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ABSTRACT

The pneumatic tire has been an integral part of transportation almost since its inception, yet it
remains a product whose characteristics are not easily predictable or comprehensible by
conventional engineering techniques. This thesis is an attempt to provide a numerical model for
predicting the ground contact pfessure pattern between an aircraft tire and road under static

condition.
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CHAPTER 1

INTRODUCTION




1.1. Introduction:

Pneumatic tires usually contain a variety of rubber compositions, each designed to
contribute some particular factor to overall performance. Rubber compounds designed for
a specific function will usually be similar but not identical in composition and properties,
although in some cases there can be significant differences between compounds of tires in
various types. The guiding principle in development of rubber compositions for tires is to
achieve the best balance of properties for a particular type of tire service. Since a tire is a
mechanical structure, a rubber compound should be judged on how it functions in the
system rather than on its individual properties or performance capabilities. Thus a rubber
compound which did not adhere well to other tire components, or which required vastly
different vulcanization conditions than other parts of the tire, could be useless in the tire
even though it had excellent strength and other mechanical properties. Tire performance
is the result of skill and experience in producing a mechanically harmonious structure of
rubber compounds, fabric and adhesive, beads and other components which work

together to give optimum service.

The principal functions of the rubber compositions in a tire are fairly obvious. The tread
compound must provide wear resistance and be tough and resilient to minimize cuts,
tears, and cracks, as well as to protect the tire body from bruising impacts. Low
mechanical hysteriesis loss in the tread is desirable since lower tire operating

temperatures are advantageous. Good friction properties of the tire tread for all driving



conditions are, of course very important. In some cases optimum tread properties are
obtained by using a cushioning compound between tread and tire body as an additional
protection against fabric bruises, thus making a “double layer” tread. This cushion can
also serve, especially in retreading, as a bonding or transition layer between tread and
body compounds. Intermediate hardness properties between those of tread and body are

usually used in the cushion or breaker under the tread.

Tire zg‘cjy or carcass rubber compounds must form strong bonds to the adhesive-coated
fabric\.!Their strength and durability should be adequate to insulate the cords and hold
them in their paths. The rubber must however, be soft enough to permit a slight change of
cord angles when the tire is flexed. The body rubber serves as insulation between the
fabric plies. Outstanding fatigue resistance is required of body compounds in order to
withstand cyclic deformation. It is essential that they retain adequate physical properties
and durability at the internal tire temperatures generated in service. Hence, low
mechanical energy losses are needed for body compounds. There may be gradations in

the properties of body compounds, if the hardness usually diminishing somewhat from

tread to cushion to top plies to inner plies.

In tubeless tires, a liner or coating on the inside ply retards diffusion of inflating air into
the fabric, and protects against ensuing ply seperations. Rubber compositions around the
wire bead are called bead insulation, and give it geometric stability, shape it to fit the rim,

and provide firm anchorage for the cords.




1.2 Tire Inflation

The conventional aircraft tire possesses three distinct structural components: the

rubber matrix which contains the air and provides abrasion resistance and road grip‘{ the
cords (textile, steel, or glass) which provide tensile reinforcement for the rubber and

carry most of the load applied to the tire in service; and the steel beads which
circumferentially connect the tire to the wheel of a car or aircraft. These three
components, witl} air under pressure, form a thin-walled composite toroidal shell which is
both highly flexible and relatively inextensible. The purpose of this chapter is to discuss
those methods of stress analysis which are applicable for the calculation or measurement
of the stresses and strains developed in the three structural components of the present day

automobile or aircraft tire.

Stress analysis is that branch of mechanics which is concerned with the quantitative
determination of internal stresses and strains produced in a body as the result of external
loads and deformation. Its methods are both theoretical and experimental. The complete
stress analysis of the tire should establish the magnitude and direction as well as the type
of stress at all points in the tire under each loading condition of interest. This information
defines the so called state of stress. Such knowledge, when combined with the material
properties of the rubber, cord, and steel can be used to predict or explain the behavior of
the tire in service.

The material properties of the three structural components of the tire are widely

different. For example, the Young's moduli obtained at room temperature from statically



d
conducted tests are approximately: 300-3000 psi for the rubber,100,000-800,000 psi for
the textile cords, and 30,000,000 psi for the steel bead wire. In addition, the final
geometries into which these components can be combined are diverse. Presently, there
are three distinct cord arrangements in aircraft tire construction: bias, belted-bias and
radial. These material and geometric factors, coupled with the fact that the tire as a whole
is an anisotropic body éubjected to finite deformations which are rate and temperature
dependent, have made the theoretical and experimental stress analysis of the tire more
difficult than that associated with the majority of engineering structures.

1.3 Ground Contact Analysis

The tire casing takes up its equilibrium shape, which is determined primarily by the cord
paths, perhaps modified somewhat in local regions by the presence of extra rubber, ply

turn-ups, flippers, filler, etc. For clarity and ease of discussion we will ignore these

features and their effects and start from the simple theoretical equilibrium shape.

As the tire is pressed against a flat roadway the tread rubber is compressed and at the
same time the tire casing locally loses its axial symmetry and takes on a substantially

P ganened contact patch. If there were no tread rubber on the tire , the casing would be flat
(

@ek casing in actual contact with the ground will also lie in a flat plane parallel to

7?

bears no relation to the internal inflating gas pressure, in this particular region of the tire.
57
To make this point emphatically clear it will be noted that the basic law d@ the

relation between tension in the casing cords and the internal gas pressure which it resists




is based on the simple laws of staticfl force resolution, and in such cases a path of infinite
radius of curvature results in zero resultant force opposing the gas pressure. The tension
in the cords across the flat part on the contact patch is therefore determined primarily by
the cord tension transmitted from the adjacent free wall of the tire, modified by the effects
of the transition curvature around the perimeter of the flat contact patch. It also follows
that the contact pressure between the tire casing and the ground will be equal to the
inflation pressure, modified around the edges of the contact patch by the extra pressures

set up by the bending stresses within the transition zone.

In the case of practical tire designs the presence of tread rubber of differing thickness, of
tread pattern design, and such factors as the bending stiffness caused by the multiple
layers of cord cause the actual tire contact pressure to be locally greater than the inflation
pressure, and in fact to differ in different parts of the contact patch. The contact pressure
at the sides of the contact patch, under the shoulders of the tire tread, is often higher than
the general contact pressure because of the reaction necessary to develop the bending
stresses in the transition zone around the contact area. An analysis of the problem will
require the application of numerical methods, based on finite element analysis.

1.4 Objective:

The main objective of this analysis is to determine the displacement and stresses

in an aircraft tire subjected to inflation pressure and ground contact loadihg and thereby
determining the contact pressure pattern between the tire and road. The objective was to

develop an inexpensive analysis of tire deflection and ground contact loads by utilizing



p/wwe

v
two 2-D analysis of the tire cross section and a tread band ring - on - foundation model of
-7

the tire respecti\;ely to replace a full 3-D finite element analysis.
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CHAPTER 2

LITERATURE REVIEW




2.1Composition of Tire Compounds

Ingredients [1] in tire compounds can be classified as :(1) the rubber which may be a
single polymer or a blend of polymers [2,3] and, with high molecular weight polymers,
may include an extending oil; fillers, principally various types of highly-developed
carbon blacks; (3) relatively small additions of softeners, plasticizers, or reclaim rubber
which serve principally as processing aids; (4) the chemical vulcanization system, which
is likely to include two accelerators, sulfur, and a small amount of zinc oxide; (5)

chemical protective agents, known as antioxidants and antiozonants.

With such a wide variety of ingredients, the important mechanical properties for a given
tire compound can usually be obtained from a number of different compositions. For
example, modulus and hardness can be controlled by varying either the amount of carbon
black, the amount of extender-oil or softener, the fineness and structure of the carbon
black, or the number of molecular crosslinks introduced during vulcanization. Thus even
small advantages in cost, performance, and processing, which may only become apparent
with extensive testing or service experience, become important factors in compound

selection.

2.2 Physical Properties of Tire Compounds
The physical properties of any rubber compound depend upon the state of cure[4], that is,
upon how far the chemical vulcanization reactions have been carried. Vulcanization

introduces chemical crosslinks or bonds between the long chain polymer molecules. This



crosslinked network is decisive for the physical properties and is determined, for a given
rubber compound, by vulcanization time and temperature. The traditional rule of thumb is
that the vulcanizing time to reach a given level of a property, such as static modulus, is
halved if vulcanization temperature is raised by 18F, and vice versa. Although this rule is
still often adequate, a more precise description of the time-temperature dependence of
vulcanization requires determination of the activation energy of vulcanization for each

rubber compound.

The effect of cure on the physical properties of a rubber compound is usually determined
by vulcanizing a series of test sheets for different times at the same temperature. This
may, of course, also be done at several temperatures if more thorough tests are required.

Dumbbell shaped test specimens are cut from the sheets and static stress-strain curves are

taken[5].

X -7
M‘(j 15,
v
Rubber stress-strain curves under static conditions are concave toward the axis, i.e., strain

hardening, except for a short portion near the origin. The concavity is accentuated by the
occurrence of stress-induced crystallization in natural rubber at higher elongations[6,7].

There is no yield point before failure, as is usual with metals. The curves in figure 2.1 « ‘L?_j L
ARD ke
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range of cures of a tread-type compound. Stress and tensile strength are calculated using

represent approximately the effect of cure time on static stress-strain properties for a

the original cross-section area. In rubber technology, this stress is called modulus and is

designated for a specific elongation, so that 300 percent modulus for a rubber compound




is the stress required to extend a strip to four times its original length. Volume changes
are negilgible [8], when rubber is @ so that Poisson’s ratio is assumed to be one-

half.

