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Executive Summary

Any change in the National Airspace System (NAS) operational concept or architecture has a
potential effect on the globa environment. The environmental impacts have significant global
implications and are of interest to the International Civil Aviation Organization (ICAO)
community. The ICAO Committee on Aviation Environmental Protection (CAEP) is charged
with the development of international standards and recommended practices for measuring and
controlling aircraft noise and engine emissions. Historically, CAEP activities have been directed
toward improving methods for measuring gaseous emissions and considering increases in
stringency of the standards. More recently, the CAEP has expanded its consideration to include
operational measures that have the potential to reduce aviation emissions, including
Communication, Navigation, and Survelllance/Air  Traffic Management (CNSATM)
implementation. The concept that the U.S. community is focusing on for modernization,
including CNS/ATM, is Free FHight.

Government and industry agree that a reduction in air traffic control restriction has an enormous
potential for time and resource savings. This consensus is well documented in RTCA task force
reports and in the National Civil Aviation Review Commission Report. They note that any
activity that removes such ATC restrictions represents a move toward Free Flight.

In support of Free Flight, the Federal Aviation Administration (FAA) is investing billions of
dollars to provide new/enhanced capabilities through the introduction of CNS/ATM technologies
into the NAS. These new capabilities and services are embodied in the government/industry
concept of operations. This concept forms the basis for introduction and integration of these
technologies in the NAS Architecture, the aviation community's roadmap to modernization. It is
expected that with the deployment of these new capabilities, users will get better services, such as
more wind-optimized cruise trgjectories and altitudes and more efficient surface traffic operations.

This report provides further evidence to support the pursuit of Free Flight initiatives by extending
the analysis to include associated environmental benefits. In essence, if Free Flight results in
lower fuel burn by users, a corollary benefit is less pollution—a clear environmenta benefit that is
often overlooked.

In particular, the study evaluated the fuel and emission benefits of Free Flight by aircraft type and
phase of flight. Calculations for aircraft emissions were made for pollutants directly produced
within the engine combuster and emitted at a rate depending on the temperature and thrust of the
engine—in this instance, specifically for nitrogen oxides (NOx), hydrocarbons (HC) and carbon
monoxide (CO). These calculations used emission indices in terms of unit of pollutant per 1,000
units of fuel burned for each phase of flight. The emissions for other gases such as carbon dioxide
and sulfur dioxide were not included as part of this study.

Two scenarios were developed for use throughout the study, a baseline scenario representing the
future airspace system without modernization and an enhanced scenario representing key
technologies and operational capabilities that are planned for introduction into the NAS.
Comparison of these two scenarios indicates that the CNS/ATM enhancements to the NAS have a



potential annual fuel savings of over 10 billion pounds in the year 2015, which represents a
savings of 6% over what would have been expended without NAS modernization. The phase of
flight above 3,000 feet, which offers capability for more fuel efficient flight operations, accounts
for 94% of the savings, with remaining savings occurring on the surface and below 3,000 ft. This
combined fuel savings trandates to an annual reduction in emissions of over 209 million pounds of
NOx, 211 million pounds of CO, and 59 million pounds of HC, representing savings of over 9%,
12%, and 18%, respectively.

Findings from this study were reported at the International Civil Aviation Organization (ICAO)
Worldwide CNS/ATM Systems Implementation Conference in May 1998 and are highlighted
below.

Annual Savingsin Millions of Pounds

Phase of Flight Fuel NOx CoO HC
Above 3,000 9,683 204.3 197.1 56.7
Below 3,000 219 4.0 1.1 0.1
Surface 358 12 13.2 3.1

Total 10,259 209.5 2114 59.9

% Savings 6.1% 9.9% 12.7% 18.0%
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Section

INTRODUCTION

1.1  Organization

This report compiles the sources, tools, methodologies, and results of the impact study and is
organized as follows. Section 1 provides a discussion of Free Flight, the Air Traffic Services
Concept of Operations, and the National Airspace System (NAS) Architecture, al of which
formed the technological base for the study. The scope of the study is also found in this section.
Section 2 contains the broad assumptions applied to the analysis.

Section 3 introduces the modeling scenarios and discusses their development. Data preparation
necessary to begin the anaysis is presented in Section 4. The anaysis of the baseline and
enhanced scenarios is contained in Section 5 and is organized under four maor headings.
Airborne, Surface, Oceanic, and Emissions. Section 6 summarizes the results of the analysis and
includes a discussion on extending the results to annual savings and converting the fuel savings to
dollars. Section 7 covers the study's conclusions. The appendices provide additional detail used
in the analysis, a description of the tools and models, and alist of the study's participants.

1.2  Background

The NAS Architecture is the U.S. aviation community's roadmap for modernization. It providesa
high-level description of NAS capabilities and services, the functions to be performed, their
dependencies and interactions, and the flow of information among the functions. It also describes
the schedule and costs necessary to implement the capabilities and services defined in the Air
Traffic Services Concept of Operations.

Any change in concept or architecture has a potential effect on the global environment. The
environmental benefits to be gained from a more efficient airspace system have significant global
implications and are of interest to the International Civil Aviation Organization (ICAO)
community. The ICAO Committee on Aviation Environmental Protection (CAEP) is charged
with the development of international standards and recommended practices for measuring and
controlling aircraft noise and engine emissions. Historically, CAEP activities have been directed
toward improving methods for measuring gaseous emissions and considering increases in
stringency of the standards. More recently, the CAEP has expanded its consideration to include



operational measures that have the potential to reduce aviation emissions, including
Communication, Navigation, and Survellance/Air Traffic Management (CNSATM)
implementation. The concept that the U.S. community is focusing on for modernization,
including CNS/ATM, is Free FHlight.

"Free Flight is defined as the safe and efficient flight operating capability under instrument flight
rules in which the operators have the freedom to select their path and speed in rea-time. Air
traffic restrictions are imposed only to ensure separation, to preclude exceeding airport capability,
to prevent unauthorized flights through specia use airspace, and to ensure safety of flight.
Restrictions are limited in extent and duration to correct the identified problem. Any activity that
removes restrictions represents a move towards Free Flight."

On October 31, 1995, RTCA Task Force 3 on Free Flight Implementation published afinal report
that defined the Free Flight operational concept, evaluated the Free Flight Architecture and
technology needs, and identified an incremental transition to Free Flight. Task Force 3 expanded
on the definition of Free Flight to include: "... user is granted both maximum flexibility and
guaranteed safe separation. The goal is not only to 'optimize' the system but also to open the
system for each user to 'self-optimize'." Self-optimization is the key to understanding the extent
of Free Flight's reach, as well as Free Flight challenges.

"Free Flight is not limited to airspace--its spatial constraints are gate to gate, but Free Flight
reaches into a flight's prehistory by providing increased flexibility in flight planning. In the
broadest sense, Free Flight is the unrestricted opportunity for al to use the limited airspace in a
manner that is efficient, effective, and equitable."*

Free Flight's influence on NAS modernization promotes the easing of ATC restrictions. As a
result, there is a general consensus between government and industry that this easing of ATC
restrictions has an enormous potential for time and resource savings for future flights. This
consensus is well documented in RTCA task force reports and in the National Civil Aviation
Review Commission Report. In response, the FAA is developing a concept for investing in
planning and new technologies for CNS/ATM in the NAS.

In September 1997, FAA Air Traffic Services (ATS) published A Concept of Operations for the
National Airspace System in 2005 reflecting the joint efforts of the FAA and Industry, through
RTCA, to implement Free Flight. That document describes the evolutionary changes needed to
meet the user needs for greater flexibility in planning and conducting flight operations.
Specifically, the air traffic system will evolve in the areas of airspace and procedures, roles and
responsibilities, equipment, and automation. Once fully implemented the Concept of Operations
will provide the following:

Prior to flight, sharing of real-time information between the users and the service
provider that ensures greater system flexibility—including departure time and traffic load

! Free Flight Action Plan Update, April 2, 1998, pp. 2-3



prediction and flight plans that optimize around weather, outages and traffic density
constraints.

Prior to taxiing, surface automation that facilitates the coordination of all surface
activities, including runway and taxiway assignments based on projected runway loading
and surface congestion (user preference and environmental considerations such as noise
abatement will be considered).

Arrival runway and taxiway assignments based on gate assignment and surface congestion,
providing the most efficient arrival and taxi execution.

Departure assignments made when the flight profile is filed, and updated accordingly until
the time of pushback providing the best sequence to departure threshold, maximizing
runway throughput and minimizing queue delay.

During departure and arrival operations, decision support systems that assist the service
provider in providing runway assignments and in merging and sequencing traffic, based
on accurate traffic projections and user preferences.

During en route/cruise operations, improved decision support tools for conflict detection,
resolution, and flow management that allow increased accommodation of user-preferred
trajectories, schedules, and flight sequences.

For oceanic flights, global satellite navigation and a communication system using satellite-
based communications and el ectronic message routing—enabling the oceanic system to be
more interactive and dynamic and supporting cooperative activities among flight crews,
Airline Operations Centers (AOCs), and service providers. This will result in reduced
separ ation between aircraft, and more flexible and preferred routes.

These new capabilities and services are embodied in the government/industry concept of
operations, which forms the basis for the introduction and integration of these technologies in the
NAS Architecture.

This report describes the collaborative effort involving industry and government in supporting a
study of these CNS/ATM enhancements and their benefits to users and the environment.
Included are the analysis and findings of the study, along with participants from the FAA,
National Aeronautics and Space Administration (NASA), Air Transportation Association (ATA),
and three airlines. (For a list of study team participants and advisors, see Appendix A.) The
study also contributes to the ICAO CAEP activities, Free Flight and validation of concept of
operations and provides supporting information to issues that were discussed at the Worldwide
Environmental Conference held in Kyoto, Japan in December 1997.

Findings from this study were presented at the ICAO Worldwide CNS/ATM Systems
Implementation Conference in May 1998 and are expected to continue to receive environmental
interest in the future.



1.3  Objective

The objective of the study was to examine benefits of the planned CNS/ATM enhancements in
accordance with the Concept of Operations and the NAS Architecture V3.0 Draft, dated
December 1997, to support Free Flight and NAS Modernization.

In particular, the study evauated the fue and emission benefits of the planned CNS/ATM
enhancements by aircraft type and phase of flight, i.e., taxi-out, climb, cruise, approach, and taxi-
in. Caculations for aircraft emissions were made for nitrogen oxides (NOx), hydrocarbons (HC),
and carbon monoxide (CO). These were chosen because they were the principal emissions
included in previous studies of this nature. Other pollutants, such as carbon dioxide and sulfur
dioxide, are also emitted but were not included as part of this study.

14  Scope
This analysis covers the planned CNS/ATM concepts and technologies that are outlined in the

NAS Architecture V3.0 Draft for the U.S. controlled oceanic airspace, en route and terminal
airspace, and airport surface operations. The time frame for the study is from 1996 to 2015.



Section

ASSUMPTIONS

The study began with the development of key assumptions regarding baseline and future
operations.

Fuel and emission calculations cover only Instrument Flight Rule (IFR) flight plan traffic.

The airspace structure and procedures will be modified in the future years of the study to
incorporate CNS/ATM enhancements. These enhancements are described in paragraph
3.3.

Systems will be deployed and users will equip according to the schedules in the NAS
Architecture V3.0 Draft. These systemswill reach full capability as planned currently.

All arport improvements that are planned currently and any near-term procedural
improvements were used in both scenarios.

The 1996 Termina Area Forecast (TAF) was used to forecast future traffic.

A fleet mix forecast, derived from ICAO, NASA, and FAA Office of Aviation Policy and
Plans (APO) forecasts, was used as the current and future domestic fleet mix.

More detailed assumptions, applicable to specific analysis areas, were developed during the
analytical process. For the report, they are listed in the section to which they apply and also in
Appendix B.



Section

MODELING SCENARIOS

3.1 Basaline and Enhanced Scenarios

Once the assumptions were agreed upon, an analytical framework was used to create two
scenarios that reflect the current operations (baseline scenario) and the future concept of
operations (enhanced scenario) in the NAS.

Using 1996 as the base year, the baseline scenario was developed to represent today’s NAS
operational procedures, enhanced only for committed and projected near-term Airport
Improvement Plan (AlP) and procedura improvements. Flight data was collected for aircraft
operating in the existing ar traffic control (ATC) system of route structures and sector
configuration. November 12, 1996, was selected to be a representative day for the baseline
scenario, from which al future measurement points were derived.

From this base year, the baseline scenario was estimated for three future time intervals of 2005,
2010, and 2015 by applying forecast traffic growth and fleet mix changes. Flights for future years
were constructed by increasing the number of flights commensurate with the traffic growth
forecasts. The types of aircraft in future inventories were adjusted based on fleet mix forecasts.
This set of flights was “flown” in the baseline scenario to estimate fuel consumption and
corresponding emissions for 1996, 2005, 2010, and 2015 in an ATC system with only planned
AIP and procedural improvements.

The enhanced scenario was derived from the baseline scenario by phasing in key technologies and
capabilities to the NAS as outlined in the NAS Architecture V3.0 Draft. These capabilities will
provide new services to users, such as direct routes, optimal climb and descent, and expedited taxi
clearances. The enhanced scenario reflects capabilities at each of the time intervals noted above.

The flight plans developed for the baseline scenario were used to create wind-optimized flight
trajectories for the enhanced scenario. These wind-optimized trgjectories were then “flown” in a
modernized ATC system with planned AIP and procedura improvements and CNSATM
enhancements to estimate fuel consumption and corresponding emissions in an ATC system
reflecting the ATS Services Concept of Operations.

Simulated fuel/emission estimates of users operating in the future NAS with no modernization,
(baseline scenario) versus what could be achieved in a NAS with the planned CNS/ATM



capabilities and optimal routings, (enhanced scenario) were compared at each of the three time
intervals. Comparison of these scenarios, with and without modernization, thus yields incremental
estimates of the fuel savings and emissions reductions for the years 2005, 2010, and 2015. An
illustration of the analytical framework, based on the phased-in implementation of new operational
capabilities, is shown in Figure 3-1. Further description of the scenario development follows.

Figure 3-1. Illustration of Analytical Framework
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3.2  Development Steps Common to Both Scenarios

The following paragraphs discuss how the baseline set of flights was determined, how traffic
growth was incorporated, how the planned physical airport improvements and procedura
improvements will impact airport capacity, and how the adjustments were made to the fleet mix.
These activities are common to both scenarios.

3.2.1 Enhanced Traffic Management System

The Enhanced Traffic Management System (ETMS) was used to develop the study’s baseline set
of flights, and the ETMS Flight Plan messages were used to construct each aircraft's flight plan
database (see Appendix C for additional information on ETMS). ETMS data is derived from
severa primary sources. The two relevant sources for this study were the Official Airline Guide
(OAG) and the NAS computers at the 20 Air Route Traffic Control Centers (ARTCCs). The
OAG provided ETMS with the planned schedules of al flights arriving in and/or departing from
the U.S. or Canada. The NAS computers provided the filed flight plans and the current state of
al Instrument Flight Rules (IFR) air traffic in the CONUS.

3.2.2 Future Demand Generator Tool



The Future Demand Generator (FDG) Tool of the NAS Performance Analysis Capability
(NASPAC) Simulation Modeling System (SMS) was used to project traffic growth to 2005,
2010, and 2015. The sources for projected traffic operations were the FAA, APO, which
publishes the TAF from present to 2010, and ICAO. The ICAO’s world projection was used to
complement the FAA/APO projection for the CONUS and forecast oceanic traffic growth.
(Additiona information on the FDG is found in Appendix C.)

