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Developing Alternative WIM System Evaluation/Calibration Methods

by:
Tom Papagiannakis, Washington State University

ABSTRACT

This paper exploresthe feasibility of two methods for eval uating/calibrating weigh-in-
motion (WIM) systems. The first method uses a combination of test trucks and vehicle
simulation models. The computer model VESY M was used for the simulations. The
models for the test trucks were calibrated using accel eration measurements on-board the
vehicles. Although, this approach does not allow calculation of the discrete value of the
dynamic axle load over WIM sensors, it can be used effectively in establishing the extent
of variation at a particular WIM site. Thisinformation leads to an effective WIM system
calibration method. The second method for calibrating WIM systemsis by comparing
static and dynamic axle loads of vehiclesthrough automatic vehicleidentification (AVI).
The AVI facilities developed for the Heavy Vehicle Electronic License Plate (HELP)
project on the I-5 corridor was used for this purpose. The static axle |oad of AVI-
equipped vehicles was obtained from the Oregon DOT for two sites, namely Woodburn
south-bound and Ashland north-bound. The WIM load data was obtained from Lockheed
IMSfor all the Al&equipped WIM systems on the I-S corridor. The data was analyzed to
match AV numbers, dates and times of weighing. Time limitsfor traveling between sites

were established to ensure that trucks had no time to stop and load/unload cargo between
dtes. Errors were calculated as the percent difference between WIM and static loads for
individual axles/axle groups. Calibration factorswere derived to minimize theresidua
sum of squares of the errors.

ACKNOWLEDGMENT

Part of the work presented in this paper was carried out with funding under NCHRP
study 3-39(2).

378



Papagi annaki s

PROBLEM STATEMENT

Traditionally, weigh-in-motion (WM) system accuracy has been evaluated with
reference to static axle loads or static gross vehicle weights (GVW), (Ref. 1). Theissueis
complicated, however, by the fact that in-motion axle loads can be substantially different
than static axle loads at any particular road location due to pavement roughness-induced
vehicle dynamics. This dynamic load variation has been the subject of anumber of
theoretical and experimental studies, as summarized in (Ref. 2). Asaresult, two WIM
error components are perceived:

. thedifference between the dynamic load applied to aWIM sensor the instant an axleis
directly over it and the static load of this axle and,

. theinherent error of the WIM system in measuring the dynamic load applied.

To-date, there has been no widely accepted method for effectively separating these two

sources of error and incorporating the analysis into a comprehensive procedure for

eva uating/calibratingWIM systems. This paper addresses this need and proposes

procedures that can be used by field personnel for effectively calibratingWIM systems.

The study examinesthe feasibility of two WIM evaluation/calibration methods, one using

acombination of test trucks and vehicle simulation models and another involving traffic

stream vehi cles equipped with automatic vehicleidentification (AV1).

TEST TRUCK -VEHICLE SIMULATION APPROACH

Approach
The basic property utilized for separating these two sources of error in WIM

measurements is the spatial repeatability of the dynamic axle loads resulting from
replicate vehicle passes (i.e., same axle running at the same speed generates dynamic
load waveforms repetitive in space). This was observed by a number of experimental

studies (e.g., Figure 1). The other source of error was quantified through a modified
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version of the vehicle simulation model VESYM (Ref. 4), named VESYMF. The axle
dynamic behavior of the test trucks was simulated through VESY MF for the pavement

roughness conditions at particular WIM sites.
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Figure 1. Repetitiveness of Dynamic Axle Loads from Replicate Runs Measured with the
NRCC Instrumented Vehicle, (After Ref. 3).
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Field Testing
Thefield experimentation involved three types of WIM sensors, namely a pressure-

cell, apiezoelectric and abending plate WIM system. Three test trucks were used, namely
aZ-axle single unit, a 3-axle tandem-drive axle single unit and a 5-axle semi-trailer truck.
They were al equipped with leaf-spring suspensions in al their axles for modeling
simplicity. Ineach WIM site, ten replicate runs were conducted with each of the three test
vehicles at each of four speeds (i.e., 50, 70, 90 and 110 km/h). Sincetherewere
unavoidable speed variations from these nominal values, the speed output of the WIM
system was recorded and used as the reference for analysis. The WIM measurements were
plotted for each truck axle as afunction of speed. An example of the results obtained from

the pressure-cell WIM and the 3-axle truck is shown in Figure 2.

