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Research Recommendations

This report presents the results of tests involving two computer models
for the ground thermal regime, the Goodrich model (Goodrich, 1978) and the
Guymon/Hromadka model (Guymon and Hromadka, 1977). The Geodyn model (Resource
Management Associates) was also assessed informaily, primarily for comparison
with various features of the Goodrich and the Guymon/Hromadka models.

A general conclusion of this investigation is that all three models
contain limitations which require resolution before use as a general purpose
engineering design tool. In this section, we 1ist specific improvements,
tasts and comparisons for all three models which should help to clarify
their relative merits and establish their usefu1néss as engineering design
toois.

1) Long term testing of Geodyn - Long term (20 year) comparisons of calculated
and analytic temperatures are presented in this rgport for both the
Goodrich and the Guymon/Hromadka models. These two models use direct
solution techniques which preclude the introduction of convergence
errors. Geodyn uses a Newton-Raphson iterative technique which is
subject to convergence errors over long terms. It is necessary to
assess the long-term growth of convergence errors in the Geodyn model.

2) The Guymﬁn/Hromadka model1 presently lacks a surface heat balance
simulation for determining boundary conditions. This modification is
necessary befare the Guymon/Hromadka model could be used for general
engineering design purposes. Note that there are several surface heat
balance simu1étipns through a snow cover, already coded and in use,
which could bevadapted to the Guymon/Hromadka model. These include the
surface heat halance simulations in the Goodrich model, in the Geodyn
model, and in DYRSMICE - a reservoir model deQe1oped by us (Gosink,

Osterkamp and Hoffman, 1983).
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Both thelGuymon/Hromadka mode] and the Geodyn model are difficult to

use in cases involving freeze and thaw of unsaturated soils because

of the need for user-specification of soil properties related to moistﬁre
transport and hydraulic conductivity. We recommend a comparison between
the calculated solutions of these two models against field déta for a
complex case with freezing and thawing of unsaturated soil and for a
caée with a transverse gradient in overburden.

Our experience with currently available data sets shows that a complete
data set including the thermal and hydrological regimes and measure-
ments of all model parameters is urgently required to test numerical
models of heat and mass transport.

Presently the Guymon/Hromadka model requires the solution of Richards
equation for moisture transport for all cases of freezing and thawing;
consequently this requires the specification of pressure poundary
conditions and the five Gardner constants: Ak, Ag, ng, ngand E.

For cases involving freezing or thawing in saturated soils, a simpler
approach may be warranted. Therefore a useful modification to the
Guymon/Hromadka model for saturated soils would be the capability.to
solve the heat transport equation dn1y with empirical relations between
soil moisture and temperature. However, the predictions should be
carefully tested against field data. This modification clearly would
simplify the Guymon/Hromadka model, making it easier to use, but whether
it would be an improvement could only be ascertained by comparison with
field data.

The application of these models or any other numerical methods for
investigating heat and mass transfer in permafrost for engineering

design progress requires specification of the thermal and hydrological
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parameters of the permafrost. It is presently possible to predict some
thermal parameters {e.g., thermal conductivity) to within % 50% or so
given the necessary soil information. ﬁowever, most of the perma-
frost in Interior Alaska exists within a few degrees of its melting
temperature. At these temperatures, unfrozen water effects dominate

the behavior of the thermal and hydrological parameters. Unfortunately,
there are practically no measurements on these parameters within a
degree or two of the melting temperature. It should also be noted that

none of the three models under discussion includes a full unfrozen

water content formulation. Specifically, the models do not contain the

provision for a general unfrozen water vs. temperature function prescribed
by the user for the particular soil being studied. We have developed a
modification of the Guymon model which includes this provision; however,
there are no data available with which to test this formu1ation. We
recommend that a research program be initiated to measure the thermal

and hydrological parameters of natural permafrost samples at temperatures
very close to the melting point and, in particular, to determine the
effects of unfrozen water on these properties. The modified program
which we have developed could then be tested against these data.

No available thermal model, including the three discussed in this

report, has the capability to predict the thermal regime of soils witﬁ
substantial dissolved salts during freezing and thawing. Disso]Qed

salts in relatively high concentrations (about 3 ppt) have been detected
in the soils of the Fairbanks area in recent studies (Osterkamp, un-
published data). These concentrations would be expected to increase
substantially with the increased use of salt for melting fce on highways

and airport runways. Salt concentrations are of course still higher



near coastal locations. Therefore, a reliable thermal model for Alaskan
applications should be developed containing an accurate simulation of
the effects of salt transport including salt segregation, salt redistri-

bution and freezing point depression.

FINAL REPORT
Thermal Analysis of Roadways and Airstrips

Introduction

The thermal regime of freezing soils is of concern to scientists and
engineers interested in a wide range of problems. For highway and airport
planning and construction in northern regions, there is a need to be able
to predict the soil temperatures, freeze front positions, ice segregation
and frost heave over long periods of time. For these projects, the surface
boundary conditions will be altered by construction, for example, or by
removal of the vegetaﬁive mat and by changes in surface .elevation, slope
and exposure. The soils, fill and various embankment and construction
materials used for these projects will have a wide range of thermal and
hydraulic properties. In addition, the effects of construction will be non-
uniform, implying that the required analysis must be at least two-dimensional,
and in some cases, three-dimensional. A1l these changes to the local terrain
will irrevocably alter the ground thermal and hydraulic regimes, thereby
affecting the long-term stability of the soil.

In permafrost areas, the analysis of soil thermal and hydraulic regimes
is complicated by phase change effects and by moisture migration. During
freezing, mobile soil moisture is drawn toward the freezing front, increasing
the available latent heat; therefore, it is c¢ritical particularly in un-

saturated soils, that moisture transport and soil water phase change bhe



correctly simulated. The moisture transport is affected by soil moisture
tension and hydrau11c conductivity, as we]] as by soil thermal regime,
implying that moisture transport and soil temperatures are strongly coupled.
The analysis of ground thermal regime is therefore extremely complex,
involving coupled heat and moisture transport, changing surface boundary
conditions, and soil thermal and hydraulic properties which vary both
spatially and temporally with freezing. No analytic solutions exist for

the coupled problem of moisture and heat transport in a freezing soil. The
only feasible method of analysis for these types of problems involves the
use of state-of4the-art computer modeling.

This report presents the results of tests involving two computer
models for the ground thermal regime, the Goodrich model (Goodrich, 1978)
and the Guymon/Hromadka model (Guymon and Hromadka, 1977). These computer
. models were identified in a pre1iminafy report (Kawasaki, Osterkamp and
Gosink, 1982) as being the most accessible and generally the most sophisti-
cated of the models examined. Capabilities and limitations of the models
emphasizing particularly useful features‘and their application to long-term
permafrost problems are discussed. Where feasible they have been tested
against analytic models. Furthermore, in Appendix A, detailed information
is 1isted for the Guymon/Hromadka model including input data file directions,
previously unavailable, and subjective comments by the report authors.
Finally, the importance of specific problems, such as moisture migration,
long time scales, and overburden effects, to reliable calculation of ground
thermal régime is discussed.

General Discussion of the Mode1s

Both the Goodrich and the Guymon/Hromadka models are finite element

simulations of the heat transport eguation with phase change. [t is widely

5



accepted that finite element models are better suited to geophysical simula-
tions involving complex geometries or boundaries than are finite difference
models. Finite element mode1sva1so have other advantages including greater
versatility in the order of the approximation (linear, parabolic, etc.), a
banded matrix form with the availablity of well-established direct solution
techniques, procedures and a structure particularly well-suited both for
surface flux boundary conditions and phase front movement. Both the Guymon/
Hromadka and the Goodrich models use direct rather than iterative solution
techniques to solve the governing matrix equations. This implies that both
models should be free of convergence type errors, although they may be
subject to round-off errors.

It is important to distinguish between the numerical model and the
mathematical model. We have determined that both the Goodrich and the
Guymon/Hromadka numerical models appear to be stable, convergent, correctly
formulated and generél1y afficient. The finite element solution techniques
employed, including setting up of the "stiffness" and "mass" matrices, as
well as the_impTementation of the boundary conditions, are error-free as
far as can be ascertained. The important questions, then, concern the
mathematical models. Do the mathematical models correctly formulate the
critical physical processes involved? Are the equatioﬁs used to specify
these physical processes realistic and consistent? What processes are not
modeled, and how serious to the thermal predictions is the exclusion of
these processes? Finally, do the models correctly simulate the physical
mechanisms of heat transport in permafrost terrain over the long time scales
required for roadway development in Alaska?

In the following sections, we will attempt to assess both the numerical

and the mathematical models. The approach used to assess the numerical



models is direct, involving test Eases, Jong-term calculations, comparisons
with analytic solutions, and in some instances, step-by-step evaluation of
computer codes, and comparison with "standard" or existing finite element
matrix generation and solver routines (e.g., Smith, 1982 and Pinder and
Gray, 1977). The éva1uation of the mathematical models involves test cases,
and in addition, discussion of the physical processes particularly relevant

to permafrost.

The Simulation of Moisture Transport

Any unsaturated flow model must correctly simulate the moisture
transport. Free soil moisture is always drawn toward the freezing front;
this effect creates a similarity between drying and freezing of soils and
implies that accurate simulation of phase change and temperature regime in
soils depends strongly upon accurate prediction of moisture migration.

There are at least two major approaches for simulating coupled moisture and
heat transport in soils. The first, which might be called an algebraic
method, uses empirical relations defining soil moisture and/or moisture
diffusivity in terms of temperature, resulting in the reduction of two
coupled partial differential equations for temperature and moisture or pore
pressure into a single partial differentfa? equation. This method implicitly
assumes that rates and gradients and particularly boundary conditions of
moisture and temperature are simi1ar or at least of comparable order of
magnitude (Hromadka, Guymon and Berg, 1981). Since soil-water diffusivity
is a sensitive function of moisture content, varying over 3 orders of magni-
tude (see e.q., Jame, 1978), it may be expected that for a given moisture
flux condition, the associated moisture gradient can also vary sharply.
Thermal diffusivity of soils, on the other hand, varies less sharply;

hence variations in temperature gfadients are not as marked as those in

moisture gradients.



The second method also employs empirical relations for various soil
parameters. However, the two partial differential equations governing
temperature and moisture or pore pressure are solved separately, thus releas-
ing some numerical restraints required by the first method. Furthermore, in
the first method a zero boundary flux condition of one variable (say zero
moisture flux) and a simultaneous non-zero boundary flux condition of another
variable (say non-zero geoﬁherma1 heat flux) cannot both be easily accommodated.
This is particularly relevant to problems involving overburden. If a non-uniform
distribution of pressure exists as a surface boundary condition, then lateral
variations in pore pressure must exist which will change the dynamics of
moisture migration. This effect can only be gauged by separate solution of
the equations for temperature and pore pressure. Consequently, the second
method is more versatile than the first, and particularly suitable for soils
undergoing freezing. Finally, other methods also exist which do not even
consider moisture migration or require the model-user to prescribe a constant
moisture transport velocity. These simple methods do not adequately define
the complex physical dynamics of freezing soils. An example to illustrate this
deficiency will be given in a later section.

The Goodrich model is an example of the first method, containing
several user-selected empirical formulations for soil properties. The
Guymon/Hromadka model is an example of thé second method containing partial
differential equations for both heat transport and pressure potential,

Darcy's law for moisture migration,‘and empirical relations (e.g., Tinking
hydraulic conductivity with soil mofsture and ice content). The Geodyn model
of Resource Management Associates is an example of a third method, containing
user-prescribed moisture transport velocities. These velocities are set to

zero whenever ice is encountered.