An algorithm was applied to increase the traffic found in the present schedule for each of the 80
airports modeled in NASPAC by applying annual growth factors recorded in the 1996 TAF. The
current FDG contains 300 airports that serve air carrier operations predominately and 404 general
aviation airports from which growth is adjusted. Traffic growth was projected for both air carrier
and genera aviation traffic.

3.2.3 Airport Improvement Plan (AlP) and Procedural I mprovements

Planned physical airport and ATC procedural improvements that were modeled in both scenarios
are discussed in the next two sub-sections. (Additional detail isfound in Appendix D.)

3.23.1 AIP Physical Airport Improvements

Physical changes to an airport can have a substantial impact on airport capacity. The effect can
range from opening a new airport to adding new taxiways that streamline air traffic operations.
Runways can be extended to air-carrier length, alowing the airport to accommodate larger
aircraft. Airport capacity can be increased by adding to the number of gates or adding room for
aircraft to maneuver in the ramp area. However, the change that generally has the greatest impact
on capacity is adding a new runway.

Arrival capacity generally is more restrictive than departure capacity. Therefore, the increase in
maximum arrival capacity is cited as a measure of the capacity increase. (See Appendix D for a
discussion of the physical airport improvements that are expected to increase airport capacity
during the 1996-2015 time frame.)

Key input for both scenarios due to physical airport improvements was based on the 1997 Airport
Capacity Enhancement Plan and input from the Office of Airport Planning and Programming
(APP). Theinformation used as part of the study is asfollows:

Maximum hourly arrival capacity will increase at 16 of the 80 modeled airports during the
1996 to 2005 time frame.

Maximum hourly arrival capacity will increase at 7 additional airports by 2010.



3.23.2 ATC Procedura Improvements

Airport capacity can be impacted significantly by changes in ATC procedures. New procedures
can increase the use of existing runways, or they can work in concert with new runways and with
CNS/ATM improvements. The following procedural improvements are reflected in the increased
airport capacities for both scenarios.

Converging IFR approaches will be added to independent IFR parallel approaches. This
procedure will increase airport capacity greatly at arports with the appropriate
configurations, such as Chicago O’ Hare (ORD) and Washington Dulles (IAD).

Independent converging IFR approaches can be flown to converging runways with
sufficient separation between runway thresholds, or to airports without sufficient
separation, but at higher approach minimums. This procedure substantially increases IFR
capacity at airports without parallel runways.

Dependent Converging Instrument Approaches (DCIA) alows controllers to direct two
dependent streams of arriving aircraft to converging and even intersecting runways.
Consecutive arrivals in each stream are staggered to separate the aircraft. A modification
to the ARTS, caled the Converging Runway Display Aid (CRDA), enables controllers to
maintain the correct separations.

In some cases, the addition of a navigation aid (NAVAID) can increase airport capacity by
alowing a new procedure such as dependent (staggered) paralel approaches. For
example, at Portland (PDX), a recently added Instrument Landing System (ILS) alows
controllers to use these approaches.

(Appendix D provides an overview of the procedural improvements predicted for airports
modeled in detail in NASPAC for the 1996 - 2010 time period.) Beyond the 2010 time frame,
there are no known, new procedures that could be included in this analysis, therefore, all
improvements implemented by 2010 are considered to be in effect at 2015.

Table 3-1 summarizes the projected increase in the maximum hourly arrival capacities due to both
the airport (physical) and procedura improvements for the 1996-2010 time frame.

Table 3-1. Summary of Airport and Procedural |mprovementsfor 1996-2010

I mprovement Number of Average Estimated Increasein
Affected Airports | Maximum Hourly IFR Arrival
Capacity

(Percent)  Add'l Hourly Ops

Physical Improvements. 1996- 12 53% 22
2005 (excluding close parallels
and runways designed for use
with Precision Runway Monitor




I mprovement Number of Average Estimated Increasein
Affected Airports | Maximum Hourly IFR Arrival
Capacity
(Percent)  Add'l Hourly Ops

(PRM)
Physical Improvements. 2006- 6 40% 16
2010 (excluding close paralld at
Los Angeles International
Airport (LAX))

Procedural Improvements. 8 41% 17
1996-2010

3.24 Fleet Mix

The fleet mix used for this study was developed using data from NASA/LMI, ATA, ICAO, and
APO. The current fleet mix was compiled using data from NASA/LMI's Aviation System
Analysis Capability (ASAC) database and ATA input. Since the ASAC database has information
on passenger aircraft only, this data was augmented with information from ATA to account for
cargo aircraft. Using both of these sources, the baseline fleet for 1995 was obtained and then
extrapolated to 1996, 2005, 2010, and 2015. The future fleet mix does not assume incorporation
of advanced engine technologies resulting from ongoing research activities.  Additiona
information on fleet mix caculations is shown on Appendix E.

ICAO forecasts the world fleet out to 2015 separating aircraft by class (number of seats). Using
ICAO's forecast for each class, and the U.S. fleet for 1995 developed above, the U.S. forecast for
each class was extrapolated from the world forecast based on the assumption the proportion of
U.S. aircraft in the world fleet would remain constant.

The U.S. forecast for each class was then used as a basis for estimating the future inventory for
each type of aircraft by assuming that the percentage of each aircraft type in each class of aircraft
will remain the same in the future.

The resulting U.S. forecast was then validated and updated using APO's forecast for Stage 2/3
aircraft. The term Stage 2/3 aircraft refers to aircraft that meet Stage 2/3 noise levels as
prescribed in Title 14 of the Code of Federal Regulations (14 CFR), part 36. Stage 2 aircraft are
being removed from the fleet inventory under section 91.853 of 14 CFR, part 91. Adjustmentsto
the future aircraft inventory were made to account for the phasing out of these aircraft. Aircraft
that currently are out of production (such as the 727 and 737-100/200) were reduced in the future
fleet, and other aircraft in the same class were increased to compensate. 1996 fleet totals were
obtained by interpolating between the 1995 total and 2005 total assuming a constant increasing or
decreasing rate between those years. The resulting U.S. forecast is shown in Figure 3-2.
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Figure 3-2. U.S. Fleet Forecast

Class Type 1996 2005 2010 2015
20-40 DHC6 64 108 131 155
DHCS8 144 244 296 349
D328 37 63 76 90
Embr120 237 402 488 576
J31 87 148 180 212
J32 83 141 171 202
A1 39 66 80 95
>40 seats ATP 12 36 48 61
ATR-42 100 299 400 506
ATR-72 51 153 204 258
CV-580 18 54 72 91
CRJ 36 108 144 182
DHC7 29 87 116 147
F27 14 42 56 71
Total (Class1) 951 1950 2462 2994
BAE146 41 47 52 57
A320 109 187 267 306
DC8 102 119 131 143
DC9 454 408 328 328
707/720 2 2 3 3
727/100-200 680 147 0 0
737-100 11 0 0 0
737-200 312 90 5 0
737-300 482 561 618 673
737-400 94 123 135 147
MD-81/82/83/87/88| 615 775 915 1010
MD-90 11 13 14 16
F-100 130 151 166 181
F-28 70 81 90 97
Total Class 2 (81-150 Seats) 13273 3163 3324 3618
757 660 1803 2294 2592
A310 41 79 99 115
Total Class 3 (151-210 Seats) | 701 1882 2393 2707
L1011 101 49 53 53
DC10 176 205 175 175
747-SP 4 0 0 0
767 224 483 611 854
777 12 159 218 251
A300 73 225 298 431
Total Class4 (211-300 Seats) | 591 1121 1355 1764
MD11 55 70 93 117
747-100 59 50 50 50
747-200 62 60 53 52
747-400 47 91 126 161
Total Class5 (301-400 Seats) | 223 271 322 380
XX (future design) 0 39 80 133
Total Class 6 (401-500 Seats) 0 39 80 133
747-SR 0 19 92 144
Total Class 7 (501-600 Seats) 0 19 92 144
TOTAL (Class 2-7) 4787 6494 7566 8745

The preceding paragraphs have described the steps taken and resources used that were common
to the development of both scenarios. The remainder of Section 3 is devoted to enhanced-
scenario development.
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3.3

Development of the CNS/ATM Enhanced Scenario

The enhanced scenario was developed from the baseline by adding planned CNSATM
enhancements to the NAS as outlined in the NAS Architecture and summarized in Figure 3-3. The
combination of key technologies provides users with improved capabilities eventually leading to
implementation of the ATS Concept of Operations and Free Flight. This study made no attempt
to assess the relative contribution of each technology, but concentrated on what the capabilities
would bring to users. The principa capabilities assessed during this study were extracted from
the ATS Concept of Operations, which when fully implemented will provide a more efficient
airspace system through increased information sharing, automated decision support tools, and
relaxation of air traffic control restrictions.

Figure 3-3. Overview of CNS/ATM Enhancements

Y ear Key Technologies New Capabilities
2005 Controller-Pilot Data Link Reduced Vertical Separation (RVSM)
Communication above FL290
Automatic Dependent Surveillance — Optimal climb
Broadcast (ADS-B) (Air to Air) Wind-optimized Direct Routes above
Passive Final Approach Spacing Tool FL240
Traffic Management Advisor, Single Improved arrival/departure procedures
Center Expedited taxi clearance
Initial Conflict Probe 50/50 Oceanic Separation
Integrated Terminal Weather System
Surface Movement Advisor
2010 Limited Digital Air/Ground Comm. RVSM above FL290
GPS Wide Area/lLocal Area Optima climb and descent
Augmentation Wind-optimized Direct Routes above
Active Final Approach Spacing Tool 15,000 feet
w/Wake Vortex Improved arrival/departure procedures
Terminal Automation Enhancements Enhanced surface management
ADS-B ground stations 30/30 Oceanic Separation
Surface Management System
2015 Digital Air/Ground communications Cruise climb/descent
Full Conflict Probe Wind-optimized Direct Routes above
New Traffic Management Decision 15,000 feet
Support System Acceptance rates for instrument
conditions equal to visua conditions
Enhanced surface management
30/30 Oceanic Separation
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3.3.1 CNS/ATM Enhanced Scenario - En Route Capabilities

For the en route environment, improved capabilities are most evident in reduction in separation,
more efficient climb and descent, and wind-optimized direct routing. By 2005, improved aircraft
position accuracy and communication will lead to optimal climb procedures, wind-optimized flight
trajectories above FL240, and a reduction in vertical separation above FL290. By 2010, further
enhancements are expected to provide for optimal climb and descent, and allow wind-optimized
tragjectories as low as 15,000 feet. By 2015, vertical separation standards will no longer apply and
aircraft will be alowed to select their optimal cruise climb and descent and fly wind-optimized
trajectories above 15,000 feet. The evolution of the en route capabilitiesis shown in Figure 3-4.

Figure 3-4. Evolution of En Route Capabilities

RVSM above FL290
for 2005 and 2010

Cruise M

Direct Routing above
FL240 ft in 2005

Direct Routing above
15,000 ft for 2010 and 2015

Climb Out

Approach

Take Off

Surface (Taxi-Out) Surface (Taxi-In)

The capabilities described above were incorporated into the study by using simulation and analysis
tools to modify flight trgjectories accordingly at each point in the future, and by calculating the
resulting flight times and fuel consumption by phase of flight.

3.3.2 CNS/ATM Enhanced Scenario - Terminal Area Capabilities
Improvements in arrival and departure procedures in terminal airspace are expected to improve
airport capacities, eventually leading to acceptance rates for instrument conditions equal to that

which is obtained under visual conditions. Enhanced surface management is expected to reduce
taxi delay.
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CNS/ATM termina area improvements were modeled in the enhanced scenario. (See Appendix
D, Section Il for a detailed summary of each system.) Improvements were modeled by adjusting
airport arrival and departure capacities, and taxi times based on performance metrics, investment
analyses, and cost-benefit studies.

Table 3-2 lists the estimated increase in maximum |IFR arrival capacity expected from the
CNS/ATM improvements. The Integrated Termina Weather System (ITWS), Weather Systems
Processor (WSP), and Center-TRACON Automation System (CTAS), athough applicable at
severa airports, provide a lesser increase in capacity than other CNS/ATM improvements. The
Precison Runway Monitor (PRM), Automatic Dependent Surveillance-Broadcast/Cockpit
Display of Traffic Information (ADS-B/CDTI) parallel approaches, and Wide Area Augmentation
System (WAAS)/Local Area Augmentation System (LAAS) paralel approaches provide the
greatest increase in arrival capacity. Each allows an airport to operate another independent
stream of IFR arrivals. In addition, ADS-B/CDTI may increase airport throughput by increasing
the amount of time aircraft can fly in visual meteorological conditions (VMC) by up to 13%.

Table3-2. CNS/ATM Enhanced Scenario | mprovements

No. of Average Estimated Increase in
CNS/ATM Affected Maximum Hourly IFR Arrival
|mprovements Airports Capacity
Per cent Add'l Ops

WAAS or LAAS Parallel Approaches 5 52% 15
PRM 5 30% 16
ADS-B/CDTI Parallel Approaches 5 33% 19
ITWS 45 8% 5
CTAS 41 4% 3
WSP 1 7% 5
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Section

DATA PREPARATION

This section describes the data preparation required to build the baseline and enhanced scenarios.
A detailed discussion of data preparation is located in Appendix F.

As the data preparation process began, the following assumptions were applied to the scenarios:

The baseline scenario assumes growth in traffic, changes in fleet mix, and continuous
support of airport and procedural improvements.

The enhanced CNS/ATM scenario includes the same assumptions used for the baseline
scenario and the addition of new technologies and capabilities.

Data preparation for the scenarios began with the determination of a base day (see Paragraph
3.1). Once this was completed, the data preparation activities moved to incorporating the
forecasted traffic growth, assigning aircraft types, assigning tracks, and developing flight profiles.

4.1 Traffic Growth

Traffic growth refers to projecting the base day aircraft operations to the out years (2005, 2010,
and 2015), while accounting for projected demand, fleet modernization, and the acquisition of
new aircraft.

To build an extension to the base day, two sets of flight data were generated for each of the future
years (2005, 2010, and 2015). The first set consisted of flight data for all scheduled commercial
and air taxi/commuter flights. The second set consisted of al general aviation and military flights.

Theinitial base year was constructed from the scheduled commercial and air taxi/commuter flights

in the OAG for November 12, 1996. The origin airport, destination airport, scheduled times,
flight identifier, and aircraft type were obtained for each scheduled flight in the NAS.

15



Along with the scheduled flights, the general aviation and military flights were obtained from the
November 12, 1996, ETMS data. Flights were identified as genera aviation or military based
upon their flight identifiers. A set of flight data was obtained for these flights consisting of the
origin airports, destination airports, actual times of flight, and aircraft type.

The scheduled flights and the genera aviation and military flights combined to capture a majority
of the activities in the NAS. The next step was to increase the traffic to reflect the projected
demand as annotated in the TAF.

The above data sets were input into the FDG (see Paragraph 3.2.2) to increase the traffic demand
to the levels expected for 2005, 2010, and 2015. The FDG provided the future flights. Once the
new flights were obtained for each scenario, the aircraft types were modified in each year to
account for fleet modernization and acquisition of new aircraft (see Paragraph 4.2). Trajectories
were then assigned to each flight (see Paragraph 4.4 and 4.5), first in the baseline scenario and
subsequently in the enhanced scenario. The enhanced scenario was optimized for the future
Concept of operations.

