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Abstract:

In this project report, we describe new optimization and simulation tools to address several problems in transportation,
specifically driver dispatching and tour formation in full truckload trucking. In this segment of transportation industry,

one of the problems is low driver retention mainly due to the long routes that keep drivers away from home for long
time. We address this issue first by extracting a network of high volume cities (called terminal city network) from the

existing transportation network. Then, we regularize the tours for the drivers in the terminal network as much as possible
using simulation and optimization. Specifically, we develop integer programming models and discrete-event system

simulation tools to design and evaluate optimal or near-optimal delivery plans for truckload shipments between terminal
cities in a truckload-trucking environment.  We examine the problem primarily from a freight carrier’s perspective, with

a goal of providing driver tour pattern and domicile information to maximize carrier revenue while meeting shipment
demands and driver needs.  We provide multiple models which span from long-term aggregate planning problems to
short-term driver-specific operational models and show how they can be used in different settings. We also provide

realistically sized case studies to demonstrate the efficacy of the approaches using data supplied by J.B. Hunt Transport,
Inc.

Keywords: Simulation, Optimization, Truckload Trucking, Distribution

1.0 Introduction

One of the most difficult tasks associated with agile and distributed manufacturing is that of logistics management for
material movement activities between various sites.  In fact, popular manufacturing strategies such as just-in-time
manufacturing and agile manufacturing have driven logistics solutions to being more important and less tolerant of
deviation from dispatch and delivery plans.  This is especially true in situations where the geographical distances

between design sites, raw material and component supply sites, manufacturing sites, distribution centers, and customer
locations are of a national or even global scale.  Efficient material movement between these sites is key to success and

well designed supply chains are likely to play an even larger role in the future success of business entities.

In this report, the authors focus on the development of simulation and optimization methods to examine inter-site
distribution alternatives in a dedicated truckload trucking environment, assuming a North American business platform. 

Solution methods, regardless of the techniques used, must consider two viewpoints.  From a customer or shipper
perspective, the primary areas of concern are price, delivery (on-time) performance, and service quality (lack of

damage).  These service needs are intensifying as manufacturing evolves into increasingly global systems and as it
evolves into systems that are decreasingly dependent on buffer stock supplies.  From a carrier perspective, the key issues
are equipment utilization and driver tour length reduction.  The highly competitive nature of North American truckload
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trucking, with its low capital requirements to become an industry participant, requires high equipment utilization,
especially following US deregulation legislation in 1980.  The improvements to carrier profitability brought about by

driver tour length reduction are perhaps the most difficult to explain to persons outside the industry, but it is this key area
of concern that motivates the development of the tools described in this paper.

It is difficult to recruit and retain drivers in North America.  Schwartz (1992) discusses driver retention and recruiting as
a key business strategy for truckload carriers.  Carriers that are successful in recruiting and keeping drivers will likely

emerge as industry leaders.  The excessive tour lengths inherent to traditional truckload dispatching methodologies are a
primary reason for losing drivers.  Mele (1989a, b) provides statistics that support this premise.  He states that annual
turnover rates among truckload carriers can range from 85% to 110%, while less-than-truckload (LTL) carriers with

more regular routes often experience turnover rates on the order of 4.5% for city drivers and 10% for linehaul drivers.  If
carriers can find ways to regularize and reduce driving routes, they have a better chance to retain drivers than their

competitors.  In this context, the term ‘regularize’ means to find patterns in seemingly random freight that would enable
drivers to repeatedly drive the same short tour day after day or week after week, returning to their domicile (home city)
at the end of each tour dispatch.  Regularized tours enable the drivers to return home more frequently and with greater

certainty, thus contributing to driver satisfaction and retention.  Concurrently, regularized tour drivers are able to
increase safety on the road because of familiarity with the roads they travel.

There are many ways to regularize driving routes.  Several of these alternatives, including the development of hub &
spoke networks, the development of regularly scheduled lanes similar to those used in intermodal transit with rail, and
the development of regional zones are discussed in Taylor et al. (1999).  The remainder of this report examines a new

means of driver route regularization that is not represented in the current literature.  The techniques used herein represent
a compromise between random dispatching and strict regularization.  This report examines the use of driver partitions

into two sets of drivers; those that operate only within a limited network of high freight density delivery nodes (network
drivers), and those that carry remaining freight in a random fashion (random drivers).  Network drivers may drive highly
regular routes or seemingly random routes, but only within the selected high freight density network.  Network drivers,

even if traveling randomly within the selected network, would experience reduced tour length based on the limited
number of allowable network destinations. Random over-the-road (OTR) drivers would carry remaining non-network

freight using traditional dispatching methods and may include sub-contract drivers.  This strategy is wholly compatible
with the use of dedicated fleets for large shippers, but is also a reasonable strategy for larger carriers who desire to

partition their driver capacity into regular and random jobs.

The following sections describe two tools for examining the efficacy of limited network designs as a tour length
reduction strategy.  The first is simulation based and the other is optimization based.  The literature is rich with examples

of both types of tools in distribution problems, but no literature has been found directly addressing the problems
presented herein.  Many authors have addressed the use of optimization in trucking.  Crainic and LaPorte (1997) provide
an excellent overview of planning models in freight transportation at the strategic, tactical, and operational level.  At the
strategic level, they discuss location models, network design models, and regional multi-modal planning models.  At the
tactical level, they discuss service network design and vehicle routing problems.  At the operational level, they discuss

dynamic modeling to support carrier operations and capacitated routing with uncertainties.  Powell (1991) also reviews a
fairly wide range of optimization tools developed for trucking with an emphasis on real-time optimization in truckload
trucking.  Hall and Racer (1995) present methodologies that are somewhat similar to those presented herein in that they

examine the use of private fleets.  In some cases, their approach considers both transportation and inventory costs.  Other
authors also develop optimization models that minimize transportation and inventory costs using economic order

quantity models and other tools, but no literature has been found dealing with multiple concurrent links of logistics
networks.  Frantzeskakis and Powell (1990) and Kleywegt and Papastavrou (1998) develop heuristic algorithms based on

the formulation of dispatching problems as stochastic programming problems.  Other papers of interest include Ronen
(1992) who examines dispatching of mixed fleets from a single terminal, Equi et al. (1997) who examine, via

Lagrangean decomposition, dispatching from several origins to several destinations within a single work day, and a
multitude of papers in LTL trucking including an interesting paper by Crainic and Roy (1992) which addresses regular

route building.  Another paper of interest is presented by Powell and Carvalho (1997) in which the authors discuss a
dynamic multicommodity network flow problem that can be used to solve large problems that are difficult to solve using

integer programming.  Simulation is also useful in solving large problems.  Although the literature is less abundant in

MBTC 2004

http://www.cveg.uark.edu/mbtc/research/finals/arc2004/comb2004.html (2 of 22) [5/24/2001 12:50:22 PM]



presenting simulation solutions in the trucking industry, some strong examples exist, including the previous work of the
author of this paper.  Much of this is reviewed in detail in Taylor et al. (1999).

