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Preface

The Multidisciplinary Center for Earthquake Engineering Research (MCEER) is a national center
of excellence in advanced technology applications that is dedicated to the reduction of earthquake
losses nationwide. Headquartered at the University at Buffalo, State University of New York, the
Center was originally established by the National Science Foundation in 1986, as the National
Center for Earthquake Engineering Research (NCEER).

Comprising a consortium of researchers from numerous disciplines and institutions throughout
the United States, the Center’s mission is to reduce earthquake losses through research and the
application of advanced technologies that improve engineering, pre-earthquake planning and
post-earthquake recovery strategies. Toward this end, the Center coordinates a nationwide
program of multidisciplinary team research, education and outreach activities.

MCEER’s research is conducted under the sponsorship of two major federal agencies, the
National Science Foundation (NSF) and the Federal Highway Administration (FHWA), and the
State of New York. Significant support is also derived from the Federal Emergency Management
Agency (FEMA), other state governments, academic institutions, foreign governments and
private industry.

The Center’s FHW A-sponsored Highway Project develops retrofit and evaluation methodologies

for existing bridges and other highway structures (including tunnels, retaining structures, slopes,

culverts, and pavements), and improved seismic design criteria and procedures for bridges and

other highway structures. Specifically, tasks are being conducted to:

 assess the vulnerability of highway systems, structures and components;

« develop concepts for retrofitting vulnerable highway structures and components;

 develop improved design and analysis methodologies for bridges, tunnels, and retaining
structures, which include consideration of soil-structure interaction mechanisms and their
influence on structural response;

+ review and recommend improved seismic design and performance criteria for new high-
way systems and structures.

Highway Project research focuses on two distinct areas: the development of improved design
criteria and philosophies for new or future highway construction, and the development of
improved analysis and retrofitting methodologies for existing highway systems and structures.
The research discussed in this report is a result of work conducted under the existing highway
structures project, and was performed within Task 106-E-2.9, “Evaluation of Site Coefficients
Based on Northridge and Kobe Data” and under the new highway structures project under Task
112-D-4.1, “Site Response Effects.”

The overall objective of this task was to provide a detailed evaluation and assessment of the site
coefficients contained in the 1994 NEHRP provisions for the seismic design of buildings, in light
of data provided by recent strong motion records obtained during the 1994 Northridge and 1995
Kobe earthquakes. It was found that site coefficients back-calculated from recordings of the
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Northridge earthquake validated the 1994 NEHRP values quite well. These site coefficients
reflect a broad consensus of the geotechnical engineering and earth science communities and
constitute a significant improvement over provisions contained in older codes and specifications.
The authors recommend that the current AASHTO “Standard Specifications for Highway
Bridges” and AASHTO “LRFD Bridge Design Specifications” be updated to be consistent with
the 1994 and 1997 NEHRP and 1997 UBC provisions for site categories and coefficients.
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ABSTRACT

The report discusses some of the evidence on amplification of earthquake motions due to local
soils which culminated in the new definitions of site categories and site coefficients, F, and F,,
incorporated, first in the 1994 NEHRP Recommended Provisions for Seismic Regulations for
New Buildings, and more recently in the 1997 NEHRP and 1997 Uniform Building Code (UBC).
These site categories and site coefficients are described and compared to previous code
provisions. Preliminary results of recent studies are discussed including averages and ranges of
site coefficients calculated from recordings of the 1994 Northridge earthquake, which generally
validate the 1994 NEHRP values. The possibility of performing similar calculations of site
coefficients from available recordings of the 1995 Kobe, Japan earthquake is also discussed. Use
of the low period site coefficient, F, in conjunction with de-aggregated measures of the seismic
hazard on rock are suggested for evaluation of soil liquefaction in seismic codes. Areas needing
further research are suggested. Finally, it is recommended that the seismic design provisions
contained in the 1996 AASHTO Standard Specifications for Highway Bridges be updated to be
consistent with the 1994 and 1997 NEHRP and 1997 UBC provisions for site categories and site
coefficients.
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SECTION 1
INTRODUCTION

Site effects associated mainly with the types and spatial distribution of soils, and also to a certain
extent with the ground surface topography, play a very significant role in determining the
potential for damage to engineering facilities during earthquakes. This is true for buildings as
well as for bridges and other highway facilities, as shown by many earthquakes, including most
recently: the 1989 Loma Prieta and 1994 Northridge events in California, and the 1995 Kobe
earthquake in Japan.

While in some cases damage is due to liquefaction and associated ground failure and large
ground displacements, in many others the effect is caused by amplification of the strong ground
motions on softer soils as compared to the motions on rock or stiffer soils. This amplification
played a significant role in the damage to highway structures in the San Francisco Bay Area
during the 1989 Loma Prieta earthquake, including the collapse of the Cypress Viaduct in
Oakland (EERI, 1989; Housner, 1990). The evidence from the 1994 Northridge earthquake also
indicates that motions at several of the collapsed bridges may have been significantly amplified
by the local soil conditions (Housner, 1994, Housner and Thiel, 1995).






SECTION 2
BASIC CONSIDERATIONS

Figure 2-1 presents horizontal elastic response spectra recorded on soft clay and rock sites during
the Loma Prieta earthquake, located close to each other 70 km north of the epicenter. Figure 2-2
includes the profile of the soft clay site. While the peak acceleration on rock is approximately
0.1g, it was amplified three times to about 0.3g by the soil site; the spectral ordinates at low
periods were also amplified by a factor or 2 or 3. At higher periods, the amplification is even
greater, and at a period T~ 0.6 sec, the rock spectrum was amplified four to five times. This
behavior was typical at soft soil sites far from the epicenter in this earthquake, with the soil
amplifying the rock spectrum as much as six times for the period range between 0.5 and 1.5
seconds (Housner, 1990; Chang, 1991).

A useful tool to study this amplification phenomenon is the curve of Ratio of Response Spectra
(RRS) versus T, illustrated with results of a 1D site response analysis in Fig. 2-3. In Fig. 2-3,
RRS < 1.5 for low periods less than 0.5 sec, but RRS = RRSux = 3.5 at the predominant site
period of the soft clay deposit, T ~ 1.4 sec. An even more extreme case of this type of
amplification has been observed in the very soft clay deposits of Mexico City (Fig. 2-4) at periods
of the order of 2 or 3 seconds, with RRS.x ranging from about 3 to 20. Fortunately, both the
extreme softness of the soil as well as other characteristics of the Mexico City clay inducing these
very high amplifications are rather unusual.

Useful insight on the factors controlling the value of RRS.x and the amplification phenomenon at
soft sites revealed by Figs.2-1- 2-4 is provided by the model of Fig. 2-5 and the results in Fig. 2-6
(Roesset, 1977). Both the horizontal acceleration on rock at point B, ag, and the corresponding
soil acceleration at point A, as, are caused by vertically propagating, harmonic shear waves of
frequency f (cps). Therefore, both a, and ag are amplitudes of harmonic (sinusoidal) accelograms
of frequency f. The amplification ratio as/ ap is a function of the ratio of frequencies f/ (V,/ 4h),
of the soil material damping ratio B,, and of the rock/soil impedance ratio, I = y,V,/ ¥,V,. In Fig.
2-5, v, v, are the unit weights and V,, V, are the shear wave velocities of rock and soil. The
maximum amplification (aa/ ap)max corresponding to resonance in shear of the soil layer, occurs at
about the natural frequency of the layer, f ~ V,/ 4h, and is approximately equal to:

a, N 1 )
[Z]M.N (1/1)+(z/2)B, . @-1)

In Fig. 2-6, V,/ 4h = 1.88 cps, I = 6.7, and for B, = 0.05, (aa/ a) max = 4.4. A plot such as Fig. 2-
6 provides the transfer function of the site, which is constant and independent of the rock motion
for the assumed linear soil and vertically propagating shear waves, and can be properly estimated
by dividing Fourier Spectra of recorded horizontal accelerations on nearby soil and rock sites. On
the other hand, plots of Ratio of Response Spectra such as in Fig. 2-3, more appropriate for



engineering evaluations involving response spectra and for determination of site coefficients in
seismic codes, are not independent of the rock motion. However, analyses and comparisons at
actual soft clay sites on much stiffer rock or soil, suggest that: (i) both RRSu.x and (aa / ap)max
occur at about the same frequency, (ii) Equation 2-1 often predicts reasonably well the value of
RRSpmax (Dobry, 1991), and (iii) average values of RRS and (aa/ as) for the same period range are
within 30% of each other ( Joyner et al., 1994).

Therefore, based on Eq. 2-1 it could be expected that the value of RRS,., at soft clay sites is
controlled by two main factors: the impedance ratio I = (y. / vs) ( V: / V,), and the internal
damping B, of the soil. Some main reasons why the Mexico City clay exhibits such high
amplification (Fig. 2-4) are the low values of V,, v, and B, of this soil. For most soft clay sites
such as those typically encountered in the US, the values of B, and ¥, are higher. Also, the ratio v,
/v~ 1.1 to 1.4 is quite constant in many sites, while B, depends mostly on the intensity of the
rock motions due to soil nonlinearity, as well as on the plasticity index of the clay (Vucetic and
Dobry, 1991; Dobry et al., 1994). Thus, for a given type of rock outcrop, I is about proportional
to 1/V,, and for a narrow range of plasticity indices, it should be expected that RRS,., at a site
would depend mainly on V, and on the intensity of the rock motions. This predicts that RRS.x
should depend mainly on V, for a specific clay of very high plasticity and small soil nonlinearity
(and correspondingly small values of B;), as confirmed by the Mexico City data in Fig. 2-4.