4.2  Assignment of Aircraft Types

After the new flight was determined, an aircraft type was assigned to the flight. A database of
fleet mix for the specific future year was used. For each future year, the fleet mix, consisting of
the number of each aircraft type (e.g., B737) projected to be in service for the respective year (see
Figure 3-2), was obtained. The following assumptions were made:

New aircraft were added to the list by assuming that they would fly the same distribution
of stage lengths as an aircraft in the same category.

New aircraft would fly the same number of legs per aircraft per day as Smilar aircraft.
Each new flight generated by the FDG (see FDG in Paragraph 3.2.2) was assigned an aircraft type
based on the aircraft equipment of jet or turboprop and its stage length. (See Appendix F for the
methodology used in this activity.)
4.3  Assignment of Tracks
Once the flight origin and destination were identified and the aircraft type was assigned to the
flight, atrack was assigned. A track consists of a series of points between the flight's origin and its

destination. The assignment of atrack to aflight is explained in the following steps.

A set of al filed tracks between city pairs (origin and destination) is built from the ETMS
data set.

A track is selected randomly from the set of filed tracks, based on its origin and
destination.
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For example, using the ETMS data set, a query is built to extract al flights flying between ORD
and Los Angeles International Airport (LAX). The next step is to filter the reduced data set only
for flights with a specific aircraft type (e.g., B737). From this data set, randomly select a track
and assign it to the new flight.

Once the track has been assigned, the next step is to complete the flight trgectory by assigning
atitude and speed.

44  Assignment of Trajectories - Baseline Scenario

A flight trgjectory is made up of three segments: climb, cruise, and descent. In the baseline
scenario, speed and altitude tragectories were assigned to each flight as a function of the track,
aircraft type, desired cruise atitude, and airspeed en route. For each aircraft type,

The climb and descent trajectory indicated the sequence of atitudes and airspeeds, and

The cruise trgjectory indicated the flight moving aong a route at the specified airspeed
and altitude.

For the genera aviation, or unscheduled aircraft, trgjectories were assigned based on their actual
observed trgectories reported in the ETMS. The trgectories of new General Aviation
(GA)/military flights, added by the FDG, were obtained by copying the trgectory of an existing
flight between the origin and destination for that same equipment category.

45  Assignment of Trajectories- Enhanced Scenario

A trgjectory generator called Optimized Trgectory Generator (OPGEN) (see Appendix C for a
description of OPGEN) was used to create flight tragjectories for the enhanced scenario. Basic
assumptions were made. Aircraft performance constraints such as maximum thrust, speed, and
others were considered constraint variables in creating flight trajectories. For example, an aircraft
cannot fly at a speed greater than its specified performance. The specia use arspace (SUA)
availability and the activities around SUA were held constant. For example, the direction of flight
around the SUA was held constant. Therefore, if aflight goes left around a SUA in 1996, future
flights will also go around the SUA in the same direction. Finaly, preserving airline schedules is
an important factor in future operation of the NAS. If the airlines knew they could leave later
(and possibly fill more seats) and still arrive on time, they would rather do that than get to the
destination early. Other assumptions are listed below for different, future time frames.

2005:

Flights flying less than 1,000 nautical miles had their distances reduced (direct routing)
when operating at FL 240 and above.

Flights flying greater than 1,000 nautical miles were optimized for minimum fuel when
operating at FL 240 and above.
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2010 and 2015:

Flights flying less than 1,000 nautical miles had their distances reduced (direct routing)
when operating at 15,000 feet and above.

Flights flying greater than 1,000 nautical miles were optimized for minimum fuel when
operating at 15,000 feet and above.

(See Appendix F for additional information on the assignment of trajectories.)
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Section

ANALYSISOF THE BASELINE AND ENHANCED
SCENARIOS

The following paragraphs describe @) the methodologies and analysis of flights generated in each
scenario for in-flight (CONUYS), surface, and oceanic; b) the calculation of fuel burned; and c) the
subsequent emissions of NOx, HC, and CO. (See Appendices G, H, and | for additiona
information supporting the analyses described in this section.)

5.1 Airborne (CONUYS)
5.1.1 Fue Burn Calculation and Analysis

Aircraft performance was used to calculate fuel burned for each IFR flight operating in the en
route and terminal environments. Aircraft performance data was not available for all aircraft used
in this analysis, therefore, two set of agorithms were used to calculate fuel burned. A force
balance equation was applied to aircraft for which detailed aircraft performance data was available
from LINKMOD? data (see Appendix G for fuel burn calculations). For those aircraft without
performance data, fuel burn was computed in a manner similar to that used in deriving the
Breguet® range equation.

5.1.1.1 Aircraft with Performance Data

For many flights, the aircraft model was available only in a general manner (e.g., B727) and did
not contain the specific version model (e.g., —100 versus —200). In order to assign a specific
(aircraft type and version number) model to each flight, the airline ID (e.g., UAL, AAL, etc) in
the flight identifier was used. Assignment of specific model type was based on the airline’s fleet
and the relative number of different aircraft models. When no airline model was available, the
version number selected was the most popular for that aircraft type.

A second factor in aircraft fuel burn is the weight of the aircraft. In order to compute the fuel
consumed by aflight, the weight of the aircraft at landing was estimated by assuming a passenger
load factor of 70% and landing with 45 minutes of reserve fuel. The maximum number of
passengers on board was an average across the industry.

2 LINKMOD isaFAA model for calculating fuel burn based on the energy balance equation.
3 Kerrebrock, J.L., "Aircraft Engines and Gas Turbines, " 1984
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Given the aircraft type (performance data), aircraft weight and trgjectory, the total fuel consumed
by the flight was calculated using an ordinary differential equation.

5.1.1.2 Aircraft without Performance Data

For aircraft without performance data, the weight at landing was estimated from the maximum
allowable takeoff weight for the aircraft. It was assumed there would be a constant specific
impulse and the aircraft operated at a roughly constant lift-to-drag (L/D), therefore a smplified
equation was applied.

Similar to the previous section, the aircraft fuel burned was a function of the aircraft weight,
assumed aircraft performance, and its trajectory.

5.1.1.3 New Aircraft

Finally, when a new aircraft type was projected to enter the fleet, the maximum weight of the
aircraft was derived from the number of passengers expected in this new aircraft. This was
accomplished by extrapolating the best-fit line from the existing data on number of passengers
versus maximum takeoff weight (MTOW) of known aircraft as shown in Figure 5-1. Once the
maximum takeoff weight was obtained, the new aircraft was treated in a manner similar to aircraft
with no model available.

Figure 5-1. Relationship between Maximum Number of Passengersand MTOW
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5.1.2 SampleFlight Trajectories

After all data preparation was completed, the baseline scenario contained a set of IFR flight plan
trajectories for a day in 1996, 2005, 2010, and 2015 similar to the one shown in Table 5-1. The
enhanced scenario contained a similar set of wind-optimized trajectories for all years except 1996.
There were 46,102 such flights in 1996 and 56,900 flight trajectories for 2015. These included air
carrier, air taxi/commuter, general aviation, and military.

The first line of the data in Table 5-1 below indicates that this is a Boeing 737-200 flying from
Philadelphia to Cleveland. There are 25 segments for the flight with the following data in each
segment: cumulative elapsed time in minutes, fuel consumption, atitude in hundreds of feet, mach
speed, latitude, and longitude.

Table5-1. Sample Flight Trajectory

46. XYZ01175. B737 PHL CLE

25
Cum Tine Fuel / Seg. Alt. Mach Latitude Longitude
(M nut es) (Pounds) (100 Ft.) Speed

0. 000 169. 481 0 0.529 39. 870 -75.230
0. 820 236.594 29 0. 554 39. 928 -75. 305
2.033 311. 750 66 0. 590 40. 031 -75.398
4. 316 346. 367 112 0. 436 40. 209 -75.560
6. 848 156. 393 152 0. 542 40. 400 -75.683
8.122 170. 230 171 0.531 40. 424 -75. 821
9. 485 327.505 191 0. 552 40. 450 -75. 967
12. 355 131.133 227 0. 585 40. 500 -76.283
13. 551 74.542 240 0. 607 40. 522 -76.418
14. 270 91.680 248 0. 606 40. 539 -76. 499
15. 127 26. 551 257 0. 623 40. 560 -76.596
16. 281 265. 111 269 0. 652 40. 589 -76.731
19. 063 314.910 290 0. 666 40. 659 -77.064
22.980 285.803 300 0.672 40. 755 -77.535
26. 885 284.919 300 0.671 40. 849 -78. 006
30. 786 260. 651 300 0.670 40. 938 -78.479
34. 686 264. 454 290 0. 664 41. 026 -78.953
38.576 97.495 280 0. 661 41. 109 -79.429
40. 817 75.121 240 0. 662 41. 157 -79.710
42. 361 238.818 212 0. 645 41. 183 -79.909
46. 093 48. 240 159 0.619 41. 244 - 80. 393
46. 877 209. 398 147 0. 590 41. 257 - 80. 493
50. 159 355. 112 99 0. 503 41. 304 - 80. 878
54.578 136. 181 47 0. 486 41. 361 -81. 364
58. 790 0.0 0 0. 486 41. 400 -81. 830
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5.1.3 Analysisof Flight Trajectories

The analysis of flight trgjectories was divided into two components, above and below 3000 feet.

This divison was made to accommodate emission calculations, which will be described in
paragraph 5.4. The phase of flight above 3,000 feet offers capability for more fuel-efficient flight

operations and accounts for most of the savings. A comparison of the flight trgjectories and fuel
consumption between the baseline and enhanced scenarios in 2015 results in a daily fuel saving of

17.4 million pounds for all flights. This saving is a direct result of more fuel-efficient tragjectories

and does not include savings due to reduced airborne delay, which is discussed in Section 5.1.5.
Over 70% of the daily fuel savings occurred in the 10 aircraft listed in Table 5-2.

Table 5-2. Fuel Savingsin 2015 by Type Aircraft (Ibs.)

Aircraft Fuel Percentag
e

Type Name Baseline |[Enhanced| Savings | Savings

B757 Boeing 757 68,708,12 |64,718,98 | 3,989,139 6.2%
5 6

MD88 |McDonnell-Douglas 81-88 |46,795,85 (|44,730,76 | 2,065,085 4.6%
1 6

B737 Boeing 737-300/400 48,791,75 (47,516,43 | 1,275,317 2.7%
Series 0 2

B777 Boeing 777 15,741,48 |14,625,49 | 1,115,992 7.6%
9 6

DC8 McDonnell-Douglas 8 10,915,55 | 9,890,987| 1,024,571 10.4%

8

B767 Boeing 767 20,180,56 |19,219,53 961,022 5.0%
0 8

B74R Boeing 747-SR 11,728,52 |11,072,39 656,134 5.9%
7 4

A300 Airbus 300 9,581,057| 9,121,290 459,767 5.0%

DC9 McDonnell-Douglas 9 11,961,61 {11,574,83 386,778 3.3%
1 2

A320 Airbus 320 8,991,694| 8,629,766 361,928 4.2%

253,396,2 |241,100,4 (12,295,734 51%
21 87
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Above 3,000 Feet 2015
These fuel savings during the en route
and cruise phases of flight result from
CNS/ATM enhancements that provide
improved decison support tools,
improved information, and better
position accuracy. The enhancements
alow users to fly preferred routes that
include optimum climb/descent and
wind-optimized trgectories. Many of
today’'s ATC redtrictions will be
removed, making structured routes the
exception rather than the rule.

In the enhanced scenario, arcraft flying
trgectories above 15,000 feet and
distances in excess of 1,000 miles will
receive the most benefit from
CNS/ATM enhancements that provide
capability for wusers to fly wind-
optimized and cruise climb and descent
trgectories. Of al the arcraft types
included in the enhanced scenario, the
Boeing 757 accounted for 22.9% of the
total fuel savings for al flights modeled,
as shown in Figure 5-2.

5.1.4 Arrival Airports

Efficiency savings from CNS/ATM enhancements realized during en route and cruise phases
extend to the termina area for arrivals and departures. A savings will result from increased
information exchange, automated decision support tools for merging and sequencing traffic, and

increased use of area navigation.

Flight trgectories above 3,000 feet were analyzed by arrival airports and indicated that the top 10
airports shown in Table 5-3 and Figure 5-3 account for 32% of daily flight trgjectory fuel savings

in 2015.

Figure5-2. Percent of Total NAS Fuel Savings
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Table 5-3. Fuel Savingsin 2015 by Arrival Airport (Ibs.)

Airport Fuel |Percentag
e
ID Airport Name Baseline |Enhance |Savings| Savings
d
ORD Chicago O'Hare Int'l |14,029,7 |13,090,4 | 939,370 7.2%
84 14
DFW Dallas/Ft. Worth Int'l |16,042,4 |15,004,7 |1,037,70 6.9%
54 45 9
LAX Los Angeles Int'l 18,889,6 (17,814,1 |1,075,51 6.0%
18 06 2
ATL Atlanta Int'l 8,902,30 |8,524,58 | 377,728 4.4%
9 0
DTW Detroit Metro Wayne |6,859,84 |6,416,14 | 443,698 6.9%
Co. 0 2
MIA Miami Int'l 5,413,98 |5,169,11 | 244,873 4.7%
9 6
PHX Phoenix Sky Harbor |7,804,98 |7,337,07 | 467,909 6.4%
Int'l 4 6
STL St. Louis Int'l 6,140,68 |5,867,77 | 272,907 4.7%
0 3
OAK Oakland Int'l 2,459,19 |2,313,86 | 145,332 6.3%
9 7
MSP Minneapolis/St. Paul |7,997,76 |7,432,69 | 565,063 7.6%
Int’| 2 9
94,540,6 |88,970,5 |5,570,10 6.3%
20 18 2

24




) |
MSP | 3.29%

OAK [[177]0.8%

STL 1.6%

PHX | 2.7%

MIA 1.4%

DTW | 2.5%

Airports

| 2.2%

ATL

LAX | 6.29%

DFW |l6.0%

ORD

| 5.4%

\
|
\
\
|
% 2.0% 3.0% 4.0% 5.0% 6.0% 7.0%

Percentage Savings

\
\
\
\
I
00% 1.0

Figure 5-3. Percent of Total NAS Fuel Savings - 2015
5.1.5 Airborne Delay

Fuel burn was calculated for airborne delay by airport and aircraft type below FL 240 for 1996 and
2005, and below 15,000 feet for 2010 and 2015. Airborne operational delay increases the fuel
burn and accumulates when the demand exceeds the airport's capacity. There are four
contributing factors in the model that account for airborne operational delay: 1) flow control
restrictions, 2) arrival/departure fix limits, 3) sector capacities, and 4) arriving flights holding for
occupied runways.

Flow control restrictions are defined as static or dynamic. Static flow control restrictions usualy
are positioned at center boundaries and are used to adjust traffic flow rates where congested
Terminal Radar Approach Controls (TRACONS) are known to exist. Dynamic flow control
restrictions appear during the course of the smulation when large amounts of traffic are heading
toward major arports. The flow control restrictions provide additional spacing requirements on
flights passing through the restriction.

