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IMPLEMENTATION REPORT

In the present study, in order to take advantage of the cone penetration test for pile
design, load-settlement curves in terms of normalized base resistance (qy/q.) versus
relative settlement (s/B) where q, = cone resistance, s = pile base settlement, B = pile
diameter were developed. Although the limit state design concept for pile design has
been used mostly with respect to either s/B = 5% or s/B = 10%, the normalized load-
settlement curves obtained in this study allow determination of pile base resistance for
any relative settlement in the 0 — 20% range.  This is important, as it permits
consideration of specific project features, related to the superstructure or other
components of the facility, by selecting a specific value of tolerable settlement for use in
design.

The value of the normalized base resistance q,/q. is not a constant, varying as a
function of the relative density, the confining stress, and the coefficient of lateral earth
pressure at rest. The effect of relative density on the normalized base resistance is
significant, while that of the confining stress at the pile base level is small. At higher
relative densities, the value of q,/q, was smaller (q,/q, = 0.12 -0.13 for Dy = 90%) than at
lower relative densities (qy/q, = 0.19 - 0.2 for Dy = 30%). It is usually very difficult to
obtain undisturbed granular soil samples. It is, therefore, recommended that the
estimation of the relative density be made through reasonable correlations based on in-
situ test results such as the cone penetration test.

The normalized base resistance q,/q. proposed in this study can also be used for
displacement piles. The values of q,/q, were typically in the 0.15 - 0.25 range for s/B =
5% and in the 0.22 - 0.35 range for s/B = 10%, depending on the value of relative density.
CPT pile design methods can be used with the SPT blow count N for practical purposes,
if a proper value of q./N is used for a given soil condition.

The evaluation of the relative settlement associated with the limit states design of

piles should be done with consideration of the type, functionality, location, and
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importance of the superstructure.  The relative settlement s/B of piles leading to
serviceability or ultimate limit states is usually in excess of 10%.

For implementation, use of the method in future INDOT piling projects is
recommended. This may be done as part of an implementation project with extensive
participation of INDOT design personnel. It is strongly recommended that a number of
fully instrumented load tests on both driven piles and drilled shafts be performed along
with the cone penetration test at representative sites in Indiana. The fully instrumented
pile load test data would allow separate measurement of the base and the shaft resistance,
and shaft resistance developed at the interface of the pile with different soil layers. This
separation of load capacity in base and shaft capacities is essential for further validation
of the design methods. It is also recommended that the selection of sites for pile load
and cone penetration tests be such that sites with a variety of Indiana soil types be
located. Results for such sites would be useful for further validation of the CPT-based

pile design procedure for a wide range of soils.






CHAPTER 1 INTRODUCTION

1.1 Background

With the rapid growth of metropolitan areas, and fast industrialization resulting
from the fast-paced economic globalization, there has been a need to build heavier and
taller structures on marginal sites, where surface soils are weak and shallow foundations
are usually not the best design solution. At the same time, advances in piling technology
permit the installation of several types of piles, particularly non-displacement piles, at
lower costs than was possible in the past. This in turn generates the motivation for
further improvements in pile design capability.  Additionally, there is a growing
realization in the foundation engineering industry that certain types of deep foundation
(such as large-diameter drilled shafts) are conservatively designed (Harrop-Williams
1989, Hirany and Kulhawy 1989, De Mello and Aoki 1993). In this context, advances in
pile design methods can have significant economic impact and should be actively
pursued.

Based on the method of installation, pile foundations are classified as either
displacement or non-displacement piles. Driven piles are the most common type of
displacement piles, and drilled shafts (bored piles) are the most common type of non-
displacement piles. The load carrying capacity of both displacement and non-
displacement piles consists of two components: base resistance and side resistance. The
side resistance of piles is in most cases fully mobilized well before the maximum base
resistance is reached (Franke 1993).  After full mobilization of side resistance, any

increment of axial load is transferred fully to the base. As the side resistance is



mobilized early in the loading process, the determination of base resistance is a key

element in pile design.

1.2 Statement of Problem

Although friction piles are sometimes used, it is usually desirable to avoid relying
solely on side resistance to develop the needed pile load capacity. This is done by
placing the pile base on a bearing layer. Physically, what keeps a well designed pile
from plunging when acted upon by an axial load is the base resistance developed in this
layer, since the side resistance is fully mobilized early in the loading process. Plunging
will take place only when the base unit load overcomes the limit base resistance qp,
which is dependent not only on the density but also on the lateral confinement imposed
by the surrounding soil immediately beneath the pile base.

A number of different methods have been proposed to assess deep bearing capacity
based on the load-settlement curve obtained from pile load tests (Brinch Hansen 1963; De
Beer 1967; Chin 1970; Davisson 1972). One modern pile design philosophy is based on
the limit state concept. A limit state is evaluated with respect to either a loss of
functionality or collapse of the superstructure and/or foundation (Franke 1990; Salgado
1995).  According to Franke (1991), drilled shafts must typically undergo settlements
greater than 10% of the base diameter before a limit state is reached. In some design
situations, however, settlements less than 10% of the pile diameter may cause the
foundations or the supported structure to reach a limit state. Irrespective of the specific
value of settlement leading to a limit state, it is clearly necessary that a methodology be
available to calculate the settlements caused by a given load and vice-versa in order to
design piles within the limit-state framework. As shaft resistance is mobilized early in
the loading process, the determination of the load-settlement relationship for the pile base

is a key element in pile design and is the focus of this study.



Pile design in sands have been mostly based on results of the SPT test, which is
today widely recognized to have numerous limitations (Seed et al.1985, Skempton1986).
A serious limitation is that its main measurement, the number of blows required to drive a
sampler one foot into the ground, is obtained based on a dynamic process, which is not
well related to the quasi-static pile loading process. The SPT blow counts will also vary,
sometimes significantly, with the operator and operating procedures. A much better
alternative for pile design is to base it on data from a cone penetration test (CPT). In this
test, a cylindrical penetrometer with a conical point is pushed into the ground quasi-
statically, and a number of measurements are made.

The CPT was invented in northern Europe precisely for the purpose of pile
foundation design (the test can be seen as a scaled-down load test on a pile), and has since
been increasingly used in Europe, and to a lesser extent in the Americas and Asia, for pile
design and other purposes. Although there have been several proposed methods of pile
design based on cone penetration test results, an example of which is the LCPC method
(Bustamante and Gianeselli 1982), only recently has a method based on establishing the
relationship between cone tip resistance and the load-settlement relationship of a pile
been proposed (Ghionna et al. 1993,1994; Salgado 1995). If such a relationship can be
established reliably for a variety of soil conditions, significant economies in materials
volume and pile installation charges will become possible with respect to current design

methods.

1.3 Objective and Scope

The main objective of this research is to develop the methodology to determine pile
load-carrying capacity based on the results of cone penetration test. The focus will be on
the design of piles used to support typical transportation structures, with focus on the

response of piles bearing on sandy soils to vertical loading.



In order to develop the load-settlement curves for a variety of soil conditions, 3-D
finite element modeling is used. In general, the pile response to an external load is
strongly non-linear and may involve large irreversible deformations. For more realistic
modeling of soil behavior around axially loaded piles, a non-linear elastic-plastic stress-
strain relationship will be used in the finite element analyses. The calculated load-
settlement curves are normalized with the cone resistance q. and the pile diameter B for
the base resistance qp and the settlement s, respectively. The fully developed load-
settlement curves in terms of qu/q. versus s/B can be used to determine the normalized
pile base resistance qy/qc for any settlement-based design criterion. The results of the
analyses are compared with results from calibration chamber plate load tests and free

field pile load tests. Figure 1.1 shows the general scope of this study.

1.4 Report Outline

This Report consists of ten chapters, including this introduction.

Chapter 2 reviews the pile design methods based on in-situ test results. The
methods presented in Chapter 2 are based on the Standard Penetration Test (SPT) and
Cone Penetration Test (CPT).

Chapter 3 describes the methodology for defining a “failure” load for a pile from its
load-settlement curve. It also introduces the limit state design concept with main focus
on ultimate and serviceability limit states that are important in geotechnical engineering.
Tolerable settlements for different types of structures, including buildings and bridges are
discussed as well.

Chapter 4 covers the conceptual framework for describing the mechanical behavior
of soils, including stress tensors, invariants, linear and non-linear stress-strain
relationships, and the concept of plasticity. Critical state, dilatancy and shear strength

are all discussed.



Constitutive
Modeling

Finite Element
Analysis

=

Calibration Pile Load Test
Chamber Test

Investigation of
Size Effects

==

Pile Load- Determination of
Settlement Curves <;1;—:> Cone Resistance

Normalized Load-
Settlement Relationship

=5

Assessment of Results
Using Field Test Data

g Red T Due

Limit States
Design of Piles

> Pile Shaft
Resistance

Pile Base
Resistance <

- _=
- =

Determination of Pile
Load Capacity

Figure 1.1 Research scope and process



Chapter 5 presents the non-linear elastic-plastic soil model used in this study. The
concepts of intrinsic and state soil variables are explained. Values of the parameters
required for the non-linear soil model are presented based on experimental test results.
The Drucker-Prager plastic model for the definition of post-failure behavior of the soil is
described with incremental stress-strain relationship.

Chapter 6 presents the finite element modeling and analysis of the calibration
chamber plate load tests. The analytical results are compared with the measured values
of plate resistance in calibration chamber plate load tests. This chapter aims to verify the
accuracy of plate resistance predictions and assess the existence of chamber size effects
on plate resistance values.

Chapter 7 presents the determination of pile base resistance based on the normalized
load-settlement curves fully developed for axially loaded piles bearing in sand for a
variety of soil and stress conditions. The effects of relative density and the coefficient of
lateral earth pressure on the pile base resistance are explained.

Chapter 8 presents case histories for the validation of the results obtained in this
study. The case histories include both non-displacement and displacement piles.

Chapter 9 discusses pile design using CPT results in the light of the results of
Chapters 1 - 8. In order to present a more complete discussion on the subjects,
correlations between SPT and CPT are also addressed. A computer program developed
for estimating pile load capacity in practice is briefly also introduced.

Chapter 10 presents the conclusions drawn from this study.



CHAPTER 2 PILE DESIGN BASED ON IN-SITU TEST RESULTS

2.1 Introduction
In general the application of in-situ tests to pile design is done through:

(1) Indirect Methods
or

(2) Direct Methods

Indirect methods require the evaluation of the soil characteristic parameters, such as the
internal friction angle ¢ and the undrained shear strength s,, from in-situ test results.
This requires consideration of complicated boundary-value problems (Campanella et al.
1989). On the other hand, with direct methods, one can make use of the results from in-
situ test measurements for the analysis and the design of foundations without the
evaluation of any soil characteristic parameter. The application of direct methods to the
analysis and the design of foundations is, however, usually based on empirical or semi-
empirical relationships. Figure 2.1 shows some examples of the methods available for
indirect and direct approaches in different applications.

Indirect methods for pile design include Vesic (1977), Coyle and Castello (1981),
and P method (Burland 1973) for cohesionless soil, and s, method (Bowles 1988), o
method (Tomlinson 1971), § method (Burland 1973), and A method (Vijayvergiya and

Focht 1972) for cohesive soil. Most indirect pile design methods define the correlation
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factor between the stress state and base or shaft resistance based on the soil-strength
parameters.

Direct methods used for pile design have been mainly based on the standard
penetration test (SPT) and the cone penetration test (CPT). Although the SPT has been
used more extensively, it is widely recognized that it has a number of limitations (Seed et
al. 1985, Skempton 1986). A serious limitation is that its main measurement (the SPT
blow count) is not well related to the pile loading process. The SPT blow count can also
vary depending on operation procedures. The CPT is a superior test for pile design
purposes. In this test, a cylindrical penetrometer with a conical tip is pushed into the
ground as if it were a scaled pile load test. In addition to the similarity between the pile
loading and cone penetration testing mechanisms, the possibility of simultaneous
measurement of shear wave velocities makes it possible to estimate elastic properties of
subsurface soils, which may improve the quality of the design with more accurate in-situ
soil properties.

The main focus of this study is the estimation of pile bearing resistance based on
direct methods, the cone penetration test in particular. In this chapter, the existing

methods for pile design using the SPT and CPT, will be reviewed.

2.2 Estimation of Pile Load Capacity Based on SPT Results

In most SPT methods, the pile load capacities are defined in terms of the SPT blow
count N and the correlation parameters. These relationships are typically of the form

(Bandini and Salgado 1998):

g, =m,N, 2.1)

qs = 2:n'si]v.si (2'2)

where qp = base resistance
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np, = factor to convert SPT blow count to base resistance
N, = representative Ngpr value at the pile base level

gs = shaft resistance

ng; = factor to convert SPT blow count to shaft resistance

N;; = representative Ngpr value along the pile shaft in layer i.

For the computation of base resistance, it is recommended that the SPT N value
should represent the condition near the pile base.  Different ways to define the
representative N value have been proposed. They will be discussed as the methods are
presented.

2.2.1 Meyerhof’s method

Meyerhof (1976, 1983) proposed the following expressions for the base resistance
based on SPT results:

for sands and gravels

q, =04N, —g—Pa <4.0N, P, (2.3)
for nonplastic silts
q, =04N, %PH <3.0N P, (2.4)

where qp = base resistance
N, 60 = SPT N value corrected for field procedures and overburden stress
D = pile embedment depth
B = pile diameter

P, = reference stress = 100 kPa =0.1 MPa = 1 tsf.

The upper limits of base resistance given in (2.3) and (2.4) are always applied in

case of D/B 2 10 for sands and gravels, and D/B > 7.5 for nonplastic silts. For pile
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diameters within the range of 0.5 < B/Bg < 2, where By = reference length = 1 m = 100

cm =40 in. = 3.28 ft., qp is reduced using the factor r, as follows:

r, =(%§B—R) <1 2.5)

where n = 1,2, or 3 for loose, medium, or dense sand, respectively. Meyerhof (1976,
1983) also proposed the expression of shaft resistance for small- and large-displacement

piles:
for small-displacement piles in cohesionless soil

P
e 2.6
=100 ® 26)

for large-displacement pile in cohesionless soil
P
g, =—~Ng 2.7)

where gs = shaft resistance

Neo = SPT N value corrected for field procedures only.

2.2.2 Aoki and Velloso’s method

Aoki and Velloso (1975) proposed the following formula for different soil and pile types:

q, =—N,P. (2.8)
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[07.4
; =—N_P, 29
qSl F2 stTa ( )
where K = empirical factor in function of soil type

F, and F, = empirical factors in function of pile type

o. = shaft resistance factor depending on soil type

Ny, = average of the three Ngpr values close to the pile base

Nii = average of Ngpr values along the pile shaft in layer i, excluding
those used to calculate N,

P, = reference stress = 100 kPa = 0.1 MPa = 1 tsf.

The values of K, o, and Fy, F; are given in Table 2.1 and 2.2, respectively.

2.2.3 Reese and O’Neill’s method

Based on the observation of 41 loading tests, Reese and O’Neill (1989) proposed the
following SPT-based relationship for the base resistance of drilled shafts embedded in

sand:

q,=06N-P, < 45P, (2.10)

where q, = base resistance; P, = reference stress = 100 kPa = 0.1 MPa = 1 tsf. The limit
value given in (2.10) was selected because no ultimate bearing pressure was observed
beyond that value for any of the loading test results. In (2.10), the SPT N value should
be mean uncorrected value within a distance of two times the base diameter (By) below
the base of the drilled shaft.

In order to restrict the settlement of large-diameter shafts, they also suggested to use

a reduced value of the base resistance (qp,;) as follows:



Table 2.1 Values of K and o for different soil types.

Type of Soil K a (%)
Sand 10.0 14
Silty sand 8.0 2.0
Clayey silty sand 7.0 24
Clayey sand 6.0 3.0
Silty clayey sand 5.0 2.8
Silt 4.0 3.0
Sandy silt 5.5 2.2
Clayey sandy silt 4.5 2.8
Clayey silt 23 34
Sandy clayey silt 25 3.0
Clay 2.0 6.0
Sandy clay 3.5 24
Sandy silty clay 3.0 2.8
Silty clay 2.2 4.0
Silty sandy clay 3.3 3.0

Table 2.2 Values of F; and F, for different pile types.

Type of Pile F; F
Franki Piles 2.50 5.0
Steel Piles 1.75 3.5
Precast Concrete Piles 1.75 3.5
Bored Piles 3.0-3.50 60-7.0

13



14

B
qb,r = 1.25 '[—B—&'

)-qb for B, > 1.25 Bx 2.11D
b

where qp,; = reduced base resistance; Br = reference length = 1 m = 40 in. = 3.28 ft.
According to Reese and O’Neill (1989), it is not recommended to use the above
expressions for drilled shafts with a depth less than 15 ft (4.6 m) or a diameter less than
24 in (610 mm). For the shaft resistance of drilled shaft in sands, they recommend the

use of the B method.

2.2.4 Briaud and Tucker’s method

Based on the review and parametric study of 33 instrumented pile load tests, Briaud
and Tucker (1984) developed a method for determining base (qp) and shaft (qs) resistance
as a function of pile settlement (s). In this method, both gy, versus s and g, versus s are
modeled as hyperbolic curves. Residual stress resulting from rebounding after pile
driving was also considered in that hyperbolic formula. The hyperbolic equations for

both base and shaft resistance are given by:

s
9 =7 +q,, (2.12)

K, G~

qs - 1 ) _qs,res (2'13)
—+

KT qs,max - qs.res

N

where K, =18684(N )"0 £ (2.14)
14 pt B

R
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Goax =19.75(N ,,)** P, (2.15)
qrex = 5'5’7L§2‘I)a (216)
Q= /KTP (2.17)
AE,
K, = 200(Ns,-de)°‘2’{ ;—”) (2.18)
R
qs,max = 0‘224(Nside )0.29 IJa (219)
qs,rex = qresAp /AS < qs,max (2'20)

In (2.12) - (2.20), P, = reference stress = 100 kPa = 0.1 MPa = 1tsf; By = reference length
=1m=40in; L, P, E,, and A are the pile length, perimeter, modulus and cross section
area, respectively; A, and A are the pile base and shaft areas; N, is the uncorrected
average SPT blow count within the zone from 4 diameters above to 4 diameters below the
pile base; and N4 is the uncorrected average SPT blow count within the layer where

shaft resistance is considered.

2.2.5 Neely’s method

Neely (1990, 1991) suggested new empirical relationships between SPT N value
and base resistance for expanded-base and auger-cast piles in sands. For expanded-base
piles such as a Franki pile, he pointed out that the ultimate base resistance of twice the
value for conventional driven piles, as suggested by Meyerhof (1956), would result in
overestimated value of base resistance, based on the observation of load tests on 93
expanded-base piles. It was explained that the overestimated base resistance for
expanded-base piles by Meyerhof’s (1956) suggestion is due to the ignorance of casing

effect. ~ The piles having uncased and compacted concrete shaft create very large
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pressures between the shaft and surrounding soil and show greater load capacity than

comparable piles having cased shaft.
According to Neely (1990), the ultimate base resistance of expanded-base piles in

sands can be given as:

a, =0.28-N-—DD—Pa < 28-N-P, (2.21)

b

where qp = base resistance
D = embedment depth of the maximum cross section of the base resistance
as the sum of the driven length and on-half the base diameter.
D, = diameter of expanded base
N = SPT N value
P, = reference stress = 100 kPa =0.1 MPa = 1 tsf.

The limit value of 2.8N applies whenever the ratio of D/Dy, is greater than 10. For

augered, cast-in-place (auger-cast) piles, the base resistance was suggested as follows

(Neely 1991):
g, =19N-P, (2.22)

The auger-cast piles are different from the conventional drilled shafts in terms of the
installation process. The auger-cast piles are installed supporting the side of augered
hole by the soil-filled auger without use of temporary casing or bentonite slurry.

From the comparison with the results of loading test on auger-cast piles, it was
shown that (2.22) results reasonable agreement with the measured value of base
resistance of auger-cast piles. It was also observed that the ratio qy/N increases as mean

grain size (Dso) increases, and decreases as fines content increases (Neely 1989).
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2.3 Estimation of Pile I.oad Capacity Based on CPT Results

Similarly to what is done in the case of the SPT, the determination of pile load

capacity based on CPT results can be expressed as:

gy =Cp9q. (2.23)
qs = EC::’QU’ (2'24)

where Qb = base resistance
Cp = empirical parameter to convert q. to base resistance
gc = cone resistance at the pile base level
gs = shaft resistance
Csi = empirical parameter to convert g, to shaft resistance

. = representative cone resistance for layer i

Values of ¢, and c; have been proposed mostly based on empirical correlations developed
between pile load test results and CPT results. Because different authors proposed
different values of c, and cg, the use of such parameters should be applied under
conditions similar to those under which they were determined (Bandini and Salgado
1998). Although most expressions were based on cone resistance q., some authors (Price
and Wardle 1982, Schmertmann 1978) suggested the use of cone sleeve friction f; for the

estimation of shaft resistance with the following general expression:
4; =Cyf (2.25)

where ¢, is a empirical parameter to convert cone sleeve friction to shaft resistance and
f;i is a representative cone sleeve friction for layeri. In this section, some of the methods

for the determination of pile load capacity using CPT results are described.
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2.3.1 The Dutch method

In the Dutch method (DeRuiter and Beringen 1979), pile base resistance in
cohesionless soil is computed from the average cone resistance q. between the depth of
8B above and 4B below a pile base, where B is the pile diameter. As can be seen in
Figure 2.2, the average cone resistance q; for the layer below the pile base is
determined along the path ‘abcd’, in which ‘X’ is selected so as to minimize q;.
Similarly, the average cone resistance ¢, for the layer above the pile base is calculated
along the path ‘efgh’. The base resistance g is then obtained from the average of q.; and

qc2 as follows:

q, =00 < 1s0p, (2.26)

where gy = base resistance
w = correlation factor
gc1 = average cone resistance for the layer below pile base
dc2 = average cone resistance for the layer above pile base

P, = reference stress = 100 kPa = 0.1 MPa = 1 tsf

The values of correlation factor w for several soil conditions are given in Table 2.3.

Table 2.3 Values of correlation factor w for the Dutch method.

Soil Condition Values of w
Sand with OCR =1 1.0
Very gravelly coarse sand; sand with OCR =2 to 4 0.67

Fine gravel; sand with OCR =6 to 10 0.50
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Figure 2.2 Dutch method for determination of base resistance.
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2.3.2 Schmertmann’s method

20

For the estimation of pile base resistance in stiff cohesive soil, Schmertmann (1978)

proposed the use of an average cone resistance with multiplying the reducing factor

shown in Figure 2.3. The average cone resistance is calculated within a depth between

8B above and 0.7B to 4B below a pile base in the same way as in the Dutch method

described previously. He also recommended reducing the base resistance that is obtained

from the Dutch method by 60% in case of using mechanical cone for a cohesive soil.

For shaft resistance in sand, the following values of the shaft resistance factor ¢, of

(2.24) were proposed for different pile types:

c;=0.008 for open-end steel tube piles

¢;=0.012  for precast concrete and steel displacerrient piles

¢s=0.018 for vibro and cast-in-place displacement piles with steel

driving tube removed, and timber piles

According to Schmertmann (1978), the cone sleeve friction f can also be used to estimate

shaft resistance in cohesive soil.

The values of ¢y of (2.25) that relates cone sleeve

friction to shaft resistance are given by Table 2.4 for displacement piles.

Table 2.4 Values of the factor ¢ by Schmertmann (1978).

£/p Values of ¢y
sha Steel Piles Concrete and Timber piles

0.25 0.97 0.97
0.50 0.70 0.76
0.75 0.48 0.58
0.88 0.40 0.52
1.00 0.36 0.47
1.50 0.27 0.43
2.00 0.20 0.40

* P, = reference stress = 100 kPa=0.1 MPa = 1 tsf .
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2.3.3 Aoki and Velloso’s method

Based on the load tests and CPT results, Aoki and Velloso (1975) proposed the

following relationship for both shaft and base resistance in terms of cone resistance q.:

1
= 2.27
Qb E qc ( )

q, =—4q. (2.28)

@
FZ

where o, F; and F, are the same empirical parameters as shown in Table 2.1 and 2.2.

2.3.4 LCPC method

From a number of load tests and CPT results for several pile and soil types,
Bustamante and Gianeselli (1982) presented a pile design method using factors related to
both pile and soil types. The method presented by them is often referred to as the LCPC

method. The basic formula for the LCPC method can be written as:

q, =k.q, (2.29)
= i (2.30)
g X, q. .
where k. = base resistance factor;

gca = €quivalent cone resistance at pile base level;
ks = shaft resistance factor;

qc = representative cone resistance for the corresponding layer
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The values of k. and k; depend on the nature of soil and its degree of compaction as
well as the pile installation method. Tables 2.5 and 2.6 show the values of ks and k. with
different soil and pile types, respectively. According to Bustamante and Gianeselli
(1982), the values of k. for driven piles cannot be directly applied to H-piles and tubular
piles with an open base without proper investigation of full-scale load tests.

The equivalent cone resistance q., used in (2.29) represents an arithmetical mean of
the cone resistance measured along the distance equal to 1.5B above and below the pile
base, where B = pile diameter. The procedure for determining ., consists of the

following steps (see also Figure 2.4):

(1) The curve of the cone resistance q. is smoothened in order to eliminate local
irregularities of the raw curve.