Static modulus provides a convenient parameter to assess the temperature range in which
elastomeric properties are exhibited. While this varies somewhat with individual
polymers, in general the modulus of an elastomer varies with temperature as shown in
figure 2.2. At low temperatures a hard or glassy character is evident. As temperature is
raised the rubber passes through a transition region in which properties change rapidly.
Rubber properties prevail over a range of temperatures above the transition temperature,
and finally at yet higher temperatures above the transition temperatures viscoelastic or

flow properties become important and predominate.

At high temperatures and for long times, the flow properties of rubber are marked. Stress
relaxation in this region can often be attributed to oxidative degradation. In the
elastomeric region there is relatively little stress relaxation, and in this state molecular
network comes into equilibrium with applied stress, so that here the concept of modulus

is valuable.
As shown in figure 2.1, modulus or stress at a given elongation increases, and breaking

elongation decreases, as cure advances. Tensile strength usually goes through a

maximum, although this is not always observed in a range of test cures. In some

10



compounds a phenomenon known as reversion occurs and modulus, tensile strength, and
breaking elongation all decrease with overcuring. For tire tread compounds the usual
tensile strength will be in the range 2500 to 4000 psi, 300 percent modulus in the range of

1000 to 1700 psi, and breaking elongation in the range of 400 to 600 percent.

2.3 Aging tests

Physical properties of tire compounds, especially stress-strain properties, are also
routinely examined in rubber laboratories after the rubber has been exposed to one or
more accelerated aging test [9]. These are usually run at elevated temperatures in order to
simulate deterioration in service over a long period of time. Several of the tests are over-
aging tests under carefully controlled conditions, while others use a bomb filled with air

or oxygen under pressure to further accelerate degradation.

Figure 2.4 gives an example of the effect of oven aging on the stress-strain curve of a
tread compound. Although such results do not correlate perfectly with aging deterioration
in service, they can be very helpful, especially with a background of experience, in
anticipating whether or not a compound will be satisfactory in this respect. These aging
effects are quite complicated [10,11] as they depend on oxidative chemical reactions on
the polymer [12,13]. Hence they are very depenedent both on the chemical nature of the
polymer and on antioxidants in the compound recipes. In general,?%BR is less sensitive to
aging than natural rubber. The basic mechanism of degradation in these two rubbers

appears to be quite different, SBR tending to harden on aging and natural rubber to

11




soften, reflecting, respectively, predominance of additional molecular crosslinks and

chain scission, i.e., cutting of chain molecules into smaller molecules.

2.4 Tear tests

Rubber tear tests [14] are designed to cause a high stress gradient at the end of a cut or
notch in an angle or crescent shaped testpiece, which is pulled in a testing machine.
Figure 2.5 illustrates various types of tear test specimens. Although tearing phenomena
with rubber most important and revealing in regard to mechanisms of rubber failure
[15,16], technical tear tests have very limited practical significance, probably because the
notch effect is so complicated and difficult to control for rubber. Tear test values are
reported as load per unit of specimen thickness. An SBR tread compound with
tensiléétrength about 3000 psi might reasonably show a crescent tear stength of about 250
Ib/in.

2.5 Hardness

Rubber hardness is an important quality control parameter. It is conveniently measured
with a Shore A Durometer, a pocket instrument which has been standardized [16] but use
of ften leaves much to be desired in the way of precision. The durometer uses a
small, spring loaded indenter with a truncated conical point protruding from a flat base.
When indenter and base are pressed against the rubber, the resulting spring deflection,
which dpeends upon rubber hardness, is indicated by a pointer with a scale graduated

from 0 (no hardness) to 100 (no indentation). Shore A hardness for rubber tread

12




compounds is typically in the range of 50 to 65 units and for unfilled vulcanizated about

25 to 30.

There are a variety of other hardness test instruments for rubber and a well-developed
International Rubber Hardness Degree (IRHD) scale which agrees approximately with the
Dhore A Durometer scale [17,18]. Indentation of thick rubber obeys the classical
elasticity analysis@Hertz very well [19], and this gives a mechanism to relate elastic

modulus to hardness mesurements.

2.6 Dynamic test

Many different test procedures are available to measure rubber stiffness and energy loss
for relatively small cyclic deformations, often over ranges of temperature and frequency.
These evaluations are especially pertinent for tire compounds because heat generation and

temperaure rise from rubber hysteresis losses are important factors in tire durability [20].

One of the oldest and still most widely used types of test for this purpose is a pendulum
rebound test, in which a pendulum is released from a fixed height to strike a rubber block
and then rebound [21]. Superiority of natural rubber or synthetic cis 1,4-polyisoprene in
this test is pronounced. Percent rebound for SBR tread compounds will usually be in the
range of 52 to 62 percent while that for comparable natural rubber compounds may be

more than 70 percent. A falling ball instead of a pendulum is often used in a rebound test.

13




Free vibration tests [22] and forced nonresonant and resonant vibration test are also found
in great variety [23,24]. These are used to measure dynamic modulus, internal friction,
and resilience of rubber compounds.

2.7 Rubber Elasticity:

2.7.1 Thermodynamic aspects

Distinctive features of rubber elasticity are easy deformability or low modulus, enormous
deformations, and rapid recovery when deforming forces are released. There is also more
sensitivity to temperature than for many elastic materials. Figure 2.7 shows the dramatic
effect of low temperatures on relative modulus of unfilled vulcanizates of several
polymers. For any elastomer there is a range of temperatures over which transition occurs
from a rubbery to a glassy state, as shown in figure 2.2. This transition temperature range
for SBR is from -60 C to -40 C, which is about as high as can be tolerated for a general
purpose tire rubber. The curve forcis-polybutadiene in figure 2.7 is complicated by

crytallization, which starts to affect the warming curve at about -95 C.

In the transition range from the glassy to the rubber state modulus falls rapidly with
increasing temperature, but further temperature increase results in a slowly rising
modulus. This rise first observed in experiments by Gough, published in 1805, as a
contraction when a rubber specimen by Gough, published in 1805,as a contraction when a
rubber specimen stretched by a weight was heated. Joule, about 50 years later, studied

thermoelastic phenomena exhibited by rubber and interpreted them in terms of the new

14




science of thermodynamics then being developed by Kelvin. Treolar [29] gives a very
good review of the thermodynamic fundamentals of rubber elasticity. For a reversible

process, the first and second laws of thermodynamics provide,

dE = TdS + dw @.1)

in which E is internal energy of a system, T is absolute temperature, S is entropy, and W

is work done on the system. At once there is a difficulty here because ordinary rubber

deformations are not completely reversible. It is necessary to take special measures with

any test specimen, such as solvent vapor treatments or prestretching them at an elevated

temperature, in order to secure reversible deformations.

If the tensile force on a rubber strip is . then the work done during an isothermal

displacement d is, neglecting small volume changes,

dw =fdl 22

and, with eq (2.1)

f=(@3 W/ 8l)y =(5E/81)r-T (8S/ 8l)¢ 2.3)
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Equation (2.3) resolves the force into two terms. The first arises from changes in internal

energy and the second from entropy changes with changes in length.

By differentiation of eq. (2.3) can be written
(6f/8T )= -(@BS/81)¢ (2.4)

f=(8E/ 8l);+ T (51 8T), (2.5)

Equation (2.5) , in conjunction with eq (2.4), has been very important for understanding
rubber elasticity because it allows experimental evaluation of internal energy and entropy
changes upon deformation. If the equilibrium force exerted by a stretched rubber strip
held at constant length is measured and plotted as a function of temperature, the slope at
any value of Tis (& f/ 8 T), ,which eq (2.4) shows to be the entropy change per unit
change in length for isothermal expansion at T. The corresponding internal energy change

(8 E/ - 8l)r is given by the intercept of the tangent with the zero T axis.

Careful experimental work of this type by Meyer and Ferri [25], Anthony, Caston, and
Guth [26], Wood and Roth [27], Gee [28] and many others sﬁowed that over a
considerable temperature range stress was closely proprtional to absolute temperature,
and this led to the conclusion that rubber elasticity resides principally in the entropy
terms of eq (2.5). There is an entropy decrease on extension and an increase on retraction,
except at very low elongations, below about 10 percent where a so-called thermoelastic

inversion is observed due to thermal expansion obscuring the entropy effect.




a. at large elongations, where high orientations and crystallization may occur.

b. Voume changes and internal energy effects, however, appear never to be entirely
absent. This entropy basis indicates that rubber elasticity must have had an entirely
different moecular origin or mechanism than ordinary elasticity, where stresses increase
the internal energy by increasing molecular or atomic spacings.

2.7.2 Molecular picture: elasticity of a rubber molecule

The unique thermoelastic behavior of rubber is elated to molecular structure by the
kinetic or statistical theory of rubber elasticity. The theory provides a very satisfactory
explanation of what might be called the mainspring of rubber elasticity, but it involves
idealizations which have restricted its quantitative application to very carefully controlled
equilibrium experiments with suitable rubber compounds and limited elongations and
temperatures. It can only be regarded as semiquantitative for rubber in real applications.
Reasons for these deviations from the theory, however, are quite comprehensible in light

of what is known from many sources concerning the molecular geometry and forces.

There is extensive evidence that a rubber is composed of long chain molecules as shown
in figure 2.8. The monomer repeating unit in the chain molecule of cis-polyisoprene or
natural rubber is

CH3

I
~--CH2----C====CH-----CH2

while in cis-polybutadiene it is ---CH2---CH==CH---CH2----. In SBR, styrene units

amounting to about 23 percent by weight occur at random in the polybutadiene chain.

