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ABSTRACT

Most studies indicate that public transit systems
operate under increasing returns to capital stock
utilization and are significantly overcapitalized.
Existing flexible form time series analyses, however,
fail to correct for serial correlation. In this paper,
evidence is presented to show that ignoring multiple
serial correlation can have important policy impli-
cations. Based on monthly time series data from the
Indianapolis Public Transit Corporation, the results
indicate that failure to correct for serial correlation
significantly affects economies of capital utilization
estimates and has potentially important implica-
tions for optimal size of the transit fleet.

INTRODUCTION

Since the 1960s, when most U.S. transit systems
were privately owned and operated and received
no public financial assistance, subsidies have
increased rapidly. Government financial support
for public transport has grown, while operating
losses and investment needs have also been increas-
ing. The total operating subsidy from all levels of
government (local, state, and federal) rose from
$318 million in 1970 to $9.27 billion in 1990, a
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near thirtyfold increase in 20 years (Pucher 1995).
Similarly, the total capital subsidy from all levels of
government rose from $200 million in 1970 to
$5.56 billion in 1990, nearly 28 times higher
(Pucher 1995). In spite of some evidence that subsi-
dies have led to mild increases in ridership (Cervero
1984, Bly and Oldfield 1986), there is a general
consensus that subsidies have had a degrading
effect on system efficiency and productivity and
have increased operating costs.* (Obeng 1985, Kim
and Spiegel 1987, Bly and Oldfield 1986).

Several analyses have identified two related
effects of continuing capital subsidies on public
transit operations. First, public transit systems
have an incentive to prematurely replace their cap-
ital stock (Frankena 1987). Second, by lowering
the unit price of rolling stock, public transit capital
subsidies provide public transit managers with an
incentive to overcapitalize their systems. Although
sparse, the evidence on overcapitalization in public
transit is not only consistent with this hypothesis
but also indicates that the extent of overcapitaliza-
tion may be large. Viton (1981), for example,
found that public transit systems were overcapital-
ized by as much as 57%. De Rus (1990) and
Obeng (1984, 1985) also found that actual fleet
sizes for transit systems are much larger than nec-
essary to produce the current levels of output.

Claiming that their bus fleets are not excessive
but rather needed for peak period demands, public
transit managers generally argue against the empir-
ical evidence that their systems are overcapitalized.
This raises an interesting question. Do public tran-
sit agencies routinely overcapitalize their systems
by as much as 50%, as existing empirical evidence
suggests? Or, are existing empirical models defi-
cient in some way that, if corrected, would produce
results on the economic structure that are more
consistent with observed behavior?

Of the studies that have analyzed public transit
costs, all have used either panel data or time series
data. However, although some authors have recog-
nized that serial correlation may be present and
could affect the study’s results, none of these stud-

1 1n a cross-country comparative analysis of public transit
systems and subsidies, Pucher (1995) notes “In virtually
no other country have transit subsidies been as ineffective
as in the United States.” (p. 401)

ies adjusted for serial correlation.? As is well
known, the presence of serial correlation produces
unbiased, consistent, but inefficient parameter esti-
mates; further, variance estimates are biased and
inconsistent, thereby invalidating hypothesis tests.
The question addressed here is whether the pres-
ence of uncorrected, serially correlated errors in a
flexible form cost function affects the model’s
implications on a public transit firm’s production
technology. To explore this, we developed and esti-
mated a translog cost function model for the city of
Indianapolis for a 60-month period, from January
1991 through December 1995. The next section,
Methodology, identifies the model and summarizes
the data used for the analysis, and the third section
presents the estimation results. The final section
provides concluding comments.

