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A Methodology for Studying Crash
Dependence on Demographic and
Socioeconomic Data

MICHAEL D. PAWLOVICH, REGINALD R. SOULEYRETTE, AND TIM STRAUSS

Many agencies use traffic crash data to identify problems, establish
goals and performance measures, measure progress of specific pro-
grams, and support development and evaluation of highway and ve-
hicle safety countermeasures.  Traditionally, efforts have considered
only crash data and roadway network attributes and have not taken ad-
jacent demographics, socioeconomics, land use, and other non-road-
way variables into consideration.  The evaluation of non-roadway vari-
ables may support two related types of safety management efforts: iden-
tification of additional causal factors for roadway crashes and identifi-
cation of empirical relationships between crashes and non-roadway
factors.  The second may provide improved estimates of the impact of
future changes in land use, demographics, and socioeconomics.  Re-
cent efforts use Geographic Information Systems (GIS) or non-spatial
relational databases to combine crash and other data to assess correla-
tion and causation.  The variety of data available, both within the tradi-
tional approach and with the addition of demographic, socioeconomic,
and land use data, creates a complex analytical environment.  The com-
plexity of these analyses warrants development of a typology to struc-
ture an assessment of the best approach in a given situation.  This paper
presents a concept typology to organize the use of GIS, along with
statistical techniques, to explore the relationship between crash inci-
dence and underlying demographic, socioeconomic, and land use data.

INTRODUCTION

Many agencies use traffic crash data to identify problems, estab-
lish goals and performance measures, measure progress of specific
programs, and support development and evaluation of highway and
vehicle safety countermeasures.  Traditionally, efforts have consid-
ered only crash data and roadway network attributes and have not
taken adjacent demographics, socioeconomics, land use, and other
non-roadway variables into consideration.

Engineers have long studied relationships between traffic crashes
and potential causal factors, traditionally focusing on roadway

geometrics.  The studies have generally not considered characteris-
tics of demographics, socioeconomics, and land use in the area
proximate to crashes.  Efforts on a microscopic (intersection or
corridor) level have been made to determine crash causality based
on socioeconomic and demographic features, but little has been
done to expand this to a macroscopic (network or citywide) level.

Many studies have focused on determining causal factors for
traffic crashes (1,2,3,4).  Other studies utilize traffic crash data to
determine cost effectiveness of improvements (5,6).  Still others
focus on factors to reduce crash frequency, fatalities and injuries,
and response time.  Few sources mention land use, demographics,
or socioeconomics in relation to traffic accidents.  Of these, two
older sources (1965 and 1969) focus on demographics of persons
involved in crashes (7,8), one mentions land development and traf-
fic influences on road accidents (9), and another analyzes a variety
of subjects in addition to land use (10).  No articles found consid-
ered demographic, socioeconomic, or land use data in relation to
traffic crashes on a macroscopic level.

The evaluation of non-roadway variables may support two re-
lated types of safety management efforts.  First, it may identify
additional causal factors for roadway crashes.  Once all such fac-
tors have been identified and analyzed, better-informed decisions
can be made to remediate existing or potential hazardous locations.
Identified non-roadway causal factors will enable engineers and
planners to design and plan safer roadways and neighborhoods by
providing a clearer picture of contributing factors in certain crashes
or crash types.  Changes in crash numbers would more clearly be
linked to actual causes.

Second, short of causality, the identification of empirical rela-
tionships between crashes and non-roadway factors may provide
better estimates of the impact of future changes in land use, demo-
graphics, and socioeconomics.  Such empirical relationships would
be useful to guide the allocation of emergency response (e.g., am-
bulance and police) resources necessary to respond to the potential
additional demands presented by new residential and economic
developments located in specific locations, and by changing de-
mographic and socioeconomic patterns.  However, as few studies
have considered the relationship of demographics, socioeconomics,
or land use to crashes or crash rates, these variables are not avail-
able for design, planning, or analysis.

Recent efforts use Geographic Information Systems (GIS) or
non-spatial relational databases to combine crash and other data to
assess correlation and causation (11,12,13).  GISs provide excel-
lent tools to analyze location specific crash data.  Multiple layers
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can be viewed and analyzed at once.  In addition, GISs enable de-
velopment of a methodology to consider non-roadway variables.