At agiven speed, the WTM measurements of a particular axle exhibit significant
clustering. Thisisadirect result of the spatial repeatability of the dynamic loads applied
by replicate axle passes, as pointed out earlier. Also, for the particular system, there
seems to be no consistent relationship between vehicle speed and WIM error. Thisis due
to the random location of the part of the dynamic load waveform, which is over the WIM
sensor at various Vehicle speeds. The precision of the three WIM systemstested is
indicated by the coefficient of variation of the measurements from replicate axle passes,
(Table 1). These mean precision values offer conservative estimates of the error in
measuring the dynamic axleload being applied to aWIM sensor by an in-motion axle.
Thisis because there would be some inherent variation in the magnitude of the dynamic
loads being applied by replicate axle passes, due to unavoidable weaving of the vehicle
within the lane, changes in air resistance-generated forces and so on. Hence, this

approach isolates one of the sources of error in WIM measurements.
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Figure 2: Examples of Pressure-Cell WIM Measurements Obtained with a 3-axle Truck
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Table 1.
Summary of WIM System Precision Performance
WIMTY PE MEAN PRECISION | PRECISION RANGE
Pressure-Cell System 3.81% 1.94 % to 5.61%
Piezoel ectricSystem 5.67% 3.08% to 9.83%
Bending-Plate System 3.87% 2.15% to 5.21%

Dynamic Simulations of the Test Trucks

The pavement roughness profile, which was input to the VESY MF vehicle
simulations, was measured with a South Dakota Profilometer at a sampling interval of
0.33m. A substantia effort was put into calibrating the VESY M simulation models
for the three trucks used in testing the WIM systems. This was carried out by
comparing the vertical accelerations predicted by the models to those measured at
selected body and axle locations using accelerometers placed on-board the test trucks.
This approach was selected, instead of a conventional shaker table-based calibration of
the simulation models (e.g., Ref. 5), to circumvent the problems associated with
handling the pavement elevation profile input. The comparisons were made in terms of
the power spectral densities (PSD), (Figure 3). Model calibration was effected by
changing model mechanical constants one at atime, in attempting to improve thefit of
the simulated accelerations to the measured accelerations. ‘ This task was facilitated by
an extensive sensitivity study of the vehicle simulations with respect to their mechanical
properties, which was undertaken prior to the-actual caibration of the simulation

models.
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WIM Error Analvsis

The calibrated VESYM simulation modelsfor the three test trucks were used in
anayzing the errors from the on-site WIM testing. Early in the analysis, it was redized
that the vehicle simulation models were not suited for predicting the discrete dynamic axle
load values exerted by individual test truck axles on the WIM sensors.  This was mainly
the result of the unknown initial conditions of the simulations (i.e., it was assumed that
static loading conditions existed when the pavement roughness profile input begun).
Instead, the simulation models were used to predict the frequency distribution of the
dynamics axle loads at agiven WIM site. This source of variation, combined with the
variation due to the inherent error of the WIM system in measuring the dynamic axle
loads applied, produce the combined frequency distribution of the expected WIM error
measurements at a WIM site (Figure 4). This combined error frequency distribution
reflects:

. the precision characteristics of the WIM system,
. the pavement roughness at the WIM site and,

« the dynamic characteristics and speed of the test truck used.

This combined frequency distribution is used to:

. evaluate the accuracy of WIM system in measuring static axle loads by defining the
anticipated range in WIM measurements, as well astheir probability pi and,

. caibrate aWIM system by providing arational method for averaging the WIM
measurements of an axle obtained at different speeds and therefore containing
different levels of dynamic load variation. The expression used for calculating the

weighed average IMgfrom the WIM measurements  IM; obtained at speed i is:

ZmMi y2

INM = speed =i (1)

‘ 2P

speed =i
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Figure 4: Example of the Expected Combined Frequency Distribution of WIM Errors;
Pressure-cell WIM System on 1-84 near Umatilla, Or; Steering Axle Load of 3-Axle
Truck at 70 km/h.

Recommended Procedur es

The evaluation of WIM systems, involving a combination of test trucks and vehicle
simulation models, requires the following steps:

1. Perform pavement roughness profile measurements with any profilometric roughness
measuring device, which can output the pavement elevation in both wheel paths at a
fixed distanceinterval (e.g., Dipstick, Surface Dynamics Profilometer, South Dakota
Profilometer or equivalent). It isnecessary to cover at least 200 meters upstream and
50 meters downstream fromaWIM sensor. Calculate the average of the elevationin
the two wheel paths to be used as input to the vehicle simulations.

2. Use anumber of test trucksinvolving atotal of at least 5 axles. They must belong to
one of the FHWA classes 5, 6 or 9 (i.e., 2-axle single unit’truck, 3-axle single unit
truck or 5-axle semi-trailer truck). With each truck, perform at least 5 replicate runs at
each of the following nominal speeds:

speed limit at the site
« speedlimit-20 km/h,
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« Speed limit - 10 km/h and,
. speed limit + 10 km/h,
while recording the_actual speed output of the WIM system for each run.

3. Group the WIM measurements obtained by axle and actual speed and retain for

analysis only the exact speeds for which at least 3 WIM measurements were obtained.