METHODOLOGY

Assuming one output y (vehicle-miles), three variable
inputs z; (labor, fuel, and maintenance), and one fixed
input k (number of buses), equation (1) identifies a
public transit firm’s short-run translog cost function:
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2 Berechman and Giuliano (1984), for example, identified
second-order autocorrelation in their quarterly time series
analysis of AC Transit in Alameda County, California.
However, there was no attempt to correct for the problem.
De Borger (1984), Berechman (1987), and Colburn and
Talley (1992) also estimated time series models, but nei-
ther tested nor corrected for serial correlation. Outside of
the public transit literature, Braeutigam et al. (1984) cor-
rected for first-order serial correlation in a study on rail-
road costs using monthly time series data. While monthly
time series data could potentially suffer from first- to
twelfth-order serial correlation, the authors did not report
the results of the model without correction for autocorre-
lation or whether they tested for higher order autocorre-
lation. As a result, it is not possible to assess how seriously
autocorrelation affected their results.
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where VC is the variable cost of production, p; is
the price of variable input factor zi(i= 1, 2, 3), u is
the disturbance term, and o , @y, @ (i = 1, 2, 3),
Qy, and Y5 (i, J = 1, 2, 3, y, K) are parameters to be
estimated. According to equation (1), a transit
firm’s fleet size is fixed in the short run, implying
that the level of variable inputs the firm employs at
any given set of prices or output will depend on the
level of rolling stock available to the system. The
associated share equations (using Shephard’s
lemma) are:

J
_ bz _
+yInk+y; 1=1,2,3 (2)

where s; (i = 1, 2, 3) is the share of input i, and y;
(i=1, 2, 3) is the error term for share equation i.
Equations (1) and (2) constitute a multivariate
equation system that can be written more general-
ly as (Berndt 1991):

Yt:th+ut (3)

where Y; is the (n X 1) vector of dependent vari-
ables, X; is the (n X m) vector of independent
variables, b is the (m X 1) coefficient vector, t
denotes a given time period, and u; is an (n X 1)
vector of random disturbances. If u; has a first-
order stationary univariate autoregressive struc-
ture, then

Ut = Rugg + €
t=1,...,T 4)

where R is an (n X n) autocovariance matrix, and
€ is a vector of disturbances with mean zero and
constant variance. Combining (4) and (5) results
in an equation with uncorrelated disturbances:

Yi=RYpg + (Xi RX¢1)b + €
t=1,..,T Q)

The usual maximum likelihood estimation
methods could be applied to equation (5). How-
ever, only J-1 equations are independent, due to
the constraint that the shares at each observation
sum to unity (Berndt and Savin 1975).

Because the J disturbances must sum to zero at
each observation, the (J X J) disturbance covari-
ance matrices are singular, and this singularity con-
dition imposes restrictions on the autoregressive
process. Violation of these restrictions implies that
the maximum likelihood estimates, and associated
likelihood ratio test statistics, depend on which
share equation is deleted from the system.

In order for the parameter estimates of the mul-
tivariate equation system in equation (5) to be
invariant to the share equation deleted, the matrix
R has to be diagonal, and all the diagonal elements
must be equal (Berndt and Savin 1975). Moreover,
the autoregressive multivariate system in equation
(5) can be generalized to account for higher order
autoregressive processes. In particular, for an Mth-
order autoregressive process,

U = RiUp g + RoUp o + + Ryupm + t
t=1,...,M (6)

where each R; (i = 1, ... , M) is a diagonal matrix
whose elements must all be equal for the coefficient
estimates to satisfy the invariance property (Berndt
and Savin 1975).

ESTIMATION RESULTS

Model Estimation

Data for the analysis come from monthly obser-
vations for the city of Indianapolis over a five-
year period, January 1991 through December
1995.% Table 1 reports the translog estimation
results for the uncorrected model and for the

3 The Indianapolis transit system, operated as a public
enterprise since 1972, is a medium-sized system that, for
the period under study, served an average population of
950,000 with an average fleet of 247 buses. Although the
Indianapolis Public Transportation Corporation primarily
provides fixed route, fixed schedule services, the data also
reflect some demand-responsive services that the city
offers. Since demand-responsive services account for less
than 3% of the total, their inclusion is not expected to sig-
nificantly affect the results.
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TABLE 1 Short-Run Translog Cost Functions?