(2) Beginning with the smoothened curve, the mean cone resistance qcy, of smoothened
resistance between the distance equal to 1.5B above and below pile base is obtained.

(3) The equivalent cone resistance qc, is calculated as the average after clipping the
smoothened curve at 0.7qcy to 1.3qcm.  This clipping is carried out for the values
higher than 1.3 q., below the pile base, and the values higher than 1.3 q¢n and

lower than 0.7q., above the pile base.

In the LCPC method, separate factors of safety are applied to the shaft and base
resistance. A factor of safety equal to 2 for shaft resistance and 3 for base resistance

were considered, so that the carrying load is given by:

s b
0. =_in+% 231)

where Q. = allowable load
Q.° = limit shaft load

Q.° = limit base load
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Table 2.5 Values of ks for different soil and pile types.

Value of k, | Maximum g, / P,
Nature of Soil qc/ P, Type
JA IB IIA IIB|] JA IB IIA IIB IIIA IIIB

Soft clay and mud <10 | 30 30 30 30 | 0.15 0.15 0.15 0.15 0.35 -

Moderately compact | 10to | 40 80 40 80 | 0.35 0.35 0.35 0.35 0.8 <1.2
clay 50 (0.8) (0.8) (0.8)

Silt and loose sand <50 | 60 150 60 120 | 0.35 0.35 0.35 0.35 0.8 -

Compact to stiff clay | >50 | 60 120 60 120 | 0.35 0.35 0.35 0.35 0.8 <2.0

and compact chalk (0.8) (0.8) (0.8)

Soft chalk <50 | 100 120 100 120 | 0.35 0.35 0.35 035 0.8 -
Moderately compact | 50 to | 100 200 100 200 | 0.8 035 0.8 0.8 1.2 <20
sand and gravel 120 (1.2) (0.8) (1.2)

Weathered to >50 [ 60 80 60 80 1.2 08 12 12 15<20
fragmented chalk (1.5) (1.2) (1.5)

Compact to very >120 | 150 300 150 200 | 1.2 0.8 12 1.2 15<20
compact sand and (1.5) (1.2) (1.5)

gravel

P, = reference stress = 100 kPa=0.1 MPa = 1 tsf

Type IA: Plain bored piles, mud bored piles, hollow auger bored piles, cast screwed piles, piers,
barrettes, and micropiles installed with low injection pressure.

Type IB: Bored piles with steel casing and driven cast piles.

Type I1A: Driven or jacked precast piles and prestressed concrete piles.

Type IIB: Driven or jacked steel piles.

Type IIIA: Driven grouted piles and driven rammed piles.

Type HIB: High pressure grouted piles with diameter greater than 250 mm and micropiles installed

with high injection pressure.



25

Table 2.6 Values of k. for different soil and pile types.

Value of k.
Nature of Soil qc /P,
Group I Group II
Soft clay and mud < 10 0.40 0.50
Moderately compact clay 10 to 50 0.35 0.45
Silt and loose sand <50 0.40 0.50
Compact to stiff clay and compact silt > 50 0.45 0.55
Soft chalk < 50 0.20 0.30
Moderately compact sand and gravel 50 to 120 0.40 0.50
Weathered to fragmented chalk > 50 0.20 0.40
Compact to very compact sand and gravel 120 0.30 0.40

P, = reference stress = 100 kPa = 0.1 MPa = 1 tsf.

Group I: Plain bored piles, cased bored piles, mud bored piles, hollow auger bored piles, piers,

barrettes, micropiles installed with low injectionpressure.

Group II: Driven cast-in-place piles and piles in Type IIA, IIB, IIIA, and IIIB of Table 2.5.
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24 Summary

Pile design methods using in-situ test results can be classified in two categories,
indirect and direct methods.  Indirect methods require the evaluation of the soil
characteristic parameters in the estimation of pile bearing capacity. On the other hand,
the direct methods utilize the in-situ test results directly in the estimation of pile bearing
capacity.

Direct methods have been based mainly on the standard penetration test (SPT) and
the cone penetration test (CPT). In SPT methods, most proposed expressions relate the
pile bearing capacity to the SPT blow count N and correlation parameters. These
methods include Meyerhof (1976, 1983), Aoki-Velloso (1975), Reese and O’Neil (1989),
and Neely (1990, 1991), while Briaud and Tucker (1984) presented a hyperbolic formula
for the base and shaft resistance as a function of pile settlement with SPT N value in the
evaluation of equation parameters. It should be noticed that, since every method has
been developed under different conditions, including soil and pile type, the consideration
of such factors must be taken into account for the selection of pile design methods.

The cone penetration test is regarded as a better alternative to the SPT because it
reflects well the vertical pile loading mechanism. The widely used CPT methods include
the Dutch method (DeRuiter and Beringen 1979), Schmertmann (1978), Aoki-Velloso
(1975), and the LCPC method (Bustamante and Gianeselli 1982). Most CPT methods
relate the base and shaft resistance to the cone penetration resistance q. using empirical
parameters. The empirical parameters relating pile resistance to q. are given as a
function of soil and pile type. The LCPC method (Bustamante and Gianeselli 1982)
provides relatively detailed information regarding soil and pile types. Some authors
propose the use of cone sleeve friction f; for the estimation of shaft resistance, while

others propose that it be done on the cone penetration resistance q.
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CHAPTER 3 METHODS OF INTERPRETATION OF
LOAD-SETTLEMENT CURVES

3.1 Introduction

The pile load-settlement curve obtained from a load test provides an important
indication of pile load-carrying capacity. In general, however, there is no unique
criterion that can clearly define a “failure load” or “bearing capacity” of a pile based on a
load-settlement curve. Although several methods for evaluating the “failure” load of a
pile have been proposed, they produce a very wide range of results (Horvitz et al. 1981).
The approach selected for interpreting a load-settlement curve should account for the
characteristics of the load-settlement curve and the soil condition.

For geotechnical structures to perform “properly”, it is necessary that the structure
satisfy certain fundamental requirements. Whenever a geotechnical structure or a part
thereof fails to satisfy a performance criterion, it is said to have reached a “limit state”.
Potentially, the number of limit state events is infinite. It is therefore necessary that the
consideration of limit state events be reduced to a relatively small number of critical
events in order to achieve a balance between the needs for safety and economy in design
(Bolton 1989).

In this chapter, some of the methods proposed for interpretation of pile load-
settlement curves will be reviewed. Additionally two important types of limit states in
geotechnical engineering and tolerable settlement for different types of structures are

discussed.
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3.2 Interpretation Methods

3.2.1 90% and 80% methods

The 90% method was proposed by Brinch Hansen (1963). In the 90 % method, the
failure point in the load-settlement curve is defined as the load that causes a settlement
twice as large as that caused by 90% of that same load (see Figure 3.1). The main goal
of this method is to define the failure load as the point from which significant change in
the rate of displacement to load increment occurs.

For the application to both the quick and slow maintained pile load tests, Brinch
Hansen also suggested 80% method. In this method, the failure load is defined as the
load that produces four times the strain caused by 80% of the same load. The failure
load (Qr) and corresponding settlement (s¢) in the 80% method are defined based on the

hyperbolic relationship of a transformed load-settlement curve. As shown in Figure 3.2,
the load-settlement curve is plotted in terms of Js/ Q versus s, where s = settlement and

Q =load. From the relationships between 0.8Qs versus 0.25s¢ and Qs versus sy through a
hyperbolic equation in Figure 3.2, the failure load (Qy) and corresponding settlement (sy)

can be obtained as:

1
Q; =—=== (3.1)
T afec,
CZ
s, =—2 (3.2)
f Cr1

in which C, and C; are the slope and the intersection point of the curve in Figure 3.2,

respectively.



0.9Q;

:

So9 - 2809 S

Figure 3.1 Definition of failure load in 90% method.

Figure 3.2 Brinch Hansen’s 80% method.
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3.2.2 Butler and Hoy’s method

Butler and Hoy (1977) considered the failure load as the load that is the intersection
point of two lines tangent to the load-settlement curve at different points. One tangent
line is the initial straight line that can be thought of as an elastic compression line. The
other line is tangent to a point having a slope of 0.00125Bg/Q; in the load-settlement
curve, where By = reference length = 1 m = 40 in. = 3.28 ft and Q, = reference load = 1
ton = 9.8 kN.

Usually, the rebound portion of the load-settlement curve is more or less parallel to
the true elastic line. Based on this observation, Fellenius (1980) suggested the use of a
rebound line as an elastic compression line instead of an initial straight line in Figure 3.3

for determining a “failure” load.

3.2.3 Chin’s method

Based on the assumption that the pile load-settlement curve is approximately

hyperbolic, Chin (1970) proposed the following (Figure 3.4):

(1) The load-settlement curve is drawn in terms of s/Q versus s;

(2) The failure load (Qy) or ultimate load (Qyy) is defined as Qs = 1/C;.

Chin’s failure method is applicable to both the quick and slow maintained load
tests. It may, however, provide an unrealistic “failure load” if a constant time increment
is not used in the pile load test. Extrapolation for hyperbolic load-settlement curve also

requires that the load test be extended sufficiently far.



Q:

Figure 3.3 Definition of failure load in Butler and Hoy’s method.

s/Q

"] 1/0.00125Bx/Q)

By = reference length

Q; = reference load

Ci=1Q¢

S/Q = CIS + G,

Qe =1/C,

Figure 3.4 Chin’s method for definition of failure load.
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3.2.4 Davisson’s method

In Davisson’s method (Davisson 1972), the “failure” load is defined as the load
leading to a deformation equal to the summation of the pile elastic compression and a

deformation equal to a percentage of the pile diameter. This relationship is given by:

_ 9L 1

5, =2L 10.00381B, +—— 2 (3.3)
AE 3.05 B,

where sy = settlement at failure condition
Q = applied load
L = pile length
E = Young’s modulus of pile
A = cross sectional area of pile
Bg =reference length = 1 m =40 in. = 3.28 ft

B = pile diameter.

As can be seen in Figure 3.5, the elastic compression line of the pile can be obtained from
the elastic deformation equation of a column which is given by a equation of Sejagic =
QL/AE.

Since this method is, in general, regarded conservative, it appears to work best with
data from quick maintained load tests. Due to the dynamic effect, loads obtained from
the quick maintained load tests tend to be higher than loads obtained from the slow
maintained load tests, sometimes significantly so in clayey material (Fellenius 1975). It
may, therefore, lead to overly conservative results when applied to data from the slow
maintained load tests resulting in considerable underestimation of a pile failure load

(Coduto 1994).
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Elastic compression line
s=QL/AE

0.00381Bg + B/(3.05Bg)

Figure 3.5 Definition of failure load in Davisson’s method.
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3.2.5 De Beer’s method

De Beer (1967) defined the “failure load” as the load corresponding to the point of
maximum curvature on the load-settlement curve. In this method, the load-settlement
curve is plotted using log-log scale as shown in Figure 3.6. The failure load is then
determined as the load corresponding to the point at which two straight lines intersect.

This method was, however, originally proposed for the slow maintained pile load test.

3.2.6 Permanent set method

In the permanent set method (Horvitz et al. 1981), failure is defined by a certain
specified amount of permanent deformation that occurs after full load removal. To
determine the failure load with this method, the value of the permanent settlement should
be predefined prior to performing a load test.

As shown in Figure 3.7, the failure load corresponding to a specified permanent
settlement can be determined by conducting the load-rebound for each applied load. The
permanent settlement appearing as a result of unloading is generally associated with
plastic soil deformation. This method does not provide one “failure” load, as “failure” in
this case depends on what level of permanent settlement the user associates with

“failure”.



log Q A

log s

Figure 3.6 Definition of failure load in De Beer’s method.

Qr

A .

Specified settlement

Figure 3.7 Definition of failure load in permanent set method.
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3.3 Limit States Design

In general, there are two types of limit states in civil engineering design: ultimate
and serviceability limit states (Ovesen and Orr 1991). An ultimate limit state is reached
when loss of static equilibrium, severe structural damage, or rupture of critical
components of the structure occurs. On the other hand, a serviceability limit state is
associated with loss of functionality of the structure, typically related to settlement,
deformation, utility, appearance, and comfort. Figure 3.8 illustrates the characteristic
difference of the load levels between ultimate and serviceability limit states on the load-
deformation curve.

In practice, it is usually difficult to determine which type of limit states governs
design. It is, therefore, required that both the ultimate and serviceability limit states be

investigated.

3.3.1 Limit states design in Eurocode 7

The Eurocodes were established for common use of design codes in European
communities. Design criteria in the Eurocodes are based on the limit states concept.
Geotechnical design is addressed in Eurocode 7 (1993). Three categories of design
problems are defined in order to establish minimum requirements for the extent and
quality of geotechnical investigation and calculations as well as construction control-
checks (Franke 1990, Ovesen and Orr 1991).

The factors taken into consideration for determination of the geotechnical categories

in each particular design situation are as follows:

(1) Nature and size of the structure;
(2) Conditions related to the location of the structures (neighboring structures,

utilities, vegetation, etc.);
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Load

Ultimate limit state

Safety
margin

Serviceability limit state

o
Deformation

Figure 3.8 Load levels at ultimate and serviceability limit states.
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(3) Ground conditions;

(4) Groundwater conditions;

(5) Regional seismicity;

(6) Influence of the environment (hydrology, surface water, subsidence, seasonal

changes of moisture, etc.)

Geotechnical Category 1

This includes small and relative simple structures for which it is possible to ensure
that the performance criteria will be satisfied on the basis of experience and qualitative

geotechnical investigations with no risk for property and life.

Geotechnical Category 2

This category includes structures for which quantitative geotechnical data and
analysis are necessary to ensure that the performance criteria will be satisfied, but for
which conventional procedures of design and construction may be used. These

necessitate the involvement of qualified engineers with relevant experience.

Geotechnical Category 3

This category includes very large or unusual structures, structures involving
abnormal risks or unusual or exceptionally difficult ground or loading conditions, or

structures in highly seismic areas.

3.3.2 Limit states design for pile foundations

The limit states for a pile foundation under axial loading condition, according to

Eurocode 7, are defined as follows (Salgado 1995):
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(IA) Bearing capacity failure of single pile, which may correspond to either
(TA-1) acondition of large settlement for unchanged load on the pile;
(IA-2) the crushing or other damage to the pile element itself;

(IB) Collapse or severe damage to the superstructure due to foundation movement;

(II)  Loss of functionality or serviceability of the superstructure due to displacement of
the foundations;

(M) Overall stability failure, consisting of the development of a failure mechanism

involving the pile foundation or a part thereof.

Limit state (IIT) is a possibility for the case where the structure is located close to a
topographic discontinuity area such as a slope, river and retaining wall. In most pile
“design situations under axial loading condition, either limit state (II) or limit state (IB)
governs design.  This is so because either the serviceability or the stability of the
supported structure would be jeopardized before a given pile developed a classical
bearing capacity failure. The settlement required for the limit state (IB) is usually greater
than that for limit state (II).

It is necessary to establish tolerable settlements s;g and sy according to limit state IB
and I (Franke 1991, 1993). The tolerable settlements s and sy can be related to the
corresponding differential settlements As;g and Asy. The angular distortion (B), defined
as the ratio of differential settlement between two adjacent columns to the distance
between them, is often used to determine tolerable differential settlements.

Figure 3.9 shows the settlements at the foundation level with smaller- and larger-
diameter piles, caused by the superstructure. As can be seen in Figure 3.9, a5 and a,
represent the distances between two adjacent piles, and Asgmax and As;m. are the
maximum differential settlements for the smaller- and larger-diameter piles, respectively.

It must be realized that the distance a, is generally greater than a; because larger-
diameter piles are used to carry heavier axial loads with larger spans. The maximum

angular distortion B,y for each case can be defined as:
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(a) (b)

Figure 3.9 Differential settlements for (a) smaller-diameter and (b) larger-diameter piles.
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for smaller-diameter piles B =—— (34)
aS
. . As I,max
for larger-diameter piles B =— (3.5)
q,

Irrespective of pile size, the maximum angular distortion B given in (3.4) and
(3.5) cannot be larger than the value of the tolerable angular distortion.  This implies
that the tolerable differential settlement As usually increases with the span. The total
tolerable settlement accordingly, also increases with span. Given that the pile diameters
also increase with span, a common way to define limit states for piles is to establish a
value of tolerable relative settlement sg as a ratio of the pile settlement s to the pile
diameter B. According to Franke (1991), the relative settlement required to cause either
loss of functionality or collapse of the superstructure is larger than sg = 0.1. As shown in
Figure 3.10, by the time sg reaches 0.1, the shaft resistance has already been fully
mobilized. This implies that the evaluation of the base resistance is a key element in the

limit states design of piles.

Load
> o
0.01 —0.02 foommee - Total
Shaft Base
0.1 .
O | |

Figure 3.10 Load-settlement curves with load versus sy (after Franke 1991).
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3.4 Tolerable Settlements for Buildings and Bridge Foundations

3.4.1 Buildings

Tolerable settlements for buildings have been extensively studied by several authors
(Skempton and MacDonald 1956, Polshin and Tokar 1957, Burland and Wroth 1974,
Wahls 1981). Skempton and MacDonald (1956) presented the values of tolerable
movement for building structures based on the observed settlements and damages of 98
buildings. These values of tolerable movement for building structures are still widely
accepted as a satisfactory criterion. Because most of the observed damage appeared to
be related to distortional deformation, the angular distortion (B) was selected as the
critical index of settlement. From the field data, a limit value of angular distortion equal
to B = 1/300 was suggested for the condition of cracking in panel walls. The
corresponding differential settlement for a typical span equal to 20 ft is about 3/4 in. The |
limit value of angular distortion that caused structural damage in frames was observed to
be = 1/150.

Based on the examination of the case histories, Skempton and MacDonald (1956)
also suggested the correlation between the maximum angular distortion and total
settlement.  As would be expected, the angular distortion for a given maximum
settlement was smaller for a raft than for isolated foundations. It was observed as well
that the angular distortion for a given maximum settlement was smaller for a clay than for
a sand. These relationships can be given by (3.6) — (3.9) with the numerical factors

suggested by Skempton and MacDonald (1956):

P =25B - B, - for clay with isolated foundations  (3.6)
P =15Bg - B_.. for sand with isolated foundations  (3.7)

P =31.25B, - B for clay with raft foundations (3.8)

max

Poax =18.75B; - B.... for sand with isolated foundations  (3.9)
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in which ppax = the maximum settlement; Bn.x = the maximum angular distortion; and Bg
= reference length = 1 m = 40 in. Table 3.1 summarizes the limit values of total
settlement, and the correlation factor R representing the ratio of angular distortion to the
total settlement suggested by Skempton and MacDonald (1956). The values of Table 3.1
were based on the tolerable angular distortion of § = 1/300 for the different types of
foundations and soils.

Polshin and Tokar (1957) proposed separate tolerable settlement criteria for framed
structures and load bearing walls. For framed structures, the limit values of angular
distortion are similar to those by Skempton and MacDonald (1956), ranging from 1/500
to 1/200. For load bearing walls, the limit values of angular distortion were suggested in
terms of deflection ratio A/L, where A = maximum relative settlement from two reference
points and L = distance between them, depending on the length to height ratio. Figure
3.11 shows the common settlement criteria including the deflection ratio.

More recently, guidelines for tolerable settlement can be found in Eurocodes. The
tolerable movement criteria in the Eurocodes are very similar to those by Skempton and
MacDonald (1956) and Polshin and Tokar (1957). Table 3.2 shows the values of
tolerable settlements in Eurocode 1 (1993). It can be seen that the values of tolerable
angular distortion in the Eurocode 1 appear to be more restrictive than those by Skempton

and Macdonald (1956) and Polshin and Tokar (1957).

Table 3.1 Relationship between angular distortion and total settlement

(after Skempton and MacDonald 1956).

Isolated foundation Raft foundation
Clay R 1/25 1/31.25
Prmax 0.075-Br* 0.075-Br t0 0.125-Bg*
Sand R 1/15 1/18.75
Proax 0.05-Bg* 0.05-Bg to 0.075-Bg?

*Br = reference length = 1 m =40 in. = 3.28 ft.



Table 3.2 Tolerable movement for buildings (after Eurocode 1).

Total settlement

e Isolated foundations 25 mm

¢ Raft foundations 50mm
Differential settlement between adjacent columns

e Open frame 20 mm

o Frames with flexible cladding or finishing 10 mm

e Frames with rigid cladding or finishing 5 mm

Angular distortion

1/500
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D07
BAB A Pmax
As AB A

(a) settlement without tilt

_

(b) settlement with tilt

Asap = differential settlement between A and B
Bap = angular distortion between A and B
Pmax = total settlement
L = distance between two reference points (A and E)
o = tilt = rigid body rotation
A = relative deflection
= maximum displacement from a straight line
connecting two reference points (A and E)
A/L = deflection ratio

Figure 3.11 Settlement criteria (after Wahls 1994).
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3.4.2 Bridges

According to Walkinshaw (1978), the tolerability of the movement should be
assessed qualitatively by the agency responsible for each bridge using the following
definition: “Movement is not tolerable if damage requires costly maintenance and/or
repairs and a more expensive construction to avoid this would have been preferable”.
Although said of bridges, this is a concept of general applicability.

As shown in Figure 3.12, the settlement of a bridge can be divided into three
components: uniform settlement, tilt (or rotation), and nonuniform settlement. Uniform
settlement represents a condition where all foundation elements settle by the same
amount. Although it may cause such problems as drainage and clearance at the end of
the bridge, it does not cause significant distortion of the bridge superstructure (Stermac
1978, Yokel 1990, Wahls 1990). Uniform tilt or rotation corresponds to a uniform
angular distortion. This pattern of settlement is possible only for single-span bridges or
bridges with very stiff superstructures. This can glso cause some problems with the
approach slab, with drainage, and with clearance, while distortion effects are largely
absent in the superstructure.

Nonuniform settlement can be categorized by two representative types:
regular nonuniform [see Figure 3.12 (c)] and irregular [see Figure 3.12 (d)] nonuniform
settlement. If the same amount of total settlement is considered, irregular settlement will
cause more significant distortion of the superstructure than regular settlement, mainly due
to the greater differential settlement (Xanthakos 1995). Foundation design must control
the differential settlement and angular distortion not to exceed the limit state.

Limit values of tolerable settlements for bridge have been proposed by several
investigators (Walkinshaw 1978, Bozozuk 1978, Grover 1978, Wahls 1990). No single
measure of settlement or distortion, however, can be regarded as a sole indicator of bridge
damage, due to the complexity of settlement patterns. Table 3.3 shows criteria of

tolerable bridge settlements in terms of the magnitude of the settlement. Although the
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(@

Angular distortion = é
s

Figure 3.12 Components of settlement and angular distortion in bridge for (a) uniform
settlement, (b) uniform tilt or rotation, (c) nonuniform regular settlement,

and (d) nonuniform irregular settlement (after Duncan and Tan 1991).
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values and degree of damage were suggested by different authors, it appears that they are
reasonably consistent.

As shown in Table 3.3, the smallest value of approximately 50 mm was suggested
by Bozozuk (1978) as not harmful. The upper limit value of approximately 100 mm was
suggested as the settlement that may cause some damage, yet remaining tolerable. Later
findings by the Federal Highway Administration (FHWA) (Moulton et al. 1985, Moulton
1986) turned out to be reasonably consistent with the tolerable values given in Table 3.3.
They found that the movement could be regarded as tolerable for 90% of the cases for
which the vertical movement was less than 100 mm and the horizontal movement was
less than 50 mm, based on the measurements of bridge movement for 439 abutment and
2609 piers.

According to Moulton et al. (1985), the angular distortion gives a rational basis for
establishing tolerable movement magnitude for bridges. The values of tolerable angular
distortion for bridges, suggested by Moulton et al. (1985), are shown in Table 3.4. The
criteria given in Table 3.4 were based on the observation for 56 simple span and 119

continuous span bridges.

Table 3.3 Settlement criteria for bridges expressed in terms of settlement magnitude.

Settlement
Magnitude (mm) Basis for recommendation Recommended by

51 Not harmful Bozozuk (1978)
63 Ride quality Walkinshaw (1978)

> 63 Structural distress Walkinshaw (1978)
102 Ride quality and structural distress | Grover (1978)
102 Harmful but tolerable Bozozuk (1978)

> 102 Usually intolerable Wahls (1990)
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The details considered in Table 3.4 are summarized in Table 3.5. Although most bridges
are less complex than buildings, the values shown in Table 3.4 are just slightly higher
than those for buildings. The criteria for the tolerable angular distortion in AASHTO
(1994) were also established based on the recommendations of Moulton et al. (1985).
Duncan and Tan (1991), however, indicated that the tolerable angular distortion for
single-span bridges, equal to f = 1/200, may be overly conservative based on the review
of data used by Moulton et al. (1985). They recommended the use of the tolerable

angular distortion for single-span bridge as f§ = 1/125.

Table 3.4 Tolerable angular distortion for bridges (Moulton et al. 1985).

Angular distortion Basis for recommendation
17250 Tolerable for multi-span bridge
1/200 Tolerable for single-span bridge

Table 3.5 Data used by Moulton et al. (1985) to establish criteria for angular distortion.