4. For each axle and speed, calculate the coefficient of variation of the WIM

measurements (i.e., mean over standard deviation expressed in percent). This vaue
reflects the precision of the WIM system. The coefficient of variation calculated is
usedin Step 7.

5. Prepare the VESYMF input file for each test truck (i.e., file VIN5, VING or VINS,
respectively). Thistask isfacilitated by the computer program PAREST, which
accepts as input the static axle loads and the axle spacing of each test truck and outputs
the mechanical constantsthat must be modified in the input files VIN5, VTNG and
VIN9 prior to running VESY MF. Ref. 6 contains a complete manual on the use of the
program VESY MF.

6. Runthe VESYMF simulation for each truck and each speed analyzed and save the

output files containing the dynamic axle loads of the test vehicles.

7. For each axle and speed, run the computer program HIST developed for calculating
the frequency distribution due to axle dynamics (i.e., data from Step 6) and combing
it with the variation due to the inherent WIM error (i.e., calculated in Step 4). The
program HIST aso calculates the probability p; of particular WIM measurements.

8. If the probability of a measurement is lower than a preset value, for example 0.05 or
0.01, the measurement is unlikely with a confidence of 95% or 99%, respectively. All
the axles of the test trucks must pass this test for the WIM system to successfully pass

the evaluation process at the desired confidence level.

WIM system calibration involves two additional steps:
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1. For each test truck and axle, calculate the weighed average, IM ,, of the WIM

measurements obtained at various speeds using Equation 1.

2. Fit a straight line regression equation with zero intercept between the static axle load
data and the weighed average WIM load data being considered as the dependent and
independent variables, respectively. The slope of this relationship is the calibration
factor (e.g., Figure 5). Finally, multiply the sensor constant of the particular WIM

system by this factor to complete the calibration.

Site 4: Weighed Average WIM Load vs. Static Load (kN)
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Figure 5: Calibration Curve for Pressure-Cell WIM System
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AVI-BASED CALIBRATION APPROACH

Scope

The Heavy Vehicle Electronic License Plate (HELP) program combines WIM
technology with automatic identification (AVI) of the vehicles being weighed. It is
installed on the I-5 corridor and two adjoining corridors, one branching north into British
Cofumbia and another east into Arizona, New Mexico and Texas. The identification of
the systems on the I-5 corridor is shown in Figure 6. Approximately, 5,000 AVI
transponder-equipped trucks are currently operating on this system. The scope of this
part of the study is to use the AVI identification numbers as a means of comparing WIM
measurements to static weight of particular vehicles by taking into account the date and
the time interval between weighing locations.

& Bow Hill SB (235)

Washington

& Kelso NB/SB(44
1205 SB (103) & 12
1® Woodburn

d qon D5 NB (104)

6 (102)

Figure 6: The WIM and Static Locations on the I-5 Corridor
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M ethodolow-Data

The database containing the WIM data of the HEL P program is being maintained by
Lockheed IMS. The data used for this study covers a period of six months (i.e., 1/1/94 to
531/94) The static axle load data was extracted from a database maintained by Oregon
DOT for two locations on the I-5 corridor, namely Woodburn southbound (SB) and
Ashland northbound (NB). These are multi-platform load enforcement scales operating
downstream from WIM sorting scales, hence most of the trucks weighed statically at these
locations are likely to be heavily loaded. WIM and static data was input into two separate
relational databases. Each database, contained in addition to AVI number and load, data
on the date, time, vehicle class and axle spacing. The largest percentage of the AVI-
equipped vehicles belonged to FHWA class 9 (i.e., 5-axle semi-trailers).

Analvsis

The accuracy of the WIM systems on the I-5 corridor was analyzed using the two
databases described earlier. Direct comparisons between WIM and static axle loads were
effected by matching the AVI numbers of transponder-equipped vehicles at static and
WIM weighing locations and then by cross-checking the date and the driving time between
them. Preliminary observation of the data indicated that the WIM load database was not
complete. For some locations there was no WIM data whatsoever, as for example, Bow
Hill, WA, northbound and southbound and Woodburn, OR, northbound (i.e., HELP sites
235 and 108). There were also WIM locations where WIM data was not available for
particular vehicles, despite the fact that data for these vehicles was available for the same
date at adjacent WIM sites. The data was screened in two stages, first to compare dates
and second to compare the driving time between locations. For the latter, the relative
travel time between weighing locations was sufficient for identifying vehicles that may

have stopped long enough for loading/unl oading.
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Theanalysisin thefirst stage was carried out through a FORTRAN algorithm, which
identified particular vehicles that were weighed with both a static and aWIM scalein the
same day. Theagorithm did not screen out data obtained in consecutive days, to alow
for vehicles that drove overnight between weighing locations. Furthermore, it did not
screen out data obtained in the transition between months. This was accomplished by
identifying all matching AV I numbers obtained in aday of the month involving the number
1 (e.g., static weighing on 1/3 1/94 and WIM weighing on 2/1/94, or static weighing on
2/28/94 and WIM weighing on 3/1/94 and so on).