Another related area from the literature is that of airline crew scheduling.  The crew scheduling problem basically builds
minimal cost pairings of flight crews and flights to satisfy constraints associated with labor rules and regulations.  To

some degree, most published solutions deal with schedule perturbations including weather, traffic, crew and equipment
delays.  As pointed out by Hoffman and Padberg (1993), the problem is very significant and has consequently been

studied almost continually for the past 40 years.  They also state that crew costs are exceeded only by fuel costs in the
airline industry.   As stated in Vance et al. (1997), the problem has traditionally been modeled as a set partitioning

problem.  Even so, many solution alternatives exist in the published literature involving both traditional and
non-traditional approaches.  For interesting examples of the state-of-the-art featuring more or less traditional solution

methods, the reader is referred to Graves et al. (1993) and Stojkovic et al. (1998).  Graves et al. (1993) present an
applications based solution working with United Airlines.  Stojkovic et al. (1998) focus on the operational aspects of the
crew scheduling problem.  Non-traditional approaches to solving the problem include a preferential bidding system by

Gamache et al (1998), simulated annealing by Lucic and Teodorovic (1999), and even a decision support system
developed by Mathaisel (1996).  Effective crew scheduling systems can lead to huge savings, as documented by several
authors.  Graves et al. (1993) state that their system has led to annual savings of more than $16 million dollars at United

Airlines.  Similarly, Rushmeier and Kontogiorgis (1997) discuss annual savings of more than $15 million at USAir.

While the airline crew scheduling problem has many similarities to the truckload trucking problem presented herein,
there are several key differences.  Most notable are differences in freight characteristics.  Airlines travel between well

defined air hubs.  Truckload trucking carriers can be asked to travel from anywhere to anywhere.  Airlines can establish
specific departure and arrival schedules that are known months in advance.  In truckload trucking, load information is
often not known until 8 hours or less prior to pick-up.  At best, the truckload trucking industry can use aggregate past
information for rough stochastic scheduling.  Consequently, it is impossible to know with certainty where trucks and

drivers will be at a future point.  Another difference is that it is possible to make use of small empty asset repositioning
moves in trucking that would be cost prohibitive in airline scheduling.  Finally, truckload trucking, unlike the airline

industry or LTL trucking, cannot partially fill an asset via customer or order aggregation.  Therefore, making use of yield
management strategies to maximize revenue while adhering to a regular schedule is very difficult in the industry.

The remainder of this report focuses on the development of simulation and optimization approaches for the dispatching
problem within a limited network design.  Several techniques for regularizing the driving job for network drivers are

presented and test results verify the efficacy of the various approaches.  J.B. Hunt Transport, Inc. (JBHT) has served as a
project sponsor for the tool development activities presented herein and has provided valuable data and information to

support the work, especially in the development of the simulation-based tools.  As North America’s largest publicly held
trucking company (J.B. Hunt 1999), their participation serves to validate the topics as viable and necessary tools for the

truckload trucking industry.   

 

2.0 Case Study Setting

            All solution approaches in this report will be presented in a case study setting to demonstrate the efficacy and
practical use of the tools in solving pertinent problems of continental scale.  The case study setting involves North

American freight movements for JBHT during a one-quarter year time period in 1998.  Although the freight density data
supplied by JBHT is historical, the data provide the best indicator available in predicting future aggregate freight density

in a particular lane, where a lane is defined as a city-to-city pairing.

The driver partitioning system takes advantage of a partial delivery network composed of 11 high freight density
terminal cities within the JBHT terminal city network.  Network drivers are partitioned to include terminal city drivers
with domiciles in these 11 network cities and with permissible freight origins and destinations only in these network

cities.  The remaining drivers handle random OTR freight outside the terminal city network.  The focus of this report is
on the network drivers only.

The terminal city network and freight lanes used in the study are indicated in figure 1.  Table 1 provides aggregate
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freight information in the form of expected freight volume and lane mileage for each lane.

 

Table 1. Lane Data for Case Study

 

From

City

To

 City

 

Volume

 

Miles

From

City

To

City

 

Volume

 

Miles
(A) Atlanta, GA (B) Louisville, KY 72 436 (F) Little Rock, AR (E) Kan. City, MO 62 470
(A) Atlanta, GA (E) Kan. City, MO 59 862 (F) Little Rock, AR (J) Dallas, TX 1082 341
(A) Atlanta, GA (F) Little Rock, AR 307 538 (F) Little Rock, AR (K) Houston, TX 417 481
(A) Atlanta, GA (I) Okla. City, OK 47 869 (G) Memphis, TN (K) Houston, TX 34 575
(A) Atlanta, GA (J) Dallas, TX 249 804 (H) Lowell, AR (D) Chicago, IL 148 610
(A) Atlanta, GA (K) Houston, TX 89 814 (H) Lowell, AR (E) Kan. City, MO 151 289
(B) Louisville, KY   (A) Atlanta, GA 109 436 (H) Lowell, AR (J) Dallas, TX 142 328
(B) Louisville, KY (C) Detroit, MI 218 355 (I) Okla. City, OK (A) Atlanta, GA 61 869
(B) Louisville, KY (D) Chicago, IL 212 324 (I) Okla. City, OK (J) Dallas, TX 40 233
(B) Louisville, KY (F) Little Rock, AR 23 513 (I) Okla. City, OK (K) Houston, TX 62 476
(C) Detroit, MI (B) Louisville, KY 220 355 (J) Dallas, TX (A) Atlanta, GA 341 804
(C) Detroit, MI (D) Chicago, IL 260 265 (J) Dallas, TX (D) Chicago, IL 74 899
(D) Chicago, IL (B) Louisville, KY 248 324 (J) Dallas, TX (F) Little Rock, AR 1127 341
(D) Chicago, IL (C) Detroit, MI 262 265 (J) Dallas, TX (H) Lowell, AR 278 328
(D) Chicago, IL (H) Lowell, AR 90 610 (J) Dallas, TX (I) Okla. City, OK 93 233
(D) Chicago, IL (J) Dallas, TX 94 899 (J) Dallas, TX (K) Houston, TX 396 258
(E) Kan. City, MO (A) Atlanta, GA 59 862 (K) Houston, TX (A) Atlanta, GA 132 814
(E) Kan. City, MO (F) Little Rock, AR 140 470 (K) Houston, TX (F) Little Rock, AR 107 481
(E) Kan. City, MO (H) Lowell, AR 73 289 (K) Houston, TX (G) Memphis, TN 34 575
(F) Little Rock, AR (A) Atlanta, GA 121 538 (K) Houston, TX (I) Okla. City, OK 23 476
(F) Little Rock, AR (B) Louisville, KY 22 513 (K) Houston, TX (J) Dallas, TX 702 258