a b
Dependent Variable: Short-Run Costs (10°) Uncorret(:tgd model Correct(egi model
Variable Parameter Estimate® (t-statistic)  Estimate® (t-statistic)
Constant term (oS 14.135 (1,084.80) 14.106 (280.80)
Output (vehicle-miles, units of 105)¢ Qy 0.571 (2.78) 1.145 (5.39)
Price of labor ($/hour)¢ (¢0) 0.648 (201.50) 0.574 (15.40)
Price of maintenance ($/hour)? O 0.295 (104.30) 0.350 (11.60)
Number of buses® Ol 0.380 (1.38) 0.191 (0.59)
(Price of labor) - (price of labor) Y 0.175 (6.76) 0.167 (8.14)
(Price of maintenance) - (price of maintenance) Ymm 0.177 (12.40) 0.189 (16.50)
(Number of buses) - (number of buses) VYkk 10.280 (1.54) 1.813 (0.63)
(Output coefficient) - (output coefficient) Yyy -3.019 (-0.76) -0.683 (-0.50)
(Price of labor) - (price of maintenance) Ymi -0.157 (-8.88) -0.161 (-11.20)
(Price of labor) - (number of buses) Yik -0.067 (-0.87) 0.042 (0.45)
(Price of maintenance) - (number of buses) Yk 0.051 (0.74) -0.054 (-0.64)
Price of labor output Yiy 0.050 (0.92) 0.355 (4.91)
Price of maintenance output Ymy -0.066 (-1.32) -0.355 (5.67)
Number of buses output Yiy 10.326 (1.88) 2.701 (1.22)
Dummy for 1st quarter dg1 0.043 (2.76) 0.017 (2.03)
Dummy for 2nd quarter dg2 0.030 (2.71) 0.015 (2.21)
1st-order autocorrelation, cost equation arg; — — 0.551 (5.06)
2nd-order autocorrelation, cost equation are — — 0.346 3.14)
1st-order autocorrelation, share equations arsh; — — 0.659 (6.74)
2nd-order autocorrelation, share equations arghy — — 0.386 (3.98)
6th-order autocorrelation, share equations arshg — — -0.058 (-1.39)
R? (system R?) 0.985 0.991

2 Full information maximum likelihood estimates are invariant to share equation deleted (Berndt 1991, p. 463). The estimation results
presented in table 1 normalize on the price of fuel.

b The data were collected from the Indianapolis Public Transit Corporation accounting, maintenance, and operations reports for fiscal
years 1991-1995. The system’s total monthly operating cost, excluding depreciation and amortization of intangibles, measures short-run
operating costs. To capture the possibility that the system faces systematic differences in its operating environment during different
months, preliminary runs of the model included peak-base vehicle ratio, average speed of service, and age of fleet. In each case, we could
not reject the null hypothesis of no effect. We also included a time trend in earlier model runs, but the coefficients for the first- and sec-
ond-order time trends were not significant. Moreover, the model with time trend variables violated the concavity requirements at two
points in the sample. As a result, we excluded the time trend in the final model specification.

¢ Total vehicle-miles provided was selected as the output measure since bus operations are the primary determinant of costs in a transit
system (Savage 1997). The output measure also includes “deadhead” miles, that is, miles traveled by revenue vehicles when not in rev-
enue service (not available for passengers). These are a small portion of the total and typically include miles traveled to and from storage
and maintenance facilities as well as some training mileage.

d As is common in many translog cost function models for public transit, well-defined measures for the input prices do not exist. In this
study, similar to methodology of others (e.g., Berechman and Giuliano 1984, Applebaum and Berechman 1993, and Talley and Colburn
1993), we allocate monthly expenses to the various input categories (i.e., labor and maintenance) and then divide the expenses by paid
monthly labor hours per category. The monthly price of labor, for example, was estimated by dividing the total labor expenses (includ-
ing wages, fringe benefits, and pension payments to operators and administrative employees) by the paid labor hours to operators and
administrative employees. A similar procedure was followed to determine the price of maintenance. For the price of fuel, we used actual
prices since these were available from the monthly reports.