Seismic code provisions based on the theoretical framework described above, that is on
calculations of the site period and of RSSn.x, may be appropriate for a specific area consisting
mainly of soft clays of known depth on much stiffer soil or rock, and for expected earthquakes
which induce soil resonance without much soil nonlinearity. This is the case of the Mexico City
seismic code (Simo6n and Suérez, 1994).

However, US codes must consider a much wider variety of site conditions and earthquake
motions for which a direct application of the model of Fig. 2-5 is either not relevant or
impractical. Specifically, at stiffer soil sites, while amplification of ground motions is typically
observed with RRS > 1, often there is no clear peak and no value of RRS. in the plot of RRS
versus T. In many soft clay sites there is often the additional complication of stiffer soil deposits
between the soft clay and the rock (Fig. 2-2). Also, in soft clay sites the values of site period and
RRSqax will typically depend on the earthquake. Therefore, a more practical approach for the
evaluation of site coefficients for seismic codes is the calculation of an average value of RRS at a
given period for a number of stations having generally similar soil conditions, as done for the

Loma Prieta earthquake in Fig. 2-7 for soft clay sites and in Fig. 2-8 for stiffer alluvium (Joyner et
al., 1994).

Based on the assumption that the energy of the wave is preserved, Joyner et al. (1981) and
Atkinson and Boore (1997) have suggested that the amplification RRS at a given period should be
more or less proportional to (V,) ®°, where V, is again the shear wave velocity of the soil at
shallow depth. Empirical calculations from earthquake records by Boore et al. (1994, 1997),
Midorikawa et. al. (1994) and Borcherdt (1994a,b), using either RRS or Ratio of Fourier Spectra,

have indicated that the amplification is approximately proportional to (V,) ~** at low periods, and
approximately proportional to (V,) ~ ® at longer periods, where V, = average shear wave



velocity of the soil in the top 30 m (100 ft). Figure 2-9 presents the curves obtained by Borcherdt
(1994a, b) from Ratios of Fourier Spectra of records on soil and rock in the 1989 Loma Prieta
Earthquake, for a wide variety of soil sites. In Fig. 2-9, the short period amplification factor, F,,
was obtained by averaging the ratios of Fourier Spectra in the period range, T = 0.1 to 0.5 sec,
and the long period amplification factor, F,, was obtained from the period range 0.4 to 2 seconds.
For the Loma Prieta earthquake, corresponding to a maximum rock acceleration of about 0.1g,
Figs. 2-7 through 2-9 indicate values of F, and F, decreasing to 1.0 as V, approaches a value of
about 1000 m/sec or greater corresponding to the reference rock sites. These values and trends
of F, and F, are consistent with the corresponding RRS for similar period ranges obtained by
Joyner et al. (1994) in Figs. 2-7 and 2-8, also for the Loma Prieta earthquake.
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MEXICO CITY CLAY SITES
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SECTION 3
SEISMIC CODE SPECIFICATIONS PRIOR TO 1994

The next section of this report discusses the new site categories and site coefficients for seismic
design of buildings, incorporated first into the 1994 and 1997 NEHRP Provisions for Buildings,
and later in the 1997 Uniform Building Code. These new site categories and coefficients are
based largely on the basic considerations and observations presented in the previous section.

The rest of this section considers the basis for the regulations on local site conditions contained in
'building seismic codes prior to 1994, which are still current in the 1996 AASHTO Standard
Specifications for Highway Bridges.

Seed and coworkers (1976a), and more recently Idriss (1990a, b) studied the relation between
peak acceleration recorded on soil and that obtained on a nearby rock outcrop. Seed and his
coworkers had at their disposal mostly records on stiff and deep cohesionless soils, with few on
soft clay sites, and found very little difference between rock and soil accelerations. On the other
hand, Fig. 3-1 includes the more recent curve developed by Idriss for soft sites based on data from
a number of earthquakes including 1985 Mexico City and 1989 Loma Prieta, at low accelerations,
and using site response calculations to extrapolate to larger rock accelerations. For low rock
accelerations of the order of 0.05g to 0.10g, the corresponding soft soil accelerations are 1.5 to 4
times greater than the rock accelerations. This amplification factor decreases as the rock
acceleration increases, and it becomes approximately unity for a rock acceleration of 0.4g, with a
tendency for deamplification to occur at larger rock accelerations. This amplification at low rock
motion intensities, and lack of amplification or even deamplification at high rock motion
intensities, is directly related to the nonlinear stress-strain behavior of the soil as the rock
acceleration increases.

A second step in the development of seismic regulations prior to 1994 was the study of the shape
of the response spectrum and its correlation with the site conditions. Average spectral shapes for
various soil conditions were developed by Seed et al. (1976a, b), on the basis of a statistical study
of more than 100 records from twenty-one, mostly California earthquakes available at the time.
These spectral shapes are shown in Fig. 3-2. As they are anchored at T = 0 to a value of 1.0, their
use requires knowing the peak acceleration on rock or soil, which is typically obtained from
seismic hazard maps. The spectral shapes in Fig. 3-2 are fairly constant and independent of site
conditions at low periods but very different at longer periods, T > 0.5 sec. Therefore, based on
this and other similar studies and code provision development activities such as ATC-3 (Applied
Technology Council, 1978), simplified spectral shapes and associated site coefficients S such as
shown in Fig. 3-3 were incorporated in building codes such as NEHRP and UBC and in bridge
codes such as AASHTO. Figure 3-3 also includes the descriptions of the corresponding soil
profile types S1 to S4, which are a mixture of qualitative and quantitative definitions, including
both the type and stiffness of the soil as well as its depth. These descriptions of S1 to S4 are
subject to interpretation and do not always define clearly one soil profile type at a given location.
The corresponding amplification factor, applicable only at long periods, varies from 1.0 for rock
and shallow stiff soils (S2) to 2.0 for thick soft sites (S4).

13



In AASHTO 1996, NEHRP 1991 and 1994, and UBC 1997, the rock acceleration at zero period
is defined by a coefficient variously called A, Z, or A, and A,, obtained from a map of the US, and
representing the “effective peak acceleration” needed to construct the spectrum through
specifications such as those of Fig. 3-3, either to define a lateral force coefficient to compute the
lateral force, or to design the structure using modal superposition®. The value of A in AASHTO
is of the order of 0.4g in California and of the order of 0.1g in parts of the East. While in
principle the spectral shapes and long period site coefficients S of Figs. 3-2 and 3-3, could have
been applied in conjunction with amplification curves for the peak acceleration such as shown in
Fig. 3-1, thus amplifying also the low period spectra and introducing the effect of soil
nonlinearity, this was generally not done. The reason is that the studies by Seed et al (1976a) and
ATC-3 (Applied Technology Council, 1978) had found little effect of site conditions on the
acceleration.

As a result, in most seismic regulations including NEHRP before 1994 as well as the current
AASHTO, the soil acceleration is assumed to be equal or close to the rock acceleration. The
result seems to be about right on the average for soft clay sites in high-seismic parts of California,
as soil presumably does not amplify or amplifies very little the rock peak acceleration for the level
of about 0.4g used there in the codes (e.g. Fig. 3-1). However, it is not right at all in the East and
other parts of the U.S. where a level of rock acceleration of 0.1g or 0.2g is appropriate, and
where an amplification of the peak acceleration of as much as 2 or 3 and its effect on the spectrum
should be considered.

“In the maps attached to the 1994 NEHRP Provisions, two “effective peak accelerations™ A, and A, instead of one,
are defined to accommodate parts of the US where the intensity of rock motions at short and long period ranges for
uniform seismic hazard on rock, are determined by different earthquakes (often a low magnitude, nearby
earthquake controlling the short periods, and a larger magnitude, distant earthquake determining the rock spectral
level at long periods). These two accelerations are A, at short periods and A, at long periods. In the maps
attached to NEHRP 1991 and 1994, for San Francisco, A, = A, = 0.4g; and for New York City, A, = A, = 0.1g.
New maps attached to the 1997 NEHRP Provisions (NEHRP, 1997) use two parameters other than A, and A, to
specify the seismic hazard on rock. These new 1997 NEHRP rock scismic hazard parameters are not discussed in
this report. However, the specification of site categories and site coefficients F, and F, is essentially identical in the

1994 and 1997 NEHRP Provisions for comparable hazard on rock. The nomenclature used in this report follows
that of 1994 NEHRP.
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SECTION 4
1994 AND 1997 NEHRP AND 1997 UBC PROVISIONS FOR NEW BUILDINGS

Figures 4-1 through 4-4 and Tables 4-1 through 4-4 summarize the new, modified local site
response provisions for buildings incorporated into the 1994 and 1997 NEHRP recommended
provisions, and also into the 1997 Uniform Building Code, as well as some additional results used
for their development. These provisions were the result of an effort made for several years,
mostly by the geotechnical engineering and earth science communities, and reflects a broad
consensus of both communities based on both recorded evidence and theory.