 

Figure 1. Case Study Network
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3.0 Simulation tools

            Simulation methods are non-optimizing by nature, but often provide excellent results for problems of practical
size.  Although the optimization methods presented below are appropriate for use in relatively large problems, they are
somewhat restricted by the assumptions that make the problem tractable.  For example, some of the data requirements

for optimization include inputs that could arguably be reasonable model outputs.  Specifically, the optimization
formulation (for some applications) requires that we know the number of drivers and their domiciles.  The simulation
methods presented in this section are not restricted in this way.  They are designed to assist in the determination of the

number of required drivers and their domiciles for various dispatching methodologies.  Using the simulation model, the
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user is able to quickly iterate to a good (but not optimal) solution to the driver fleet size and domicile determination
problems.

3.1 Simulation model development

            The simulation model is written in the SIMNET II simulation language (Taha 1988) and has been developed in a
highly modular fashion that should be easily transportable into other languages.  Consider the flowchart in figure 2. 

Model input includes the load availability table, tour length rules, network configuration and mileage tables, and
dispatching rules.  Also, the model requires initial inputs regarding the maximum number of allowable tour starts

permitted during the planning horizon (one-quarter year in this report) from each domicile.  Tour start inputs are the
primary user input to the model.  The simulation uses the allowable tour start inputs to source entities into the model at

each proposed domicile.  The entities represent drivers

 

 

Figure 2.  Simulation Flowchart
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(with their trucks) starting new tours.  These entities are immediately sent to a modular section of code to dispatch the
driver entities to network destinations.

It is the dispatching code that makes the simulation truly modular.  The model architecture permits easy ‘what-if’
analysis.  All network configuration and mileage information supporting the dispatch function is table-driven, so that

network configuration issues can be addressed without modifying source code.  Similarly, load availability information
is table-driven.  Load availability information can be input for all available loads or for all ‘balanced’ available loads,
where 'balance' is defined as a network in which the total loads into each node is equal to the total loads out of each
node.  Beginning with a balanced network increases the probability of being able to create regular driving routes for

drivers that begin and end at the driver's domicile, without the need to return empty to the domicile at the end of a tour. 
A balanced network is found by using the following simple node balance formulation:

Maximize: L m (Z m)                                                                                      (1)

Subject to:

L m  A m                                                                                        ,m        (2)

L m  - Lm  = 0                                                                                    (3)

L m  =  Integer                                                                                     ,m             (4)

Where:

L m =              Number of loads to move from city to city m.

            Z m =            Miles (or revenue-costs) from city to city m.

A m =             Maximum allowable moves from city to city m (from the 'volume' column in Table 1.

The objective function in equation 1 seeks to make use of the maximum number of loaded miles.  The objective is

constrained by load availability for all freight lanes ( ,m  in equation 2), and by the need to balance freight flow
at each node (equation 3) at an aggregate level, i.e., the number of moves out of each node must equal the number of
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moves into each node.  Note in equation (3) that L m  represents loads from  to m and that Lm  represents loads from

m to .  Equation (3) is repeated for all values of .  Equation 4 ensures the integrality of L m values. 

The examination of alternative tour length and dispatching rules require minor changes to the source code, but in
well-defined modular locations with pre-defined information transfer protocols to ensure that alternative methods are

easily tested.  The dispatching systems used can range from very sophisticated to very simple or even random.

After the simulated completion of a dispatch, the simulation entity representing the driver and his or her truck is sent
back to the dispatcher for the next driving assignment.  Each dispatching assignment is made based on node specific
discrete probability density functions driven by historical freight availability.  Upon return to the individual driver
domicile, tour statistics are collected.  After completion of the final tour, network statistics are collected and the

simulation is stopped.  Using simulation iterations featuring varied tour start profiles, it is a simple matter to quickly
converge to near-optimal solutions to the driver domicile problem.

Simulation outputs include driver tour lengths by domicile and the overall weighted driver tour length for all drivers and
all domiciles.  It also calculates a final value for the number of drivers required (by domicile) and provides an overall
number of required drivers in the total network (for network drivers only).  Because some dispatching systems being

simulated (i.e. random dispatching) would not necessarily require node balance or full compliance with load requirement
profiles, additional system level metrics are collected to determine node balance and lane coverage in comparison with
load requirements.  Node balance is achieved when the observed departures from a node (terminal city) are equal to the

desired departures from the node.  Desired departures are an input to the simulation while observed values are simulation
output.  A positive node balance indicates that observed departures exceed actual requirements.  A negative node balance

indicates that actual requirements exceed observed departures.  Similarly, lane balance is achieved when the observed
lane volume is equal to the desired lane volume, where a lane is defined as a node-to-node (terminal city to terminal city)

driving route.

In summary, the simulation requires initial estimates of driver tour starts by domicile and outputs performance
information in terms of driver requirements and tour lengths in both summary and detailed formats for a given

dispatching method.  It also provides node balance and lane coverage information for various dispatching rules.  The
simulationist can iterate with the tool by varying tour start profiles to find near-optimal solutions for driver fleet size and

domicile determination problems.

3.2 Case studies and model validation

In this section, the authors demonstrate the efficacy of use of the simulation model using the case study information
supplied by JBHT and described in section 2.0 above.  Additional validation for both the simulation and optimization

approaches is offered in section 5.0 via comparison with solutions from state-of-the-art proprietary tools at JBHT.

The case study involves a network composed of 11 cities within the JBHT terminal-city network.  The city nodes are not
fully connected to all other city nodes via direct arcs (see figure 1) and no pre-conceived notions exist regarding the
number of drivers to domicile at each city in support of the inter-city moves.  First, the use of the model for domicile

determination will be demonstrated.  Subsequently, the use of the model to examine alternative dispatching
methodologies will be presented.

The use of the simulation model as a means of determining driver fleet size and driver domiciles is demonstrated using a
totally random dispatching method.  Upon arrival at a system node, drivers are routed to a next city location totally

randomly with the exceptions that only connected nodes can be used and that the probability of moving along a specific
arc is driven by the long-term freight density profiles provided in table 1.