% of 199 continuous bridges | % of 56 single-span bridges for
Angular distortion | for which this amount of which this amount of angular
angular distortion was distortion was considered to
considered to be tolerable be tolerable
0.000 —- 0.001 100% 98% (100%)
0.001 - 0.002 97 % 98% (100%)
0.002 - 0.003 97% 98%(100%)
0.003 - 0.004 96% 98% (100%)
0.004 — 0.005 92% 98% (100%)
0.005 - 0.006 88% 96% (98%)
0.006 - 0.008 85% 93% (95%)
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3.5 Summary

The concept of a “failure load” of an axially loaded pile is potentially controversial.
Most criteria proposed to define a failure load based on pile load-settlement curves
associate failure with relatively dramatic changes in settlement increment for a given load
increment. These methods include the 90% criteria method (Brinch Hansen 1963), the
Butler and Hoy method (1977), the Davisson method (1972) and the permanent set
method (Horvitz et al. 1981). The 80% method (Brinch Hansen 1963), Chin’s method
(1970), and DeBeer’s method (1967), on the other hand, define the failure conditions
from the transformed load-settlement curve using either hyperbolic relationship or log-log
scale. Because different methods may produce widely different values of failure load,
the selection of the method for defining the failure condition should account for the
characteristic shape of load-settlement curve and soil condition.

The limit state concept has been proposed as a modern design approach, in which
the adequate technical quality of foundations and superstructures is considered.
Whenever a geotechnical structure or part of a geotechnical structure fails to satisfy one
of its performance criteria, it is said to have reached a “limit state”. In general, there are
two limit states in civil engineering design: ultimate and serviceability limit states. A
serviceability limit state is reached when a structure loses functionality, while an ultimate
limit state is reached when there is a loss of static equilibrium or severe structural
damage. Franke (1991) suggested that if relative settlement sr is kept below a limit
value of 10% neither loss of functionality nor collapse of the superstructure will take
place.

The value of tolerable settlement associated with serviceability and ultimate limit
states may differ depending on the type, functionality and importance of a given structure.
For building structures, values of tolerable settlement have been proposed mainly based
on the results proposed by Skempton and MacDonald (1956) and Polshin and Tokar
(1957). The results suggested by these two authors are relatively consistent, showing

that the angular distortion varies from 1/150 to 1/500.
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For bridge structures, several authors proposed limit values for tolerable settlement.
No single measure of settlement or angular distortion, however, can be regarded as a sole
indicator of bridge damage due to the complex settlement patterns. Bozozuk (1978)
suggested the limit value of settlement equal to approximately 100 mm as a tolerable
settlement for bridges. This value is similar to that proposed by Federal Highway
Administration (Moulton 1986).
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CHAPTER 4 MECHANICAL BEHAVIOR OF SAND

4.1 Introduction

The simplest way to describe mechanical behavior of a soil may be linear elasticity.
In linear elasticity, the stress-strain relationship is represented by linearity in the absence
of the definition of a failure condition.  Although linear elasticity is simple, hence
convenient to use, it is usually not suitable for typical stress-strain ranges in geotechnical
problems. Linear elastic behavior can be observed in soil from the initially unstrained
condition up to strains of the order of 10°. After this strain range, the soil usually shows
highly non-linear behavior.

In order to represent the non-linear stress-strain behavior of a soil before the failure
condition takes place, several soil models have been proposed (Kondner 1963, Duncan
and Chang 1970, Hardin and Dmevich 1972, Fahey and Carter 1993, Tatsuoka et al.
1993). The hyperbolic types of soil models are among the most popular soil models for
representing the non-linear behavior of a soil. These types of soil models are relatively
simple to use, and are reasonably accurate. Fundamentally, the hyperbolic types of soil
models are based on the quasi-linear elastic model assuming piece wise linear behavior
for each increment of stress and strain.

Stability problems are concerned mostly with the portion of the stress-strain curve
where large strains result from modest stress increases. These large deformations are
usually associated with plastic response. Description of the plastic condition requires
two basic concepts, i.e. definition of a failure criterion and flow rule. A failure criterion

defines a stress state in a soil that leads to a failure condition. After the stress state
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satisfies a failure criterion, the stress-strain relationship can no longer be defined by either
linear elasticity or non-linear elasticity. The flow rule defines the relationship between
stress and strain in the plastic state through the plastic potential function. If the plastic
potential function is the same as the failure criterion, the flow rule is referred to as
associated. Otherwise, it is referred to as a non-associated flow rule. After satisfying
the failure criterion, the soil may harden, soften, or remain without any change in stress.
This chapter will start by describing the basic concept of the stress tensor. The
fundamental ways to describe the stress-strain relationship of soil, including linear elastic,
non-linear elastic and plastic responses are then discussed. Indicial notation, originally

adopted by Einstein, will be used in the mathematical treatment of these concepts.

4.2 Stress Tensor and Invariants

As shown in Figure 4.1, there are nine components of stress in a soil element in a
Cartesian coordinate system. The stress tensor is a set of these nine components of stress
and is denoted by o;. The stress tensor 6j can be expressed in matrix notation as

follows:

o, (4.1)

Imposing moment equilibrium on the stress tensor 6 shown in (4.1), it follows that it is

symmetric:

c,=0; 4.2)

or

0, =0y
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Figure 4.1 Nine components of stress tensor in a soil element.
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0,3 =073

0, =0, “4.3)

The stress tensor o;; of (4.1) can also be written, using other symbols, as:

0, Op

4 GXX Xy X2 X Xy XZ
0;=|0n 0, O0yn|=0, 0O, O0,=|T, O, T, @4
0-31 0-32 0-33 O-:x ozy zz sz T:) z

The diagonal stress components of (4.4) are normal to the planes xz, Xy, yz while the
other stress terms are tangential to these planes and are referred to as shear stresses. The
stress tensor given by (4.4) is a second-order symmetric tensor.  According to the
characteristics of a tensor, stresses have the invariant property. The invariants of a tensor
represent the quantities that are constant irrespective of the rotation of the coordinate
axes. The invariants of a tensor can be obtained from the characteristic equation of the

square matrix given by:

o’-Io*+1L,o~-1,=0 4.5)

From the characteristic equation of (4.5) and the stress tensor matrix of (4.4), the

quantities of 1y, I, and I3 are obtained as follows:

I, =0,=0,,+0,+0,, =0, +0,+0, (4.6)
o, O fe o o, O
12 - 11 12 + 22 23 + 11 13
0'12 672 0-73 0-33 0-13 0-33
c, 7| lo. 7.1 o, T
= y yz + X Xz + x Xy (47)
Ty, 0. [T, O, [, O,
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I, = determinant of o, =|0'ij (4.8)

The invariants of the stress tensor shown in (4.6) — (4.8) are often expressed using

different formulation:

11=II=O'“.=O'”+O'22+O'33 (49)
= 1 1
I, =0,0, =317 1) @.10)
- 1 1 3
[, = 504040, =3\ =301, +3L) (4.11)

where I_l, I—z, and 1_3 are the first, second, and third invariants of the stress tensor,

respectively while some authors refer Ij, I, and I; to as the first, second, and third
invariants of the stress tensor. Another important property of the second-order
symmetric tensor is the existence of principal directions related to invariants. For a
given stress tensor, this implies that a set of planes, for which only the normal stresses are
non-zero, can be found. The directions of these normal stresses acting on such planes are
referred to as the principal directions, and the corresponding normal stresses are the
principal stresses. In principal planes, the shear stresses are always equal to zero. Using

the principal stresses, the stress tensor of (4.1) can be rewritten as:

c, 0 O
o,={0 o, 0 (4.12)
0 0 o,

where 6, 02, and 63 are the principal stresses. In general, the largest principal stress is
referred to as the major principal stress while the smallest is called the minor principal

stress. The third principal stress is referred to as the intermediate principal stress. The
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principal stresses can be determined from the characteristic equation of the stress tensor
given in (4.5). Three real roots of the equation correspond to the major, minor, and
intermediate principal stresses.

It is possible to decompose the stress tensor of (4.4) into two parts; one called the
spherical or the hydrostatic stress tensor, and the other one called the deviatoric stress

tensor. In matrix form, the hydrostatic tensor is given by:

p 0 O
p5,.j =0 p O 4.13)
0 0 p
where
1 1 1
p=50'kk =§(O'“+O'22 +O'33)=§Il (414)
and
1 00
5,.1. =0 1 0 (4.15)
0 0 1

The deviatoric stress tensor Sj; is defined by subtracting the hydrostatic stress tensor from

the original stress tensor of (4.4). Then the deviatoric stress tensor is written as:

=0~ p5,.j (4.16)

with the corresponding matrix form given as:

Sy S S C,—p Oy, O3
Sij =18, S» Sy O O,—P Oy (4.17)
Sy Spn Sy 03 O3 O3 =P
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The deviatoric stress tensor represents physically the shear deviatoric state of stress
excluding the hydrostatic state of stress. Because the deviatoric stress tensor is also a
second-order symmetric tensor, the invariants of the deviatoric stress tensor can be
obtained from the characteristic equation. It should be noticed that the first invariant of

the deviatoric stress tensor is zero, as:

S; =S8 +Su+S85

= (4.18)
The second invariant J, of the deviatoric stress tensor is given by:

1
12 =555,
=§<Snz +8, 8 8, 8, 8T+ 850 + 85" +85,7)

1 5 2 2 2
= 5[(0” =p)’ +(0,—p) +(0,—p)* +2S," +28,,° +25,°]1  (4.19)
Since Si2 = G2, Sp3 = 023, and Si3 = Gy3, (4.19) can be rewritten as:

J, = %(0'“2 +0,  +0,° +20,° +20,,° +20,,° —3p?) (4.20)
or

1 2 2 2 2
J, :g[(o'n —0y) +(0, —03) +(0y _0'33)y]+0-122 + 0y +0132 (4.21)

Using the principal stresses,
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J, =é[(0', -0,) +(0,-0,) +(0,-0,)"] (4.22)

The third invariant of the deviatoric stress tensor can be expressed as:

1
7, gsqumsm,
I, I
=—(0 -1 ,,)( ,m—§5,~,,,)(0,,,,-—?‘5,,,,~)
- 2__ 2 -,
=0, -2, +-=I 4.23
3 27! (4.23)

where 1,,1,,and I, are the first, second and third invariants of the stress tensor.

4.3 Elastic Stress-Strain Relationship

The complete definition of mechanical behavior of a body requires three basic
relationships:  equilibrium condition, compatibility condition and stress-strain
relationship. Figure 4.2 illustrates how these relationships are connected with each other.
The equilibrium condition defines the relationship between the internal stresses ¢ and the
external forces including surface tractions T and body forces F. The compatibility
condition defines the relationship between the displacement u and the strain €. The
stress-strain relationship is also called constitutive equation because it reflects the internal
constitution of the material.

The linear relationship between stress o;; and strain gy is referred to as linear

elasticity and can be defined by the generalized Hooke’s law as follows:
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T
External force Displacement

F, T u

A A
Equilibrium «— —> Compatibility

Y L\

Stress Strain
c €

Stress-strain relationship
(Constitutive law)

Figure 4.2 Definition of mechanical behavior of a body (after Chen and Han 1988).
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c, = C,jk,sk, (4.24)

where i, j, k, and 1 = 1, 2, and 3; and Cjyq is the fourth-order elastic moduli tensor. Eq.
(4.24) implies that the strain generated by the stress is always recoverable for the
condition of eliminating or decreasing the stress. Since both 6j; and € are the symmetric
tensors, Cy is also symmetric. Using a number of modulus symmetries the number of
independent constants can be reduced to 21. The final expression for Ciq of (4.24) is

then written in matrix form as:

- - 3
Gll C‘1111 C1122 C1133 ClllZ C1123 CIIIS Ell
o 22 CZZI 1 C2222 C2233 C2212 C2223 C‘221 3 822
0'33 C331 1 C3322 C3333 C3312 C3323 C3313 833
) L = 3 > (4.25)
0-12 C1211 C1222 C1233 C1212 C1223 C1213 YIZ
o 23 C23 11 C2322 C2333 C23 12 C..323 C23 13 y 23
0-13 C‘1311 C1322 C1333 C1312 C1323 C1313 a \}/13 J

where €11, €3, and €33 = axial strains; Y;2, Y23, and y;3 = shear strains. For an isotropic

material, the general form of the fourth-order tensor Cjjq can be given by:

Ci = /160.5 u +U0,0 i +ad,8 P (4.26)

where A, W, and o are scalar constants. Because Cy is 2 symmetric tensor, the following

relationship should be satisfied:

Ciw =Cjy 4.27)

This leads to

A6;0, + U6, +0ad,6, =A6,0, +ud, 6, +ad 5, (4.28)
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From (4.27) and (4.28), it can be seen that u = .. Then we are left with:

Cijkl = ’15,761(1 + /‘(5%6 at 5u5 jk) (4.29)

Taking (4.29) into (4.24), we get:

0, =A0,0,€, + 16,6, +8,0,)€, (4.30)

or

O, = A0;€, +2UE; 4.31)

The two independent material constants u and A in (4.31) are referred to as Lame’s
constants. Following Hooke’s law for the three dimensional and isotropic element, the

stress-strain relationships can be expressed as follows:

1
g, = E[G” ~V(0,, +0;;)] (4.32)
1
€xn = 'E[O-zz —V(O'“ +0; )] 4.33)
1
£y, = —h:[c)'33 -v(0,, +0,,)] 4.34)
1
Ve = ‘(‘;‘012 (4.35)
1
Vo3 = 50'23 (4.36)
1
Vi3 5013 (4-37)

where E and v = Young’s modulus and Poisson’s ratio; G = elastic shear modulus. In
(4.35) — (4.37), 612, G023 and ©;3 represent the shear stresses. Using indicial notation,

(4.32) - (4.37) can be rewritten as:
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I+v v
80. =—E—'—-O'ij ——Eokk&j (438)
or
E VE
L= - 0. 4.39
% T T S T W=z =0 *-39)
Comparing (4.39) and (4.31), Lame’s constants . and A can be obtained as:
u=G-= E (4.40)
2(1+v)
vE (4.41)

Asm—mrom—
d+v)d-2v)

There is another elastic parameter, called the bulk modulus K, which defines the
relationship between the hydrostatic stress and the volumetric strain. For the condition

of hydrostatic compression, (4.31) is expressed as:

6, =3Ag, +2ue, (4.42)
) ) o
From the relationshipof p=0, =0,, =0,; = —3— ,
2 v
p=@A+ 'g#)gkk (4.43)

where g = €)1 + €3 + €33 = volumetric strain. Then the bulk modulus K is defined as:

k=L -3+2, (4.44)
€ 3
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Using (4.40) and (4.41), the bulk modulus K is rewritten as:

_E
T 3(1-2v)

(4.45)
Table 4.1 summarizes the relationships between the different elastic parameters
described so far. Using these elastic parameters, the elastic moduli tensor Cyjq shown in

(4.25) can be written in a matrix form as:

[a1-v) v % 0 0 0
v 1-v) v 0 0 0
v (d-v) 0 0 0
1-2v
[c]=__E__ 0 0 o L= 4 0 (4.46)
(1+v)(1-2v) 2 (12
0 0 0 V) o
0 0 0 0 (1-2v)
L 2
or
k+26 k-26 k-%26 0 0 o
3 3 3
K-26 k+26 k-26 0 0 o0
3 3 3
KF:K—%G K—%G K+%G 0 0 0 (4.47)
0 0 0 G 0 0
0 0 0 0 G 0
0 0 0 0 0 G|




Table 4.1 Relationship between different elastic modulus.

Basic Pair
Constant
Au=G E,v K, u
VE 3K -2
A A 1+vYd-2v) 3
G E
K K 21+v) M
3A+2u E
K 3 3(1-2v) K
3A+2 9K,
E M( @) E u
A+ U 3K+u
A 3K-2u
\Y v
2(A+ u) 6K +2u
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4.4 Elastic Behavior of Soil

4.4.1 Initial elastic modulus at small strain

It is well known that the stress-strain behavior of soil is highly non-linear. The
non-linear soil response is in part associated with strains that cannot be fully recovered
upon unloading. There is, however, a certain strain range within which the soil behaves
as a linear elastic material and the stress-strain relationship is fully recoverable. As can
be seen in Figure 4.3, this linear-elastic strain range is usually very narrow with an upper
limit of 10” for sands. The elastic modulus for this strain range is referred to as the
initial elastic modulus at small strains. It has been observed that the initial shear
modulus G, is a constant, for a given soil condition, regardless of the nature of the
loading type, i.e., whether the loading is monotonic or cyclic (Shibuya et al. 1992).

There are a number of ways to evaluate the initial shear modulus for a given soil.
Those include in-situ tests, laboratory tests, and empirical equations (Janbu 1963, Hardin
and Richart 1963, Yu and Richart 1984, Baldi et al 1989, Viggiani and Atkinson 1995,
Salgado et al. 1997c). In most field and laboratory tests, the initial shear modulus is

determined by measuring the shear wave velocity based on the following relationship:

G, = p(V,)* (4.48)

where G, = initial shear modulus; p = mass density of the medium through which the
shear wave is transmitted; and V = shear wave velocity. The cross-hole test, the spectral
analysis of surface wave test (SASW) and the seismic cone penetration test are the typical
examples of in-situ tests for evaluating initial shear modulus. = The seismic cone
penetration test is regarded as one of the most economical and rapid in-situ tests for
obtaining the initial shear modulus. The test is performed in a similar manner to a down-
hole test using the wave generated at the surface (Robertson et al. 1985). Figure 4.4

shows the schematic illustration of the seismic cone penetration test.
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Figure 4.3 Non-linear stress-strain behavior of soil.
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Figure 4.4 Seismic cone penetration test.
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For laboratory testing, the resonant column test and the bender element test are
often used. The bender element test has been developed relatively recently, but has been
used increasingly since. The test can be easily performed using the same soil sample as
in a conventional triaxial test, with the wave generator and receiver (called bender
elements) attached at the end caps of a triaxial sample. Because the strains generated by
the shear wave do not disturb the initial soil condition, the conventional triaxial test can
be performed immediately after the bender element test for the initially assumed soil
condition.

The empirical equations for the initial shear modulus are generally expressed as a

form of:

G, Y
5 —CF(e)[ Pﬂ] (4.49)

a

where G, = initial shear modulus; P, = reference pressure used for normalization; C =
non-dimensional material constant; F(e) = function of the void ratio; n = material
constant; p’ = mean effective stress in the same units as P,. Eq (4.49) indicates the
dependence of the initial shear modulus on the degree of compactness of the soil and the
magnitude of the confinement. One of the commonly used empirical equations for the
initial shear modulus of sand is the one suggested by Hardin and Black (1966) and written

as follows:

(e, —e,)’

vy (p)" 7" (0l (4.50)

G,=C

o g

where C,, €, and ng = material constants that depend only on the nature of the soil; e, =
initial void ratio; P, = reference pressure = 100 kPa = 1 kgf/cm?; and 6’y = initial mean
effective stress in the same unit as P,. In the original work by Hardin and Black (1966),

the values of Cg, €,, and ng were suggested for round grains (Ottawa sand) and angular
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grains (crushed Quartz). After Hardin and Black (1966), several authors presented the
values of C,, €,, and ng for other kinds of sands. Table 4.2 shows the values of Cg, n,,

and e, for different sands.

4.4.2 Hyperbolic stress-strain relationship

As discussed in the previous section, the stress-strain behavior of a soil shows
highly non-linear relationship from the early stage of loading. The hyperbolic family of
soil models has been widely used to represent such non-linear behavior of a soil over a
wide range of strains. Since Kondner (1963) first proposed the original hyperbolic
equation for the stress-strain relationship, several modifications have been suggested
(Duncan and Chang 1970, Hardin and Drnevich 1972, Fahey and Carter 1993, Purzin and
Burland 1996). The hyperbolic soil-models are based on the quasi-linear elastic stress-
strain relationship assuming piece-wise linear behavior with respect to a stress and strain
level.

The conventional hyperbolic equation for stress-strain curve by Kondner (1963) is

written for triaxial or plane-strain condition as:

6,—-0, = “4.51)

where 01 and o3 are the major and minor principal stresses; € is the axial strain; and a and
b are the material constants that characterize the feature of stress-strain curve. As can be
seen in Figure 4.5, the constants a and bin the conventional hyperbolic equation by
Kondner (1963) correspond to the value of the reciprocals of the initial elastic modulus
E,. and of the asymptotic value (o; - 03)y Of deviatoric stress in the hyperbolic stress-

strain curve.



Table 4.2 Values of Cq, €5, and n, for different sand type
(after Salgado 1993, Salgado et al. 1999)

Sand type C, € ng
Ottawa 612 2.17 0.44
Ticino 647 227 0.43
Toyoura 900 2.17 0.40
Hokksund 942 1.96 0.46
Monterey No.0 326 2.97 0.50




A
G -03 Asymptote = (6; - 63) = 1/b
E,=1/a
€
(a)
A
£
0,—0;
b
1
A
a
[ >
€
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Figure 4.5 Hyperbolic model (a) stress-strain curve and (b) linear representation.
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From (4.51) and Figure 4.5, it is easily seen that an infinite amount of strain is
required for the stress-strain curve to reach the ultimate stress level (6; - 63)y. This also

implies that the ultimate stress (G; - O3), in the conventional hyperbolic stress-strain
relationship is greater than the actual soil strength, which is taken as the maximum stress

at failure.

For the purpose of better fitting the hyperbolic relationship to a real soil stress-strain
curve, Duncan and Chang (1970) modified the hyperbolic equation by introducing the
material constant Ry into the equation. The factor Ry is referred to as the failure ratio,
relating the ultimate deviatoric stress () - G3)y Of the original hyperbolic stress-strain

curve to the actual deviatoric stress of soil at failure (o, - 03)s:
(0, -0, )f = Rf (0, —03)u (4.52)
The modified hyperbolic equation is then written as:

£
1 s-Rf

E (0'1—0'3)f

o

(0,-0;)= (4.53)

where the deviatoric stress at failure (6, - 63); is determined from the Mohr-Coulomb

failure criterion:

2c-cos¢ + 20, -sin¢
1—-sin¢

(4.54)

(0,-0,), =

where ¢ and ¢ are the Mohr-Coulomb shear strength parameters. If the factor Ry is less
than 1, the asymptotic value (0; - 03)y; 1S 1/Rytimes greater than the actual deviatoric

stress (O) - O3)r at failure. The hyperbolic model describes the non-linearity of the stress-
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strain relationship without recourse to plasticity concepts. As a result, it can be readily

incorporated into numerical analyses using an incremental elastic implementation.

4.4.3 Degradation of Elastic Modulus

The hyperbolic equation given by (4.53) can be rewritten so as to be expressed in

terms of shear stress and strain:

(4.55)

where G, = initial shear modulus in the very small strain range; and Ty, = maximum

shear stress at failure. Using the relationship y =t/ G, (4.55) can be written as:

z
G
= 4.5
T n TR, (4.56)
—+
G, 7..'GC
Thus,
G T
—=]-R, — 4.57
G, T T R

where G = secant shear modulus. Eq. (4.57) describes the degradation of the shear
modulus from its initial maximum value G, according to the magnitude of shear stress.
Duncan and Chang (1970) implicitly described the degradation ratio G/G, of elastic

stiffness as varying linearly with the stress level T/1y,x according to (4.57). The degraded
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magnitude of the elastic modulus at failure is determined by the value of R¢ in (4.57).
According to Duncan and Chang (1970), the value of Ry typically lies between 0.75 and
1.0.

4.5 Failure Criterion and Soil Plasticity

4.5.1 Failure criterion

Although the non-linear behavior of soil starts from the very early stages of loading,
there is a condition for which relatively dramatic changes of stress, for a given strain
increment, can be observed. When the soil is in this condition, it is said to have “failed”
and behaves as a plastic material. The failure criterion is used to define the limit stress
state at which the material exhibits plastic behavior. In most classical plastic theories,
the material is considered as elastic below the failure surface which is defined by a failure
criterion. Once the material has reached a failure condition and started exhibiting plastic
behavior, Hooke’s law, given by (4.24), is no longer valid.

For a given temperature, the failure criterion F can be expressed as a function of

stress components as follows:

F=F(O’U)=F(O‘“,0'22,0'33,0'12,0'23,0'13) (4.58)

where F = failure criterion; o = six stress components. If the soil is assumed to be
1sotropic, the soil properties are the same as all directions, thus the material constants are
not affected by coordinate transformations. It follows that the failure criterion can be
given in terms of principal stresses or stress invariants, for isotropic conditions, as

follows:
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F=F(o,,0,,0,) (4.59)
or

F=F,,J,,J;) (4.60)

where 61, 62, and 65 = major, intermediate, and minor principal stresses; I; = the first
invariant of stress tensor; and J, and J; = the second and third invariants of deviatoric
stress tensor. For certain materials, experimental observations show that the influence of
hydrostatic pressure on failure of the material is minimal. Based on the these
observations, the failure criterion is expressed for these materials in a more simplified

form as follows:

F=F(J,,J;) (4.61)

In some elastic-plastic models in soil mechanics, a soil remains in the elastic range
before the failure criterion is reached and deforms under a constant shear stress in the

plastic range. For such materials, referred to as perfectly plastic, the foliowing holds:

F <0 for the elastic range (4.62)

and

F=0 atfailure and beyond 4.63)

For a perfectly plastic material, the condition F > 0 is physically impossible. Figure 4.6
illustrates the elastic and plastic stress states for the elastic-plastic material. In the figure
o; and do;; represent the current stress and the stress increment at failure, respectively. If
the stress state takes place inside the failure surface given by (4.59) or (4.60), it
corresponds to the elastic condition of (4.62). As shown in Figure 4.6, when the stress
state remains on the failure surface, this is referred to as the loading condition. On the
other hand, the case where the stress state drops below the failure surface is called

unloading condition.