Arrival and departure fixes aso have minimum spacing requirements between successive flights
associated with them and are located near the airport. They are spaced strategically to feed the
traffic flow for the en route airspace.

Sector entry delay occurs when the instantaneous or hourly aircraft count parameters for a sector
are exceeded. Sector capacities were provided by Air Traffic for all sectors modeled. The model
records delay at sector boundaries when the Monitor Alert Parameter (MAP) is exceeded for any
instance of time.
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In addition, flights waiting to use an occupied runway incur airborne operational delay. Thistype
of delay is caused by demand exceeding the arrival capacity of an arport. The service interva
between successive arrivals is a function of the capacities currently in use at the airport and the
respective arrival and departure queue lengths.

Comparison of airborne delays for the baseline and enhanced scenarios in 2015 resulted in daily
fuel savings of 5.7 million Ibs. for all flightsin the NAS. This represents 25% of the total airborne
fuel savings of 23.2 million lbs., with the other 75% due to more efficient flight trgectories as
described in Section 5.1.3.

5.2  Surface Operations

Surface operations enhancements will result in improved aeronautical, departure clearance, and
surface management information exchange between the service provider and users. The addition
of surface automated aids will improve taxi sequencing and spacing of aircraft to departure
thresholds, thus balancing taxiway usage.

The analysis evaluated taxi times and ground delays at each airport. Ground delay accumulates at
airports when flights enter and hold in departure queues during the taxi-out process. Departure
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gueues increase when the demand for departures exceeds the airport’s maximum departure
capacity. These capacities are dependent on the airport's runway configurations and projections
of future airport improvements.

5.2.1 Fue Burn

Surface fuel burn was calculated for each of the arports. The total ground delay time (the
amount beyond the unimpeded time for all arcraft due to waiting in the departure queue) was
applied to each aircraft type that was departing from an airport within the CONUS. The idle
ICAO fuel flow rate was used in the following calculation:

Fuel Burn Per Flight = Fued Rate Lbs. Per Minute * (Total Ground Delay Time +
(Unimpeded Taxi Time * Number of Aircraft)) * Number of Engines

For al flights arriving within the CONUS, the same formula was used except that the delay time
was set to zero.

5.2.2 SurfaceTaxi Time

The unimpeded taxi times were a key input parameter to the NASPAC simulation for measuring
ground delay and calculating the amount of time on the surface for both the baseline and enhanced
scenarios. Unimpeded taxi times, developed and provided by Office of Aviation Policy and Plans
(APO-130), Information Systems Branch, were applied to both the taxi-out and taxi-in conditions
for each of the 80 modeled airports (see Appendix Jfor alist of airports and their taxi-in and taxi-
out times). An average taxi-out and unimpeded taxi-in time was applied to the remaining airports.

The unimpeded taxi-out condition occurs when the departure queue is equa to 1 and the arrival
gqueue is equal to 0. Similarly, the unimpeded taxi-in condition occurs when the aircraft’s wheels
hit the runway and the aircraft taxis immediately to its respective gate. An unimpeded time is
developed from the Airline Service Quality Performance (ASQP) data, which is reported airline
data to the Department of Transportation (DOT) from the 10 largest carriers. It is computed for
each airport based on airport, carrier, and season. Because gate positions of the different carriers
may vary considerably depending on the airport, the average for each airport by carrier and season
was used for this analysis.

Typicaly, an airport's unimpeded taxi-out time varies widely from its median taxi-out time,
especidly at the busier airports, e.g., EWR’s unimpeded taxi-out time (11.7 minutes), and DFW's
(9.9 minutes) are in about the 15th percentile for all of their flights. In contrast, non-busy
airports, such as Dallas Love (DAL) and Indianapolis (IND) typically have unimpeded taxi times
that are very close to the median. Unimpeded taxi-in times have less variability than taxi-out
times and are on average about half of the taxi-out time.

In the enhanced scenario, the unimpeded taxi-out and taxi-in times were reduced by 5% for ATL

in 2005 and the 12 airports that were expected to benefit from the Surface Movement Advisor
(SMA). The 12 airports are Boston Logan Internationa Airport (BOS), Dalas Fort Worth
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Airport (DFW), Detroit Metropolitan Airport (DTW), Newark Airport (EWR), Los Angeles
International Airport (LAX), Orlando International Airport (MCO), Miami International Airport
(MI1A), Minneapolis-St. Paul International Airport (MSP), O'Hare International Airport (ORD),
Pittsburgh International Airport (PIT), San Francisco International Airport (SFO), and St. Louis
International Airport (STL). In 2015, al other modeled airports had reduced taxi times of 5%
from the 1996 baseline number.

While it is difficult to extrapolate for the NAS based on observations from ATL, the NAS
architecture does not address time frame reductions explicitly. The study team assumed that
inferences could be made from the portrayed future improvements of the surface management
system (SMS), such as cockpit moving maps and ADS-B implementation.

Ground delays, as discussed in the previous section, were computed from the NASPAC
simulation by airport and aircraft type. The time spent by an aircraft in the departure queue was
added to the airport's respective unimpeded taxi times. This resulted in daily fuel savings of over
one million Ibs. for all airports modeled. The top 10 airports for surface fuel savings are shown in
Table 5-4 and Figure 5-4, and account for 29% of the total surface fuel savings.

Table 5-4. Fuel Savingsin 2015 by Airport (Ibs.)

Airport Fuel |Percentag
e
ID Airport Name Baselin |Enhance|Saving| Saving
e d S

ORD Chicago O'Hare Int'l | 789,255| 752,411| 36,845 4.9%

DFW Dallas/Ft. Worth Int'l | 809,480{ 770,086 39,394 5.1%

LAX Los Angeles Int'l 839,422| 792,443| 46,979 5.9%

ATL Atlanta Int'l 715,231| 653,910| 61,321 9.4%

DTW Detroit Metro Wayne | 460,250 439,423| 20,826 4.7%
Co.

MIA Miami Int'l 520,664 495,703| 24,961 5.0%

PHX Phoenix Sky Harbor | 432,692| 421,828 10,864 2.6%
Int'l

STL St. Louis Int'l 566,798| 540,988 25,811 4.8%

OAK Oakland Int'l 153,919 146,601] 7,319 5.0%

MSP Minneapolis/St. Paul | 590,679| 567,967| 22,712 4.0%
Int’l

5,878,39(5,581,35 (297,03 5.3%

1 9 2

28




Figure 5-4. Percent of Total NAS Surface Fuel Savings— 2015
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53 Oceanic

The oceanic air traffic environment is different from the domestic environment in a number of
aspects, rendering oceanic air traffic control much less efficient than domestic. With most oceanic
routes out of range of radar and direct communications and with manual tracking of flight
progress, aircraft separation standards over the ocean are very large, and there is minimal
flexibility to modify flight plans.

Proposed advanced automation, direct and reliable communications, improved navigation and
surveillance, and more timely and accurate weather data will greatly improve the efficiency of
oceanic air traffic control and will alow for significant reduction of required separations.

5.3.1 Oceanic Fuel Savings

Calculable fuel savings were found to be available in two categories: delay and efficiency. Delay
benefits are the savings obtained by reducing the amount of time spent waiting for an acceptable
oceanic routing. Efficiency benefits are the fuel savings obtained by flying closer to the aircraft’s
optimal routes, altitudes, and speeds.

The primary source of predicted fuel savings is a simulation model developed for the Oakland

oceanic airspace and run by the MITRE Corporation Center for Advanced Aviation System
Development (CAASD). The model provided an analysis capability to compute fuel burn and
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flight time for both actual and preferred flight trgjectories. The ssimulation model was run using a
variety of input assumptions as to density and separation standards to determine the effects of
each.

Current oceanic forecasts predict lower rates of growth than those used in 1996, when the
original MITRE simulation model was run; therefore, the predicted annual fuel savings were
adjusted for the lower growth rates and lower projected user equipage rates.

The type aircraft used for oceanic flights in the North Atlantic and Pacific airspace and their
relative fuel consumption were available for the years 1996 and 2002 as shown in Table 5-5.
These were coupled with hourly fuel consumption figures by type aircraft to calculate estimated

savings by year in U.S. North Atlantic and Pacific airspace as shown in Table 5-6.

Table 5-5. Relative Oceanic Fuel Consumption by Aircraft Type

Per cent. of 1996 Per cent of 2002 1996 2002
Fleet Fleet
Aircraft Percent | Percent
of of
Type Pacific Atlantic Total| Pacificf Atlanticc  Total| Fue Fue

A300 0.0% 2.1% 0.8% 0.0% 0.0% 0.0% 0.5% 0.0%
A310 0.0% 6.0% 2.4% 0.0% 4.0% 1.6% 1.4% 1.0%
A330 0.3% 1.0% 0.6% 1.7%  10.0% 5.0% 0.4% 3.7%
A340 5.1% 3.0% 43% 11.1% 11.0% 11.1% 3.0% 8.3%
B727 0.4% 2.0% 1.0% 0.0% 0.0% 0.0% 0.4% 0.0%
B747-200 31.7% 185% 26.6% 21.7% 8.2% 16.4% 35.8% 23.9%
B747-400 24.7%  14.5%  20.7% 25.7% 9.8% 19.4% 25.7% 26.0%
B757 0.3% 11.0% 4.5% 0.0% 7.0% 2.7% 1.6% 1.0%
B767 0.6% 16.0% 6.6% 2.2% 15.0% 7.2% 3.5% 4.1%
B777 0.6% 2.9% 15% 145% 19.0% 16.3% 1.0% 12.4%
DC-10 15.3% 9.0% 12.8% 10.1% 6.7% 8.8% 11.4% 8.4%
L-1011 5.9% 2.9% 4.7% 0.0% 0.0% 0.0% 3.8% 0.0%
MD-11 11.7% 5.8% 9.4% 10.5% 6.9% 9.1% 8.1% 8.5%
MD-80/ 0.4% 2.0% 1.1% 0.0% 0.0% 0.0% 0.3% 0.0%
DC8
C-5 1.1% 1.1% 1.1% 1.0% 1.0% 1.0% 1.5% 1.5%
C-141 1.7% 1.7% 1.7% 1.5% 1.5% 1.5% 1.2% 1.2%
C-135 0.4% 0.4% 0.4% 0.0% 0.0% 0.0% 0.3% 0.0%
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Table 5-6. Oceanic Fud Savings by Air Traffic Control Center - 2015

Estimated Fuel Consumed (Millions Of
Gallons)
Oakland New|Anchora Total| Saved Pct
York ge Saved
1996/ 3,429 1,468 587 5,484 0 0.0%
1997 3,627 1,627 683 5,937 0 0.0%
1998 3,707, 1,670 715 6,093 4 0.1%
1999 3,870, 1,735 747 6,352 15 0.2%
20000 3,945 1,791 761 6,497 34 0.5%
2001 4,115 1,873 794 6,782 54 0.8%
2002 4,087 1,853 828 6,768 69 1.0%
2003 4,264, 1,930 864 7,058 83 1.2%
2004 4,448 2,008 902 7,358 106 1.4%
2005 4,641 2,086 941 7,668 126 1.6%
20060 4,859 2,166 985 8,010 135 1.7%
2007, 5,088 2,237 1,031 8,356 144 1.7%
2008 5,328 2,332 1,080 8,740 154 1.8%
2009 5,579 2,418 1,131 9,128 165 1.8%
2010 5,841 2,508 1,184 9,533 178 1.9%
2011 6,116/ 2,600, 1,240 9,957 194 1.9%
2012 6,404 2,697, 1,298 10,399 211 2.0%
2013 6,706/ 2,796] 1,359 10,862 228 2.1%
2014 7,022 2,900, 1,423 11,345 246 2.2%
2015 7,352 3,007, 1,490 11,850 265 2.2%

In addition to the above, better CNS and automation capabilities will provide more flexibility for
controllers to grant pilot requests (e.g., for altitude changes) and will enable much faster
responses by controllers. These benefits were not captured in the simulation model.

A number of factors could affect the level of benefits accrued. For example, higher levels of
traffic or more rapid SATCOM/Data Link equipage would increase benefits. By contrast, lower
levels of oceanic traffic, the introduction of more efficient aircraft, or delays in the reduction of
aircraft separation minima would reduce benefits attributable to ATC improvements.

54 Emissions

The climb-out and cruise phases of flight used for emission calculations (illustrated in Figure
5-5) are different from those used for conventional phases of flight. This is due to the fact that
emission dissipation acts differently closer to the ground than higher in the atmosphere.
Therefore, the climb out phase is considered to be from 1,000 feet to 3,000 feet instead of
continuing until the aircraft levels off. In addition to the change in climb out altitude, the cruise
indices are separated into two altitude levels (0-9 km and 9-13 km) to reflect more accurately the
difference in emissions (due to changes in pressure and temperature) between lower and higher
cruise levels.
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Figure 5-5. Phase of Flight (Emissions)
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FAA-AEE and ICAO provided the agorithm for converting fuel burned to emissions of gases.
The data sources and equations provide a means to calculate the emissions of gases from surface
to 3,000 feet. The Landing and Take-Off (LTO) Cycle is in accordance with Environmental
Protection Agency (EPA) guidance. NASA and the Boeing Aircraft Company provided data and
eguations for calculating emissions of gases above 3,000 feet. In order to convert fuel burn into
emissions, the following emissions formula® was used.

Emissions (Ilbs) = Time (min.) * Fuel Flow (1000 Ibs./min.) * Emission Index (Ibs.
emission/1000 Ibs. fuel)

One of the main factors in the equation above is the emission index. The emission index is a
function of the engine type, phase of flight (or engine thrust), and pollutant. The emission indices
are based on information provided by the engine manufacturers and documented by the FAA and
ICAO. Theseindices (which are referred to as "ICAO indices') were used in the calculations for
emissions released during takeoff, climb out, approach, and taxi/idle. (See Appendix K for ICAO
Indices.)

However, because the ICAO indices are available only for takeoff, climb out, approach, and
taxi/idle, they do not represent emissions above 3,000 feet. Therefore, under contract with
NASA, Boeing developed indices for the cruise phase of flight incorporating the ICAO indices
and severa other factors. These indices (referred to as the "Boeing Method #2 indices’) were
used to calculate emissions in the cruise phase of flight. If a Boeing Method #2 index was not
available for a specific engine type, the ICAO approach index was used in its place® (See
Appendix K for Boeing Method #2 Indices.)

* Source: Procedures for Emission Inventory Preparation, Volume IV, Mobile Sources, EPA, Ann Arbor, MI, 1992.
® |CAO approach indices were used for cruise indices when Boeing indices were not available, as recommended by
Steve Baughcum and Steven Henderson from Boeing.
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Because the emission indices are engine specific, it was necessary to map the aircraft types to
specific engine types. (See Appendix H for Cross Reference to Engines) The first step in the
mapping process was to map all of the aircraft types from the scenarios to known aircraft types
using the characteristics of the aircraft (i.e., size, jet vs. turboprop, number of engines, etc.). In
many cases, the aircraft types were the same. In the case of an unknown aircraft type, it would be
mapped to a Cessna Citation. Once the aircraft types were assigned, the default engine for each
aircraft type was extracted from both the ICAO document and the Boeing Method #2 document.
When there was no default engine specified in either document, the default engine from Emissions
and Dispersion Modeling System (EDMS) was used. Once the default engine was determined,
the appropriate emission index could be used for each aircraft type.
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SUMMARY

Section

A summary of the daily fuel and emission calculations for each year of the baseline and enhanced
scenariosis shown in Table 6-1, and depicted graphically in Figure 6-1.