The effort started in a workshop in Buffalo in October 1991 sponsored by NCEER and organized
by Robert Whitman (Whitman, 1992), continued through the activity of a committee chaired by
Maurice Power, and culminated in a workshop supported by NCEER, SEAOC, BSSC, NSF, and
USGS and hosted by Geoffrey Martin at the University of Southern California (USC) in
November 1992 (Martin, 1994; NEHRP, 1994; Martin and Dobry, 1994). This workshop,
attended by 65 invited geoscientists, geotechnical engineers, and structural engineers, developed
the broad consensus reflected in Figs. 4-3 and 4-4 and Tables 4-1 through 4-4. The actual site
categories and site coefficients adopted were based on merging three similar proposals presented
to the workshop by Roger Borcherdt, Ricardo Dobry and Raymond Seed. The use of the average
V, of the top 30m of soil to characterize the site was proposed by Roger Borcherdt based on his
research (Borcherdt, 1994a). Much of the evidence of soil amplification was based on Loma
Prieta 1989 and other earthquakes associated with rather low rock accelerations of the order of
0.1g, with essentially no recorded information available at the time on amplification of greater
accelerations on rock such as 0.4g or 0.5g. Therefore, extensive site response analyses were
performed by a number of researchers using the equivalent linear technique (mostly program
SHAKE; Schnabel, et al., 1972), as well as nonlinear programs, to obtain extrapolated values of
the site coefficients F, and F, with due consideration to soil nonlinearity. Some of this analytical
work is shown in Figs. 4-1 and 4-2, while more extensive summaries are included in Martin and
Dobry (1994), and in the Commentary volume of the 1994 NEHRP Provisions (NEHRP, 1994).

In summary, the new approach uses two site factors, F, and F,, for the short-period range and
long-period range, respectively, instead of a single factor, with the two factors depending on both
the site category and the intensity of the rock motions (defined by A, or A, in the 1994 NEHRP
Provisions), and with the site category (called Soil Profile Type) defined by the average V, of the
top 30m of soil. Therefore, both the old site categories and the spectral shapes of Fig. 3-3
become obsolete and are replaced by Figs. 4-3 and 4-4 and Tables 4-1 through 4-4. Table 4-1
includes the approximate correspondence between the new Soil Profile Types A to E and the old
site categories S1 to S4. The variation of site factors F, and F, with level of rock acceleration A,
and A, is plotted in Fig. 4-4 for stiff (C and D) and soft (E) sites.

In building and bridge seismic codes, typically a key step is the determination of a seismic
coefficient used to determine the level of lateral design forces for the structure. While this seismic
coefficient depends on the particular code, method of analysis, fundamental period of the
structure, importance of the structure and ductility of the structural system, it is always
proportional to a value representing the design level of acceleration on soil (C, or C,), taken as
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the product of the design acceleration on rock (A, or A, for 1994 NEHRP, Z for 1997 UBC, and
A for AASHTO) times the corresponding soil factor (F,, Fy, or S).

Table 4-4 reproduces the corresponding values of C, = F, A, and C, = F, A, included in 1994
NEHRP. The most striking feature of Table 4-4 is that the effect of soil can be as significant or
even more significant than the level of seismicity of the area as measured by the map values A,, A,
or Z, in determining the level of lateral forces for which the structure must be designed. The
value of C, of soft profile type E in Table 4-4 becomes essentially constant, C, ~ 0.36,
independent of A, for A, > 0.2g, while the value of C, ~ 0.35 to 0.40 is about the same for high
seismicity rock sites (B) in California where A, = 0.4g, as for lower seismicity soft sites (E) in the
East where A, = 0.1g or 0.2g (Table 4-4). This dramatic increase of the level of seismic rock
motions by the soil in low seismicity areas, which tends to erase the traditional concept of seismic
hazard focused on motions on rock or firm ground, is a direct consequence of the nonlinear
response of soil illustrated by Figs. 3-1 and 4-2, which tends to amplify more small rock motions
as compared to larger rock motions.

It is useful to review again in some detail the three main innovations contained in the 1994
NEHRP and 1997 UBC, as well as in the 1997 NEHRP Provisions

1. The site characterization (Soil Profile Type) is now based only on the top 30 m
(100 f) of soil (Tables 4-1 and 4-2), disregarding both the depth of soil to rock if
greater than 30m, the soil properties below 30m, and the properties of the rock
underlying the soil. The soil profile type is made solely and unambiguously

dependent on one parameter (the average shear wave velocity ¥, of the top 30m

of soil). However, the use of more readily available soil properties such as the

Standard Penetration Resistance (N or N «, in Table 4-2), or undrained shear

strength (s, in Table 4-2), are also conservatively allowed to characterize the top
30m of soil. Previous code versions, while relying in qualitative descriptions of the
soil and thus being more ambiguous, did require information on soil type and total
soil thickness down to much greater depths (200 ft), as shown by Fig. 3-3. While

these other parameters in addition to ¥ , of the top 30m certainly play a role in

local site response, it was felt that a single-parameter characterization based on ¥ , was
appropriate at this stage and should cover most cases of interest. As discussed

earlier, theoretical considerations and studies of actual ground motions point out

to the great significance of V7, of the shallower soil to site amplification; therefore,

if one parameter is to be selected, this is a natural one from a scientific viewpoint.

It is also clearly measurable in the field (by geophysical techniques), thus removing

the ambiguity of definitions of site categories contained in previous codes. Finally,

the restriction to the top 30m makes it much more feasible for geotechnical

engineers and earth scientists to come up with the necessary information for the

site from available data. Therefore, the soil profile types based on V', are now
unambiguous, practical to use, and scientifically sound in that site amplification of
ground motions for many or most soil sites and earthquakes are expected to be

determined in first approximation by the value of ¥ ,. Also, it has provided
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researchers with an unambiguous and measurable parameter for empirical studies
of future earthquake data aimed at verifying, refining, or modifying Table 4-3, for

example by including other factors in addition to ¥, as more data becomes
available. This is not a negligible consideration when considering the rapid
worldwide increase taking place in available recordings and site information from
recording stations.

2. A short period amplification site coefficient (F,) is introduced, which did not exist
before (Figs. 3-3 and 4-3). That is, the one-parameter model of local site amplification
characterized by the coefficient S, is replaced by a two-parameter model characterized by
F, and F,. Therefore, once the response spectrum on rock is specified (through the values
of A, and A, in 1994 NEHRP, or Z in UBC, obtained from the corresponding seismic
hazard map), the spectrum on soil is now calculated by using both F, (which amplifies the
short period part of the rock spectrum, in the neighborhood of T = 0.2 or 0.3 sec) and F,
(which amplifies the long period part of the rock spectrum, at periods in the neighborhood
of T = 1 sec and above). In the old codes and provisions, essentially F, ~ 1, with no soil
amplification at short periods. Both F, and F, are unity for rock (Soil Profile Type B) and

become greater as the soil becomes softer as measured by V , and the Soil Profile Type
evolves through C, D, and E. For the softer sites (Soil Profile Type E with ¥, < 180

m/s), maximum values of F, = 2.5 and F, = 3.5 are specified in Table 4-3. In all cases, F, <
F, in the Table, reflecting the generalized experience about soil amplification that brought
about the concept of spectral shapes and normalized response spectra contained in codes
prior to NEHRP 1994 (Figs. 3-2 and 3-3). While F, = 1 or even F, < 1 seems to be about
right in soft soils subjected to very intense rock motion, such as characterized by A. > 0.4,
due to soil nonlinearity, large amplifications of short period rock motions have been
observed when the rock motions are less intense, like in the 1989 Loma Prieta earthquake.
The need for F, > 1 at short periods for less intense rock motions is also predicted by site
response analyses.

3. Finally, and consistent with the analytical studies and the evidence from the field,
the effect of soil nonlinearity is introduced by making both site coefficients F, and F,
functions of the level of intensity of rock motions. That is, the two site coefficients F, and
F, in Table 4-3 and Fig. 4-4 are now a function of: (i) the Soil Profile Type, and (b) the
level of rock motion given by A, or A, in 1994 NEHRP (or by Z in UBC). This should be
contrasted with the old codes and provisions, where the site coefficient S depended only
on the site category and was unaffected by A, or A,. The main consequence of this change
is the appearance of some large amplifications at both short and long periods on soft soils
for those parts of the country where A, and A, are low, like the Eastern US (e.g., F, =2.5
and F, = 3.5 for Soil Profile Type E and A, or A, < 0.1 in Table 4-3). Therefore, in these
low seismicity areas of the country, the seismic forces for buildings on soft soil are
significantly increased when compared to previous codes. In particular, the seismic forces
for stiff structures or for the higher modes of taller buildings are now much higher at soft
soil sites in these low seismicity areas compared to nearby rock sites. This effect of the
change in the 1994 NEHRP provisions is exactly as intended based on the evidence. On
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the other hand, for high seismicity areas in California where A, = A, = 0.4, F, = 1, as
before, more or less independent of site category, with the resulting shape of the spectra
being very similar to the old spectral shapes of Fig. 3-3.
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(Dobry et al., 1994)
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Table 4-1 Site Categories in New Building Codes
(NEHRP 1994, UBC 1997)

V.
Soil Profile Description S
Type T?m(;m
A Hard rock >1500
(S1)
B Rock 760-1500
C Very dense soil/soft Rock
360-760
D Stiff soil (S2)
180-360
E Soft soil (S3)
F Special soils  (S4) <180
Requiring site-specific
evaluation
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Table 4-2 Use of Geotechnical Parameters to Define Site
Categories in New Building Codes

(NEHRP, 1994)
Site Class -
v, NorN, S,
E <600 fps . <15 < 1,000 psf
(<180 m/s) (<50 kPa)
D 600 to 1,200 fps 15t0 50 1,000 to 2,000 psf
(180 to 360 mv/s) (50 to 100 kPa)
C > 1,200 to 2,500 fps >50 > 2,000
(360 to 760 mv/s) (> 100 kPa)
Site Classification

NOTE: Ifthe 5, method is used and the N, and 5, criteria differ, select the category with the softer soils
(for example, use Site Class E instead of D).
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Table 4-3 Site CoefTicients for Short (F,) and Long (F,) Periods
Contained in New Building Codes
(NEHRP, 1994)

Values of F, as a Function of Site Conditions and Shaking Intensity

~ Seil Shaking Intensity
P{;;'le A, <01 | A,=02 | 4,=03 | 4,=04 | 4,205
A | 08 08 08 08 03
B 10 10 1.0 10 10
C 12 12 L1 1.0 10
D 16 14 | 12 11 10
E 25 17 12 09 5
F ) ) ) ) 5

NOTE: Use straight line interpolation for intermediate values of 4,

@ Values for A, > 0.4 are applicable to the provisions for seismically isolated structures in
Sec. 2.6 and certain other structures (e.g., see Table 2.2.4.3).