Guymon/Hromédka Model

FROST2B, the version of the Guymon/Hromadka model used in these com-
parisons, is a two-dimensional finite element model of coupled heat and
moisture transport in a freezing soil. This version incorporates an apparent
heat capacity approximation with an "isothermal" phase change of soil
water. The isothermal phase change method used in this model is empirical.
Temperatures are forced to remain at the freezing point as long as unfrozen
water is present in the soil. This is in contrast to data which indicate
that a "freezing fringe" exists in which substantial fractions of unfrozen
water can be found in soil at temperatures below the freezing point (Anderson
and Morgenstern, 1973; Anderson and Tice, 1972). The model further sharpens
the frozen-unfrozen front by using a numerical algorithm at the freeze front
known as the "Tumped-mass" method. This algorithm, which alters the ma trix
coefficients at nodes uhdergoing freezing, has the effect of slowing the
rate of temperature change Unti1 all the unfrozen water changes phase.

This method appears to provide an appropriate balance of heat flux across
the freezing zone, but without point-by-point accuracy of temperature and
unfrozen water content in the freezing fringe.

In the general freezing case, total water content is not conserved,
allowing ice in excess of soil porosity to form; the excess ice results in
frost heave. Mathematically, this is totally appropriate; there is no
reason to assume conservation of soil moisture during freezing since moisture
may be drawn from the water table at depth during this process. However,
the availability of this moisture is 1imited by the magnitude of the hydrau-
Tic conductivity, the calculated pressure gradients, and the Gardner equa-

tions, i.e., the assumed relation between pore pressure and hydraulic¢ con-



ductivity, and between pore pressure and unfrozen water content. The compu-
tation of the pressure gradient is accomplished by the solution of a form

of Richard's equation. The first two test cases below examine the.numerica1
scheme for the solution of both Richard's equation and the heat transport
equation; the third test case examines the appropriateness of the Gardner
equations.

Numerical Comparisons

Test cases of the Guymon/Hromadka model were run for a series of problems
with existing closed form or analytic solutions. It is expected that any
reliable model should be able to accurately predict simp?e transient diffusion
of heat in a soil system with constant and well-defined properties and with
scales representative of Alaskan conditions. These test cases are a necessary
first step in the evaluation of any numerical model, permitting assessment
of the long term stability and accuracy of the model. In particular, the calcu~-
lated solution should match the exact solution for extended periods; there-
fore, a calculation period of twenty years was adopted. As a test of the
accuracy of the model, one-dimensional boundary conditions were imposed on a
two-dimensional grid. This procedure determines the existence of inaccur-
acies associated with grid position and size.

Test Case 1.

The same grid consisting of a long vertical strip 15 meters deep and 2
meters wide (see Figure i) was used for both test cases .l and 2. Grid points
were concentrated in the near surface area to better resolve the temperature
gradients which were expected to be steeper in this ione. Variable grid spacing
js of course, a distinct advantage of the finite element method over the
finite difference method. Note that three grid points are defined at each

vertical level (at each value of y). When uniform boundary conditions are

10
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prescribed aty = 0.0 and y = 15.0 m, and zero horizontal flux or "natural

boundary conditions" (3T/8 = 0.0 for x = 1.0 and 3.0 m) are prescribed

at the lateral boundaries, then the calculated temperatures and freeze-front
position should be independent of horizontal position, x. The maintenance
of one-dimensionality throughout the calculations provides an evaluation of

the accuracy of the numerical scheme.

Initial and boundary conditions for test case 1l are:

T (x,y,0) =0.0C
~T (x,0,t0) = 1.0 C
aT/dy (x,15.0,t>0) = 0.0 C m~1

5T/3 (x = 1.0 and x = 3.0, y, t0) = 0.0 ¢ m~!

"The calculated numerical and analytic temperatures (see Osterkamp, 1983,

for the analytical method) after one, five, ten and twenty years are depicted

in Figures 2, 3, 4 and 5, respectively. The thermal diffusivity appropriate

for silts (k) is uniform throughout the depth and equal to 2.39 x 10~7 mZ

s-1, fmp]ying a time constant (T = y2/4x) equal to 7.46 years. These calcula-

tions demonstrate that the Guymon model is exceedingly stable, and capable of

maintaining excellent agreement with the exact solution for extended periods

of time. Note that the calculated temperatures at each depth actually

represent three values (for x = 1, 2, 3; see Figure 1). These three values

are sufficiently close to appear to be plotted as one point at every depth and

throughout the calculation period, indicating accuracy of the numerical scheme.
This case tests the modeling of both the governing eqdations, i.e.,

the convective-diffusive equation for heat transport (the energy equation)

and the convective-diffusive equation for soil potentiaT.(the moisture

transport equation or Richards' equation), since the assembly of coefficients

12 -
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for the matrix system is identical for the two equations. Therefore, it
may be expected that, for these simple boundary conditions, an imposed and
constant surface temperature and/or soil potential with no phase change and
constant soil properties, the Guymon and Hromadka numerical models for both
soil temperature and moisture transport are accurate and stable near the
_time and space scales important for highway and airport studies.
Test Case 2

The grid again was the 15 meter deep and 2 meter wide strip depicted
in Figure 1. This case involves transient surface boundary conditions and
tests the response of the numerical model to variable boundary conditions.
In particular, a sinusoidally varying temperature is imposed at the surface
simulating seasonal change in air temperature; these conditions, with a
zero flux condition at depth, imply an analytic solutien known as the
trumpet or whiplash curve for soil temperatures.

Initial and boundary conditions for test case 2 are:
T {x,y,0) = .5 (1 + e W cos vy) C
T (x,0,t>0) = .5 (1 + cos wt) C
T (x,15.0, t50) = .5 (1 + e~15Y cos (uwt-157)) ¢
aT/3x (x=1.0 and x=3.0, y, t>0) = 0.0
where v = Yuk/2, k = 7.65 x 10~2 m2 d&y‘l, appropriate for coarse gravels,
and w = 27/366 day~l. The calculated and analytic temperatures after
1.0, 5.25, 10.5 and 19.75 years are depicted in Figures 6, 7, 8 and 9,
respectively. The particular timing was chosen to eliminate duplication in
the figures, since the amalytic solution is periodic.‘

As in test case 1, the numerical solution reliably tracks the analytic
solution throughout the long calculation period. There is very little

variation in the three calculated temperatures at the same depth, indicating
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good accuracy. Some discrepancy between the calculated and the analytic
soluﬁions may be noted near the surface at t = 5.25 and 19.75 years. This
is due to a deviation or lag between the real time for the analytic solution
and the calculation time for the model solution. For this test case, a
time step of 6 days was chosen, so that the calculated temperatures define
the average temperature within % 3 days. Note that the analytic surface
femperature is changing most rapidly at a time one-fourth and three-fourths
through the annual cycle; therefore, the maximum deviation between calculated
and analytic surface temperatures also occurs then, as suggested by Figures
7 and 9.
Test Case 3

This test case includes the effects of freezing. Since the freeze
front position in sandy gravels after 20 years would be near 15 m, the
grid spacing was increased in the vertical direction by a factor of about 4.
Both the temperature and the pore pressure equations are solved whenever
moisture is present, and moistufe is drawn toward the freeze front by
tension, simulating the physics of soil moisture migration during freezing.
The amount of water drawn toward the freeze front critically influences its
position because of the latent heat carried with this moisture flux.
Guymon et al., (1980) explains the §emi-emp1ric31 method used to define
hydraulic conductivity and unfrozen water in terms of soil potential; the
details of this explanation can be found in the latter and other references
(Gardner, 1958; Guymon and Luthin, 1974; Taylor and Luthin, 1978).

The semi-empirical formulations of hydraulic conductivity and unfrozen
water content have the effect of making the model more difficult to use, but at
the same time, of ensuring versatility and adaptability in the model as more

data and understanding of these complex phenomena become available. Guymon



(personaf communication) has supplied a listing of four of the empirical
coefficients for these formulations; this Tisting is attached as Appendix B.
A fifth parameter, called the hydraulic conductivity exponent adjustment
factor and referred to hereafter as E, is not listed in the empirical data.
In effect E is a free parameter which is to be determined by model calibra-
tion either with known solutions or with laboratory tests of the type of
soil under investigation. The calculated sclutions are sensitive to the
value of E and this sensitivity will be discussed subsequently.

Initial boundary conditions for test case 3 are:
T (x,y,0} = 1.0 C
T (x,0,t>0) = -10.0 C
aT/dy (x,58.0,t>0) = 0.0 C m~!
3T/ax (x=1.0 and x=3.0, y, t>0) = 0.0 C m~!
An exact solution does ﬁot exist for this problem (the Stefan solution is
not applicable due to the zero flux boundary condition at y = 58 m).
However, the Stefan solution is a reasonably good approximation to this
test case, since it can be shown that for the soil parameters used in the
problem, 9T/3y < .01 C m~l aty = 58 mand t < 20 years. For the Stefan
problem applied to sandy gravels, appropriate soil diffusivities in thawed

and frozen ground are:

<y = 8.88 x 1077 n? sec”}

2.19 x 1076 m2 sec!

“f
This implies a freezing rate parameter, A = 0.27 (see Carslaw and Jaeger,

page 285).

The parameters used in the semi-empirical formulation of unfrozen

water content and hydraulic conductivity (e.g., see eq. 4 and 5
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in Guymon and Luthin, 1974) appropriate for sandy gravels (from Appendix B)

are:

Ag = 1.320
ng = 0.166
Ay = 2.681
ne = 1.026

Note that ng and ng are dimensionless exponents of pore pressure in the
Gardner (1958) expressions for unfrozen water content and hydraulic
conductivity, respectively. In earlier studies, it was assumed that both of
these exponents were éaual to three in any soil. More recent investigations
(Guymon, personal communication) indicate that these exponents vary consid-
erably. As previously stated, measured values of these exponents and the
coefficients, Ag and Ag, are given in Appendix B. The dimensions of the
coefficients, Ag and Ag, vary according to the value of the exponents such

that
[Agl = [em™8] and [A ] = [em™™k]

If units other than ¢gs are to be used, the appropriate transformations for
Ag and Ag must be prescribed. Other soil parameters used in the temperature
calculations are:
saturated volumetric moisture content, 85 = 0.336
thermal conductivity of dry soil, kg = 64.8 [cal em~l hel ¢l
volumetric heat capacity of dry soil, ¢g = 0.445 [cal em™3 ¢713
residual water content value in soil, r = 0.05
saturated, unfrozen hydraulic conductivity, Ky = 5.5 [em hr'l]

hydraulic conductivity exponent adjustment factor, E = 30.0



The calculated and exact (Stefan) temperatures after 1, 5, 10 and 20
years are depicted in Figures 10, 11, 12 and 13, respectively. The agreement
is quite good especially over the first ten years, when the maximum temperature
deviation appears to be about 0.2 C. At twenty years the temperature
deviation has increased to about 0.4 C near y = 58 m. Agreement between
‘calculated and "exact" solutions is not expected at this depth since the
boundary conditions for calculated and "exact" solutions are different.

