks. Classic shortest path algorithms such as Dijkstra, Bellman, and Dreyfus focus on 

networks with deterministic arc weights. For time-dependent networks, algorithms including exact 

or heuristic algorithms were also proposed recently [32,33]. All of these algorithms seek to obtain 

an optimum or near optimum path which limits alternative options.  

For practical applications, some paths have the same objective value and satisfy the confidence 

level requirement, therefore several possible optimal options should be ranked for passengers to 

choose from based on their own preferences. Obtaining several paths in increasing order of length 

is usually referred as the k-shortest paths problem which is a generalization of the shortest path 

problem [34]. The k-shortest path problem was originally examined by Hoffman and Pavley [35], 

but nearly all early attempts to solve it led to exponential time algorithms [34]. The best known 
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implementation for this algorithm was proposed by Yen [36] using modern data structures, in 

which Z(?:(g + :;=t(:)))  limits the worst case complexity. This algorithm essentially 

performs Z(:) single-source shortest path computations for each output path. Based on these 

considerations, the framework of the k-shortest path algorithm was used to conduct our 

experiments. In the repeated k iterations of the algorithm, the feasibility of constraints [4] needed 

to be checked; the solution path would not be stored if the feasibility was not satisfied.   

4.6!User Interface Prototype 
The graphic user interface (GUI) in this section was developed based on the Python + Eclipse 

environment. Several GUI packages were available in the Python library, for instance, TkInter, 

Traits/TraitsUI, and gui2py. For this project, WxPython was used [37]. Tucson and Boston were 

considered since their public transit data formats were very similar and easily integrated together.  

For intercity travel from Tucson to Boston, travelers begin with a departure bus stop in Tucson 

(generally near their home) and terminate at a bus stop in Boston (generally near their final 

destination). Normally, flight tickets will be booked well in advance of the beginning of their trip. 

There might be some connections in their flight, however, the departure time from home and arrive 

time at destination are constrained by the takeoff time of their flight from Tucson and landing time 

in Boston. 

 
FIGURE 10   Prototype of graphic user interface for intercity trip support 
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Therefore, four inputs were gathered from users: two flight numbers (taking off from Tucson 

and landing at Boston) and two bus stops, as shown in Figure 10. The ‘Calculate’ button was used 

to obtain at most the five best options based on anticipated travel time. ‘Display in Google Earth’ 

created a kml file [38,39] of the chosen path allowing users to visualize it in Google Earth. The 

‘Clear’ button cleared all the input and path results.  
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5.!DISCUSSION OF RESULTS 
5.1!System Demonstration 

Case Study I: Suppose Delta Airlines has been chosen by the traveler, with the flight 

information shown in Figure 11. Flight DL 1345 takes off at 6:15am (not a peak hour) from the 

Tucson International Airport and Flight DL 1500 will land at 4:42pm (around peak hour) at Boston 

Logan International Airport, with a connection in Atlanta. 

 
FIGURE 11   Flight information from Delta Airline’s website 

After inputting the flight information in the user interface, the recommended path and 

corresponding travel time is given in Figure 12. An additional time of 25 minutes would be needed 

to guarantee on-time arrive at Tucson International Airport if the traveler boarded the flight at 6 

am. After the path results are calculated, Google Earth can be used to display the results. ‘Tucson, 

Option 1’ and ‘Boston, Option 1’ are displayed respectively in Figure 13 and Figure 14. The 

marker ‘S’ and ‘D’ in Figure 13 and Figure 14 represent the start stop and ending stops. Walking 

mode is indicated by two ‘W’s. 
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FIGURE 12   Optimized results for case I 

 
FIGURE 13   Path displayed in Google Earth for case I, Tucson 
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FIGURE 14   Path displayed in Google Earth for Case I, Boston 

Case Study II: In case II, American Airlines is chosen (Figure 15), and the takeoff time is 

around the traffic peak hour of 5 pm and landing time is 10:29 am the next day in Boston. The 

optimized results and displayed path are shown in Figure 16 and Figure 17. 

 
FIGURE 15   Flight information from American Airline’s website 
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FIGURE 16   Optimized results for case II 

 
FIGURE 17   Path displayed in Google Earth for case II, Tucson 

5.2!Sensitivity Analysis 
Based on the abovementioned data and the approaches for network construction, the transit 

network in the Tucson area was constructed for planning travelers’ trips. The total transit bus 

network consisted of approximately 2,332 bus stops and 3,529 links. Two modes were primarily 

considered in the network: walking and transit buses. Three groups of experiments were created 
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to demonstrate the effects of transit service uncertainty on path choices. These three groups of 

experiments focused on the local portion of the Tucson to Boston trip, with the Tucson 

International Airport as the trip destination.  