Site specific geotechnical investigation and dynamic site response analyses shall be per-
formed. '

Values of F, as a Function of Site Conditions and Shaking Intensity

Soil Shaking Intensity
Profile
Type | Ays01 [ 4,=02 [ 4,=03 | 4,=04 | 4, >0.50°
A 0.8 0.8 0.8 0.8 0.8
B 1.0 1.0 1.0 1.0 1.0
C 1.7 1.6 1.5 1.4 1.3
D 24 2.0 1.8 1.6 1.5
E 3.5 3.2 2.8 24 b
F b b b b

NOTE: Use straight line interpolation for intermediate values of 4,

9 Values for A, > 0.4 are applicable to the provisions for seismically isolated struc-
tures in Sec. 2.6 and certain other structures (e.g., seec Table 2.2.4.3).

Site-specific geotechnical investigation and dynamic site response analyses shall be
performed.
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Table 4-4

Seismic coefficients on rock and soil for short (C,) and long (Cy)
periods contained in new building codes

(NEHRP, 1994)

Seismic CoefTicient C, = F, A,

Pf:ll':le A, <005 | A, =005 | 4,=0.10 | 4,=0.20 A =030 | A, = 0.40
Type
A A, 0.04 0.08 0.16 0.24 0.32
B A 0.0 0.10 0.20 0.30 0.40
C A, 0.06 0.12 0.24 033 | 040
D A4, 0.08 0.16 0.28 0.36 0.44
E A, 0.13 0.25 0.34 0.36 0.36
NOTE: For intermediate vaiues, the hugher value or straight-line interpolation shall be used to deterrune the
value of C,,
Seismic Coefficient C, =F. A,
Soil A, < | A, =005 | 4,=0.10 | A, =020 | 4, =030 | 4, =0.40
Profile 0.05 -
Type
A A, 0.04 0.08 0.16 0.24 0.32
B ‘A, 0.05 0.10 0.20 0.30 0.40
C A, 0.09 0.17 0.32 0.45 0.56
D A, 0.12 0.24 0.40 0.54 0.64
E A, 0.18 0.35 0.64 0.84 0.96

NOTE: For intermediate values, the higher value or suaight-line interpolauon shall be used 10 determune the

value of C
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SECTION 5
NEW (NEHRP, UBC) AND OLD (AASHTO) SITE FACTORS

It is interesting to compare these new site coefficients F, and F, contained in 1994 and 1997
NEHRP and 1997 UBC, with the corresponding site coefficients, S, listed in Fig. 3-3 and
incorporated into the current, 1996 AASHTO Provisions. Of course, as pointed out before, these
values of S are also the same as included in prior versions of NEHRP and UBC before 1994 and
1997, respectively. The corresponding comparisons are plotted in Fig. 5-1 where the curves for
F, and F, have been replotted from Fig. 4-4. In the upper panel of Fig, 5-1 a site factor of 1.0 has
been indicated for AASHTO irrespective of site conditions and level of shaking, as the site factors
S in AASHTO 1996 do not apply to the short period range. In the lower panel for Fig. 5-1, the
values of F, and S are compared for the long period range.

It is informative to revisit some of the differences illustrated by Fig. 5-1 between the older site
factors included in the current AASHTO Provisions and the newer NEHRP site factors. As
mentioned in an earlier section of this report, AASHTO site factors have their origin in the ATC-3
study (Applied Technology Council. 1978). These site factors developed in ATC-3 were based
mainly on the analysis of response spectral shapes of predominantly California earthquake data by
Seed et al. (1976 a, b) summarized in Fig. 3-2. As already discussed, in this approach it is
assumed that site effects do not influence peak ground acceleration. Since site effects on peak
acceleration are generally similar to those on short-period spectral values (see Fig. 3-2), this
spectral shape approach will underestimate short-period site effects. The NEHRP site factors
shown in the upper panel of Fig. 5-1 indicate that, for stiff sites, short-period site effects are
present but are relatively modest even at low levels of shaking.

In summary, the site factors incorporated in AASHTO are, in effect, approximately equivalent to
those in the current NEHRP provisions at higher levels of shaking, where site effects on peak
ground acceleration and on short-period spectral values are very small. The main difference in the
NEHRP and AASHTO site factors is at low levels of shaking, where earthquake data clearly
show larger effects.

The previous discussion clearly reveals that the seismic design provisions contained in the 1996
AASHTO Standard Specifications for Highway Bridges have been superseded by recent
developments including new data and analytical studies, which culminated in the broad consensus
reached at the 1992 USC workshop and in the 1994 and 1997 NEHRP as well as the 1997 UBC
Provisions for buildings. The differences between the 1996 AASHTO and 1994 NEHRP site
coefficients are those illustrated in Fig. 5-1 and discussed in the previous paragraphs. While the
NEHRP and UBC provisions may be refined in the future as more data becomes available, they
constitute a significant advance from both scientific and practical viewpoints. Therefore, it is
recommended that AASHTO be updated in a similar way.

29



w

Soft Sites
NEHRP 1994

]

[ Stiff Sites
NEHRP
: | 1994

Stiff and Soft Sites
AASI;!TO 199q

0.2 0.3 0.4 0.5

a
Short-Period Site Coefficient

OO
o
-

Rock Shaking, A, or A (g)

S

T [

Soft Sites
NEHRP 1994

3 15 Sites h
NEHRP Soft Deep Sites
1994 AASHTO 1996

Soft Sites

FV
Long-Period Site Coefficient
N

AASHTO X
1H996 * ]
Stiff Sites
AASHTO 1996
O 1 1 1 ]
0 0.1 0.2 0.3 0.4 0.5

Rock Shaking, A, or A (g)

Figure 5-1 Comparison of Site Coefficients Contained in New Building Codes (NEHRP 1994
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SECTION 6
RECENT STUDIES

The effort which culminated in the development of the new site coefficients for buildings
incorporated into the 1994 and 1997 NEHRP and 1997 UBC seismic provisions, involved a
number of empirical and analytical studies as described in a previous section of this paper. These
studies more or less summarized the situation prior to 1992 including evaluation of available
strong-motion records, and much of this material is included in the Proceedings of the
NCEER/SEAOC/BSSC Workshop held at the University of Southern California in November
1992 (Martin, 1994).

Both the adoption of the new site categories and site coefficients, and the fast growth in the
number of records in the last few years especially from the 1994 Northridge, California and 1995
Kobe, Japan earthquakes, have stimulated the study of the subject after 1994, with much of this
work still ongoing. Studies not yet considering the Northridge and Kobe records include Crouse
and McGuire (1996), who conducted a statistical study of records prior to 1992, and generally
confirmed the values of the site coefficients F, and F, proposed for NEHRP 1994. Midorikawa et
al. (1994) and Boore et al. (1997) also conducted analyses of the spectral characteristics of strong
motion records obtained prior to Northridge taking into account the soil conditions at the
recording stations.

The occurrence of the 1994 Northridge and 1995 Kobe earthquakes accelerated this process even
further. Part of the reason is simply the large number of strong-motion records measuring the
response of a variety of soils generated by both earthquakes. Both the Northridge and Kobe
earthquakes produced more than 200 records each (Borcherdt, 1997b; Sugito, 1995; Ejiri et al,,
1996). While the Northridge epicentral area included few if any soft sites, it did have many
stations on stiffer soils, and the Kobe earthquake had stations on both stiff and soft soils; both
earthquakes produced for the first time a wealth of recordings on various site conditions very
close to the source of a destructive event. Many studies of these records and of the exact site and
topographic conditions at and near the recording stations are being done, with much of the effort
oriented to the verification of the new NEHRP/UBC site coefficients, including their predicted
effect of level of rock shaking (soil nonlinearity), influence of the soil and rock below a depth of
30m, and influence of the shape of the valley including basin edge effects and other 2D/3D
factors. While studies of these data are still ongoing, it is useful to list here three key references
which describe them and contain preliminary findings. These are the Proceedings volumes of
three recent technical meetings: (i) the Proceedings of the International Workshop on Site
Response held in Yokosuka, Japan in Jan. 1996 (lai, 1996); (ii) the Proceedings of the North
America - Japan Workshop on the Geotechnical Aspects of the Kobe, Loma Prieta and
Northridge Earthquakes held in Osaka, Japan in February 1997 (Bardet, Idriss, Adachi, Hamada
and Ishihara, 1997); and (jii) the Proceedings of the Northridge Earthquake Research Conference
held in Los Angeles in August 1997 (Mahin, 1997).

Section 6-1 and 6-2 contain, respectively, comparisons of site coefficients obtained empirically by
the authors from records of the Northridge earthquake, with F, and F, included in 1994 and 1997
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NEHRP and UBC 1997, and an evaluation of the possibility of a similar analysis for the Kobe
earthquake.