¢ Bus fleet size is the number of buses the system owns and operates during a given month.

fIn earlier model runs, a full complement of monthly dummy variables was included, but likelihood ratio tests could not reject the null
hypothesis that the monthly dummy variables in a quarter were equal.
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model corrected for multiple serial correlation.*
From column (a) in table 1, the system R? indi-
cates that the model fits the data well. 98.5% of
the generalized variance in the dependent variable
is “explained” by the variation in the explanato-
ry variables in the system of equations.® Further,
the estimated function satisfies the necessary neo-
classical conditions that the cost function be lin-
ear, homogeneous, nondecreasing, and concave in
input prices.® While linear homogeneity is
imposed on the model’s parameters (see footnote
4), the estimation results must be checked ex post
facto to determine whether the function is nonde-
creasing and concave in input prices. At every
point in the sample, the estimated cost function
satisfies each of these latter two conditions.

Indianapolis’ mean behavior during the five-year
period reveals that the coefficients for price of labor
(o) and price of maintenance (o), respectively,
estimate the share of costs attributed to labor and
maintenance at mean production. Although the
share equation for fuel was dropped in order to esti-
mate the model, the linear homogeneity conditions
identified in footnote 4 imply that the coefficient for
price of fuel is o =1 — oy — Oy

The interpretation of the coefficient for output,
Qy, is somewhat ambiguous. Public transit firms
operate with a given amount of rolling capital (e.g.,

4 To ensure homogeneity of degree one in variable input
prices, given the fixed factor k and output y, the following
restrictions are imposed on the parameters:

5 The system R? reported in the table is computed as
(Berndt 1991)

&2 -1 IEE]
ly*yl

where |EE’| is the determinant of the residual cross-prod-
uct matrix of the full model, and |y‘y| is the determinant
of the residual cross-product matrix of a model in which
all slope parameters are simultaneously set to zero. See
Berndt (1991) for a discussion of this measure.
6 The cost function is nondecreasing in input prices if the
fitted factor shares are positive at each observation and is
concave in input prices if the Hessian matrix based on the
fitted factor shares is negative semidefinite.

buses) and over a fixed (at least in the short run)
network. With data on both rolling stock and net-
work size, the coefficient for output would provide
information on economies of traffic density. That
is, the coefficient would identify the impact that an
increase in output would have on the cost of using
a fixed rolling stock over a given network.
However, for this model, there were no data avail-
able on whether Indianapolis’ network size signifi-
cantly changed over the five-year period. If, in fact,
there was little change in network size, then the
coefficient for output in table 1 reflects economies
of traffic density for a given rolling stock. On the
other hand, if there were large changes to the net-
work between 1991 and 1995, the coefficient for
output would more appropriately reflect
economies of capital utilization. Since in either case
rolling stock is held fixed, we shall interpret oy as
a measure of economies of rolling stock utilization
but bear in mind that it may also reflect economies
of traffic density to the extent that Indianapolis’
network underwent little change during the sample
period.”

In general, the estimation results are consistent
with expectations. First, the price coefficients are
positive and strongly significant. At mean produc-
tion, labor and maintenance account for 64.8%
and 29.5% of costs. From the linear homogeneity
conditions, fuel accounts for 5.7% of costs. Also,
relative to the latter part of a year, the results indi-
cate that the transit system experiences higher costs
during the winter and spring quarters.®

The coefficient for output indicates that the
Indianapolis mass transit system operates under

7 An issue of interest is whether output is endogeneously
determined. That is, do increases in output cause changes
in cost, or are both variables endogenously determined?
To check for this, we used Granger’s (1969) causality test.
By running two sets of two regressions, we rejected the
hypothesis that “x (output) Granger causes y (cost)” and
accepted the hypothesis that “y does not Granger cause X’
(both F-tests were evaluated at the five percent signifi-
cance level). As a result, we can say that output “Granger
causes cost.” In this context, the finding that output is
exogenous is not surprising since political motivations, in
addition to market forces, often play a large role in the
transit services actually provided.

