Copyright © 1997
Hughes Aircraft Company
Unpublished Work

This material may be reproduced by or for the U.S. Government pursuant to the copyright
license under the FAR Claus at 52.227-14 (JUN 87)

Document control number: TBD, Date: 1 July, 1997

Build 4.6

DRAFT
RADAR DATA SERVICE COMMUNICATION USER MANUAL
FOR THE

SURFACE SEARCH RADAR PROGRAM

CONTRACT NO. DTCG23-96-C-ASR009

CDRL SEQUENCE NO. 0021-002

Prepared for:

Commandant (G-ASM/SSR)
US COAST GUARD
2100 Second Street, SW
Washington, DC 20593-0001

Prepared by:

Maritime Systems Program Office
Hughes Naval and Maritime Systems
Building 617, MS B110
P. O. Box 3310
Fullerton, CA. 92634-3310

Copyright © 1997 - seetitle page DCN: TBD, Build 4.6 SSR Project
date: July 1, 1997 RDS COMM User Manual.
CDRL 0021-002

TABLE OF CONTENTS
IO 1 o1 oo (¥ Tt i o o ISR 3
2. ReferenCed DOCUMENTScouiiiiiiieeeiiie e eiee ettt sttt e b e e s sae e e e ssee e e ssae e e enseeesnneeesnneas 3
3. RDS COMM DESCIIPLIONeeieiiiieeiitieeeitieesieeestee et e e st e e s bt esssae e s sseeeesssesensseeesnseeeanseeesnneas 3
3.1 RDS COMM OVEIVIBIWceeieieieiee et e etieeeeeeeteeesteeesaeeeasseeesaeeesnseeeaseeesnseeeanseesaneeesnseeeanseesnneens 3
3.2 RDSCOMM PhilOSOPRY ..ottt s eeneeas 4
3.3 COMMUNICALIONS PrOtOCOLccuiiiiiiiiieiiee ittt n e nne e e 4
I Y == o L A < o PRSI 5
T R (V== =T L= [(= 0L = 1 o o U RURR 5
3.4.2 Message BUFfer POOI CreEBLIONooiiiiiiiieiiee ettt ettt e st e e snee e sane s 6
3.4.3 Attaching and detaching from the BUffer POOIScoooiiiiiiiiiic e 6
3.4.4 Message Registration and DeregiStration.cocueeiiieeeiierariee it e et sabe e sbe e sbe e seeeesaeeas 6
345 Message Transmission and RETEVELooiiiiiiiiiii e et 6
3.5 RDS COMM USEl INEEMTACE.ciiiiiiieiiieiie ettt 7
351 RDS COMM SEAMTUP.eveeueeeertestesieessestesteseessessessesseessessesseessessessesseesessessesseessessessessssssessessessssssesses 7
TR0 I R o == T (U o) TRV 7
3.5.2 RDSCOMM Function Prototype DefiNitiONS............ccuiieiiiiieiiee e 7
3.5.21 RDS Message Buffer Management FUNCLIONS............ooiieiiiiiiiiieiie e 7
3.5.2.1.1 AttachMeSSageEBUTEIS(). .eeiiiieiiie ittt et e e saee s 7
3.5.2.1.2 DetaChMESSAgEBUITEIS() ...veiiieie ettt ettt ettt ettt ettt e sab e e smbe e st e e e beeesnneas 8
3.5.2.1.3 GEMESSAGEBUFITEN() .eeverterueeiertisieeie sttt sttt sttt sb et b e s bt e e b b e et e b e sbesbesaeenee e 8
3.5.2.1.4 ReeasaMeSSageBUITEN() .. c.ei ittt 8
3.5.2.2 Registration Record Management FUNCLIONSocoiiiiiiiiiiiii et 8
3.5.2.2.1 CreateRegiStratiONRECON(). veeiuveeiieretieeriie e tee et ettt ettt e sbe e e sabe e ssbe s sbeeenbeeesneeas 8
3.5.2.2.2 DeleteRegiSIratiONRECONT() .. vveeiureeriereitieeriieerieeriee et e e rtee e siteesbeesbe e e sbee e sabeesabeesbeeanbeeesnneas 9
3.5.2.2.3 REQISLEIMMESSAGE() -veeeuveeerteeerureeiuteeaieaaateeeateeessteasbeaaabeeaaseeeaateesabeesbeeaabeeasaseesnbessbeeanbeeesneeas 9
3.5.2.2.4 DErEQiStEIMESSATE() «.-veeereeerureeiureeaieaaateeaaueeessteasbeaaateeaaseeeasteasabeesbeeaabeeeaaseesnbeesbeeanbeeeaneeas 9
3.5.2.25 DeregiSter AlIMESSAGES()...veeerveeerureeitiaiitiearieeaauteesbeasteessteeesseeessbeasbeesbeeaaseeesaseasnbessreesees 10
3.5.2.2.6 REQISEIFOINTNPUL() .eeeiieiiiiieitie ettt e b e e e sane e esbeeeees 10
3.5.2.2.7 RASCIEANUPD(). vuverueetertesteeeeste st steeee st sttt et st sbesie e b e sbesbesse e b e sbesbeese e besbesbe e e e sbesbeseeeneeseeee 10
3.5.23 Message Transmission and Retrieval FUNCLIONS..........ccoiiiiiiiiiiiieniee e 11
3.5.2.3.1 REBAMESSAGE) +eveevertertereiitesiesteeeestesbesteetesbesbesheebesbesbesse e besbesbeeae e besbesbe e e e sbesbeseeenne e e 11
3.5.2.3.2 OULPULMESSAGE() .eeuveveterieeitestesieeteste st stee st st besieebesbesbesae e b e sbesbeeae e besbesbe e e e sbesbesbeeneeseeee 11
3.5.2.3.3 OutputRadar MAGEIM ESSAOE() ..« - uveerureerrerarieeerureerreesteeasteeesseeessbeesbeeaabeessseeesaseesnreesreeeses 12
3.5.2.3.4 OULPULCONLIOIMESSAGE(). -veeeveeerureeiutieiieeeriee e sttt e siteesbeeesbee e stee e sabeesabeesbeeesbeeesabeesnbeasnreeenees 12
N Y o] o< g [0 [0l PR URUPRRI 14
4.1 Appendix A -Messaging EXamPIESooueoiiiii e 14
411 Message Registration EXAMPIE.......ocuui ittt ettt et st e st e e sbe e e sre e e saae e sarean 14
4.1.2 Message RErieval EXAMPIE... ...ttt b e sre e saae e sare e 15
4.1.3 Message TransmiSSiON EXAMPIE........coo ittt be e sbe e saee e saee e 16
414 REAH EXAIMPIE. ...ttt ettt ettt ettt e sb e e e saee e s abe e e be e e be e e ebee e anaeeanreaa 17
I Y S 1 (] e o] TR PUURRURRR 19