The deviation, in sense but not in quantity, is appropriate. This is
pecause the Stefan solution, which does not specify 3T/d% = 0.0, permits
heat flux from depths below 58 m to enter the domain. This heat flux

could be reduced to zero by choosing a larger grid (depth). The temperature
gradient at depth for the Stefan solution may be easily calculated and has

a range 0 < 3T/3y ly = 58 < .009 C ml. If we assume that the average
heat flux entering from the bottom during twenty years is,

F=| kg 9T/% | =~ (0.4 cal m™ sec=! ¢*1) (.0045 C 1) or F = 1.8 » 1073
cal m~2 sec~l, then this heat flux, integrated over time, can be compared to
the "apparent” heat deficit of the lower layer, i.e., the temperature difference
between the calculated and Stefan temperatures. F integrated over 20 years
is F At = 106 cal m~2. The apparent heat deficit of the lower layer is
proportional to the triangular area in Figure 13 between the depths of 25
and 55 m and with maximum heighf bf 0.4 C. With a volumetric specific

heat, C, of about 0.63 cai em=3 C-l, the apparent heat deficit is

C [ Tdy = (0.63 » 106 ca1 m~3 c=1)(.2€)(30 m)
or C [ Tdy =3.78 « 106 cal m2

Therefore, the calculated total discrepancy in heat is about 3.78 106 ca1

m-2 while the Stefan solution accounts for only about 106 cal m=2. This
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implies that the discrepancy between the Stefan solution and the ca]cu]ated
temperatures at y = 58 m is only partially due to the difference in bottom
boundary conditions, and partially due to the uncertainties in the selection
of soil parameters. The Guymon/Hromadka model cannot be compared directly
to the anmalytic solutions, since the soil parameters including volumetric
heat content, thermal conductivity and hydraulic conductivity are computed
internally in terms of unfrozen moisture content and ice content, with both
moisture and ice content calculated from Gardner type expressions. It
should be remembered, however, that the modeling of soil parameters in the
Stefan approximatioﬁ (two values of diffusivity, conductivity and specific
heat - one each in the thawed and frozen layers) is extremely simplistic
and unrealistic in Alaskan soils. What is demonstrated in this test case
is that, given a set of empirically determined coefficients for sandy
gravel, the Guymon model produces realistic temperatures and freeze front
progression which compare well with a similar, but not identical, Stefan
problem.

Variations in £

The determination of virtually all soil parameters invtest case 3
including Ag, né, Ag, nk and Ky follows directly from the experimental
values which are summarized in Appendix B. The parameter E, however, is not
tabulated in Appendix B. There is very little information regarding the
determination of E. In Table 2 of one report {Guymon, et al., 1981), E was
determined by model calibration for Fairbanks silt (E = 8) and West Lebanon
gravel (E = 20). In Table 6 of another report (Guymon, et al., no date) E
takes on values of 10, 15, 20 and 30 for "remolded" soils, two types of

uniform field soils and nonuniform field soils.
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E is the exponent in a hydraulic conductivity attenuation factor:
Ky = K(®) » 107E%

where Ky is the actual hydraulic conductivity, K(¢) is the hydraulic con-

ductivity in unsaturated, unfrozen soil (which is a function of pore pressure,

¥), and 8; is volumetric ice content. Details can be found in the reference

by Guymon et al. (1980), with additional information in Taylor and Luthin

(1978) and Jame (1978). Basically E becomes a strong attenuation factor

for moisture migration whenever ice content is large. For example, if

E = 30, and 8; = 0.1, then 107E% = 1073, and if 8; = 0.35, then

10-E81 = 10~11. The importance of E on ground temperature predictions

is that attenuation of hydraulic conductivity implies attenuation of moisture

transport and, consequently, reduction of the associatéd latent heat.

 Therefore, if E is large, it should be expected that the soil will freeze'

more readily as less moisture is transported .to the freeze front. Conversely,

if E is small, hydraulic conductivity remains large, more moisture can be

transferred to the freeze front, and freeze front penetration is diminished.
In order to asﬁess the quantitative effect of variations in E, several

test cases were run using the same soil parameters as in test case 3 but with

E varying. The calculated and Stefan solution temperatures after 5 years

for E = 0, 20, and 100 are depicted in Figures 14, 15,.and L6, respectively,

while the case for E = 30 has been shown previously in Figure 11. Note

that if E = 0 (Figure 14) the ca1cu1$ted freeze front is near 3 m, while

the Stefan freeze front is approaching 9 m. Clearly too much latent heat

in the form of moisture transport is directed tb the upper layers inhibiting

freezing. If E = 100 (Figure 16) the calculated freeze front is near 15 m

indicating too little available latent heat is transported by moisture
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migration. For E = 20 (Figure 15) and E = 30 (Figure 11), available latent
heat is about right, with the calculated freeze front in one case slightly
above, and in the second case slightly below the Stefan predictions.

There does not appear to be an a priori method for selecting values of
E. Guymon (private communication) recently claimed to have found a relation
between £ and Ky. As suggested by the references, E seems to vary most
frequently between 10 and 30 with the higher values more typical of coarser
and more heterogeneous soils. Ideally, at a given site'or for a given soil
type, a series of laboratory and numerical exberiments could be performed
to optimize the selection of E. As a pragmatic recourse, we recommend
values of E near 10-15 for silts and near 20-30 for gravels.

This example demonstrates the dynamic effect that moisture migration
can have on prediction of soil freezing. E effectively controls hydraulic
~conductivity, which is to say, it effectively controls .the moisture £1ow
velocity. "Third method" numerical techniques may require the user to
define flow velocity (equivalent to stating E = 0 and KH = a constant) or
may state flow velocity is zero whenever ice is present (equivalent to
stating E = 0 if 8; < 0and E = = if 8; > 0). Figures 14 and 16 clearly
demonstrate ;hat this recourse is unreliable. Note that the Geodyn model
is a third method numerical technique, which requires user-specification of
moisture flux velocity in unsaturated soils, and internally enforces zero
velocity wherever f;e is present. Physically, it is not reasonable to
expect that the moisture flux velocity goes abruptly from a prescribed
value to zero as the soil freezes; instead, we expect a gradual decrease in
moisture flux ve1o§1ty as the ice content in the surrounding'goi1 increases.
The specification of E as a hydraulic conductivity attenuation factor

matches the intuitive expectation for moisture flux near a freezing front.
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Variation in other soil parameters

The Gardner formulations for hydraulic conductivity, K(¥?), and unfrozen

water content, 8(¥), as functions of soil potential, ¥, are as follows:

u

K(®) = Ky/ (A ¥ + 1)

and o(¥) = 8,/(Agl¥|"8 + 1)

whebe Ky and 85 are the saturated hydraulic conductivity and moisture
content (porosity) respectively. These formulae are applicable only when
¥ <0, i.e., when soil tension exists due to freezing effects. For

¥ >0, K(¥) = Ky and 8(¥) = 8,

The above Gardner expressions have the effect of reducing hydraulic
conductivity and moisture content as soil tension increases in magni tude.
Both expressions therefore reduce the transport of moisture and associated
latent heat to the freeze front as soil tension increases. In fact any
increase in either of the denominators in the above expressions decreases
the available latent heat transported to the freeze front, and consequently,
accelerates the freezing. Conversely, any decrease in either of the denomi-
nators decelerates the progression of the freeze front. Examination of
Appendix B reveals that the experimental values of Ax and Ag tend to be
somewhat larger for gravels than for sands and silty sands. Howgver,
experimental values of ng and ng tend to be somewhat smaller for gravels
than for sands and silty sands. Therefore, no clear tendency distinguishing
gravels from sands and silty sands can be noted in the Gardner formulations.

The expressions also demonstrate the dynamic effect that differences in

pore pressure can have on moisture migration. For example, if excess overburden
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exists on only a portion of the calculation domain, we would expect higher
subsurface pressures to exist below the overpurden. This would imply a
transverse pressure gradient, and associated with it, moisture migration
away from the high pressure zone toward lower pressures. Ultimately this
means faster freezing below the overburden. This effect can only be analyzed
with a "second method" model containing eqﬁations for both temperature and
pressure. Geodyn, a "third method" model, does not calculate pore pressure.
As previously stated, the model-user prescribes the flow velocity in unfrozen
soil. There is no allowance in Geodyn for a dynamic velocity field changing
with time due to overburden variations, freeze front motion or coé&inuity
constraints.
Using test case 3 as a standard, two additional test runs were made
varying the parameters Ay and Ag. In Figure 17, the value of Ay has
been reduced from the standard 2.681 to 1.340. This figure, depicting the
temperature regime and freeze front position after 10 years, may be compared
both with the Stefan solution and the standard case in Figure 12. Since Ay
has been reduced, we expect that K{Y) is re]atiﬁe]y larger, and that
consequently more moisture and associated latent heat have been transporied
to the freeze front, reducing the freeze rate of the soil. This is verified
by the calculated temperatures.
| In Figure 18, the value of Ag has been reduced from the standard
1.32 to 0.66. Again, we see the same effect, an increase of avai]ab{e
moisture and latent heat, resulting in a decrease in freeze front progression.
Finally, a comparison was made between the standard case and an analogous
case with diffeéent thermal conductivity. The Guymon/Hromadka model uses

a simplified form of the DeVries (1952) expression for thermal conductivity:
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k= 8, ky + 85 ki + (1 = 8, = 84) kg

where 8, is unfrozen water content, ky is thermal conductivity of water,

8; is ice content, ki is thermal conductivity of ice, and kg is thermal
conductivity of dry soil. In the standard case, kg was taken as 64.8 cal
eml nr7l ¢l In the test case depicted in Figure 19, kg is 32.4 cal

em~Ll hr-l ¢-1, Reduction of the thermal conductivity implies a reduction

in the rate of heat transport. For this example of ground freezing, a
reduction in thermal conductivity requires a reduction in the rate of ground
cooling, hence the calculated temperatures in Figure 19 are greater than
those in the standard case in Figure 12.

Other test cases

A single test case was run for the highway embankment geometry described
by Za?1ing, Connor and Goering (1984). The identical soil conditions as
defined in test case 3 were adopted for this problem. The grid for the embank-
ment is depicted in Figure 20a and an expanded view of the grid surrounding
the heat dissipation pipe is shown in Figure 20b. The initial conditions

were prescribed as follows:

T(x, y<4.8m, 0) =0.0C

1]

T (x, y>4.8m. 0) 10.0 C

For times greater than zero, the temperature of the exposed terrain or top
surface of the highway and embankment and the surface of the pipe are set
to 0.0 C. For this test case freezing is not considered; the problem is one
| of transient heat conduction only. Since neither an analytic solution nor
experimental data exist for this problem, no compariscns can be made between

exact or measured temperatures and calculated temperature distributions.
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This suggests that, at best, the present test case can only provide an
indication of the reasonableness of the calculated temperatures. For this
reason, only one test case was attempted with'the highway embankment geo-
metry. No attempt was made to simulate snow cover or varying surface
and/or pipe temperatures.

Calculated temperature distributions after 20 days and 60 days are
depicted in Figures 21 and 22 respectively. The figures clearly demonstrate
the gradual adjustment to the imposed surface temperature. Note that the
time scale (t = y2/4k) for the upper layer is about 20 days, which suggests
that the temperature of the central core under the highway will have
decreased by the factor e~l in about that time. This indicates that the
general trend of the calculated solution appears to be correct.

Goodrich Model

T1D, the Goodrich model (Goodrich, 1978), is a sophisticated one-dimensional
model containing a great number of user specifiable options including: snow
cover with a snow thermal conduétivity which is a function of snow density;
flux boundary conditions with a surface heat balance; empirical formulas
(De Vries, Kersten, Anderson) for determining unfrozen water content,
conductivity and diffusivity. The Goodrich model is also well documented
and reasonably easy to use and both stable and accurate; unfortunately, it
is only one-dimensional. |

Numerical Comparisons

The first three test cases used for the Guymon model were also run
with the Goodrich model, with the equivalent one-dimensional grid and over
the same twenty yedar period. The grid is not depicted here, since it is

calculated internally in the computer model following a geometric progression.
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Test Case 4

Initial and boundary conditions are:

T(y,0) =0.0C

T{0,t>0) = 1.0 C

aT/3y (15,t>0) = 0.0 ¢ m~L
The calculated and analytic temperatures after one, five, ten and twenty
years are depicted in Figures 23, 24, 25 and 26, respectively. Identical
soil parameters for fine silts as used in the comparable Guymon Test Case 1
were employed.