Initially, the simulation is used to iterate to a driver tour start profile that balances system nodes and covers the required
inter-city moves for a one-quarter year planning period.  This tour start profile is presented in table 2 under the heading
of ‘driver scenario 1’.  Note that 1200 tour starts are permitted.  The tour starts are limited to 5 domiciles in scenario 1.  
This scenario recommends 81.01 drivers on duty at any given time to support inter-city deliveries.  The drivers have an

average tour length of 6.08 days with a maximum tour length of 12.35 days for drivers domiciled at Chicago.  In the
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simulation model, the tour length in days is obtained by dividing the tour length in miles by 500, under the assumption
that drivers can travel 500 miles/day.  Throughout this report, the number of recommended drivers refers to the average

number of drivers required to be on duty at any given time.  Additional drivers would be taking days off and are not
explicitly considered.  The on duty drivers can service all necessary freight movements with a slight positive balance in

lane coverage (0.64 loads per lane over the planning period) and with slight overall node imbalance (7.09 loads per
node).  

Table 2. Sample Simulation Output for Domicile Planning
 

   

City

Driver
Scenario 1

Driver
Scenario 2

Allowable Atlanta 230 220
Tour Louisville 0 10
Starts Detroit 0 10
By Chicago 150 140
City Kansas City 0 10
  Little Rock 290 280
  Memphis 0 10
  Lowell 0 10
  Okla. City 0 10
  Dallas 400 380
  Houston 130 120
 

Total Tour Starts

 

1200

 

1200
Avg. Tour

Length (Days)

 

6.08 days

 

8.35 days
Max Tour

Length

12.35 days

 at Chicago

227.38 days

at Memphis
Total Drivers

Required

 

81.01

 

111.34
Weighted

Node Balance

 

7.09

 

293.18
Weighted

Lane Balance

 

0.64

 

26.65

 

Driver scenario 2 in table 2 indicates a slightly different driver domicile plan with permissible tour starts in all 11
terminal cities involved in the study.  Note that the overall number of tour starts remains the same at 1200, and that the
dispersion of tour starts has changed only slightly.  This scenario demonstrates the efficacy of the simulation system in
determining the effects of seemingly small changes to domicile planning.  Again assuming random dispatching upon

arrival at a city, the drivers now take an average of 8.35 days to return to their point of origin (their domicile).  At worst
case (Memphis), drivers take a totally unacceptable mean of 227.38 days to return to their domicile for the case

network.  This is of course a function of the random freight movements in a partially connected network and would not

MBTC 2004

http://www.cveg.uark.edu/mbtc/research/finals/arc2004/comb2004.html (9 of 22) [5/24/2001 12:50:22 PM]



happen using non-random dispatching methods, but it does highlight the need to place drivers in domiciles appropriate to
freight availability and network connectivity.  The longer tour lengths lead to greater coverage.  1200 tour starts in driver

scenario 2 is equivalent to 111.34 drivers (25.1% more than in driver scenario 1).  The node freight coverage is also
higher, with drivers carrying 26.65 more loads per arc than required by freight density.  Similarly, node imbalance is

increased to 293.18 loads per node.

In both cases, the simulation is replicated 10 times and generally results in tight confidence intervals.  The results of
driver scenario 1 are therefore statistically significantly different from driver scenario 2 for all metrics.

            The model can also be used to evaluate the effects of various dispatching methods.  Table 3 summarizes the
results of using three different dispatching methodologies, ranging from totally random to very restrictive dispatching

rules.  The first dispatching method is the random dispatch described above.  The second makes use of random
dispatching also, but with forced returns based on certain conditions.  The conditions for these simulation runs are that a
maximum of four dispatches or 2,500 miles per tour is allowed.  After three dispatches or 2,000 miles, the driver must
return to his or her domicile even if the resulting dispatch leads to an empty move.  This type of forced return system

would be essential in practical use even though the forced returns leads to significant increases in the required number of
on duty drivers.  The third dispatching system is even more restrictive.  It permits drivers to travel only one city (one

dispatch) from their domicile with forced returns to the domicile on the very next dispatch.

 

 

Table 3.  Simulation Output for Various Dispatching
Methods

 

  City

Number

Random
Dispatch

Forced Returns One-City

Dispatch
Allowable Atlanta 230 531 412
Tour Louisville 0 0 281
Starts Detroit 0 0 240
By Chicago 150 347 347
City Kansas City 0 0 136
  Little Rock 290 670 852
  Memphis 0 0 16
  Lowell 0 0 221
  Okla. City 0 0 82
  Dallas 400 924 1155
  Houston 130 300 499
 

Total Tour Starts

 

1200

 

2772

 

4241
Avg. Tour

Length (Days)

 

6.08 days

 

2.89 days

 

1.69 days
Max Tour

Length

12.35 days

 at Chicago

3.97 days

at Atlanta

2.70 days

 at Atlanta
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Total Drivers

Required

 

81.01

 

88.96

 

79.83
Weighted

Node Balance

 

7.09

 

17.36

 

0.18
Weighted

Lane Balance

 

0.64

 

1.58

 

0.02

 

The domicile plans for the three dispatching methods are different as well.  The domiciles for the forced returns
dispatching method differ from random dispatching domiciles primarily in scale.  The forced returns create the need for
more tour starts at each domicile.  A total of 2,772 tour starts are required in the forced returns model compared to only
1,200 for the random dispatching model.  The one-city dispatching rules, on the other hand, lead to the need for driver
domiciles at each city in the network instead of only at five cities.  The one-city dispatching method requires a total of

4,241 tour starts.  

It should be noted that the only stochastic element in the simulation is the use of multiple replications of repeated
sampling from discrete probability density functions for dispatching purposes.  Therefore, the simulation model could

also be implemented using dispatching heuristics with almost any general purpose software.

 

4.0 Optimization methods

            As discussed in the literature review, a number of optimization approaches exist for a broad array of problem
formulations in truckload trucking and dispatching.  In this section, the authors formulate an integer programming (IP)
model to optimize material movements between the various supply chain locations in limited networks.  The IP model
presented in this section produces optimal results for the dispatching problem relative to the stated objective function,

but the computational complexity is increased and the operational efficacy is decreased relative to the simple rule based
dispatching systems used in the simulation models.  This section introduces the IP formulation used, demonstrates its

feasibility for solving realistically sized planning and operations problems using the JBHT case data, and briefly
discusses problem complexity and constraint management issues.  In addition to the notation presented earlier to

describe equations 1-4, the following notation is used to describe the IP model:

X j k m =          The number of times during the planning horizon that some driver domiciled at city j makes their kth

move from city  to city m in a loaded status.