Currently, the Center for Transportation Research and Educa-
tion (CTRE) is developing a GIS-based accident location and analy-
sis system for the state of Iowa that facilitates spatial analyses of
crash incidence.  Iowa is fortunate 1) to have a comprehensive lo-
cation–based database covering 10 years of all traffic crashes on
all road systems, and 2) to have developed one of the better sys-
tems for analyses, Personal Computer-based Accident Location and
Analysis System (PC-ALAS).  Many approaches are available to
analyze crash data in a GIS environment.  The variety of data avail-
able, both within the traditional approach and with the addition of
demographic, socioeconomic, and land use data, creates a complex
analytical environment.  The complexity of these analyses warrants
development of a typology to structure an assessment of the best
approach in a given situation.

A topological (i.e., based on feature class) division of crash rates
includes three types of geographic representations: point, line, and
polygon.  Points can either represent the location of a single crash
or the location of a point where multiple crashes have occurred.
Lines can denote a segment or corridor with multiple crashes or a
network made up of a series of lines, combining the crashes on
each line to develop the crash rate.  Polygon representations com-
bine crashes within an area in order to develop an areawide crash
rate.  Polygons can be further divided, representing regions using
an arbitrary grid or block groups, depending on the data available
and the desired analysis.

Utilizing the topological representation of crash rates as the de-
pendent (Y) variable, various independent (X) variables, which also
can be represented with varying topology, can be used to determine
potential causal relationships.  As the analysis of these topological
representations can become quite complex, a classification scheme
(typology) to structure the analyses is helpful. This paper presents
a concept typology to organize the use of GIS, along with statisti-
cal techniques, to explore the relationship between crash incidence
and underlying demographic, socioeconomic, and land use data.

TYPOLOGY

The typology, as shown in Figure 1, consists of two topological
dimensions: dependent variable (crash rate) and independent vari-
able (here, demographic, socioeconomic, and land use).  Prior to
representation with varying topology, the dependent variable must
be created from a spatial combination of crash incidence and expo-
sure (traffic levels).  In this study, crash locations are represented
as points.  Three methods are presented here to develop crash rates
(point on line and point on polygon, including arbitrary grid and
census block), creating three sets of dependent variables for subse-
quent analyses.  In addition, the three sets of dependent variables
are statistically related to three independent variables, creating nine
or more possible types of analyses.

 Each dependent variable/independent variable pair can be uti-
lized to assess the impact of different features of the independent
variables on crash rates as shown in Figure 2.  For example, the
arbitrary grid/economics combination could be utilized to deter-
mine impact of business point locations on an areal (grid) crash
rate. Employment densities within grids could be related to crash
rates within grids.  In addition, given an accident location, all busi-
nesses within a grid of an accident location could be determined.

FIGURE 1  Crash rate typology.

FIGURE 2  Causal factors matrix.

METHODOLOGY

The methodology to develop dependent and independent variables
consists of six main steps, as shown in Figure 3.  The first three
steps are used to develop independent variable data, the fourth to
develop dependent variables, the fifth to develop independent vari-
ables themselves, and the sixth to apply statistical techniques to
determine significant causal relationships.  In this paper, the meth-
odology is demonstrated at the block group level.
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Step 1

Data available include census data, crash data, infrastructure data
(mainly roadway data), and employment data.  An enormous amount
of data is available, resulting in computational problems for stan-
dard statistical packages; therefore, the variable list was narrowed
to those viewed as most promising by the authors.  Initially, we
arbitrarily selected variables that seemed most likely to affect crash
rates.

Census data contains over 3,400 data elements that can all be
referenced to geographic regions.  These elements are divided into
several main headings and subheadings.  To provide more manage-
able census data for the purposes of this paper, data under certain
headings, unlikely to relate to crash rates, were discarded from con-
sideration.  The remaining data elements were contained in 261
main headings and subheadings.  From these we arbitrarily selected
a portion for subsequent analyses.  The selection left us with a large,
but much more manageable number of total variables (225 vari-
ables under 25 main headings) to consider.

Infrastructure data obtained from the Iowa Department of Trans-
portation (DOT) include several background GIS coverages such
as hydrology, rail lines, secondary roads, primary roads, and mu-
nicipal roads.  The latter three of these were of significant interest
for this paper.  Included as attributes for the road coverages are
AADT and lane length.  The AADT and lane length were used to
calculate Vehicle Miles Traveled (VMT) for each roadway segment.
The VMT, combined with total crashes along each roadway seg-
ment, were used to construct the dependent variable, crash rate, for
each roadway element.