The calculated temperatures are virtually identical to the analytic
solution throughout the 20 year simulation period, indicating the excellent
stability and accuracy of the numerical scheme. Recall that both the Guymon
and the Goodrich numerical scheme use direct solution techniques to solve
the governing matrix equations. This feature eliminates the possibility of
introducing covergence errors into long-term calculations, which is a potential
problem with numerical schemes calling for iterative solution technigues.
In contrast Geodyn uses the Newton-Raphson jteration technique to solve the
system of equations for nodal temperature. The Newton-Raphson method
converges slowly if the initial estimate is substantially different from
the final solution. It would be interesting to compare long term solutions

.(for times greater than 20 years) generated by the Geodyn mode] with the
exact solution for various test cases.
Test Case 5

This is the trumpet curve solution for coarse gravels described pre-

viously as the Guymen model test case 2. For these one-dimensional calcu-

Jations a time step of one day was used.
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The calculated and analytic temperatures after six years are shown in
Figure 27. Plots of the temperature distributions for 5.25, 10.5 and 19.75
years are not presented, since the solution is virtually identical with the
analytic solution at all times. In fact, the Goodrich model automatically
ceases calculation after 6 years and prints "Periodic steady state reached”
when the analytic solution is reached within 5.0 x 10-6. (Convergence to within
5.0 x 10-3 was within one yéar).

Test Case 6

This test case (the Stefan problem for sandy gravels) demonstrates
the progression of a freeze front from a sudden cooling at the surface and
js identical to Test Case 3 for the Guymon model. However, the simplest
soil parameters were chosen i.e., constant soil diffusivities, conductivi-
ties and specific heats in the thawed and frozen layers identical to the
parameters in the Stefan solution.

The calculated and analytic temperatures after one, five, ten and
twenty years are shown in Figures 28, 29, 30 and 31, respectively. The
calculated temperatures accurately model the analytic temperatures for the
entire simulation period. The small deviation at the freeze front position
after one year (Figure 28) is due to averaging between two dépths in the
plotting routine.rather than to & real disagreement. After twenty years
(Figure 31) heat flux from the bottom in the Stefan solution has begun to
increase temperatures above the calculated ones. This is expected since
the assumed bottom boundary condition for the calculations is zero flux.

In this instance bottom temperatubes are very close to the analytic solution
due to the fact that soil parameters are identical with those defined in

the Stefan solution.
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Test Case 7
A final test case was developed to compare the predictions of the
Guymon model with actual field data. A set of ground temperature measurements
was obtained from Esch {unpublished data, 1986} for the CRREL study site on
Farmer's Loop Road north of Fairbanks. These data consist of temperature
measurements at depths between 1 and 30 feet taken during 1981 and 1982.
Of the 22 available profiles, 20 were judged to represent acceptable data.
The remaining two temperature profiles contained serious inconsistencies
- and reversals which could not represent ground temperature in the Fairbanks
area. The twenty acceptable temperature profiles are presented in Figures
32, 33, 34, 35 and 36. The symbol, date and Julian day for each profile is
given in Table 1. The measured ground temperatures at one foot depth (30.48
cm) have been plotted in Figure 37. This figure demonstrates the cyclic
pattern of ground temperature as it responds to air temperature.
Meteorological data for the Fairbanks Airport were obtained from the
meteorological data base on the VAX computer system at the Geophysical
Institute. Air temperature maximums and minimums are presented in Figure
38.4 The cyclic pattern for air temperatures can be discerned, and deviations
from a standard sinusoidal function are of particular interest. It should
be expected that the maximum discrepancies between model predictions and
measured grouna temberatures will be associated with these deviations,
since temperature boundary conditions at the ground surface are specified
in the Guymon model by means of a simple sinusoidal function. Particular
occurrences of these deviations and their effect on ground temperature can
be seen by superimposing the graphs of ground temperatures at 1 ft. depth
(Figure 37) and air temperatures (Figure 38). For example, the extremely

cold air temperature near day 48 is reflected in abnormally cold ground
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Figure 32. Measured temperature profiles for the CRREL study site near Fairbanks.

A, January 8, 1981; B, March 4, 1981; C, March 23, 1981; D, April

16, 1981.
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Figure 33. Measured temperature profiles for the CRREL study site near

Fairbanks. E, May 12, 1981; F, June 16, 1981; G, July 13, 1981;

H, August 24, 1981.
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Figure 34. Measured temperature profiles for the CRREL study site near
Fairbanks. I, September 30, 1981; J, October 28, 1981; K,
November 19, 1981; L, January 21, 1982.
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Figure 35. Measured temperature profiles for the CRREL study site near
Fairbanks. M, February 25, 1982; N, May 11, 1982; 0, May
21, 1982; P, June 4, 1982.
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Figure 36. Measured temperature profiles for the CRREL study site near
Fairbanks. Q, June 24, 1982; R, July 19, 1982; S, September
20, 1982; T, October 19, 1982,
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Table 1

Dates of temperature measurements

Date Symbo]l Julian Day Date of calculated temperatures

1/8/81 A 8

3/4/81 B 64 3/4/81
3/23/81 c 83

4/16/81 D 107 4/13/81
5/12/81 E 133 5/15/81
6/16/81 F 168 6/16/81
7/13/81 G 205 7/26/81
8/24/81 H 237 8/27/81
9/30/81 I 274 9/28/81
10/28/81 J 302 10/30/81
11/19/81 K 324 11/15/81
1/21/82 L 387 1/18/82
2/25/82 M 422 2/21/82
5/11/82 N 497 5/10/82
5/21/82 0 507 - 5/18/82
6/4/82 p 521 6/3/82
6/24/82 Q 541 6/27/82
7/19/82 R 566 7/21/82
9/20/82 S 629 9/23/82
10/19/82 T 658 10/17/82
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temperature near day 85. Another example is given by the unseasonably
warm air temperatures near day 380. The measured ground temperatures show
a "shoulder" of abnormally warm conditions lasting until about day 380C.
Near day 385, the air temperatures return to a more normal Tow followed by
a rapid drop in surface ground temperature.

To establish the surface temperature boundary condition, both the
measured ground temperature at the foot depth (Figure 37) and the measured
air temperatures (Figure 38) were used. The magnitude of the imposed
surface temperature was estimated from the one foot ground temperatures,
and the phase from the air temperatures. In particular, the assumed surface

boundary condition was:
Tg = -0.5 + 3.5 sin [2w(t-130)/360]

where t is time in days.

The initial temperature condition is the initial measured temperature
profile denoted by A in Figure 32. Soil properties were established from
the data listed in Appendix B appropriate for Fairbanks silt. These are

listed beTow:

Ky = 0.042 cm/hr (hydraulic conductivity)

nk = 1.559 (pressure exponent in hydraulic conductivity expression)

Ay = 0.0583 - 1072 (pressure coefficient in hydraulic conductivity
expression)

85 = 0.407 (porosity)

ng = 0.782 (pressure exponent in soil moisture ekpression)

Ag = 0.505 1072 (pressure coefficient in soil moisture expression)

In addition to the soil properties found in Appendix B, two additional

parameters, the residual unfrozen water content, r, and the hydraulic
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conductivity attentuation factor, E, must be specified by the model user.

A value of £ = 10.0 was selected based on the numerical experimentation in

the earlier sections of this report and on the calibrations in a report by
Guymon et al., (1981) where £ was determined to be 8.0 for Fairbanks silt.
Yarying E between 5.0 and 10.0 had 1ittle effect on the predicted temperatures
over the relatively short calculation period (22 months). This is in

contrast to the earlier calculations involving E. However, those test

cases involved a five year calculation period with constant freezing surface
temperature. The effect of E of ground temperatures increases with time,

and may not be apparent in short term calculations.

The residual water content is the unfrozen volume of water per unit
volume of soil remaining in the soil after freezing. In a laboratory study
(Guymon et al., 1981), it was found to be about 0.045 for Fairbanks silt.
Calculations were attempted with r = 0.04 and r = 0.05. This variation
affected the temperature predictions, pafticu1ar1y at depth. When the
smaller residual water content was used, the calculated temperature
distribution at depth remained uniform, with T{y) = 0.0 for depths greater
than about 5 meters. This temperature distribution was due to the slightly
greater amount of available water in the sofl. That is, the available
water is equal to 65 - r, and when the smaller residual water content was
used, more water was available for phase change. Temperatures do not
decrease below 0.0°C in the Guymon model until all the available water
(greater than r) is frozen. This observation may provide a technique for
"tuning" the model. When the unfrozen water content is not known, but
detailed temperature distributions are available, variations in r will most

significantly affect the deeper temperatures.
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Both a pressure profile and an ice content profife must be specified
as initial conditions in the Guymon mondel. However, this information was
not available in the data, which consisted solely of measured temperatures.
In addition, it was necessary to specify pressure boundary conditions
throughout the calculation period. An initial water content profile is not
specified in the Guymon model. Since the initial conditions (profile A in
Figure 32) represent medasured temperatures on January 8, 1981, it was
assumed that no unfrozen water greater than r was present in the soil.
Furthermore, it was assumed that the ice content was uniform at that time.

This implies that the initial ice content (volumetric) was given by
8y = py (8g = r)/ej = 1.09 (0.407-0.05) = 0.389

where py and pj are the densities of water and ice, respectively. This
proved to be an inapﬁropriate assumption, resulting in errors which will be
discussed subéequent1y.

The initial ice distribution was used to determine the initfal pressure
profile by the following procedure. When the soil is freezing, the
relationship between pore pressure and water content in the Guymon model is

specified by the Gardner expression:

%

8 =
where ¥ is the absolute value of the pressure or the soil tension and ©

is moisture content. For a known soil moisture content, the above expression
can be inverted to determine soil tension. When all available moisture is

frozen and 6 = r, then ¥ = Yyay; Ymax was the initial value of soil tension
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" prescribed in this test case. Ffor times greater than zero, it was assumed
that the pressure gradient boundary condition at 15 m depth was zero, This
is equivalent to the assumption of zero moisture flux at the bottom boundary.

The grid for the present example is similar to that in Figure 1.
Therefore, as in the earlier test cases, three temperature values are
computed at each depth. Some variation of these three temperatures appears
in the calculated profiles, partfcu1ar1y near the phase front.