17



Such molecules are flexible by virtue of rotation around the single bonds, except at low
temperatures where packing becomes too close or crystallization may occur for the first
two rubbers. They tend to assume haphazard or chance configurations because of thermal
agitation of their segements. Most of these configurations will be very crumpled, so that a
chain molecule can be extended by an external tensile force provided that interaction with
its neighbors is not too strong. As temperature is lowered, this interaction increases until
the typical low modulus and rubber elasticity are no longer present this temperature

influence is shown in figure 2.7.

A single, long chain rubber molecule assumes random statistical configurations to the
extent permitted by hindered bond rotations, fixed valence-bond angles, excluded
volumes (since no two atoms can occupy the same space simultaneously), and
intermolecular forces. Some of these effects can be accomodated in the theory, but in the
first mathematical model the molecule is assumed to undergo random thermal
fluctuations among all possible configurations of its » links, each of length, just as if they
were freely orienting. Thus the problem of describing the configurations is the random
walk problem, and the configurations have analogies to the Brownian motion of a
particle.

The distance between the ends of a chain, 7, is called the displacement length, end-to-end
distance, or simply the chain length. The distance measured along the chain is the chain

contour length.
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The distribution of chain lengths is Gaussian provided they are not extended more than
about one-third of their fully extended length, nl.

This distribution is given by

P(r)dr = (4b° / T1'? ) exp(--b’r?)dr (2.6)

In eq (2.1.6) P(1) is the probability function for r and

b2 =(3/2)/ (nl*) (2.7)

The root mean square value of r is

)12 =2 2.8)

This shows at once that » must be large to account for rubber elongations, since the ratio
of the average unstretched chain end seperation to the fully extended chain length is # .
Higher molecular weights thus favor greater extensibility.

According to the familiar Boltzmann relation the entropy of a system is proportional to
the logarithm of the number of possible configurations. Hence from eq (2.6) the entropy S

of a single chain molecule is

O )l
S=@r2 (2.9)

in which c is an arbitrary constant and £ is Boltzmann’s constant. It is apparent from
€q(2.9) that the entropy decreases as r becomes larger, that is, as the molecule is

stretched. The work required to increase r to r+dr is

fdr = -T dS/dr (2.10)
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in which fs the stretching force on the molecule. From eq (2.9)

dS/dr = -2kb” r 5o that

F=2kTH r 2.11)

That is the average fluctuating statistical force exerted at the end of a stretched molecule.
It is proportional to absolute temperature and to the value of r, the end-to-end distance,

and it acts along the line of 7.

2.7.3 Elasticity of the molecular network:
A chain molecule reaching from one crosslink to another is called a network chain. The
gaussian distribution of eq(2.6) is assumed to apply to each network chain so that the
entropy change for deformation of the network can be calculated by summing the entropy
changes for all the chains in the network. In doing this the assumption is made that the
deformation is affine, that is, the vector components of length of each chain are changed
in the same ratio as the corresponding dimensions of the rubber specimen. Treolar[29]
gives the entroy change AS of the network due to deformation as

-

) s
¢ 2 2 2

AS=--12Nk( N° + X7 + A7 -=-3) (2.12)
in which N is the number of network chains per unit volume and A, , %, ,and A; are
the principal extension ratios along the three mutually perpendicular axes of strain for a

pure homogenous strain. The extension ratio is defined as the ratio of the deformed to the

undeformed length.
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If the deformation is not accompanied by any change in internal energy the work of

deformation, W, is --T A S, so that

W=12NKT (A7 + A% + A7 —=3)=12G( A2 + A2 + A7 —=3)
(2.13)
W is the elastically stored free energy per unit voulme and is known as the stored energy
function.
In eq (2.13) G 1s the modulus of rigidity which in this simpler version of the theory

depends uniquely on chain molecular weight through the relation

G = NkT = pRT/M, (2.14)

Here p is the density of the rubber, R is the gas constant and M, is the number-average
network chain molecular weight. The theory thus provides a single elastic constant which

is proprtional to the degree of crosslinking.

To calculate the principal stresses from eq(2.13) it is assumed that volume changes can be
neglected so that

}\‘l .;\.2. }\.3 =1 (215)

Work done by the applied forces is



AW=fd\ +f dh, +f dhs (2.16)

in which £}, f,, and £; are forces per unit initial unstrained area and act along the principal
axes. Comparing dWW obtained by differentiating eq (2.13) with dW in eq (2.16), after
eliminating A; from both by use of eq (2.15) and equating the coefficients of d\, and
d\, gives the general stress-strain relations:

MA - hafs - GO =0g? ) (2.17)

MFy - hfs =G =27 ) (2.18)
Eqations (2.17) and (2.18) can be written in terms of principal stresses t; , t, ,#; defined

as forces per unit area after straining, by use of relations suchas f; =, A, A; ,inthe

form
h-13=G -2 ) (2.19)
h—-t3=GM =A% ) (2.20)

These equations give only the difference between two principal stresses, since eq (2.15)
has introduced the indeterminancy of an arbitrary hydrostatic stress. This may be

recognized by writing the principal stresses [29] as

t=GM+pt =Gh7 +pit =Gh 2 4p (2.21)
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However, if one or more of the principal stresses is given, a unique solution can be
obtained for the other two stresses provided that the extension ratios A, , A, , A;

are known.
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For uniaxial extensions f, and f; both vanish, and 2, = A; =4, so that from eqs

(2.17) and ( 2.18), the rubber stress-strain relation is

f=Gs-47) (2.22)

Treolar carried out experiments to verify eqs (2.19) and (2.20) using simple extension,
uniaxial compression, uniform two dimensional extension and shear deformation on
natural rubber gum vulcanizates. He found that these equations using the single physical
constant G provided a fairly satisfactory first approximation to experimental results.
However, deviations were observed both at moderate strains, where measured stresses
tended to be lower than predicted, and at very high strains where they were larger than
predicted. The effects at large strains are caused by failure of the Gaussian distribution,
eq (2.6) to apply for large extensions of the chain molecules. This can be explained by
non-Gaussian statistics [29].

Deviations at moderate strains have been attributed to inadequacy of the stored energy
function using only a single constant. Krigbaum and Roe [30] analyze such deviations
from the kinetic theory in detail, summarize the evidence that there are, in fact,
appreciable energy changes in rubber deformations, and describe more recent attempts to

test and refine this theory.
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2.7.4 Strain-energy representation of rubber elasticity:

The preceding sections have shown how thermoelastic phenomena, along with rubber and
thermodynamic analysis, led to the kinetic or statistical theory of rubber elasticity. In
turn, this leads to a description of rubber elasticity in terms of a stored energy function
using a single elastic constant, called G in eq (2.13).

The stored energy approach has been developed for rubber in an entirely
phenomenological way, independent of any molecular theory, both by Mooney [31] and
by Rivlin [32]. In applying the general elasticity theory for large deformations of
incompressible, isotropic elastic materials, Mooney assumed a linear shear stress law
consistent with kinetic theory. Rivlin showed that it was unnecessary, for many purposes,
to assume any particular elastic law and that the elastic law could be determined
experimentally through relations derived from the theory.

The strain energy per unit unstressed volume stored in a material is a function of the
general components of strain at any point [33]. The stored-energy function is unaffected
by coordinate transformations. The form of this function is as characteristic of the
material as the stress strain relation, with which, of course, it is closely connected. The
nature of the stored energy for a pure homogenous strain completely determines the
elastic properties of the material. The assumption of incompressibility simplifies the

function, and is justified for rubber in practical terms because stresses required for

changing the volume are so much larger than those required to change the shape.
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It follows from this general theory for large elastic deformations of rubber [29,33-35] that
the stored energy W is a symmetric function of the three principal extension ratios A, A,

and A3, can be expressed in terms of the three following strain invariants:

L=A7 + 2+ A2 (2.23)
L=A2 2+ 0 AT A A (2.24»}
L=x7 A2 0,7 (2.25)

Assuming incompressibility, ;= 1, and A; can be eliminated from eqs (2.23) and (2.24)
so that W can be expressed in terms of two independent variables I, and I, , which in
turn contain only A, and A, This means, of course, that only two of the extension ratios
can be varied independently.
The most general form of this stored energy function can be written [29]

W= X 02 Cy(] —3) (I, —3) (2.26)
(I; --3) and (I, --- 3) are used in eq (2.26) instead of I, and I, so that W will be zero
for zero strain.
The first term of the series, i =1, j =0, gives for W the form derived from the kinetic
theory, eq (2.13) which gives a reasonably good first approximation to the rubber stress-
strain realtions.
Retention of the first two terms, i=1, j=0 and i=0, j=1 gives

W=C, (I, -3)+C, (1, --3) 2.27)

This was the form derived by Mooney which, having two constants, provides better

agreement with experimental data than eq (2.13).
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From eq (2.27) for simple extension, the force / per unit initial cross section is derived as
F=2( A — 1)\ NC, + C /A ) (2.28)
Equation (1.1.28) is known as the Mooney-Rivlin equation. For simple shear,
t = 2(C; + Cyo ' (2.29)
in which t; is shear stress, 6 shear strain and hence 2(C, + C,) is the modulus of
rigidity.
2.8 Elastic Properties of Cord Reinforced Rubber
The increased use of more sophisticated structural configurations in pneumatic tires
during the last few years has resulted in a greater interest in the elastic properties of cord-
rubber lainates. The role of material properties in pneumatic tire design and analysis has
been approached in three distinct ways:
a) First, the anisotropic nature of such materials may be completely ignored, and all tire
structures treated as membranes whose stresses are determined entirely from membrane
equilibrium considerations. This is a statically determinate shell approach, and in some
regions tire stresses, and cord loads, may be found rather accurately by this technique
when loadings are simple, such as in the case of inflation of a tire. However, proper
elastic properties are necessary for adequate stress determinations near edges or
boundaries in all shell problems, and in the case of a pneumatic tire it is necessary to
know the material characteristics in order to find stresses near the bead and in the

sidewall.
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In more complex loadings where bending is an important factor, such as in deflecting a
tire against a flat surface, the elastic properties of the material are needed for estimation
of cord loads, and an isotropic approximation is not adequate.