Y j k m =          The number of times during the planning horizon that some driver domiciled at city j makes his or her

kth move from city to city m in an unloaded status.

            Tmax =              Maximum allowable tour length (or distance).

4.1 Model formulation

            The IP model supports driver tour development in a seemingly random dispatch environment within a limited
delivery network.  It is suitable for building tours for a dedicated trucking fleet within a supply chain for a large
company or companies, or for a truckload carrier operating within some limited network (i.e. between cities with

existing terminals or between large customers and intermodal ramps, etc.).  The formulation follows below:

Maximize: X j k m (Z m) - Y j k m (Z m)                                  (5)
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Subject to:

X j k m   A m                                                                     ,m        (6)

X j k m + Yj k m  = 0                                                            j,k=1            (7)

X j k m + Y j k m  - X j (k+1) m   

- Y j (k+1) m  =0                                                                 j,k<K,m j   (8)

X j k m + Yj k m   = 0                                               j,k=K           (9)

X j k m (Z m) + Y j k m (Z m)  Tmax               j                   (10)

X j k m  = Integer                                                                                j,k, ,m        (11)

Y j k m  = Integer                                                                                 j,k, ,m        (12)

The objective function in equation (5) maximizes the loaded miles minus empty miles, which is directly proportional to

profit (carriers are normally not paid for empty repositioning moves).  Actually Z m values can take on profit (revenue
minus cost) values for a slightly different objective function that would penalize empty moves more heavily.  In this

report, we assume that Z m holds mileage values for city-to-city pairs to facilitate direct comparison with other tools
that attempt to maximize the miles used in 'regular' tours.  This comparison appears subsequently in this report.   The

first constraint (equation 6) is an expression that restricts network flow to known or assumed lane capacity based on the
total number of shipments available during the time period under consideration.  In other words, the carrier cannot move

freight that does not exist but can use empty repositioning moves once freight on a particular lane is exhausted. 
Equation 7 ensures that all drivers begin their tours at their domicile by requiring that the sum of all empty or loaded

moves for the first dispatch is zero when the dispatch is not from the driver domicile.  Equation 8 ensures that all
transshipment nodes (excluding the domicile) in each driver tour maintain a balance of capacity.  Each driver that enters
a node that is not his or her domicile must leave that node on the next dispatch.  Drivers reaching their domicile prior to

the kth dispatch are not required to leave on the next dispatch but can stay at home.  The next constraint (equation 9)
ensures that each driver must return to his or her domicile prior to the end of the planning period.  Actually, the

constraint requires that the sum of moves during the last dispatch is zero at every node except the driver domicile. 
Equation 10 is an optional constraint that ensures that some maximum number of miles restricts driver tour lengths.  This

helps to ensure that drivers return to their domicile according to carrier goals.  An alternative means of achieving this
goal is by controlling the number of allowed dispatches per tour through specification of the upper bound, K, on the

driver subscript, k, representing the dispatch number.  Finally, equations 11 and 12 specify that X j k m and Y j k m
are positive integers.

4.2 Numerical example
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To illustrate the optimization model and to demonstrate its efficacy of use, the same national scale case study used to
illustrate the simulation methods will be used.  It should be noted at this point that the IP model (and the simulation

models) can be used in two distinctly different ways.  It can be used for aggregate planning or for detailed operational
dispatching.  In this section, the results of an aggregate planning case example are presented.  The differences between

the two applications will be more clearly presented in section 4.3.  For convenience in making comparisons between the
simulation and optimization methods, we have assumed that we will use the same five driver domiciles that resulted in

near-optimal performance in the random OTR simulation model (Atlanta, GA, Chicago, IL, Little Rock, AR, Dallas, TX,
and Houston, TX).

            The example problem has been formulated and solved using the LINDO solver (Schrage 1986) which required
less than 2 seconds on a 750 MHz Pentium PC.  The solution output is shown in table 4.  To aid in understanding the

table, consider the first row.  Tour A-1 indicates that this is the first tour in domicile A (Atlanta, GA).  The tour
description A-F-K-J-A indicates a tour that starts at domicile city A (Atlanta, GA), makes a first dispatch to city F (Little
Rock, AR), makes a second dispatch to city K (Houston, TX), makes a third dispatch to city J (Dallas, TX) and makes a

fourth and final dispatch back to the domicile in Atlanta, GA.  The optimal solution indicates that this tour should be
driven 302 times during each one-quarter year time period.  The tour is 2081 miles in length, should take about 4.16 days

(assuming that a driver

Table 4.  Tour Summary From Optimization Solution

 

 

Domicile

Tour
Number

Tour Description Tour
Quantity

Tour
Miles

Tour
Days

Required
Drivers

(A) Atlanta, GA A-1 A-F-K-J-A302 2081 4.16 13.97

  A-2 A-B-A 72 872 1.74 1.40

  A-3 A-K-J-I-A 61 2174 4.35 2.95
  A-4 A-E-F-A 59 1870 3.74 2.45
  A-5 A-J-F-E-A 57 2477 4.95 3.14
  A-6 A-I-K-J-A 39 2407 4.81 2.09
  A-7 A-J-F-A 29 1683 3.37 1.09
  A-8 A-K-J-F-A 28 1951 3.90 1.21
  A-9 A-J-F-B-A 14 2094 4.19 0.65
  A-10 A-F-E-F-A 5 2016 4.03 0.22
(D) Chicago, IL D-1 D-C-D 224 530 1.06 2.64

  D-2 D-B-C-B-D 210 1358 2.72 6.34
  D-3 D-H-E-H-D 73 1798 3.60 2.92
  D-4 D-B-A-J-D 23 2463 4.93 1.26
  D-5 D-H-J-H-D 17 1876 3.75 0.71
  D-6 D-B-F-J-D 15 2077 4.15 0.69
  D-7 D-C-B-D 2 944 1.89 0.04
(F) Little Rock, AR F-1 F-J-F 758 682 1.36 11.49
  F-2 F-J-H-J-F 125 1338 2.68 3.72
  F-3 F-J-K-J-F 108 1198 2.40 2.88
  F-4 F-J-H-E-F 76 1428 2.86 2.41
  F-5 F-K-A-J-F 8 2440 4.88 0.43
  F-6 F-B-C-B-F 8 1736 3.47 0.31
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(J) Dallas, TX J-1 J-K-A-J 116 1876 3.75 4.84
  J-2 J-K-F-K-J 107 1478 2.96 3.51
  J-3 J-H-D-J 58 1837 3.67 2.37
  J-4 J-D-C-D-J 36 2328 4.66 1.86
  J-5 J-K-G-K-J 34 1666 3.33 1.26
  J-6 J-I-J 32 466 0.93 0.33
  J-7 J-K-I-K-J 23 1468 2.94 0.75
  J-8 J-K-A-I-J 8 2174 4.35 0.39
  J-9 J-H-E-A-J 2 2283 4.57 0.10
(K) Houston, TX K-0 No tours specified 0 0 0 0

 

covers approximately 500 miles per day), and collectively would occupy the full-time activities of 13.97 drivers to
satisfy the freight demand on the network tour arcs.