A comparison of the baseline and enhanced scenarios in 2015 provided the daily fuel and emission
savings resulting from NAS Modernization. Fuel savings exceeded 24.3 million Ibs., of which
17.4 million were due to more efficient trajectories, over 5.7 million were due to reduced airborne
delay, and the remaining one million lbs. derived from reduced surface delay. The emission
savings resulting from reduced fuel burn in the various phases of flight were 9.9% for NOXx,
12.7% for CO, and 18.0% for HC, as shown in Table 6-1 and depicted graphically in Figure 6-1.

Table 6-1. Fuel and Emission Savings (000 Ibs.)

Baseline Case CNS/ATM Improvements

Year | Mode Fuel NOx  CO _ HC Euel | nox Co | HC

1996 |Total 305,805 3,712 3,772 754
Above 3000 | 253,195 3,100 2,926 569
Below3000 | 33,380 547 200 19
Surface 19,231 65 647 166

2005 |Total 351,064 4708 4373 854 339240|-3.60] 4.377]-7.0%| 3.974] -9.1%| 758/-11.2%
Above 3000 | 292,604 3,935 3,431 657| 280,656 3,609 3,041 563
Below 3000 | 38,346 702 195 19] 37,824 698 191 18
Surface 21,013 72 747 1771 20,759 71 742 176

2010 |7otal 380,176 5126 4,607  919| 359.263|-5.500] 4,636/-9.5%| 4,059|-11.0%| 773/-15.9%
Above 3000 | 317,224 4292 3595 713| 297,424 3,810 3,074 572
Below 3000 | 40,414 757 194 19] 40,041 752 192 18
Surface 22,538 77 817 188 21,797 75 793 183

2015 |7otal 399,157 5,399 4,706  937] 374,953|-6.1%| 4,867]-9.99% 4.109/-12.7%] 768|-18.0%
Above 3000 | 333,192 4,513 3,666 727| 310,633 3,996 3,110 568
Below 3000 | 42,756 806 198 19] 42132 795 195 19
Surface 23,209 80 842 191 22,188 76 804 182




Figure6-1. Fuel and Emission Savings
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6.1 Annualization

The study was based on a representative day in the NAS, Tuesday, November 12, 1996. Results
were then extended to annua savings. Multiplying the results by 365 would give annualized
results only if traffic demand on all days in the year were comparable. However, traffic demand
varies by day of the week and season. An anaysis of the weekday and seasona demand
variations for 1996 resulted in a conversion factor of .96. This was primarily because the
weekend traffic demand is less than that for a weekday. Daily results from the analysis were
extended to annual savings in fuel and emissions by multiplying by 365 * .96. See Table 6-2
below.

Table 6-2. Annual Savingsin Millions of Pounds

Phase of Flight Fuel NOx CO HC
Above 3,000 9,683 204.3 197.1 56.7
Below 3,000 219 4.0 11 0.1
Surface 358 1.2 13.2 3.1

Total 10,259 209.5 211.4 59.9

% Savings 6.1% 9.9% 12.7% 18.0%
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6.2 Conversion of Fuel to Dollars

Economic savings were not the principle objective of this study; however, they are frequently of
interest in evaluating investments such as CNS/ATM enhancements. In order to convert the fuel
savings to dollars, the fuel was first converted from pounds into gallons by dividing by a factor of
6.7 for air carriers and military, and a factor of 6.0 for GA. Gallons of fuel saved were then
multiplied by cost per gallon to determine the annual cost savings to users of the airspace system.
ATA provided the FAA with cost of fuel and fuel consumption figures for al the major air
carriers, national and large regional, over the last year. From this information, it was determined
that the cost per gallon of fuel for air carriers, including air taxis'commuter, ranged from $0.51 -
$0.68. An average of $0.60 was used in the analysis. Using fuel price information from AirNav
and a sampling of GA pilots, it was determined that the cost per gallon of fuel for GA ranged
from $1.37 - $3.95, with a national average of $2.08 used in the analysis. From this, the annual
savings in 2015 were shown to be $1.0 B (in 1998 dollars). See Table 6-3 below.

Table 6-3. 2015 Annual Savings (in millions of 1998 $)

Air GA Total
CarriersMil
Lbs. of Fuel Savings 9,913 346 10,259
Gallons of Fuel Savings 1,480 58 1,537
Dollars of Savings $888 $120 $1,008
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Section

CONCLUSION

Fuel conservation and environmental protection have
been long standing U.S. national priorities. The
findings from this study indicate that Free Flight
capabilities provided by planned CNSATM
enhancements in the NAS Architecture clearly
contributeto therealization of these national goals.

The key finding from this study indicates that aircraft flying in U.S. airgpace could potentialy
reduce annual fuel burn by about 10 billion Ibs. in the year 2015. This estimated fuel savings in
effect represents a 6% reduction in the amount of fuel that would have been burned without NAS
modernization. The fuel saving results in corresponding reductions of over 209 million Ibs. of
NOx, 211 million Ibs. of CO, and 59 million lbs. of HC, representing reduced emission levels of
9%, 12% and 18%, respectively.

The fud savings, resulting from more fuel-efficient trgjectories, wind routes, and more efficient
traffic handling capabilities, is estimated to provide an economic fuel benefit of about $1.0B (in
1998 dollars) in 2015 to the airspace users. On top of this economic fuel benefit potential, airlines
also will experience other operating cost savings associated with reduced delays and more
efficient flight paths resulting from the CNSATM improvements.

In general, this study has shown that there are positive environmental and economic benefits to be
realized with the planned improvements in CNS/ATM capabilities by the FAA in support of Free
Flight initiatives. The estimated savings in fuel to users and reduced emissions to society are
considerable. Modernizing the NAS thus benefits not only the airspace users, but aso the
environment.
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Joe Richie FAA/ACT-520

Joe Smith SETA

Dave Chin SETA

Donna Middleton SETA

Arthur Tastet SETA

Mark Kipperman SETA

Marie Pollard SETA

Madelyn Harp SETA

Stephane Mondoloni CSS|

Willie Weiss CSSl

Bill Colligan CSS|

Howard Wesoky NASA

Mark Guynn NASA/LaRC

Monica Hughes NASA/LaRC

Mike White CAASD

Howard Aylesworth AlA

Michael Wascom ATA

Heather Miller ATA (Dyer Ellis&
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Julie Ellis FEDEX

John Begin NWA

John Buscher UAL
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Appendix B: Detailed Assumptions
(Detailed assumptions used within the study)

Paragraph 3.2.3.1  Airport Improvement Plan Physical Airport I mprovements

1. Maximum arrival capacity will increase at 16 of the 80 modeled airports during
the 1996 to 2005 time frame.

2. Maximum arrival capacity will increase at 7 additional airports by 2010.

3. There are no additional AIP improvements anticipated between 2010 and 2015.

Paragraph 3.2.3.2  Air Traffic Control Procedural Improvements

1. All procedural improvements implemented by 2010 were considered to be in
effect at 2015.

Paragraph 3.2.4 Fleet Mix

1. When forecasting the future fleet mix, the proportion of U.S. aircraft in the world
fleet will remain constant.

2. The percentage of each aircraft type in each class of aircraft in the fleet mix will
remain the same in the future.

3. 1996 fleet values were obtained by interpolating between the 1995 value and 2005
value assuming a constant increasing (or decreasing) rate between those years.

Paragraph 4.0 Data Preparation

1. The basdline scenario assumes growth in traffic, changes in fleet mix, and
continuous support of airport and procedural improvements.

2. The enhanced CNS/ATM scenario includes the same assumptions used for the

baseline scenario and the phasing in of new technologies and capabilities.
Paragraph 4.2 Assignment of Aircraft Types

1. New aircraft were added to the list by assuming that they would fly the same
distribution of stage lengths as an aircraft in the same category.

2. New aircraft would fly the same number of legs per aircraft per day as smilar
aircraft.

Paragraph 4.5 Assignment of Trajectories- Enhanced Scenario

1. Aircraft performance constraints such as maximum thrusts, speed, and others

were considered constraint variables in creating flight trajectories.

2. The SUA availability and the activities around SUA were held constant.

3. For 2005, flights flying less than 1,000 nmi had their distances reduced (direct
routing) when operating at flight level 240 and above.
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4. For 2005, flights flying greater than 1,000 nmi were optimized for minimum fuel
when operating at flight level 240 and above.

5. For 2010 and 2015, flights flying less than 1,000 nmi had their distances reduced
(direct routing) when operating at 15,000 feet and above.

6. For 2010 and 2015, flights flying greater than 1,000 nmi were optimized for
minimum fuel when operating at 15,000 feet and above.

Paragraph 5.1.1.1  Aircraft with Performance Data

1. In order to compute the fuel consumed by a flight, the weight of the aircraft at
landing was estimated by assuming a passenger load factor of 70% and landing
with 45 minutes of reserve fuel.

2. The maximum number of passengers on board was an average across the industry.

Paragraph 5.1.1.2  Aircraft without Performance Data

1. The weight of the aircraft at landing was estimated from the maximum allowable
takeoff weight for the aircraft.
2. It was assumed that there would be a constant specific impulse and that the

aircraft operated at a roughly constant lift-to-drag.
Paragraph 5.2.1 Fuel Burn

1. For al flights arriving within the CONUS, the same formula was used except that
the delay time was always set to zero.
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Appendix C: Modelsand Tools'

This appendix describes the various models and tools used to support the CNS/ATM
Enhancement study. The tools are listed in alphabetical order.

Emissions and Dispersion M odeling System (EDM S)?

EDMS is a combined emissions and dispersion model for assessing air quality at civilian
airports and military air bases. The FAA in cooperation with the US Air Force developed
the model. The model is used to generate an inventory of emissions generated by aircraft
operations at the airport and to calculate pollutant concentrations in this environment.

Today, EDMS is the FAA-preferred model for air quality assessment at the airport and
air bases. It isone of the few air quality assessment tools specifically engineered for the
aviation community. EDMS includes emissions and dispersion calculations, a database
of emission factors for aircraft, ground support equipment, and reporting module.

ETMS Parser

The ETMS Parser is one component of the National Airspace Resource Investment
Model (NARIM). The tool is used to parse raw Enhance Traffic Management System
(ETMYS) data and output formatted data. The ETMS data consist of messages received
from different centers in the NAS. The data falls into two categories, including flown
and filed flight information. The filed and flown messages are used to piece together
flight information including aircraft 1D, aircraft type, origin and destination, and planned
and flown trgjectories. The result from the parser is a clean and formatted data set that is
used as input into the FDG, NASPAC, and OPGEN.

Future Demand Generator (FDG)?

The FDG is one component of the NASPAC model. The tool is used to grow future
traffic based on today's traffic level and projected growth rate. The FDG uses the Fratar
algorithm to forecast future scheduled traffic. The Frataring agorithm is a trip
distribution technique that applies an iterative process to scae up the current
origin/destination matrix according to the forecast year growth factor outlined in the
TAF. The result of the Frataring algorithm is a scaled-up origin/destination matrix that
contains the future number (the current number plus future increment) of scheduled
flights from each origin to each destination.

The origin/destination matrix of current flights is subtracted from the Fratared
origin/destination matrix to produce an origin/destination matrix of only the future
flights. The origin/destination matrix of future flights contains the number of future

! This appendix was developed by Doug Baart (Tech Center/ACT-520) and Diana Liang (FAA/ASD-400).
2 Source — Emissions and Dispersion Modeling System Reference Manual; FAA; April 1997
3 Source — Design of NASPAC Simulation Modeling System; David Millner; MITRE/CAAS; June 1993
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scheduled flights from each origin to each destination that are to be generated by the
Future Demand Generator. This matrix is an input to an algorithm that schedules these
future flights and strings them together into aircraft itineraries.

The scheduling algorithm breaks the day into discrete time dlots (e.g., 5 minutes) and
assigns a value to each dot based on the current traffic congestion at the departure and
arrival airports. The most valuable dots are those that are near current traffic peaks and
that are not above capacity. Generally future flights are scheduled near existing traffic
peaks. Average en route and turnaround times vary by aircraft class (i.e., jets and
propeller-driven) and are used in the itinerary building logic.

The process for generating future unscheduled traffic is analogous to the scheduled traffic
generation process described above. The differences are pointed out here. One difference
is that the input data is produced from Host Z data. It contains records for the
unscheduled IFR flights for a particular day. Another difference between the scheduled
and unscheduled processes is in the airports at which traffic growth is forecast. The
origin/destination airports, for which unscheduled IFR traffic growth is forecast, are
approximately 400 airports that currently have the largest number of unscheduled IFR
operations.

NAS Performance Analysis Capability (NASPAC)

The NASPAC SMS is a discrete-event simulation model that tracks aircraft as they
progress through the NAS and compete for ATC resources. NASPAC evaluates system
performance based on the demand placed on resources modeled in the NAS and records
statistics at 72 of the busiest airports plus eight associated airports. NASPAC simulates
system-wide performance and provides a quantitative basis for decision-making related to
system improvements and management. The model supports strategic planning by
identifying air traffic flow congestion problems and examining solutions.

NASPAC analyzes the interactions between many components of the ATC system and
the system reaction to projected demand and operational changes. The model is designed
to study nation-wide system performance rather than localized airport changes in detail;
therefore, airports are modeled at an aggregate level. The model shows how
improvements to a single airport can affect other airports in the NAS through the
propagation of delay. An aircraft itinerary may consist of many flight legs that an aircraft
will traverse during the course of a day. If an aircraft is late on any of its flight legs,
successive flight legs may be affected. This is the way the model captures the rippling
effect of passenger delay. The model does not reroute traffic or impose speed changes to
flights because of adverse weather.

NASPAC records two different types of delay, passenger delay and operationa delay.
Passenger delay, which is not evaluated in this analysis, is the difference between the
scheduled arrival time and the actual arrival time as smulated by NASPAC. Operational
delay isthe amount of time that an aircraft spends waiting to use an ATC system resource
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Key output metrics recorded in the model include delay and throughput at airports,
departure fixes, arrival fixes, restrictions, and sectors. This reporting is done system-
wide and at all modeled airports. Operational delay consists of airborne and ground
delay. Airborne operational delay is the delay that a flight experiences from competing
for airborne ATC resources. Ground operational delay accumulates when an aircraft is
ready to depart but has to wait for a runway to take off. It aso occurs when airfield
capacity limitations prohibit the aircraft from landing. Operational delay contributes to
passenger delay and is assigned to the airport to which the flight is destined. Sector entry
delay occurs when the instantaneous or hourly aircraft count parameters for that sector
are exceeded. Sector capacities for each of the 756 sectors modeled were provided by
FAA's Air Traffic organization.