Experiment I - Effects of Chance Constraint on Path Choice  

This group of experiments was designed to investigate the effects of a chance constraint on 

path choice. The departure time was selected as 5 pm on a weekday, when traffic usually suffered 

from recurrent congestion. The confidence level of the chance constraint was set at 99.5%. Four 

scenarios were created by selecting two origins (including the University of Arizona mall bus stop 

(Stop 100) and Kain/Kimberly PI bus stop (Stop 13912)) and whether or not the chance constraint 

was considered. 

•! Scenario 1a; origin: Stop 100; do not consider chance constraint; 

•! Scenario 1b; origin: Stop 100; consider chance constraint; 

•! Scenario 2a; origin: Stop 13912; do not consider chance constraint; 

•! Scenario 2b; origin: Stop 13912; consider chance constraint; 

The details of the results are listed in Table 2, and several findings are summarized below. 

TABLE 2   Results comparisons between with and without chance constraints 
Departure 

Stop 
Consider 
chance 

constraint 

Optimal 
travel time 
(minutes) 

Choose 
walking 

Total walk 
time 

(minutes) 

Optimal path 

100 No 90.55  Once 0.6 
100

u)v(w!S

14202

xy'/_%z

42

u)v(w!7{

118  
Yes 120.7  Twice 11.6 

100

u)v(w!S

11736

xy'/_%z

13481

xy'/_%z

10862

u)v(w!7{

118  
13912 No 151.5  Twice 1.4  

13912

u)v(w!2Q

172

xy'/_%z

12911

u)v(w!P

12707

xy'/_%z

14295

u)v(w!7{

118  
Yes 203.6  Twice 1.8 

13912

u)v(w!2Q

12096

xy'/_%z

13747

u)v(w!2S

14206

xy'/_%z

42

u)v(w!7{

118  
1) Both scenarios suggested that the optimal travel times became higher when the chance 

constraint was considered. 

2) Walking was preferred in Scenario 1b because walking was more reliable than taking and 

waiting for buses. Both Routes 9 and 25 were chosen in Scenario 1. The major difference between 

Scenarios 1a and 1b was the mode selection to reach Stop 10862. Taking buses was chosen in 

Scenario 1a; while walking to the stop was chosen in Scenario 1b. The travel time of taking buses 

was usually shorter than walking time. However, congested traffic conditions may lead to less 

predictable and reliable bus arrival. The selection of walking may become an alternative to avoid 
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traffic congestion and ensure on-time arrival. Thus, walking became the optimal choice when 

considering chance constraints. The optimal path chosen for Stop 100 in scenario 1a and scenario 

1b is shown in Figure 18 (left). 

3) More reliable paths were chosen in Scenario 2. The differences of optimal travel times and 

walking time between Scenario 2a and Scenario 2b were minor (approximately 10 minutes and 1 

minute, respectively). Route 6 chosen in Scenario 2a was planned on a busy roadway; whereas, 

Route 19 in Scenario 2b was planned on a roadway with relatively light traffic. Although the 

optimal travel time of Scenario 2a was slightly smaller than that of Scenario 2b, Scenario 2b could 

be a better path choice when considering a chance constraint with higher on-time arrival 

confidence level. The optimal path chosen for Stop 13912 in Scenario 2a and Scenario 2b is shown 

in Figure 18 (right). 

  
Scenario 1 Scenario 2 

 
FIGURE 18   Optimal paths with and without chance constraints 

Experiment II - Effects of Confidence Levels on Path Choice 

The second group of experiments was designed to investigate the effects of different on-time 

arrival confidence levels on path choice. The destination was again the Tucson International 

Airport. Three origins were selected, including the UA mall bus stop (Stop 100), Kain/Kimberly 

PI bus stop (Stop 13912), and 1st Av/Rillito Park (Stop 12900). Since traffic conditions greatly 

Stop%10862
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affect transit reliability and traffic congestion varied significantly between 6 am and 5 pm, transit 

service was considered reliable at 6 am and less reliable at 5 pm. Thus, six scenarios were created 

based on the three origins and these two TODs. Seven levels of on-time arrival confidence levels 

were tested for each scenario. 

•! Scenario 1a; origin: Stop 100; departure time: 6 am on weekday; 

•! Scenario 1b; origin: Stop 100; departure time: 5 pm on weekday; 

•! Scenario 2a; origin: Stop 13912; departure time: 6 am on weekday; 

•! Scenario 2b; origin: Stop 13912; departure time: 5 pm on weekday; 

•! Scenario 3a; origin: Stop 12900; departure time: 6 am on weekday; 

•! Scenario 3b; origin: Stop 12900; departure time: 5 pm on weekday; 

Figure 19 and Table 3 show the optimal anticipated travel times for each scenario, and several 

findings are summarized below. 