All loads contributing to the objective of increasing loaded miles (or revenue) are included in the solution.  Note that
each driver starts his or her tour at the appropriate driver domicile, and that no load availability constraints are exceeded. 
Similarly, note that each driver returns to his or her domicile at the end of each tour.  In this example, it is assumed that a

maximum of K = 4 dispatches are permitted.  This example makes use of 100% of the allowed maximum freight in all
lanes and the naturally integer solution is equal to the linear programming (LP) maximum.  No additional random OTR

drivers are needed to handle excess network freight and there is no need for subcontract drivers.

 

4.3  Driver-based aggregate planning problem

In addition to the above aggregate planning problem, we developed a formulation for a driver-based aggregate problem.
The problem is inherently the same with the pure aggregate problem; the only difference is that the solutions of this

problem are able to identify the drivers that are needed from each domicile. This is done by defining an additional set I
of drivers domiciled at any domicile, indexed by i=1, …, nj where nj is the number of drivers at domicile j. While in this

driver-based aggregate model we still treat the decision variables Xijk m and Yijk m to be general integers, we will

later discuss a model for a more detailed driver-based operational problem where X ijk m  and Yijk m    will be binary
integers.

 

 

The mathematical model for this driver based aggregate planning is very similar with the aggregate based planning
model outlined in section 4.1. In the driver based aggregate planning model, we add an index i as set of drivers and one
additional constraint which enforces the tour to have the domicile be initiated at the first move and be ended at the last

move.

                                                 

Alternatively we can do this constraint by assigning each variable in the equality to be zero, i.e., Xijk m  = 0 and Yijk

m  = 0  ; ,   ¹  j and m ¹ . 
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4.3.1 A Numerical Example

We provide examples of the driver-based aggregate model by analyzing a small-scale problem (See Table 5 for the data
of the example). We have only two domiciles, Atlanta and Detroit in this example. The number of moves is restricted to

be three, the number of drivers at each domicile is five, and the number of origin and destination cities is three.

 

Table 5. Data for the small scale problem

From
City

To
City Volume Miles

Atlanta Louisville 72 436
Atlanta Detroit 297 265
Louisville Atlanta 109 436
Louisville Detroit 218 355
Detroit Louisville 220 355
Detroit Atlanta 260 265

 

 

Table 6. Solution of small scale problem

Tour Driver Domicile Tour Description Tour Quantity Tour Miles
1 1 Detroit Det-Atl-Det 1 530
2 1 Detroit Det-Lou-Det 62 710
3 2 Detroit Det-Lou-Det 3 710
4 3 Detroit Det-Atl-Det 2 530
5 3 Detroit Det-Atl-Lou-Det 34 1056
6 3 Detroit Det-Lou-Det 1 710
7 3 Detroit Det-Lou-Atl-Det 6 1056
8 4 Detroit Det-Lou-Det 63 710
9 5 Detroit Det-Lou-Det 2 710
10 5 Detroit Det-Lou-Atl-Det 41 1056
           
11 1 Atlanta Atl-Det-Atl 83 530
12 1 Atlanta Atl-Lou-Atl 1 872
13 2 Atlanta Atl-Det-ATl 31 530
14 2 Atlanta Atl-Det-Lou(Y)-Atl 1 1056
15 3 Atlanta Atl-Det-ATl 8 530
16 3 Atlanta Atl-Lou_Atl 17 872
17 3 Atlanta Atl-Lou-Det-Atl 18 1056
18 4 Atlanta Atl-Det-Lou-Atl 42 1056
19 5 Atlanta Atl-Det-Atl 82 530
20 5 Atlanta Atl-Lou-Atl 1 872

 

The solution presented in Table 6 has additional information about who is responsible for a particular tour. The solution
produces the objective function value, which is the loaded mileage of 365,895 and 20 tours (not necessarily different).

For example, there are two drivers (driver 3 and driver 5) responsible for tour Detroit-Louisville-Atlanta-Detroit (tours 7
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and 10). Driver 3 would drive the tour (tour 7) for 6 times, driver 5 would drive the tour (tour 10) for 41 times. In
addition to this tour, driver 5 is also responsible for another tour Detroit-Louisville-Detroit (tour 9) for two times, driver

3 also has three other tours (tours 4, 5, and 6). We should note that a quick analysis of the solution might improve the
assignment of tours to driver. For example, driver 3 domiciled at Detroit drives tour Detroit-Louisville-Detroit (tour 6)

just once. An improvement to the solution would be to assign tour 6 to driver 1 since s/he already drives the same tour 62
times. In this way, we can relieve driver 3 from driving tour 6. We can think of this as a consolidation of the tours so that
at least some regularization of “tour types” is realized. We can achieve this by introducing a lower bound on the number

of tours a driver can be assigned, which is left for future research.

 

To see how factors such as the number of drivers and the number of moves affect the solution and its associated total
mileage, we conducted additional experiments. Table 7 shows the results for different number of drivers (5,6,7,8, and 9

per domicile) and different number of moves allowed (2,3, and 4).

 

Table 7. Objective Function Value for Different Scenarios

Set I (# of drivers) per domicile Set K (# of moves)

Objective
Function

(in loaded miles)
5 2 355364
6 2 355364
7 2 355364
5 3 369586
6 3 369586
7 3 369586
8 3 369586
9 3 369586
5 4 369586
6 4 369586

 

The results show that using the same number of moves (|K| =3 or |K| = 4) the objective function value would be the same
regardless of the number of drivers available. However, if we reduce the number of moves allowed, then the objective

function value decreases, which shows the need for determining the number of moves carefully.

