
138 MID-CONTINENT TRANSPORTATION SYMPOSIUM 2000 PROCEEDINGS

Quantifying Uncertainty in Bridge
Condition Assessment Data

The effectiveness of decisions in bridge management systems is based
on the quality of data obtained regarding various processes in the
systems.  Hence, data play a crucial role in bridge management.  In
general, data collected has some amount of associated uncertainty. In
order to assess the impact of this uncertainty on decisions, the
uncertainty in the data should be quantified.  In other words, by
determining the level of uncertainty, we are judging the quality of the
data, which is important for making effective decisions in bridge
management systems. This paper describes a procedure for measuring
the level of uncertainty in bridge condition assessment data.  First, a
bridge deterioration model was applied to historical data to estimate
the current condition of a bridge and compared to current data.  Next,
reliability theory was applied to estimate the structural reliability of
the bridge, again based on both historical and present data.  Finally,
the reliability of the bridge was compared to the results obtained from
the deterioration model, using a coefficient of correlation.  Because
the deterioration model used Markov chains, which are probabilistic,
and the reliability results are also reported as probabilities, the results
can be compared.
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INTRODUCTION

Bridge management is a rational and systematic approach to orga-
nizing and carrying out the activities related to planning, design, con-
struction, maintenance, rehabilitation, and replacement of bridges (1).
A bridge management system (BMS) should assist decision-makers
in selecting the optimal alternative needed to achieve desired levels
of service within the allocated funds and to identify future funding
requirements.  The most basic requirement for bridge management
is a bridge inventory, which includes bridge location, type, func-
tional classification, importance within the network, condition, and
maintenance history.  Therefore, because the decisions made in a
bridge management system are based on information obtained from
these data (2), the quality of the data impacts the effectiveness of the
decisions.  To determine the extent of these impacts, some quantita-
tive methods are required.

This research examines the uncertainty associated with condition
assessment data and quantifies it based on mathematical and statisti-
cal principles.  The authors have developed a procedure using dete-
rioration models and reliability models to compare predicted condi-
tion with actual condition.  This paper describes the application of
the procedure to a small database of three bridges.

BACKGROUND

Bridge Management

State and local agencies use a number of different bridge manage-
ment systems.  Most of these BMS employ probabilistic deteriora-
tion models to predict the future condition of a bridge.  Pontis, one
of the most widely used BMS, uses Markovian models, as do sev-
eral other BMS.  Markovian models are often considered to repre-
sent the bridge deterioration process most effectively (see, for ex-
ample, 3).

Uncertainty

A significant body of research exists on data uncertainty, and much
of the work has classified types of uncertainties and proposed mod-
els to express the level of uncertainty.  However, these techniques
have not been widely explored for bridge condition data.  Much of
the research to date, including the development of guidelines for iden-
tifying and reducing specific types of uncertainties, relates to indus-
trial engineering.  The accuracy and precision in manufacturing test-
ing and maintenance is higher in industrial settings than in construction
or other field-work, and the extensive use of computers and ma-
chines in industry reduces the potential for human error, as does the
ability to control the environment.

A number of methods for classifying uncertainty have been pro-
posed.  For example, Ayyub attributes uncertainties in engineering
systems to ambiguity and vagueness in defining the architecture,
parameters, and governing prediction models for the systems (4).
The ambiguity component is generally ascribed to noncognitive
sources, such as physical randomness, statistical uncertainty due to
limited information, and model uncertainties due to simplifying as-
sumptions, simplified methods, and idealized representations of real
performances.  Vagueness typically is due to cognitive sources, such
as qualitatively defined variables (e.g. “performance”), human fac-
tors, and interrelationships among variables of a problem, especially
for a complex system.  Similarly, Kikuchi and Parsula also classify
uncertainty as cognitive (subjective and not be easily quantified) or
noncognitive (typically associated with prediction) (5).

The National Institute of Standards and Technology (NIST) has
developed guidelines for evaluating and expressing uncertainty in
industrial engineering data.  According to Taylor, uncertainty can be
divided into two components – random uncertainty and systematic
uncertainty (6).  Random uncertainties are generally determined by
applying reliability theory.  The NIST work has addressed standards
for and accuracy of data rather than any particular type of data.
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METHODOLOGY

This research addresses noncognitive, random uncertainty in bridge
condition data.  The methodology combines a comparison of pre-
dicted with actual data for both component condition and reliability
of a bridge.  A correlation coefficient is then used to quantify the
level of agreement between the two, which is subsequently used to
obtain an overall estimation of “accuracy.”