Quite apart from stress analysis problems, which are always governed by force and
moment equilibrium and hence can sometimes be less dependent on material properties,
all deformation characteristics of cord-rubber structures are entirely determined by their
elastic constants so that an isotropic approximation might be characterized as a very
crude one in most c\ases.

b) An interesting and unique attempt to calculate cord loads in a cord rubber structure has
been provided by Rivlin and his co-workers [36-37] and by Adkins [38-43]. They both
utilize the concept of an inextensible net made up of the reinforcing textile cords in a
normal cord-rubber structure, with the assumption that in such a net the cross-over points
between cords in adjacent lamina act as knots which do not slip. This analysis has much
to recommend it. Basically, in most situations, the reinforcing textile cords do indeed
carry a major share of the tire structural loads. Thus neglect of the sorrounding rubber
matrix is not generally serious, although situations exist when the sorrounding rubber can
contribute substantially to the load carrying ability of the composite, as has recently been
discussed by Clark and Dodge [44].

¢) A third and somewhat later general approach to the elastic properties of cord-rubber
laminates utilizes the overall elastic stiffnesses of both the cords and rubber treated as a
two-dimensional orthotropic material. This requires that the concentrated cords and

distributed rubber be viewed over dimensions much greater than cord spacing, so that the
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average elastic modulus of a single lamina may be obtained, as opposed to the local or
microscopic modulus which varies widely with position. The primary reason for this is
that it is difficult to mathematically describe the large variations which exist in elastic

stiffness of a cord-rubber laminate. It is much more convenient to work with an average

property.

The main objective of this analysis is to determine the displacement and stresses

in an aircraft tire subjected to inflation pressure only.
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CHAPTER 3

THEORY OF RUBBER ELASTICITY
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3. Theory
3.1 Tire Inflation
The simplest stress analysis problem to consider from a theoretical standpoint is the
calculation of the shape taken by and the stresses developed in an inflated but otherwise
unloaded bias tire. A portion of a pressurized but otherwise unloaded toroidal shell is
shown in figure 3.1. The axial coordinate z is an axis of revolution. Because of the very
small bending stiffness of the tire walls and rotational symmetry of both the applied
loads and shell geometry, in-plane internal reactions develop which are constant through
the shell thickness.
These internal reactions denoted by Ny and Ny are usually called membrane stress
resultants and they act in the meriodional and circumferential directions, respectively.
Physically, the stress resultants represent forces per unit length.
The applied load (inflation pressure p) is just balanced by the internal reactions Ny and
Ny thaf is , force equilibrium exist so that summing forces normal to the shell surface
leads te the well known equilibrium equation

Ny/r,+ Ng/rg=p 3.1)
whererg and ry are principal radii of curvature for the doubly curved toroidal surface.
Both the stress resultants and the radii of curvature are functions of the radial distance r.
A second equation of equilibrium can be obtained from figure 1 by summing forces

- along the axis of revolution to obtain:

Ny =pry (1 - 17 ) 2r (3.2)
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Equations 3.1 and 3.2 are two equations for the two unknown stress resultants and they
can be immediately solved when the meridional geometry of the toroidal shell is given.
3.2 Strain energy potentials

There are two forms of strain energy potentials used in ABAQUS for modeling
approximately incompressible isotropic elastomers the polynomial form and

Ogden form.

The form of the polynomial strain energy potential is

U= wmX Cy(1;-3) (L-3Y + 2" (1/ D) (Jg - 1Y (3.3)

where U is the strain energy per unit of reference volume, N is a material parameter, C;;
and D; are temperature dependent material parameters, I, and I, are the first and second
deviatoric strain invariants defined as

I =47+ &0+ A (3.4)

=07 407+ 457

with the deviatoric stretches A;= At

A;, J is the volume ratio, A; are the principal
stretches, and J,, is the mechanical elastic volume ratio. J,; does not include thermal
expansion effects.

3.3 Particular cases of the strain energy potentials

If all of the D; are zero, the material is fully incompressible. If D; is equal to zero, all of
the D, is equal to zero.

For cases where the nominal strains are small or only moderately large (<100%),

the first terms in the polynomial series usually provide a sufficiently accurate model. The
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simplest form of the polynomial function is the incompressible form with N =1, which
1s the classical Mooney-Rivlin form:
U=Cyo(I;-3)+Cp (1-3) (3.5)

When Cy; = 0 the strain energy function corresponds to the neo-Hookean form.
The initial shear modulus and bulk modulus are given by
Ho=2(C;p+Cy) ., K¢=2/D, (3.6)
The neo-Hookean form is obtained with N =1 and o =2 and can be made equivalent to
the polyhomial form through the relation
The Mooney-Rivlin form is obtained when N =2, o, =1and o, =-2 and is
equivalent to the polynomial form when

H1=2Cyp and p, =2 Cy,

U= w2007 457+ 7 3) + a2 007 957+ 1,2 3) (B)
We will develop the stress-strain relationships for the different tests for the
incompressible version of the material model using derivatives of the strain energy
function with respect to the strain invariants. We define these relations in terms of the
nominal stress (the force divided by the original, undeformed area) and the nominal, or
engineering strain defined below.

The deformation gradient, expressed in the principal directions of stretch, is

A, 0 0]
F= [0 2 o0 (3.8)
0 0 2
L |

where A, ,A;and A; are the principal stretches, which are the ratios of current length to
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length in the original configuration in the principal directions. The principal stretches, A;
are related to the principal nominal strains, €; , by
A =1+g (3.9)
Because we assume incompressibilty and isothermal response, J = det(F) = 1, and, hence,
M Ay A3 = 1. The deviatoric strain invariants in terms of the principal stretches are then
=22+ A"+ A% and
L =207 7+ a7 | (3.10)
3.4 Uniaxial Tests
The uniaxial deformations mode is characterized in terms of the principal stretches, ; , as
A=Ay, M=h =124, (3.11)

where 2, is the stretch in the direction of loading.

The uniaxial tension test is the most common of all the tests and is usually performed by
pulling a "dog-bone" specimen. The uniaxial compression test is performed by loading

a compression button between lubricated surfaces. The loading surfaces are

lubricated to prevent any barreling effect in the button that would cause deviations from a

homogenous uniaxial compression stress-strain state.

To derive the uniaxial nominal stress, T,, we invoke the principle of virtual work,
oU = T, 04,
so that the

T, =0 U/ 8hy= 2(1 - Ay™) (A BU/AL, + 8U/AL, ) (3.12)
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To start with the only experimental data I had was from a stress strain curve of

+/_38 nylon rubber composite coupons.

A curve fit was performed on the stress vs elongation graph to determine the value of
constants C,; and C,,.

3.5 Finite Elements: Basic Concepts For Solid Mechanics Problems

This represents a reasohably general basis for the finite element approximation of
nonlinear dynamic problems in solid mechanics. The development is applicable to
situations involving large deformations, material nonlinearities, and frictionless surface
contact. The resulting semi-discrete system may be discretized in time to obtain the
governing equations for implicit, explicit, or steady-state dynamic solutions, or
specialized to obtain finite element formulations for linear and nonlinear static problems.
For the field equations, we adopt a spatial (Eulerian) frame of reference, in which the
current configuration of the system is the reference configuration. However, the finite
element mesh will be Lagrangian (that is, moving and deforming with the material); this
approach is common in solid mechanics problems, where the system of interest often
consists of a fixed collection of material. We will use the velocity components v, as
fundamental unknowns, to obtain a discrete problem in which velocity (or displacement)
variables are the primary variables.

3.5.1 Field Equations

At any instant of time, let the region occupied by the system of interest be denoted by V,
and its boundary by 8 V. Within region V, we assume that a constitutive relationship

6 =% [ Ay f A dt, ] (3-13)
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which defines the stress o;; in terms of the velocity and related quantities is satisfied at all
times. Here d is the rate of deformation tensor, defined as the symmetric part of the
velocity gradient:
dj =12[0vi/0x+0v;/0x] (3.14)
If the history of the velocity and the velocity gradient are known at a material point, we
assume that the stress history can be evaluated directly. In the interior of the region the
field equation whose solution will be approximated in the finite element solution, is the
momentum balance
0o/ 0x,+pb, =pay (3.15)
Here p is the mass density, b; are components of the body force per unit mass, and a; are
the components of acceleration.
The condition of conservation of mass will be satisfied through the use of a Langrangian
mesh. During the solution, we will let the mesh deform with the material, so that material
never crosses the element boundaries. Consequently, the region V is “updated”
automaticallt to reflect the deformation of the system. The density p, which may be
needed for stress, force, or energy calculations, may be obtained by integrating in time
using the continuity equation
dp/dt=-p Ov;/ 0x; (3.16)
3.5.2 Boundary Conditions
At each point of the boundary 6V, in each of three linearly independent directions, a
boundary condition is required to specify a velocity, a traction (force) component, or

some relationship between the two. we denote the portion of the boundary on which
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velocity components are prescribed by 6V, and that on which forces are specified by
0V; in what follows, this notation is used chiefly to specify limits of integration. Notice
that at one physical location of the boundary we may have the velocity prescribed in one
direction, and forces in the remaining directions. For this reason, an expression which is
said to hold “on &V ,* may in fact apply only to certain components of the velocity,
traction, or stress. The boundary conditions for the velocity and stress are:
Vi=v; ondV,

njo; =t ondV, 3.17)
Here n is a unit vector along the outward normal direction to the boundary at a point. An
overbar indicates the prescribed quantity.
To accommodate the contact problem, we will introduce two additional boundary regions
denoted by & V* and & VB, These two surfaces represent opposing faces of a contact
surface; for each point belonging to & V*, a corresponding point exists which belong to
& VE . Since the opposing surfaces are in contact, we have n* = - n®. The complete
boundary 0 V therefore consists of the union of four mutually exclusive point sets:

dV=09V,udV,uoVviuaVve (3.18)
Here we restrict attention to frictionless contact problems. Then, of the three directions at
a point on either contact surface, only the direction normal to the surface belongs to 8 V*
or & V®. The force condiotion for the contact interface requires normal traction
components which are equal and opposite:

niA[GAjinjA"l"GBjinjB]:O (3.19)
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The remaining two directions are stress-free ( since the mutual tangential forces vanish)
and therefore belong to 6V,,.
3.5.3 Principle of Virtual Work
The basis of our finite element approximation is a weak form of the momentum equations
and the force-related boundary conditions. We assume that the kinematic boundary
conditions on 0V, are satisfied a priori, since this is easily accomplished in terms of the
nodal variables. Letting the test functions be 8v; , we can write
NI-00i/0xi-pb; +pa18v;dV + [y, [0 n;- 1] v, dA