8 In earlier model runs, a full complement of monthly
dummy variables were included, but likelihood ratio tests
could not reject the null hypothesis that the monthly
dummy variables in a quarter were equal.
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increasing returns to rolling stock utilization at
mean production level. Holding all else constant,
including the size of bus fleet, a 10% increase in
output increases short-run variable costs 5.7%.° In
addition to operating under increasing returns to
capital utilization, we see in column (a) of table 1
that the coefficient for number of buses is positive
and significant at a 0.10 level (one tail test). A 1%
increase in rolling stock raises operating costs
0.38%. As discussed more fully in the final section,
this finding suggests that Indianapolis’ system is
overcapitalized, since a necessary condition for
cost minimization is that the coefficient on capital
stock be negative. 1°

Column (b) in table 1 provides parameter esti-
mates when the model is adjusted for serial corre-
lation, and we see that this has improved the
overall fit of the model.1* The system R? increases
from 98.5% to 99.1%.%2 Adjusting for first- and
second-order autocorrelation in the cost function
and first-, second-, and sixth-order autocorrelation
in the share equations provided the best model fit.
It is important to recall that the autocorrelation
coefficients for the share equations (arsnq, arsho,
arghe) are restricted to being equal across share

9 De Borger (1984) found a similar result using annual
time series data from Belgium.

10 If the coefficient on capital stock is negative, then an
increase in a transit system’s rolling capital stock will gen-
erate savings in variable costs in excess of the unit bus
price. A bus system is overcapitalized if the variable cost
savings is either less than the unit bus price or actually
increases. As noted previously, Frankena (1987) found
that capital subsidies increase bus turnover. This suggests
that public transit systems that overcapitalize, i.e., ineffi-
ciently invest in capital, will have an inefficiently low
average fleet age and higher unit operating costs relative
to optimal capital investment, which could produce a pos-
itive correlation between increased capital and operating
expenses in a well-specified model. This does not appear
to characterize Indianapolis’ system, whose 16-18 year
average age of fleet (over the five-year period) is a bit
older than the industry average.

11 To test for serial correlation, the model was initially
estimated under the constraint that the R; matrices (from
equation 6) equal zero and then was re-estimated with R;
not equal to zero. The usual likelihood ratio test is based
on the sample maximized log-likelihood functions
obtained from the previous models (Berndt 1991). The
null hypothesis of no autocorrelation was rejected at the
0.01 level.

12 When adjusted for serial correlation, the cost function
was also found to be nondecreasing and concave in input
prices at each point in the sample.

equations to satisfy the diagonality requirement of
the R; matrices. The estimated pattern of the auto-
correlation coefficients indicates a positive first-
and second-order correlation and a mild sixth-
order correlation for the share equations.

We again see that the price variables have their
expected positive signs and are strongly significant.
However, there are two interesting differences
between columns (a) and (b). First, whereas
Indianapolis was estimated to be operating under
increasing returns to capital utilization when serial
correlation is ignored, we see in column (b) that,
when adjusted for serial correlation, Indianapolis’
transit system is estimated to be operating under
mildly decreasing returns to utilization. However,
at normal levels of significance we cannot reject the
null hypothesis of constant returns to utilization,
suggesting that Indianapolis may be an efficient
short-run producer of vehicle-miles.'3

A second difference relates to the coefficient of
the fixed factor, number of buses. Although still
positive, the estimated coefficient oy is lower and,
more importantly, not statistically significant at
any reasonable level of significance.

Comparative Analysis of the Models

Table 2 presents test results for two restrictive pro-
duction technologies, homotheticity (i.e., output
changes can be met with constant input ratios),
and Cobb-Douglas production technologies
(homotheticity plus constant unitary elasticities of
substitution between inputs) for the uncorrected
model and the model adjusted for serial correla-
tion.** Consistent with other studies, a Cobb-
Douglas production technology is strongly rejected
in each case.’® However, when serial correlation is
present but not corrected, the model accepts the
null hypothesis of homotheticity, while the correct-

13 The t-statistic for the hypothesis that oy, = 1 is 0.68.

14 Testing for homotheticity is equivalent to testing the
null hypothesis that y;, = 0 (i = labor, maintenance) versus
the alternative hypothesis that at least one of these para-
meters is nonzero.