Crash data also obtained from the Iowa DOT includes many
data elements related to the crash, the vehicles and drivers, and the
injured persons.  These data elements are explained in a recently
published report detailing current efforts to expand and improve
Iowa’s accident location and analysis system (14).  For the pur-
poses of this paper, relevant information is the incidence and loca-
tion of crashes.  Combining these data with VMT results in crash
rate (crashes/100 million VMT).  Future efforts may consider spe-
cific crash attributes.

Socioeconomic data contains:  business name, address, city, state,
zipcode, Standard Industrial Code (SIC), and number of employ-
ees.  The data were obtained from the Iowa Department of Workforce
Development (DWD) and are confidential.  The SIC code is the
most important element, though number of employees may be of
interest.  The other variables were used to create a point location
map of businesses using the geocode function of a GIS.

Step 2

The second step was to develop or locate polygon coverages of
block groups and point coverages of businesses and other land use
data.  Polygon coverages of block groups, illustrated in Figure 4,
were obtained from a commercial product and exported to GIS for-
mat.  The point coverages of businesses, displayed in Figure 5,
were developed from DWD data.  Utilizing the address code of the
DWD data and a commercial street address database, point cover-
ages were developed using the geocode function of a desktop GIS.

Step 3

The third step was to join census data and Topologically Integrated
Geographic Encoding and Referencing (TIGER) blocks (i.e., poly-
gons for block groups).  However, the census data and TIGER block
join was found to be commercially available; therefore, no work
was entailed in this step other than querying for desired census
information and exporting it into GIS format.

FIGURE 3  Equation development process.
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Step 4

The fourth step was to develop crash rates, the dependent variable,
for each independent variable type:  block group, arbitrary grid,
and linear system.  For this paper, only the first, crash rates for
block groups, was completed.  The latter two independent variable
types will be considered in future efforts.

To develop crash rates for block groups, first the Iowa DOT
roadway coverages were spatially joined to crash data, as shown in
Figure 6.  The resultant table was then summarized to produce a
table of crashes by using the roadway coverage index fields.  The
summarization table and roadway coverages were then spatially
joined, creating roadway coverages with total crashes along each
roadway segment.

The VMT for each block group was calculated by first spatially
joining each block group to the road coverages, as shown in Figure
7.  The resultant road coverages with the block group table was
then exported to dBase format and imported into Microsoft Ac-
cess.  Within Access, the crashes, average annual daily traffic
(AADT), and lane length (meters) were grouped by area identifier
using a summation for each.  The grouping results were saved and
imported into GIS and then spatially joined to the block group cov-
erage. Each block group now includes total number of crashes, to-
tal AADT, and total lane length as attributes.  Additional fields,
VMT and crash rate, were created and their values calculated for
each block group using the following formulas:
• VMT = total AADT * 365 days/year * lane length (meters) /

1.609 meters/mile; and
• Crash rate = total crashes/(1000000*VMT).

After generation of the grid, development of crash rates for an
arbitrary grid would proceed similarly.  Linear system crash rates
would involve the spatial joining of the roadway and crash data
and the subsequent calculation of VMT and crash rate.

Step 5

The fifth step was the development of the independent variables,
for polygons via overlay/intersection.  This was accomplished by
joining the census data to the crash rate data.  An overlay of block
groups, crashes, and business locations is shown in Figure 8.

Step 6

The sixth step uses the independent and dependent variables devel-
oped previously to examine the data for significant causal relation-
ships.  Various statistical techniques may be utilized, including lin-
ear regression, analysis of variance (ANOVA), multiple regression
ANOVA (MANOVA), factor analysis, bivariate regression, time
series, and spatial regression.  Within the selected GIS environ-
ment, few rigorous statistical techniques were available; however,
a simple bivariate regression script is available for analyzing data.
In addition, exporting the database to a spreadsheet allowed for
more involved multiple regression.  For this paper, various vari-
ables were tested against the block group crash rate for a variety of
regions to ascertain whether there were any obvious causal factors.
This was done using a desktop statistical software package once
the data had been exported in delimited text format from the GIS.
Future efforts will involve statistical packages allowing the more
robust analyses desired.

FIGURE 4  Block groups.

FIGURE 5  Socioeconomic point locations.

FIGURE 6  Iowa DOT roadway and crash coverages.
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ANALYSIS

The initial analysis effort utilized a subset of the available data.
Future efforts will analyze the data more comprehensively.  How-
ever, a variety of factors contributed to the limited analyses per-
formed at this time.