The comparisons between calculated and measured temperatures are
presented in Figures 39-56. The first three figures, 39, 40 and 41, contain
the greatest error and should be considered together. Figure 39 displays
measured and calculated temperatures for March 4, 1981, Figure 40 displays
measured temperatures on April 16, 1981 and calculated temperatures for
April 13th. (Calculation output was set at every 8 days). Figure 41
presents measﬁred temperatures for May 12, 1981 and calculated temperatures
for May 15th. Calculated temperatures, especially at depth,'are substantially
below measured temperatures. We believe that this is due to the initial
assumption of no available unfrozen water (6 = r =0.0). Heat loss from
the soil could only result in a temperature reduction, since no latent heat
was available. We expect that if the actual initial values of 6 and/or &;
were known, that the agreement between calculated and measured temperatures
would substantially improve. The cold temperatures measured near the soil
surface on April 16 (Figure 40) probably reflect the cold air temperatures
recorded in late February (see Figure 38). The assumption of a simple
sinusoidal boundary temperature has been violated by the ¢old February and
March air temperatures. It should be noted that a1ter1ng'the model to

admit general boundary temperatures is a relatively minor project.
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Figure 39. Comparison of measured and calculated (Guymon model) temperatures

for March 4, 1981.
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Figure 40. Comparison of measured and calculated (Guymon model) temperatures

for April 16, 1981.
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Figure 41. Comparison of measured and calculated (Guymon model) temperatures

for May 12, 1981.
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The calculated and measured temperatures for June 16, 1981 are presented
in Figure 42, Here the agreement is substantially improved. Air temperatures
(see Figure 38) for the most part followed a sinusoidal curve from about
day 120 {May 1, 1981) to day 360 (December 26, 1981), implying that the
assumed boundary condition was reasonable. In fact, all profiles for this
period, Figures 42-47, with exception of Figure 45, indicate good agreement
between predicted and measured temperatures. Figures 43 and 44 compare
predicted and measured temperatures near days 205 (Jp]y 23rd) and 237
(August 24th), respectively. The agreement is better for day 205 (Figure
43). The 56}1 was a little cooler than predicted on day 237 (Figure 44).
This might be due to the slight lowering of the minimum air temperatures
near day 230 (see Figure 38). By day 274 (September 30th) both maximum and
minimum air temperatures are somewhat below a standard sinusoidal curve.
Consequently, the match between predicted and méasured temperatures is poor
for September 30, 1981 (see Figure 45). The position of the freeze front
is significantly overpredicted at about 1.2 m vs. the actual 0.6 m. On
days 302 (October 28, 1981) and 324 (November 19, 1981), shown in Figures
46 and 47, respectively, the agreement between measured and calculated
temperatures is again quite good. Note that the maximum temperature
deviation at depth on day 302 is about 0.25°C.

The agreement between measured and predicted temperatures for days 382
(January 21, 1982) and 422 (February 25, 1982), shown in Figures 48 and 49,
respectively, is very poor. Presumably the period of abnormally warm
‘maximum air temperatures between about day 360 and day 460 (see Figure 38)
has decreased soil freezing substantia1]§. Note that the superposition of
Figures 48 and 49 demonstrate that the predicted temperatures for January

21, 1982 match reasonab19 well with the measured temperatures for February
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Figure 42. Comparison of measured and calculated (Guymon model) temperatures

for June 16, 1981.
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Figure 43. Comparison of measured and calculated {Guymon model) temperatures

for July 23, 1981.
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Figure 44, Comparison of measured and calculated (Guymon model) temperatures

for August 24, 1981.
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Figure 45. Comparison of measured and calculated {Guymon model) temperatures

for September 30, 1981.
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Figure 46. Comparison of measured and calculated (Guymon model) temperatures

for October 28, 1981.
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Figure 47. Comparison of measured and calculated (Guymon model) temperatures

for November 19, 1981.
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Figure 48. Comparison of measured and calculated (Guymon model) temperatures

for January 21, 1982,
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Figure 49. Comparison of measured and calculated (Guymon model) temperatures

for February 25, 1982.
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25, 1982, indicating soil freezing has been delayed almost a whole month by
the warmer air temperatures.

Air temperatures tend to approximate a standard sinusoidal curve
between day 470 and day 650 (see Figure 38). During this period the
agreement between predicted and measured so0i1 temperatures is quite good.
This time period includes the remaining profiles: day 497 (May 11, 1982)
on Figure 50, day 507 (May 21, 1982) on Figure 51, day 521 (June 4, 1982)
on Figure 52, day 541 (June 24, 1982) on Figure 53, day 566 (July 19, 1982)
on Figure 54, day 629 (September 20, 1982) on Figure 55, and day 658 (October
19, 1982) on Figure 56.

The first profile of the above group, day 497 on Figure 50, shows the
persistence of the cooler calculated soil temperatures from the previous
months. As indicated earlier, the disagreement between measured and
calculated temperatures is almost certainly due to the inadequacy of the
sinusoidal surface boundary condition. On day 507 (Figure 51) predicted
temperatures begin to approach the measured values, although there is still
substantial (about 0.5°C) difference at depth. Calculated temperatures on
days 521, 541 and 566 on Figures 52, 53 and 54, respectively, are in very
good agreement with measurements. These three figures demonstrate the
variability of the calculated temperatures at the same depth. For example,
in Figure 52 the compdtér solution at the 0.15 m depth produced temperatures
ranging between b.O°C and 0.5°C. The location of this type of perturbation
appears to be consistently just above the freeze front position and is
probably associated with the very sensitive moisture content calculation
and its dependence upon pore pressure.

In Figures 54 and 55, the position of the freeze front has been over-

estimated by about 0.4 m. Note that the freeze front position for summer
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Figure 50. Comparison of measured and calculated (Guymon model) temperatures

for May 11, 1982.
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Figure 51. Comparison of measured and calculated (Guymon model) temperatures

for May 21, 1982.
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Figure 52. Comparison of measured and calculated (Guymon model} temperatures

for June 4, 1982.
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Figure 53. Comparison of measured and calculated (Guymon model) temperatures

for June 24, 1982.
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Figure 54. Comparison of measured and calculated (Guymon model) temperatures

for July 19, 1982.

88



TEMPERATURE <>
-4 -2 a 2 4

X TIT4HUUMo

1B —

Figure 55. Comparison of measured and calculated (Guymon model) temperatures

for September 20, 1982.
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and Tate summer was also overestimated during the previous year (see Figures
44, 45 and 46). This may be due to an inapbropriate1y high maximum tempera-
ture assumption for the surface boundary condition.

Figure 56 presents the comparison between measured and calculated
temperatures on day 658 (October 19, 1982). The agreement is quite good
with a maximum deviation of about 0.25°C.

In summary, the agreement between predicted and measured temperatures
was generally good when the air temperatures appeared to follow a standard
sinusoidal curve. When air temperature deviated substantially from this
curve, the agreement between predicted and mééSured soil temperatures was
very poor. This observation clearly demonstrates the need to include a
variable surface condition into the Guymon model. The simplest and most
convenient format appears to be a functional dependence on air temperatures,
e.g;, via n-values or a simplified surface flux balance. A reasonable next
step would be to attempt to model the present data set with an air-temperature
dependent boundary condition. However, the difficulty associated with an
unknown initial ice content profile should not be overlooked. If a complete
data set is to be assembled for model testing and verification, it must
contafn not only soil temperatures and meteorological data, but also soil
ice content, and those soil properties defined in Appendix B of the report.

Summary and Conclusions

Both the Goodrich and the Guymon/Hromadka models have limitations which
require resolution before use as a general purpose engineering design*too1.
The Goodrich model is severely limited by the fact that it is one-
dimensional; effectively this precludes its use for engineering design in-

volving two-dimensional problems. Furthermore, the Goodrich model solves
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Figure 56. Comparison of measured and calculated (Guymon model) temperatures

for October 19, 1982.
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only the heat transport equation, permitting variations in soil moisture

and other parameters via empirical formulas such as those given by DeVries,
Kersten and Anderson. However, this model is particularly versatile with
respect to choice of empirical expressions for soil moisture terms, surface
flux and heat balance, snow conductivity formulations, internal mesh genera-
tiqn, and simplicity of application.

| In contrast, the Guymon/Hromadka model solves both the heat transport
equation and the soil water potential equation, employing a generalized Gardner-
type formulation of hydraulic conductivity and soil moisture. The versatility
comes in the form of the selection of coefficients and exponents in the
Gardner expressions. There is an undeniable advantage in the inclusion of

a soil pressure head or potential equation, in that rates of change of soil
potential are calculated independently, but coupled to, rates of change of
soil temperature. This implies that regfons with severe moisturé gradients
will not inevitably prdduce anomalous behavior in temperature gradients
(Hromadka, Guymon and Berg, 1981). In addition, the separation of the two
variables, pressure head or moisture and temperature allows distinct and
separate boundary conditions to be specified for each of the variables.

Both the Goodrich and the Guymon/Hromadka numerical schemes are
convergent, stable over long simulations and relatively efficient. Both
employ direct matrix solution techniques, e1iminating errors due to
convergence which are characteristic of iterative techniques. There is a
real need to determine the fong-term performance of models with iterative
solution techniques such as Geodyn.

The Guymon/Hromadka model does lack a feature useful for simulating
Alaskan soils, i.e., surface heat flux balance or specified non-zero heat

flux. The model can be modified to include this feature without extensive
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change. Furthermore, use of the Guymon/Hromadka model requires specification
of five or six empirical coefficients. THese coefficients are only
imprecisely defined, thereby making application of the model complex.
However, this approach, the "second method”, involving solution of separate
partial differential equations for heat and moisture transport, has the
greatest potential for the solution of a wide range of problems including
saturated and unsaturated soils, the presence of overburden, seepage and a
moving freezing front. In ending, we note some detailed comments on the
Guymon/Hromadka model are included in Appendix A which will allow straight-

forward implementation of the model by a user.
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APPENDIX A

Informal comments on the computer models

1. FROST2A and FROST2B

These are two versions of the same program for two-dimensional coupled
heat and moisture transport in freezing soil. FROST2B is a more recent and
s1ightly improved version, including an apparent heat capacity approximation
to better define frozen and unfrozen regions. The Tatter alterations, less
than about 10 program statements, are contained wholly in the subroutine
PHASE. Other differences are minor, dealing primarily with input format.
For these reasoﬁs all computer simulations were done with FROSTZB.

In a general sense, FROST2B is “user-friendly". There is a fair amount
of documentation in the form of comments and subroutine descriptions. The
structure is modular and well-thought out, containing eight logically
. divided subroutines. :Input and output are particularly well handled, with
both input and output file assignments set internally within the program‘
(by "open" statements), obviating the need for users to "assign" these
files. However, there are several confusing aspects of the model, some
minor dand easily changed by the user, and others more intrinsically complex.

Probably the single most significant feature of the Guymon model is that
convective moisture transport is included in the model. This feature is
critical, allowing the physical thermodynamics to be more realistically
simu?ated; and providing the capability for easily incorporating currently-
accepted models of moisture migration. However, the inclusion of the
moisture transport equation impiies the introduction of complex input data
into the numerical model.

Another problem is related to the presence of the moisture migration

equation. In its present form, the Guymon model will not easily permit
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solution of the heat transport equation alone with phase change and with
EQEE moisture transport. That is, if phase change takes place, the moisture
migration equation must also be solved, which implies the setting of
sometimes poorly known pore pressure boundary conditions. However, the
converse argument could be made. if freezing takes place, then pore pressure
gradient and moisture migration are important and the equation should be
solved, and, our inexact knowledge of the appropriate boundary conditions
merely emphasizes the importance of further studies related to moisture
transport in a freezing soil.

" Another problem or deficiency with the Guymon model is its inability
to handle non-zero surface or boundary flux conditions. This modification,
however, can be rather easily made.

Other minor problems with the model are related to some confusing

notation including:

' .
i.) LENSIM appears to be the time extent of the simulation, but is not;

instead it is the total number of updates of boundary conditions; ii.) the
same symbols (XL and CAP), used for thermal conductivity and volumetric
heat capacity in the heat trdnSport equation, are also used as hydraulic
conductivity and effective specific.yield. Finally, it should be noted
that the units used throughout the model are cal, cm, hr and C. This must
be emphasized since the empirical coefficients, Ag and Ay, are dimensional,
with the precise dimensions determined by the empirically determined
exponents ng and ny (see eq. 4 and 5 in Guymon and Luthin, 1974).
2. PROTO@, PROTOPA and PROTO@B

These are interactive data file preparation programs designed to
compile the input files for the main programs, FROST2A and FROST2B. 1In

brief, we do not recommend their use. However, due to the unavai]ébi]ity
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of documentation for the main programs and for input file preparation, they
do serve as useful references for input order, nomenclature, and dimension.