In addition to the above model, we also modify the model slightly by changing the objective function. This objective

function is to minimize the total number of drivers needed to cover the demanded loads; , where Oij is a
binary decision variable which is 1 if driver i from domicile j is actively utilized (used in the solution), zero otherwise.
We need to add a set of constraints to the existing constraints above to satisfy the logical relationship between Oij and

Xijk m. This constraint set is as follows:
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The new constraints make sure that if Oij is zero then Xij k m  is also zero and if Oij is one then some X ij k m  can be
greater than zero. In other words, if driver i from domicile j is not used (Oij is zero) then the number of tours by driver i
from any origin cities to any destination cities in any move has to be zero. We left the further exploration of this more

detailed and complex formulation as a future research. In the next section, we discuss another driver-based model, which
is called operational dispatching model where driver-load assignment decisions are made for shorter term planning

horizon.

 

4.4 Constraint management, model use, and problem relaxations

            The IP models presented above can be used for detailed operational dispatching as well as aggregate planning,
and driver based aggregate planning as discussed previously. Aggregate planning provides the tour overview information
provided in table 4.  This is very useful information for hiring and asset planning.  When used for aggregate planning or

driver based aggregate planning, equations 11 and 12 indicate that Xjk m and Yjk m are general integers.  Normally,
this would lead to solution difficulty.  However, when used for aggregate planning, the model is naturally integer and

solution times are trivial, even for relatively large problems.

            Detailed operational planning creates a more challenging environment for the IP model.  When used for detailed
dispatching, the model provides information about which particular driver will need to pick up which particular load

during each dispatch cycle.  The variables

X j k m  and Y j k m  now need an additional subscript for each driver i:

X i j k m =        1 if driver i from domicile j makes his or her kth move from city  to city m in a loaded status, 0
otherwise.

Y i j k m =        1 if driver i from domicile j makes his or her kth move from city  to city m in am unloaded status, 0
otherwise.

Similarly, the formulation must recognize the additional subscript needs.  X i j k m  and

Y i j k m  values in equations (5) and (6) must be summed over all i and equations (7-10) must be repeated for all i. 

Equations 11 and 12 now specify that Xi j k m  and Yi j k m values are binary (0,1) integers, because a particular driver
can pick up only one load at a time.

The optimization model, whether used for aggregate planning or for operational dispatching, provides a means of
developing optimal tours for problems of national scale.  Even so, as pointed out in Crainic and LaPorte (1997), vehicle

routing problems can quickly become cumbersome in terms of the number of integer variables required.  The current
formulation is much more cumbersome computationally when used as an operational dispatching tool.  Consider the

computational complexity information for the operational problem formulation presented in table 8.  The table reveals
that when four dispatches per tour are permitted (a reasonable number of dispatches given the goal to reduce tour

length), this problem remains quite reasonable in terms of the number of constraints but that the number of variables
quickly grows as a function of problem size.  The optional mileage constraint (equation 10) that caps Tmax (maximum

tour length in miles) adds very little computational burden in terms of added constraints.

            In general, recognizing that each driver has only one domicile, we let I’ = the unique driver/domicile

combinations (I’ = I).  Similarly, we let ’ = the unique combinations of  and m where m (m -m).  In the worst

case, the model results in {2(I’)(k)( ’)} variables but only {I’[3+(k-1)(m-1)]+ ’} constraints.  Only

MBTC 2004

http://www.cveg.uark.edu/mbtc/research/finals/arc2004/comb2004.html (17 of 22) [5/24/2001 12:50:23 PM]



{I’[2+(k-1)(m-1)]+ ’} constraints are required when the optional constraints ( equation 10) indicating Tmax are
omitted.

 

 

Table 8. Worst Case Computational Complexity When K=4

 

 

 

Drivers

 

Nodes

 

Variables

Constraints
With Tmax

Constraints
Without Tmax

3 3 144 33 30
3 5 480 65 62
3 10 2160 180 177
3 20 9120 560 557
         
5 3 240 51 46
5 5 800 95 90
5 10 3600 240 235
5 20 15200 680 675
         
10 3 480 96 86
10 5 1600 170 160
10 10 7200 390 380
10 20 30400 980 970
         

 

            Although data input and output needs are considerable with large dispatching problems, this difficulty is easily
defeated by the development of simple data entry tools.  Therefore, the difficulty associated with large problems lies not
in formulation, but in solution.  To solve larger dispatching problems in an acceptable amount of time, it is necessary to

find ways to decrease the number of integer variables.  Problem structure can be exploited in three ways to find more
tractable solutions. 

The first relaxation involves network structure.  The worst case analysis of computational complexity presented in table
8 assumes a delivery network with each node directly connected to each other node via a direct arc.  In networks with

less direct connectivity, the problem is greatly simplified.  Only the most necessary or most likely arcs should be
included in the network.

The second relaxation exploits the fact that in large networks, multiple drivers would likely be domiciled in the same
location and many would likely drive the same tours.  Recall, for example, the output presented in table 4 for the case
problem.  Tour A-1 involves approximately 14 drivers making 302 tours during each 90-day period.  The problem can

therefore be greatly simplified by combining model entities representing individual drivers into model entities

representing groups of drivers.  The model formulation can be adjusted to account for this by multiplying X i j k  m and

Y i j k  m values in the objective function (equation 5) and in some constraints (equation 6) by the driver multiples.  In
this case, the solution is slightly less flexible, but much more tractable.  By exploiting the network structure and by

MBTC 2004

http://www.cveg.uark.edu/mbtc/research/finals/arc2004/comb2004.html (18 of 22) [5/24/2001 12:50:23 PM]



relaxing the driver tour requirements via consolidation, the formulation was used with binary integers to solve a detailed
dispatching plan for the JBHT case problem.  The simulation output from the random dispatching model (with forced

returns) was used to provide initial input regarding the quantity of drivers per domicile.  It is assumed that the 89 drivers
are partitioned into 5 sets.  The 23 Atlanta drivers drive the same tours, as do the 10 Chicago drivers, 20 Little Rock

drivers, 26 Dallas drivers, and 10 Houston drivers.  Even this dispatching problem is difficult to solve.  In this solution,
500,000 pivots were permitted following the LP solution.  The problem did not iterate to optimality, but an integer

solution that made use of 77% of the available loads was found.  Given the strict driver partition, this solution is likely
very near optimal.

The third opportunity for problem relaxation is to simply complete the dispatching problem on a domicile-by-domicile
basis using individual drivers or smaller partitions.  Driver needs by domicile can be determined via aggregate planning

through simulation or optimization methods and the IP can be regularly used at the domicile to complete specific
dispatching plans in support of daily operations.