Using a metropolitan region for the analyses, the data fields were
pared to an arbitrary set of variables of interest.  These variables
were then exported to delimited text format from the GIS and im-
ported into the desktop statistical package for analyses.  A back-
ward, stepwise, linear regression was performed, using entry and
exit probabilities of 0.15.  The correlation coefficient (R = 0.677)
and the coefficient of determination (R-squared = 0.458) indicate
that the equation is moderately successful in predicting crash rates
at the block group level (see Figure 9).  Several independent vari-

ables remained in the estimated equation, 27 in all.  Of these, 10
were statistically significant at the 0.001 level, 15 at the 0.01 level,
and 25 at the 0.05 level.  Independent variables with a calculated
statistical significance of “0.000” included:
• Persons 3 years and over enrolled in preprimary school

(S_PrpSch)
• Employed persons 16 years and over who are in sales occupa-

tions (OcSales)

FIGURE 7  Roadway, crash and block group coverages.

FIGURE 8  Block groups, crashes, and business location
coverages.

FIGURE 9  Regression results.
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• Persons aged 6 years old (Age6)
• Workers 16 years and over, not working at home, whose travel

time to work was 10-14 minutes (Tim10_14)
• Workers 16 years and over, not working at home, whose travel

time to work was 40-44 minutes (Tim14_44)
• Families with two parents and children under 6 years with only

the mother in the labor force (Ch5P2MWk)
At first glance, the results seem promising.  A few caveats are

necessary, however.  First, one must be careful about assigning cau-
sality to the above relationships.  The results should not be inter-
preted as indicating that crashes are caused by 6-year-old children,
and their preprimary aged siblings, with commuting salesman fa-
thers and stay-at-home mothers.  The results might indicate, how-
ever, that locations with families having these characteristics, may
have above-average block-group-based crash rates (controlling for
a limited set of other factors).  Second, regression diagnostics indi-
cated that the above results should be viewed cautiously.  In par-
ticular, extreme values may be skewing the results.  A series of
scatterplots with the dependent variable and selected independent
variables indicated that this is the case.  A few block groups with
extremely high values greatly affected the results.  Normally, these
observations would be discarded, but in crash analysis they are usu-
ally the ones of most interest.  Third, although a surprising number
of interrelated independent variables entered the final equation, a
high degree of multicollinearity, typical with socioeconomic data,
can make regression parameters unstable and substantive interpre-
tation difficult.

To assess the third point, a principal components analysis (PCA)
was performed on the 27 independent variables to identify highly

correlated groups of variables (minimum eigenvalue = 1.0, varimax
rotation).  Nine factors resulted from this and are presented in Fig-
ure 10.  Analysis of the results requires a bit of interpretation.  For
instance, variables with high loadings on the first component in-
clude:
• Workers 16 years and over, not working at home, whose travel

time to work was 10-14 minutes (Tim10_14)
• Employed persons 16 years and over who are in sales occupa-

tions (OcSales)
• Persons aged 35-39
• Employed persons 16 years and over who are in public adminis-

tration industries (InPubadm).
  This component can be interpreted as representing neighbor-

hoods with thirtysomething professional service industry workers
with average commute times.  Other components can be similarly
interpreted.

To assess the potential impact of these groups of variables on
block-group-based crash rates, the components can, in turn, be used
as independent variables in a regression analysis.  The results were
less useful than the original regression, however, since the R (0.276)
and R2 (.076) were lower (worse for empirical prediction), and the
difficult interpretation of the components that entered the equation
makes it difficult to derive much  meaning from the results that we
could use to establish causal factors.  Additionally, only factor 1
(0.054) and  factor 6 (0.000), had p-values of statistical signifi-
cance.

CONCLUSIONS

The development of the above typology is a promising approach,
but mainly for empirical prediction (e.g., to estimate impact of
changes on number of crashes in a given development, city, or
emergency response district).  Statistical associations and patterns
discovered through using this typology can be examined for pos-
sible causal significance, which would then be assessed via more
detailed studies.

Though regression using individual variables gave good results
for prediction, the results are hard to interpret substantively.  In
addition, use of PCA made the equation worse and did not aid in-
terpretation.  The next step would be mapping to find block groups
with high values for the two statistically significant components.

Some data issues made the made the analysis more difficult.
Extreme values/outliers make it difficult to get meaningful results
from regression.  Additionally, these extreme values/outliers skew
the analysis.  However, these values are more interesting in from a
safety perspective.

Additionally, the typology might be developed further for two
different types of analyses.  Examining immediate corridor prox-
imity would facilitate causal analysis and engineering countermea-
sures.  Examining broader areas (e.g., block groups) is better for
planning applications such as police and fire response or broader
estimates of changes in crash statistics and patterns.
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