The second stage of the analysis was carried out through another FORTRAN
agorithm, which screened the reduced database to further eliminate data corresponding to
driving times between weighing locations exceeding prescribed maximum values. For
each pair of weighing locations, the maximum acceptable driving time was established on
the basis of the minimum recorded time plus an allowance for stopping of half-an-hour for
every four hours of driving. The minimum travel time was used instead of the actual time
difference between weighing locations to eliminate possible discrepanciesin the clock
settings of the various systems. Thetime allowance was cal culated from the actual

distance between |ocations assuming adriving speed of 60 mph.

Theresults of the two stages of data screening are shown in Tables 2 and 3 for the
northbound and the southbound vehicles, respectively. It should be noted that the number
of successful comparisons with respect to date (i.e., after the first screening) may be
higher than the sample size of the WIM |oad data in a particular location, because of
multiple passes of agiven vehicle over thissite. For example, a particular truck was
weighed statically twice on the 5th of February and subseguently, weighed by aWIM
system twice on the 4th of February, three-times on the 5th of February and twice the 6th

391
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of February. The total number of possible successful static-WIM load comparisons after
the first screening is 14 (i.e., 2x[2+3+2]).
Table 2:
Sample Size of Databases and of Successful Static and WIM Load Comparisons per Site;
Northbound Vehicles.
Site Location Site Sample Sample | Min. Travel First Second
Number Size Size Time (min) Screening Screening
Static WIM (Comparing | (Comparing
Data Data Dates) Times)
Bow Hill, WA 235 - 0 - 0 0
Kelso, WA 44 - 234 380 72 3
1-205, OR 104 - 930 335 159 7
Ashland, OR 107 - 640 4 953 9
Ashland , OR 108 4217 0 - - -
Redding, CA 3 - 345 132 406 63
Lodi, CA 4 - 1292 324 1199 82
Santa Nella, CA 5 - 1113 413 1187 49
Santa Nella, CA 6 - 626 417 741 16
Newhall, CA 8 - 321 733 316 29
Totals 5501 . 5033 258
Table 3:
Sample Size of Databases and of Successful Static and WIM Load Comparisons per Site;
Southbound Vehicles.
Location Site Sample Sample | Min. Travel First Second
Number Size Size Time (min) Screening Screening
Static WIM (Comparing | (Comparing
Data Data Dates) Times)
Bow Hill, WA 235 - 0 - 0 0
Kelso, WA 44 - 855 75 207 46
1-205, OR 103 - 1040 4 223 21
Woodburn, OR 101 2083 58 - 31 4
Redding, CA 3 - 1227 - 279 156 3
Lodi, CA 4 - 339 686 46 2
Santa Nella, CA 6 - 449 520 37 1
Bakersfield, CA 7 - 1009 260 70 1
Totals ' 4977 770 78

It is also evident that the second screening with respect to the driving time between

weighing locations was fairly restrictive and produced a small number of successful static

392



‘ Papagi annaki s

and WIM load comparisons. Clearly, the further away the WIM location was from one of
the two static weighing scales (i.e., Woodburn SB and Ashland NB), the smaller was the

number of successful static and WIM |oad comparisons.

The error analysis focused on 5-axle semi-trailers only and considered errors of
steering axles, first tandem axle group (i.e., drive axles) and second tandem axle group
(i.e, trailer axles). WIM errors were defined as the percent of the arithmetic difference
between WIM and static axle load measurements with respect to the static axle load.
Frequency distributions of errors were plotted only for WIM systems, where eight or more
successful comparisons were made. An example of such frequency distribution is shown
inFigure 7 for HELP Site 44. A summary of the median of the WIM errors for each site
isshown in Tables 4 and 5 for northbound and southbound WIM locations, respectively.

It can be seen that with afew exceptions the median errors calculated were al negative

and had substantial magnitudes.

Calibration factors were devel oped through regression, considering the static load as
the dependent and the WIM |oad as the independent variable. Simple linear regression
expressions were fitted with no intercept, so the slope of the lineis the calibration factor.
One expression wasfitted per axle (i.e., steering, first tandem group and second tandem
group) and for each WIM location. In‘addition, the data from all the axles/axle groups
were grouped together and a single regression equation was fitted for each site.