 

5.0 Comparison with state-of-the-art solution tools

            To validate the simulation and optimization tools presented in this report; a further comparison is made with
proprietary state-of-the-art route regularization tools owned by JBHT.  Similar to the tools presented in this report, the

JBHT regularization system, called HOT (hub optimization technique) seeks to find regular routes from seemingly
random freight.  The JBHT system seeks to find “closed-loop” tours designated CL2 or CL3, to indicate 2-legged or

3-legged closed-loop tours, respectively.  To facilitate comparison, the heuristic-based JBHT system has been used to
evaluate the same case data used to illustrate the simulation and optimization methods.  Two runs of the JBHT system
have been completed.  The first looks for CL2 tours and then finds CL3 tours from the remaining freight.  The second

run looks for CL3 tours first, and then finds CL2 tours from the remaining freight.  A comparison of all three simulation
dispatching methods, the IP solution, and the two JBHT HOT solutions appears in table 9.

 

 

 

 

 

 

 

 

 

 

Table 9.  Solution Comparison Table
 

  Tour Length
(days)

Percent of
Freight

Used

Number of
Regular Tours

Number of
Drivers
Required

Adjusted

Number of
Drivers
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Simulation With
Random

Dispatch

 

6.08

 

100.90

 

0

 

81.01

 

80.29

Simulation With
Forced

Returns

 

2.89

 

102.3

 

0

 

88.96

 

86.96

Simulation With
One-City

Dispatch

 

1.69

 

100.02

 

0

 

79.83

 

79.81

Integer
Programming
Solution

 

2.65

 

100.00

 

32

 

80.39

 

80.39

 

JBHT-HOT

(CL2 then CL3)

 

2.25

 

95.14

15 CL2

12 CL3

27

 

76.49

 

80.39

 

JBHT-HOT

(CL3 then CL2)

 

1.73

 

86.72

21 CL3

4 CL2

25

 

69.72

 

80.39

 

 

            The first column in table 9 indicates the average tour length for all network drivers.  The second column indicates
the percent of available freight used.  Note that this can be greater than 100% for the simulation methods, indicating that

the somewhat random dispatching methods used would actually require more freight in some lanes than is actually
available.  The number of regular tours generated is found in the third column.  The last two columns indicate the

number of required drivers and the “adjusted” number of required drivers.  The required drivers column simply states the
number of drivers calculated by the various methods.  The adjusted number of drivers estimates the number of drivers

that would be required if exactly 100% of the freight were used in the solutions.  For example, the simulation with forced
returns suggests 88.96 drivers but actually moves 2.3% more freight than required.  The 'adjusted' drivers required to

carry exactly 100% of the freight is 86.96 drivers (88.96/1.023).  Similarly, the JBHT (HOT) tool (with CL2 then CL3)
requires 76.49 drivers to move 95.14% of the freight.  It would take 80.39 (76.49/.9514) drivers to move all of the

freight.  In this case, the 80.39 adjusted drivers is equal to the number of adjusted drivers suggested by the IP model
because the IP model recommends a solution that utilizes 100% of the freight.  The common assumption of 500

miles/driver/day assures the equivalency of all solutions making use of 100% of the freight.

            Let us complete the comparison by using the IP solution as a baseline.  The IP system uses all freight, produces
32 regular tours at four domicile cities with a 2.65-day mean tour length, and requires 80.39 drivers.  This is an

outstanding solution.  2.65 days is a much better tour length than the truckload trucking industry standard tour length of
14 or more days.  The JBHT solution finds better tour lengths, but does so by restricting tours to 2 or 3 dispatches

instead of 4 in the IP model.  The JBHT HOT tool also does not result in a solution that includes as much freight in
regular tours as the IP solution (86.77 and 95.14% of the freight compared to 100%).  The adjusted number of drivers is
identical to the IP solution.  The simulation solutions do not find regular tours, but still produce excellent tour durations,
even in a random dispatching environment.  The fully random solution indicates that 80.29 drivers could handle 100% of

the volume and the one-city random dispatching system indicates that 79.81 drivers are needed to handle all of the
volume.  The fact that these methods do not suggest exactly 80.39 drivers is not disturbing because the simulations were
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replicated 10 times and some random error exists.  The confidence interval for the adjusted number of drivers includes
80.39.  The only difference in adjusted drivers comes with the forced dispatch model.  The additional drivers are needed

to support empty returns from distant cities that do not have direct network arc connections with the domicile.

 

6.0 Concluding remarks

            The goals for the tools presented in this report are to provide state-of-the-art capability in designing and operating
delivery networks for truckload trucking moves in support of modern manufacturing systems.  Specifically, the

optimization and simulation tools discussed herein provide new means of achieving driver tour regularization that
represent a reasonable compromise between traditional random OTR dispatching and strict regularization.  The literature

has addressed many related issues but has not directly addressed this problem.  Related work considers many ways to
deal with single dispatches and addresses many ways to deal with single domicile or distributor locations for both

truckload and LTL situations.  No literature was found in support of multiple drivers, multiple domiciles, and multiple
dispatches that made use of random pattern types in partial freight networks.

            The optimization methods provide a means of determining optimal freight movements for problems of national
scale.  The IP model presented herein is especially useful for aggregate planning due to the manageable computational

complexity of IP models at that level, but with relaxation is also very useful as an operational dispatching tool.
Additional computational complexity of operational IP models at the operational level is somewhat handled by

introducing an intermediate level solution, defining a driver-based planning model. The simulation methods also provide
an excellent planning tool for use in determining driver needs, including both driver quantity and domicile decisions, for

small or large problems.  The simulation solutions are not as strong as those found by the IP model, but the
computational complexity of the simulation systems is much less prohibitive and extremely large problems can be
formulated and solved quickly.  Also, the simulation platform provides a much simpler tool for use in operational

dispatching.  Current research focuses on developing more sophisticated dispatching methods for use in the simulation
system so that results can more closely approximate those developed by the IP solution.

Both simulation and optimization methods support the development of unique driver dispatching methodologies that
restrict driver movements to limited networks without restricting the dispatch function within that network and both
compare very favorably to state-of-the-art proprietary tools.  Both the optimization and simulation alternatives are
supported by industrial case studies of continental scale, thus assuring that the ideas presented within the report are

practically motivated and industrially relevant.  JBHT is now making use of these tools to design dedicated fleet
operations in support of their corporate goal to regularize driving jobs.  Because JBHT is the largest publicly held

truckload trucking company in the United States, the tools and the strategies they support have the potential to
fundamentally change the dispatching function in truckload trucking for the better, thus advancing the state-of-the-art in

dispatching methods in multi-facility supply chains and contributing significantly to supply chain management
technologies in agile or distributed manufacturing settings.
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