Copyright © 1997 - seetitle page DCN: TBD, Build 4.6 SSR Project
date: July 1, 1997 RDS COMM User Manual.
CDRL 0021-002

Acronym List

Acronym Expansion

ANSI American National Standards Institute
AP Application Program Interface

ETS External Tactical System

FDDI Fiber Distributed Data Interface

|IEEE Institute of Electrical and Electronic Engineers
IP Internet Protocol

LAN Local Area Network

RDS Radar Data Services

TCP Transmission Control Protocol

UDP User Datagram Protocol

Copyright © 1997 - seetitle page DCN: TBD, Build 4.6 SSR Project
date: July 1, 1997 RDS COMM User Manual.
CDRL 0021-002

1. Introduction
The purpose of this document is to describe the Hughes Surface Search Radar System (AN/SPS-73(V))
Radar Data Service (RDS) Communication (COMM) Software. This document includes an introduction to

the RDS COMM, its function, and provides an example of sending and receiving messages. The RDS
COMM will be used by External Tactical System (ETYS) to interface with an AN/SPS-73(V) system.

2. Referenced Documents

System Interface Design Document (SIDD) for the Surface Search Radar Program
DCN: 1721798

Version Description Document for the Surface Search Radar (SSR) RDS COMM
DCN: 1859403-2

ANSI X3T9.5, Fiber Distribution Data Interface (FDDI) Station Management

|EEE 802.3, Information Processing Systems, Local Area Networks - Part 3: Carrier Sense Multiple
Access with Collision Detection (CSMA/CD) Access Method and Physical Layer Specification of 1993

3. RDS COMM Description

3.1 RDS COMM Overview

The RDS COMM is designed to enable applications residing on nodes' within a local area network (LAN)
to exchange messages in a manner that is transparent to theindividual applications. Applications may
reside either within a single node or may be distributed across multiple nodes. Figure 1 shows a
generalized view of the RDS COMM and its relationship to the system.

Figurel. Generalized view of the RDS API.

! A node refers to a single CPU that may shareits | P address with several application tasks.