Loading

—

,//4 Unloading
Reloading

doy, loading
Gij
dcj;, unloading
>
O
Elastic
F(O'ij) <0

\

Failure surface, F(c;)

Figure 4.6 Stress states for elastic-perfectly plastic material.
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Considering a small stress increment doj; from the current stress state Gj;, the conditions

for loading and unloading are given by:

f(6,)=0 and df = ;ldo,.j =0 (4.64)

i

for loading and

f(@,)=0 and df =%—do,j <0 (4.65)

if

for unloading.

4.5.2 Flow rule and stress hardening

When the stress state of a elastic-plastic material reaches a failure surface, the
material starts exhibiting plastic behavior. The total strain increment tensor at plastic

state can be given by the sum of the elastic and plastic strain increment:
de; =de;" +de’ (4.66)

where dej; = total strain increment; de;;® and de;® = elastic and plastic strain increment.
The flow rule defines the relationship between the plastic strain and the current stress
state. Based on the flow rule, the magnitude and direction of the plastic strain increment

can be determined. The flow rule is given by:

de,” = A—— (4.67)
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where A is a positive scalar factor of proportionality and Q is a plastic potential function.
When the plastic potential function € is the same as the failure criterion F, the flow rule
is called an associated flow rule. Otherwise it is referred to as a non-associated flow
rule. Eqg. (4.67) also indicates that the direction of the plastic strain vector dg® is normal
to the plastic potential surface defined by a plastic potential function Q in the stress

space. This condition is referred to as the normality rule.
For the perfectly plastic material, the work done by the stress increment do; and

strain increment de;; in the plastic state should be equal to zero since no further increment
of stress, after the failure condition is reached, is possible. Some materials, however,
show positive amount of work done by additional stress and strain increments.  This
condition is referred to as work hardening or a stable material condition. According to

Drucker, the following two conditions should be satisfied for the hardening material:

(1) During the application of the added set of forces, the work done by the external
force on the changes in displacements it produces is positive.

(2) Over the cycle of application and removal of the added set of forces, the new
work performed by the external agency on the change in displacements it

produces is non-negative.
The first condition can be given by:

do, -de; >0 (4.68)
or

do,(de;  +de,")>0 (4.69)
The second condition implies that:

do;-de;” >0 (4.70)
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Perfectly plastic
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Figure 4.7 Stress-strain behavior for hardening, perfectly plastic and softening material.
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If the work done by additional stress and strain increment is negative, the material is
referred to as work softening or unstable. Figure 4.7 shows the conditions for the work

hardening, perfectly plastic, and work softening materials.

4.5.3 Soil dilatancy and critical state of sand

An important property that characterizes the state of cohesionless granular materials
is the relative density. The relative density is defined as the degree of compactness of the

soil with respect to its most and least dense states. The relative density Dy is written as:

Dy = Smm "% 1000 = Lamex Ve = Ve

emax —emin ya’ },d,max - yd.min

x100% 4.71)

where Dr = relative density; emax and €p, = maximum and minimum void ratios; e, =
initial void ratio; Yamax and Ygmin = maximum and minimum dry unit weight; yq = initial
dry unit weight. Relative densities equal to Dg = 100% and 0% represent the densest and
loosest conditions of sand, respectively.

The stress-strain behavior and volumetric changes of sand during shearing differ
significantly depending on the level of relative density. As can be seen in Figure 4.8, the
looser sand shows a stress-strain curve with gradually decreasing curvature until failure,
showing hardening behavior. On the other hand, the denser sand has a stress-strain curve
with a clear peak.

With respect to the volumetric strain of dense sand, it is usually observed that
negative volumetric strains, representing increases of volume, occur following the
contractive behavior initially observed.  This phenomenon observed in dense sand is
referred to as dilatancy. For the same amount of confinement, consequently, the denser

the sand, the greater the shear strength, and the higher the peak friction angle. The other
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Figure 4.8 Different behavior of dense and loose sand

(after Lambe and Whitman 1986).
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factor that affects the dilatancy of sand is the confinement. It has been observed that
lower confinement produces higher dilatancy in sand.

There is a condition far beyond the peak point of the stress-strain curve, for which
no volume change is observed. This stage is referred to as the critical state. As shown
in Figure 4.8, the volumetric strain &,,), deviatoric stress 6°; - 6’3 and void ratio e at the
critical state remain constant. The friction angle at this stage is regarded as a material
property that depends only on the nature of the sand, and not on either the initial density
or confining stress.

The friction angle at the critical state of sand is given by:

'1(' —O"?m

sin ¢r = P
o lr+o_ 3¢

4.72)

where ¢. = friction angle at the critical state; and ¢’y and 6’3, = major and minor
principal stresses at the critical state.
In order to quantify the dilatancy of sand, Bolton (1986) proposed the following

relationship based on the experimental test results:
¢,=¢.+0.8y, 4.73)

in which ¢, = peak friction angle; ¢. = friction angle at the critical state; and Y, =

dilatancy angle. The dilatancy angle v, is given by:
v, =6.251, for plane-strain conditions “4.74)
and

v, =3.751; for triaxial conditions 4.75)
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The dilatancy index Ig in (4.74) and (4.75) is given by:

F,
100P,’

Ip =1,[Q+In( -1 (4.76)

where Ip = relative density as a number between 0 and 1; P, = reference stress = 100kPa =
1kgf/cm?; P’, = mean effective stress at peak strength in the same units as P,; and Q =
material constant approximately equal to 10 for clean silica sand. From (4.73) through
(4.76), it is seen that the dilatancy angle y, depends on both relative density and
confinement. The higher the relative density, the higher the dilatancy angle, whereas the
higher the confinement, the lower the dialtancy angle. For practical purposes, Bolton

(1986) limits the values of the dilatancy angle at:

¢, —¢. <20° for plane-strain conditions @.77)

and

¢, —¢. <12° for triaxial conditions 4.78)

4.6 Summary

In this chapter, the mechanical behavior of soil was discussed. The linear elastic
relationship between stress G;; and strain €y can be defined by the generalized Hooke’s
law as following equation:

0, = Cijklgkl

where the elastic moduli tensor Cj; is expressed in terms of two elastic constants, either

the bulk modulus K and shear modulus G or Young’s modulus E and Poisson’s ratio v.
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Hyperbolic stress-strain models have been used to represent the non-linear behavior
beyond the very small strains for which soil behaves as a linear elastic material.
Hyperbolic soil models are based on quasi-linear elasticity and can be expressed in terms
of the degraded elastic modulus as a function of the stress or strain level. The degraded
elastic modulus can be obtained from the ratio of the current stress level to the maximum
stress level and the initial elastic modulus, which is given by the confinement and the
relative density for sands.

At large strains, soil exhibits plastic behavior.  For the description of plastic
behavior of soil, two conditions are required: a failure criterion and a flow rule. The
failure criterion defines the stress limit under which soil remains as an elastic material.
After this stress limit, soil no longer follows the elastic stress-strain relationship. The
flow rule represents the relationship between the stress and strain rate in the plastic range.
The magnitude and direction of the plastic strain increment can be determined based on
the flow rule.

The peak friction angle of sands can be expressed in terms of the friction angle at
the critical state and the dilatancy angle. The friction angle at the critical state is a
constant for a given sand, and depends only on the nature of the sands. The dilatancy
angle, on the other hand, is a function of confinement and relative density. Bolton

(1986) proposed the following relationship in order to quantify the dilatancy of sand:

¢, =¢.+08y,

where ¢, = peak friction angle; ¢. = friction angle at critical state; and vy, = dilatancy
angle determined as a function of density and confining stress. As a result, the failure
surface of sands, which is determined by the peak friction angle, is regarded as a non-

linear surface.
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{

CHAPTER 5§ 3-D NON-LINEAR ELASTIC-PLASTIC STRESS-STRAIN MODEL

5.1 Imtroduction

The non-linear elastic models mentioned in the previous chapter were developed on
the basis of a plane-strain condition. Vertical loading of either a pile in the free field or a
circular plate within a calibration chamber is an axi-symmetric problem, thus requiring
three-dimensional modeling. In order to obtain more realistic results for such problems,
therefore, the full description of the stress-strain relationship including non-linear elastic
and plastic behavior in three dimensions is necessary.

In this chapter, we discuss first the characteristics of the intrinsic and state soil
variables that will be used in the stress-strain model. The full non-linear elastic-plastic

soil model for three dimensions is then presented.

5.2 Intrinsic and State Soil Variables

Soil variables used for the description of soil behavior can be classified as either
intrinsic or state variables. Intrinsic soil variables do not change with soil state and are
only a function of soil particle, mineralogy, shape, and size distribution (Been et al. 1991,
Salgado et al. 1997a). This implies that the intrinsic soil variables for a given soil can be
uniquely determined irrespective of the stress state, history or initial condition. These

variables include the friction angle at the critical state (¢.), specific gravity (Gs), and
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maximum and minimum void 1atios (€max, €min). 1he parameters Cg, €, and ng used in
(4.50) for the initial shear modulus are also regarded as intrinsic soil variables.

Soil state variables, on the other hand, are determined by the soil state. The soil
state represents the physical condition under which the soil exists. The initial void ratio
(e,) or relative density (Dg), and in-situ vertical and horizontal stresses (0’y, 0”}) are the
most important state variables of sands, and control the behavior of the sand (Been et al.
1986). In contrast to the intrinsic variables, the determination of state variables (for
example by using laboratory tests) requires undisturbed soil samples. This presents
significant difficulties for the determination of soil state variables, particularly for
cohesionless soils.  The recent use of in-situ testing methods, such as the cone
penetration test and the pressuremeter test, however, offers more effective, indirect ways
to estimate soil state variables under in-situ conditions.

A useful soil model should be able to relate the stress-strain behavior to soil
intrinsic and state variables. With the rapid growth of computing power, the use of more
complex soil models have come to be practical for more realistic analyses of geotechnical
problems. In the applications of such soil models, the most critical factor for obtaining
accurate results may be the reasonably accurate determination of soil and model
parameters. The procedures to determine these parameters in general require significant
experimental efforts. The more complicated the soil models are, the more laborious the
determination of soil and model parameters.

As a simplified approach, the secant modulus is sometimes used to represent the
non-linear behavior of soil before a failure condition (Figure 5.1). However, the non-
linearity that soil shows is quite complex, varying significantly with the initial density
level, stress state, and displacement level of interest. Consequently, the selection of the
value of the secant modulus depends on the soil condition and the characteristics of the
geotechnical structure being analyzed. It also implies that there is no single value of
secant modulus that will produce acceptable results for all possible initial conditions.

It is possible to back-estimate the secant modulus using experimental results as a

function of displacement level. This approach, however, is not a fundamental solution,
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Figure 5.1 Secant modulus for non-linear stress-strain behavior.
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and may result in an inaccurate relationship between modulus, density level and stress
state due to the limited number of experimental results. The use of the intrinsic and state
soil variables in a non-linear elastic-plastic soil model combined with suitable numerical

techniques allows a more fundamental solution to geotechnical problems.

5.3 Modified Hyperbolic Model for Non-Linear Elasticity

The conventional hyperbolic equation of (4.57) implies that the degradation of the
elastic modulus with respect to stress level is linear. However, the measured degradation
curves of real soils under static or quasi-static loading can be quite different from linear.
Figure 5.2 shows measured modulus degradation curves of normally consolidated sand
and the degradation line by the conventional hyperbolic equation plotted together. The
figure was plotted in terms of normalized shear modulus G/G, and normalized shear
stress T/Tmax Where G, and Ty, represent the initial shear modulus and the maximum
shear stress at failure, respectively. As can be seen, the modulus degradation curve for
cyclic loading shows good agreement with the conventional hyperbolic equation. On the
other hand, the modulus degradation curve for monotonic loading reveals significantly
different response from that of the conventional hyperbolic equation. The measured
modulus degradation for monotonic loading from the initial shear modulus G, is initially
quite rapid. The rate of the degradation then drops as the normalized shear stress
increases.

In order to account for the characteristics of the modulus degradation observed in
real soils, Fahey and Carter (1993) proposed a modification of the conventional
hyperbolic model. The modification consists of the introduction of a parameter g into
(4.57):

L =1- f(——)* G.1)
T
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Figure 5.2 Modulus degradation relationship for normally consolidated sand

(after Teachavorasinskun et al. 1991).
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The parameter f in (5.1) has the same role as Ry in Duncan and Chang’s hyperbolic

equation of (4.53) and (4.55). The parameter g determines the shape of the degradation
curve in terms of the stress level. If f and g are both set equal to 1, (5.1) becomes the
original hyperbolic equation by Kondner (1963). If f is equal to 0, (5.1) represent the
linear elastic relationship with a constant value of shear modulus irrespective of stress

level as:

— =1 or G=G (5.2)

If g is set to be equal to 1 with a certain value of f, the Duncan and Chang hyperbolic
relationship given by (4.57) results.  Figure 5.3 shows typical modulus degradation
curves for different values of f and g. For a typical normally consolidated sand, Fahey
and Carter (1993) suggested that the value of f = 0.98 and g = 0.25 lead to reasonable
agreement with observed modulus degradation curve.

In numerical analysis of soil behavior using non-linear stress-strain models, a
tangent modulus with successive incremental procedure rather than a secant modulus
with successive iterative procedure is often used (Duncan and Chang 1970, Desai and
Christian 1977).  According to Duncan and Chang (1970), the advantage of the
incremental procedure is that the initial stress state can readily be taken into account,
which is very important in geotechnical problems. The accuracy of the incremental
procedure can significantly be improved by combining the iterative method for each
increment. The tangent shear modulus G; can be obtained from the differentiation of

(5.1). Using the relationship T= G-y, (5.1) is rewritten as:

T T .,
G}'_l—f(r ) (5.3)

14 max

or

o661y @ (5.4)
Y T

max
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Figure 5.3 Modulus degradation curve for different values of f and g.
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Replacing 1/y by &:

y =g (5.5)
Then,
ar _ _g=d8
dar dt
= E-G,1 -G, f (g ~(——) (0)]
—E2Gr+G, f(g —1)(11 )% (7)*2]
GOT'Z[l—f(l—g)(TT )]
= ] max (5.6)
[G,r™ =G, f(——)* (1)*]?
Thus,
l-f(l—g)(: e
d—’; = — (5.7)
G,l1- f(——)* P
Tmax
dar
Because G;= —, (5.7) becomes:
dy
| 1—f(1—g)(: )¢
_—= max (5.8)
G, G ..
G,(g)
or
G
)
G G
Gl = g - (5.9)
o 1-f(l-g)——)*

T

max
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Using (5.9), the tangent modulus G, corresponding to the current stress level /Ty, and

the current secant shear modulus G can be obtained.

5.4 Non-Linear Elastic Model for Three Dimensions

5.4.1 Modified hyperbolic stress-strain relationship for three dimensions

Application of the hyperbolic model to the analysis of the loading of a natural soil
deposit requires the resolution of two issues. Firstly, there is the issue of how to define
what shear stresses to use in the stress-strain model. In naturally deposited soil, the
stress state is anisotropic with an existing initial shear stress which is determined by a
coefficient of lateral earth pressure at-rest, Ko = 64/6’y. Most laboratory studies on
stress-strain response, however, have been done on isotropically consolidated samples.
In order for the analysis to be more realistic, the initial shear stress existing in a natural
soil deposit should be taken into account. A second issue is related to the extension of
the non-linear elastic models, which have been based on common laboratory tests and are
two-dimensional, to three dimensions.

In the modified hyperbolic model by Fahey and Carter (1993), the degradation of
shear modulus is expressed in terms of shear stress level T/1,,, with the model parameters
fand g. To take account of the initial shear stress due to initial stress anisotropy in the

hyperbolic model, the following formulation should be used instead of (5.1):

G,
G

=1- f(— T ye (5.10)
T [

o max o

where 1, = initial shear stress due to the initial K, condition. Figure 5.4 illustrates how

To» T and Tmax Were defined in the present study. In Figure 5.4 (2), it should be noticed
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Figure 5.4 Definition of 1,, T and Tmax for (a) constant and (b) varying confinement.

96



97

that T,, T and Tm.x are all defined at the same confining stress as represented by (¢”; +
0’3)/2.  The stress path AB is only possible in a simple shear test with initially
anisotropic stress condition. The stress path CF in Figure 5.4 (b), on the other hand, is
more representative of the axial loading of a foundation for soils with an initial K
condition, where failure is reached as a result of increases in both shear and confining
stresses. For the stress path CF, the maximum shear stress Tp,x varies along the line DF,
depending on the current shear stress on line CF. As an illustration, for point E in Figure
5.4 (b) representing the current shear stress T, point G (obtained by vertically projecting
point E onto the Ky line) represents the maximum shear stress corresponding to the
current shear stress T and confining stress ¢’y

Full description of the stress state under various types of external loading requires a
specification of the intermediate principal stress as well as the major and minor principal
stresses.  Three-dimensional stress conditions may also be represented by the use of
stress invariants. The first invariant I; of the stress tensor given by (4.9) is a measure of
confining stress, and the square root of the second invariant J, of the deviatoric stress
tensor given by (4.22) is a measure of shear stress in three dimensions. Using the stress
invariants, the hyperbolic relationship of (5.10) may now be rewritten for three

dimensions as:

O 21— £( I: ~T % (5.11)
G0 V‘]2max - JZo

where 1/JZ M/ng and «/sz are the 3-D equivalents of 1,, T and T,y in (5.10). Itis

necessary for Jom.x to be defined using a three-dimensional failure criterion.  The
Drucker-Prager failure criterion was selected in this study for that purpose. The Drucker-

Prager failure criterion is given by:

F=\J,-ad,—-x=0 (5.12)
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where o and x are related to the Mohr-Coulomb strength parameters ¢ and ¢ through:

2sin@
= 5.13
\/5(3—sin¢) ( )
and
6c-cos@
=— T 5.14
V3(3-sing) .

In (5.13) and (5.14), ¢ and c represent the friction angle and cohesion, respectively. For

sands, ¢ and hence x = 0. From (5.12), Jomax for sands at a given confinement would be

obtained as:

=a’l’ (5.15)

As a result, the 3-D stress plane of I versus ./J , 1s used, instead of the 2-D stress plane

of 6 versus T, to obtain the stress level associated with (5.11) in a manner similar to that
of Figure 5.4.

Considering the stress path CH in Figure 5.4 (b), the shear modulus should increase
due to the increase of confinement, while the magnitude of shear stress is kept constant.
In order to account for the influence of confinement on shear modulus during loading,

(5.11) is modified as follows:

\/-,J—ZE ) X( 1)‘ (5.16)
J2max J20

Gs
G_ f(

where I; and I, are the first invariants of the stress tensor at the current and initial states.
The parameter ng is the same as appears in (4.50). In both equations, n, represents the

dependence of shear modulus on confinement. Use of (5.16), rather than (5.11), permits

that the degradation of shear modulus be properly expressed in terms of both shear stress
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and confining stress levels. Eq. (5.16) reverts to (5.11) for the simple shear case in which

I, =l, at any stress level.

5.4.2 Variation of bulk modulus and Poisson’s ratio

As discussed in chapter 4, the stress-strain response of an elastic material is
described by two constants; the bulk modulus K and the shear modulus G are often used.
The elastic stress-strain relationship using the bulk modulus K and the shear modulus G

can be written in matrix form as follows:

0,] [K+%G4 K-264 K-2G4 0 0 ofs,)
o K—2% K+4% K—Z% 0 0 0flén
<O.33 L K—2% K—Z% K+4% 0 0 0 833 L (517)
O 0 0 0 G 0 0|7
023 0 0 0 0 G 0|7
Ol | 0 0 0 0 0 G|V

As the stress state changes in a non-linear elastic model, the elastic parameters K
and G of (5.17) also change. Thus, the complete description of a non-linear elastic
relationship requires proper representation of variations in both shear modulus G and bulk
modulus K. As described earlier, the shear modulus is given by the non-linear stress-
strain relationship as a function of current stress state. The magnitude of the bulk
modulus depends mainly on the magnitude of the confining stress (Naylor et al. 1981).
The K-G model is one of the ways for accounting for the nonlinear elastic characteristics
before yield (Naylor et al. 1981, Salgado 1993). The basic considerations of the K-G

model are:

1. The magnitude of the shear modulus increases with increasing confining stress.

2. The magnitude of the shear modulus decreases with increasing shear stress.
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3. The magnitude of the bulk modulus increases with increasing confining stress.

The first two considerations have already been included in the development of the non-

linear elastic relationship of (5.16).
Based on the discussion on the K-G model by Naylor et al. (1981), the tangent bulk

modulus K, can be represented by the following equation:

K,=D,-(c', )" (P)™ (5.18)

where P, = reference stress = 100 kPa = 1 kgf/cmz; o’m = mean effective stress in the
same units as P,; D = material constant that can be calculated from the initial values of
bulk modulus and confining stress; and nx can be taken as 0.5 with reasonable accuracy.
The values of the initial bulk modulus may be obtained from the initial shear modulus G,
and the initial Poisson’s ratio v,, which can, in most cases, be taken in the 0.1 - 0.15
range.

The expression of Poisson’s ratio v in terms of the current loading state can be
obtained from the relationships of Table 4.1. Based on these relationships, the ratio of

the tangent Young’s modulus E; to the initial Young’s modulus E, can be written as

either:
+
E _GAV) (5.19)
E, G,(1+v,)
or
E _K(A-2%) (5.20)
E, K(d-2v)

in which v, = initial Poisson’s ratio; K;, K;, G,, and G, = initial and current bulk and shear

moduli, respectively. From (5.19) and (5.20), the Poisson’s ratio v at the current stress

state can be given by:
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£(1+v0)——§i(1—2v0)

K, G

v, = Kl (; (5.21)
—<(+v )+—L(1-2v
% (1+v,) G ( o)

H o

In (5.21), it is seen that the Poisson’s ratio approaches 0.5 as the shear modulus

approaches zero, as expected.

5.4.3 Determination of the parameters f and g

The parameters f and g in (5.16) determine the characteristics of degradation of the
elastic modulus. In order to evaluate the values of f and g, a set of triaxial test results
performed by Giuseppe (1991) and Vecchia (1991) for Ticino sand was analyzed. Ticino
sand has been studied extensively (Salgado 1993, Bellotti et al. 1996) and involved in a
number of laboratory plate load and cone penetration tests (Ghionna et al. 1994, Salgado
et al. 1997a). The properties of Ticino sand are shown in Table 5.1.

When the modulus degradation relationship is to be determined from triaxial test
results, it should be pointed out that the soil specimen under triaxial loading is subjected
to continuously increasing confinement. The conventional triaxial test is performed by
applying first an isotropic cell pressure o¢’;, then a deviatoric axial stress, which is
increased (or decreased) until failure. If confinement is defined through the mean
effective stress 0’y = (014+20"3)/3 rather than G’;, a triaxial soil specimen can be
considered to undergo changes in both confinement and shear stress. As a result, it is not
possible to define a single value of maximum shear stress for a triaxial loading condition,
due to continuously varying confinement, as discussed in the previous section. Instead, it
is possible to identify a different value of maximum shear stress corresponding to each
value of current confinement ¢’y as illustrated in Figure 5.4(b).

The use of Young’s modulus is more suitable for obtaining the modulus degradation

relationship from triaxial tests. Young’s modulus in a triaxial test is calculated from the



Table 5.1 Basic properties of Ticino sand (after Ghionna et al. 1994).

Do (mm) 0.36

Dso (mm) 0.54
Specific gravity (Gy) 2.623

Coefficient of uniformity (U) 1.5
Friction angle at critical state (¢) 34.8°
€max 0.922
€min 0.573
Ymax (KN/m?) 16.68
Ymin (KN/m®) 13.65

C, 647

ng 0.44

eg 2.27
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applied axial stress (6 - 6”3) and the axial strain €,y With the lateral stress 6”3 remaining
constant. The stress level can be determined from the applied axial stress (6”; - 673)
normalized with respect to the unique value of maximum axial stress at failure, (¢”; -
o'3)s

Figures 5.5 through 5.17 show the measured and calculated modulus degradation
curves obtained from triaxial tests on samples with two different relative density levels
(i.e. medium dense sand with relative density equal to approximately 50%, and dense
sand with relative density equal to or higher than 90%). As can be seen in the figures,
the degradation curves were plotted in terms of normalized Young’s modulus EJ/E,
versus deviatoric axial stress level (6”; - 6'3)/(6 ’; - 6”3);, where E and E, represent the
secant and initial Young’s modulus respectively. The initial Young’s modulus E, was
calculated from the initial shear modulus given by (4.50) and the initial Poisson’s ratio at
small strain taken as 0.15.

