5.0 BAYESIAN REGRESSION ANALYSIS

51 Bayesian Regression Methodology

5.1.1 Introduction

Predictive equations are very important tools for the pavement management systems.
However, databases to support the developmentsand updating of these models are lacking. These
databases are often inadequate in sample size, noisy, or incomplete. Conventional statistical
modeling tools, such as classical regression analysis, may have limited success in these
applications (Kajner et al. 1996). A promising solution lies in the use of Bayesian regression,
which explicitly allows experts to be used to supplement poor quality data (Kwaeski and Nickeson
1997). Bayesian regression methodology was adopted by the Canadian Strategic Highway
Research Program (C-SHRP) for the Canadian Long Term Pavement Performance (C-LTPP)
monitoring program. Nesbit and Sparks (1990) discussed the complete rationale for employing
the Bayesian approach for the C-L TPP program in the report "Design of Long Term Pavement
Monitoring System for the Canadian Strategic Highway Research Program.”

5.1.2 An Overview of the Bayesian Regression Approach

Inits simplest sense, Bayesian regression is a specialized adaption of the Bayes Theorem
involving development of multivariate regr ession models which exglicitly consider two disparate
sources of information:

1 A prior information, i.e. information that is known prior to an experiment, and

2. Experimental data, i.e. information that is derived from an experiment.
The interpretation and conclusion drawn from the experimental data can be quite different

depending on what other evidence exists on the subject at hand. However, this difference in
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interpretation does not simply mean biasing a result. Interpretation of results using Bayes
Theorem is amathematically consistent way to interpret new evidence/information (Kwaeski and
Nickeson 1997).

The Bayesian statisticad method for modd devd opment, representedin Figure 5.1, isto
systematically combine prior knowledge and experience with data to improve the predictive
relationship. The Bayes approach calculates a meaningful and credible answer without relying
solely on a small database. In doing so, the Bayes technique allows decisions to be made in the
short term while improvements to the data, judgement and the model continue to be made

(Kwaeski and Nickeson 1997).

Figure 5.1 The Bayesian Statistical Approach (Kwaeski and Nickeson 1997)

In assembling information for Bayesian regression, datacollectedin thetraditional manner
is supplemented with prior knowledge. This approach is summarized in the Figure 5. 1. The so-
called 'prior' may be drawn from expert judgement, "old" data sets, or knowledge that is
generally accepted in the field. Expert judgement can aso be encoded by polling experts and
asking them to estimae the vdue of the dependent variable for a combinaion of contributory

variables. Once collected, the expets' observationsareinterpreted similar to the traditional data.
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5.1.3 Bayesian Regression Software

Two Bayesian regression software packages, B-STAT and XLBayes, were developed by
VEMAX Management, Inc., Canada, under contract to C-SHRP. B-STAT provides an EXCEL
spreadsheet interface to aFORTRAN based Bayesian regression program, PC-BRAP. XL Bayes,
on the other hand, is a much fager Bayesian regresson program based ertirely in the EXCEL

environment (Kwaeski and Nickeson 1997). T he analysisfeatures and numerical results of the two

programs are identical. XLBayes was selectad for this research because it is relatively
straghtforward and faster.
5.2  Bayesian Regression to Predict the Decrease in PSE Values

The Bayesian regression analysis using the XLBayes software requires prior data to be
combined with the sample data to obtain the desired posteriors. The prior data can be drawn from
the expert judgement, old data sets or knowledge that is generally accepted in the field. For this
research project, the data set for anumber of pavementsfrom Districts| and 1V for 1993 and 1994
were used as prior data, and the data for 1995 were used as the sample data. The same functional
form and transformations of the independent variables asin the classical regression were used.

5.2.1 Developing Prior and Assembling Sample Data

The prior can be derived either subjectively using expert judgement or objectively based on
existing data or models. Both approaches require that the prior information be put into either an N-
prior or G-prior format. Both the N-prior or G-prior summarize alinear regression whichrepresents
the prior state of knowledge in the Bayesian regression calculation. The prior includes the
coefficientsof thelinear regression equation alongwith thecorresponding regression statisticssuch
as the variance of the regression coefficients. The regression statistics indicate the certainty of the
prior and are used to weigh the balance between the prior and the datain the Bayesian regression
calculation. A brief overview of the information required to definethe N-prior or a G-prior is

providedin Table 5.1 (Kwaeski and Nickeson 1997). The G-prior option istypically used when the
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coefficient means have been estimated directly by the experts. The G-prior derives the
variance/covariancemeatrix for the coefficient meansbased on aset of independent variabledata. The
G-prior factor is used to increase or decrease the influence of the prior in the calculation of the
posterior. The G-prior factor is denoted by g. A typical value for g is 1. This essentially gives the
prior variance/covariance matrix weight equal tothat of the experimental data. The greater thevalue
of g, themore influencethe prior will have on theposterior. Since the pseudo/prior datausedinthis
research were not derived from expert opinion only, the N-prior option of Bayesian regression was
used in this analysis.