3

Copyright © 1997 - seetitle page DCN: TBD, Build 4.6 SSR Project
date: July 1, 1997 RDS COMM User Manual.
CDRL 0021-002

The RDS COMM exists as a set of processes that execute on each node in the local area network. Calls are
made to the RDS COMM Application Programming Interface (API) functions from the application to
interact with the RDS COMM to transmit and receive messages.

The RDS COMM and its API isolates applications from the details of the underlying network interface.
Individual messages are routed to their destination using either Transport Control Protocol (TCP) (for
messages that must have guaranteed delivery and order) or User Datagram Protocol (UDP) for other
messages. The Internet Protocal (1P) is used to interface with the underlying physical transportation
mechanism that can be either IEEE 802.3 Ethernet or ANSI X3T9.5 Fiber Distribution Data Interface
(FDDI).

3.2 RDS COMM Philosophy

The general goal of the RDS COMM isto provide a single interface point for application-level network
messaging traffic. The specific goals are:

Provide an easy to use interface that enables applications to send and receve messages between
processes executing on the same or different nodes on the network.

Allow changes in the system architecture (i.e. Add/Remove Radar Processors or Operator
Pasitions) to be made without requiring software changes.

Isolate the applications programmer from the details of the inter-node message transfer process.

There are two central concepts within the RDS COMM. Thefirst concerns the receipt of messages. Each
application defines the information (messages) it wants to receive and then “registers’ to recelve those
messages. The application is not concerned with which process or which node generates the messages.
The registration definition is distributed throughout the network so that the RDS Server on each network
node holds the destination address of all registered messages. Each application can register to receive

specific messages or groups of messages.

The second concept concerns the sending of messages. If an application has information to send to other
applications, it simply creates the message and sendsit. The application is not concerned with who has
requested the message, just that it has a message to send.

33 Communications Protocol
The RDS COMM makes use of the following communications protocols:

Transport Control Protocol (TCP)
User Datagram Protocol (UDP)

The RDS COMM utilizes the above communications protocols to provide the appropriate level of service
(i.e servicerdiability) for each type of message. The RDS COMM provides several functions that let the
user specify which protocol to use to ddiver a message. Certain messages utilize the reliable network
protocol TCP to guarantee ddivery, while others utilize the non-guaranteed network protocol UDP. For
each message in the SSR system the communication protocol to be used is specified in the SIDD. Seethe

4

Copyright © 1997 - seetitle page DCN: TBD, Build 4.6 SSR Project
date: July 1, 1997 RDS COMM User Manual.
CDRL 0021-002

SSR SIDD RDS Message Set Summary for the details.

3.4 M essage System

34.1 M essage | dentification

The RDS messages are uniquely identified by the following two fieds:
Category type (Cat_Type)
Amplification type (Amp_Type).

The AN/SPS-73(V) system designer creates message groups by defining a general Cat_Type and then all
Amp_Types for the messages associated with that Cat_Type.

An example of message grouping isthe CAT_ANY_TRACK_DATA category, which encompasses all
"track" related messages from the Radar Processors. Sample Amp_Types defined include;

AMP_SYSTEM_TRACK_REPORT
AMP_SENSOR_TRACK_REPORT

All registered messages are data structures identified by a Cat_Type/Amp_Type assignment pairing. The
RDS API user can register for receipt of any individual message kind by specifying a
Cat_Type/Amp_Type pair, or all messages of a Cat_Type by specifying a"wild card" for the Amp_Type.

The following header files (ANSI C format) specify the message interface to the Surface Search Radar
(SSR) system:

msgbuf_api.h - Thisistheincludefile that contains the structure definitions used in the buffer
management functions.

rds api.h - Thisisan include file which contains the function prototypes for the RDS API and the
data structures and constants required for the interface.

messages api.h - Thisis an include file which contains enumeration values for all application
defined message Cat_Types and Amp_Types.

For every message sent and/or received by the RDS API thereis a defined data structure (each
Cat_Type/ Amp_Type pair has a data structure associated with it). The following files define the
data structure within each message:

alerts api.h

bits api.h
graphics_api.h
iccontrol_api.h
nsiu_api.h
radar_api.h
tracks api.h

Copyright © 1997 - seetitle page DCN: TBD, Build 4.6 SSR Project
date: July 1, 1997 RDS COMM User Manual.
CDRL 0021-002

34.2 M essage Buffer Pool Creation

Message buffer pool creation is done once, at system startup, by running therds_startup program. The
program takes five command line parameters that specify the number of buffers that will be created for the
128, 512, 2K, 9K, and 520K buffer pools used by the RDS API.