Theresults are shown in Table 6.
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Figure 7: Percent WIM Errors for WIM Site 44 Southbound.
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Table 4:

Median Arithmetic Errors for Northbound 5-Axle Semi-trailer Trucks

WIM Site Name Site Number of
Number Successful Median of Arithmetic Error %
Comparisons
Axle 1 Group 1 Group 2
Kelso, WA 44 3 -10.64 -2.98 -6.44
1-205 OR 104 5 -17.89 -21.86 -20.24
Ashland OR 107 8 -2.50 3.69 10.10
Redding, CA 3 62 -7.60 -8.98 -10.62
Lodi, CA 4 82 0.00 -1.76 -0.54
Santa Nella, CA 5 48 -1.73 1.16 -1.68
Santa Nella, CA 6 16 0.88 6.22 2.14
Newhall, CA 8 28 -6.50 0.75 0.97
Table S:
Median Arithmetic Errors for Southbound 5-Axle Semi-trailer Trucks
WIM Site Name Site Number of
Number Successful Median of Arithmetic Error %
Comparisons
Axle 1 Group 1 Group 2
Bow Hill, WA 235 None - - -
Kelso, WA 44 36 -11.01 -13.70 -20.47
1-205 OR 103 8 -11.83 -20.19 -26.26
Woodburn OR 101 1* 4.20 -2.40 2.10
Redding, CA 3 3 -51.67 -49 84 -51.48
Lodi, CA 4 1* -1.74 -0.61 -11.01
Santa Nella, CA 6 1* 12.62 -9.38 -6.29
Bakersfield, CA 7 1* 10.68 -3.21 2.10

*Error Statistics based on a Single ‘Vehicle Comparison are not Reliable
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Table 6:
WIM Calibration Relationships
Site 44 SB
Equation Correlation | Standard Error t-value
Axle x = WIM Load x.y) iny for Coeff.
y = Static Load of x
Steering y = 1.1062x 0.592 0.014 28.709
1st Tandem y = 1.1320x 0.877 0.018 61.286
2nd Tandem y=1.2412x 0.929 0.019 66.114
All y=1.1751x 0.965 0.012 99.752
Site 103 SB
Equation Correlation | Standard Error t-value
Axle x = WIM Load (x,y) iny for Coeff.
y = Static Load of x
Steering y = 1.1665x 0.609 0.063 18.488
1st Tandem y=1.2433x 0.838 0.052 24.124
2nd Tandem y = 1.2889x 0.935 0.058 22.086
All y = 1.2553x 0.955 0.031 40.060
Site 107 NB
Equation Correlation | Standard Error t-value
Axle x=WIM Load x,y) iny for Coeff.
y = Static Load of x
Steering v =0.9839x 0.751 0.034 28.709
st Tandem y =0.9346x 0.743 0.061 15.240
2nd Tandem y=0.9119x 0.701 0.087 10.514
All y = 0.9293x 0.882 0.039 23.565
Site 3 NB
Equation Correlation | Standard Error t-value
Axle x=WIM Load (x,y) iny for Coeff,
y = Static Load of x
Steering y=1.1258x 0.221 0.033 34.521
st Tandem y=1.1193x 0.685 0.030 37.307
2nd Tandem y = 1.1209x 0.722 0.033 33.730
All 0.869 0.018 61.697

y = 1.1204x
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Table 6 (Continues):
WIM Calibration Relationships
Site 4 NB
Equation Correlation | Standard Error t-value
Axle x = WIM Load (x,y) iny for Coeff.
y = Static Load of x
Steering y = 1.0050x 0.370 0.012 80.912
1st Tandem y=1.0114x 0.937 0.009 113.775
2nd Tandem y=1.0116x 0.918 0.014 74.812
All y=1.0110x 0.967 0.007 155.264
Site 5 NB
Equation Correlation | Standard Error t-value
Axle x = WIM Load (x,y) iny for Coeff.
y = Static Load of x
Steering y = 1.0154x 0.336 0.012 80.319
1st Tandem y = 0.9978x 0.935 0.010 100.302
2nd Tandem y = 1.0208x 0.936 0.014 75.419
All y = 1.0086x 0.979 0.007 149.056
Site 6 NB
Equation Correlation | Standard Error t-value
Axle x = WIM Load (x,y) iny for Coeff.
y = Static Load of x
Steering y=1.0025x 0.691 0.012 84.791
1st Tandem y=1.0618x 0.985 0.014 73.469
2nd Tandem y =0.9764x 0.979 0.015 65.047
All y=1.0169x 0.984 0.010 100.187
Site 8 NB
Equation Correlation | Standard Error t-value
Axle x = WIM Leoad x,y) iny for Coeff.
y = Static Load of x
Steering y = 1.0766x 0.352 0.022 48.443
1st Tandem y=1.0323x 0.538 0.031 33.288
2nd Tandem y =0.9956x 0.633 0.036 27.808
All y=1.0201x 0.913 0.019 54.361
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Development of a Portable AVI Svstem for WIM Calibration