Table5.1 Required Prior Information (After Kwaeski and Nickeson 1997)

Prior Information Required for N-prior Required for G-prior

Means vector

V ariance/Covariance Matrix -
G-prior data set -

G-prior factor -

Residual variance

Degrees of freedom

5.2.2 Resultsof Bayesian Regression and Seleded Posterior Models

The classical regression results using pseudo data, devdopment of the N-prior and the
posterior regression coefficientsfor the FDBIT and PDBIT pavaments have been reported in detall
by Chowdhury (1998). The sel ected posterior model susing N-prior Bayesianregression analysisare
shown below.

FDBIT Pavements The selected modelsfor FDBIT pavements are :

Distress Level 1

PSE = 0.123* (AGE)*S - 9.329*exp[ SN] + 0.106* TH + 0.374* PSE + 5.89*DL1

(5.1)
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Distress Level 2

PSE = 0.123* (AGE)*S - 9.329*exp[ SN] + 0.106* TH + 0.374* PSE + 6.04*DL2

(5.2)

For Distress Levd 3

PSE = 0.123* (AGE)*S - 9.329*exp[ SN] + 0.106* TH + 0.374* PSE + 6.47*DL3

(5.3)
PDBIT Pavements The selected models for PDBIT pavements are :
Distress Level 1
PSE = 0.021* (AGE)S - 1.873*exp[ SN] + 0.303* PSE + 0.392*DL1 (5.4)
Distress Level 2
PSE = 0.021* (AGE)** - 1.873*exp][ SN] + 0.303* PSE + 0.881*DL2 (5.5)
Distress Level 3
PSE = 0.021* (AGE)'® - 1.873*exp[ SN] + 0.303* PSE + 1.974*DL3 (5.6)
where, PSE= Predicted decreasein PSE value,
AGE= Age of the pavement since the last rehabilitation action (in years),
TH = AC layer thickness (in inches),
PSE= PSE val ue assigned to the pavementimmediately after thelast action,
SN= Decrease in structural number, and
DL= Distress level dueto transverse cracking (i = 1, 2, 3).

53  Model Evaluation

The purpose of evaluating the model results is to draw conclusions about the Bayesian
posterior results. Eval uation emphasizes comparisons between the data, the prior, and the posterior.
These comparisons may be used for additional iterations for analysis later on. The dstatistical
performance of aclassical regression model istypically measured by evaluating the standard error
(S,), coefficient of determination (R?), F-statistic, and t-statistic. In Bayesian regression, only S, and

t-statistic can be evaluated. Neither R? nor the F-statistic can be cal cul ated because they rely on the
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experimental daa which does not exist for the posterior results (Kaweski et al 1997).

5.3.1 Data, Prior, and Posterior PDF Plots

An important output of XLBayesisthe PDF (Probability Density Function) plots for each
coefficient in the model. These plots graphically compare the distribution of the same coefficient
when based on thedata alone, the prior alone, or the Bayesian posterior. Figures 5.2 through 5.14
show the PDF plots for all coefficients in the models developed in this study.

Under the assumptions of both classical linear regresson and the Bayesian regressions, the
model coefficients follow t-distribution. The width of the bell shaped curve shows the confidence
in the estimating coefficients. The PDF plots of all coefficients reveal the fact that the probability
distribution for the posterior estimate is'tighter' than either the prior or the data Thisisintuitively
reasonable as the prior and the daa reinforce each other with amilar estimates of the coefficients.
Bayesian regression models can always be updated by inserting more data in the model which
makes the posterior more and more definitive.