3.4.3 Attaching and detaching from the Buffer Pools

Before an application can get a message buffer, the application must first attach to the message buffer pool
created by rds_startup program. After the message buffer pool has been attached, the application can
get/release message buffers to/from the message buffer pools.

Before exiting an application must detach form the message buffer pool to properly free up operating
system.

3.4.4 M essage Registration and Deregistration

M essage registration allows an application to identify the messages it would like to receive from the other
processes on the network. To register for a message or a group of messages the application first creates a
registration record, then fills the registration record with registration requests and then sends it to the RDS
API, using the RegisterForInput function. The RDS API returns a channd identifier, which the application
uses to receive messages. The process of registering to receive messages may be performed at any time, it
is not necessary for the sending process(s) to be operational. Once the RegisterForlnput function has been
called the registration record is freed by the RDS and a new record is required for new registration
requests.

M essage deregistration allows the application to identify the messages it would like to stop receiving from
the other processes on the network. Message registration and deregistration may be done using the same
registration record. To deregister for a message or a group of messages the application first creates a
registration record, then deregisters the message(s) it wants to stop receiving, and then sends it to the RDS
API, using the RegisterForinput function. The RDS API returns a channd identifier to the application,
which the application uses to retrieve messages. Deregistration for a group of messages may be performed
at any time, it is not necessary for the sending process(s) to be operational.

The registration process is used by applications wanting to receéve RDS APl messages. If an application
only wants to send messages, it is not necessary to register for messages. The application can send
messages without registering the message type.

345 M essage Transmission and Retrieval

M essage transmission allows an application to send messages to other processes on the network. To send
messages to other processes, the application first gets a message buffer, then fill the buffer with data, and
then calls the RDS API output message function to send the message. The message buffer is released by
the RDS API.

Message retrieval allows the application to receive messages from other processes on the network. To
receive messages sent from other processes, the application calls the RDS API read message routine with
the channel identifier created by the registration process. Message buffers received by the application must

6

Copyright © 1997 - seetitle page DCN: TBD, Build 4.6 SSR Project
date: July 1, 1997 RDS COMM User Manual.

CDRL 0021-002
be reeased by the application.

35 RDS COMM User Interface

351 RDSCOMM Startup

The following section describes how to startup the RDS COMM tasks on a HPUX workstation.

3511 rds_startup()

This program is used on a UNIX system to specify the number of message buffersin the buffer pools to be
created and to start the RDS processes. The command line parameters for this program are:

int rds_startup (int bufferlqty, /* 128 byte */
int buffer2qty, /* 512 byte */
int buffer3qty, /* 2K byte */
int bufferdqty, /* 9K byte */
int buffer5qty) /* 520K byte */

This program should be called during system startup (for example from therc.local script) and will
initialize the message buffer pools and then start the RDS processes. The five buffer pool are 128 bytes,
512 bytes, 2K bytes, 9K bytes, and 520K bytesin size. The 128 byte, 512 byte, and the 2K byte buffers
are used for the typical messages that are sent and received by RDS API applications. The 9K byte buffers
are used internally by the RDS API, and the 520K byte buffers are used for Radar Image buffers.

This program will exit with a status of 0 on success, or -1 if an error is detected.

3.5.2 RDS COMM Function Prototype Definitions
The following section defines the RDS COMM function prototypes that are used to interface with the SSR
system. See Appendix A for examples of their usage.

3521 RDS Message Buffer Management Functions

3.5.2.1.1 AttachMessageBuffers()

This function attaches to the message buffer pool that was created by therds_startup program. The
function prototypeis as follows:

int AttachMessageBuffers (void)
This function must be called before using the message buffer management functions of the RDS API. This
function should be called once in the initialization portion of an applications startup. This functionis used
by the RDS to gain access the message buffer poal.

This function returns 0 on success, or -1 if an error is detected.

Copyright © 1997 - seetitle page DCN: TBD, Build 4.6 SSR Project
date: July 1, 1997 RDS COMM User Manual.
CDRL 0021-002

3.5.2.1.2 DetachMessageBuffers()

This function detaches the application from the message buffer pool. The function prototypeis as follows:
i nt DetachMessageBuffers (void)

Application processes should call this function when they are done using the RDS APl messages.

This function returns 0 on success, or -1 if an error is detected.

3.5.2.1.3 GetMessageBuffer()

This function allocates a message buffer that can be used to create and send messages. The function
prototypeis as follows:

voi d *CGet MessageBuffer (int size)
The size of the required message buffer is passed as the only parameter.

This function returns a pointer to the message buffer on success, or a NULL if a message buffer can not be
allocated.