Condition Assessment

According to Aktan et al., condition assessment is a process, which
can be summarized in the following steps (7):
1. Measure the extent of damage/deterioration.
2. Determine the effect of that damage/deterioration on the condition

of facility.
3. Set the scale of parameters that describe the condition of the facil-

ity as a whole.
4. Compare the existing damage/deterioration with previous records

of condition assessment.
Different structural types of bridges, such as reinforced concrete

slab, steel stringer, prestressed concrete, and box-reinforced con-
crete slab, have similar response and loading mechanisms.  How-
ever, no two bridges are similar in all respects, especially in their
deterioration and aging characteristics.  Therefore, it is difficult to
assess all types of bridges using the same condition analysis frame-
work.  This research examines condition assessment data for con-
crete bridge decks, slabs, girders (or beams), columns, railings, and
abutments.

Once the current condition of a bridge has been assessed, future
condition can be predicted using deterioration models.  Deteriora-
tion is a long-term, gradual degradation leading to a reduction in the
performance of a member, a structure, and ultimately the entire facil-
ity.  Considering bridges specifically, deterioration can be defined as
a decline in bridge element condition (1).  Most deterioration models
are based on basic theories of mathematics – statistical regression
and/or stochastic modeling.

A Markovian process, which is used in most BMS, is a stochas-
tic process that takes the uncertainties involved in the bridge deterio-
ration process into consideration.  Current models do not, however,
account for uncertainties in the original data.  In a Markov process,
the state probabilities (the percentage of the inventory predicted to be
in a particular condition state) and the transition probabilities (the
probability that the condition of a component will deteriorate from
one state to a lower state) are used to predict the future condition of
the bridge or bridge component.

The framework proposed here requires the use of deterioration
models, and for the test cases presented, the deterioration models in
Pontis (8) were used to determine the transition probabilities and to
predict future condition.  Visual inspection data provide the type and
severity of element deterioration, which are recorded as the condi-
tion state for that element.  Pontis uses a Markovian deterioration
model to predict the probability of transition among condition states
each year (8).

ity’ refers to the ability of a system to perform its stated purposes
adequately for a specified period of time under the operational
conditions encountered” (9).  The reliability of a system (in this
case, a bridge) is based on the probability of failure of the sys-
tem.  The reliability of the entire system is a combination of the
reliabilities of the components that comprise the system.

A bridge is a complex system in itself.  In order to calculate the
reliability of a bridge or a bridge component, Newton’s law (to every
action there is equal and opposite reaction) is used.  For all complex
structures, two components – resistance and capacity – are used in
the calculation of reliability.  If the resistance (or “demand”) is greater
than the capacity (or “supply”), the system will fail (10).  The calcu-
lated probability of failure depends on the reasonableness of the un-
derlying assumptions.  It is based on empirical models and relies on
observational data, as formulated below (10).

If the reliability of a structural system is
Reliability = 1 – P

f
(1)

where P
f 
is the probability of failure,

then, for discrete variables,
P

f
 = P(A<B) = Σ P(A<B/B=b)P(B=b) (2)

where A is the Capacity (Supply),
B is the Resistance (Demand), and
b is the Resistance at a given instance.

Generally, the variables whose functions are discussed above are
normal random variables, and their distribution is normal.  For cal-
culating the reliability of a particular variable, two moments, the mean
and the variance, are estimated.  Only two moments of the random
variables are considered practical, as large amounts of data are re-
quired to evaluate for further moments.

For a complex system, the capacity (supply) and resistance (de-
mand) may each be functions of several other variables.  Hence, the
problem of calculating the reliability becomes complex, as the se-
lected variable depends on various other random variables.  Further,
the complexity of the problem increases when the correlation be-
tween the variables is considered.  To simplify the problem for the
given bridges, only the two moments mentioned above are consid-
ered.

The total load effect (S) is
S = D + L + I (3)

where D is the dead load,
L is the live load, and
I is the impact load.