+lavh oyt (0 in? +6% 0, ) v, da=0 (3.20)
The use of a common test function for the opposing contact surfaces 8 V* and 8 V®
reflects the requirement that the normal veloities of the two surfaces be equal, so the test
functions cannot be independent.
The equality above may be interpreted in several ways. As a weak formulation of the
boundary value problem, it states that the velocity field history v(x,t) which satisfies the
initial conditions and which makes the weak form zero for any arbitrary choice of the test
functions 8 v; is the solution of the boundary value problem. This interpretation follows
the same essential reasoning as Galerkin’s method. A physical interpretation is provided
by the principle of virtual work; each of the integrals in the weak form represents a rate of
work performed by a sytsem of “generalized forces” ( the quantities in parentheses),
during the occurrence of a virtual velocity field 8v,.. If these generalized forces (which
actually are the residulas of the momentum equation and the boundary conditions) vanish,

then the resulting integrals should vanish regardless of the choice of virtual velocities.
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Notice that the virtual velocities (or test functions )  v; vanish on 8 V,, where the
kinematic boundary conditions must be satisfied a priori.

In applying the principle of virtual work to the formulation of finite elements, it is useful
to shift the derivative from the stress to the virtual velocities using the divergence
theorem. In particular,

',[Vacij/axi 8Vi dV=,[V Gij SvinV'javnj Gij 6Vi dA (3.21)

Notice that the boundary integral vanishes on 8 V, (where & v, = 0). The resulting virtual
work expression is

fvpaidvidV+[y oy 8vi;dV-lypbdv; dV - fay, i 8vi dA=0 (3.22)
3.5.4 Finite Element Approximation
An admissible finite element approximation of the virtual work principle requires
continuity of the virtual velocities 8 v;. Normally we adopt a continuous approximation
for the actual velocity field v; as well, by using the same shape functions for both
variables. For most elements in common use, the stress field is discontinuous between
adjacent elements.
Below, we develop the discrete equations for the finite element system in a form of
indicial notation, with upper-case indices referring to nodes of the finite element model.
This notation is useful for manipulating the equations for nonlinear systems, which do not
lend themselves to matrix notation.
Let the finite element shape functions be Ng(x). The approximations for the velocity and

the virtual velocities are then:
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Vi (%) =Ng(x) Vg (1) (3.23)

v (X,t) = Ng(x) 8V (1) (3.24)
The nodal velocities V ; are unknown, while the virtual nodal velocities 8V  each are
arbitrary and independent. Note that each meaningful combination of indices (K,i) refers
to a unique degree of freedom of the model.
If we introduce the finite element approximation into the virtual work expression, we
obtain:

SViillv p Ng Ny Vi dV +y 6 Nk, dV -y pbNgdV - [oy, t; Ng dA1=0
(3.25)

in which 8V are arbitrary and independent of one another. Therefore the quantity in
brackets must vanish for each degree of freedom. The resulting conditions, one for each

unconstrained degree of freedom Vy , are the semi-discrete governing equations for the

finite element model;

jv P NK NL VLi dv + Iv cij NK_) dv ',[V P bi NK dv - Iavc ti NK dA =0

(3.26)
If we define the mass coefficients
My, = Jy pNg N; dV (3.27)
the external force vector
F™ =R pb NgdV +Jay, t; Ng dA (3.28)
and the internal force vector
F™=l o5 Ng;dv (3.29)
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then the system of ordinary differential equations describing the motion of the finite
element model can be written as:

Mg Vip =F ™ -F ™y (3.30)
The range of index I is normally 1 - 3 (for three-dimensional problems); K varies from 1
to the number of nodes in the finite element model. This coupled, nonlinear system of
ordinary differential equations may be integrated versus time once the initial conditions (
on position and velocity ) are specified.
In practice, the method used for solving the finite element system depends upon the type
of solution to be performed ( transient, steady-state, or static), the time frame of interest,
and whether or not the system is indeed nonlinear. The semi-discrete system formulated
above provides a suitable starting point for all of these problem types.
3.5.5 The Finite Element System in Matrix Form
Often it is more convenient to express the finite elemenp equations in matrix form. Let the

shape functions for all components of the displacement or velocity be assembled in a

matrix [N] such that |

vy,
|41 V.
n| = | 7 = v
V3 M

[ Vi3

(3.31)
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Here n is the number of nodes in an element (or the system). {V} is the column vector of

nodal velocity degrees of freedom. Also define the /inear strain-displacement matrix:

Ny Npg oo Ny 0 0 0 0 0 0

0 0 0 Ny Ny o N, 0 0 0

0 0 .. 0 0 0 0 Ny Ny, o N, | G392
“lo o 0 Ny, Npz o Ny, Nyy Ny o N,

Ny, Npy oo Ny 00 0 Ny, Ny o N,

Niy Ny e Nyy Ny Ny oo N, 0 0 0

Arrange e unique rate ot detormation components in a vector {d} such that
{d} = {d,, (o2 33 2dy3,2dy3,24dy,} T= [B] {V} (3.33)
Similarly, define a column vector containing the unique stress components:

T
{o}={011,02%,035,065,0,3,0,} (3.34)

With the definition above, the semi-discrete finite element system becomes

[M] {(V} = {F}™ - (F}™ (3.35)
Here the mass matrix [M] is defined by:

[M] =Jyp [N] [N]" dV (3.36)
The vector of external forces is:

{F}* =lvp INI" {b} dV +Joy,p INI" {1} dV (3.37)

Using the symmetry of the stress components, it is possible to arrange the internal force

vector in the form:
{F}™ =l [BI' {o} dv
In linear problems, the displacement gradient terms are small and the stress-strain relation

is lineaf, so that

{e}=[B] {U} «
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and

{o} =[D] {& } = [D] (B] }{U) (3.40)

For such problems, the internal forces may be written in the more familiar form
(F}™ =1y (BI" [D][B] 4V {U} = [K ] {U) (3.41)
Matrix [K] is the linear stiffness matrix, and {U} is the vector of displacement degress
freedom corresponding to { V.
3.6 Formulation for two-dimensional small-sliding rigid contact
The formulation for two-dimensional small-sliding rigid contact follows from its
deformable counterpart by exploiting the fact that the evolution of the contcat plane is
fully determined by the motion of the rigid body’s reference node. Figure 3.4 shows how
the undeformed coordinates X, of the contact plane’s anchor point are related vectorially
to the undeformed coordinates of the rigid refrence node, X5, and the relative position
vector R. We can express this relationship as
Xo=Xs+R (3.42)
Suppose the rigid reference node undergoes a motion described by the displacement
Vector U, and the rotation vector 9 €, , then the current coordinates of the contact plane’s
anchor point are given by
Xo = X TUus+C(d4e,). R

=Xgtr (3.43)




CHAPTER 4

EXPERIMENTAL METHODOLOGY
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4.0 Experimental Techniques

4.1 Approach and Experimental Strategy

Since the theoretical methods are not sufficiently developed to allow the tire engineers to
predict the stresses generated in the cord, rubber, and steel components of a tire under
service conditions, a great deal of effort has been expended developing experimental
procedures for this purpose. These stress and strain measurements are important since
they may suggest changes in tire design which will make efficient use of tire
construction materials and/ or improve performance materials especially with regard to
tire cord fatigue performance phenomena.

Additionally, experimental data can be used to validate analytical predictions.
Experimental results are often valuable in that they provide guidance in the development
of an accurate mathematical model governing tire loaded in some particular manner.
Ix%rder to determine the value of Young's Modulus of the nylon-rubber composite

used in the construction of the aircraft tire being analyzed, an experiment was conducted
to determine the stress vs elongation of the same till failure occurred.

Apparatus:

1. Nylon rubber composite coupons of size 4"*0.75"*0.18" approximately so that the
.uﬁlﬁsupported or gage length = 2",

i.%ll coupons were made of four plies, (+38/-38)s.