A portable AVI system was specially developed for the purpose of WIM system
calibration, where fixed AVI facilities such as those of HELP, are not available. For this
purpose, two AVI readers were installed in Minnesota, one at the main-lane WIM system
on [-94 in Lake Elmo, and the other at the sorting WIM system of the truck inspection
station in St. Croix near the Wisconsin border. The two sites are about three miles apart
and satisfy proximity to a static weigh scale, which islocated at the St. Croix truck
Inspection station. The equipment installed has the capability to tag WIM records with the
AVI number of traffic-stream vehicles. A tota of 80 AVI transponders were installed on
trucks passing frequently through these sites. The tagged data from each WIM site was
downloaded at regular intervalsthrough atelephoneline viamodem. 1n addition, the
static axle load data of the AVI-equipped vehicles was collected at the truck inspection
station. Thiswas done by modifying the software of the sorting WIM system at the
entrance to the truck inspection station to produce an audio aarm to alert the truck
inspection station personnel, who had to save the data on afile by hitting asingle key.
These datafiles were a so downloaded through modem. The installation of these systems
was completed in May 1995 and they remained operational till December of 1995.
Calibration of the two WIM systems was effected by direct comparisons between the
WIM and the static axle loads. Figure 8 shows the zero intercept least square regression
calibration curvefitted for the lake EImo WIM system.

IN-CONCLUSION

Two procedures were described here for the evaluation/calibration of WIM systems.
Thefirst involvesacombination of test trucks and vehicle simulation models, while the
other involvestraffic stream vehicles equipped with AVI transponders.  Althoughvehicle

simulations were not suited to predict the discrete dynamic axle load values at WIM
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sensor locations, they were quite useful in establishing the extend of dynamic load

variation expected for a given axle and speed. A calibration method was described based
on these frequency distributions. Use of AVI-equipped vehicles for WIM calibration was
shown to be quite feasible and inexpensive, were AVI facilities are available. Furthermore,

it was shown that the portable AVI systems can be installed to effectively calibrate WIM

systems.
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Figure 8: Calibration Relationship for the Lake Elmo WIM System.
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Precision of Annual ESAL Loading Estimates

by

Mark Hallenbeck
Washington State Transportation Center (TRAC)

How “good” are traffic |oading estimates?
What sampling scheme is the most cost-effective?

If 1 know my sample size, how “accurate” is my load estimate?

“Good” or “ Accurat€’ is a function of both
precision, and

bias

Theoretical approaches to developing formulas have been unable to accurately predict the
precision and/or bias of weight estimates

LTPP is empirically estimating “accuracy”
based on:
effect of calibration shift

effect of sample size T(Weight and class) o
relative importance of weights versus volume by classification

Approach uses "good,” “annual” WIM data as “truth”
Calculates annual total based on complete data set

Explores the effects of different sample sizes and sample plans

Examines changes in load characteristics over time to determine relative importance of
calibration versus sample size/plan

Relates site characteristics to results to provide expected accuracy given specific site
characteristics and data availability
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Conclusions To Date

There is more variability in truck volumes and loads than there is in automobile volumes

Conclusions To Date
Truck variability is usualy different than automobile variability

Time of day, day of week, and seasonal patternsfor trucks are all different than for cars

Conclusions To Date

Truck loading patterns are often very site specific

Conclusions To Date

}Naeé ghing only on weekdays may or may not have an adverse impact on estimating annual
oads

Lack of classification counts on the weekendsis likely to produce biasin the annual load
estimate

Conclusions To Date - Weights

In many locations, WIM scale calibration appears to be much more important to the overall
accuracy of the annual estimate than day-of-week or seasonal sampling

Conclusions To Date

In the LTPP database, seasonal weight differences are much larger than day-of-week
weight differences

It isunclear how much of these differences are due to seasonal change, and how many are
caused by calibration drift

Conclusions To Date

It appears that a significant reduction in the amount of required weighing can take place, IF
calibration is assured, and IF known seasonal movements can be accounted for.
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Conclusions To Date - Weights
Expected Errors

Assumi 23 that you can measure truck volume correctly and your scale is correctly
calibrated:

Weighing once during the year will result in an answer within + 50% of the annual load
95% of the time

Conclusions To Date - Weights
Expected Errors

Weighing during two seasons will result in an answer within + 30% of the annual |oad
95% of the time

Conclusions To Date - Weights
Expected Errors

For most multi-day sampling plans, weighing during all four seasonswill resultin an
answer within £ 10% of the annual load 95% of thetime

Conclusions To Date - Weights
Expected Errors

Weighing for seven consecutive days during all four seasons will result in an answer
within + 6% of the annual load 95% of the time

Conclusions To Date

Th(;,;I Imarginal improvement in accuracy caused by additional days of data collection is very
sm
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1-95 MULTI-STATE PROJECT
BRUCE LITTLETON

DELAWARE DEPARTMENT OF TRANSPORTATION

The current status of the 1-95 Multi-State Traffic Monitoring Evaluation Project will be
presented at the National Traffic Data Acquisition Conference.