3.5.2.1.4 ReleaseMessageBuffer()
This function deall ocates a message buffer that was received. The function prototypeis as follows:
i nt Rel easeMessageBuffer (void *pMsgBuf)

Thisfunction is called to deallocate a message buffer and returns a 0 on success, or a-1 on error.

3.5.2.2 Registration Record Management Functions

3.5.2.2.1 CreateRegistrationRecord()

This function creates a message registration record. The function prototypeis as follows:

REG RECORD *Cr eat eRegi strati onRecord (void)

The message registration record is used to control, which messages are to be placed into the application’s
communication channd. An application wishing to receive certain messages types uses this function to get
aregistration record which is used by the RegisterForInput function to control which messages areto be
place on it’s input channd, and returned by the ReadM essage function.

This function returns a pointer to a registration record, or NULL if an error is detected when creating the
registration record. The pointer to aregistration record is used in subsequent calls to the RegisterM essage(
), DeregisterMessage(), and the RegisterForlnput() functions.

Copyright © 1997 - seetitle page DCN: TBD, Build 4.6 SSR Project
date: July 1, 1997 RDS COMM User Manual.
CDRL 0021-002

3.5.2.2.2 DeleteRegistrationRecord()

This function deletes a message registration record. The function prototypeis as follows:

i nt Del eteRegistrati onRecord (REG RECORD *regptr)

Thisfunction isonly called if an error occurs when calling RegisterM essage, DeregisterM essage, or
RegisterForlnput. Normally RegisterForlnput will delete the registration record on a successful return.

This function returns a 0 on success, or -1 if an error is detected when deleting the registration record.

3.5.2.2.3 RegisterMessage()

This function specifies to the RDS COMM that the application would like to receive messages of the
specified Amp_Typeand Cat_Type. The function prototypeis as follows:

i nt Regi st er Message(REG_ RECORD *regptr,
MESSAGE_SUBTYPE subt ype,
MESSAGE_AMPTYPE anpt ype)

REG_RECORD is the pointer returned by the CreateRegistrationRecord function.
MESSAGE_SUBTYPE isthe Cat_Type of the message to bereceved. MESSAGE_AMPTYPE isthe
Amp_Type of the message to be received, or WILDCARD if all messages of the Cat_Type areto be
received.

The maximum number of registration and/or deregistration requests that can be made at one time (using a
REG_RECORD), is specified by MAXCOMPONENTS (currently set to 50).

Note: you can usethe sameregistration record to register for new messages and deregister for old
messages.

This function returns O if the registration record is modified successfully, or -1 if an error is detected when
modifying the registration record.

3.5.2.2.4 DeregisterMessage()

This function specifies to the RDS COMM that the application no longer needs to receive the specified
message. The function prototypeis as follows:

i nt DeregisterMessage(REG RECORD *regptr,
MESSAGE_SUBTYPE subt ype,
MESSAGE_AMPTYPE anpt ype)

REG_RECORD isthe value returned by CreateRegistrationRecord(). MESSAGE_SUBTY PE is the
Cat_Type of the message that is no longer needed. MESSAGE_AMPTY PE is the Amp_Type of the
message that is not longer needed.

This function returns O if the registration record is modified successfully, or -1 if an error is detected when
modifying the registration record.

Copyright © 1997 - seetitle page DCN: TBD, Build 4.6 SSR Project
date: July 1, 1997 RDS COMM User Manual.
CDRL 0021-002

3.5.2.25 DeregisterAllMessages()

This function requests the RDS COMM to deregister all the messages that the application has previously
registered for. The function prototypeis as follows:

i nt DeregisterAll Mssages(CHANNEL | D channel _id)

The DeregisterAllMessages() function deregisters for all registered messages and then reads and release
the message buffer for any messages that may still be on the applications message channel. The channd_id
is the value returned by RegisterForlinput().

This function returns O if the registration record is modified successfully, or -1 if an error is detected when
modifying the registration record.

3.5.2.2.6 RegisterForlnput()

This function activates the registration record which was built with previous calls to
CreateRegistrationRecord(), DeregisterMessage(), and RegisterMessage() and begins the receipt of
messages. Thefunction prototypeis as follows:

CHANNEL_| D Regi st er For | nput (REG_ RECORD *regptr,
CHANNEL_| D channel _i d)

The application provides a pointer to a registration record. If input messages are to be placed onto an
existing communications channd, the existing channe identifier is passed as the second parameter. If the
second parameter is NULL, a new communication channe will be created and the channedl identifier
returned by the RegisterForlnput() function. The channd identifier is used by the ReadM essage()
function.