Procedure:

1¥The room temperature was recorded once during each test.
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2. Strain rate of 0.001 inch/sec was applied. This corresponds to‘ve.;ongation rate of 0.002
‘;1—:1'1/8'6(:.- Vl ﬂ,
3. From the start of test time, coupon temperature, load, elongation, specimen width and
specimen thickness were measured as the test specimen is being stretched.
4. Strain rates of 0.0005 inch/sec and 0.01 inch/sec were applied and steps 1,2 & 3
repeated.
5.Stress vs elongation was plotted for each strain rate. Stress plotted is the actual stress
computed by dividing the actual load by the true cross section area.
3,401
FigureVl shows the stress vs elongation for various strain rates of (+38/-3 8);
coupons.
4.2 Theory Of Operation Of 3D Digitizer
The building of the tire cross-sectional geometry was achieved using a 3 dimensional
digitizing software and associated electronic equipment named GP-12-3D. The 3
dimensional equipment essentially uses the principle of ultrasonic soundwaves to
determine the location of a point in space with respect to a set of reference coordinates.
e TS
The basic system comprises of
a) an Offset Probe, which generates ultrasonic sound waves
b) a pre-calibrated microphone triangle ( essentially it consists of three microphones
located in an equilaterally shaped frame)
' ¢) a Control box and a Pilot Bar

The GP-12 is conveniently designed to sit between the typical personal computer/color

monitor combination found on most office desks today. The basic system comprises the
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Control Box, an offset micro probe a pre-calibrated microphone triangle and optionally a
pilot bar.

In the one meter (active cubic volume) Mode the GP-12 has a counter frequency of
39.3216 Mhyz, yielding a resolution of approximately 114 cnts/mm at 21 C (0.0087mm).
Due to the large number of possible configurations, both physically and mathematically,
and the superior number crunching ability of the anticipated host CPU, this digitizer
transmits slant range data - defined as the distance from the given emitter to the selected
receiver.

Cartesian coordinates (X,Y,Z) resolution is a function the counter frequency and the
actual speed of sound of the given digitized line-of-sight path.

Sonic digitizers take advantage of the fact that sound travels between two points
(‘a sound emitter & a sound receiver) at a speed which can be calibrated (known). If a
sound wave travels from a single emitter to three or more receivers of known orientation,
and the speed of this sound wave and time duration between the emitter and each
receiver are known, then it is possible to calculate the location of that emitter in three

dimensional space.

While sonic digitizers offer the advantages of being able to digitize any material,

including . . ~—— -

metals, there are some practical limitations which need to be observed. Every emitter/
receiver combination being used requires a direct line of sight., i.e any object directly

between an emitter and any receivers listening to the emitter will disrupt the digitizing
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process. The probe emitters should face the detector array.

Because sound bounces (echoes) off hard objects, it sometimes happens that an echo, or
reflection, from a previous emitter can interfere with the current emitter. The 3D digitizer
has a feature called delay. The exact value required depends on your setup and its
surrounding@The default value of 10ms was set in the experiment.

The higher the degree to which the speed-of-sound is calibrated, the higher the level of
digitized accuracy is.

4.3 Procedure

The initial difficulty encountered mainly was in orienting the cut section of the tire and
wheel axis together. The reason being the object has to be oriented in such a way that the
transmitting sound beams are not in any way obstructed in its path to the receivers.

After several attempts, it was found the best way to orient the object was to keep it on a
level ground facing the three set of microphones (receivers).

The digitization of the sidewall, and the cord area was done without much difficulty.

But since the crown part of the tire consisted of several depressions, it was extremely
difficult to obtain good results out of the digitization. Hence another modification was
made, namely to trace the cross section of the tire to be digitized on a graph paper. The
digitization of the crown region of the tire was then carried out without much difficulty.
After the readings were obtained the the readings were directly fed into the software
PATRAN3, which is a pre and post processor for several finite element analysis

packages. The geometry of the tire cross-section was generated using the software
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without much difficulty except for the fact that some regions of the tire cross section had
to be redigitized later on. —

Due to the symmetry of the cross section about the y-axis it was decided to analyze only
one half of the cross section. The geometry of the tire cross section is highly irregular.
Therefore it is not advisable to do automatic mesh generation (the reason being it might
produce irregular elements). The small group of lines which made up the tire cross
section were first made to join together to form a group of curves. By making

use of these curves, surfaces were generated. The surfaces were generated in such a way
that cord areas had different surfaces from the pure rubber regions. Upon these surfaces
four noded quadrilateral elements were created. The material and element properties
were then assigned. The material properties were assigned for both rubber and nylon-
rubber composite.

The first analysis was performed using axisymmetric hybrid reduced integration elements
(CAX4RH is the notation used in ABAQUS for this particular element.). A second
analysis was performed on the same mesh with axisymmetric , incompatible hybrid
elemepts (CAXA4IH) and the two results were compared. The analysis package used for
this purpose was ABAQUS.

Similarly a finite element mesh consisting of eight elements was created for the
rectangular coupon. The material and element properties were then assigned. The nylon

rubber composite coupon was assumed to be hyperelastic. The element properties

assigned were plane stress, reduced integration@ (CPS4R).
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5.0 Static Structural Anaysis of Tire Cross Sections and Tread Band Ring on

Foundation Tire Models.

S.1 Assumptions

The tire model can be considered axisymmetric for the purposes of analyzing inflation
and determining the contribution of the sidewalls to the resistance of deflection within a
reasonable range of accuracy. The elements used were hybrid reduced in order to give

Q\X’/ere using a very coarse mesh.
Hyperelastic Behavior:
Both the rubber as well as the nylon rubber composite were assumed to be made of
hyperelastic material. Hyperelastic models are used to describe the behavior of materials
that exhibit elastic response up to large strains, such as rubber. These materials are
described in terms of a "strain energy potential”, U, which defines the strain energy stored

in the material per unit of volume in the initial configuration as QB

. é function of the strain at that point in the material.
Incompressibility assumption:
Most solid rubberlike materials are almost incompressible: their bulk modulus is several
orders of magnitude larger than their shear modulus. For applications where the material
is not highly confined, the assumption that the material is fully incompressible is a good
approximation. Hence in this material model both the nylon rubber composite and rubber

are assumed to be incompressible.
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In either case the use of "hybrid" (mixed formulation) elements is recommended for this
material in all but plane stress cases, because the bulk modulus is usually very large
compared to the shear modulus (it is infinite if incompressibility is assumed).

Isotropy assumption:

The initial orientation of the long-chain molecules of rubber is random, hence the
material is initially isotropic. As the material is stretched, the molecules orient
themselves, giving rise to anisotropy. The same cannot be said of cord reinforced nylon
rubber composite plies, as it is initially anisotropic. But due to the balanced layup of the
plies it was treated as isotropic. The strain energy potential can be formulated as a
function of the strain invariants.

5.2 Material Properties

Isotropic Elastic properties:

Nylon Rubber Composite

Average Young's Modulus = 15.24E02 N/cm?

Rubber

Average Young's Modulus = 55.16E01 N/cm?

Hyperelastic properties:

Nylon Rubber composite

Cop =-472.81

Cip=732.0

Rubber ’
Cyo=850.0
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5.3 Load and Boundary Condtions
5.3.1Coupon Analysis
&
The rectangular coupon was rigidly fixed on one side and Viensile load was applied on the
other end at three different strain rates of 0.001 , 0.0005 and 0.01 inch/sec respectively.
The load was applied till 9{6 failure occurred in each case.
For the finite element aﬁalysis/-@mse a pressure load of 3.E+6 N/m’ (435.10 psi) was
used as the input load, to compare with the experimental resulty
Two types of loading were applied:
1) Concentrated loading
2)Distributed loading
5.3.2 Tire Analysis
The tire was assumed to be rigidly fixed to the wheel taking into account the iron bead

which goes through the tire cross section which firmly fixes the tire to the wheel.

Hence in the finite element mode! the nodes which formed part of the fixed end was
17

assumed to have no translationlas well Yotation.

The part of the tire where it was cut to account for the symmetry about the y-axis,
ﬁ’

symmetric boundary conditions were applied!ll'he load was assumed to be‘/pressure load
27

acting on the inner surface of the tire. The applied pressure load was(abouty310 psi.

5.4.1 Analysis

The first step in the finite element analysis was to curve fit the stress-elongation curve of

the +/-38 coupons. Since the polynomial form with N=1 is very commonly used for cases




where the nominal strain is not too large, an alternative method of finding the material
constants, assuming incompressibility, is to use the uniaxial test data as follows.
The nominal strain in the direction of loading in the uniaxial testis ey = Ay - 1 .
For equibiaxial tests, we have the following relations,
dU=2Tgd A
Tg =172 (BU/GM; )=2(Ag - ™) ( aU/alL, + Ag’ 8U/BL, ) (5.1)
where Ty is the nominal equibiaxial stress.
Expanding the above equation in terms of €y, , using the Mooney-Rivlin form (Equation
5.1),and neglecting terms of higher than second-order in €y, ,gives
Tu =6 €y (Cip+Cy; - (Cyo+2 Coy) €y) (5.2)

This is a parabola; the slope of this curve at the origin (effective Young's modulus at zero

strain) is 6(C,,+Cy,) : the slope of this curve at the origin (effective Young's modulus at

Zero strairi _),.i,s 6(Cy+Co)): this slope, together with second-order term -6 (C,o + 2 Cy;)
EUZ , defines the constants C,, and Cy,.
Substituting,
6(Co+Co)=A
-6(Cjp+2 Coy;) =B, we obtain
Tu=Aey+B e, (5.3)
Using the above set of equations to curve fit the data we obtain

2

CO] = '47281, ClO =732.0
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But since@%id not have the sress vs strain curve for the rubber, a neo-Hookean
formulation was assumed by setting C,, equal to zero. The value of C,owas set to 850,

which is approximately the average value of Young's modulus for rubber.