The project began from casual conversations between DelDOT and PennDOT personnel
attending the Mid-Atlantic Truck Weight Conference in September of 1990. Later joined by
Maryland and New Jersey, the four states agreed to participate in an evaluation of traffic monitoring
equipment, particularly low cost systems, as much of this was new technology. The four states were
not aware of any definitive study that evaluated all of the Automatic Vehicle Classification (AVC) or
WIM equipment available on the market. This project has evolved to provide such a study.

In May of 1991, FHWA participation was sought for financial support, and was granted in
November of 199 L In the process, Delaware became the Lead State for the project.

Systems have been installed, a dry run evaluation conducted, four WIM evaluation sessions
completed, and the four AVC evaluations are complete. The Second interim report containing the
preliminary findings and recommendations for the WIM portion of the project was presented at
NATDAC in Connecticut. The Final Report is anticipated for the Spring of 1996 and should be
available at the conference.
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THE RHODE ISLAND EXPERIENCE

H. L. Bishop & M. J. Sprague

Rhode Island is a relative newcomer to the world of Weigh-In-Motion (WIM) and truck
weighing. We stopped loadometer truck weighing in the mid 1970’s. Only in 1987 did we decide
to test WIM as an automatic data collection method to collect volume, vehicle classification,
speed and weight data. We purchased two Golden River battery powered, capacitance pad,
portable WIM systems. The following year we started weighing on athree year schedule
developed in accordance with the provisions of the Traffic Monitoring Guide (TMG).

We questioned the TMG logic which said Rhode Island needed the same number of
weighing sessions as California or Texas, particularly on the Rurd Interstate where Rhode Island
has only six sections in the entire state. We also questioned the logic that implied truck weights
vary from functional system to functional system, by the amount of travel. We reasoned that class
9's, for example, range in weight from empty to over loaded on all systems. But the TMG gave
usastarting point. 1t should be noted that Rhode Island still questions the sampling criteria of the
TMG today.

Our objectives, when we started our WIM program, were to detect and define patterns
and relationships between truck weights and other trefficplanning data. We were hoping that we
could collect data that would show us weight relationships, similar to volume and classification
relationships, on which we could base estimates and forecasts of vehicleweights. We also wanted
to provide five day, curb lane, weight data to the Strategic Highway Research Project (SHRP),

seasondly.
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We soon learned that one disadvantage of the Golden River system wasthat it only
produced printed reports and print report files. It did not give usafile of 4 or 7 cards directly. We
were limited in our analysis to reviewing the manufacture’' s printed summary reports until we had

written our own software to produce the 4 and 7 cards from the “Individual Vehicle Report” file.

Initially, we analyzed the various site summary reports and quickly determined that there
were not enough heavy trucks on the lower functional systemsto justify exposing our equipment
to damage and/or vandalism. We adjusted our program and moved the lower level sessionsto
higher level systems, where we had alarger sample of trucks. We aso found little, if any,
consistency in the average weights of any class of truck. A possible exception to thisis class 9
trucks at our one SHRP site, where we collected larger five day samples. While the differences
in the average weights by vehicle classification were not extreme for any one classification, they
were obviously not the same between sites. No one seemed to know how much of a difference
we could expect from site to site within a given functiond system., between functional systems ,or
seasondly. Thelack of knowledgein thisarea concerns us.

About this time a permanent station was installed at the SHRP site. Weincluded a
requirement for production of 4 and 7 card files, as part of the reportsin the specifications for this
site. We also got the Federal Highway Administration’s (FHWA) W-Table, microcomputer based
software operational.

Theissue of WIM eguipment calibration became more critical with theinstallation of the
permanent site. Rhode | sland has always questioned the necessity and validity of calibrating the

equipment to atruck of aknown weight. Some transportation agencies expend great effortsin
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fine tuning the equipment to ensure that the weight of a test vehicle driven over the WIM system
isidentical or within a 20% range of the vehicle's static weight. It isour contention that
caibrating to amoving truck of aknown weight isonly critical if the WIM equipment is going to
be used for, or in conjunction with, vehicle weight enforcement activities. Wethink it ismore
important and useful if the equipment is calibrated to the actua dynamic forces being applied to
the pavement. We believethat it is more reasonable to obtain the average actual force applied to
the pavement rather than the weight of the truck applying the force.