53.2 t-Statistic

Thet-test isused to determinewhether aregression coefficientissignificantly differentfrom
zero. The t-value for aregression coefficient is calculated by dividing the mean of the regression
coefficient by its standard deviation:

t=b/
The null hypothesisin thistest is:
Hy:b,=0
which istested aganst the alternative hypothesis :

H,:b, O
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Comparison of the Normal Probability Plots for: Age1
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Figure5.2 PDF Plot for Agefor FDBIT Pavements

48



Comparison of the Normal Probability Plots for: Th
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Comparison of the Normal Probability Plots for: Exp{dSN)
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Figure54  PDF Plot for Decreasein Structural Number for FDBIT Pavements
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Comparison of the Normal Probability Plots for: PSE
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Comparison of the Mormal Probability Plots for: DL1
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Figure5.6  PDF Plot for DistressLevel 1 for FDBIT Pavements
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Figure5.7

Comparison of the Normal Probability Plots for: DL2
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Figure5.8

Comparison of the Normal Probability Plots for: DL3
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PDF Plot for DistressLevel 3 for FDBIT Pavements
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Comparison of the Normal Probability Plots for: (Age}®1.5
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Figure5.9 PDF Plot for Agefor PDBIT Pavements
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Comparison of the Normal Probability Plots for: Exp({dSN)
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Figure5.10 PDF Plot for Decreasein Structural Number for PDBIT Pavements
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Comparison of the Normal Probability Plots for: PSE
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Figure5.11 PDF Plot for PSE for PDBIT Pavements
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Comparison of the Mormal Probability Plots for: DL1
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Figure 5.12 PDF Plot for DistressLevel 1 for PDBIT Pavements
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Comparison of the Normal Probability Plots for: DL2
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Figure 5.13 PDF Plot for DistressLevel 2 for PDBIT Pavements
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Comparison of the Mormal Probability Plots for: DL3
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Figure5.14 PDF Plot for DistressLevel 3for PDBIT Pavements

60




At 5% level of significance, where the number of degrees of freedomisvery large (i.e., the
t distribution is approximately the same as the normal distribution), the critical value of tis+ 1.96.
If thet-valueisgreater than 1.96 orless-1.96, the null hypothesis isrejected and it isaccepted that
the estimate of b, is statistically significant. The higher the value of t, the more is the confidence
about its value and significance. If the t-value is between 1.96 and -1.96, the null hypothesis is
accepted and it is concluded that the estimate of b, is not statistically significant. The values
calculated for the coeffidents may only be different from zero due to chance. If the regression
coefficientsin the prior and posterior are nat statistically significant it may be useful to re-run the
analysis after excluding the variable in question. If the standard error term does not increase
significantly, the excluded variable may not be a statistically significant contributory variable.

The ideal result is for the data and prior to reinforce each other, resulting in a posterior
coefficient that has asmaller standard error than either oneindividually. Thisisnot alwaysthe case,
however, and the posterior may in fact have alarger standard error. Irrespective of how much the
variance has changed, it is desirable that the coefficients in the posterior modd all be statistically
significant.

The t-statistics and the standard deviations of different coefficients are presented in Table
5.8. Itisobserved that the t-statistics of all selected variables are outsidethe range of 1.96 and -1.96
which meansthat the null hypothesisisrejected in all cases. Thus, the variables used in the models
are significant at 5% level of significance.
5.3.3 Standard Error of the Residuals (S,)

The standard error of theresiduals, S,, isabasic measure of regression model performance.
The standard error (or standard deviation) of the resdualsis simply the square root of the residual

variance, S.2. The lower the S,, the closer the predictions made by the model are to theactual
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Tableb.2 Standard Deviation and t-Statistic of the Posterior Codficients

Pavement type Variable Std. Deviation t-value Res. Var. (S2)
FDBIT (Age)*s 0.034 3.620 0.329
Thickness 0.041 2.547
Exp[ (SN)] 4.240 -2.200
PSE 0.107 3.486
DL1 2.979 1.98
DL2 2.876 2101
DL3 2424 2.670
PDBIT (Age)ts 0.008 2.349 0.203
Exp[ (SN)] 0.500 -3.746
PSE 0.038 7.850
DL1 0.196 1.990
DL2 0.383 2.301
DL3 0.466 4.234

observations of the dependent variable, and therefore, the better the model.

Under the assumptions of regresson, the residual has a mean of zero and is normally
distributed. Thusthe confidenceinterval for theforecasts made by the model can be cal culated using
atableof areasunder the standard normal curve. For example, 95% confidenceintervd for aforecast
corresponds to the mean forecast plus or minus 1.96 times the standard deviation of the residual.
Therefore, the selected modelswill predict the (PSE) valueswithin+1.1 unitsof actual ratingsfor

FDBIT and +0.88 units for PDBIT pavements with 95% confidence.
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