The analysis was done using ABAQUS. The model was initially assumed to be made of
isotropic elastic material, with the rubber and nylon rubber composite having average
Young's modulus as given in the materials table above. Then a non ligear static analysis
of the inflation was performed with a maximum of hundred incremeﬁf}iﬁons. The
method being used for the geometric non linearity was Newton Raphson method. But it
was found that halfway through the analysis the elements were distorting inside out.
Hence the convergence parameters were relaxed slightly to account for the large strains

developed. The result proved to be the same as earlier and hence it was decided to model

the tire as made of hyperelastic material.

The validity of the above assumption was then verified on the+/-38 coupons, witl'()‘igidly
fixed boundary conditions on one side of the coupon and pressure load on the othexgside
of the coupon. The type of elements used were four noded quadrilateral elements. The
element properties used were hyperelastic, plane stress and reduced integration (CPS4R
is the notation used for the particular element in ABAQUS).

Non linear static analysis was then performed with concentrated loading initially and
distributed loading later on. In the former case convergence was obtained in six

increments and in the latter convergence was obtained in thirty three increments.
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The same finite element mesh was used in both 9& cases. The result proved to be more or
27

leii the same. .

lesis was also performed on the same to compare the behavior of two
different results.
The method used for the non linear static analysis is the Newton Raphson method
in ABAQUS. In some cases it uses an exact implementation of Newton's method, in the
sense that the Jacobian of the system is defined exactly, and quadratic
convergence is obtained when the estimate of the solution is within the radius of
convergence of the algorithm. In other cases the Jacobian is approximated, so that
the iterative method is a modified Newton Method. For example, some material
and surface interfaces models (such as nonassociated flow plasticity models, or
Coulomb friction) create a nonsymmetric Jacobian matrix, but the user may
choose to approximate this matrix by its symmetric part.
5.5 Analysis of Tire Cross-Section to determine Contact length and Sidewall
Contribution
As mentioned earlier the purpose of analyzing the two dimensional model of the cross-
section was to @ze the spring force effect of the sidewalls resulting from the local
deflection. The force-displacement relationship thus obtained will be used in defining the
non-linear spring in the ring model. The total force-displacement curve is obtained and is

shown in figure 5.2.

N o B ey o8
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The analysis was performed in three steps. The ground was given a rigid body
displacement by means of the rigid surface node. The different steps involved in the
analysis were:

1) First the internal pressure load and boundary conditions were applied, namely:

a) The tire sidewall is assumed to be rigidly fixed to the wheel taking into account the
iron bead which passes through the cross-section. Hence, in the finite element model
the nodes labelled “0” ( see figure 6.1.1 - 6.1.4) which form the fixed end of the
sidewall are assumed to be rigidly fixed i.e. U;=0 and R;=0, i=1,2. Where U, and R; are
the displacements and the rotations withreference to the reference rectangular
coordinate system.

b. Due to bilateral symmetry of the tire cross-section only half of it is analyzed. Therefore
we assume symmetric boundary condition for the nodes, labelled 0x ( see figure 6.1.1)
lying on the line of the symmetry, i.e. U; = 0, i=2,3.

c. The load was assumed to be pressure load acting on the inner surface of the tire. The

applied pressure was 150 N/ cm’.

2. The second step the rigid surface node was given a translation in the horizontal
direction till the ground came into contact ith the tire, the boundary conditions
remaining still active from the first step.

3. The third step, the rigid surface node was given different displacements by activating a
degree of freedom in the horizontal direction, boundary conditions remaining still

active from the first step.
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The analysis was conducted under the assumption that the cross-sections remain lane
during deflection and deformation, and requires that the cross-sections be analyzed as an
axisymmiteric cross-section. The finite-element model of the tire was made of CAX4RH
elements(4 noded axisymmetric reduced hybrid integration elements). The possible
contact region was paved with IRS21A elements(one dimensional rigid surface
elements). A rigid reference node was created to impart necessary ground displacement
conditions. The ground was modeled by one dimensional rigid bar elements. Utilization
of axisymmteric cross-section is equivalent to treatment of the ground contact as occuring
from the effect of progressively shrinking a right circular cylinder with axis held parallel
to the tire axis down around the tread of the tire. This will produce an upper bound to the
resistance of the tire cross-section to deflection and deformation. The figure 6.2.1 shows a
typical cross-section under inflation.

5.5.1 Ground Contact Analysis

At the interface between the tire and the roadway an element of the tire surface area is
acted upon by a force vector which can be expressed as two components, one
perpendicular to the contact surface, called the normal component, and one tangential to
the contact surface. This latter component may be further decomposed into two
components, each lying in the contact plane, but one parallel to the central plane of the
tire and the other perpendicular to it. These components in the contact plane are
commonly called as the shear components. In this particular analysis attention is directed
first to the normal pressure distribution components caused by contact of the tire with

some other surface.
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As a basic primary concept one might state that

p = po + f ( Tire structural characteristics, tire side forces, tire driving or

braking, torque, tire velocity, etc.) (5.4)

where ‘p’ is the vertical presssure component at any point, Do 1s the inflation pressure of
the tire and ‘f” is some general functional relationship which insofar as is now known is
extremely complicated, and can be best described in a qualitative sense.
5.5.2 Definition of a Non-Linear Spring to Model Sidewall Elasticity for Use in
Tread Band Models of the Tire
The non-linear spring defined above includes the resistance to deflection from internal
pressure, the sidewall and the tread band.The tread band width is defined to be the
maximum contact length obtained, when the cross-section is subjected to 34 percent
ground deflection. This assumption is justified by Figure 6.2.13 where it is seen that the
contact length remains firmly constant beyond a sidewall deflection of 30% and so
bounds the tread band width. The tread band was assumed to posess constant thickness
equal to thickness of the unloaded cross-section at the crown.
This model was used to get the total forces normal to the plane of the cross-section which
includes the tire axis, and also the forces normal to the plane which bisects the tread and
is perpendicular to the tire axis. These forces represent respectively the total radial force
and axial force acting over the thickness of the tread. In order to determine the sidewall
force which is nothing but the spring force in the ring model, we must subtract from the
total ground contact force for a given deflection the radial force, the radial component of

the internal pressure force.
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The total ground contact pressure force needed is obtaind by integrating the contact
pressure over the contact length. The internal pressure force is computed to be the internal
pressure multiplied by the inner radius of the tire for a particular value of ground
deflection by the maximum contact length i.e. the tread band width.

The radial force is taken to be the force normal to cross-section computed over the tread
thickness along a radial line perpendicular to the tire axis and intersecting the crown
corresponding to a particular value of ground deflection. Tread width is again the
maximum contact length.

Symbolically, the recipes for these forces may be expressed as follows: The forces in
order of appearance are the ground contact force per radian ‘P, (d)’, the radial pressure
force ‘F(d)’, the radial force acting on the edges of the tread band parallel to the tread
axis ‘F,(d)’, and axial orce over the ends of the tread band model per radian of
circumferential wedge element ‘F,(d)’. With reference to the figure(3.2) ‘d’ is the ground
deflection, ‘p’ is the tire pressure,’s’ is the width of the tread band, ‘r(d)’ and ‘r,(d)’ are
the outer and inner radius, ‘¢° is the circumferential angle, ‘0° represents the direction
normal to a plane through the axis, ‘2’ is the axial direction, ‘p,(d)’ is the pressure

b

distribution over the contact length ‘1(d)’.

Pi = P(d)= o]'¥ py(d) dI (5.5)
Fy(d)= - pri(d) s d¢ (5.6)
Fr(d) = d¢ o)™ fo(r.d) dr (5.7)
Fy(d) = d¢ g™ £(r.d) dr (5.8)
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The various forces talked-abeut above are in terms of force per unit radians. The

maximum contact length is taken to be the contact length at a deflection equal to 34
percent of the wheel to crown height. The various forces are plotted asa&?unction of
percentage of crown to wheel height ground deflection and is seen in the figure(3.4). The
ground contact pressure distributions corresponding to these sections are also shown in
the figure(3.5) for varying ground deflection. The above equations were derived making
use of the formulations given in [45].
5.6 The Tread-Band on Non-Linear Foundation Representing the Tire Sidewall
Model of the Tire
The tread band or the ring finite-element model of the tire incorporating the non-linear
spring forces due to the sidewalls is shown in figure 5.3. This figure also depicts the ring
model in the state of inflation. Note that the springs determined previously are connected
within the tread band model by pin-joints to the points on the inner radius of the tread as
well as on the hub of the wheel. These springs may therefore are free to rotate, but must
remain straight and therefore deform along their instantaneous lengths.
From ﬁgure 6.2.4 we infer that the relative importance of sidewall compared with the
tread-band with respect to their resistance to deflection is about equal and thus deserving
to be accounted for in the ring model. This {b/s, hows that the axisymmetric model is
stiff as assumed earlier.
The finite-element ring model was made up of CPE4RH (4 noded plane strain reduced

1
hybrid integration elements) elements to model the rubber and arcujp'art of the tire. The

sidewall was modeled making use of SPRINGA elements. The expected contact region
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was paved with IRS21 elements. The elements were assumed to be under plane strain

condition.

3.7 Load and Displacement Boundary Conditions

1.As mentioned above the nodes at locations correspoding to spring attachments to the
hub are assumed to be pin joints such that, i.e. U;=0 for i=1,2 . Whgre U, represents the
displacements and rotations with reference to the cylindrical coordinate system.

2.The nodes at locations corresponding to spring attachments to the tread are free to move
in radial and tangential direction and also free to rotate in the plane of the cross-section.

3.The pressure load is the same as for the cross-section and is assumed to be acting
normal to the inner edges of the tread.