The values of f and g for the medium dense sand shown in Figures 5.5 — 5.8 were
found to be in the 0.96 - 0.97 and 0.15 - 0.20 range, respectively. Those for the medium
dense sand were in the 0.93 — 0.95 and 0.2 - 0.32 range, respectively. Table 5.2
summarizes the initial elastic modulus and the values of f and g for the triaxial soil
samples used in Figures 5.5 - 5.17. From Figures 5.5 - 5.17 and Table 5.2, it is observed
that the values of f and g vary according to the relative density level. As the relative
density increases, the value of f decreases while the value of g increases. This result
indicates that the ratio of the elastic modulus at failure to its initial value is higher for
denser than for looser sand, and the rate of degradation of elastic modulus is higher for
looser than for denser sand. The results for both cases are in agreement with intuition.

Because the triaxial tests by Giuseppe (1991) and Vecchia (1991) were performed
for only two relative density levels, the values of f and g shown in Table 5.2 cannot be
directly applied to other relative density levels. In order to determine the parameters f
and g for other relative density levels, the values of f and g for Dg = 30% and 70% were
extrapolated and interpolated, respectively, from those corresponding to Dg = 50% and

90% which were obtained based on the measured modulus degradation relationship.
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Figure 5.5 Modulus degradation curves for Dg = 51.5% and 63 = 400 kPa
with f=0.97 and g =0.18.
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Figure 5.6 Modulus degradation curves for Dg = 48.8% and 65 = 200 kPa
with f =0.97 and g = 0.15.
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Figure 5.7 Modulus degradation curves for Dg = 48.2% and 63 = 500 kPa
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Figure 5.8 Modulus degradation curves for Dg = 50.8% and 63 = 110 kPa
with f = 0.97 and g = 0.20.
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Figure 5.9 Modulus degradation curves for Dg = 84.6% and o5 = 650 kPa

with £ =0.93 and g = 0.20.
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Figure 5.10 Modulus degradation curves for D = 82.3% and 63 = 100 kPa

with f =0.95 and g = 0.25.
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Figure 5.11 Modulus degradation curves for Dy = 88.9% and 63 = 200 kPa

with f = 0.95 and g = 0.20.
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Figure 5.12 Modulus degradation curves for Dg =91.1% and 65 = 150 kPa
with f =0.95 and g = 0.20.
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Figure 5.13 Modulus degradation curves for Dg = 100% and o5 = 200 kPa

with f = 0.95 and g = 0.25.
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Figure 5.14 Modulus degradation curves for Dg = 100% and 63 = 400 kPa

with f=0.95 and g = 0.27.
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Figure 5.15 Modulus degradation curves for Dz = 100% and 65 = 600 kPa

with f =0.94 and g = 0.32.
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Figure 5.16 Modulus degradation curves for D = 100% and 63 = 800 kPa
with f =0.94 and g = 0.28.
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Figure 5.17 Modulus degradation curves for Dg = 98.6% and 65 = 100 kPa
with f = 0.94 and g = 0.20.
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Table 5.3 shows the values of f and g for Dg = 30%, 50%, 70% and 90%. These values

will be used for the analysis of calibration chamber plate load tests and pile load tests in

the next chapters.

Table 5.2 Values of f and g from triaxial test results.

D (%) 0’5 (kPa) E, (MPa) f g
51.5 400 367.1 0.97 0.18
48.8 200 266.0 0.97 0.15
48.2 500 396.6 0.97 0.18
50.8 110 207.2 0.97 0.20
84.6 650 563.6 0.93 0.20
82.3 100 243.7 0.95 0.25
88.9 200 344.2 0.95 0.20
91.1 150 307.8 0.95 0.20
100 200 369.6 0.95 0.25
100 400 501.4 0.95 0.27
100 600 599.3 0.94 0.32
100 800 680.2 0.94 0.28
98.6 100 270.5 0.94 0.20

Table 5.3 Values of f and g for different relative densities.

DR (%) f g
30 0.98 0.17
50 0.97 0.20
70 0.96. 0.23
90 0.95 0.26




118

5.5 Plastic Stress-Strain Relationship for Three Dimensions

5.5.1 Drucker-Prager failure criterion

In geotechnical engineering, the Mohr-Coulomb failure criterion has been often
used to describe plastic soil behavior. The basic assumption in the Mohr-Coulomb
failure criterion is the plane-strain condition assuming two-dimensional stress state in
which only the major and minor principal stresses are considered. It cannot, therefore, be
directly applied to the analysis of three-dimensional problems in which the major and
minor principal stresses as well as the intermediate principal stress should be taken into
account.  In order to describe failure and post-failure soil response for the three-
dimensional stress state, the Drucker-Prager plastic model was adopted in this study.

As can be seen in (5.12), the Drucker-Prager failure criterion is expressed in terms
of the stress invariants J, and I; given by (4.22) and (4.9). When the stress state reaches

the failure surface in the Drucker-Prager plastic model, it should satisfy the condition of:
F=\J,—(ad,+Kk)=0 (5.22)
where the parameters o and x are given by (5.13) and (5.14) in terms of the Mohr-

Coulomb strength parameter ¢ and ¢ obtained from the triaxial conditions. For plane-

strain conditions, the parameters & and K are expressed as follows:

o= tan ¢ 1 (5.23)
©+12tan? §)>
K = 3¢ (5.24)

 (9+12tan’ 9)



119

\/—J— Failure criterion
2
1/.]2 —(d, +x)=0

>
I
(a)
AC
Mohr-Coulomb Drucker-Prager
failure surface / failure surface
1
I
]
]
1
]
O> : C3
L

(b)
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Since the stress invariants shown in (5.22) include all components of the three principal
stresses, (5.22) can be used for the description of a failure condition under the three-
dimensional stress states.

Figure 5.18 shows the failure surface defined by the Drucker-Prager failure criterion

in both I;-/J, plane and principal stress plane. As shown in Figure 5.18, the Drucker-

Prager failure surface appears as a straight line in I;-,/J, plane, and a smooth circle in -

plane. As a result, the Drucker-Prager failure criterion is readily incorporated into a
numerical procedure while the Mohr-Coulomb cannot readily be used in numerical

computation due to the comners of the hexagon in Figure 5.18 (b)

5.5.2 Non-linear failure surface and flow rule

The failure surface given by the original Drucker-Prager failure criterion is defined
as a straight line as shown in Figure 5.18 (a) with the Drucker-Prager friction parameter
o. As discussed in chapter 4, the peak friction angle ¢, for sand is not constant, varying
with relative density and confining stress. This relationship was expressed in (4.73) —
(4.76). Because the o parameter in the Drucker-Prager failure criterion is obtained from
the peak friction angle using (5.13), the envelope of the Drucker-Prager failure surface is
also non-linear. As a result, the failure surface becomes steeper as the level of confining
stress decreases.

It has been widely recognized that the original Drucker-Prager plastic model with an
associated flow rule always causes a large negative volumetric increment, i.e., excessive
dilational behavior (Desai and Siriwarden 1984, Chen and Baladi 1985).  This is
illustrated in Figure 5.19. The associated flow rule requires that the plastic strain
increment vector de;® be perpendicular to the failure surface, such as at point A in Figure
5.19. The plastic strain increment vector de;” can be decomposed into the vertical (de;™)

and horizontal (de;"") components as:
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de,r =de.” +de. " (5.25)

The vertical component de;™ represents the plastic shear-strain.  The horizontal
component de;”’ represents the plastic volumetric-strain that has a negative direction for
an associated flow rule. This indicates that the plastic flow in the original Drucker-
Prager plastic model] is always accompanied by an increase in volume.

In order to suppress unrealistic dilation in the plastic state, a non-associated flow
rule with the von Mises plastic potential function was adopted (Borja et al. 1989). The

von Mises plastic potential function can be given by:

Q=.J, -« (5.26)

where £ is the von Mises. plastic potential function and I, is the second invariant of the
deviatoric stress tensor. Figure 5.20 shows the non-linear failure surface used in this

study and plastic strain increment with the non-associated flow rule.

5.5.3 Incremental stress-strain relationship

The most common approach for applying plasticity theory to numerical analysis is
the incremental method calculating the tangent stiffness for a plastic condition.
According to the concept of perfect plasticity theory, the increment of plastic strain
cannot be uniquely determined from the current stress state oj and stress increment dc;.
The stress increment do;;, however, can be obtained from a current stress o; and a given
plastic strain increment dg;’.  This relationship is refereed to as the consistency

condition, which forces the stress state to remain on the failure surface, and given by:

dF = oF do, =0 (5.27)

y
00
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The consistency condition of (5.27) has already been discussed in Chapter 4 and is one of
the conditions required for perfectly plastic behavior. From the flow rule given by (4.66)

and (4.67), the stress increment do;; with Hooke’s law can be written as:

do, = Cy,(de, —de,") (5.28)

ij
Thus,
aQ

" 9o
ki

do; =Cy,de, —AC (5.29)

in which Cjjy = elastic moduli matrix; dey and dey® = total and plastic strain increment;
and Q = Von-Mises plastic potential function. Plugging (5.29) into (5.27), A is obtained

as:

oF
'a';' Cijkl de K

- i
A= °F - 7o) (5.30)
ao rstu ao_

rs u

Equation (5.30) indicates that, for a given material with a failure surface F and strain
increment dg;;, the factor A can be uniquely determined through (5.30).  Substituting

(5.30) into (5.29), the incremental stress-strain relationship is expressed as a form of:

0@ oF
" 90,, 00 ,,

aFc 0Q

ao_ rstu ad

rs u

C

pagkl

do,; =[Cy, -

lde,, (5.31)

All indicies in (5.31) are based on index notation as used in Chapter 4. The stress-strain
relationship in a plastic state can then be defined using (5.31). The coefficient tensor of

(5.31) represents the elastic-plastic tensor of tangent modulus:



9Q JF
" 96,, 00,

aFC oQ

ao_ rstu ao_

rs tu

ep — .
Cijkl = Cijkl
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(5.32)

Since the function Q and F are expressed in terms of the stress invariants, the

following relationships can be obtained:

02 _oQ 3,  9Q ], 3 3,

oc,, oI, oo, dJ,00,, dJ,0d0,,

mn
and

OF _OF I, OF I,  9F 0,

do,, 9l 9o, dJ,00, dJ,90,

Pq

(5.33)

(5.34)

in which I; = the first invariant of stress tensor; and J, and J; = the second and third

invariants of the deviatoric stress tensor. In (5.33) and (5.34), the derivatives of the

stress invariants are written as:

o, _
do,
oJ
35,
0,
aJ 2
873 = SikSkj _3‘]260‘

i

(5.35)

(5.36)

(5.37)
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where §;; = Kronecker delta; and S;; = deviatoric stress tensor. From (5.22) and (5.26),
the derivatives of the functions Q and F with the stress invariants, which appear in (5.33)

and (5.34), can be obtained as follows:

37? =0 (5.38)

g% =~ j}? (5.39)

3753 -0 (5.40)
and

%‘:_ -« (5.41)

E?J_Fz _ 2\/1]_2 (5.42)

an_F3 =0 (5.43)
Then, (5.33) and (5.34) are rewritten as:

oQ _ 1 g (5.44)

and

=—S5 —-ad (5.45)

Now the elastic-plastic tangent modulus matrix of (5.32) can be given more explicitly by:
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1 1
x_/mn \/_ -\/— S Pq - a6 pPq )Cqu’
Ciu v = Ciu — 5) s, (5.46)
—-ao, )C
J_— rstu _\/Z tu

As a result, the incremental stress-strain relationship for the plastic state is obtained as:
do; =C,,"de, (547)

And the plastic strain component can be expressed as:

S
de.” = AM(—=

i 2\/-_]_;

in which A is given by (5.30).

5.6 Summary

The conventional hyperbolic stress-strain relationship is based on plane-strain
analyses which may be used for two-dimensional stress states. Vertical loading of either
a pile in the free field or a circular plate within a calibration chamber is an axi-symmetric
problem. Although the analysis of such problem is much simpler than that of ordinary
three-dimensional problems, it still requires the definition of stress states in three
dimensions, including vertical, radial, and tangential stresses. In that sense, an axi-
symmetric problem is certainly different from the plane-strain condition, which is suitable
to treatment using two-dimensional stress-strain relationships and failure criteria.

In this chapter, the non-linear elastic-plastic soil model for three dimensions was

presented. 'This soil model takes advantage of the intrinsic and state soil variables that
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can be uniquely determined for a given soil type and condition. For the description of
soil behavior before a failure condition is reached, the three-dimensional non-linear
elastic model was developed based on the modified hyperbolic stress-strain relationship
by Fahey and Carter (1993). This non-linear elastic model represents changes of elastic
parameters (the shear modulus G and the bulk modulus K) according to the stress level.
The stress invariants were used to represent the three-dimensional stress state. The
expressions for the variation of shear modulus and bulk modulus according to the stress

level are given by:

= J—r—\/_z— )g]( ’)g
2max \/:_

and

K, =D, (', )" (P)"™

The parameters f and g in (5.49) were determined from triaxial test results. From the
measured modulus degradation curves, it is observed that the values of f and g vary
according to the relative density level. As the relative density increases, the value of f
decreases while the value of g increases.

In order to describe failure and post-failure soil response for the three-dimensional
stress state, the Drucker-Prager plastic model with non-associate flow rule was adopted in

this study. The Drucker-Prager failure criterion is given by:
F=\J,-(a,+x)=0
where the parameters o and K are related to the Mohr-Coulomb strength parameter c

(which is zero for cohesionless soils) and ¢ obtained from the triaxial conditions.

Because the peak friction angle for sand is not constant due to the dilatancy, the friction
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parameter ¢ was defined in terms of the dilatancy friction angle and the friction angle at

critical state.
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CHAPTER 6 NUMERICAL ANALYSIS AND EXPERIMENTAL
INVESTIGATION OF CALIBRATION CHAMBER TESTS

6.1 Introduction

Calibration chamber tests have been used to investigate both the load-settlement
response of the base of non-displacement piles and cone penetration resistance under a
variety of conditions (Parkin 1991, Ghionna et al. 1994). Calibration chamber tests can
be performed at any desired values of relative density and vertical and horizontal stresses
under controlled conditions.

Based on the 3-D non-linear elastic-plastic stress-strain model presented in the
previous chapter, calibration chamber tests are modeled and analyzed using the finite
element approach. The analytical results will be compared with the measured values of
plate resistance in calibration chamber plate load tests. The objective of this chapter is to
verify the accuracy of the model predictions for plate resistance and assess calibration

chamber size effects on plate resistance values.

6.2 Calibration Chamber Plate Load Tests

6.2.1 Description of test and experimental procedures

A calibration chamber plate load test can be used to simulate the axial loading of a

non-displacement pile. In such a test, a cylindrical sand specimen is carefully prepared,
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consolidated to a desired stress state, and tested (Salgado et al. 1998a,b, Lee and Salgado
1999a). In order to simulate the load-settlement response of the base of a non-
displacement pile under a variety of conditions, plate load tests were performed within a
flexible calibration chamber (Figure 6.1) with a diameter equal to 1.2 m and height equal
to 1.5 m. The series of 30 tests was previously described by Ghionna et al. (1994), where
details regarding the experimental procedures are discussed at length.

The test samples were formed by pluviation, which was interrupted when the
surface of the sample reached mid-height, so that a rigid circular plate having a diameter
of 104 mm could be positioned on top of the sample. After the plate connected to an
inner rod was positioned, an outer casing with the same diameter as the plate was
positioned above the plate and fixed to the calibration chamber. Sample pluviation was
then continued outside the outer casing. A sample prepared in this manner simulates the
conditions near the base of a non-displacement pile. Since the loading rod is separated
from the soil by the outer casing, there is no side resistance along the push rod and the
vertical load-displacement response of the plate simulates the load-displacement response
of the base of a non-displacement pile.

After preparation is completed, the sample is consolidated under K,-conditions.
The relative density of each sample was controlled by the intensity of the sand flow
during pluviation, and was accurately determined at the end of each test when the sample
was disassembled. Both dense and medium-dense samples were tested. The test results

are presented later.

6.2.2 Test material and boundary conditions for calibration chamber plate load tests

The sand used in the calibration chamber plate load tests was Ticino sand, a silica
sand, whose properties are shown in Table 5.1. The relative densities used in the tests
are divided typically into two different levels, medium dense and dense. The medium

dense and dense samples represent the relative-density levels equal to around Dg = 50%
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and Dgr = 90%, respectively. Both normally- and over-consolidated conditions were used
in the tests. For over-consolidated soil samples, the over-consolidation ratio (OCR) were
within the 2.73 — 7.61 range. The desired confining stress levels were established by
applying separately the vertical and lateral boundary stresses on the sample surfaces.
This allows different Ky values. The vertical boundary stresses were in the 62 — 513 kPa
range while the lateral boundary stresses were in the 25 — 235 kPa range. Accordingly,
the value of K used in the tests were in the 0.34 — 0.97 range. Table 6.1 shows the soil
and stress conditions of the test samples used in calibration chamber plate load tests.

In calibration chamber tests, four different types of boundary conditions can be
used. These boundary conditions include BC1l, BC2, BC3, and BC4 conditions
according to the types of boundary conditions imposed on the lateral, top and bottom
chamber surfaces. Table 6.2 and Figure 6.2 illustrate the types of boundary conditions
used in the calibration chamber plate load tests and how these boundary conditions differ
from each other. Based on the lateral boundary conditions that has indeed significant
influence on the plate resistance or cone penetration resistance, the boundary conditions
can be classified into two categories, constant-stress and fixed boundary conditions. The
constant-stress boundary conditions include BC1 and BC4 conditions while BC2 and
BC3 conditions are categorized as the fixed boundary conditions.

It should be noticed that none of these boundary conditions perfectly reproduces the
boundary conditions corresponding to real field situations. This is so because the
calibration chamber used in a test has a limited size. The difference of results between
calibration chamber tests and free-field tests would not exist if calibration chambers with
infinite sizes were used. The other limitation is that BC2 and BC3 conditions are not as
useful as BC1 and BC4 conditions (Salgado et al. 1998b). This is because achieving a
true no-displacement condition for the lateral sample boundary is very difficult due to the
characteristics of flexible chambers. The 30 calibration chamber plate load test by
Ghionna et al. (1994) include 26 tests under BC1 condition, 1 test under BC2 conditions,
2 tests under BC3 conditions, and 1 test under BC4 conditions. The boundary conditions

used in each calibration chamber test are shown in Table 6.1.



Table 6.1 Soil and stress conditions in calibration chamber tests.
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Boundary

Dgr

o’y

G’h

TestNo. | ondition | (%) (kPa) (kPa) Ko OCR
300 BCI 51.0 115.0 51.0 0.443 1.00
301 BCI 92.0 115.0 40.0 0347 1.00
302 BCI 50.4 113.0 51.0 0.451 273
303 BCI 552 313.0 140.0 0.447 1.00
304 BC1 55.2 214.0 92.0 0.429 1.00
305 BC1 58.4 512.0 223.0 0.435 1.00
306 BCI 494 116.0 76.0 0.655 270
307 BCI 928 314.0 123.0 0391 1.00
308 BCI 925 216.0 85.0 0.393 1.00
309 BCI 925 115.0 77.0 0.669 273
310 BCI 90.9 66.0 25.0 0378 1.00
311 BCI 917 63.0 25.0 0.396 1.00
312 BCI 555 513.0 235.0 0.458 1.00
313 BCI 517 62.0 26.0 0419 1.00
314 BCI 491 54.0 52.0 0.962 7.61
315 BCI 435 410.0 189.0 0.460 1.00
316 BCI 56.8 512.0 184.0 0359 1.00
317 BCI 55.2 62.0 24.4 0.393 1.00
318 BCI 59.0 216.0 92.0 0.425 1.00
319 BCI 58.0 65.0 53.0 0.815 6.34
320 BCI 593 63.0 50.0 0.793 6.54
321 BCI 60.2 412.0 177.0 0.429 1.00
322 BCI 922 314.0 129.0 0.410 1.00
323 BCI 92.0 66.0 64.0 0.969 6.27
324 BCI 91.2 66.0 27.0 0.400 1.00
325 BC3 914 116.0 47.0 0.405 1.00
326 BC3 912 65.0 25.0 0.384 1.00
327 BC2 90.9 65.0 26.0 0.400 1.00
323 BC4 90.9 65.0 26.0 0.400 1.00
329 BCI 90.6 65.0 26.0 0.400 1.00




Table 6.2 Boundary conditions in calibration chamber tests.

Boundary Lateral Boundary Top/Bottom Boundary
Condition Condition Condition
Constant stress Constant stress
BC1
(o, = constant) (o, = constant)
No displacement No displacement
Be2 (3y = 0°) (1, = 0%)
No displacement Constant stress
BC3
(un=0) (6, = constant)
Constant stress No displacment
BC4
(o = constant) (uy=0)

“uy, represents horizontal displacement

Py, represents vertical displacement

134
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Figure 6.2 Types of boundary conditions in calibration chamber test.
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6.3 Numerical Modeling of Plate Load Tests in Calibration Chambers

6.3.1 Program ABAQUS

Finite-element analysis of calibration chamber plate load tests or pile load tests in
the free field requires an accurate model of the stress-strain relationship that can represent
the complicated behavior of the soil around the rigid plate or pile base. The description
of a stress-strain relationship for soils, therefore, must take into account the non-linear,
stress-dependent stress-strain response before failure as well as the post-failure soil
behavior with non-linear strength envelope.

The commercial finite-element program ABAQUS (Hibbitt, Karlsson & Sorensen,
Inc., Pawtucket, R.1.) was used to model both the calibration chamber plate load tests and
the axial loading of non-displacement piles. The program ABAQUS has been used to
analyze many engineering problems. It provides a set of material models available for
geotechnical problems and several types of elements. The analysis procedure is divided

in two parts (Lee et al. 1999):

(1) interpretation of model information;

(2) implementation of history data.

Model information includes element types, material definitions, and boundary conditions,
which are required in the analysis. The history data consist of analysis type and any
control parameter necessary for a non-linear solution procedure. In most geotechnical
problems, the initial condition is defined as a geostatic equilibrium state.

Instead of using the optional material model provided by the original program, a
subroutine was written for the 3-D non-linear stress-strain relationship described in the

previous chapter.
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6.3.2 Finite element modeling of plate load test

The load-displacement curve for each calibration chamber plate load test was
predicted numerically using the finite element method with the non-linear elastic plastic
model discussed earlier. Figure 6.3 shows a typical finite element mesh used to model
the plate load tests in calibration chamber. This finite element mesh was constructed
using the same dimensions as 'those of the real calibration chamber having a diameter
eqﬁal to 1.2 m and height equal to 1.5 m. The elements were eight-noded axisymmetric
elements, necessary for modeling the three-dimensional loading conditions, with four
internal integration points. In ABAQUS, the finite element model with axi-symmetric
elements can be plotted using any visual angle desired. The finite element mesh shown
in Figure 6.3 was plotted with a visual angle equal to 180° for better visualization.

The finite element model] for the calibration chamber plate load test shown in Figure
6.3 consists of two different element groups, i.e. soil and casing elements. The soil
elements were modeled using the 3-D non-linear stress-strain relationship written in a
specific subroutine. Because the steel casing is relatively rigid compared to the soil, the
casing elements were modeled as a linear elastic material with very high stiffness. The
steel casing in the finite element model was set to be fixed allowing no displacement
throughout the analysis, as that was how the actual tests were performed.

Since the axial load is applied only on the circular rigid-plate located at the middle
of the calibration chamber, no significant friction between the soil and casing is expected
to occur.  However, in order to simulate the calibration chamber plate load test more
realistically, thin-layer interface elements were used between the soil and casing
elements. The thin-layer interface elements have zero initial thickness, and allow the
relative movement of the soil and casing, i.e. slippage. The interface elements follow a
Coulomb friction mechanism, where slippage takes place when the tangential stress
exceeds a critical shear stress defined by a friction angle and normal stress acting on the

surface between the casing and soil.
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As discussed in the previous section, four different types of boundary conditions
were used in the calibration chamber plate load tests.  In the numerical modeling, the
boundary conditions imposed on the finite element mesh were those actually imposed on
the samples in the actual tests.

The values of the parameters f and g, which define the degradation of the elastic
modulus, were f = 0.97 and g = 0.20 for Dg = 50% level, and f = 0.95 and g = 0.26 for Dy
= 90% level, selected with basis on the values given in Table 5.3. The only other soil
parameters required in the analyses were the intrinsic and state variables, which are given
in Tables 5.1 and 6.1 (Cq, ng, €, Oc, €max> €min> €o0) G'v, O'n)-

After defining all the required geometry information and material properties, the
analysis is performed first by checking the initial geostatic equilibn’um condition for a

given boundary condition and stress state.

6.3.3 Predicted and measured plate resistance

Figures 6.4 - 6.7 show the graphical results of the numerical analyses for the
calibration chamber plate load tests. All these results were obtained at the relative
settlement (defined as the ratio of the vertical settlement to the plate or pile base
diameter) equal to s/B = 10%. The displacement of the deformed finite element mesh
shown in Figure 6.4 was exaggerated by a magnification factor equal to 5 for better
visualization.