We cdlibrated our portable WIM eguipment to known dynamic forces. In the summer of
1993 we brought four, series eight, capacitance mats to the University of Rhode Island and
subjected them to a series of tests using afalling weight deflectometer (see Table-I, Figure-laand
Figure-Ib). Ineach of the tests (with the exception of the first test) the capacitance mats
correctly measured the forces being applied to them. These weight sensors were then installed at
our SHRP site adjacent to the piezo WIM system. The data from the two systems were
compared to each other, It was found that the gross vehicle weights obtained from both systems
were similar with little variation. Thisindicated that the piezo system auto calibration was
accurately recording the forces applied to the pavement.

We periodically check the autocalibration of the piezo system by plotting the number of
class 9 vehicles by weight group to determineif there is any drifting in the average weights that
would indicate sensor problems (see Table-2, Figure-2A and Figure-2B).

When we started looking at the data from our permanent piezo WIM equipment the first

thing we found was that the ESAL values from the W-Tables were different than those from the
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manufacturer’ s summaries. The second thing we noted was the consistency in the monthly
average class 9 weight was much stronger than indicated by weekly, or 48 hour, samples. This
prompted usto look at the distribution of individual weights, around the average (see Table-2B,
Table-2c, and figures-2c. .1).

It became apparent that the weight distributions were similar for each vehicle class, from
all samples, permanent or portable, large or small. Inthe case of class 9 trucks there are 3 weight
peaks, empty or lightly loaded, legally loaded and permit loaded (see Figure2-a&hb) We were
surprised at the number of trucksthat are operating well under the allowed legal limit.

It was discovered that the average weight of each vehicle class tended to stabilize at avery
narrow range of values as sample size increased (see Table-3a..c). In addition it indicated that,
for the most common vehicle types, class5 and 9, almost all sample, both portable and permanent
aswell asany functional system, gave an average weight that is within one standard deviation of
the average of any other sample (see Tables4a .g and Figure-4a. .g). We also noted that while
the range of average weights decreased with sample size, the standard deviation does not.

What does all this mean? It may mean that the observed differences in average weights
from portable, short term counts are the result of weak sampling rather than a different weight
population. Rhode Island has only one permanent site where we can check the population, all
other samples are statistically weak, monitoring the curb lane for 48 hoursin onedirection. We
would like to know if any of the states with multiple permanent sites have tested long term data
for statistically significant dif%rences in the average weights.

We had hoped that some of our questions concerning the statistical significance of the

differencesin the average gross weights, (within and between functional systems and seasonal
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variations), would be answered when Rhode Island joined the other New England statesin a
research project to determine the feasibility of acombined regional truck weight program to
reduce the individua state's efforts. However, conclusions from this research, thus far, have been
scarce and disappointing. It was recommended that the statesimprove their sampling by
increasing the number of sites. We consider this unacceptable because our research seemsto
indicate that larger samples provide better average gross vehicle weights than increasing the
number of WIM locations would. Also, the objective of aregional WIM program isto reduce the
number of WIM sitesthat the individual states would need to sample, not to increase them.

We have asked other statesin New England if they have seen any similar patterns.
Vermont has aso noted consistency in average weights on higher functional classes, where
samples are larger but have not yet looked at the distributions of weights about the average. They
have, though, noted significant differences in directional weights. Another state reported that “
they were too busy collecting datato stop and look at it.“! Severa other states had no comment.

within our one and only permanent AVC/WIM site we have found that the average
weight, every month, is greater at night and on weekends, but there isno increase in very heavy
truck volume at thesetimes. The heaver average weight is due to the fact that there are fewer
light or empty trucks at night and on weekends. We have also found that thereisalarge and very
distinct directional difference in average class 9 weights, and they mirror each other, (that iswhen
north bound average weights go up the south bound go doan(see Tables-5ab and Figures-
5a.g)) Ingenera, the average gross weightsin Rhode Island seem to be heaver than other states
in New England. Thismay be attributed to the state’ s liberal truck weight permit policy. Also, a

trucking industry official informed usthat most of the class 9 fuel tankerstraveling north through
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our SHRP site are|oaded to the maximum permitted limit. Thissiteislocated on a major fuel
route from the port of Providence to central Massachusetts.

We have found consistencies and inconsistencies, and we are not sureif either are
significant. We have tried time series, frequency histograms, and statistical analysis such as
averages, maximum value, minimum value, standard deviations, variances and any other tools our
software packages have. With all thiswe only know one thing for sure; the more we examine the
data the more we think we know, and the more unanswered questions we have.

Are the differences in average weights between sites significantly different?

|s one statewide average, based on large samples from diierent locations, as good or
even better than several different averages, for estimating and forecasting?

Is our data significantly diierent from that in the states around us?

Could we improve our average weights or ESAL’s estimates by combining data with other
states?

|sany one elseinterested in these questions?

Has any one el se looked for answersto them?

Has any one else found any answers?

|sany one else looking for answers?

Should we even be concerned?
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