The above ring model is then subjected to a particular single maximum, value of ground

11
deflection in a similar maximum to that applied to the cross-section, and the

—_—
corresponding contact length and the ground contact pressure distribution is then
obtained. The corresponding pressure distribution in the rolling direction integrated
across the width of the tread is shown in figure 6.2.6 for various values of sidewall
deflection . The figure 6.2.7 depicts the inflated ring model and the deformation of the
ring tread band model due to ground contact in 6.2.8.
5.8 Determination of Shape and Pressure Distribution Over the Ground

Contact Patch
From the plane symmetric deflection analyses of the meridional tire cross-sections

under ground contact conditions we had previously obtained the lateral pressure

distribution and lateral extent of the contact zone as well as the sidewall forces for
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a practical range of sidewall deflections. For later use we create a set of
[ —
normalized pressure distributions from the computed ones. \l‘he full two

dimensional shape of the contact patch and the distribution of normal pressures

within it however are not defined until after the tread-band ring-on-foundation

le\. - o

X

model of the tire has been exercized and analyzed to determine the extent of the
— contact patch measured along the tread centerline and the distribution of the net
ground contact force over the local patch width as it varies along the tread

centerline in the rolling direction corresponding to a given maximum value of

sidewall deﬂection.ﬁ"oj determine the local contact patch width and lateral
@xomm =’
distribution pressure at each point of the tread centerline, we interrogate the nodes
at the extremities of the distributed springs which represent the resistance to
deflection of the tire sidewalls in order to compute their change in length. If the
data do not already exist , we then compute the ground contact lengths and
normalized pressure distributions for the cross-section corresponding to these
deflections. The local lateral width of the contact patch is taken to equal the
ground contact lengths of the cross-sections. The true lateral pressure distribution
in a direction perpendicular to the tread centerline is taken to be the local
normalized lateral pressure distribution multiplied by the local net force at the
particular point along the tread fore-aft centerline as determined from the tread
band on foundation model of the tire. Figures 6.2.9 and 6.2.10 show the shape of

the contact patch corresponding respectively to 20 and 34 percent sidewall

deflections. For these same values of sidewall deflections, Figures 6.2.11 and




6.2.12 show the distributions of ground normal pressure distributions over the

contact patch.
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RESULTS
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6.1 Coupon Analysis
The results show that convergence is approached much easier if concentrated load
is applied instead of pressure load.
1) Non linear static analysis:
Distributed load = 3.E+6 N/m"2
Deflection = 10.71 mm
Concentrated load =270 N
Deflection =9.71 mm

2)Experimental result:

sai\\s e sTress
Load applied = 3.E+6 N/m”2

Deflection = 10mm (approximately)
Error using concentrated load = 2.9% (approximately)
Error using distributed load = 7.1% (approximately)
~ 77 Con \-%—F.NJ\

F ig@sbows the stress vs elongation of the (+38/-38)S coupons with different strain
rates. The results show that a non linear analysis performed with concentrated load
produces much better accuracy than the one done using distributed load.
We can also note that as the distributed load increases the end point deflection of the
particular node being monitored decreases and then increases again.
6.2 Tire Analysis (Inflation)

We have two different results in the case of tire analysis. The first one is performed
using hybrid reduced integration elements (CAX4RH) and the second one is performed

using hybrid incompatible elements (CAX4IH).

66




1) Axisymmetric Hybrid Reduced Integration Elements (CAX4RH):
The following results are obtained from the analysis:

Pressure 7

Load applied = 206.9 N/sg.cm*

Node at which maximum deflection occurs in the x-direction = 56
Maximum deflection in the x-axis direction = 1.678 cm

Node at which maximum deflection occurs in the y-direction = 6
Maximum deflection in the y-axis direction = 5.186 cm
Maximum stress in the x-axis direction = 1679.0 N/sq.cm
Maximum stress in the y-axis direction = 2869.0 N/sq.cm
Maximum stress in the z-direction = 1602.0 N/sq.cm

Maximum stress in the xy direction = 1089.0 N/sq.cm

Maximum strain in the x-axis direction = 0.1279

Maximum strain in the y-axis direction = 0.3763

Maximum strain in the z-axis direction = 0.2068

Maximum strain in the xy direction = 0.6266

2) Axi"symmetric Incompatible Hybrid Elements (CAX4IH):

The following results are obtained from the analysis:

Load applied = 206.9 N/sq.cm

Node at which maximum deflection occurs in the x-direction = 56
Maximum deflection in the x-axis direction = 1.192 cm

Node at which maximum deflection occurs in the y-direction = 1

Maximum deflection in the y-axis direction = 4.619 cm
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Maximum stress in the x-axis direction = 1823.0 N/sq.cm
Maximum stress in the y-axis direction = 2875.0 N/sq.cm
Maximum stress in the z-axis direction = 2108.0 N/sq.cm
Maximum stress in the xy direction = 1153.0 N/sq.cm
Maximum strain in the x-axis direction = 0.2664
Maximum strain in the y-axis direction =0.3849
Maximum strain in the z-axis direction = 0.1976

Maximum strain in the xy direction = 0.6323

From the results we can see that the maximum deflection both in the horizontal and
vertical directions are more in the case of axisymmetric hybrid reduced integration
elements than with axisymmetric incompatible hybrid elements. But the maximum
stresses in the X, y, z and xy directions are more in the case of latter than former. From
the experimental curves we can note that the results obtained analytically by applying
concentrated load gives more accurate results.

6.3 Ground Contact Analysis

The various results obtained from the above 2-dimensional analysis are discussed below.
The various ground pressure distributions over the contact length were plotted and are
shown in figure 6.2.5. It is clear from the figure that the double peaking of the pressure
occurs at 30 percent deflection which signifies the initiation of bifurcation. It is also clear
from the figure 6.2.5 that the pressure over the contact length is fairly uniform and equal

to the internal pressure at small ground deflections. But as the deflection is progressively
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increased the contact length increases and the pressure tends to concentrate towards the
edges. The variation of ground contact length with sidewall deflection is shown in
figure6.2.13. The beginning of a plateau at 30 percent deflection marks the beginning of
bifurcation. The bifurcation is also seen in figure 6.2.6 for 50 percent sidewall deflection.
Anot-her interesting feature which is conspicuous in this figure is the decrease in the fore-
aft contact length at bifurcation which is easily explained by the fact that as the tread
deflects inwards it pulls the sidewalls t;)gether.

Figure 6.2.14 and figure 6.2.15 show@ the contact pressure distribution variation with
fore-aft distance from midpoint of contact patch centerline for 20 percent and 34 percent
sidewall deflections. It is seen that the pressure is uniformly distributed over the contact
length for 20 percent case with no double peaking of the presssure.

The contact patch for 20 percent and 34 percent sidewall deflections were obtained and
are shown in figure 6.2.9 and figure 6.2.10 respectively. The 3-D pressure distribution
over the contact patch were obtained and are shown in figure 6.2.11 and figure 6.2.12 for

20 and 3 percent cases respectively. From these plots the pressure is clearly seen to peak

at the edges of the foot-print.
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7.0 Conclusions
7.1 Coupon Analysis

We can conclude from the coupon analysis that the value of the Mooney-Rivlin constaﬁ
ltw p=
calculated from the stress vs elongation curve of the nylon rubber composite Wwiés quite

accurate in modelling the behavior of the hyperelastic material at moderate strains.

7.2 Tire Analysis (Inflation)

4
Based on the fact that“value of the hyperelastic material constant for rubber used in the
analysis is approximate due to the lack of experimental data, we can conclude that the
value of stresses and displacements obtained are approximate.
The resulf obtained 6 approximate also due to the fact that in the coupon analysis only
one mode of deformation is excited, whereas in the tire model more than one mode of

deformation is excited. Hence to model the tire accurately more tests have to be

conducted in\/order to evaluate the hyperelastic material §

e e

( constants.
The tests to be conducted are :
1) Biaxial test:
This is achieved by stretching a square sheet in a biaxial testing machine. The state can
also be obtained by inflation of a circular membrane into a spheroidal shape (like blowing

a balloon). The stress field in the middle of the membrane then closely approximates
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equibiaxial tension, provided the thickness of the membrane is %&£y much smaller than

the radius of curvature at this point.

2)Planar test:

The experiment is usually done with a thin, short and wide rectangular strip of material

fixed on its wide edges to rigid loading clamps which are moved apart.

3)Volumetric test:

If it is necessary to allow some compressibility in the material model, the bulk modulus

must also be determined. An approximate way of conducting a volumetric test consists of

using a cylindrical rubber specimen which fits snugly inside a rigid container and whose

top surface is compressed by a rigid piston. In this test we make use of the fact that the

bulk modulus is much higher than the shear modulus.

7.3 Ground Contact Analysis

The following conclusions were drawn from the above work:

1. Demonstrated a low cost extension of the tire tread band ring model to handle non-
linear features of ground contact by employing two 2-D models.

2. Elucidated features of the tire ground contact load bifurcation phenomenon.

3. Elucidated the significance of the 30 percent sidewall deflection limitation rule for tire
operation.

4. The obtained results were compared with the experimental studies carried out by the
Materials Command at WPAFB and was found that the results were qualitatively

comparable.
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Figure 2.19 Conflicting requirements which a tire has to meet.
(a) ability to absorb surface irregularities - this requires flexibility.
(b) constant axle height and effective rolling radius on smooth roads - this

requires uniformity, and is most easily obtained with a rigid wheel.

Figure 2.20 Forces pressing bead against rim flange on the wheel to obtain driving

and braking reactions.




Figure 2.22 Breaker layers in conventional
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Figure 2.24 Perspective sketch of toroidal shell contact.
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Figure 2.25 Cross-sections of figure 2.24 showing deflections of sidewalls which

reduce the tension component radially outward at the inner cylinder edge.

Figure 2.26 Polar plot of radlally outward component of wall tension of

membrane toroid on inner cylinder.
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