The CHANNEL _ID may be typecast as an int and used as a file descriptor (fd) in a sdect() function call.
This function returns a CHANNEL _ID on success, or NULL if an error is detected when creating a
communication channd.

3.5.2.2.7 RdsCleanup()

This function is called by an RDS COMM application prior to exiting in order to free up system resources.
The function prototypeis as follows:

i nt RdsCd eanup(CHANNEL_I D channel _i d)
The RdsCleanup() function deregisters for all registered messages, reads and release the message buffer
for any messages that may still be on the applications message channd, and then closes all system
resources (i.e. file descriptors) that have been created by the RDS COMM for that application.

For RDS COMM applications that only send data and do not have a channe_id (i.e. the application never
called RegisterForlnput), this function should be called with a channel_id of —1.

This function returns O if the closing of file descriptors is successful, or -1 if an error is detected.

10

Copyright © 1997 - seetitle page DCN: TBD, Build 4.6 SSR Project
date: July 1, 1997 RDS COMM User Manual.
CDRL 0021-002

3.5.2.3 Message Transmission and Retrieval Functions

3.5.23.1 ReadMessage()

This function reads messages from a communication channd which has been created by RegisterForlnput(
). Thefunction prototypeis as follows:

i nt ReadMessage(CHANNEL_ID, struct tinmeval waitind, void **nmessage)
waitind = NULL /* means WAI T_ON DATA */

wai tind.tv_sec=0,
and waitind.tv_usec=0 /* means NOMI T_ON _DATA */

wai tind.tv_sec=positive integer
or waitind.tv_usec=positive integer /* nmeans time to wait in sec
and /or mcroseconds */

If a message is waiting on the communication channel when called, ReadM essage() will read the message
from the communication channd, and return a value of 1 (indicating that message contains a valid message
pointer). If thereis not a message waiting on the communication channel, ReadM essage() will react based
on thewaitind parameter. If waitind isa NULL pointer (WAIT_ON_DATA), ReadMessage() will block
until a message is available. If waitind.tv_secis 0 and waitind.tv_usecisO0 (NOWAIT_ON_DATA),
ReadM essage() will return O.

When the waitind.tv_sec and/or waitind.tv_usec is an integer greater than O, it represents the amount of
timetowait. Inthat case, ReadM essage will suspend for up to the amount of time to wait that waitind
specified, or the receipt of a message, which ever occursfirst. If a messageis received within the time to
walit integer, ReadMessage() will return a 1 and message will contain a valid message pointer. If not, O
will be returned.

This function returns a value of O if there was no message available and the application requested no wait,
avalueof 1if a messagewas read, or -1 if an error is detected when reading the message (an error codeis
reported in errno).

Note: It isthe application’sresponsbility to release the message buffer returned by ReadM essage().

Note: It isthe application’sresponsibility to read the message(s) it hasregistered for at arate
greater than the sending applicationstransmission rate, otherwise the message channe will fill up and
new messages will be dropped.

3.5.2.3.2 OutputMessage()

This function sends a message to other RDS COMM application processes. The function prototypeis as
follows:

i nt Qut put Message(HEADER * header
MESSAGE_SUBTYPE subt ype,
MESSACE_AMPTYPE anpt ype,
int size)

11

Copyright © 1997 - seetitle page DCN: TBD, Build 4.6 SSR Project
date: July 1, 1997 RDS COMM User Manual.
CDRL 0021-002
The application wanting to send data via UDP, gets a message buffer of the appropriate sizefor it's
message, fills the buffer with the data to be send, and then calls OutputMessage() to send it. Receiving
processes may be either local or remote nodes on the network.

Note: OutputM essage() releases the message buffer allocated by the application.

This function returns a value greater than or equal to O if the data is successfully sent to the RDS API or -1
if an error is detected while sending the message (an error code is reported in errno).

3.5.2.3.3 OutputRadarimageMessage()

This function sends a message to other processes. The function prototypeis as follows:

i nt CQut put Radar | mmgeMessage(HEADER *header
MESSAGE_SUBTYPE subt ype,
MESSACE_AMPTYPE anpt ype,
int size)

The application wanting to send Radar Image data, gets a message buffer of the appropriate sizefor it's
message, fills the buffer with the data to be sent, and then calls OutputRadarl mageM essage() to send it.
Receiving processes may be either local or remote nodes on the network.

This function returns a value greater than or equal to O if the data is successfully sent to the RDS API or -1
if an error is detected while sending the message (an error code is reported in errno).

Note: OutputRadarl mageM essage() releases the message buffer allocated by the application.