All three loads are considered random variables, as the loads
at any particular time are not constant.  Failure for a particular
component will occur when S, the total load, exceeds the strength
or resistance, R.  Thus,

P
f
 = P[R<S] (4)

For this model, the mean (g) is the difference between resis-
tance and capacity; that is,

g = R – S (5)
And the variance (σ

g
) is

(σ
g
)2 = (σ

R
)2 – (σ

S
)2 (6)

whereσ
g
 is the difference between the variance of resistance

and capacity,
σ

R
 is the variance of resistance, and

σ
S
 is the variance of load.

The failure probability is the region where g<0, and, in dis-
crete form,

P
f
 = Σ P[g = g

i
] for all values where g<0 (7)

The safety index (β) is defined as the ratio of the difference
between the resistance and capacity (the mean) and the vari-
ance:

Reliability Model

Random uncertainty can be mathematically modeled using reli-
ability theory (6).  According to Gertsbakh, “The word ‘reliabil-
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β = g/σ
g

(8)
Thus, the failure probability is the sum of probabilities over

the range where the safety index obtained is negative (10), and
the probability of failure can be expressed as a function (Φ) of
the ratio of difference between the loads and the difference be-
tween variances.

P
f
 = Φ(g/σ

g
) (9)

Substituting,
P

f
 = Φ(β)

(10)
The quantitative relation between the safety index and the prob-

ability of failure is shown in Table 1 (10).

CASE STUDY

Three bridges in the state of Missouri form a case study for the meth-
odology described.  The condition data for these bridges were ob-
tained from the Missouri Department of Transportation (MoDOT).
For this work, concrete bridges were selected based on the age, type,
and availability of the required data.  The raw data are in the form of
condition ratings for bridge components and for the bridge as a whole.
These data are used as input to determine the transition probabilities
for the deterioration models in Pontis and for calculating the reliabil-
ity of the components.  The transition probability for each compo-
nent is calculated using deterioration models in Pontis.  Table 2 shows
the transition probabilities calculated for one of the three bridges.

TABLE 1 Relationship Between the Probability of  Failure (Pf) and
the Safety Index (β)

P
f

0.5 0.25 0.16 0.10 0.05 0.01 10-3 10-4 10-5 10-6

β 0 0.67 1.00 1.28 1.65 2.33 3.10 3.72 4.25 4.75

Coefficient of Correlation

Correlation techniques are used to study relationships (associations)
between variables.  Correlation is calculated as the level and direc-
tion of a relationship between two variables X and Y.  The range of
values of a correlation coefficient is from “-1” to “+1”.  The closer
the value is to “+1,” the stronger the positive correlation, and the
closer the value is to “-1,” the stronger the negative correlation (11).

The Pearson product moment correlation (r) is the most common
“Correlation Coefficient.” A number of assumptions must be made
for the Pearson r (11):
1.Data for both X and Y must be measured at regular time intervals

(e.g. data are collected each year).
2.Both X and Y must be normally distributed.
3.The sample must be representative of the population.
4.The relationship between X and Y should be linear.

It is assumed that he data used in the research satisfies the above
requirements.

The Correlation Coefficient (r) is calculated as:

(11)
where n is the sample size.
To summarize the procedure:

· Estimate the transition probabilities for the components of a bridge
based on historical condition assessment data (for j years).

· Determine the transition probabilities for the same components
including condition assessment data from year j+1 .

· Compare the transition probabilities based on the historical data
(for j years) and current data (for j+1  years) using a coefficient of
correlation.

· Similarly, use a reliability model to calculate the current probabil-
ity of failure based on the condition assessment data at time T = j
years and time T = j+1  years.

· Compare the probabilities of failure by calculating the coeffi-
cient of correlation.

· Calculate a final coefficient of correlation.  The uncertainty is quan-
tified in terms of this correlation coefficient.

TABLE 2 Transition Probabilities for Bridge H198

Transition Probabilities

Element based on past data based on present data

Deck 93.28 92.42
Slab 95.86 93.71
Girder 94.77 92.18
Columns 96.82 95.67
Railings 97.52 97.81
Abutment 95.47 93.25

Next, the reliability of each component is calculated using past
and present data.  Tables 3 and 4 show the reliability of components
for the same bridge, H198.

The correlation coefficients for the transition probabilities (be-
tween past and present data) are calculated for each bridge, as
are the coefficients of correlation for the reliabilities.  Table 5
shows the coefficients of correlation for each of the three bridges
and the final coefficient of correlation for the whole data set.