Figures 6.5 — 6.7 represent the vertical stress, vertical displacement, and lateral
displacement distribution, respectively. From the distribution of stress and displacement,
it can be seen that significant stress concentration and shear stress increases are observed
near the plate edge. Consequently, it is also expected that the most significant reduction
of shear modulus would occur near the plate edge.

Figure 6.8 shows the variation of secant shear modulus with horizontal and vertical

distances from the plate for three different settlement levels. As can be seen in Figure
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6.8 (a), the reduction of secant shear modulus at the level of the plate base is most severe
near the plate edge due to high shear stresses there. The shear modulus of the soil
immediately below the center of the plate undergoes rather slow degradation, as the stress
state is dominated by the increase of confinement rather than the increase of shear stress.
Such a slow reduction of shear modulus underneath the plate is in agreement with the
observation of the formation of an “elastic core” beneath the base of axially loaded piles
(BCP 1971; Salgado et al. 1997a). Figure 6.8 (b) shows the degradation of the secant
shear modulus with depth along the plate axis. At the early stages of loading (e.g. curve
1), the shear modulus initially decreases with depth down to a depth of around 10 cm
(equal to the plate diameter), and then increases again. For higher loads, similar
reductions can be seen down to the depth of 10 cm below the plate, but this time no
increase of shear modulus is observed below that depth, due to the expansion of the shear
zones (curve 2, 3). Similar observations of modulus reduction with depth from the
analyses of footings were noted by Fahey et al. (1994).

Figures 6.9 — 6.16 show the measured and predicted load-settlement curves of the
calibration chamber plate load tests. The curves extend up to a settlement of
approximately 10 mm, corresponding to a relative settlement level equal to s/B = 10%.
The predicted load-settlement curves obtained by the finite element analyses compare
favorably with the measured responses in most of the cases.

Figure 6.17 shows measured versus predicted plate unit load at the relative
settlement levels equal to s/B = 5 and 10% for all calibration chamber tests. Overall
agreement is very satisfactory, showing a maximum error of about 20%. There is a slight
underestimation of plate resistance for dense sand. This may be due to differences
between the dilational response of sand under triaxial loading conditions (from which f

and g were obtained) and plate load test loading conditions.
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6.4 Calibration Chamber Size Effects on Plate Load Test Results

6.4.1 Definition of size effect

Because of their finite size, calibration chambers do not perfectly reproduce free-
field conditions. As a result, measurements made in a calibration chamber sand
specimen are different from what would be observed in the field for the same relative
density and stress state. These difficulties tend to be more pronounced, the smaller the
chamber; hence the term size effect.

Calibration chamber size effects have been extensively studied in connection with
cone penetration testing, where large deformations take place (e.g., Schnaid and Houlsby
1991; Mayne and Kulhawy 1991; Salgado et al. 1998a), but not with respect to plate load
testing. It has been determined that size effects in calibration chambers are more‘
significant in dense sands than in loose sands. In plate load testing, the displacements
induced in the sand specimen are much less than those caused by cone penetration. On
the other hand, the plate diameter used in the study (100 mm) is much larger than typical
cone diameters (most commonly 35.7 mm).

For the results of calibration chamber tests to be effectively applied to pile design,
the pdssible size effect should be properly addressed. If size effects are well understood,
calibration chambers can be used to experimentally assess pile base resistance under

controlled conditions.

6.4.2 Investigation of size effects for different boundary conditions

In order to investigate size effects in calibration chamber plate load tests, numerical
analyses of both full-scale non-displacement piles and calibration chamber plate tests
were performed.  For studying the loading of non-displacement piles, three 60-cm

diameter piles with lengths L = 5 m, 10 m and 20 m were analyzed. The corresponding
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ratios L/B of the length L to the diameter B were equal to approximately 8, 16 and 33,
respectively.  The piles were positioned within a granular soil deposit with assumed
values of Dy = 30, 50, 70 and 90%. The initial vertical and lateral effective stresses at

the pile base level for each pile length are as follows:

(1) o’y=100kPa and o’y =43 kPa for the 5-m pile
(2) o’,=200kPa and ¢’y =86 kPa for the 10-m pile
(3) ¢’,=400kPa and ¢’y =172 kPa for the 20-m pile.

All of these states correspond to a normally consolidated condition. Plate load tests in a
calibration chamber were also simulated numerically for these same values of densities
and stresses. Comparison of the base unit load in the full-scale pile load tests with plate
unit load in the calibration chamber tests for the same relative settlement level provides
the basis for conclusions regarding size effects. The sand adopted was Ticino sand,
whose properties were discussed previously.

The comparison of pile load tests and chamber tests were made fér all boundary
conditions that were defined in Table 6.2 and Figure 6.2. Tables 6.3 - 6.6 and Fig. 6.18
show pile base unit loads versus plate unit loads in calibration chamber tests with BC1,
BC2, BC3, and BC4 conditions for the relative settlement s/B equal to 10%. The size
effect in Tables 6.3 - 6.6 was defined as a ratio of the calibration chamber plate resistance
to the free-field pile base resistance.

In Figure 6.18, the different points for the same pile length represent the results for
relative‘densities Dr = 30%, 50%, 70%, and 90%. As can be seen in Figure 6.18, the
results for BC4 conditions were similar to those for BC1 conditions, and the results for
BC3 conditions were similar to those for BC2. This illustrates that the lateral boundary
condition has an overwhelming influence on plate unit load measured in a calibration

chamber.



Table 6.3 Size effect in calibration chamber test for BC1 condition.
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Pile Load Test

Calibration Chamber Test

Size
Pile length | Dg qp (kPa) o'\ Dr Qo (kPa) Effect
(m) (%) | (s/B=10%) | (kPa) (%) | (s/B=10%) (%)
5 30 1516 100 30 1286 84.8
50 2066 50 1762 85.3
70 2794 70 2361 84.5
90 3631 90 3087 85.0
10 30 2152 200 30 2018 93.8
50 2933 50 2699 92.0
70 3869 70 3528 91.2
90 4959 90 4497 90.7
20 30 3112 400 30 3152 100.1
50 4162 50 4120 98.9
70 5404 70 5262 97.4
90 6836 90 6623 96.7
Table 6.4 Size effect in calibration chamber test for BC2 condition.
Pile Load Test Calibration Chamber Test Size
Pile length | Dg q» (kPa) o\ Dxr q (kP2) Effect
(m) (%) | (/B=10%) | (kPa) (%) | (s/B=10%) (%)
5 30 1516 100 30 1555 102.6
50 2066 50 2085 100.9
70 2794 70 2772 99.2
90 3631 90 3600 99.1
10 30 2152 200 30 2364 109.8
50 2933 50 3108 105.9
70 3869 70 4017 103.8
90 4959 90 5119 103.2
20 30 3112 400 30 3591 115.3
50 4162 50 4625 111.1
70 5404 70 5854 108.3
90 6836 90 7338 107.3




Table 6.5 Size effect in calibration chamber test for BC3 condition.
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Pile Load Test Calibration Chamber Test Size
Pile length | Dg qp (kPa) 2 Dy q» (kPa) Effect
(m) (%) | sB=10%) | (kPa) (%) | (s/B=10%) (%)
5 30 1516 100 30 1534 101.1
50 2066 50 2053 99.3
70 2794 70 2717 97.2
90 3631 90 3521 96.9
10 30 2152 200 30 2333 108.4
50 2933 50 3063 104.4
70 3869 70 3945 101.9
90 4959 90 5017 101.1
20 30 3112 400 30 3549 114.0
50 4162 50 4564 109.7
70 5404 70 5774 106.8
90 6836 90 7213 105.5
Table 6.6 Size effect in calibration chamber test for BC4 condition.
Pile Load Test Calibration Chamber Test Size
Pile length | Dy qv (kPa) o, Dr q» (kPa) Effect
(m) (%) | /B=10%) | (kPa) (%) | (s/B=10%) (%)
5 30 1516 100 30 1348 88.9
50 2066 50 1828 88.4
70 2794 70 2422 86.7
90 3631 90 3156 86.9
10 30 2152 200 30 2106 97.8
50 2933 50 2789 95.1
70 3869 70 3630 93.8
90 4959 90 4602 92.8
20 30 3112 400 30 3272 105.1
50 4162 50 4249 102.1
70 5404 70 5402 99.9
90 6836 90 6778 99.1
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Differences between pile base unit load and plate unit load were small for all
relative density levels. It is observed, however, that the plate unit loads under BC1
conditions were smaller than the pile base unit loads, and more substantially so in the
case of short piles, for which confinement is low at the level of the pile base. The
differences between pile base unit load and plate unit load were around 14 to 15% for L =
5m,6t09% forL=10m, and 1 to 3% forL =20 m.

The results for BC2 conditions, as shown in Figure 6.18 (b), differ from those for
BCI1 conditions in that the plate unit loads from the calibration chamber plate load tests
were found to be greater than pile base unit load values under cdrresponding conditions.
The differences were around 1 to 3% for L=5m, 3 to 9% for L = 10 m, and 7 to 15% for
L =20 m. This indicates that the differences are more significant for long piles, for

which confinement is high at the pile base level.

6.5 Summary

Calibration chamber plate load tests have been used to investigate the base load-
settlement relationship of non-displacement piles.  In this chapter, the calibration
chamber plate load tests were analyzed through the finite element method using the three-
dimensional non-linear elastic-plastic model presented in the previous chapter. A series
of calibration chamber tests performed by Ghionna et al. (1994) were modeled and
compared with the results of finite element analyses. The predicted load-settlement
curves showed good agreement with measured load-settlement curves. The comparison
between computed and measured plate unit loads for the relative settlement of s/B = 5
and 10% was also made for both dense (Dr = 90%) and medium dense (Dg = 50%) sand.
Predicted plate unit loads were in good agreement with measured results, showing
relative errors not larger than about 20% at s/B = 10%.

Calibration chamber size effects, resulting from the finite size of the chamber, were

also investigated for different relative densities and boundary conditions using finite



162

element analysis. =~ The comparison was made between pile base unit load for piles
loaded under field conditions and plate unit loads from the calibration chamber tests.
The piles were modeled with three different pile lengths and four different relative
densities. Plate unit loads in calibration chamber tests tend to be lower (for BC1, BC4)
and higher (for BC2, BC3) than pile base unit loads. The confining stress level at the
pile base level also influences size effect. The calibration chamber size effects under
BC1 were more pronounced at low confinement, corresponding to shorter piles, while
size effects under BC2 were more pronounced at high confinement, corresponding to
longer piles. The magnitude of size effect is small, validating the use of chamber tests to
simulate pile base loading. In keeping with the recommendation of Salgado et al.
(1998b) regarding CPT testing in calibration chambers, it is recommended here that BC1
or BC4 be used in calibration chamber plate load testing. If this is done, our numerical
results show that, for practical purposes, no correction is needed to the measured plate

unit load in estimating pile base unit load, unless very short piles are being simulated.
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CHAPTER 7 DETERMINATION OF PILE BASE RESISTANCE

7.1 Introduction

The standard penetration test (SPT) and the cone penetration test (CPT) are the two
most popular methods for pile design using in-situ test results (Bandini and Salgado
1998). While the process followed to obtain SPT blow counts is not well related to the
quasi-static pile loading process, that of the static cone penetration is better related to the
pile loading process. The test is performed quasi-statically and resembles a scaled-down
pile load test. According to many authors (e.g. De Beer 1984; Franke 1989,1993;
Ghionna et al. 1993, 1994; Jamiolkowski and Lancellotta 1988; Fioravante et al. 1995),
cone penetration resistance may be used as a proxy for limit base resistance in piles.

In this chapter, the base load-settlement curves of axially loaded piles bearing in
sand are obtained for different stresses and densities using the finite element analysis with
a non-linear elastic-plastic stress-strain model. Cone resistance q. is determined for the
same soil conditions from the penetration resistance analysis of Salgado et al. (1997a)
using the program CONPOINT (Salgado 1993; Salgado et al. 1997a, b; Salgado et al.
1998a); q. values determined in this manner are used to normalize the pile base load-
settlement curves. The fully developed load-settlement curves in terms of qy/q. versus
relative settlement s/B can be used to determine the normalized pile base resistance qy/q.

for any settlement-based design criterion.
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7.2 Methods for Investigating Ioad-Settlement Response

If a pile were continuously pushed down into a homogenous granular soil mass, it
would eventually reach a condition of penetration at a constant load in the same way as a
cone penetrometer does in a cone penetration test (CPT). This is a condition of limited
interest in pile design, and nearly always impossible to establish with conventional load
test procedures and equipment, unless the pile is relatively small in diameter and length,
it is not bearing in a very strong soil layer, and the engineer specifically requires a
plunging load test. Typical load-settlement curves for piles embedded in sand show
gradually increasing curvature rather than a clear peak load.

Three approaches are possible to obtain the vertical load-settlement relationship for
a pile. Those include full-scale pile load tests, calibration chamber tests and numerical
modeling. Full-scale pile load tests are the best option to investigate the load-settlement
relationship for a specific site and pile, but cannot typically be used to obtain an accurate
correlation between base resistance and the soil state. Only fully instrumented load tests
with significant efforts to characterize the soil around the pile could potentially be used
for that purpose. Difficulties that would still need to be addressed include the fact that
relative density and lateral stress are not known in the field, and that typical natural
granular deposits tend to be variable (Lee and Salgado 1999b).

Calibration chamber testing and numerical analysis are more flexible than pile load
testing. A variety of stress states, densities and boundary conditions can be considered.
Calibration chamber plate load tests, as discussed in the previous chapter, have been used
to investigate the load-settlement response of non-displacement piles (Ghionna et al.
1994, Lee and Salgado 1999a). A number of numerical techniques have been identified
for the same purpose (Desai and Christian 1977, Lee et al. 1989, Poulos 1989). The
finite element method is among the most popular, as it allows modeling of complicated
non-linear soil behavior and various interface conditions, with different geometries and
soil conditions (Lee and Salgado 1999c). A key element in a finite element analysis is
the use of a relevant constitutive model, which should model the strongly non-linear

soil behavior. In the present study, the non-linear elastic-plastic stress-strain presented in
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chapter 5 is used in a finite element analysis to determine the load-settlement response of

vertically loaded piles.

7.3 Finite Element Modeling of Pile Load Test

The commercial finite element program ABAQUS was used to model vertically
loaded piles. The finite element modeling of pile load tests for obtaining load-settlement
curves was done in the same way as used in the investigation of size effects in calibration
chamber tests. Instead of using one of the material models available in the program, a
subroutine was written for the non-linear elastic-plastic model described previously.
Because the pile stiffness is very large compared to soil stiffness, the pile was assumed
made of linear elastic material throughout the analysis.  Eight-noded axisymmetric
elements with four internal integration points were used to model both the soil and the
pile. Thin layer interface elements with zero initial thickness, allowing slippage, were
used between the pile and the soil. The necessity of interface elements in the analysis of
axially loaded piles is discussed in Trochanis et al. (1991).

The analyses of the calibration chamber plate load tests in the previous chapter
showed the validity of the proposed finite element analysis of the pile base load-
settlement response in sand. In order to further assess the performance of the proposed
finite element analysis, a pile load test performed by the Georgia Institute of Technology
(Mayne and Harris 1993) was modeled, and the numerical and experimental results were
compared. The test site has a layer of residual, silty silica sand extending down to 15.8 —
19.5 m underlain by partially-weathered rock down to 20 — 24.8 m and then sound
bedrock. Grain size distribution analysis showed the soil to be composed of about 70%
sand, with the clay fraction under 10%. A series of laboratory tests on the soil samples
collected at several depths were performed to obtain basic soil properties. Table 7.1

shows the soil property profile with depth and layers used in the analysis.



Table 7.1 Basic soil properties used in finite element analysis.
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Layer No. Depth (m) ¢ Ko | 0/vo(kPa) € G, (kPa)
1 0-1.82 34° 0.44 18.2 0.70 23642
2 1.82-3.93 34° 0.44 53.8 0.70 43838
3 3.93-593 37° 0.40 87.6 0.73 54056
4 5.93-7.93 33° 0.46 119.9 0.73 67081
5 7.93-9.93 32° 0.47 151.8 0.74 76051
6 9.93-1193 32° 047 185.6 0.72 87849
7 11.93 -13.93 36° 041 219.9 0.70 96102
8 13.93 - 14.93 38° 0.38 244 .8 0.67 100472
9 1493 - 16.76 36° 0.41 268.6 0.67 112540
10 16.76 — 18.28 36° 041 296.8 0.67 119145
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The bottom boundary of the finite element mesh was located at a depth of 21.93 m
from the surface, at which the bedrock was encountered. The last layer of the mesh from
18.28 m to 21.93 m was the partially weathered rock layer, which was assumed to behave
as an elastic material.  Values of initial shear modulus G, for each soil layer were
calculated based on Hardin and Black’s equation for angular sand. According to the
Hardin and Black equation and the observation made by Salgado et al. (1999) regarding
changes in stiffness as a function of fines content, the values adopted for Cg, e, and n,
were Cg =214, e,= 2.97 and n, = 0.5.

The values of the model parameters f and g of the non-linear elastic plastic model
were taken as 0.98 and 0.05 respectively, based on the observed non-linear elastic
properties of silty sand (Salgado et al. 1999). The test drilled shaft had a diameter equal
to 76 cm and a length equal to 16.8 m. Measured and predicted base load-settlement
curves were plotted together in Figure 7.1.  Overall, agreement is observed to be

satisfactory.

7.4 Cone Penetration Resistance from Cavity Expansion Analysis

A number of methods have been proposed analytically and experimentally to
correlate the cone penetration resistance q. to stress state and soil conditions (Terzaghi
1943, Vesic 1972, Durgunoglu and Mitchell 1975, Baligh 1985, Yu and Houlby 1991,
Salgado 1993, Salgado et al. 1997a). For undrained clay and fully drained sand, those
are generally classified into (Yu and Mitchell 1998):

(1) Bearing capacity theory

2) Cavity expansion theory

(3) Steady state deformation

(4) Incremental finite-element analysis

(5) Calibration chamber testing.
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A useful penetration resistance theory should be able to relate values of cone
penetration resistance . to the intrinsic and state soil variables (Salgado et al. 1997a).
The cavity expansion solution by Salgado (1993) is one of the well-validated theories for
obtaining the cone penetration resistance q., and takes advantage of utilizing the intrinsic
and state soil variables. According to Salgado et al. (1997a), for clean, uncemented soils,

the cone penetration resistance g, can be expressed as follows:

q. =9q.(Dg,0.,0;) (7.1

in which q. = function containing intrinsic variables; Dy = relative density of sand; and
o’y and ¢’y = in-situ vertical and horizontal effective stress. When a penetrometer is
pushed into soil, it creates and expands a cylindrical cavity that has an initial radius equal
to zero. The cavity expansion analysis by Salgado (1993) allows the calculation of cone
penetration resistance q. based on the cavity expansion resistance required to form such a
cylindrical cavity.

Figure 7.2 shows different types of assumed failure mechanisms proposed for deep
penetration. It should be noticed that the mechanism shown in Figure 7.2 (a), (b) and (d)
are theoretically impossible for soils with the usual value of the coefficient of lateral earth
pressure ratio Ky that lies in the 0.3 — 1.0 range. This is so because those mechanisms
violate the path of least work. In other words, the slip lines should be directed towards
the side since the values of lateral stresses are smaller for these values of K than that of
vertical stresses. The mechanism of Figure 7.2 (c) is kinematically possible.

Based on the observation of the displacement field under the pile base (BCP 1971),
Salgado (1993) proposed the slip pattern shown in Figure 7.3 considering the
axisymmetirc condition of cone penetration. In Figure 7.3, o,° represents horizontal
principal stress on the slip line under cone penetrometer and is related to the cavity

expansion pressure py.
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Figure 7.3 Slip pattern under cone penetrometer (after Salgado 1993).
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The calculation of cavity expansion pressure pL requires the numerical sequence
considering plastic, non-linear elastic and elastic stress region around the cavity. The
relationship between cavity expansion pressure py and cone penetration resistance q. was
established based on stress rotation analysis.  Following Bolton (1979), the major

principal stresses in two different zones shown in Figure 7.4 are related for the rotation

angle Ay as:

ol =cle?v? (7.2)

in which 6,* and ,® = major principal stresses in zones A and B in Figure 7.4; Ay =
rotation angle between different principal stresses in zones A and B; and ¢ = friction
angle. For the stresses in Figure 7.3, (7.2) can be written with Ay = 7/2 as:

o2 =o/e" (7.3)

where o,F is related to the cavity expansion pressure p.; 6,2 is related to qc; and ¢ris a
representative friction angle in the transition zone T in Figure 7.3. Integrating ;2 with
respect to the projected area of cone tip, the cone penetration resistance ¢, can be
determined numerically for a given stress state and soil conditions. More details
regarding the procedure to compute q. using cavity expansion analysis can be found in
Salgado et al. (1997a).

The cone penetration resistance q. obtained from this procedure will be used to
normalize the pile base resistance using the program CONPOINT containing the

procedure for cavity expansion solution (Salgado et al. 1997a, b, Salgado et al. 1998a, b).
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7.5 Determination of Base Resistance for Non-Displacement Piles

7.5.1 Load-settlement response for various soil conditions

The pile base load-settlement response for various soil and stress conditions can be
obtained by analyzing axially loaded piles with different pile lengths and relative
densities. The pile dimensions and soil conditions used for obtaining load-settlement
curves in this section are the same as used in the investigation of size effect in calibration
chamber test in Chapter 6. Three pile lengths of 5 m, 10 m, and 20 m with a diameter
equal to 60 cm were used. Different pile lengths imply different confining stress levels
at the pile base. For an assumed unit weight = 20 kN/m’, initial vertical stresses at the
pile base level (corresponding to 5 m, 10 m and 20 m) are 6", = 100 kPa, 200 kPa and
400 kPa, respectively.

All the piles were positioned within a granular soil deposit assumed as normally
consolidated Ticino sand with K, = 0.43. A K, value of 0.43 was selected because it is
near the center of the typical range of 0.39 to 0.47 observed for K in sands. Ticino sand
was selected because it has been studied extensively (Salgado 1993, Bellotti et al. 1996)
and has been used in hundreds of calibration chamber plate load and cone penetration
tests (Ghionna et al. 1994, Salgado et al. 1997a). Values of relative density D, used in
calculations were 30%, 50%, 70% and 90% for each of the pile lengths assumed. The
basic pile geometry and soil conditions are illustrated in Table 7.2. 1In Table 7.2, 6", and
o’, represent the in-situ vertical and horizontal effective stresses at the pile base level,
respectively.

The finite element meshes for each pile length are shown in Figures 7.5 - 7.7. The
bottom boundaries of the meshes were located at a depth larger than two times the
corresponding pile length measured from the ground surface. The widths of the meshes
were equal to or larger than the pile lengths.  Finite element analyses performed
separately with infinite elements at the lateral boundary showed that the mesh dimensions

used in this study are sufficiently large to eliminate geometric boundary effects.
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Figure 7.8 shows a set of pile base load-settlement curves obtained from finite
element analyses done for the different pile lengths and relative densities. The curves in
Figure 7.8 extend up to a base settlement equal to 12 cm, corresponding to a relative
settlement s/B of 20%. It is observed that the load-settlement curves for higher relative
densities show stiffer responses than those for lower relative densities under the same
confinement level or pile length. The initial shear modulus of soil with higher relative
density is also higher, and the rate of modulus degradation is lower.

The differences of pile base unit load between D, = 30% and 90% appear more
pronounced as the confinement level or pile length increases. For a 5-m pile, the
difference was about 2.2 MPa at a settlement equal to 6 cm, which corresponds to s/B =

10%. The difference for a 20-m pile was about 3.0 MPa at the same relative settlement.

Table 7.2. Pile geometry and soil conditions used in FEM analyses.

Pile Length Relative , ,
(m) density (%) Type of Sand o’y (kPa) o'h (kPa)
5 30 Ticino 100 43
50 Ticino 100 43
70 Ticino 100 43
90 Ticino 100 43
10 30 Ticino 200 86
50 Ticino 200 86
70 Ticino 200 86
90 Ticino 200 86
20 30 Ticino 400 172
50 Ticino 400 172
70 Ticino 400 172
90 Ticino 400 172
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Figure 7.6 Finite element model for 10-m pile.
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7.5.2 Normalized base resistance for non-displacement piles

In order to relate pile base resistance to cone penetration resistance, the load-

settlement curves obtained previously were normalized as follows:

(1) the base resistance qp at a given Dy and stress state was divided by the cone
resistance q. for the same soil conditions;

(2) the settlement was divided by the pile diameter B.

The cone resistance q. was determined using the penetration resistance analysis of
Salgado et al. (1997a), contained in the program CONPOINT (Salgado 1993; Salgado et
al. 1997a, b; Salgado et al. 1998a, b). Figure 7.9 shows the fully developed load-
settlement curves in terms of qy/q. and s/B for each of the pile lengths and relative
densities.

A common design approach for non-displacement piles is to stipulate that so long as
the load is less than the load required for the pile settlement to reach a certain percentage
of the shaft diameter B, serviceability and ultimate limit states are not reached. A
modest safety factor can also be used. Franke (1993), for example, proposed that the
critical load corresponds to s/B = 0.1, while Reese and O’Neill (1988) define a critical
load corresponding to s/B = 0.05. The British code for pile design is based on the s/B =
0.1 criterion. It may be stipulated in a given project, based on structural or architectural
requirements, that some other values of s/B not be exceeded. Table 7.3 shows different
values of qy/q. recommended by several authors.