6.1 Recorded Ratios of Response Spectra in 1994 Northridge, California Earthquake

Borcherdt (1996, 1997a) conducted a study of the site coefficients in Table 4-3 using the 1994
Northridge records. For that purpose, he obtained Ratios of Fourier Spectra of the soil and
corresponding rock records; as usually a rock record was not available at a very close distance
from the soil station, he used a rock record of a similar azimuth after correcting for the ratio of
distances from the stations to the seismic source. That is, he took advantage of the general
similarity between Ratio of Response Spectra (RRS) and Ratio of Fourier Spectra (RFS), already
mentioned. Similar to what was done in the studies prior to 1992 which culminated in the new
1994 NEHRP site coefficients, he defined F, and F, for each pair of soil-rock stations by taking
averages of the RFS, in the period ranges 0.1 to 0.5 sec and 0.4 to 2.0 sec, respectively. That is,
for any given pair of stations:

0.5

F (RFS) sotl 1 IF soil (T) (6_1)
R 04 TS, (1)

where FS., FSp = recorded Fourier Spectra on soil and rock at the same period T, and R,

Rek = distances of soil and rock station to the zone of largest energy release on the fault at a

depth of about 18km. The value of F, (RFS) reported corresponds to the average of the radial

and transverse components (Borcherdt, 1996). Similarly:

F (FRS) — sozl ] F S 2 Y soil ( ) (6_2)

R . 1604FS,Mk (T)
As the soil recording stations were mostly on stiff sites, Borcherdt’s study allowed verification
mostly of F, and F, for Soil Profile Types C and D as defined in Tables 4-1, 4-2 and 4-3. In his
study, Borcherdt was able to form 31 soil-rock pairs of stations for soil type C, and 20 soil-rock
pairs of stations for soil type D, with rock stations being defined as those that would be classified
as Soil Profile Type B in Tables 4-1 and 4-2. Borcherdt’s calculated values for F, (RFS) and F,
(RFS) are reproduced in columns 11 and 14 of Tables 6-4 and 6-5 for soil types C and D, for the
subsets of pairs of soil-rock stations used in the authors study as described below.

The authors repeated Borcherdt’s study for the Northridge earthquake using Ratio of Response
Spectra (RRS) instead of Ratio of Fourier Spectra (RFS) to define F, and F,, but otherwise
following Borcherdt’s criteria for selecting the pairs of soil-rock stations, for correcting by the
ratio of distances, and for classifying the station sites in the 1994 NEHRP system. That is, the
authors used expressions similar to Egs. 6-1 and 6-2 to compute F, (RRS) and F, (RSS), with the
following two changes: (i) the Fourier Spectra of soil and rock, FS(T), inside the integrals are
replaced by the Response Spectra, RS(T), calculated from the same records, and (i) Ryoi and Ryou
now represent the hypocentral distances of the soil and rock stations instead of the distances to
the zone of maximum energy release. This was done because the distances to zone of maximum
energy release were not available to the authors; the authors verified by actual calculations that
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the difference between the ratios Rei/Rrock using the two definitions of distance are not very
significant and should not affect much the empirically calculated values of F, and F..

The 47 recording stations selected for this study are listed in Table 6-1, and they correspond to
recorded acceleration time histories provided in digital form by Geomatrix Consultants, Inc..
They are divided in 27 stations classified as C, 12 stations classified as D, and 8 stations classified
as B and used as rock stations in the soil-rock pairs. All of these stations were used in the original
Borcherdt study, and their locations are indicated in the map of Fig, 6-1; all 39 soil-rock pair
combinations used by Borcherdt were preserved after checking the reasonableness of the selection
in the map in terms of relative azimuths and distances between the two stations. In addition to
Borcherdt’s (1996) classification of the stations in Table 6-1 in terms of the NEHRP 1994 Soil
Profile Type, three other sources of information were consulted to verify the site classifications at
the stations. The first source was a list of site classifications at all recording stations provided by
Geomatrix, using the Geomatrix classification system and designation included in Table 6-2; these
designations were translated into the 1994 NEHRP Soil Profile Types using the key defined by
the authors in the last column of Table 6-2. The second source of site classifications for the USC
(University of Southern California) stations of Table 6-1 was the paper by Trifunac and
Todorovska (1996), with their original designations and corresponding key used by the authors
for the translation as summarized in Table 6-3. The original Geomatrix and Trifunac-Todorovska
classifications are included in the last two columns of Table 6-1; and their translations into
NEHRP 1994 Soil Profile Types are listed in columns 7 and 8 of Table 6-1. Finally, the third
source was the Web page of Project ROSRINE (Resolution of Site Response Issues from the
Northridge Earthquake, http://rccg03.usc.edu/rosrine/index.html), consulted in March 1998. In
the ROSRINE project, selected sites affected by the 1994 Northridge earthquake including
recording stations are studied to clarify their geotechnical characteristics. Drilling, sampling, in
situ wave velocity measurements, and soils laboratory testing are being performed (Pyke, 1997,
Schneider et al., 1997). This review of ROSRINE yielded information of in situ shear wave
velocity measurements at Station # 27 in Table 5 (Pacoima: Kagel Canyon) that confirmed
Borcherdt’s classification of the site in the 1994 NEHRP System as a Soil Profile Type C.

Tables 6-4 through 6-8 and Figs. 6-2 through 6-4 summarize the results of this study of F, and F,
for sites having soil profile types C and D, using Ratios of Response Spectra recorded in the 1994
Northridge earthquake in conjunction with the Borcherdt’s soil-rock pairs listed in Tables 6-4 and
6-5. The main results for all soil-rock station pairs are listed in columns 9 and 12 of Tables 6-4
and 6-5, as F, (RRS) and F, (RRS) using Method 1. In this report, Method 1, used both by
Borcherdt and by the authors, refers to the use of actual rock station records, corrected by
distance as shown by the ratio Rei/Reck in Eqs. 6-1 and 6-2. The values of “corrected rock
acceleration” at the corresponding soil station listed in column 7 of Tables 6-4 and 6-5 were also
obtained using Method 1, that is, multiplying the actual recorded and averaged (between radial
and transverse components) acceleration at the rock station, by the ratio of hypocentral distances
Rui'Reok.  Later in this section, an alternative Method 2 is also used, where the rock records at
the locations of the soil stations are generated using an analytical model of the 1994 earthquake.

The average value of F, (RRS) for the 27 sites type C computed at the bottom of Table 6-4 is F,
(RRS) = 1.28, compared with F, = 1.1 to 1.2 specified by NEHRP 1994 in Table 4-3 for this
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range of rock accelerations (A. = (a;) rock ~ 0.1 to 0.3g). For the same 27 sites, the
corresponding F, (RRS) = 1.35, compared with F, = 1.5 to 1.7 specified by NEHRP 1994 for A,
= 0.1 to 0.3g For the 12 sites of softer type D in Table 6-5, and for a narrower range of rock
accelerations, F, (RRS) = 1.25 (F, = 1.5 to 1.6 in NEHRP), and F, (RRS)=1.50 (F,=2.2to0 2.4
in NEHRP). While the scatter of the individual computed values of F, (RRS) and F, (RRS)

prevents any absolute definite conclusion, with standard deviations in the four cases in the range
= 0.5 to 0.9 and many individual values of site coefficients less than 1.0, the four computed
average values of F, (RRS) and F, (RRS) are all above 1.0, signaling amplification of rock
motions by the soil as expected, and with the exception of F, (RRS) for sites type D, are only
slightly above or below the NEHRP range. Furthermore, F, (RRS) > F, (RRS) for both soil
types, consistent with the trend used in the code. Perhaps a better comparison is between the
NEHRP code ranges and the ranges defined empirically between RRS (where RRS denotes
either F (RRS) or F, (RRS)), and RRS + 1o, as done in the last two columns of Table 6-6. It
can be seen that now the empirical and NEHRP 1994 code ranges, either overlap or the NEHRP
coefficients are larger, with a definite trend for the long-period F, (RRS) ranges to be above the
corresponding short-period F, (RRS) ranges in both soil types. Therefore, it can be concluded
from Table 6-6 that the average values and ranges of F, and F, obtained empirically using Method
1 from Ratios of Response Spectra for soil profile types C and D using records of the 1994
Northridge earthquake, are generally consistent with the 1994 NEHRP site coefficients. (That is,
the recorded site coefficients are about equal or smaller than the NEHRP values.) The exception
is the discrepancy in the coefficients F, of sites type C, where the ranges in Table 6-6 suggest that
the NEHRP coefficients (1.1 to 1.2) may underestimate the true amplification at short periods for

some earthquakes (1.28 to 1.80 in this case); additional research is needed on this issue including
study of records from other events.

Figures 6-2 and 6-3 present the same data for sites C and D, over the whole period range between
T=0and T =2 seconds. For these figures, a statistical analysis was conducted of the Ratios of
Response Spectra at each period T, before integrating between 0.1 and 0.5 seconds for F, (RRS)
and between 0.4 and 2 seconds for F, (RRS). That is, in Fig. 6-2, at each period T, the average
RRS and RRS + 1o were calculated for all 27 soil-rock station pairs of sites type C, resulting in
the two curves shown. Figure 6-3 includes the same information for the 12 pairs of softer soil
type D. The NEHRP ranges for F, and F, have been superimposed on both plots. Figures 6-2
and 6-3 illustrate the scatter of the individual Northridge results in the period range of interest.