The PROTO* family of programs open a data file called FRST.DAT, the
input data for either main program FROST2A or FROST28. When PROTO* is run,
a series of questions are asked of the user, the answers to which are
ordered by PROTO* and set into the file FRST.DAT. It seems to be simpier
for the user to compose FRST.DAT directly by typing the proper input.
Furthermore, large input files for finite element programs are almost always
put together sequentially as data becomes available. With PROTO*, if a response
is not given to all questions, the complete data file may be lost, necessitating
another tedious step-through PROTO*. Other advantages of directly composing
FRST.DAT over using PROTO* include the fact that maximum advantage can be
made of recurrent data and that some programming can be used to generate
portions of the grid or initial conditions. |

Because neither a test case nor data file nor data directions were
available when this project began, we used the PROTO* 1isting extensively to
¢clarify input data order, nomenclature and dimension. To eliminate this
problem for future users of FROST2B, section 3 of this Appehdix contains
data directions for the composing of FRST.DAT.
3. FRST.DAT

As previously stated, FRST.DAT is assigned to FROST2B internally via
"open" statements. The output file is aiso assigned internally by FROST28B
to FRST.RES by "open" statements, allowing users to check the program
results in the most recent version of FRST.RES at any time.

Data is read into FROST28 in free format, simplifying input file
preparation. In the following synopsis of the input data, we will use the
dollar sign ($) at the left margin to denote individual data Tines rather

than explanation.



'$ XNETA

XNETA is a weighting factor on the capacitance matrix. (2 = Galerkin;
3.14 = subdomain integration; infinity = integrated finite difference).
Galerkin, 2, is the recommended value in Hromadka and Guymon (1980) and
adopted in these test cases.

$ DELT  NUPDAT  LENSIM  NOUT

DELT is the length of a time in¢crement in hours, e.g., 24, but should depend
on how fast the boundary conditions are changing. DELT should be a small
fraction of the total time period for sinusoidal boundary conditions.

NUPDAT is the number of DELT intervals until boundary conditions are updated,
possibly 2-30 depending on how fast boundary conditions are changing. Note
that if boundary conditions don't change at all, NUPDAT should equal the
total number of hours in the simulation divided by DELT.

LENSIM is the total number of update intervals in the simulation. Therefore,
LENSIM should equal the total number of hours in the simulation divided by
the product of DELT and NUPDAT.

NOUT is the number of update intervals between outputs. If only a final
output is desired, then NOUT should equal LENSIM.

$ NPATHI  IPHASE  KOLD

NPATHI controls which equations are solved. If = 0, both heat and moisture
are solved. If = 1, heat transport only. If = 2, moisture transport only.
IPHASE controls phase change option. If = 1, the subroutine Phase is called
and the so called "isothermal" phase change mode] is implemented (see
Hromadka, Guymon and Berg, 1981). If = 0, no phase change can occur.

KOLD is an output directive such that if = 0, double output is printed
incTuding both old and new temperatures and pressures; if = 1, normal output
is printed. KOLD = 1 is satisfactory in almost all cases.

$ TFPD CW CI  TKW TKI XL

TFPD is the freezing point depression, usually 0.0 C.

CW is the volumetric heat capacity of water, and equals 1.0 cal em=3 ¢-1,
TT is volumetric heat capacity of ice, and equals 0.46 cal c¢cm™ %‘ .

TRW is the thermal conductivity of water, and equals 4.8 cal cm~! nr=l ¢-1,
TKT is the thermal conductivity of ice, and equals 19.0 cal em~! nr-1 c-1,
XL is the latent heat of fusion of ice, and equals 80.0 cal em™3,

$ NNBCT  NNBCP

NNBCT is the number of boundary nodes which have prescribed temperatures.
{This does not include those nodes with prescribed zero heat flux).

NNBCP is the number of boundary nodes with prescribed pore pressures. (This
does not include those nodes with prescribed zero moisture flux).

$ NNOO NEL NEPG  NNPG

NNOD is the total number of nodes.
NEL {s the total number of triangular elements.
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NEPG is the number of element parameter groupings, i.e., the number of
groups of elements in which soil properties (including soil thermal
conductivity, heat capacity, saturated hydraulic conductivity, and the so-
called Gardner coefficients, - ng, Ag and E) are constant and uniform. If
these properties are uniform throughout the soil, then NEPG will equal one.
NNPG is the number of nodal parameter groupings, i.e., the number of groups
of nodes at which soil moisture properties (including porosity, Gardner-
type coefficients - Ag and ng, residual volumetric water content, and

soil heat capacity) are constant and uniform. If these properties are
uniform throughout the soil, then NNPG will equal one.

$ PARNOD(1,1) PARNOD(1,2) PARNOD(1,3) PARNOD(1,4}  PARNOD(1,5)
$ PARNOD(2,1) PARNOD(2,2) PARNOD(2,3) PARNCOD(2,4) PARNOD(Z2,5)

The number of lines for PARNOD entries depends upon the available version
of FROST2B. Originally FROST2B read in exactly 10 1ines assuming 10 or
Jess nodal groupings (with blanks or zeros in the unused 1ines). The
present version was changed to read in exactly NNPG lines.

PARNOD(J,lg is the porosity or saturated volumetric moisture content of the
soil in cm® ¢m~>. This can be determined from the void ratio, e, listed

in Appendix B since porosity = e/(l+e).

PARNOD(J,2) is Ag, the multiplier of pressure head in Gardner's moisture
function. This is listed in Appendix B.

PARNOD(J,3) is ng, the exponent of pressure head in Gardner's moisture
Function. This is Tisted in Appendix B.

PARNOD(J,4) is the residual volumetric water content or the fraction of
water which is not available for phase change. When the moisture transport
equation is solved (if NPATHI = 0 or 2), PARNOD(J,4) must not equal 0.0,
but it may be set to scme very small number.

PARNOD(J,5) is the volumetric heat capacity of the dry soil in cal em~3¢~1,

PARELE(

$ PARELE(1,1) PARELE{1,2) PARELE(1,3) PARELE(1,4) PARELE(1,5) 1,6)
$ PARELE(2,1) PARELE{2,2) PARELE(2,3) PARELE(2,4) PARELE(2,5) PARELE(2,6)
3 T R
S L L L R R R R R

The number of lines for PARELE entries depends upon the available version
of FROST2B. Originally FROST2B read in exactly 10 lines assuming 10 or
less element groupings (with blanks or zeros in the unused lines). The
present version was changed to read in exactly NEPG Tines.

PARELE(J,1) is the dry soil thermal conductivity in cal hr~l em1 ¢-1,

2) is the volumetric heat capacity of dry soil in cal em=3¢c-l. This
entry may be numerically the same as PARNOD(J,5), or it may permit a heat
capacity variation to occur at this element position.

PARELE(J,3) is the saturated hydraulic conductivity in cm hr=l.  This is
Tisted in Appendix B for various soils.

PARELE(J,4) is nk, the exponent of pressure head in Gardner's function for
fiydraulic conductivity. This is 1isted in Appendix B.

PARELE(J,5) is Ak, the coefficient of pressure head in Gardner's function
for hydraulic conductivity. This is 1isted in Appendix 8.

PARELE(J,6) is E, the hydraulic conductivity adjustment factor for ice
formation (see eq. 8 in Guymon, Berg, Johnson and Hromadka). This parameter
must be obtained by model calibration.



)  DATNOD(1,2)  DATNOD(1,3)

$ DATNOD(1,1

$ DATNOD(2,1) DATNOD(2,2)  DATNOD(Z,3)
3PS T T T
3

The number of lines for DATNOD entries depends upon the available version
of FROST2B. Originally FROST2B always read in 90 lines of DATNOD (the
maximum node dimension). The present version was changed to read in
precisely NNOD 1lines.
DATNOD(J,1) is the x location of node J (in cm)

is the y location of node J (in cm)
Note that y normally should increase in the opposite direction from pore pressure;
consequently, the bottom-most soil boundary should be defined as y = 0,
with y increasing upward.
DATNOD(J,3) is the nodal parameter group number - a particular group of
nodes with uniform soil moisture properties.

$ IDTELE(1,1) IDTELE(1,2) IDTELE(1,3) IDTELE(1,4)
$ IDTELE(2,1) IDTELE(2,2) IDTELE(2,3) IDTELE(2,4)
Bttt tr et sttt e s e ae ot a et e
Bt teoasenaatstraasaseasasonannsanansoetstsusonrcasasrsesatacavanaostsn s

The number of lines for IDTELE entries depends upon the available version
of FROST2B. Originally FROST2B always read in 150 lines of IDTELE (the

maximum element dimension). The present version was changed to read in

exactly NEL Tlines.

IDTELE(J,1) is a node number of any node in the Jth element.

IDTELE(J,2) is the next node number of the Jth element, progressing
ountercio Kwise.

IDTELE(J,3) is the final node number of the Jth element, progressing
counterclockwise.

IDTELE(J,4) is the element parameter group number - a particular group of

elements with the same soil properties.

$ TOLD(1) POLD(1)  XICEOL(1)
$ TOLD(2) POLD(2)  XICEOL(2)

These are the initial conditions at each node. Again, the older version of
FROST2B reads 90 lines, while the modified version reads exactly NNOD Tines.
-TOLD(J) is the initial  temperature array in C.

is the initial pore pressure array in c¢m. For example, for level,
saturated soil with no overburden, the value of POLD would equal_the depth.
XICEOL(J) is the.initial volumetric ice content array in cm® cm”

$ NBCT(1) BCT(1,1) BCT(1,2) BCT(1,3) BCT(1,4)
$ NBCT(2) BCT(2,1) 8CT(2,2) BCT(2,3) BCT(2,4)
B ettt ee ettt et bt c et es st ettt
3 T

These are the temperature boundary c¢onditions. There will be either 35 or
NBCT lines, depending on the FROST2B version.

NBCT(J) is the node number for a prescribed temperature. The temperature
is prescribed as a sinusoidal function of time according to the formula

T = (A+B)/2 + ((A-B)/2) sin(2n(t+8)/TP);

BCT(J,1) = A = maximum temperature on the sine curve in C.

B8CT(J,2) = B = minimum temperature on the sine curve in C.
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8CT(J,3) = TP = period in hours of the temperature cycle.

BCT(J,4) 8 = phase shift in hours of the temperature cycle.

Note: L) BCT(J,3) must not be set to zero, even if constant boundary
temperatures are prescribed, 2) if a constant temperature is needed, simply

sat A = B.

$ NBCP(1) BCP{1,1) B8CP(1,2) BCP(1,3) BCP(l,4)
$ NBCP(2) BCP(2,1) BCP(2,2) BCP(2,3) BCP(2,4)
3SR R R EEE R
SRS R L L LR R E R R R

These are the pore prassure boundary conditions. There will be either 35

or NBCP lines, depending on the FROST2B version. NBCP(J) is the node number

for a prescribed pressure. The pressure is prescribed as a sinusoidal

“function of time according to the formula P = (A+B)/2 +{(A-B)/2) sin{(2=(t+8)/TP);

BCP(J,1) = A = maximum pore pressure on the sine curve in cm.
BCP(J,2) = B = minimum pore pressure on the sine curve in cm.
BCP(Jd,3) = TP = perjod in hours of the pore pressure cycle.