Table 7.4 shows the values of qy/q. at s/B = 5% and 10% for different relative
densities and pile lengths obtained using the finite element and penetration resistance
analyses. It can be seen that values of qy/q. fall within the 0.07 — 0.13 range for s/B =
5% and the 0.12 — 0.21 range for s/B = 10%.
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Figure 7.9 Normalized load-settlement curves for (a) 5-m, (b) 10-m, and (c) 20-m piles

in terms of qv/q. and s/B.
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Table 7.3 Values of qy/q. according to several authors.

qv/qe qQv/qc
(s/B = 5%) (s/B = 10%)
German Specification
(DIN 4014, Franke 1993) N/A 0.2
Franke (1989) N/A 0.2
Jamiolkowski and 0.2 N/A
Lancellotta (1988) (for B < 60 cm)
Ghionna et al. (1994) 0.09 £0.02 0.13+0.02
Salgado (1995) N/A 0.15

Table 7.4 Values of qy/q. at s/B = 5% and 10%.

Pile Length | Dgr |qp(s/B =5%)|qy (/B =10%)| qc av/qc qQv/qe
(m) (%) (kPa) (kPa) (kPa) | (s/B =5%) ((s/B = 10%)

5 30 939 1517 7157 0.13 0.21

50 1303 2062 12052 0.10 0.17

70 1726 2789 19562 0.09 0.14

90 2238 3630 30121 0.07 0.12

10 30 1343 2158 10922 0.12 0.20

50 1817 2915 17544 0.10 0.16

70 2409 3871 26644 0.09 0.14

90 3054 4970 38816 0.08 0.13

20 30 1933 3106 16716 0.11 0.19

50 2590 4158 25694 0.10 0.16

70 3357 5401 36718 0.09 0.15

90 4289 6845 50524 0.08 0.13
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Figure 7.10 illustrates the influence of pile length (i.e., confinement at pile base
level) and relative density on the normalized base resistance qy/q.. The values of qy/qc in
Figure 7.10 correspond to the relative settlement level of s/B = 10%. From Figure 7.10
(a), it is observed that the effect of pile length on qy/q. is not significant. This is because
the pile-base resistance q, and the cone penetration resistance q. depend on initial
confining stress in a similar way. Only a slight decrease of qy/q. can be observed for
loose sand as the pile length increases. For dense sand, pile length has essentially no
influence on qy/q. for the range of lengths investigated.

As can be seen in Figure 7.10(b), the influence of relative density on the normalized
base resistance is substantial. The normalized base resistance qv/qc decreases as the
relative density increases. The value of qy/q. at s/B = 10% is 0.19 to 0.2 for Dy = 30%,
whereas it is 0.12 to 0.13 for Dg = 90%. These results indicate that larger settlements
are required for soils with higher relative densities to reach a base resistance equal to a set
percentage of cone penetration resistance .

The results also offer some insight into why most pile design methods that calculate
qp» by multiplying q. by a certain constant (e.g., 0.2 for 10% relative settlement, according
to Franke 1989) also place an upper limit, which is usually taken as a value in the 4.5 - 5
MPa range, on possible values of q,. When piles are embedded in very dense sand
layers, the results of the present analysis indicate that, as an example, q, = 0.2 q. [the
value proposed by Franke (1989) irrespective of relative density] would be too high.
Following the results given in Table 7.4, the value of qy/q. = 0.12 would be more
appropriate.  Placing a limit on qp (of say 5 MPa) serves a purpose in that case.
However, if the qu/q. values of Table 7.4 and Figure 7.9 are used, there may not be a need

for setting an upper limit on qy,.
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Figure 7.10 Normalized base resistance qy/q. with (2) mean effective stress (6'y) at the

pile base level and (b) relative density (Dg).
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7.5.3 The effect of initial stress ratio Ky

Normally consolidated sand deposits have initial values of the coefficient of lateral
earth pressure at rest (Ko) in the 0.39 — 0.5 range. Overconsolidated sand deposits have
Ko values typically higher than that of normally consolidated deposits. In order to
investigate the effects of Ko on normalized base resistance qy/q., three Kq values (0.4, 0.7
and 1.0) were assumed in a series of finite element analyses. The value of Ky = 1.0,
corresponding to an isotropic stress condition, may be regarded, for practical purposes, as
the upper limit on Ko, observed for highly overconsolidated sand deposits.

Figure 7.11 represents the effects of K, on the normalized base resistance qy/qL..
The value of normalized base resistance qy/q. in Figure 7.11 were determined for the
relative settlement equal to s/B = 10%. The curves shown in Figure 7.11 were plotted
for different relative densities (Dg = 30%, 50%, 70% and 90%) and three pile lengths (L
=5 m, 10m and 20 m).

It is observed that gy/q. tends to decrease as the initial K, increases, although
deviation from this trend can be seen in the case for the highest relative density of Dy =
90%. This trend was most obvious for the lowest relative density. For Dr =30% and L
=5 m, the difference between the normalized base resistance qy/q. at Ko = 0.4 and at Ky =
1.0 was equal to approximately 0.05. No difference in the normalized base resistance
gv/qc was found at Dg = 90% for Ko = 0.4 to 1.0. Comparing the three cases (L = 5, 10
and 20 m) in Figure 7.11, it can also be observed that the confinement at the pile base
level, which is determined by the pile length, does not have as much influence as the
relative density on the relationship between qy/q. and K.

These results suggest that, when the soil is loose and has a high Kq value, the values
of normalized base resistance qp/q. given in Table 7.4 and Figure 7.9 need to be modified
considering the variations in the values of qy/q. shown in Figure 7.11. For very dense

soil, no such modification of the value of qy/q. is necessary.
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7.6 Determination of Base Resistance for Displacement Piles

Values and analyses presented previously were developed for non-displacement
piles. The limit base resistance gy, as mentioned earlier, is mobilized at very large
settlement levels and is conceptually identical for both non-displacement and
displacement piles (De Beer 1984, 1988, Ghionna et al. 1993, Salgado et al. 1997a).
The normalized base resistance values of Figure 7.9 for non-displacement piles, however,
cannot be directly applied to displacement piles, because of the very different load-
settlement response of displacement and non-displacement piles for low to moderate
settlement levels.

De Beer (1984, 1988) has shown that, under the same conditions, the loads carried
by a displacement pile and a geometrically identical non-displacement pile differ
significantly for values of relative settlement s/B of interest in pile design. Non-
displacement piles settle more than displacement piles for the same applied load. This is
mainly due to the different installation processes for these two types of piles. The
installation of displacement piles usually causes considerable densification of the soil
around the pile. In terms of base resistance, this process could be seen as a preloading
of the soil in the immediate neighborhood of the pile base, hence the stiffer response
when compared with non-displacement piles. The difference between the loads carried
by the two types of pile for the same settlement level becomes less pronounced as
settlement increases. De Beer’s observations were later confirmed by other authors (e.g.,
Jamiolkowski and Lancellotta 1988, Ghionna et al. 1993).

Table 7.5 shows the typical ratio of base resistance of displacement piles to base
resistance of non-displacement piles for different values of relative settlement but same
initial soil conditions. As can be seen, the ratio of gy of a non-displacement pile to gy, of
a geometrically identical displacement pile is much smaller than 1 at small relative
settlements, but approaches 1 as the settlement approaches infinity. A simple approach
that may be used to determine qy/q. values as a function of s/B for displacement piles is

the application of the ratios of Table 7.5 to the results of Table 7.4 for non-displacement
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Such an approach can provide useful design criteria, but is naturally subject to

more uncertainties than the values proposed for non-displacement piles in Table 7.4.

Table 7.6 provides the normalized base resistance qy/qc for displacement piles obtained

using this approach.

Table 7.5 Base resistance ratio for displacement and non-displacement piles.

Relative Settlement

a b
db-Np / QoD

(s/B) De Beer (1988) Ghionna et al. (1993)
2.5% 0.482

5% 0.517 0.15-0.21
10% 0.587 03-0.5

25% 0.715 0.3-0.7
— oo — 10 - 10

“qp,np = base resistance for non-displacement pile
bqb,D = base resistance for displacement pile

Table 7.6 Values of qy/q. for displacement piles.

: DR b/ c b/ c
Pile Length (m) (%) (s/]gl =q5%) (s/Bq=ciO%)

5 30 0.25 0.35

50 0.19 0.29

70 0.17 0.24

90 0.14 0.20

10 30 0.23 0.34

50 0.19 0.27

70 0.17 0.24

90 0.15 0.22

20 30 0.21 0.32

50 0.19 0.27

70 0.17 0.26

90 0.15 0.22
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7.7 Normalized Base Resistance for Silty Sands

Natural sand deposits often contain a certain amount of fines. These sand deposits
are also bearing layers for piles, if the fines contents of soils are not high and soils are
sufficiently strong to support axial loads. In order to investigate the normalized base
resistance qu/qc for soils containing fines, the load-settlement response of piles in silty
sands was analyzed.

The mechanical properties of silty sands were extensively studied by Salgado et al.
(1999) and Bandini (1999). They investigated the behavior of silty sands focusing on
stiffness and strength characteristics.  The material used was Ottawa sand with silt
contents equal to 5%, 10%, 15%, and 20% in weight. Tables 7.7 and 7.8 show the soil
intrinsic parameters of silty sands with different fines contents. The parameters shown in
the tables are the same as used in (4.50) and (4.76) for the initial shear modulus and
dilatancy angle of sand, respectively. As can be seen in Table 7.7, the parameter G,
decreases as the silt content increases, while the exponent parameter ng for the confining
stress increases. On the other hand, as shown in Table 7.8, the higher the silt content, the
higher the friction angle ¢. at critical state. This also resulted in higher peak friction
angles with increasing silt content. The dilatancy parameters Q and R for silty sands in
Table 7.8 were obtained from the best-fit regression of test results, while the original
Bolton (1986) correlation was based on fixing R = 1.

The finite element analysis of pile load tests in silty sands was done using the
parameters given in Tables 7.7 and 7.8. Since it is usually desirable for piles to be placed
into granular soil deposit with low fines content, silt contents equal to 5% and 10% were
considered in the finite element analyses. The values of the parameters f and g for the
non-linear elastic-plastic stress-strain model were determined based on the stress-strain
relationship of silty sands by Bandini (1999). Table 7.9 shows the values of the

parameters f and g for different relative densities and silt contents.



Table 7.7 Values of soil intrinsic parameters with different silt contents

(after Salgado et al. 1999, Bandini 1999).

Silt content (%)

G €g ng €min Cmax
0 612 2.17 0.439 0.48 0.78
5 454 217 0.459 0.42 0.70
10 357 2.17 0.592 0.36 0.65

Table 7.8 Values of friction angle ¢, at critical state and dilatancy parameters Q and R

with different silt contents (after Salgado et al. 1999, Bandini 1999).

Silt content (%) O Q R
0 29.0 9.0 0.49
5 30.5 9.0 -0.50
10 32.0 8.3 -0.69
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Table 7.9 Values of f and g used in finite element analyses for silty sands.

5% silt 10% silt
Dr (%)
f g f g
30 0.98 0.15 0.98 0.13
50 0.97 0.18 0.97 0.16
70 0.96 0.21 0.96 0.19
90 0.95 0.24 0.95 0.22

Finite element meshes and stress states used in the analyses were the same as those
for clean sands previously presented. The cone resistance q. at the pile base level was
obtained using the program CONPOINT (Salgado et al. 1997a, b, 1998a, b) with soil
intrinsic parameters given in Tables 7.7 and 7.8.

Table 7.10 and Figure 7.12 show the normalized base resistance qy/q. for silty sands
with different relative densities and pile lengths. For both 5% and 10% silt contents,
most values of qp/qc were in the 0.12 — 0.17 range. As discussed earlier, the influence of
the confining stress on the value of qy/q. for clean sands was small irrespective of the
relative density. For silty sands, however, the influence of the confining stress was more
significant. As can be seen in Table 7.10, qy/q. for lower relative density (Dg = 30%)
decreases with increase in pile length. On the other hand, the value of qy/q. for higher
relative density (Dg = 70%, 90%) increases as the pile length increases. This observation
was more pronounced at the 10% silt content. The value of qy/q. of the 20-m pile for Dy
=90% with the 10% silt content was even greater than that for Dg = 30%. These results
may be due to the increasing influence of the confining stress with increasing silt content.
As shown in (4.50) and (4.76), the parameter n, in Table 7.7 represents the effect of the
confining stress on the elastic modulus.  The higher the value of n,, the greater the
influence of the confining stress on the value of gy/q.. As a result, the differences of
qv/qc for the silty sand between different pile lengths were more pronounced than those

for the clean sand.
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Table 7.10 Values of qy/q. for silty sands with different relative densities

and pile lengths.
Silt | Pile | Dr | qp(kPa) q» (kPa) qe qv/qc qv/qe
content | length | (%) | (s/B=5%) {(s/B=10%)| (kPa) | (s/B=5%) |(s/B=10%)
30 828 1336 8012 0.103 0.167
50 1103 1760 11911 0.093 0.148
o 70 1405 2239 16960 0.083 0.132
90 1749 2839 22488 0.078 0.126
30 1194 1909 12509 0.095 0.153
50 1551 2486 17391 0.089 0.143
5% {10m
70 1961 3144 23321 0.084 0.135
90 2425 3902 29800 0.081 0.131
30 1668 2736 19705 0.085 0.139
50 2191 3556 25596 0.086 0.139
2m 70 2763 4460 32390 0.085 0.138
90 3411 5469 39808 0.086 0.137
30 755 1253 8789 0.086 0.143
50 1001 1641 12186 0.082 0.135
> 70 1283 2100 16231 0.079 0.129
90 1630 2662 20716 0.079 0.128
30 1129 1865 14186 0.080 0.131
50 1505 2440 18329 0.082 0.133
10% |10 m
70 1903 3076 22976 0.083 0.134
90 2341 3815 27963 0.084 0.136
30 1682 2809 22953 0.073 0.122
50 2224 3674 27783 0.080 0.132
2om 70 2813 4629 32863 0.086 0.141
90 3456 5596 38029 0.091 0.147
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7.8 Summary

The cone penetration test (CPT) resembles the vertical loading process on a pile. In
this chapter, in order to take advantage of the CPT for pile design, load-settlement curves
in terms of normalized base resistance (qy/q.) versus relative settlement (s/B) were
developed. Although the limit state design concept for pile design has been used mostly
with respect to either s/B = 5% or s/B = 10%, the normalized load-settlement curves
obtained in this study allow determination of pile base resistance at any relative
settlement level within the 0 — 20% range. This is important, as it permits consideration
of specific project features, related to the superstructure or other components of the
facility.

In order to obtain the pile base load-settlement relationship, finite element analyses
were performed with a 3-D non-linear elastic-plastic constitutive model. Three 60-cm
diameter piles with lengths of 5 m, 10 m and 20 m were used in the analyses. The piles
were positioned within a granular soil deposit with Dg = 30, 50, 70 and 90%. Because
the soil conditions around the piles were assumed to be the same as those existing before
pile installation, the results obtained represent those corresponding to non-displacement
piles. The cone resistance q. was calculated from the penetration resistance analysis of
Salgado et al. (1997a) and used to normalize the load-settlement curves in order to
express them in terms of qy/q. and s/B.

Most qy/q. values obtained from the finite element and penetration resistance
analyses fall within the 0.07 - 0.13 range for s/B = 5% and the 0.10 - 0.20 range for s/B =
10%. The effect of relative density on the normalized base resistance was significant,
while that of the confining stress at the pile base level was small. At higher relative
densities, the value of qy/q. was smaller (qy/q. = 0.12 -0.13 for Dg = 90%) than at lower
relative densities (qp/qc = 0.19 - 0.2 for Dg = 30%). The effect of the coefficient of
lateral earth pressure at rest Ko was also investigated. The value of qy/q. tends to
decrease as the value of Ky increases. This trend was more pronounced at lower relative

densities, and negligible for very dense sand.
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Based on the results by De Beer (1984, 1988), the values of qy/q. for displacement
piles were obtained as well. The values of qy/q. were typically in the 0.15 - 0.25 range
for s/B = 5% and in the 0.22 - 0.35 range for s/B = 10%.

The normalized base resistance qy/q. for silty sands was also investigated. For both
5% and 10% silt contents, most values of qy/q. were in the 0.12 — 0.17 range. These
values are typically smaller than those for clean sands, which ranged from 0.12 to 0.21.
The confining stress was another important factor for the value of qy/q. of silty sand. For
lower relative density (Dg = 30%), the value of qy/q. decreases as the pile length increases

while that for higher relative density increases.
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CHAPTER 8 ASSESSMENT OF PROPOSED NORMALIZED BASE
RESISTANCE VALUES BASED ON CASE HISTORIES

8.1 Introduction

In this chapter, we reexamine the values of normalized base resistance qy/qc
presented previously. We do so in the context of a few case histories involving actual
pile load tests, calibration chamber data, and other numerical analyses. Both non-
displacement and displacement piles are addressed.

The case histories for non-displacement piles include two instrumented pile load
tests on drilled shafts, a series of calibration chamber tests (Ghionna et al. 1994), and the
numerical results of Simonini (1996). A load test on a drilled shaft performed at a site
on the Georgia Tech campus in Atlanta, Georgia (Mayne and Harris 1993, Harris and
Mayne 1994) and another performed at the University of Sdo Paulo (USP), Séo Carlos,
experimental field (Albiero et al. 1995) are analyzed.

For displacement piles, the load test on a steel H-pile performed at the Purdue
University campus (Goble et al. 1972) and the load tests on the precast concrete piles
carried out by NGI (Gregersen et al. 1973) were used.  All the load tests used in this
section were instrumented, so base load-settlement responses were recorded separately.

The observed values of qy/q. for each case are summarized in Table 8.1.
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Table 8.1 Values of qy/q. from load tests on non-displacement and di.splacement piles.

Pile Type Test Name - /g'iq; % . /qu/(ico%)
Non-Displacement Georgia Tech Test 0.18 0.26
Pile (Drilled shaft) USP Test 0.09 0.20

Simonini’s Analysis N/A 0.17

Displacement Purdue Test 0.27 0.37
Pile (Driven pile) NGI Test A 0.32 0.36
NGI Test B 0.32 0.36

NGI Test C 0.30 0.39

NGI Test D 043 0.47
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8.2 Non-Displacement Piles

8.2.1 Georgia Tech load test

The Georgia Tech load test was described in the previous section. The
representative value of q. for base resistance calculation, an average value between the
level of the pile base and a level about one-and-a half to two pile diameters below the pile
base, is 6.5 MPa. The measured base loads for the shaft at 5 and 10% relative settlement
are 580 and 810 kN, corresponding to qy/q. values of 0.18 and 0.26 respectively. Since
the relative density of the soil around the pile base was not determined, the relationship
between q. and the relative density Dy suggested by Salgado et al. (1997b) was used.
The estimated relative density of the soil around the pile base with a K value of 0.41 was
about 20 — 30%, representing a loose state. Using Table 7.4, the corresponding values of
qv/qc at /B =5 and 10% can be found as 0.12 — 0.13 and 0.20 — 0.21, respectively. The
difference between measured and predicted values of qp in this example appears to be

small (20 — 30% underprediction).

8.2.2 Sio Paulo load test

The USP, Sio Paulo, test site is located near downtown S#o Carlos, in the state of
Sdo Paulo, Brazil (Teixeria and Albiero 1994). The site geology consists of two clayey
sand layers separated by a thin layer of pebbles. The upper layer is a reddish material of
Cenozoic age, collapsible upon inundation (Vilar 1979), with void ratios close to 1. The
lower layer is a brownish residual soil from a sandstone of the Bauru formation. The
water table oscillates, but is typically around 10 meters deep. The base of the test shaft
was placed at a depth of 10 m and the shaft diameter was 50 cm. The measured base
loads corresponding to s/B = 5 and 10% are 50 and 114 kN, respectively. The load for

10% relative settlement was obtained from a quick maintained load test (QMLT)
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performed after a slow maintained load test (SMLT) up to 5% relative settlement. The
value of q. was obtained from the CPT sounding provided in Albiero et al. (1995) as 2.8
MPa. This yields qy/q. values of 0.09 and 0.20 for s/B = 5 and 10%, respectively. The
measured qp/q. values for this case were also favorably compared with the results in Table
7.4, namely gy/qc = 0.09 — 0.10 for s/B = 5% and qy/q. = 0.14 — 0.17 for s/B = 10% for

medium dense sand.

8.2.3 Simonini’s results

Simonini (1996) carried out finite element analyses to obtain the base resistance of
non-displacement piles in sands. The pile was modeled as having a diameter equal to 1
m and a length equal to 30 m. The soils were a dry sand deposit with ¢, = 33°, Dr = 90%
and soil unit weight Y, = 16.5 kN/m®>.  The value of the base resistance gy corresponding
to s/B = 10% was found to be 8.6 MPa.

In order to obtain the cone resistance q. at the pile base level, the penetration
resistance analysis of Salgado et al. (1997a, b), available in the program CONPOINT
(Salgado et al. 1997a, b), was used. The soil properties used to obtain the cone
resistance were the same as those used in the finite element analyses. Combining the
base resistance value with qc, the value of qy/q. is obtained as 0.17. This gy/q. value is
slightly higher than that of Table 7.4, equal to approximately 0.13 for a relative density of
Dr =90%.

8.2.4 Calibration chamber plate load tests

A series of 30 calibration chamber load tests were carried out by Ghionna et al.

(1994) in sand samples with two different relative densities, dense (Dr =90%) and
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medium dense (Dr = 50%).  These tests simulate the loading of the base of drilled
shafts. Calibration chamber size effects on the values of q, were shown earlier to be
small. Figure 8.1 shows the values of qy/q. for the calibration chamber tests
corresponding to s/B = 5 and 10%. The cone resistance q. used to prepare Figure 8.1
was obtained from the penetration resistance analysis of Salgado et al. (19974, b).

As can be seen in Figure 8.1, the values bf qv/qc are in the 0.09 — 0.14 range for Dy
= 50% and 0.07 — 0.10 range for D = 90% at s/B = 5%, and in the 0.11 — 0.19 range for
Dr = 50% and 0.10 - 0.14 range for Dg = 90% at s/B = 10%. Although the results for Dy
= 50% show more scatter than those for Dg = 90%, the average values of qy/q. for both
relative densities are in reasonable agreement with the proposed results given in Table

74.

8.3 Displacement Piles

8.3.1 Purdue University load test

The Purdue University load test was performed on the western side of the Purdue
University campus in West Lafayette, Indiana (Goble et al. 1972). This site is located on
the edge of a large terrace along the Wabash river with a variable depth of weathered
loess covering stratified sand and gravel layers. A 15-m long steel H-pile (10HBP57)
was driven using a DELMAG D-12 diesel hammer and load tested.  H-piles are
sometimes referred to as small displacement piles because their relatively small cross-
section does not cause as much disturbance and densification of the surrounding soil
during the installation process as concrete or pipe piles would.

The base resistance q, and relative settlement s/B were calculated based on the
equivalent circular base area transformed from the half perimeter area of the H-pile. The
obtained qp values for s/B = 5 and 10% were 2.43 MPa and 3.37 MPa, respectively.

Because the standard penetration test was used instead of cone penetration test, the cone
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resistance q. was estimated from the SPT blow count at the pile base level based on the
SPT-CPT correlation of Robertson and Campanella (1983). The estimated q. value at
the pile base level was about 9.0 MPa. The values of qy/q. corresponding to s/B = 5 and
10% were 0.27 and 0.37 respectively. These results appear to be near the upper range of

the values of q,/q. for displacement piles shown in Table 7.6.

8.3.2 NGI load tests

The NGI load tests were performed on precast-concrete piles driven into a very
loose deposit of quite homogeneous sandy soil. The site is located in a small island,
Holmen, in the middle of the Drammen river near the city of Drammen, Norway. The
soil layer consists of uniform, loose upper sand layer down to 30 m, underlain by a clay
layer and finally bedrock. From the geological history of this area, the subsoil condition
is believed to be normally consolidated (Gregersen et al. 1973). Four instrumented piles
with two lengths, 8 and 16 m, were tested. The four piles are referred to by the letters A,
B,CandDin Table 8.1. Piles A and C had the same length (8 m); pile A had a diameter
of 28 cm, while pile C was a tapered pile with diameter varying from 28 cm at the pile
top to 20 cm at the pile base. Piles B and D had the same length (16 m); pile B had a
diameter of 28 cm, while pile D was made by connecting piles A and C, resulting in a pile
with a diameter of 28 cm from the top to half the pile length, and then tapered with a
diameter of 20 cm at the pile base. The cone resistances at depths 8 m and 16 m were
3.1 MPa and 5.0 MPa. The values of qy/q. for each pile are given in Table 8.1.
Although pile D shows an exceptionally high value of qy/q., most of the qy/q. values fall
within the 0.29 - 0.32 range for s/B = 5% and the 0.36 — 0.39 range for s/B = 10%.
Considering that the soil is in a loose state, these measured values agree well with the

values proposed for displacement piles in Table 7.6.