Optimized Trajectory Generator (OPGEN)

OPGEN is another component of the NARIM system. The tool is used to produce 4-D
flight trajectories base on the user objectives. The user objective may be to create flights
that are optimized for wind and special use airspace (SUA) and use minimum fuel. The
input requirement includes wind aloft information, aircraft performance, SUA activities,
origin and destination and any operation procedures and cutoff level. The model uses a
genetic algorithm for searching the optimized flight trgectory that meets the user
requirements. The output is a formatted file with aircraft information, ID, origin and
destination, interval latitude, longitude, altitude, and speed. The output from OPGEN can
then be used as input to NASPAC or used to calculate fuel burned.
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Appendix D: Airport Capacity Impacts of Airport and CNSATM
I mprovement

This report describes how airport capacities were estimated for the study “The Impact of
CNS/ATM Enhancements on Emissions’ performed by and for ASD-430 in February through
April 1998. The National Airspace System Performance Analysis Capability (NASPAC)
Simulation Modeling System (SMS) was used to model two cases using these capacities. a
baseline case and a case that included the effects of future communications, navigation, and
surveillance (CNS) and Air-Traffic Management (ATM) improvements. The following
scenarios were modeled:

Year Modeled Cases Modeled
1996 Baseline Case -
2005 Baseline Case CNS/ATM Improvement Case
2010 Baseline Case CNS/ATM Improvement Case
2015 - CNS/ATM Improvement Case

l. BASELINE-CASE AIRPORT CAPACITIES

The effects of physical airport improvements and new ATC procedures that do not require
CNS/ATM improvements are reflected in the baseline capacities. Because no baseline case was
analyzed for 2015, these baseline improvements were projected only to the year 2010.

A. Physical Airport Improvements

Physical changes to an airport can have a substantial impact on airport capacity. The effect can
range from opening a new airport to adding new taxiways that streamline air-traffic operations.
Runways can be extended to air-carrier length, allowing the airport to accommodate larger
aircraft. Airport capacity can sometimes be increased by adding to the number of gates or
adding room for aircraft to maneuver in the ramp area. However, the change that generally has
the greatest impact on capacity is adding a new runway.

New runways are commonly built paralel to one or more existing runways so that parallel
streams of traffic can be flown into and off of each runway. Separation between runways is
critical; if two runways are built too close together, their operation under Instrument Flight Rules
(IFR) may effectively be equivalent to a single runway. As aresult, most new runways are built
a least a half-mile apart (as measured from centerline to centerline). In IFR, dependent,
staggered parallel approaches can be flown to parallel runways that are at least 2,500 feet apart,
generating a 40-to-45 percent increase in arrival capacity over the capacity of asingle runway. |If
paralel runways are at least 3,400 feet apart (3,000 feet apart for angled approaches) and a
Precison Runway Monitor (PRM) is in use, independent paralel approaches can be flown in
IFR, doubling the capacity of a single runway. (If no PRM is in use, 4,300 feet are required
between runways to operate independent parallel approachesin IFR.)

! This appendix was developed by Dan Citrenbaum (FAA/ASD-400) and Willie Weiss (CSSI, Inc.).
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There are other options that will increase airport capacity if there is insufficient space for an air-
carrier length runway to be built at a separation that would allow independent parallel operations
in IFR. In some cases, a shorter runway, designed for commuter and general-aviation aircraft,
might be built at a separation that would allow independent operations in IFR, or an air-carrier-
length runway might be built considerably closer to another runway. This runway would allow
an independent stream of arrivals only under Visual Flight Rules (VFR) and is a viable
aternative at generally fair-weather airports.

Table 1 shows the physical improvements that are expected to increase airport capacity during
the 1996-2015 time frame among the 80 airports modeled in detail in NASPAC. Because arrival
capacity is generally more restrictive than departure capacity, the increase in maximum arrival
capacity is cited as a measure of the capacity increase. (Another reason for citing maximum
arrival capacity is that many airports generally operate at or near maximum arrival capacity,
again, because it is tends to be lower than maximum departure capacity.) Maximum arrival
capacity will increase at 16 of these 80 airports during the 1996-to-2005 time frame. Capacity
will increase at 7 additional airports by 2010. For the 1996-to-2005 time frame, the size of the
increase is related to the number of runways in use in 1996 and is relative to the airport capacity
in 1996, as well as to local ATC practices. (For the 2006-to-2010 time frame, the size of the
increase relative to the airport capacity in 2005.) Also, note that the increase in capacity listed is
for the effect of the new runway only; any further capacity increase due to CNS/ATM
improvements or procedures that depend on CNSATM improvements is not included in this
table. (The effects of those improvements are described later in this report.)

Table 1. Physical Airport I mprovements Projected for 1996 - 2015

Increasein Hourly
Maximum Arrival

Capacity % Weather*
VMC% |IMC% <Viz Mins
Airport LoclD | Improvement Add'l Ops | Add'l Ops | < 1000/3
1996 to 2005

Atlanta ATL Commuter runway 50% 15% 30.6%
Hartsfield without PRM 45 13 12.5%
Austin AUS | New airport (Bergstrom | 0% 100% 28.9%
AFB conversion) 0 23 12.2%

*The percentage of the airport’s weather below visual minimums and below a 1,000-foot ceiling or
3-miles vigibility (in italics) were derived from the airport’s visual approach minimums and the
National Climatic Data Center’s International Station Meteorological Climate Summary data set.
Each value in the data set are based on the average of many years of observations; values for the top
10 airports, for example, are based on an average of 40 years of observations. In the analysis, IMC
operations were assumed to be flown below visual minimums. Because visual minimums vary by
airport, the percent westher below 1,000/3 is included as a consistent basis of comparison of IMC
weather between airports.

Charlotte CLT Parallel runway 45% 21% 24.2%
Douglas (dependent in IMC) 35 14 12.0%
Cincinnati CVG | New pardld 50% 50% 17.4%
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Increasein Hourly
Maximum Arrival

Capacity % Weather*
VMC% |IMC% <VizMins

Airport LoclD | Improvement Add'l Ops | Add'l Ops | < 1000/3
(independent triple IMC | 33 30 11.9%
approaches)

Cleveland CLE Close parallel runway 60% 0% 23.7%

Hopkins 24 0 11.5%

Dallas-Fort DFW | New pardle runway 25% 33% 18.1%

Worth will enable quadruple 35 35 6.0%
IMC apps.

Detroit DTW | New parale runway 39% 33% 39.6%

Metropolitan will enable triple IMC 35 22 12.2%
apps.

Louisville SDF New parallel 100% 100% 22.3%
(independent parallel 35 32 7.6%
approaches)

Miami MIA Close pardlél (increased | 0% 0% 5.2%
VFR departure capacity) | 0 0 1.7%

Minneapolis | MSP | New runway 15% 21% 27.6%

10 10 8.4%

New Orleans | MSY | New paradl€ 10% 100% 22.6%
(independent 6 33 8.7%
approaches)

Orlando MCO | New paralléel 47% 50% 24.6%
(independent triple 35 29 5.8%
approaches)

Philadelphia | PHL New staggered parallel 66% 44% 18.3%
(dependent approaches | 37 14 13.0%
without PRM)

Phoenix PHX New paralle 0% 100% 2.8%
(independent parallel 0 32 0.3%
approaches)

Sesttle SEA New paralel (dependent | 0% 46% 30.5%
parallel approaches) 0 12 10.5%

St Louis STL New offset parallel 12% 2% 35.6%
without PRM 9 1 9.8%
(dependent parallel
approaches)
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Increasein Hourly
Maximum Arrival

Capacity % Weather*
VMC % IMC % <VizMins
Airport LoclD | Improvement Add'l Ops | Add'l Ops | < 1000/3

*The percentage of the airport’s weather below visual minimums and below a 1,000-foot ceiling or
3-miles vigibility (in italics) were derived from the airport’s visual approach minimums and the
National Climatic Data Center’s International Station Meteorological Climate Summary data set.
Each value in the data set are based on the average of many years of observations; values for the top
10 airports, for example, are based on an average of 40 years of observations. In the analysis, IMC
operations were assumed to be flown below visual minimums. Because visual minimums vary by
airport, the percent westher below 1,000/3 is included as a consistent basis of comparison of IMC
weather between airports.

2006 Through 2010

Baltimore- BWI New parallel runway 33% 71% 14.0%
Washington 17 20 9.0%
Denver DEN | New parale runway 29% 14% 8.3%
(6th runway) 35 15 5.3%
Jacksonville | JAX New paralle 33% 100% 32.3%
(independent IMC 16 28 9.4%
approaches)
LosAngeles | LAX New, close paralléel 42% 0% 31.1%
International runway 35 0 15.8%
Pittsburgh PIT New paralel runway 40% 50% 25.6%
(triple independent IMC | 34 32 13.6%
apps.)
Tampa TPA New, close paralléel 0% 6% 8.3%
runway 0 4 5.4%
Washington | IAD New paralle runway 14% 0% 27.6%
Dulles 13 0 11.3%

*The percentage of the airport’s weather below visual minimums and below a 1,000-foot ceiling or
3-miles vigibility (in italics) were derived from the airport’s visual approach minimums and the
National Climatic Data Center’s International Station Meteorological Climate Summary data set.
Each value in the data set are based on the average of many years of observations; values for the top
10 airports, for example, are based on an average of 40 years of observations. In the analysis, IMC
operations were assumed to be flown below visual minimums. Because visual minimums vary by
airport, the percent wesather below 1,000/3 is included as a consistent basis of comparison of IMC
weather between airports.

Table 1 shows a smaller-than-expected increase in IFR capacity due to the new runways at ATL,

PHL, and STL. This is because the new runways were built at a separation designed to take
advantage of the Precision Runway Monitor (PRM). This is an example of the interaction

between CNS/ATM improvements and physical improvements (included in the CNS/ATM
Improvements cases but excluded from the baseline-case improvements described above).
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B. ATC Procedural | mprovements

Changes in ATC procedures can adso have a significant effect on airport capacity. New
procedures can increase the utilization of existing runways, or they can work in concert with new
runways and with CNS/ATM improvements.

In the future, it is expected that converging IFR approaches will be added to independent parallel
IFR approaches. This procedure will greatly increase capacity at airports with the appropriate
configurations, such as Chicago O'Hare or Washington Dulles.

Independent converging IFR approaches can be flown to converging runways that have sufficient
separation between runway thresholds, or to airports without sufficient separation, but at higher
approach minimums. This procedure substantially increases IFR capacity at airports without
paralel runways.

Dependent Converging Instrument Approaches (DCIA) alow controllers to direct two dependent
streams of arriving aircraft to converging and even intersecting runways. Consecutive arrivalsin
each stream are staggered to separate the aircraft. An ARTS modification, called the Converging
Runway Display Aid, enables controllers to maintain the correct separations.

In some cases, the addition of a navaid can increase airport capacity by alowing a new
procedure. At Portland, a recently added Instrument Landing System (ILS) alows controllers to
use dependent (staggered) parallel approaches.

Table 2 shows the procedura improvements predicted for airports modeled in detail in NASPAC
for the 1996 - 2010 time period.

There were no known, new procedures beyond the 2010 time frame that could be included in this
anaysis.
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Table 2. Procedural Airport Improvements Projected for 1996 - 2010

Increase in
Hourly Max.
IMC Arrival % Weather*
Capacity in % <VizMins
Airport LoclD | Improvement and < 1000/3
Add'| Ops
Baltimore- BWI DCIA 71% 14.0%
Washington 20 9.0%
Chicago O'Hare | ORD | Paralld plus converging 44% 39.8%
|FR approaches 30 10.9%
Las Vegas LAS Independent converging 44% 1.2%
|FR approaches 16 0.3%
Newark EWR | DCIA 25% 17.7%
9 11.8%
Portland PDX Dependent parallel 45% 33.0%
approaches 14 6.7%
San Francisco SFO DCIA 14% 25.9%
5 8.7%
Tampa TPA Parallel plus converging 38% 8.3%
|FR approaches 18 5.4%
Washington IAD Parallel plus converging 43% 27.6%
Dulles |FR approaches 25 11.3%
*The percentage of the airport’s weather below visual minimums and below a 1,000-foot ceiling
or 3-milesvisibility (in italics) were derived from the airport’s visual approach minimums and the
National Climatic Data Center’s International Station Meteorological Climate Summary data set.

. CNSATM-IMPROVEMENTS CASE AIRPORT CAPACITIES

CNS/ATM improvements tend to increase capacity incrementally at the airports they affect.
They may also work in concert with new runways. For example, an airport expecting a PRM can
build a parallel runway at a separation of as little as 3,400 feet, rather than the standard 4,300-
foot separation. This saves the airport operator land-acquisition costs and minimizes the
environmental and noise impacts of the new runway.

A. Precision Runway M onitor

The PRM includes a high-update-rate, high-resolution radar and high-resolution, color display.
FAA procedures alow straight-in, ssmultaneous Instrument Flight Rules (IFR) approaches to
parallel runways with centerlines separated by as little as 3,400 feet if a PRM isin use. (The
minimum distance between runway centerlines required for simultaneous IFR approaches is
4,300 feet if a PRM is not in use.)) Simultaneous approaches to runways with centerlines
separated by as little as 3,000 feet may be conducted using a PRM if 2.5-degree angled
approaches are flown to one of the runways.

PRMs increase airport capacity because they enable simultaneous approaches to parallel runways
where those approaches would otherwise not be possible. PRMs are being installed at five
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airports (Table 3) and will increase capacity over and above the capacity increase due to a new
runway, where one is being built. (The capacity increases due to PRM shown in Table 3 vary
because they are relative to the capacity of the best existing configuration. That is, if the best
existing configuration has a high capacity, the relative increase due to the PRM will not be as
large as it would be compared to a low-capacity configuration. However, even at airports that
aready have a high-capacity IMC configuration, a PRM may greatly increase overall airport
capacity by supplying another high-capacity IMC configuration.)

New runways are being built a¢ ATL, PHL, and STL to take advantage of the PRM. Existing
runways will be used with PRMs at JFK and MSP. (Note that the capacity increases shown in
Table 3 for ATL, PHL and STL do not include the increase due to the new runway; that increase
isshownin Table 1.)

A PRM installation also implies a new procedure, in that PRM use alows an airport to operate
independent, instead of dependent, parallel IFR approaches.

Table 3. Estimated Capacity | mprovement Due Solely to PRM

Increasein Hourly
Max. IMC Arrival Expected % Weather*
Capacity in Oper ational <VizMins
Airport LoclD % and Date < 1000/3
Add’'| Ops
Atlanta Hartsfield ATL 18% 2002 30.6%
18 12.5%
Minneapolis MSP 35% September 27.6%
17 1998 8.4%
New York JFK JFK 20% August 18.4%
10 1999 12.1%
Philadel phia PHL 39% 2000 18.3%
18 13.0%
St Louis STL 40% 2003 35.6%
19 9.8%

B. Center-TRACON Automation System (CTAYS)

CTAS is a decision-support system designed to help air traffic controllers and managers
accurately predict aircraft arrival trgjectories in the terminal area. CTAS also enables controllers
to more accurately deliver aircraft over the runway threshold, reducing excess spacing buffers
between flights and thus increasing airport capacity.

The CTAS benefits applied to those airports dlated for CTAS were estimated from studies of two
CTAS elements: the Passive Final Approach Spacing Tool (Passive FAST) and the Traffic
Management Advisor (TMA).

In demonstrations at the terminal area surrounding Dallas-Fort Worth International Airport
(DFW), Passive FAST decreased the mean separation between arriving aircraft through
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improved runway load balancing, more accurate aircraft sequencing, and reduced variability in
longitudinal separation between aircraft. Controllers aided by Passive FAST were better able to
anticipate the characteristics of the upcoming arrival stream and to direct aircraft to the best
runway. This reduced delays to upstream aircraft and eliminated the need to redirect other
upstream aircraft. In a comparison of 20 Passive FAST and 26 baseline-case events, the mean
peak-period spacing between aircraft was 87.8 seconds for Passive FAST operations and 91.9
seconds for baseline operations, a spacing reduction of 4.1 seconds. Additionaly, Passive FAST
was found to decrease interarrival separation over the entire demand profile, from low demand to
arrival rushes. (These results are documented in “Center/TRACON Automation System Passive
Final Approach Spacing Tool (FAST) Assessment—Final Report,” 5 December 1996, Crown
Communications report number CTASDS-BAPRPT-002.)