CONCLUSIONS

Based on the coefficient of correlation, the uncertainty in condition
assessment data can be quantified.  The coefficient of correlation varies
from 0 to 1, and the closer the value of the coefficient to 1, the higher
the correlation between the predicted and present probabilities.  These
values can be attached to the bridge data, and weights can be as-
signed to different data elements used in bridge management based
on the coefficients of correlation, which would enhance decision
making in bridge management.

In this research, the value assigned to uncertainty associated with
the data is in the form of a coefficient of correlation.  From the coef-
ficients of correlation obtained for these bridges (Table 5), it is clear
that the uncertainty is very low.  In other words, the results obtained
from two different data sets for the same bridge are very close.  How-
ever, the data used in this example are for only three bridges.  If data
for a whole network of bridges are used, the procedure will be more
efficient and effective, as uncertainty in any problem cannot be elimi-
nated, but only can be reduced.  Thus, as the number of iterations
increases, the uncertainty in the result decreases.

Strengths of this methodology include the following:
1. Two different models are used for every bridge to calculate data

uncertainty.  By doing so, the possibility of simply validating the
models is decreased.
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2. The coefficients of correlation have no units and can be compared
to obtain a numerical value for the uncertainty of the condition
assessment data.

3. As the amount of data increases, the uncertainty in the procedure
decreases (repetitive analysis).  Hence, the procedure has great
potential for network level bridge management.
While the methodology shows promise, weaknesses which must

be addressed in future research include:
1.Additional methods, which are based on the data themselves

and collection methods rather than on models, should be ex-
plored.

2. Uncertainty is present in the procedure itself, due to the assump-
tions made in simplifying the models and in calculating the corre-
lation coefficients.

3. The methodology requires large amounts of historical data for
bridges in the network to give good results.
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TABLE 5 Coefficients of  Correlation

Coefficient of correlation

Bridge Reliability theory Deterioration models

A814 0.92746438 0.95069567
H198 0.96602507 0.88902714
H199 0.98538182 0.89800344

Final coefficient of correlation
All 0.891760796

TABLE 3 Reliability of  Components for Bridge H198 Based on Historical Data

Total Load
Dead Live Impact Impact carrying Capacity Capacity (R) Load (S) Safety
Load Load Load  Load capacity Reduction  at time t=x at time t=x σ

R
     σ

S
Index

Element 1000 lbs 1000 lbs 1000 lbs  Factor 1000 lbs Factor 1000 lbs  1000 lbs    lbs 1000 lbs    β       Reliability

Deck 202.75 70.00 16.10 0.23 288.85 0.94 271.52 252.65 0 14.66 1.287 90.1
Slab 202.75 70.00 16.10 0.23 288.85 0.94 271.52 252.65 0 14.66 1.287 90.1
Girder 659.05 70.00 16.10 0.23 745.15 0.84 625.93 565.42 0 40.69 1.4872 92.8

Column 683.21 70.00 16.10 0.23 769.31 0.84 646.22 595.25 0 33.60 1.5168 93.2
Railings 10.00 0.94 9.40 7.93 0 1.02 1.45 92.3
Abutment 16.54 0.84 13.89 12.87 0 0.67 1.5316 93.4

TABLE 4 Reliability of  Components for Bridge H198 Based on Current Data

Total Load
Dead Live Impact Impact Carrying Capacity Capacity (R) Load (S) Safety
Load Load Load Load Capacity Reduction  at time t=x at time t=xσ

R
σ

S
index

Element 1000 lbs 1000 lbs 1000 lbs Factor 1000 lbs Factor 1000 lbs 1000 lbs lbs 1000 lbs     β Reliability

Deck 202.75 70.00 16.10 0.23 288.85 0.84 242.63 223.07 0 15.53 1.26 88.27
Slab 202.75 70.00 16.10 0.23 288.85 0.84 242.63 223.07 0 15.53 1.26 88.27
Girder 659.05 70.00 16.10 0.23 745.15 0.76 566.31 504.55 0 48.14 1.283 90.42

Column 683.21 70.00 16.10 0.23 769.31 0.76 584.67 522.24 0 44.44 1.405 91.78
Railings 10.00 0.84 8.40 7.35 0 0.79 1.33 90.89
Abutment 16.54 0.76 12.57 11.32 0 0.90 1.38 91.21