1) The optimal anticipated travel times increased with the increase in on-time arrival 

confidence level. For example, In Scenario 1, the optimal anticipated travel time was 82.45 

minutes when a chance constraint was not considered. The optimal anticipated travel time 

increased to 109.3 minutes when the on-time arrival confidence level was set at 99.5%. The same 

trend can be observed in all of the scenarios. The trend was intuitive: for a fixed takeoff time, the 

more planning time, the higher the on-time arrival confidence level.  

2) The optimal anticipated travel time at a given on-time arrival confidence level was greater 

at a departure time of 5 pm at 6 am. For example, without considering confidence level, the optimal 

anticipated travel times were 82.45 and 90.55 minutes, respectively. Generally, transit service was 

more reliable in the early morning than during peak hours.  

3) Approximately 30% additional planning time could ensure on-time arrival at a relatively 

higher confidence level. Table 3 lists the optimal anticipated travel times when on-time arrival 

confidence level was not considered and at the 99.5% level for the six scenarios. Although the 

difference in time varied, the percentage differences suggested that trips could be on time at a 

reliability level 99.5% if 30% additional planning time was added as buffer time. 

TABLE 3   Basic statistics 

 Optimal anticipated travel time 
(minutes) 

Difference 

No Chance 
Constraint   

(|GFI) 

99.5% On-time 
Arrival 

Confidence Level 

Minutes 
(cN.SS{ − |GFI) 

Percentage (%) 
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cN.SS{ ((cN.SS{ −
|GFI)/!|GFI) 

Scenario 1a 82.45 109.3 26.85 32.57% 
Scenario 1b 90.55 120.7 30.15 33.30% 
Scenario 2a 129.9 171.6 41.7 32.10% 
Scenario 2b 151.5 203.6 52.1 34.39% 
Scenario 3a 109.1 142.9 33.8 30.98% 
Scenario 3b 122.7 163.1 40.4 32.93% 
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Scenario 3 

FIGURE 19   Optimal anticipated travel time vs. predefined confidence level 

Experiment III - Weekend vs. Weekday 

The third group of experiments was designed to investigate the optimal anticipated travel time 

and path choice on weekends and weekdays. Due to the light traffic on weekends, the transit 

service was presumed to be reliable and similar to weekday early morning service. However, 

Figure 19 shows that significant differences existed between the optimal anticipated travel time 

for 6 am on weekdays and 10 am on weekends. The major difference between the weekday 

timetable and the weekend timetable was the bus time headway. The time headway was typically 

set to be 10 or 15 minutes on weekdays; while it was as much as 60 minutes on weekends. Larger 

time headway resulted in longer waiting time at bus stops, and therefore the optimal anticipated 

travel time increased. 
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6.!CONCLUSIONS 
Transit systems are not thoroughly utilized in the U.S. Previous studies have shown that low 

fares and easily accessible transit information can convince increasing numbers of travelers to 

choose transit. With new technologies emerging, the ease of tracking and collecting transit fleet 

information in real-time helps improve both transit operations and real-time transit information 

quality. To further encourage travelers to take transit, an efficient decision tool would help traveler 

plan transit trips. In this study, a data-driven decision framework for intermodal trip planning was 

proposed and implemented. The advantages of the proposed framework are highlighted below: 

•! Both travel time and travel time reliability were considered in the system when planning 

intermodal travel. Travelers can be provided with two important transit measures, 

anticipated travel times and on-time arrival confidence levels to better plan their trips.  

•! The two transit measures were connected using a chance constrained decision model to 

obtain travel paths under different uncertainties. The chance constraint was transformed 

into an equivalent deterministic constraint based on the approximate normal distribution 

property of the path. Different random distributions could be included in the model and it’s 

more easily implemented based on existing efficient shortest path algorithms. 

•! Walking mode was considered when transit passengers needed to transfer. Incorporating 

the walking mode into the system gave passengers more options regarding trip planning 

and helped passengers plan more reliable trips. 

GTFS static and GTFS real-time data were collected and used for path optimization in Tucson, 

AZ and Boston, MA. Both data sets were utilized to estimate link travel time and travel time 

reliability in the constructed transit network. Three experiments under several different scenarios 

were conducted to study transit on-time arrival. The results of the three experiments suggested that:  

•! Optimal anticipated travel time increased with increasing on-time arrival confidence level. 

Essentially, more reliable planned transit paths usually involve longer anticipated travel 

times. As an example, approximately 30% additional time serves as a reference for 

allocating buffer time to ensure a high on-time arrival confidence level to the Tucson 

International Airport. 

•! It was found that walking was preferred instead of taking a transit detour. This is because 

the walking mode had relatively high reliability. The chance constrained decision model 

gave more weights to more reliable modes. 



!

! 38 

•! Given different confidence level, different additional time are suggested as the buffer time 

to guarantee a higher on-time arrival confidence level during different traffic hours.  
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