TMA Time-Based Metering was aso demonstrated at DFW. TMA improved metering fix
accuracy and decreased threshold arrival stream gaps, thus reducing threshold separations. TMA
was shown to reduce the mean interarrival threshold spacing buffer by 2.75 seconds over the
baseline case. (This is documented in the briefing “CTAS Benefits Extrapolation First-Cut
Analysis, given to FAA staff by Tara Weldner, George Couluris, and George Hunter of Seagulll
Technology, Inc. on August 20, 1997. A report is not yet available.)

Experts with the CTAS program were consulted; they determined that these spacing reductions
(of 4.1 and 2.75 seconds) were both conservative and additive and applied to both Visua and
Instrument Flight Rules operations. However, they also determined that the 4.1-second
reduction due to Passive FAST could only be obtained at airports running 3 or more streams of
arrivals. It was estimated that only 0.25 of that reduction could be obtained at airports with less
than 3 arrival streams, and thus that value was added to the 2.75 seconds due to TMA at the
appropriate airports.

The CTAS program reported that these benefits will be available by the year 2005, and thus the
impacts they will have on airport capacity were included for the years 2005 and 2010. It is
important to note that these benefits decrease interarrival separations, leaving less time to release
departures. Thus, in the inputs to the NASPAC Simulation Modeling System, maximum arrival
capacity was increased, but minimum departure capacity was reduced. This had a significant
positive impact on airport delays despite the fact that the capacities satisfying 50/50
arrival/departure demand were generally unchanged.

To illustrate the relative improvement due to CTAS, Table 4 shows the estimated maximum IMC
arrival capacity improvement due to CTAS. (Capacity also increased in VMC; however, these
increases are similar to those shown in Table 4 and thus are not shown.)

Table4. Estimated Capacity Improvement Dueto CTAS
Increasein Hourly Maximum
IMC Arrival Capacity

No. of Arrival Number of
Airport LoclD Streams Per cent Additional Ops.
Atlanta ATL 3 1.7% 9
Boston BOS 2 1.9% 1
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Increasein Hourly Maximum
IMC Arrival Capacity

No. of Arrival Number of
Airport LoclD Streams Per cent Additional Ops.
Burbank BUR 1 2.9% 1
Charlotte CLT 2 8.8% 7
Chicago Midway MDW 1 3.2% 1
Chicago O'Hare ORD 2 5.1% 5
Cincinnati CVvG 2 4.4% 4
Cleveland CLE 2 2.0% 1
Dallas Love DAL 2 2.2% 1
Dallas-Ft. Worth DFW 4 7.1% 10
Denver DEN 3 7.4% 8
Detroit DTW 3 5.7% 5
Houston Hobby HOU 1 3.2% 1
Houston IAH 3 4.2% 3
I ntercontinental
John Wayne/ Orange |SNA 1 3.0% 1
Cnty.
LasVegas LAS 2 1.9% 1
Long Beach LGB 1 3.3% 1
Los Angeles LAX 3 4.4% 3
Louisville SDF 2 3.1% 2
Memphis MEM 2 4.0% 3
Miami MIA 2 3.0% 2
Minneapolis MSP 2 3.1% 2
Nashville BNA 2 3.6% 2
New Y ork LGA 1 2.9% 1
LaGuardia
New York JFK JFK 2 3.3% 2
Newark EWR 2 3.7% 2
Oakland OAK 2 3.3% 2
Ontario ONT 1 3.6% 1
Orlando MCO 3 5.7% 5
Philadelphia PHL 2 3.1% 2
Phoenix PHX 2 3.1% 2
Pittsburgh PIT 3 4.7% 3
Portland PDX 2 2.2% 1
Salt Lake City SLC 2 3.2% 2
San Diego SAN 1 3.1% 1
San Francisco SFO 2 2.5% 1
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Increasein Hourly Maximum
IMC Arrival Capacity
No. of Arrival Number of

Airport LoclD Streams Per cent Additional Ops.
Sedttle SEA 2 2.6% 1
St. Louis STL 2 3.0% 2
Washington Dulles  |IAD 3 6.0% 5
Washington National |DCA 1 2.9% 1
White Plains, NY HPN 1 3.3% 1

C. Integrated Terminal Weather System (ITWS) Terminal Winds Product

In prototype testing, controllers at Dallas-Fort Worth (DFW) used more accurate wind
predictions from the Termina Winds Product (TWP) to merge and sequence traffic more
precisely. They used the improved wind projections to pass requests for wind-specific
separations to upstream controllers, thus coordinating the longitudinal separations between
aircraft throughout the terminal area.

One example of the benefits of the TWP is when a strong northwest wind is blowing at altitude
at the northwest arrival gate (“Termina Winds Operationa Benefits for Dallas/Ft. Worth,” 8
March 1996, MIT Lincoln Labs Memorandum No. 43PM-Wx-0039). Controllers are required to
merge arrivals through that gate with arrivals through the southwest gate, where a crosswind
exists in these conditions. The aircraft must be merged at the base leg of the final approach to
runway 36L, and the large speed difference between aircraft approaching quickly through the
northwest gate and aircraft flying at nominal speed through the southwest gate makes it very
difficult for controllers to space and merge these aircraft in a way that produces optimal
separations on final approach. Using TWP, controllers can adjust the speeds and spacing of
aircraft approaching from the northwest gate, optimizing the separations on final approach for
36L and thus increasing airport capacity.

The result of these more-precise separations on final approach was an increase in airport capacity
estimated by DFW controllers at 2.5 additional arrivals per runway per hour in low-ceiling and
low-visibility conditions (“Integrated Terminal Weather System (ITWS) Termina Winds
Operational Benefits for New York City Airports,” 24 February 1997, MIT Lincoln Labs
Memorandum No. 43PM-Wx-0048). This estimate was then extrapolated to those airports slated
for ITWS ingtallations by increasing their maximum arrival capacity per arrival runway by that
amount. Table 5 shows the estimated increase in hourly maximum arrival capacity due to the
ITWS TWP.
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Table5. Estimated Capacity Improvement Dueto ITWS

Increasein Hourly
Maximum IMC
Arrival Capacity

Airport LoclD| No.of Arrival |Percent; No. of
Streams Add’l Ops.
Atlanta ATL 3 5.6% 7
Baltimore BWI 2 17.9% 5
Boston BOS 2 9.4% 5
Charlotte CLT 2 5.7% 5
Chicago Midway MDW 1 6.3% 2
Chicago O’'Hare ORD 2 4.9% 5
Cincinnati CVvG 2 5.3% 5
Cleveland CLE 2 9.8% 5
Columbus, OH CMH 2 11.6% 5
DadlasLove DAL 2 10.6% 5
Dallas-Ft. Worth DFW 4 6.7% 10
Dayton DAY 2 8.3% 5
Denver DEN 3 6.0% 7
Detroit DTW 3 7.5% 7
Ft. Lauderdale FLL 2 8.6% 5
Houston George Bush IAH 3 9.3% 7
Houston Hobby HOU 1 6.3% 2
Indianapolis IND 2 7.8% 5
Kansas City MCI 2 7.4% 5
Louisville SDF 2 7.6% 5
Memphis MEM 2 6.4% 5
Miami MIA 2 7.4% 5
Milwaukee MKE 1 6.3% 2
Minneapolis MSP 2 7.5% 5
Nashville BNA 2 8.8% 5
New Orleans MSY 2 8.1% 5
New York LaGuardia LGA 1 5.7% 2
New York JFK JFK 2 9.7% 6
Newark EWR 2 10.7% 6
Oklahoma City OKC 2 8.3% 5
Orlando MCO 3 7.6% 7
Palm Beach PBI 1 5.4% 2
Philadel phia PHL 2 7.6% 5
Phoenix PHX 2 7.6% 5
Pittsburgh PIT 3 10.4% 7
Raleigh-Durham RDU 2 10.6% 5
Salt Lake City SLC 2 7.8% 5
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Increasein Hourly
Maximum IMC
Arrival Capacity
Airport LoclD| No.of Arrival |Percent; No. of
Streams Add’l Ops.
St. Louis STL 2 7.4% 5
Tampa TPA 2 1.7% 5
Tulsa TUL 2 8.3% 5
Washington Dulles IAD 3 8.0% 7
\Washington National DCA 1 5.7% 2
Wichita ICT 2 8.6% 5

D. Weather Systems Processor

The Airport Surveillance Radar-Weather Systems Processor (WSP) is a lower-cost system
similar to ITWS that will supply some ITWS products to medium and smaller air-traffic-density
airports. Of all the NASPAC airports at which it may be installed, its effects on capacity were
only significant at LAX, where WSP is predicted to increase maximum arrival capacity by 7.0%.

E. Automatic Dependent Surveillance-Broadcast/Cockpit Display of Traffic Information
(ADS-B/CDTI)

The combination of GPS, ADS-B, and CDTI has the potential to enhance visual approaches and
thus increase airport capacity. ADS-B/CDTI may help pilotsin several ways:

Help them visually acquire traffic more quickly

Help them positively identify traffic

Provide a means of highlighting particular aircraft

Provide ground speed, closure rate, and/or ground-track information

All of these elements are likely to enhance the safety of visual approaches. And, if the traffic
display is reliable enough, pilots could use it to keep traffic electronically “in view” during poor-
visibility conditions. All of these elements may allow a reduction in the ceiling and visibility
requirements for visual approaches.

In the paper entitled “Potential ADS-B/CDTI Capabilities for Near-Term Deployment” (Mundra,
et a, June 16, 1997, The MITRE Corporation, for the FAA/EUROCONTROL ATM R&D
Conference), the authors discuss the potential reduction in the minimum ceiling and visibility
required for visual approaches into several major airports. The celling and visibility reductions
for those five airports (DFW, JFK, SEA, SFO, and STL) were used to modify the NASPAC
scenario days for the CNS/ATM scenarios in this analysis. Because this enhancement is unlikely
to be restricted to those five airports, the ceiling and visibility reductions were extrapolated to the
30 busiest airports, all of which are modeled in detail in NASPAC. The result of these
modifications to the scenario days is an increase the time visual approaches can be flown into
these airports.
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To modify the scenario days, the average reduction in ceiling and visibility were computed for
the five airports discussed in the paper described above. These average reductions (1,000 feet in
celling and 1.5 milesin visibility) were then applied to the visual-approach ceiling and visibility
minimums for the 30 busiest airports, with the exception of the five airports themselves. (The
reductions listed in the paper were used for those five airports discussed in the paper.) Celling
and visibility were not reduced to less than 1,000 feet and 3 miles.

To reflect the impacts in the NASPAC scenario days, the amount of time that an airport was in
Visual Meteorological Conditions (VMC) was increased to reflect the lowering of the visual-
approach minimums for flying. This was done by consulting a 30-to-45-year summary of airport
weather conditions, called the International Station Meteorological Climate Summary, obtained
from the National Climatic Data Center. The average percent of the time that the weather
exceeded the current visual-approach minimums was extracted from that data set for each of the
30 busiest airports. Then, the average percent of the time that the weather exceeded the reduced
visual-approach minimums was extracted from the data set and the difference in time was
computed for each airport. That difference in time was used to increase the time that each airport
ran visual approaches in the NASPAC simulation scenario days for the CNS/ATM case. The
NASPAC SMS was then executed for the CNS/ATM case using the revised scenario days.

Table 6 shows the estimated increase in VMC due to the enabling of “electronic VFR” by ADS
B and CDTI. The effect of thisincrease in VMC in the NASPAC scenario days was to increase
the amount of time that visual approaches were flown at airports, thus increasing airport
capacity. Note that, because visual-approach minimums vary by airport, the percent increase in
IMC dueto ADS-B and CDTI also varies by airport.
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Table6. Estimated Increasein VM C Dueto ADS-B/CDTI

Average Per cent Average Per cent
LoclD |Increasein VMC |Locl D Increasein VMC
ATL 3.4% MCO 3.1%
BOS 11.2% MEM 2.4%
CLT 3.9% MIA 2.1%
CVG 3. 7% MSP 2.9%
DCA 3.6% OAK 7.3%
DEN 1.9% ORD 5.8%
DFW 3.9% PDX 2.8%
DTW 8.9% PHL 4.1%
EWR 3.5% PHX 0.8%
IAD 13.2% PIT 8.0%
IAH 3.5% SEA 4.3%
JFK 2.6% SFO 6.5%
LAS 0.8% SLC 1.8%
LAX 2.4% SNA 2.5%
LGA 4.2% STL 2.7%

Because the increase in capacity due to ADS-B/CDTI manifests itself in an increase in the
amount of time an airport can operate visual approaches, rather than a direct increase in airport
capacity, it isimpossible to cite the size of the capacity increase here. However, the impacts of
that capacity increase on delays are reflected in the results of the NASPAC SMSruns. Itisalso
important to note that the percent VMC reflects not only weather, but also the visua approach
minimums for each arport. If an arport has high minimums, its percent VMC may be
considerably lower than the percent VMC for another airport with lower minimums.

F. Usng ADS-B/CDTI to Operate Simultaneous Parallel |FR Approaches

The combination of GPS (augmented using WAAS or LAAS), ADS-B, and CDTI may also be
used in the future to provide guidance for simultaneous independent parallel IFR approaches. In
effect, this combination of navaids may be used in the same way a PRM is used now for these
approaches. For this effort, it was assumed that runway centerlines must be separated by 2,500
feet for straight-in paralel IFR approaches to be flown to ILS Category | minimums. (Closer
separations may be possible using angled approaches, but these would most likely be to higher-
than-CAT | minimums.)
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Table 7 shows the airports that are likely candidates for this combination of navaids and
approaches.

Table 7. Estimated Capacity Improvement Using ADS-B/CDTI for
Independent Parallel Approaches

Increasein Hourly Maximum

IMC Arrival Capacity

Airport LoclD Per cent No. of Add’|
Ops.

Charlotte CLT 24% 22
Detroit DTW 13% 13
Nashville BNS 47% 29
Portland PDX 35% 16
Seattle SEA 44% 17

G. Usng WAAS or LAASfor Offset Approaches

Localizer/Distance Measuring Equipment (LDA) approaches are flown to some airports today
using an offset ILS localizer while aircraft fly a standard IL S approach to the paralel runway. In
the offset approach, the aircraft fly an approach to a localizer offset from the runway centerline
and then “sidestep” to the runway approximately 3 miles from the runway threshold. This type
of approach allows aircraft on parallel approaches to maintain separation until they are only a
short distance from the runway threshold. One example is the LDA approach to STL runway
12L.

Offset approaches could enable either dependent or independent IFR approaches to parallel
runways. However, it should be noted that these approaches can generally not be flown to ILS
CAT | minimums. This procedure could be duplicated by 2005, using WAAS or LAAS for
guidance. Table 8 shows the estimated increase in maximum arrival capacity at airports that are
candidates for this procedure.