15 A Cobb-Douglas technology characterizes the produc-
tion of transit trips if we can accept the null hypothesis
that %, = %; = %y = 0Vi. Viton (1981) and Obeng (1984)
reject a Cobb-Douglas technology in short-run analyses,
while Williams and Hall (1981), Berechman and Giuliano
(1984), and de Rus (1990) reject a Cobb-Douglas tech-
nolgoy in long-run analyses.
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TABLE 2 Test Statistics for Homotheticity and Cobb-Douglas Production Technologies

Null hypothesis —2(InLg-InLy)?
Model with no correction for autocorrelation
Cobb-Douglas 192.22
Homotheticity 6.26

Model with correction for autocorrelation
Cobb-Douglas 227.54
Homotheticity 67.73

# Restrictions (n)

XZ.01(n) Result

23.21 Rejected
9.21 Not rejected

23.21 Rejected
9.21 Rejected

21In Ly is the sample maximized log-likelihood value without restrictions, and InLg is the sample maximized log-likelihood with

restrictions.

ed model rejects the hypothesis, implying that the
cost function is not separable in output and that
changes in a factor’s price will not only affect input
demand ratios but also the cost elasticity with
respect to output.*6

16 Berechman and Giuliano (1984), de Borger (1984),
Berechman (1987), and de Rus (1990) also found a non-
homothetic production structure. However, and similar to
the model without correction for autocorrelation,
Williams and Dalal (1981), Williams and Hall (1981), and
Berechman (1983) could not reject the null hypothesis of
a homothetic production structure.

Table 3 presents the own price (gj) and Allen
elasticities of substitution (oj;) evaluated at the
sample mean and by year for both models. As
expected, the own price elasticities have the correct
negative sign. In both models and consistent with
other studies, the elasticities are small for labor and
maintenance, while fuel appears to be more elastic
when the estimated model corrects for autocorre-
lation. It is interesting to note that while the own
price elasticity of labor and maintenance has
remained fairly constant over the period, the
demand for fuel has demonstrated a tendency to
become more inelastic with the passage of time.

TABLE 3 Short-Run Own Factor Demand Elasticities and Elasticities of Substitution

Price elasticity?

Period el eff €mm oif° Oim Omf
Model without correction for autocorrelation

Mean -0.081 -0.267 -0.103 0.515 0.178 -0.224
1991 -0.074 -0.352 -0.078 0.591 0.131 -0.133
1992 -0.073 -0.291 -0.077 0.541 0.136 -0.254
1993 -0.084 -0.275 -0.098 0.514 0.173 -0.196
1994 -0.075 -0.198 -0.093 0.468 0.172 -0.382
1995 -0.091 -0.149 -0.124 0.407 0.222 -0.337
Model with correction for autocorrelation

Mean -0.092 -0.354 -0.053 0.854 0.141 -0.068
1991 -0.095 -0.436 -0.048 0.877 0.119 -0.046
1992 -0.087 -0.389 -0.039 0.865 0.119 -0.065
1993 -0.094 -0.373 -0.051 0.858 0.139 -0.062
1994 -0.087 -0.308 -0.051 0.844 0.144 -0.085
1995 -0.099 -0.266 -0.076 0.828 0.185 -0.084

a e: own price elasticity of demand, o Allen partial elasticity of substitution; where: | = labor, f = fuel, m = maintenance.

b Elasticities of substitution are symmetric.
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The Allen elasticity results indicate that labor
and maintenance and labor and fuel are substitutes
for each other, while maintenance and fuel are
complements. Further, there is a significant change
in the Allen elasticity between maintenance and
fuel when the model is corrected for autocorrela-
tion, rising from —0.224 (evaluated at the mean) in
the uncorrected model to —0.046 in the corrected
model. The latter indicates that maintenance and
fuel are weakly complementary.