Table 6-7 breaks down the 27 values of F, (RRS) and F, (RRS) from Table 6-4 corresponding to
soil profile type sites C in three smaller subsets corresponding to rock accelerations, (a,) rock,
centered around 0.10g, 0.15¢g, and 0.25g, to evaluate the effect of soil nonlinearity. No clear
conclusion can be discerned from the data and from the comparisons with the corresponding
NEHRP code values listed in the last column. This is not surprising considering the small ranges
of variation of F, and F, specified by the code for these hard soil sites subjected to rock
accelerations that didn’t exceed 0.25g or 0.30g, combined with the large scatter of the values of
F. (RRS) and F, (RRS) obtained from the individual Northridge earthquake records. No
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evaluation was possible for the effect of soil nonlinearity in the softer sites type D due to the even
more limited range of variation of (ap)wck in this case.

Tables 6-4 and 6-5 also include in column 8 the site amplification ratio, AR, obtained using
Method 1 at a period, T = 0. That is, AR is a ratio of peak horizontal accelerations soil/rock,
appropriately averaged between radial and transverse components and with the rock acceleration
corrected by the ratio of hypocentral distances Reitrock. AS expected, the individual values of AR
are generally very similar to those of the short-period spectral ratio, F. (RRS), with a few
exceptions; this is confirmed by the similarity in the averages and standard deviations of AR and
F. (RRS) at the bottom of both tables. Figure 6-4 compares all values of AR and F, (RRS) for all
individual sites C and D. This plot confirms that, in Northridge, the amplification of peak rock
acceleration and the amplification F, at short periods was about the same (within about 30%), as
expected. This agreement will be used in a later section of this report to discuss the evaluation of
soil liquefaction in seismic codes.

In addition to Method 1, already discussed and summarized in Tables 6-6 and 6-7 and Figs. 6-2
through 6-4, an alternative Method 2 was used to obtain estimates of F, and F, from empirical
Ratios of Response Spectra in the Northridge earthquake. The only difference between Methods
1 and 2 is in the definition of the rock response spectra. In Method 1, the average radial-
transverse response spectrum on rock at each soil station was generated by Silva (1997) at the
request of the authors using Wald and Heaton (1994) model of strong ground motions in the 1994
Northridge earthquake. This Wald-Silva calculation provided an alternative definition of the rock
spectrum at the soil site that did not require any correction for distances, Ruwi/Rwock, between the
two stations.

The corresponding calculated values of F, (RRS) obtained with Method 2 are listed in column 10
of Tables 6-4 and 6-5, while the F, (RRS) are included in column 13 of the same tables. As
shown in these tables, this could be done for all same sites used in Method 1, except for station
#15 (Pasadena; 535 South Wilson Avenue). The results of Method 1 including comparisons with
the 1994 NEHRP site coefficients, comparisons between Methods 1 and 2, and comparisons
between rock records generated using Method 2 and those recorded, are presented at the bottom
of Tables 6-4 and 6-5 and in Figs. 6-5 through 6-12.

Both the averages and ranges for F, (RRS) and F, (RRS) at the bottom of Tables 6-4 and 6-5, as
well as Figs. 6-5 and 6-6, reveal a tendency for the site coefficients computed with Method 2 to

be significantly greater than those using Method 1. The only exception is F, for soil profile type
D, where F, (RRS) ~ 1.25 is obtained with both methods.

Another finding is a tendency for the Wald-Silva calculation to provide high values of the rock
response spectra in the range of periods between about 1.6 and 2 seconds. This is shown in Fig.
6-7, which summarizes a statistical study for the 7 rock stations # 41 to # 47 in Table 6-1, of the
ratios between the rock response spectra predicted by the Wald-Silva analysis and those actually
recorded. While over the period range 0 to 1.6 sec, the two sets of spectra were about equal on
the average for the 7 stations, for periods above 1.6 sec the calculated spectra are on the average
50% or 100% higher. The same trend is observed in Fig. 6-8, where the response spectra on rock
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at the locations of the 38 soil stations types C and D, are compared for Methods 1 and 2. This is
not surprising, as all 38 rock spectra included in Fig. 6-8 for Method 1 are really the same
recorded 7 rock spectra of Fig. 6-7, only now corrected by distance. Therefore, Figs. 6-7 and 6-8
pose a key question: are the records in the 7 rock stations selected biased toward low spectral
values in the period range above 1.6 sec, due to chance, or they are not and the Wald-Silva
calculation is too high for those 7 stations in this same period range? A comparison between rock
spectra simulated by the same Wald-Silva procedure for other rock stations that recorded in 1994,
and the corresponding recorded spectra, did not reveal any systematic bias of the procedure
toward high spectra in this period range, with the calculated spectra being sometimes above, and
sometimes below, the recorded spectra. However, in the 7 rock stations of interest, the Wald-
Silva procedure did give systematically larger values between 1.6 and 2 seconds as indicated by
Fig. 6-7. Therefore, the information available to the authors does not allow a clear answer to the
question above. This points to a source of uncertainty that helps explain the scatter of individual
values of F, (RSS) calculated by both Methods 1 and 2. It also generally points out to the great
importance of the way rock records are selected and processed when generating empirical site
coefficients F, and F, from records on soil.

Figures 6-9 and 6-10 present comparisons between RRS ranges at different periods generated
using Method 2, and the corresponding NEHRP specified F, and F,; these figures are the
counterparts of Figs. 6-2 and 6-3 that used Method 1. Examination of Figs. 6-9 and 6-10
generally confirm the main finding already discussed based on the averages and range at the
bottom of Tables 6-4 and 6-5: that the empirical values and ranges of RRS(T), as well as F,
(RRS) and F, (RRS), are somewhat higher for Method 2 than for Method 1, and thus the
empirical ranges for F, and F, in Figs. 6-9 and 6-10 tend to be systematically above the NEHRP
values. Only for periods longer than 1.6 seconds the opposite trend develops, associated with the
high rock response spectra generated by Model 2 in this period range. Finally, Figs. 6-11 and 6-
12 present comparisons of the average curves of the empirical RRS (T) obtained by the two
methods for sites C and D. The RRS (T) values for Method 2 are generally equal or higher than

those of Method 1, except for periods over 1.6 seconds, where the opposite is true for soil sites
C.

The authors tend to believe that the empirical values of RRS(T), F, and F, obtained in this study
using Method 1 are more realistic for the set of stations selected than those using Method 2. The
argument for this is that actually recorded rock motions were used in Method 1, and that the
differences in azimuth and distance to the source between soil and rock stations in the selected
soil-rock station pairs were generally mild.

However, as a further check and in an attempt to narrow the uncertainties in Method 1, the two
subsets of stations marked with an asterisk (*) in column 1 of Tables 6-4 and 6-5 were analyzed.
That is, for soil sites of profile type C, 16 soil-rock station pairs were kept and 11 pairs were
discarded, and for soil profile type D, 7 pairs were kept and 5 were discarded. The criterion used
to keep any pair was the closeness of the two corresponding soil and rock stations in the map of
Fig. 18; any pair which did not look close enough was discarded. In addition, soil station # 21
(LA: Temple and Hope), which is reasonably close to rock station # 46 (LA: Griffith
Observatory) in Fig. 6-1, was also discarded due to the uncertainty in the NEHRP classification in
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Table 6-1 (soil profile type C by Borcherdt; soil profile type A or B by Geomatrix). It must be
noted that the selection of soil-rock pairs with asterisks in Table 6-4 and 6-15 was done by the
authors only once, and was based exclusively on the closeness of the two stations in the map,
without any consideration to the values of F, and F, computed for those pairs.

The calculations of ranges between RRS and RRS + 1o for F, and F, for these subsets of
neighboring soil-rock station pairs are included in Table 6-8, which uses the same format of Table
6-6 for easy comparison. It is interesting that the averages, F, (RRS) and F, (RRS), of the
subsets in Table 6-8 are either about equal or greater than those of the complete sets in Table 6-6.
The difference is greater for soil profile type D, where F, (RRS) increases from 1.25 to 1.46 and

F, (RRS) increases from 1.50 to 1.61. The agreement between empirical and NEHRP ranges is
somewhat better in Table 6-8, where all empirical and NEHRP ranges overlap except for F. of
sites C. The comment made previously about F, of sites C when discussing Table 6-6 is still
applicable. In the authors’ opinion, Table 6-8 contains the most reliable empirical estimates and
verification of site coefficients from the Northridge earthquake presented in this study. Except for
F, of sites type C, the estimated range of F, and F, for sites D, and the estimated range of Fy for
sites D, are quite consistent with the values specified by the 1994 NEHRP and 1997 UBC codes.
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Figure 6-1  Locations of soil and rock stations used for study of site coefficients from records

of 1994 Northridge earthquake
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Table 6-3  Trifunac and Todorovska (1996) Site Classification System and Key
Used to Translate into NEHRP 1994 System

Geotechnical I 7 Tritunac and Translation to
De° ec t.'ca - Todorovska NEHRP 1997 Soil
escription (m/s) Designation Profile Type
Hard site >770 A AorB

Hard site 360-770 B Cc
Soft site 180-360 C D
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6.2 The 1995 Kobe, Japan Earthquake

As mentioned before, the 1995 Kobe earthquake produced a number of records on rocks and stiff
and soft soils, some of them very close to the fault and corresponding to high accelerations in
excess of 0.4g. This is very relevant to the verification of the site coefficients developed in
NEHRP 1994 and 1997 and UBC 1997 for rock levels of shaking, A, and A,, equal or greater
than 0.3g, especially those on soil profile types D and E in Table 4-3. For these high levels of
shaking, very relevant to high seismic areas such as California, recordings on soft soils were
scarce until Kobe, and thus the values of F, and F, contained in the 1994 NEHRP Provisions
were largely based on analytical extrapolations of measurements at lower shaking levels (e.g.,
Figs. 3-1 and 4-2). These analytical extrapolations include the significant decrease in the values of
site coefficients F, and F, in Table 4-3 as A, and A, increases, due to soil nonlinearity at soil
profile types D and E.