BCP(J,4) = 9 = phase shift in hours of the pore pressure cycle.
Note: 1) BCP(J,3) must not be set to zero, 2) if a constant pore pressure
is needed, simply set A = B. _



APPENDIX B



APPENDIX B GAHDNFR COFFFECIINTE FOR SOULS PAGE ) |

e e i s L ALt e — dn = 4 = = = = e o > = = = T AL 4 L e e S e R M S A e e e e e e

S0IL HOISTURE CHARACIECRISTIICS UNSATURATED HYORAULEC CONDUCTIVITY

NUKRE h AVFRALS AVIRAGE
A n R ABSOLUTE ERKOR A n - ]  ABSOLUTE ERROR
GRAVELS :
DGS -HpP 0.u83L-02 0.66 0.99F 0.002
DGS-1 2,111 3.19¢ 0,924 t,00%
Des-2 1.321 C.16¢E 4,956 0,093 2.681 1.025 6.99¢ 0.000+ —_—
ASE-AL .17 0.25% 6.96°F G, 00 B.4040-01 2.200 6.934 0,035
wLNH=1] 0.0680-01 8,056  0.962 ’ H.00p 0.6740-04 2.8L1 0.989 0.008
AB=1 £.128 0.6 0.98% 8,004 0.643(-03 2.462 0.959 c.011
SANDS B SILTY SANDS
CMES- 0.1481L~01 ) 95 0.94) n.ud

—  MES§-2 0. 2090 -02 1.26% 5.930 U.024 :
HES-3 04494 -01 nat 0.9 0.61% 0.108(-0)3 .57 0.994 0.026
SPEC-1 0.5731 -04 1oh4k 0.976 0.0)4
tpiC-2 0.6331 -03 1.144 6.057 0.02¢
SeLE-3 B.401L-03 1.283 0.951 0.023%
SPLC-a U.AEAC-03 1.351% 0.933 0.030
ShEE-9 0.1011-02 1.200 0.929 0. N2F
TEIC-h o109 -02 N7 Y Y
NI n,oaL =02 o.p G.unat B
tl-1 O TRgET Y Dob2t 0,901 c.o1
L= . ETINES T T D578 .96 0. 39RE 03 S.00% 0.9 TG
SHT-3 6.0930-02 0.66 0.9¢7 P.ADL 0.1R&4{-03 2.1 0.969 n,u0a
G S~HE .."924 ~02 CaliZ2s [P LS TR YN
65t-1 0.307C~-03 1.284 0.520 .03
0oL h-2 0,358 -04 1.748 0.9:9 1.117 B.pniaC-03 2.%%6 0.940 0.661
HYS ~HE 2901 -03 1.292 0.4% ) 0.040
Hye-) G.hhoi-02 1124, 6.961 0.F17
HY S =2 U.22458 -0% 1.12h a.9%7 ot h 6.h216-04 YT L) 0.943 0.204
NS -1 B.I%11 -0} TS 8.4 - Balitz
TR D.raG -0 0.1a0 0.1 6,00 :
Wiy =2 : 0..94f =01 9. 69k 0.+494 e RE! Bohual -0% 3.ha) 0.977 0.121

e e e e e e e e m d = e v em e T i vm v e o =y AR A S s fm im = = e o e e e A e = e = = = e e o e - m e e e = Tm e e T e e — e e e



uvi-1-b

LHUNS -He
TLNIE-)

1Kf -
It 23
oW
) -
ro

0. 7iubt -02

GAVLHI L COLIFICIENDS

O0.bbh [T Iy
D.i)b‘i 0,974
1.287 0.947

1230 Dtil4
0,3y 0,946
leub4 a442
:‘.al«‘ ".‘,P'l

| YN [T
o hNE [ ALY
1.191 O.0817

[ PR Iy

beun ¢}

FOR SOBLS

e mmE EE e AR EE P E. .- —————EE = o= -

- - T = " = W e - e S = -
.

A R R R AP e e AR = e = e e A - - = = = e =

- - e e - e e kR L e e Em e - A —

FAGE 2

CH-(
Mh ~A
Wi~
e~
e a3

0.5%240 0.99¢
.ty [T LI
tault



€1s5-1 - 0.699£-03 1.263 8.953 0.029
———————————————————————————————————————————— --——-wv-uvvvovve-y"cr-_-?—lvrav-,v_'vr-1-9?1———-—-—-—--r---»---——-———-——-——-—-——----—-o-—

CRG-1 6.78001-01 0.641 0.944% 0.012

0v3i2-23 9.191[-32 1.141 f.961 0.023

pvi2-33 0.139£-0Q2 1.1848 0,916 0.013

Dviz=-ié6 0.312L-03 1.452 0.199 0.050

DV32-H g.1900~01 0.73% 0.9T 0.023

Dv3l-~b-1 0.121L-01 b.689 0.984 0.016

Dvi2-6-2 0.4621-02 0.R1M D.9A} 0.025

LNH-5B 6.720€-01) 0.631 0.994 g.002

LNH-56 0.119E-04 1.861 0.968 0.021)

ST>» D.263F-02 1.0017 8.5t 0 0.015%

SILTS

NHS«~1 D.4610L~0¢ 24351 0.93% 0.039

NHE=-2 6,3520-04% 1,649 0.976 0.018

NHS-3. D.693L~06 2.200 0.95% 0.022

HHS -4 0.160L-06 2.122 3.9487 0.D21

NS -5 0.2971L-03 1.263 0.969 C.02C

NHS -6 0b.458€-06 2.192 0.962 0,020 D.24H8L-06 3. 015 0.921 0.036

kS -uP 0.4024-02 e.11 05902 25

fors- ) D.uddi-04 L.44Y 8wl G012

fpKy-¢ havaTl-02 h.r14 0.99¢ 0.

LI S | t.h0%1 -02 Ga.fno

[ )] boi08 Uablt A -02 | IO R 0.0 [ TR | I



GARDNER COFFFICIENYS FOR SOILS PAGE 4

HPS-HP 0.172¢-02 0.866 0.989 0.020
HPS <~} 0.4 -0k 2.089 2.978 0.015
WPS=2 0.9210-06 1.8848 O.84H 0.039
MPS-3 0.209£-0% 1644 0.741 D.044
HPS -4 0.987E-06 1.814 0.85%7 0.038 .
MPS -5 0.420F-06 2.116 0,72 0,039 0.926E-07 2.996 0.847 0.035
OvI19-% 0.275C-03 1.224 0,965 p.bD27
pvilo-3 0.3680-02 L.940 0.948 0.028
DVT10-24 0.139L-02 1142 0.960 6.022
OVilI-18 0.668F-02 0.656 8.99% 0,003
nvilT-0 0.,246C~-01 0.529 0.999 0,601
oo DVILT-8 0.1356-01 0.537 0.99¢6 0.003
| o e m e e e c e e e o o i e - = - e T MR e e . > e = . T . A e = N e T R - e S8 e A S A e -
I~
AVH 0.915%£-01 0.356 0.94¢ 0.00%
£s71-1 0.%20-03 1.219 0.H21 n. 0N}
€Lr-> 0.110 -04 I A B9 0.01%
cL1-5 B.1861 -34 lal20 D974 0.021
[T e | 0.0 -0 f.114 0,794 0.047
con-2 0.3350-03 1.212 0.986 0.06¢11
CHin-Y 0.u360-05 1.007 d0.970 0.0%}
C59-1 0.3906-03 1.22% 0.991 0.008
€59-2 0.7900~03 1.261 0.994 0.008
Cun-2 0.520-03 1.2%¢0 0.5%7 G. 013
LHSS -HE D398 -0y 1.219 0.94 % n,.na2
Crint-1 Dl f ~04 | B.991 LGB0
CHSS-2 D.4R51 -0u 1.684 0.964 Y
Ly - . Tal -0% 1.1581 L. G.011 Da.14% -0} Y Y . .1
ChLS -4 UonTal -G% 14230 I G g G130 -03 - 1.nih n.us! s.ont.
[ [0 I LY B | ALY Lol o081 .08 4 f.31048-03 2.4 f.960608 N.0nY
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GARUONER COFFFILEENTL FOR oURLS

oNs-1 0.134(-03 J.423 0.99¢ o.007 '
OuWS-2 D.151€£-04 1.6917 0.949 0.009
HNVS-1 D.TTE-04 1.950 0.97% 0,027
HNVS -2 0.783-06 2.180 0.928 0.036
HNVS -3 0.528€-058 1.460 0,915 D.01A
HNYS-4 G.6050-04 1.399 6.996 0.006
JSS-1 0.3066~04 1.730 0.929 0.D44 -
d55-2 0.11T7E~04 1.8317 0.945 D034
JSS-3 0.345€£-05 1.940 0.954 0.026
JSS-4 0.767L-0% 1.149 0.965% 0.017
nvi2-12 D.ITAE-0A 1.862 0.913 0.067
aviz-n D.uAUE-02 u.901 0.9%4 0.036

jos)

¥ §SS U, 3821 ~03 1.2038 0.820 0.031

&2 g S P ST S v, ——- e e e m o —————————————— = ————————— v — e v ——————————

CLAYS

BHU-12 0.497F-02 0.779 C.998 . 0.609
BHD ~% U.316L-02 0.928 0.9HY 0.012
AVH-10 0. 16491 -01 0.591 o.9H6¢ 0. 009
AVH-24 0.403F-01 0.46"% G.99%9 0.001
HLL -1p G.2501 -02 UettOh £.914 n.013
nce -1 0.49600-04 1.204 3.9 0,085 .
MCL -7 #.500§-03 0.9646 0,947 G D3 D.145f-02 V. 160 0.987 6.0006+
st 11-0 B.1%40 -0} PR LR 2,198
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sL 11-10 0.4R81-01 0,332 0.971 0.00¢

SL 11-2»a 0.194L-01 D.433 0.9717 0. Uy -
SL lz-24 D.331E-02 | Q.779 0.964 0.012

SL 1&-29 BJ,LHAE-D) l.012 0.944% 00011

St 12-8 0.216E-02" 0.681 C.965 0.006"

SL 12-13% 0.983€-02 0.4813 0.868 0,012
St 12-19 0.261L-01 B.454 0.99% 0,004
- - e G mmmrEr—— S ————————————— e EE e et e remmee e EEE T, —— e —d S E . ., ——————————— e S .
' weo-1 0.1621-01 0.257 o.n0¢ 0.010
A S S S rrmrm e ——————— e ————— e memmmemem——mmm— e e ——— e m—— e —————— .-
0CO-124 b.ub60L-0]) 0.25%4 0,97 2.00%
Dco-o 0.26(-01} 0,526 0.9817 L.00R
Deo-3 0.219L-02 0.78¢& V971 v.J99
uco-6 : 0.ui9E-03  0.179 Ba%0% 0.006
nCo-14 0.4909F-02 0.49¢0 9.91719 06.n03

TIaiERY D,4921 -02 LY Dl d 0,02




LARCYINIR LUILTTFILIENTSD TUR JULD s T

NOTES: GAADNER COLEFICIUNTS IN VEP/CAskesn+ 1} .
WHERE P=PUOROSITY OR SATUFATED PlﬂP[lﬂlLlf'lc-lhrl
X=PORE WATiR PKESSURLCTUNSIONY(cm of H20)
Y=VOLUMETRIC WATER CONTENT{decimal. fraction) OR HYDRAULIC CONDUCTIVI¥Yilcu/hr)
RCGRESSIONS ARE FOR DRYING CURVES :

HEP=HIGH PRESSURE CELL .
R=ALGHLSSION COEFFICIONY -
ANERAGE ARSOLUTE ERROR=SUNIABS (Yalven-Ycomputed) ) /(NUMRER OF DATA POINES)
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PAGE o001
- SUNMARY OF SOTL PROPERTIFS . Ry

g PHRODC- MAX, PLRCENT PASSING INDICATLD S1EVE [ ] UNT§ FROS) voilp PERN
HATCRTAL EDLRE  S1ZE BT DID 8. 7h 0,42 .CI8 02 WP} «D0Y cu G solL tUSC. FROST UNIT RATIG SAT.