DISCUSSION AND CONCLUDING COMMENTS

Although the deficiencies of models that suffer
from uncorrected multiple serial correlation are
recognized in the public transit cost literature,
existing translog cost results have failed to account
for serial correlation. Policy implications based on
such models are accordingly suspect. When serial
correlation is ignored, the translog cost function
results for a medium-sized public transit system are
consistent with existing literature. However, when
corrected for the presence of serial correlation, the
estimation results have significantly different impli-
cations with respect to a transit system’s produc-
tion technology and possibly its optimal fleet size.

This raises three questions that await further
research. First, what are the sources of serial corre-
lation? Consistent with other monthly time series
data, the data for this analysis exhibit seasonal and
cyclical effects that will generate autocorrelated
errors. By testing for various orders of monthly
related serial correlation and ultimately adjusting
for first- and second-order serial correlation in the
cost function and first-, second-, and sixth-order
serial correlation in share equations, we find that
the models presented likely capture much of the
seasonally generated autocorrelation. In particular,
the sixth-order correlation coincides with the sea-
sonality of demand for bus services, which is lower
during the summer and higher during the winter
months (Berechman and Giuliano 1984).

An additional source of autocorrelation is miss-
ing information, that is, omitted variables that are
serially correlated. The lack of data on network
changes, for example, over the five-year period
shows up in the error terms. If there were system-
atic changes in network size (e.g., continual
increases) over the 60-month period of this analy-

sis, errors that are serially correlated in the model
would be generated.'’

A final source of serially correlated errors could
reflect an adaptive expectations framework in
which changes in short-run costs are based on
changes in the expected or desired level of the
explanatory variables. This produces an empirical
specification that is formally identical to a Koyck
distributed lag model, which is characterized by
serial correlation (Pindyck and Rubinfeld 1976).18

Second, we noted above that these findings may
have implications for a system’s optimal fleet size.
Recall the findings reported in table 1 for the
model that was not corrected for serial correlation.
The coefficient on number of buses, the fixed fac-
tor, was positive and significant at a 0.10 level.
This finding is consistent with other analyses of
public transit costs and suggests that the transit
system is overcapitalized. On the other hand, when
corrected for serial correlation, the coefficient on
number of buses was positive but with a t-statistic
well below 1.0, implying that Indianapolis’ system
is operating efficiently. To illustrate the potential
importance of correctly specifying the model, the
mean fleet size for the sample period was 227
buses. When uncorrected for serial correlation,
optimal fleet size was estimated as 171 buses, indi-
cating substantial (35%) overcapitalization. How-
ever, when corrected for serial correlation, optimal
fleet size increased to 214 buses, implying consid-
erably less (6%) overcapitalization in the system.*°
The importance of this finding is its implication of

17 To obtain desirable properties of the estimates by
adjusting for serial correlation in this instance assumes
that the omitted variables and included variables are
uncorrelated (Maddala 1977).
18 The authors would like to thank an anonymous referee
for suggesting this.
19 To obtain the optimal level of the fixed factor, we solved
the following equation
JCV where the subscript F refers to the fixed
v =—=Pe factor (optimal number of buses), CV is
F short-run total cost, pg is unit price of the
fixed factor, and xg is the optimal level of the fixed factor.
Unfortunately, it is impossible to find a closed form solu-
tion for xg, since the equation yields an equation involv-
ing both xg and its logarithm. Using the modified Nelson
(1972) approach (Berechman and Giuliano 1984), we cal-
culated a price for pg and solved for the optimal level of
rolling stock through a numerical procedure.
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the need for further research to determine more
accurately the extent of overcapitalization of cur-
rent systems.

Last, the vehicle-miles supplied is the output
measure used for this analysis and may be overly
restrictive. A more general approach would entail
a multiple output (e.g., passenger-miles as well as
vehicle-miles) translog cost model enabling the esti-
mation of short-run economies of scope as well as
economies of capital stock utilization.

Public policy toward deregulation, privatization,
and subsidization is only useful when we have accu-
rate information on the underlying structure of
transit firms’ production and costs. The significant
differences identified in this paper imply that ignor-
ing statistical problems such as multiple serial cor-
relation in translog cost function models may have
important consequences for public transit policy.
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