For Build 4.6, the data isbeing sent via TCP/IP.

3.5.2.34 OutputControlMessage()

This function sends a message to other processes. The function prototypeis as follows:

i nt CQut put Cont r ol Message(HEADER * header ,
VESSAGE_SUBTYPE subt ype,
MESSACGE_AMPTYPE anpt ype,
int size,
unsi gned int destination_address)

The application wanting to send data via TCP, gets a message buffer of the appropriate sizefor it’s
message, fills the buffer with the data to be send, and then calls OutputControlMessage() to send it. The
destination_address is the IP address of the node to which the message is to be sent. Receiving processes
may be either local or remote nodes on the network.

This function returns a value greater than or equal to O if the data is successfully sent to the RDS API or -1
if an error is detected while sending the message (an error code is reported in errno).

Note: OutputControlM essage() releases the message buffer allocated by the application.

12

Copyright © 1997 - seetitle page DCN: TBD, Build 4.6 SSR Project
date: July 1, 1997 RDS COMM User Manual.
CDRL 0021-002

1111

13

Copyright © 1997 - seetitle page DCN: TBD, Build 4.6 SSR Project
date: July 1, 1997 RDS COMM User Manual.
CDRL 0021-002

4, Appendices
4.1 Appendix A -M essaging Examples
4.1.1 M essage Registration Example

The following code snippet is an example of how an RDS COMM application could register for the system track
report message.

#i ncl ude “rds_api.h”
#i ncl ude “nmessages_api . h”

CHANNEL | D Regi st er For Messages(voi d)

{
REG RECORD *regPtr,;
i n status;

regPtr = CreateRegistrationRecord();
i f(regptr == NULL)
{

printf(“RegisterForMessage(): CreateRegistrationRecord Failed.\n");
exit(-1);

status = Regi ster Message(regPtr,
CAT_ANY_TRACK_DATA,
AMP_SYSTEM TRACK_REPORT) ;
if(status < 0)

printf(“ERROR in Registering for message.\n");

Del et eRegi strati onRecord(regPtr);
/* continue or break here depending on logic flow */

}

return Regi sterForlnput(regPtr, NULL);
if(status < 0)
printf(“ERROR in Registering for Input.\n");

Del et eRegi strati onRecord(regPtr);
/* continue or break here depending on logic flow */

}

}
4.1.2

14

Copyright © 1997 - seetitle page DCN: TBD, Build 4.6 SSR Project
date: July 1, 1997 RDS COMM User Manual.
CDRL 0021-002

M essage Retrieval Example

Thisis an example of a function designed to process one specific type of message (a system track report message).
The application will wait on the communication receive channd until a messageis received. When the messageis
received, its Cat and Amp Types are checked and the message is processed based on the Cat and Amp_Type. The
function then waits for the next message to be received. Notice that the function releases the message buffer
allocated for the message when it has finished processing the message.

voi d ProcessMessages(voi d)

{
SYSTEM TRACK _RECORD *header Ptr;
SYSTEM TRACK TYPE *system track;

whi | e(1)

/* Read the nessage */

/* The message has already been registered to receive */

i f (ReadMessage(CHANNEL_I D channel _id, NULL , &headerPtr) == 1)
{

[* Check the nmessage type */

i f ((headerPtr->subtype == CAT_ANY_TRACK DATA) &&
(header Ptr->anpt ype == AVMP_SYSTEM TRACK_ REPORT))

{

SYSTEM TRACK_RECCRD *sys_trk_rec;

sys_trk_rec = (SYSTEM TRACK RECORD *) headerPtr;
if (sys_trk_rec->numof_tracks > 0)

{
systemtrack = &(sys_trk_rec->systenlracks[0]);
}
Rel easeMessageBuf f er (headerPtr) ;
}
} /* while */

4.1.3

15

Copyright © 1997 - seetitle page DCN: TBD, Build 4.6 SSR Project
date: July 1, 1997 RDS COMM User Manual.
CDRL 0021-002

M essage Transmission Example

Thisis an example of a function designed to send one specific type of message. The application sends a message
with a specific CAT and AMP type. Notice the application does not release the message buffer since that is done
by the RDS API.

voi d SendMessage(long x, long y, float duration, unsigned |ong radius)

{
TRACK_ACQUI RE_REQUEST *track_acq_req;
i n status;

/* This code assunes the nessage buffers have already been initialized */
/* Allocate a nessage buffer */
track_acq_req = (TRACK _ACQU RE_REQUEST *)

CGet MessageBuf f er (si zeof (TRACK_ACQUI RE_REQUEST)) ;