Figure 6-13 shows the locations of ground recording stations in relation to the fault rupture in the
1995 Kobe earthquake, with indication of the recorded horizontal peak ground accelerations, a,.
As noted by Ejiri et al. (1996), values of a, greater than 0.4g were recorded at 17 rock and soil
stations near the fault rupture. (In Figs. 6-13 through 6-15, a, is called PHGA = Peak Horizontal
Ground Acceleration, and units of gal are used, with 1g = 1000gal). Figure 6-14 shows the
attenuation of a, with distance to the fault, where D is defined as the closest distance from the
recording site to the ground surface projection of the fault rupture. In this figure, different
symbols are used for rock, stiff, normal, and soft soil, where the definitions of these site categories
correspond to those proposed by the Design Code for Bridges in Japan (1990), as listed in Table
6-9. Most of the rock and stiff sites which recorded a, of 0.4g or greater are located at distances
D < 10 km from the fault, and in fact the mean attenuation curve for these sites drops below 0.4g
exactly at D = 10 km. Therefore, rock and soil stations at these very close distances, and
especially stations located at normal and soft soil sites, are of great interest to the verification of
soil nonlinearity at high levels of shaking.

Table 6-9 includes the key that in the authors’ opinion should be used to translate the Japanese
site classifications listed there to the NEHRP soil profile types of Tables 4-1 through 4-4. This
key is based on both the word descriptions in Table 6-9 as well as the statements by Midorikawa
and Kobayashi (1980) and Midorikawa (1980) cited by Goto et al. (1996), as understood by the
authors, that the boundary between stiff and normal sites in Table 6-9 corresponds approximately

to Vs= 500 m/sec, while that between normal and soft sites it corresponds to V—, = 300 m/sec,

where V. is the average shear wave velocity at the top 30 meters of the profile at the site.
Therefore, the “stiff ground” designation in Fig. 6-15, where Ejiri et al. lump together the rock
and stiff sites of Table 6-9 and Fig. 6-14, would correspond to either sites A, B or C of NEHRP,
while the “soft ground” designation in Fig. 6-15 would correspond to either sites C, D or E of
NEHRP (or to sites F for sites that liquefied in Kobe, such as Port Island, which was very close to
the fault and recorded very strong shaking at depth).

The four stations labeled “soft soil” in Fig. 6-14 within 10 km to the fault do plot lower than the

average of the rest of the stations, suggesting deamplification of accelerations on soft sites at
these very high levels of shaking. In fact, one could be tempted to take the three soft soil stations
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that recorded a, of about 0.31g on the plot, and compare this value to a, = 0.57 g, corresponding
to the mean attenuation curve for rock and stiff soils at the same distance. The corresponding data
point would be roughly consistent with the plot for acceleration of soft sites extrapolated
analytically by Idriss (1990a, b) in Fig. 3-1. This would provide a very low acceleration ratio, AR
= 0.31/0.57 = 0.54. However, there are several problems with this type of exercise. The first is
that one of these soft soil stations is Port Island, that liquefied and thus corresponds to NEHRP
site type F for which site coefficients are not specified; the exact site conditions at the other two
to three soft soil stations of interest, or if any of them also experienced liquefaction, is not clear to
the authors. A second problem is that one of these four stations labeled "soft soil” in Fig. 6-14,
at D =1 km, experienced a, > 0.6 g . A third problem is the huge range of variation of a; of rock
and very stiff site stations at these locations very close to the fault, with a; ranging from values
below 0.3 g to about 0.8 g, that is a factor of almost three, which makes it very difficult to
ascertain with any degree of precision the level of shaking on rock at the location of a specific
soil station before dividing values of a, or of response spectra of soil/rock, as done for Northridge
in the previous section. Important factors contributing to this scatter of a, are the sensitivity of a,
to the exact location of the station in relation to the fault rupture, that is the radiation
pattern/directivity effect, and the fact that at least one of the rock stations (Kobe University) was
not located at the ground surface but at some depth (Sugito, 1995; Ejiri et al., 1996; Somerville,
1996; Bardet et al., 1997). As a result of these difficulties, different authors have arrived to
different conclusions about the amplification issue for the Kobe earthquake: Ejiri et al. (1996)
notices deamplification of peak accelerations on soft soil, while Midorikawa at al. (1996) does not
find any significant site effect.

In an effort to eliminate the very important effects of radiation pattern and directivity in the
evaluation of a; Ejiri et al. (1996) defined an “equivalent hypocentral distance,” X, as a
weighted average of the distances of the station from 600 square segments that ruptured on the
fault plane. Figure 6-15 includes the corresponding attenuation relations for a, for Kobe 1995
based on Xq, where all the small values of X, correspond to Zone A in front of the fault rupture
(Fig. 6-13). Two plots are included in Fig. 6-15: one for “stiff ground” that lumps together the
sites labelled “rock” and “stiff” in Table 6-9 and Fig. 6-14 (A through C in NEHRP), and one for
“soft ground”, which lumps together the sites labelled “normal” and “soft” (C through E in
NEHRP, once the cases of liquefaction are eliminated). Figure 6-15 indeed shows less scatter than
Fig. 6-14, thus justifying the selection of the equivalent distance X,

The authors selected the data in Fig. 6-15 for X, <22.2 km, corresponding to a, > 0.25 g in the
curve labelled “PHGA Attenuation in A” on the figure for stiff ground. The corresponding values
of X.q and PHGA = a,, for the 7 stiff ground and 9 soft ground stations were digitized and listed in
Tables 6-10 and 6-11 for stiff and soft grounds (the data point for Port Island in Fig. 6-15 was not
included). It seems that the attenuation curve for Zone A and stiff ground in Fig. 6-15,
corresponding to an equation fitted to values of X, both smaller and greater than 22.5 km,
overestimates the value of a, of most of the 9 stiff ground stations of interest, corresponding to
small X, Therefore, the authors fitted by least squares the linear equation between log a, and log
Xeq listed at the bottom of Table 6-11, to these 9 stiff ground stations at X.q < 22.5 km. In Tables
6-10 and 6-11, values of a, calculated with this expression are denoted as (ap)stifreq-
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The acceleration ratios, AR = a,/(a,)sifreq for stiff ground sites are listed in the last column of Table
6-11. As expected, they fluctuate around 1.0 (range: 0.8 to 1.5), and their average at the bottom
of the table is 1.05. In Table 6-10, a similar exercise is conducted in computing AR for the soft
ground sites. The average is again 1.05 (range: 0.6 to 1.7), thus failing to reveal any general trend
of deamplification of peak accelerations at these soft ground sites at levels of rock/stiff sites
accelerations of the order of 0.6 g. A similar conclusion is obtained if one looks at the averages
and ranges of a, in the same tables, which are about 0.6 g and 0.3 to 0.8 g irrespective of site
condition.

Further research of these and other records on rock and stiff and soft soils that correspond to very
high levels of shaking in the 1995 Kobe earthquake is recommended. Careful evaluation of all
relevant effects as well as better documentation of the geotechnical conditions at the stations and
of the depth and other installation data for the instruments, are necessary before soil and rock
accelerations and spectra can be compared for evaluating site effects and code site coefficients.
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Figure 6-13  Distribution of peak ground horizontal accelerations with respect to the fault
rupture in 1995 Kobe earthquake (Ejiri et al., 1996)
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Figure 6-14  Attenuation of peak ground acceleration with distance for different site conditions
in 1995 Kobe earthquake (Ejiri et al., 1996)
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Table 6-10  Estimated Soft Ground /Stiff Ground Acceleration Ratios (AR) From Soil Stations
in Fig. 6-13 Close to the Fault in 1995 Kobe Earthquake,
(modified after Ejiri et al, 1996)

Station # Xeq ap (8p)stireq (*) ap
(km) (8) (8 AR = (ap )stiﬂ'eq
1 7.9 0.81 0.575 1.41
2 8.0 0.64 0.574 1.12
3 8.9 0.50 0.564 0.89
4 10.5 0.56 0.547 1.02
5 14.2 0.32 0.519 0.62
6 1-5.8 0.32 0.510 0.63
7 22.2 0.79 | 0.480 1.65
Average =  0.56 Average=  1.05

(*) (ap)sum eq Obtained from log a, =0.9181 — 0.17594 log x.q
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Table 6-11  Stiff Ground Soil Stations in Fig. 6-13 close to the fault in 1995 Kobe Earthquake
(modified after Ejiri et al., 1996)

B ® | e | AR

\ . p/stiffeq.
8 6.8 0.86 0.591 1.46
9 7.5 0.52 0.580 0.90
10 1.9 0.58 0.577 1.01
11 8.5 0.59 0.568 1.04
12 8.0 0.31 0.574 0.54
13 10.6 0.70 0.546 1.28
14 - 14.1 0.79 0.520 1.52
15 16.2 0.44 0.507 0.87
16 16.2 0.41 0.507 0.81

Average = 0.58 Average = 1.05

(*) (ap)stitreq Obtained from log a, = 0.9181 — 0.17594 log Xeq
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SECTION 7

LIQUEFACTION TRIGGERING EVALUATION IN SEISMIC CODES

In addition to modification of the ground shaking due to local site conditions previously discussed
in this report, another important cause of earthquake damage of constructed facilities is
liquefaction of water-saturated sands and other cohesionless soils and associated ground failure
and ground displacement. In general, most problems arise after high excess pore water pressures
and triggering of liquefaction occurs in the free field, and the state-of-practice including code
specifications such as AASHTO 1996 are based on charts such as that of Fig. 7-1, which allow
evaluating liquefaction triggering for a given set of local site conditions and ground shaking
parameters.