205

8.4 Summary

In order to verify the normalized base resistance value qy/qc, several case histories
for both non-displacement and displacement piles were examined. For non-displacement
piles, the observed results of field pile load tests, finite element analysis, and calibration
chamber plate load tests were compared with the qy/q. values presented in Chapter 7.
Overall, the observed values of qu/q. were in good agreement with the proposed values
given in Chapter 7.

For displacement piles, 5 pile load tests were investigated. Although the values of
qv/q. for displacement piles were established based on the results of non-displacement
piles, the comparison between the measured and the proposed qy/qc values showed

reasonably good matches.
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CHAPTER Y9 PILE DESIGN USING CPT RESULTS

9.1 Introduction

In this chapter, the design of piles using CPT results is discussed. Both base and
shaft resistances are addressed. Since the standard penetration test is still widely used in
practice, the correlation between the SPT blow count N and the cone resistance gc 1s also
discussed. A proper SPT-CPT correlaﬁon makes it possible for CPT-based methods to
be used when only SPT results are available.

A computer program developed for the estimation of pile load capacity based on
CPT results is introduced. In this program, base and shaft resistances can be estimated

using different methods.

9.2 Determination of Base and Shaft Resistances

9.2.1 Base resistance

As discussed in Chapter 2, there are several methods available for pile design using
CPT results (DeRuiter and Beringen 1979, Schmertmann 1978, Aoki and Velloso 1975,
Bustamante and Gianeselli 1982). All of these methods define the base resistance in
terms of the cone penetration resistance q. and correlation parameters.  Since these

methods were developed under different conditions, the selection of the method should be
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made with consideration of the differences and recommendations of the methods. The

important differences between the methods include (Bandini and Salgado 1998):

(1) the criterion adopted to define pile load capacity;
(2) the type of equipment used to obtain q;
(3) the selection and relative importance of g, values above and below the pile base;

(4) soil types and conditions under which the methods were developed.

Regarding the criterion adopted to define the pile load capacity, CPT-based pile
design methods do not clearly define the pile load capacity. Although for small-diameter
piles the differences in pile capacity are not large, as the diameter increases the way in
which load capacity is defined becomes critical. A relative settlement-based criterion for
pile load capacity definition is favored, as discussed previously.

Following Franke (1991), piles must typically undergo relative settlements s/B
greater than 10% to reach a limit state, including either a loss of functionality of
structures or damage to the superstructure and/or foundations. Settlements less than 10%
of the pile diameter, in some design situation, may cause the foundations or the supported
structures to reach a limit state. Hence, in the evaluation of the value of the relative
settlement associated with the limit states design of piles, the type, functionality, location,
and importance of structures should also be taken into account.

Figure 9.1 shows a simple example for estimating pile base resistance using CPT
results. The pile is a drilled shaft having a length of 10 m and a diameter of 50 cm. The
soil is a normally consolidated, medium dense sand. The cone resistance g, was assumed
varying linearly with depth from 1 MPa at the surface to 10 MPa at the pile base level.
For these given pile and soil conditions, the base resistances q, were calculated using

different methods.
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Figure 9.1 Estimation of pile base resistance using different methods.
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For the method proposed in this study, the value of qy/q. was equal to 0.16 corresponding
to the medium dense condition. Although the profile of cone resistance in this example
is extremely simplified, the values of q;, obtained using different methods show a quite
wide range. The highest value of g, equal to 9.55 MPa was obtained from the Dutch
method while the lowest one equal to 1.74 MPa was obtained from the proposed method
in this study. It should be noticed that the lowest base resistance obtained from the

proposed method was based on the relative settlement s/B equal to 10%.

9.2.2 Shaft resistance

The shaft resistance of piles in most cases is fully mobilized well before the
maximum base resistance is reached (Franke 1993). It follows that shaft resistance can
be estimated with greater simplicity, at least from a conceptual point of view, than base
resistance.

Based on the review of the methods in Chapter 2, Aoki and Velloso’s method (Aoki
and Velloso 1975) and the LCPC method (Bustamante and Gianeselli 1982) appear to be
effective approaches to estimate the shaft resistance using CPT results. Figure 9.2 shows
a simple example of estimation of shaft resistance using these methods. Soils consist of
two clayey layers and three sandy layers. Pile condition is the same as that for the
example of base resistance estimation discussed in the previous section. The
representative cone resistance q; for each sub-layer was obtained from the center of the
layer. The calculated values of shaft resistance are given in Figure 9.2.

In Figure 9.2, the shaft resistances of layer 2, 4, and 5 for the LCPC method were
taken as the limit values given in Table 2.5 because the calculated shaft resistances were
greater than the limit values. The estimated value of the shaft resistance from Aoki and

Velloso’s method was significantly lower than that from the LCPC method.
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This indicates that Aoki and Velloso’s method produces very conservative results in the
estimation of the shaft resistance compared to the LCPC method. The LCPC method

was studied by several authors (Briaud et al. 1989, Milovic and Milovic 1993), and was

found to be satisfactory.

9.2.3 Factor of safety

The selection of factors of safety in pile design is an important. In general, large

factors of safety may be required in the following cases (Canadian Geotechnical society

1992):

(1) friction piles in clay;
(2) sites where only a limited number of tests are performed and where soil
conditions are variable;

(3) piles in loose sands and silts for which the capacity may decrease with time.

When the pile load capacity is determined from field tests including in-situ tests and
pile load tests, factors of safety in the 2 to 3 range have been proposed (Broms et al. 1988,
Canadian Geotechnical society 1992). Table 9.1 shows the values of factor of safety
proposed by Canadian Geotechnical society (1992) as a function of the type of field test,
based on the ultimate pile load capacity corresponding to an ultimate limit state. In the
table, f, is referred to as the resistance modification factor representing the ratio of
allowable pile load capacity to ultimate pile load capacity.

Some authors have proposed the use of the partial factors of safety. As mentioned
earlier, the shaft resistance, in most cases, is fully mobilized before the base resistance
reaches a limit state. Based on this observation, the use of separate factors of safety for
the base and the shaft resistance is sometimes suggested to artificially account for the

different rates of mobilization of shaft and base resistance.
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Table 9.1 Resistance modification factor f;, and factor of safety for different field tests

(after Canadian Geotechnical Society 1992).

measured data of strain
and acceleration

Type of filed test fp Factor of safety
Cone penetration test 0.5 2
Standard penetration test 0.3 33
Static pile load test 0.5 2
(routine test)

Static pile load test 0.6 1.7
(high technical level test)
Dynamic analysis using 0.5 2
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According to Franke (1993), the allowable design pile load capacity is given by:

0, =2 -2 O ©.1)
FS, FS, FS,
where Qg = allowable design pile load capacity
Q. = unfactored pile load capacity
FS; = global factor of safety
FS,, = factor of safety for the base resistance
FS; = factor of safety for the shaft resistance
Qp = base resistance from a limit state
Qs = shaft resistance.
Since
Q,=0,+0, 9.2)
the following relationship can be obtained:
FS,-FS, -(l+gi
FS, = 0. . 9.3)

FS,+FS, -

b

If FS; = 2 and FSs = 1 are assumed, FSy, is obtained as in Table 9.2. From (9.3) and
Table 9.2 it can be seen that for a constant global safety factor no unique value of factor
of safety for the base resistance is obtained when partial safety factors are used and Qu/Q;

is allowed to vary.
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Table 9.2 Partial factor of safety for the base resistance.

QJ/Qy 0 0.2 0.4 0.8 0.6 1.0 >1

FSy 2 2.5 3.33 5 10 oo <0

Since the goal in design is to achieve a target level of safety (say FS, = 2), the use of
partial safety factors is yet variable, as fixed values of FS, and FS; would produce
different levels of global safety depending on the relative contribution of base and shaft

resistance to pile capacity.

9.3 Use of SPT Blow Counts in CPT-based Method

The method for estimating pile load capacity proposed in this study is based on the
cone penetration resistance .. Although the CPT is a superior test for pile design, SPT
is still widely used in many geotechnical engineering projects. If the proper correlation
between the SPT blow count N and the cone penetration resistance gc can be established,
the CPT pile design methods can also make use of the SPT blow count N data. This
approach may be subjected to more uncertainties, but is believed to be useful in design.

A useful CPT-SPT correlation was proposed by Robertson and Campanella (1983).
According to Robertson and Campanella (1983), the ratio of the cone resistance q. to the
SPT blow count N is not a constant, varying with the mean grain size (Dsg). Since
considerable scatter was found in the values of the q./N ratio for silty clay, they suggested
that the q./N ratio be used for sandy soils. Figure 9.3 shows the q./N ratio with respect to
mean grain size.

As can be seen in the figure, the value of q/N increases as the mean grain size
increases. For sands, the values of the q./N ratio were in the 4 — 6 range while those for

silty sand were in the 3 — 4 range.
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For further investigation of the value of the q./N ratio, both CPT and SPT were
performed at the same site. The site was located at US State route 66 over Garvin Street,
Evansville, Indiana. The tests were performed under the North East end of the bridge, on
the grassy area next to the bridge wall. Both CPT and SPT boring logs indicate that the
test site mostly consists of sandy soil down to about 20 m. The ground was very hard to
penetrate in the first few feet, making it difficult to anchor down the CPT rig. The
starting test depth appeared to be at the same elevation as all the surrounding terrain. No
appreciable presence of fill material was observed.

Two sand samples were obtained using the CPT soil sampler. Both samples were
taken at a depth of from 14.0 m down to 14.7 m. Some of the standard laboratory tests
were performed with these soil samples, including grain size distribution analysis, the
maximum and minimum void ratio tests, and the specific gravity test. The mean grain
size (Dsp) was about 0.3 mm, and the maximum and minimum void ratios were 0.826 and
0.454, respectively.

Figure 9.4 shows the SPT blow counts N and the cone resistance q. with depth.
The corresponding values of q./N for this site are given in Table 9.3. Since the SPT N
values in Figure 9.3 were based on the energy ratio of 55%, the values of Ngo, which was
corrected for the energy ratio of 60%, were used for the calculation of the q./N ratio in
Table 9.3. As can be seen, the lowest value of q./N was about 1.15 at a depth of 4.33 m
and the highest one was about 14.96 at a depth of 13.47 m. Most the q/N ratios,
however, were observed in the 3 — 8 range. The averaged q./N ratio without including
the lowest and highest values of q./N was approximately 5.63. This value appears to be
in reasonable agreement with the value for sand given in Figure 9.3 by Robertson and
Campanella (1983). This result is one more indication that the correlation of Figure 9.3

can be used for CPT pile design using the SPT blow count N for Indiana soils.
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Figure 9.4 Cone resistance q. and SPT blow count N with depth.



Table 9.3 Correlation between CPT and SPT.
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Depth (m) N Nio® qe (bar)” qe/Neo
0.21 36 33.12 236.9 7.12
0.98 17 15.64 112.0 7.16
1.12 40 36.80 120.0 3.26
2.80 11 10.12 26.7 2.63
433 15 13.80 16.0 1.15
5.85 10 9.20 498 5.40
738 18 16.56 85.0 5.10
8.90 37 34.04 1385 4.10
10.42 40 36.80 556 1.51
11.95 13 11.96 88.7 74
13.47 8 7.36 110.0 14.96
14.99 33 3036 146.6 48
16.52 15 13.80 120.0 8.7
18.04 27 24.84 156.7 6.3

Neo" = SPT N value corrected for the energy ratio of 60%

bar® = 100 kPa



219

9.4 Program CONEPILE

For the effective use of the CPT-based pile design method proposed in this study in
practice, it was programmed together with other methods discussed herein in program
“CONEPILE”. Calculation of both base and shaft resistances is addressed in the
program. The methods available in the program CONEPILE are:

for the calculation of the base resistance,
(1) Aoki and Velloso’s method;
(2) LCPC method;
(3) proposed method;

for calculation of the shaft resistance,
(1) Aoki and Velloso’s method;
(2) LCPC method.

Program CONEPILE can be used to calculate base and shaft resistances for both non-
displacement and displacement piles. Users can select a preferred method to use for a
given soil condition and pile type.

The program CONEPILE consists of two different programs: a user-friendly
interface program for pre- and post-processing, and the FORTRAN code used in actual
calculation. The user-friendly interface program was developed using Visual-C for easy
input and output data processing.

For Aoki and Velloso’s method and the LCPC method, the correlation parameters
given in Tables 2.1, 2.2, 2.5, and 2.6 were included in the program CONEPILE as a form
of table. For the calculation of base resistance using the proposed method, regression
equations matching with the normalized load-settlement curves shown in Figure 7.9 were
used. The regressions were made with fourth order polynomials, and the square of the

coefficient of correlation (r*) were about 0.999. Several intermediate steps were also
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used in the program. These include the estimation of the relative density, the correction
for the coefficient Ky of lateral earth pressure at rest, and the calculation of the base
resistance ratio for displacement piles. Since the effect of the pile length or the confining
stress at the pile base level appeared to be small (as can be seen in Figure 7.10), it was not
considered for calculating the base resistance.

The estimation of relative density was made using the following relationship by

Salgado et al. (unpublished paper):

g, =C,(P,)"%0,” exp(C,D,) (9.4)

where q. = cone resistance; C;, C,, and C; = correlation parameters; P, = reference stress
= 100 kPa = 0.1 MPa = 1 tsf; 6}, = effective horizontal stress; and Dy = relative density.
The correlation parameters C;, C,, and Cs are given in Table 9.4. Using (9.4), the
relative density can be obtained for a given stress state and cone resistance q. (which need
to be assigned as input data for the program CONEPILE). The estimated relative density
is then used for calculating the normalized base resistance qy/qc.

The correction for Ko was based on the relationship shown in Figure 7.11. Because
the effect of Ko was small for relative densities greater than 70%, it was only considered
for relative densities less than 70%. Figure 9.5 shows the procedure for the estimation of
the base resistance using the proposed method. More detailed information for the

program CONEPILE are given in Appendix.



Table 9.4 Correlation parameters for estimation of relative density.
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Friction angle at the critical state (¢.)
30° 31° 32° 33° 34° 35° 36°
C 40.0 44.7 49.7 55.3 61.6 68.6 76.4
C, 0.524 0.519 0.514 0.508 0.501 0.496 0.490
Cs 0.0195 | 0.0196 | 0.0197 | 0.0197 | 0.0198 | 0.0199 0.02
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Input parameters

G’V, KO, qC, ¢C, S/B

=2 =

Estimation of

Relative Density (Dg)

= =

Calculation of qy/q. with

Estimated Relative Density

==

Modification for

a given K, value

Determination of

Base Resistance qp

Figure 9.5 Estimation of the base resistance for a given soil condition.
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9.5 Summary

In this chapter, the design of piles using CPT results was discussed. Since the CPT
methods available for pile design were developed under different conditions, the selection
of the method should take into account the differences and recommendations of the
methods.

From the example for calculating the base resistance, it was observed that the
highest value of g, was obtained from the Dutch method while the lowest one was
obtained from the method proposed in this study. The lowest base resistance obtained
from the proposed method was based on a relative settlement s/B equal to 10%. For the
shaft resistance, Aoki and Velloso’s method produced lower values compared with the
LCPC method. A global factor of safety (and not partial base and shaft factors of safety)
was found to be more correct for use in pile design.

For more general use of CPT-based pile design methods, a correlation between the
SPT blow count N and the cone resistance q. can be used. Field SPT and CPT test data
for an Evansville sandy soil site suggests the correlation between q. and N proposed by
Robertson and Campanella (1983) is likely applicable to Indiana sandy deposits.

The program CONEPILE developed for the estimation of the pile load capacity was
introduced. This program has a user-friendly interface, which controls an underlying
FORTRAN-based DLL.



224

CHAPTER 10 SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

10.1 Summary

Pile foundations are often used for supporting large, heavy superstructures at sites
where competitively priced shallow foundations would lead to excessive settlements.
Based on the method of installation, piles are classified as either displacement or non-
displacement. The bearing capacity of both displacement and non-displacement piles
consists of both base resistance and side resistance. The side resistance of piles is in
most cases fully mobilized well before the maximum base resistance is reached. As the
side resistance is mobilized early in the loading process, the determination of pile base
resistance is a key element of pile design.

Pile design methods using in-situ test results have been mainly based on the
standard penetration test (SPT) and the cone penetration test (CPT). SPT blow counts
result from dynamically driving a standard sampler one foot into the ground. Such a
process is not well related to the quasi-static pile loading process.  Static cone
penetration, on the other hand, is better related to the pile loading process. The test is
performed quasi-statically and resembles a scaled-down pile load test. In the present
study, in order to take advantage of the CPT for pile design, load-settlement curves of
axially loaded piles bearing in sand were developed in terms of normalized base
resistance (qu/qc) versus relative settlement (s/B). Cone resistance gc used to normalize
the load-settlement curves was determined from the penetration resistance analysis of
Salgado et al. (1997a) using the program CONPOINT. The limit state concept has been

proposed as a modern design approach, in which the adequate technical quality of
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foundations and superstructures is considered. Although the limit state design concept
for pile design has been used mostly with respect to either s/B = 5% or s/B = 10%, the
normalized load-settlement curves obtained in this study allow determination of pile base
resistance at any relative settlement level within the O — 20% range. The normalized base
resistance for both non-displacement and displacement piles were addressed.

In order to obtain the pile base load-settlement relationship, a 3-D non-linear
elastic-plastic constitutive model was used in finite element analyses. The 3-D non-
linear elastic-plastic constitutive model takes advantage of the intrinsic and state soil
variables that can be uniquely determined for a given soil type and condition. This non-
linear stress-strain model represents changes of elastic parameters (the shear modulus G
and the bulk modulus K) according to the stress level before a failure condition is
reached. For the description of failure and post-failure soil response for the three-
dimensional stress state, the Drucker-Prager plastic model with non-associate flow rule
was used.

Calibration chamber tests have been used to investigate both the load-settlement
response of the base of non-displacement piles and cone penetration resistance under a
variety of conditions. Because calibration chambers have finite sizes, the possibility of
size and boundary effects arises. If size effects are well understood, calibration chambers
can be used to experimentally assess pile base resistance under controlled conditions. A
series of calibration chamber tests were modeled and analyzed using the finite element
approach with the 3-D non-linear elastic-plastic stress-strain model. The analytical
results were compared with the measured values of plate resistance in calibration
chamber plate load tests. The predicted load-settlement curves showed good agreement
with measured load-settlement curves.  Calibration chamber size effects were also
investigated for different relative densities and boundary conditions using the finite
element analysis. '

For effective use of the CPT pile design methods in practice, the method proposed
in this study and some of existing methods reviewed in study were programmed with the

user-friendly interface procedure. This program can be used in practice to estimate pile
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load capacity for a variety of pile and soil conditions without significant difficulties for

input and output procedure.

10.2 Conclusions

(D

)

3)

4

Based on findings of the present study, the following conclusions are drawn.

The values of the parameters f and g for the 3-D non-linear elastic-plastic stress-
strain model vary according to the relative density level. As the relative density
increases, the value of f decreases while the value of g increases. This indicates
that the ratio of the elastic modulus at failure to its initial value is higher for denser
than for looser sand, and the rate of degradation of elastic modulus is higher for

looser than for denser sand;

Plate unit loads in calibration chamber tests tend to be lower (for BC1, BC4) and
higher (for BC2, BC3) than pile base unit loads. The confining stress level at the
pile base level also influences calibration chamber size effect. The calibration
chamber size effects under BC1 were more pronounced at low confinement,
corresponding to shorter piles, while size effects under BC2 were more pronounced

at high confinement, corresponding to longer piles;

The value of the normalized base resistance qy/qc is not a constant, varying as a
function of the relative density, the confining stress, and the coefficient of lateral

earth pressure at rest;

The values of the normalized base resistance qy/q. for non-displacement piles fall

within the 0.07 - 0.13 range for s/B = 5% and the 0.10 - 0.20 range for s/B = 10%;



(5)

(6)
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The effect of relative density on the normalized base resistance qy/q. was most
significant, while that of the confining stress at the pile base level was small. At
higher relative densities, the value of qy/q. was smaller (qy/qc = 0.12 - 0.13 for Dg =
90%) than at lower relative densities (g/qc = 0.19 - 0.2 for Dg = 30%);

The values of the normalized base resistance qy/q. for displacement piles are higher
than those for non-displacement piles, showing typically the 0.15 - 0.25 range for
s/B = 5% and the 0.22 - 0.35 range for s/B = 10%;

The value of the normalized base resistance qy/q. tends to decrease as the coefficient
of lateral earth pressure at rest (Ko) increases. This trend is more pronounced at

lower relative densities, and negligible for very dense sand;

The values of the normalized base resistance qy/q for silty sands are in the 0.12 -
0.17 range, depending on the relative density and the confining stress at the pile
base level. The confining stress is another important factor that influences the
value of qy/qc for silty sands. For lower relative density, the value of qy/qc

decreases as the pile length increases while that for higher relative density increases;

Field test results of both SPT and CPT performed at the same site show reasonable
agreement with the correlation proposed by Robertson and Campanella (1983).
This indicates that CPT pile design method can be used with the SPT blow count N
for practical purpose, if the proper value of q./N can be obtained for a given soil

condition.
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10.3 Recommendations

(1) Since pile design methods using in-situ test results were developed under different
conditions, the selection of the method should be made with consideration of the
differences between the methods, such as:

e the criterion adopted to define pile load capacity;

e the type of equipment used to obtain qg;

¢ the selection and relative importance of q. values above and below the pile
base;

e soil types and conditions under which the methods were developed;

(2) Use of global factor of safety is more suited to pile design if a target level of safety
is aimed in design irrespective of the relative contribution of base and shaft

resistances to total pile capacity;

(3) The relative density is the most important factor influencing the base resistance of
piles in sands. It is, therefore, recommended that the estimation of the relative
density be made through a reasonable correlation with in-situ tests such as CPT,

since it is very difficult to obtain undisturbed granular soil samples;

(4) Piles typically undergo relative settlements s/B greater than 10% to reach a limit
state corresponding to either a loss of functionality of structures or damage to
superstructures and/or foundations. = However, the evaluation of the relative
settlement associated with the limit states design of piles should be done with

consideration of the type, functionality, location, and importance of structures.
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APPENDIX: THE PROGRAM CONEPILE
A.l Introduction

The program CONEPILE is for calculating the pile load capacity including both the
base and shaft resistances. The methods adopted in the program CONEPILE are:

) base resistance:  Aoki and Velloso’s method;

LCPC method;

proposed method (Lee-Salgado method);
o shaft resistance: Aoki and Velloso’s method;

LCPC method.

The details of each method can be found in Chapter 2. The program CONEPILE can
calculate the base and shaft resistances for both non-displacement and displacement piles.
Users can select the method desired to use for a given soil condition and pile type.

The program CONEPILE consists of two different programs: a user-friendly
interface program for pre- and post-processing, and the FORTRAN code used in actual
calculation. The user-friendly interface program was developed using Visual-C for easy

input and output data processing.

A.2 Guidelines for Running CONEPILE

A.2.1 Starting the program

(1) Click the icon named “CONEPILE” in Windows.

(2) Click the “start” button (Figure A-1).

(3) Click the “exit” button if the program needs to be terminated (Figure A-1).

(4) Click the “continue” button after reading the introduction (Figure A-2).
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A.2.2 Selection of the method for calculating the base resistance

(1) Click a button corresponding to the method to be used (Figure A-3).
(2) Aoki-Velloso method (Figure A-4):
e Required input parameters: pile index number;
pile diameter (B);
cone resistance at the pile base level (q.);
e Click “pile index” button to find a pile index number for a given pile type;

e Click “continue” after entering all required parameters.

(3) Lee-Salgado method (Figure A-5):

e Required input parameters: pile index number;
pile diameter (B);
representative cone resistance between 0 and 2B
below pile base level (qc);
effective vertical stress at the pile base level (¢",);
coefficient of lateral earth pressure at rest (Kg);
relative settlement (s/B);
critical state friction angle for the material where pile
base is located (¢.);

e Click “continue” after entering all required parameters.

(4) LCPC method (Figure A-6):
e Required input parameters: index numbers for pile and soil types;
pile diameter (B);
cone resistance at the pile base level (q.);
¢ Click “index box” button to find index numbers for given pile and soil types;

e Click “continue” after entering all required parameters.
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A.2.3 Selection of the method for calculating the shaft resistance

(1) Click a button corresponding to the method to be used (Figure A-7).
(2) Aoki-Velloso method (Figure A-8):
e Required input parameters: pile index number;
pile diameter (B);
number of layers for shaft resistance calculation;
thickeness, soil index number, and cone resistance qc
of each sub-layer;
e Click “pile index” and “soil index” buttons to find pile and soil index numbers for
given pile and soil types;

o Click “continue” after entering all required parameters;

(3) LCPC method (Figure A-9):
e Required input parameters: pile diameter (B);
number of layers for shaft resistance calculation;
thickness, LCPC index number, and cone resistance
q. of each sub-layer;
e Click “LCPC index” button to find index numbers for given pile and soil types;

o Click “continue” after entering all required parameters;

A.2.4 Output (Figure A-10)

(1) Click “show results” button to get the calculated base and shaft resistance.

(2) Click “end” button to terminate the program.
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Figure A-10. Output results.