/* Assign nmessage info */
track_acq_req->x_pos = X;
track_acq_req->y_pos =vy;
track_acq_req->duration = duration;
track_acq_req->search_radi us = radi us;

/* Send the message */

status = CQut put Message(track_acq_req,
CAT_OP_RP_COPERATOR_ENTRY,
AVP_ EXECUTE_MANUAL_SENSOR_TRACK_ACQUI RE,
si zeof (TRACK_ACQUI RE_REQUEST))

if(status < 0)

printf(“SendMessage(): Failed in outputing the nessage.\n”);
Rel easeMessageBuffer (track_acq_req);

}

}
414

16

Copyright © 1997 - seetitle page DCN: TBD, Build 4.6 SSR Project
date: July 1, 1997 RDS COMM User Manual.
CDRL 0021-002

Read Example

Thisis an example of how to read a Radar Image message.

i nt Reader (voi d)

{

i nt status;

int done = 0O;

REG RECORD *regRecord;
CHANNEL | D channel _i d;
RP_RADAR | MAGE_MSG *nessage;

/* The Message Buffers were created by the RDS startup function, so just attach
*/
status = AttachMessageBuffers();

if (status == -1)

printf("Error Attaching Message Buffers\n");
exit(-1);

/* Create a nmessage regi stration record
*/
regRecord = CreateRegistrati onRecord();

if (regRecord == NULL)

printf("Error Creating Registration Record\n");
exit(-2);

/* Register to receive Primary Radar |mages nessages from Radar 1.
If there is a failure, then delete registration record
*/
status = Regi st er Message(regRecord, CAT_RADAR 1 ANY_I| MAGE,
AVP_PRI MARY_| MAGE) ;
if (status == -1)
{
printf("Error registering for Primary Radar |nage\n");
Del et eRegi st rati onRecor d(regRecord);
exit(-3);
}

/* Begin the recei pt of messages.

If there is a failure, then delete the registration record
*/
channel _id = Regi sterForlnput (regRecord, NULL);

i f (channel _id == NULL)

{
printf("Error Registering for Input\n");
Del et eRegi strati onRecord(regRecord);
exit(-4);

}

whil e (!done)

17

Copyright © 1997 - seetitle page DCN: TBD, Build 4.6 SSR Project
date: July 1, 1997 RDS COMM User Manual.
CDRL 0021-002

status = ReadMessage(channel _id, NULL , &message);
if (status == 1)

swi tch (message- >subt ype)

{
case CAT_RADAR 1 _ANY | MAGE:

i f (message->header. anptype == AMP_PRI MARY_| MAGE)

pr ocessRadar | mage(nessage) ;

}

br eak;
defaul t:

printf("Invalid nmessage subtype received\n");
done = 1;
br eak;

} /* switch subtype */

Rel easeMessageBuf f er (nmessage) ;

} /* if a message was received */
} /* while */

/***********************/

/* Cean up and exit */

status = Rdsd eanup(channel _id);
if (status == -1)

printf("Error in cleaning up file descriptors.\n");

status = DetachMessageBuffers();
if (status == -1)
printf("Error in detaching fromthe nessage buffer pool.\n");
printf("Thats all folks...\n");
return(status);
} /* Reader() */
4.1.5

18

Copyright © 1997 - seetitle page DCN: TBD, Build 4.6 SSR Project

date: July 1, 1997 RDS COMM User Manual.
CDRL 0021-002

Write Example

Thisis an example of how to write a message. This can be used in the simulation of the Radar Image. The output
rates of the Radar Image are 24, 26 and 60 RPM.

int Witer()

i nt status;
int done = O;
RP_RADAR | MAGE_MBSG* pUnconpr essedl mage;

whil e (!done)

pUnconpr essedl mage = (RP_RADAR | MAGE_MSG)
Cet MessageBuffer(sizeof (RP_RADAR | MAGE MG) ;
if (pUnconpressedl mage == NULL)

printf("Error Getting Message buffer\n");
done = 1;

}

/* Read Image from Radar Scan Converter */
Aqui r eRadar | mage(pUnconpr essedl nage) ;

status = Qut puRadar | mageMessage(pUnconpr essedl nag,
CAT_RADAR 1_ANY_| MAGE,
AVP_PRI MARY_| MAGCE,
si zeof (RP_RADAR | MAGE_M5G)) ;

if (status == -1)
{
printf("Error Qutputting Radar |nmage Message\n");
Rel easeMessageBuf f er (pUnconpr essedl mage) ;
done = 1;
}
} /* while */
return(0);

}

[* Witer() */

19