These charts, calibrated by case histories of liquefaction and no liquefaction during earthquakes,
were originally proposed by Seed and Idriss (1971), and further developed by Seed et al. (1975,
1985) and Seed and Idriss (1982) using as main soil parameter the corrected Standard
Penetration Resistance (SPT), (N;)so, shown in Fig. 7-1. These charts have been recently updated
and extended to include also the use of the static Cone Penetration Resistance (CPT) and of the
shear wave velocity of the relevant liquefiable soil, Vs, as well as of the Becker Penetration Test
(BPT) for gravelly soils (Robertson and Wride, 1998, Andrus and Stokoe, 1998; Harder and
Boulanger, 1998; Youd et al., 1998). The use of all these charts requires two main ground
shaking parameters: the earthquake magnitude, M, and the horizontal peak ground acceleration,
(ap), that would develop at the surface of a soil deposit similar to the one being evaluated in the
absence of high pore water pressures and of liquefaction (Youd et al., 1998).

Guidelines are needed for the formulation of code provisions in future editions of AASHTO and
other seismic codes on the subject of liquefaction triggering that incorporates: (i) the way seismic
hazard on rock or firm soil is being mapped by USGS throughout the US; (ii) the new site
categories and site coefficients already incorporated in NEHRP 1994 and 1997 and UBC 1997,
and proposed for incorporation in future versions of AAHSTO; and (ii) the new developments in
the state-of-practice of evaluating liquefaction.

It is suggested that the charts based on SPT, CPT, V, and BPT, included in the publication by
Youd et al. (1998) be included in future versions of AASHTO, as well as other relevant aspects
needed for the evaluation (specifically, the magnitude scaling coefficients to use charts such as
that of Fig. 7-1, developed for M = 7.5, in connection with other earthquake magnitudes).

Information on the current mapping of seismic hazard can be found in Frankel et al. (1997) and in
the corresponding Web page (http://geohazards.cr.usgs.gov/eq/). All maps and map values are
being done for hard sites at the boundary between NEHRP soil profile types B and C in Table 4-
1, rather than on soil profile type B used for site coefficients F, and F, in Table 4-3. However, as
done already in NEHRP (1997), it is suggested that this difference be conservatively ignored and
that values of a, provided in Tables such as Table 7-1, be assigned to soil profile type B.
Probabilistic values of peak ground acceleration and of response spectra at various periods are
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being provided for these hard sites. For example, for San Francisco, a, - 0.8983 g and for New

York City, a, = 0.2413 g, with both values corresponding to 2% probability of exceedance in 50
years.

It is proposed to use the values of F, of Table 4-3 as the basis to convert the corresponding
mapped a, into the value of a, on the soil surface needed for liquefaction evaluations. That is, as
discussed in previous sections, the short-period site coefficient F, is used at zero period, assuming
AR =F, In this formulation, the values of A, are identified with a, on soil profile type B, in g’s.
In the definition of the site category, all soil layers down to a depth of 30 m should be used,
including both liquefiable and nonliquefiable layers and ignoring the possibility of liquefaction. For
example, for New York City and a site classified as E in Table 4-3, the value of a,to be used to
enter the liquefaction charts for a 2% probability of liquefaction in 50 years would be
approximately, a, =(0.2413) (1.5)=0.36 g.

Another important aspect in the liquefaction evaluation is the selection of the earthquake
magnitude, M, associated with a,, which may be a problem in probabilistic formulations of the
seismic hazard that consider contributions to the hazard of different earthquake sources and
magnitudes. To address this problem, USGS provides plots and tables in which the probabilistic
hazard in terms of response spectra, peak acceleration and other parameters, is de-aggregated, as
illustrated by Table 7-1 and Fig. 7-2. The height of each bar or the numbers in the tables in these
magnitude-distance (M-D) plots and tables, represents the percent contribution of that M-D
combination to the total hazard. Conservatively, it is suggested to conduct the liquefaction
evaluation with the corresponding probabilistic value of a, already calculated (e.g., a, = 0.36 g for
the hypothetical site and probability above in New York City), and with the largest value of M
which is significant for a, at that location. One possibility would be to neglect the earthquake
magnitudes that contribute, say, less than about 20% to the hazard. Looking at Table 7-1, this
would give M = 8.0 for San Francisco and M between 6.5 and 7.0 for New York City.
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Figure 7-1  Liquefaction evaluation chart for clean sands and earthquake
magnitude, M = 7.5 (Seed et al., 1975; reproduced by Kramer, 1996)
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Table 7-1

De-aggregation tables of peak ground acceleration for
2% probability of exceedance in 50 years for San Francisco

and New York City
(from Web page: http:/geohazards.cr.usgs.gov/eg)

Deaggregated Seismic Hazard PE = 2% in 50 years pgé
CA 37.803 deg N 122.471 deg W PGA=0.89830 g

San_Francisco

M<=
d<= 25,
50.
75.
100.
125.
150.

- 5.0-
0.000
0.000
0.000
0.000
0.000
0.000

5.5
0.708
0.000
0.001
0.0C1
0.000
0.000

Deaggregated Seismic
New_York NY 40.750

M<=
d<= 25.
50.
75.
100.
125.
150.
175.
200.
225.
250.
275.
300.
325.
350.
375.
400.
425.
450.
475.
500.

5.0

5.5

20.633 17.269

3.698
0.266
0.022
0.003
0.001
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

5.968
0.770
0.096
0.021
0.006
0.002
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

6.0
0.668
0.000
0.001
0.001
0.000
0.000

Hazard
deg N

6.0
10.774
6.742
1.580
0.311
.090
.033
.011
.003
.001
.000
.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

[aNoNoNeRoNe Nl

6.5
1.897
0.001
0.004
0.005
0.003
0.001
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7.0
1.749
0.012
0.004
0.007
0.003
0.001

in 50
deg W
7.0
2.235
3.154
1.858
0.718
0.334
0.189
0.100
0.048
0.023
0.011
0.006
0.003
0.002
0.001
0.001
0.000
0.000
0.000
0.000
0.000

7.5

17.794
0.000
0.000
0.000
0.000
0.000

years

8.0
77.139
0.000
0.000
0.000
0.000
0.000

pga

PGA=0.24130 g

7.5
1.375
2.385
1.885
0.914
0.513
0.349
0.225
0.135
0.076
0.041
0.025
0.017
0.012
0.009
0.007
0.004
0.003
0.002
0.001
0.001

8.5
0.000
0.000
0.000
0.000
0.000
0.000

9.0
0.000
0.000
0.000
0.000
0.000
0.000






SECTION 8
CONCLUSIONS

8.1 Some Areas of Further Research

While the new site coefficients and site categories included in the recent seismic building codes
and proposed for AASHTO for bridges constitute a great advance compared with the old
practice, they are not the last word. Both the definitions of site categories and the values of F,
and F, necessarily include simplifications as well as analytical extrapolations from the strong-
motion records available in 1992. Also, the same as in AASHTO and in the old building codes,
2D/3D effects are not considered. For these and other reasons, there are a number of areas where
further research is especially important which may affect future generations of seismic codes. A
possible list of these areas of needed further research is included in Table 8-1.

8.2 Recommendations and Conclusions

(1) The new provisions on site effects for buildings incorporated into the 1994
NEHRP and 1997 UBC reflect a broad consensus of the geotechnical engineering and
earth science communities and constitute a significant advance over the provisions
contained in older code versions.

(2) The site categories are now based unambiguously on the average shear wave
velocity (V') of the top 100 fi of the profile at the site.

(3)  The main changes in the site coefficients include: replacement of the old coefficient
S by F, at long periods, introduction of a new coefficient F, at short periods, and
dependence of F, and F, on both site category and level of rock shaking to consider soil
nonlinearity.

(4) The low seismicity areas of the US are affected more by these changes than high
seismicity areas such as California.

(5)  An analysis of site coefficients F, and F, from records of the 1994 Northridge
earthquake performed in this report (Table 6-8), generally verified these coefficients for
NEHRP site profile types C and D, in terms of the NEHRP values and ranges being about
equal or larger than the recorded ranges. The exception is F, of sites C, where larger
amplifications were recorded than considered by NEHRP; further research is
recommended on this issue

(6) A preliminary analysis of peak ground accelerations recorded on rock and soil
stations at very close distances to the fault in the 1995 Kobe earthquake failed to show the
expected deamplification of acceleration on soft ground at acceleration levels typically in
excess of 0.4 g on rock and stiff sites. A more refined study is suggested on the basis of
additional information about the subsurface conditions at the recording stations as well as
of detailed consideration of other significant factors influencing the soil and rock records.
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It is recommended that AASHTO be updated incorporating into the provisions for seismic design
of bridges the advances in site effects already specified in NEHRP and UBC. Also,
recommendations are provided on the use of the short-period site coefficient F, and of the seismic

hazard parameters being mapped nationally by USGS, for soil liquefaction evaluations in
AASHTO and other codes.
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Table 8-1 Some Areas of Further Research

Areas of Research

Tnfluence of soil and rock properties under 100ft.

Amplification of long period motions by deep stiff sites on hard rock

Amplification of nearby earthquakes by shallow stiff sites on hard rock

Soft sites subjected to very strong ground motions

2D/3D and basin effects

Site effects on near fault ground motion

Site effects and spatial variation

Can F, be used always for amplification of peak acceleration?

Site effects on very long period motions (T > 2 seconds)
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