{BER & SUURCE USIED H¥ e MM Ho H4 M L] SYH. CLASS GROUP MY. £ CHINW

GRAVELS

DENST GRAD 13 4 ol ‘6 17 4 & H 3 50 2.00 Gu L-H k-1 —

T | St V.Po : N P/ SN TTE T

5= MASS o Pol’s .06 «D06 S5.h c_'_ﬁ""
SUn-iASE LA 2 L4 e L7 11 I3 [} 1 70 2e12 tH L-K -1

-A1 A N.Y. PolPs | 2.6 +259 2.8
LIRTY GHAV | E) t o0- v 6 2¢ 11’ 4 K 2 100 2.7% GM T | F-1

NH -1 L{ite NH Poi’se ‘ng + 382 .*6
BASL A CR 4, 10 A Y 24 32 9 7 L 333 2.71 GP L-H fF-1

-1 STONL NY. PP, 2.16 ,255 1.1

SAND L SILTY=-SAND

FINL SAND ok P | « 3 bau 9t 2 0 L 0 2.5 2ot D sp NFS. O

s-1 MANCIli. BH  T.C, 1.56 .712

8§-2 Veboe 1.55 + 136

S‘j P.P- 1-‘8 -lﬂﬂ 1803
srTCHAL 13 oAt eull Y b4 a2 12 i ? 20.¢ 2.72 SH Vi-H F-2 .

£C-1 Ti5F SAND 1.0, : 1.60 .T00

f€-2 MANOVLR Telo 1.6 619

1C~-3% Nl Tol e §1.76 .544

(C-4 lel e 1.4  LAT9

£c-* Talo 1.42 407

tC-un Vel o .04 L4149
STy Tt : 13 « 20 bt} ' T 41 24 N 1% 200 Pel* SM L-H b4

1-1  HKA-S Vel o 197 .39+

1-2 GLACTALEILL Por 1.09  .45% 1.4

1-3 Fot's 2,01 .32 .24

2 CravES ? W1 o613 106 wa 4q 14 K 5 9.2 2.13% SH Vi-H  F-2

¥l EIIL" SA"" Vel'a l f)ﬂ .7?!&

G942 MASS, ok, 3.49 832 1.92
HYANNIS 4 a7 TR Y X8 2t 4 1 0 7.1 ] SH H-H -2

51 S AL Vet o | I 18" L

-2 Hauhl. [ 1.0  JS%H0 |
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HakT LROS . s ol oif “5 vl P13 4 K ? 2.7 2.18 M VL-M  F-2
15 | SANDS Vals 1.76 580
H-3 HALL . S LS 1.15% +:07 4.0
DaNVELLE 2 IS LI T S | 6 32 a .- Ty 13.0 2.74  SM VL-H  F-2
l l'c v'. V-f’. : - ‘025 l-lq?
BANVILLE ? .21 otk 109 76 41 12 “ 3 11.7 2.7¢ SH viL-H  F-2
Il‘l-Z'i \”. V.P. ' - I.SQ .qqs
DENVILLE : Y e 100 s AR 10 4 2 5 2.4 M Vi-H -2
¥21-9 vi. VP, 1.6B .655
DLNVILLE 0T W25 .B3 200 8Y 29 [} 3 2 6l 2.7¢ sH N-H  F-2
'2["0 - VoP. loﬁl .7‘5
b ANK RUN 2 Sl .97 1bL: A 12 3 » 1 ?.6 2.1 SW-SH N-H  F-2
IHS -1 SAND LEH. Vole 1.54 L7113
sul: GRADE B ? 1D J0F 160 99 14 3 1 (] 2.5 2.7 SH N-M  F-2
.G-P1 ALDBANY NY P.P. 1.67 <623 2.4
IKELANDIAY 3 NS Y- T N ui 14 3 oy ] 4.7 Dot f SH N-i F-2
(F =1 SAHD MASS. V.P. 1.61 +664
(£-2 Forte ‘ 1.786  .511 .17
CHARLION A 4% 1% GBliE w9 1w 47 2% 15 B 2% .68 SH Ve~ F-3
1A HANOVER N J.C. 1.3 1.024 .13
CHARLYON B 5 A7 N T &R 74 Y 2r 13 7 21 F I SH vi-H  F-3
H-U HANOVER NH T.€. . 1.36 1.070 2.h
CHARLION C 5 .2C ROTEN ]| 1 ] 20 1. 6 2 2.0 M vL-H F-3
1=C daNOVER Ni T.L. 1.7 720 .6
WINOSOR A » .54 <044 100 4 14 4 A 2 1.7 2.63 SH N-H $-2
H-A LEd Nu 1.C. 1.%4 707 .14
WIRDSOR @ » Y Y T 112 B 1h 4 : 1 4 Patt LM N-H  F-2
K= LIRS NI 1atls b.47 031 LG
[ws]
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b JHUSOR € i I A ettty JOR He Az L ? 1 S L LM N-N -2 .
-C Libve. NH f.0. 1.-.43 « 909 18
INILOK BOR- «7 17 «07 100 99 1) 3 -9 ] 248 2ebb SP-SH  N-L t=2
X I'~1 ROW ALASKA 1.0, 1.69 .574
( “‘2 ol . l-(-ﬁ + 583
INIGOK BOR- Y- o7 3 «09r 100 9% 5 1 4 0 2.3 2.6 SP NFE
( l-; ROM ALASKA T.C. 1,67 .593
¢ 1~ T1.€, 1.68 .585
CHENA TOP 15 w18 12 w6 111 Ak 14 F 3 15 2.485 sp VL-H F-2 ]
3 | SOlL ax Telo 1.4 L.721
CHENA GRA. LY. e300 « 0% 100 ki 15 L} 3 ? 603 2.71 SH Nt F-2
=1 ALASKA 1.0, 1.75 .5a8
W DOVER 3 +15 LI 9§ a4 Al T 4 2 5.4 .18 SH N-H F-2
}2-23 Vi, Py s 1.53 .8‘“
. ¥ DOVER <4 .22 + U3 ‘g 17 21 5 3 2 7.3 2.7% SH N-H F-2
12-33 VY. Tolo ’ 1.860 .550
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W DOVER 1 «13 oLt g Bt 'Y 11 ! 4 7.2 2.5 S» ViL-H F-2
12-16 VY. Pelo .29 1,132
W DOVER 4.8 «11 P O 49 iy 4n l." 7 L] 5% P LY VL-H F-2
12 - . T.Ce ol 2.196
W DOVER A.H ols o014 106 [ 4h 13 { P 1.5 2eiik SM VL-H F=-2
) I vi. Feve -4 .16
1-4-2 1.0, -9 2.85
LEt ATRPOK]D 4 i -1 ah 2F k! 2 < 1 R.6 2.1¢ Y NF S 7]
-56 Sub bLASE To.Ca 1./ .5%91
........ B et SR
LEr ALRPORT 1 -4 PRSI L) i 3t | 5 10 b} L1 2. 14 SH L-H F-9q
=506 SUk LRADE Tala 1.90 chA?
STERRLT ) N o 14 t's 108 e 3n 2N 16 [ 30 2.0% SH-( L=t t-4
[P SOjL Velle 1.60 656
[we]
t
oy



: HANCHISTL K 1% BiL JLEE LO% et YK S e | a 4.2 2.1 18 L-VH fF-4
| NaH, Tol e . : - 1.36 1.01%
-2 . St 1.C. 1.44 .902
-3 lolae 1.2 802
;" laL. N 1.60 o’t?
=5 Vobe 1.30 1.10
= 6 Pabs 10‘5 .805 32
FAIRBANKS 47 38 JNUNE 10D €0 34 3 15 11 9.0 2403 ML L-" F-4
($-1  SILY 1 1.56 15}
(S$-2 FAIRHMANKS V.P. 1.9 .61%5
(S~3 ALASKA PoF. 1.62 686 o042
© ROULTON .uﬂ' w016 L£C19 100 e a9 T4 40 | 1] Heod 2.h2 ML L-VH E-4
5~ 1 F1T SILY Teloe 1.33 1.4067
5 -2 LEB NH T.L. 1.49 .BAS
5~ 3 1.Ca 1.9%  .174A
S"ﬁ_ VeFo I.E»D .680
S”J Pcl". l035 ‘-031 .23
DANVILLE 2 «C1T S 166 al 6e . ) 4 ] y.5 2,09 ML vi-# F-4
T19-5 vi. VaFe ) 1.16 1,139
DANVILLE H <10 + 07 100 Qe L] | ) s N 5 2.0 HL-0L ViL-H -4
io-3 vt. Vel e . : +9% 1.721
DANVELLE € -1 ALY 100 9 L | 1n “ ? i) 202 ML vL-i F~4
110-24 vi. Vel & 1.5 1.1179
DanNviLLE is +11 « 0 91 He £3 13 b 4 %5 Zelb HE vi-H F-a
117-148 vi. Vale 1.43 689
DANVILLE 14 01 e fe u's [ ] 1 2 3.9 2etid Hi vL-H -4
1y7-0 . Ver'e 1.02 1,594
DANVILLE 9 - .04 « 02 IT hha Y1 1J L} 3 4 2.11 ML ViL-H t-a
T1r1-6 - V1. Velea . : 1.12 1.42)
APPLE VAL- 2 01 208 100 Ya Ha 4 A IH IR MG oL L-H F-4
'H-2 LEY HN V.f. 1.16 1.232
CRAEL SHLY 4 04 JNCF LD e T P 14 I 649 Pat D ni L=l b -4
WAl | HANOVER NHu Lo ).4 SHand
-0 | I V.59 o934
T-2 "I 1.317 s 4R
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-1 oCa 1,40 .85A

-2 toce 1.3 .7100
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IS-1 SILY ol : 1.30 1.017

IS-2 HANOVLR NH Jol. 1.46 .842
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VLER CRIEK R <03 +ULES J 0N Y 1" 59 in 26 uwi 2.01 L L= 1~
0-0 oKL ol o . 1.0 .90A
! DLEK CHIER 2 022 LOBOS 100 Yo 16 §1 4l 28 44 2.67 cL L= F-3 )
.0-13 anlo Tole 1.11 -n6d
DIER CREEX i 02 «hHhnl Jh 91 78 &l 52 42 200 2.6 7 CL t-H F-3
0t 030 Tel 1.57 .701 s
1.3 X (L0 ~4)
LEERh CREEK 5 - «03% L.a30t 100 B84 12 92 A8 37 350 2.73 cL t-H F-3
0-14 OHID ol . 1.60 .57 .08
LEER CREEX 9 9 cubGT 5% T+ 58 41 32 23 128 2.74 cL L-VH F-y
0-24 OO «Ce 1.82 .586 .05
DLER CREEK 18 ks L0007 3IE Th 62 8 i3 25 93 2.16 cL L-VH F-9o .
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Ifs:
6 < SPECIFIC GRAVELY OF SOLIWLS
CU = UNIFONHITY COLEEICIENT o B&OZD)O0
D&l = GRAIN DIAME 4R CORRLSPONDING [0 ¢¢% I INLR
Blb = GRAIN DIAME TLI CORRE SPONDENG TO 193 | INIh
UNIELIED SOIL SYHBOL = o TLAMINED FROM GRAIN SIZL DICTRIFUTIGN AND
VISUuAL CLASSEFICATION ATTERBERG LIMET ®
HET AVATLARLE FOR MU' SOILS
1.0. = TEMPL CLIL
Vel's = VOLUHFTER PLATT INVHACTGH
Pob. =

PRESSURE CULL Plantaniitn

PUKIE SAT. 2 SATUHATLD HYDRAULIG CONPUCHIVIDY (PCRMEAR LD Y
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