Table 8. Estimated Capacity mprovement Using WAAS or LAASfor
Independent Parallel Approaches

Increasein Hourly Maximum

IMC Arrival Capacity
Airport Locl D Per cent No. of Add’| Ops.
Boston BOS 21% 9
Cleveland CLE 19% 8
Colorado Springs COS 100% 24
Newark EWR 20% 9
Fort Lauderdale FLL 100% 27

Note that the variability in the impact of these approaches is dependent on the existing airport
configuration and its capacity. If an airport has only a single approach in IMC, then adding these
approaches could double its capacity.
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1. COMPARISON OF CAPACITY IMPROVEMENTS

The following two tables list the estimated increase in maximum IFR arrival capacity for each
type of improvement. In Table 9, physical and procedural improvements are listed for the
baseline case. The capacity increase associated with each improvement excludes any
contribution by CNS/ATM systems.

Because some runways have been built with the PRM in mind, IFR capacity may increase only
dightly due to those runways if the scheduled PRM is not installed (a very unlikely prospect).
Also, close-parallel runways will not affect IFR capacity significantly. The effects of these two
types of new runways are not included in this chart so that the results are not skewed.

Table 9. Basdline Case Physical and Procedural | mprovements

I mprovement No. of Average Estimated Increasein

Affected | Max. Hourly IFR Arrival Cap.
Airports | Percent No. of Add’| Ops.

Physical Improvements 1997-2005

(excluding close parallels and 12 53% 22

runways designed for use with PRM)

Physical Improvements 2006-2010 6 40% 16

(excluding close pardlelsat LAX and

TPA)

Procedural Improvements 1996-2010 8 41% 17

Table 10 lists the estimated increase in maximum |FR arrival capacity for CNS/ATM
improvements. The PRM, ADS-B/CDTI paralel approaches, and WAASLAAS paralle
approaches are all similar types of improvements, in that each is associated with a new procedure
and a new type of surveillance. Each allows an airport to operate another independent stream of
IFR arrivals. These improvements provide a significant increase in capacity. However, ITWS
and CTAS, athough applicable at many airports, provide only an incrementa increase in

capacity.

Table 10. CNSATM Case | mprovements

CNS/ATM Improvements No. of Average Estimated Increasein

Affected | Max. Hourly IFR Arrival Cap.

Airports | Percent No. of Add’| Ops.
PRM 5 30% 16
CTAS 41 4% 3
ITWS 43 8% 5
ADS-B/CDTI Parallel Approaches 5 33% 19
WAAS or LAAS Parallel Approaches 5 52% 15
WSP 1 7% 6
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Appendix E: Fleet Mix*

The fleet mix used for this study was developed using data from NASA/LMI, ATA, ICAO, and
APO. The current fleet mix was compiled using data from NASA/LMI's Aviation System
Analysis Capability (ASAC) database and ATA input. Since the ASAC database has information
on passenger aircraft only, this data was augmented with information from ATA to account for
cargo aircraft. Using both of these sources, the baseline fleet for 1995 was obtained and then
extrapolated to 1996, 2005, 2010, and 2015. The future fleet mix does not assume incorporation
of advanced engine technologies resulting from ongoing research activities.

Table E-1. Sample 1995 Data from ASAC Database

Carrier Manufacturer Type Model Yr of 1st | Seats | Country | Engine | Engines | Serial # | Registration #
Delivery Maker

ALLEGHENY COMMUTER BRAD DHC8 DHC8-101 1984 37 USA PWC | PW120A | D8007 N801IMX
AIRLINES

ALOHA AIRLINES BOEING 737 737-200C 1985 110 USA PW [ JT8D-17A | 23292 N8924E
AMERICA WEST AIRLINES AIRBUS A320 A320-232 1995 150 USA IAE | V2527-A5 | DO0471 N901DA
AMERICA WEST EXPRESS BEECH 1900 1900D 1991 19 USA PWC [PT6A-67D| UE-002 N3YV
AMERICA WEST EXPRESS BEECH 1900 1900D 1991 19 USA PWC [PT6A-67D | UE-003 N752V
AMERICA WEST EXPRESS BEECH 1900 1900D 1993 19 USA PWC [PT6A-67D| UE-075 N78YV
AMERICA WEST EXPRESS BEECH 1900 1900D 1993 19 USA PWC [PT6A-67D| UE-078 N86YV
AMERICA WEST EXPRESS BEECH 1900 1900D 1994 19 USA PWC [PT6A-67D| UE-086 N837CA
AMERICAN AIRLINES BOEING 727 727-200F 1977 150 USA PW Jr8D-9A | 21086 N401AL
AMERICAN AIRLINES BOEING 767 767-200 1982 172 USA GE CF6-80A | 22307 N302AA
AMERICAN AIRLINES BOEING 767 767-200EREM | 1984 172 USA GE CF6-80A | 22315 N313AA
AMERICAN AIRLINES AIRBUS A300-600 B4-605R 1993 267 USA GE | CF6-80C2 | AO0675 N962GF
AMERICAN AIRLINES DOUGLAS DC10 DC10-10 1970 290 USA GE CF6-6D 46502 N103AA
AMERICAN AIRLINES DOUGLAS MD11 MD11-P 1991 257 USA GE | CF6-80C2 | 48419 N1752K

ICAO forecasts the world fleet out to 2015 separating aircraft by class (number of seats). Using
ICAO's forecast for each class, and the U.S. fleet for 1995 developed above, the U.S. forecast for
each class was extrapolated from the world forecast based on the assumption the proportion of
U.S. aircraft in the world fleet would remain constant.

Figure E-1. Example of Class 4 (211-300 Seats) Aircraft Extrapolation

7/
World Fleet Forecast Class 4 (211-300 Seats)

1995 2005 2010 2015

L |Class4 Aircraft 1055 2222 2915 U.S. Fleet Forecast Class 4 (211-300 Seats)
1995 2005 2015]
Iclass 4 Aircrait | 604 1355 1764

/
1995 U.S. Fleet Class 4 (211-300 Seats)
1995

|Class 4 Aircraft

N

! This appendix was developed by Donna Middleton (FAA/SETA).
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The U.S. forecast for each class was then used as a basis for estimating the future inventory for
each type of aircraft by assuming that the percentage of each aircraft type in each class of aircraft
will stay the same in the future. Figure E-2 is a continuation of the example in Figure E-1.

Figure E-2. Example of Class 4 Aircraft Interpolation (continued)

U.S. Forecast - Class 4 (211-300 Seats)
1995 2005 2010 2015

U.S. Forecast by Type - Class 4 (211-300)

|Class 4 Aircraft 604 1121 1355 1764 1995 2005 2010 2015

747 SP 4 7 8 11

L1011 98 162 206 271

U.S. 1995 Fleet - Class 4 (211-300 Seats) DC10 209 345 440 577

1995 % 767 214 353 451 591

747 SP 4 1% 777 9 15 19 25

L1011 98 16%| A300 70 115 147 193

DC10 209 35% ’ Class 4 Aircraft 604 1121 1355 1764
767 214 35%
777 9 1%
A300 70|  12%
Class 4 Aircraft 604] 100%

The resulting U.S. forecast was then validated and updated using APO's forecast for Stage 2/3
aircraft. The term Stage 2/3 aircraft refers to aircraft that meet Stage 2/3 noise levels as
prescribed in Title 14 of the Code of Federal Regulations (14 CFR), part 36. Stage 2 aircraft are
being removed from the fleet inventory under section 91.853 of 14 CFR, part 91. Adjustmentsto
the future aircraft inventory were made to account for the phasing out of these aircraft. Aircraft
that currently are out of production (such as the 727 and 737-100/200) were reduced in the future
fleet, and other aircraft in the same class were increased to compensate. 1996 fleet totals were
obtained by interpolating between the 1995 total and 2005 total assuming a constant increasing or
decreasing rate between those years. The resulting U.S. forecast is shown in Figure E-2.




Figure E-3. U.S. Fleet Forecast

Class Type 1996 2005 2010 2015
20-40 seats DHC6 64 108 131 155
DHC8 144 244 296 349
D328 37 63 76 90
Embr120 237 402 488 576
J31 87 148 180 212
J32 83 141 171 202
M1 39 66 8 95
>40 seats  ATP 12 36 48 61
ATR-42 100 299 400 506
ATR-72 51 153 204 258
CV-580 18 54 72 91
CRJ 36 108 144 182
DHC7 29 87 116 147
F27 14 42 56 71
Total (Class 1) 951 1950 2462 2994
BAE146 41 47 52 57
A320 109 187 267 306
DC8 102 119 131 143
DC9 454 408 328 328
707/720 2 2 3 3
727/100-200 680 147 0 0
737-100 11 0 0 0
737-200 312 90 5 0
737-300 482 561 618 673
737-400 94 123 135 147
737-500 160 459 600 658
MD- 615 775 915 1010
81/82/83/87/88
MD-90 11 13 14 16
F-100 130 151 166 181
F-28 70 8 90 97
Total Class 2 (81-150 Seats) 3273 3163 3324 3618
757 660 1803 2294 2592
A310 41 79 99 115
Total Class 3 (151-210 Seats) 701 1882 2393 2707
L1011 101 49 53 53
DC10 176 205 175 175
747-SP 4 0 0 0
767 224 483 611 854
77 12 159 218 251
A300 73 225 298 431
Total Class 4 (211-300 Seats) 591 1121 1355 1764
MD11 55 70 93 117
747-100 59 50 50 50
747-200 62 60 53 52
747-400 47 91 126 161
Total Class 5 (301-400 Seats) 223 271 322 380
XX (future design) 0 39 80 133
Total Class 6 (401-500 Seats) 0 39 80 133
747-SR 0 19 92 144
Total Class 7 (501-600 Seats) 0 19 92 144
TOTAL (Class 2-7) 4787 6494 7566 8745
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Appendix F: Data Preparation®

The baseline scenario includes the following assumptions: growth in traffic, changesin fleet mix,
and continuous support of improvement of airports and procedures. The enhanced CNS/ATM
scenario includes the assumptions for the baseline scenario and the addition of new technologies.
Data preparation for these scenarios included the process for building future flights and the
assignment of aircraft type and trgjectories. The following paragraphs describe the process in
detail.

Developing Future Flight Data

To build an extension to the baseline scenario, two sets of flight data were generated for each of
the future years (1996, 2005, 2010, and 2015). The first set consisted of flight data for all
scheduled commercia flights. The second set consisted of all general aviation and military
flights.

The initial base year was constructed using the scheduled or commercia flights from the OAG
for November 12, 1996. The origin airport, destination airport, scheduled times, flight identifier,
and aircraft type were obtained for each scheduled flight in the NAS.

Along with the scheduled flights, the general aviation and military flights were obtained from the
November 12, 1996, ETMS data. Flights were identified as general aviation or military based
upon their flight identifiers. A set of flight data was obtained for these flights consisting of the
origin airports, destination airports, actual times of flight, and aircraft type.

The scheduled flights and the general aviation and military flights combined to capture the
majority of the activities in the NAS. The next step was to grow the traffic to reflect the
projected demand as described in the TAF.

The above data sets were input into the FDG to increase the traffic demand to the levels expected
for 2005, 2010, and 2015. The FDG provided the future flights. Once the new flights were
obtained for each scenario, the aircraft types were modified in each year to account for fleet
modernization and acquisition of new aircraft. Traectories were then assigned to each flight,
first in the baseline scenario and subsequently in the enhanced scenario, which were optimized
for the future concept of operations.

Assignment of Aircraft Types

To assign an aircraft type to a new flight, a database of fleet mix for the specific future year was
used. For each future year, the fleet mix, consisting of the number of each aircraft type (e.g.,
B737) anticipated to be in service by that year), was obtained. This forecast was used to assign
an aircraft model to each flight in the future. The following assumptions were included:

! This appendix was developed by Stephane Mondoloni (CSSI, Inc.) and Diana Liang (FAA/ASD-400).
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New aircraft are added to the list by assuming that they would fly the same distribution of
stage lengths as an aircraft in the same category.

New aircraft would fly the same number of legs per aircraft per day as similar aircraft.

An important factor in the assignment of aircraft type to a new flight is stage length. The
number of legs flown by each aircraft per day is a function of stage length. A process was
derived to assign the aircraft type to each flight based on the travel distance of each flight. (See
Figure F-1 below.)

Figure F-1. Assignment Aircraft Type by
Stage Length and Fleet Mix Projections

Baseline: Number of flights by stage length.

Stage Length (nmi)
Type Total
0- 250— | 500-
250 500 750
B737
A300
Total Multiply by growth to
. types
Future: Number of flights by stage length.
Stage Length (nmi)
Type Total
0- 250— | 500-
250 500 750 <
B737
A300
Total
ii Obtain percentages by
i column
Future: Fraction of flights by stage length.
Stage Length (nmi)
Type
0- 250- 500—
250 500 750
B737
A300
Total [ 100% | 100% | 100% | 100%

The FDG assigned the jet or turboprop category to a future flight. This information was used to
assist in the assignment of fleet mix to the new individual flights. A flight that was a jet or
turboprop in 1996 remained so in the future years.



The 1996 OAG data was used to build a matrix that contained the number of flights by aircraft
type and stage length. The projected growth in the number of aircraft of a given type was used to
grow the number of flights by stage length for that aircraft type. Thus, it was assumed that
aircraft of a given type would continue to operate on flights with the same distribution of stage
length. Finaly, the fraction of flights of a given stage length using each aircraft type was
obtained. These were used to assign the aircraft type by stage length for al the flights in the
future years.

As an example, if there were 120 flights with a stage length of 250-500 nautical miles (nmi) of
jet aircraft X in 1996, and aircraft X was to grow 20% by 2010, there would be 144 flights of
aircraft X in 2010 with a stage length of 250-500 nmi. If the total number of jet flights with a
stage length of 250-500 nmi was 1000 in 1996 and 1300 in 2010, the probability of a jet flight
with a stage length of 250-500 nmi being assigned aircraft X would be 11% (144/1300).

Assignment of Tracks

Once the flight origin and destination were identified and the aircraft type was assigned to the
flight, a track was assigned. A track consists of a series of points between the flight's origin and
its destination. The assignment is done randomly by selecting a track from the set of al filed
tracks for the same origin and destination. The set of al filed tracks between city pairs was
obtained through the ETMS data set. For example, if aflight flew from ORD to LAX, one track
was selected from all filed tracks between ORD and LAX. Once the track was assigned, the
atitude and speed trgjectory was assigned to that track to establish aflight trgjectory.

Assignment of Trajectories— Baseline Scenario

For the baseline scenario, speed and altitude profiles were assigned to each flight as a function of
the track, aircraft type, desired cruise altitude, and airspeed en route. For each aircraft type, a
climb profile was defined by a sequence of altitudes and airspeeds. When detailed aircraft
information was available, it represented the fastest alowable climb to altitude as a function of
stage length. The stage length was used to identify the aircraft weight. Aircraft going further are
heavier and cannot climb as fast. In genera the climb trajectory represented the average climb
rates actually flown by analysis of ETMS data for that aircraft type. In today's operation, the
aircraft climb and descend in steps. An aircraft climbs to an assigned altitude and plateaus for a
time before climbing to the next assigned atitude. In this study, plateaus were removed from
climb trajectories.

Once flights reached their cruise level (speed and altitude), the flights continued to fly along the
track at the specified airspeed and altitude. The time at points along the track was computed by
tranglating the airspeed to ground speed using the wind velocity field for November 12, 1996.

The descent trgjectory was imposed on each flight as a function of the year being analyzed, then

as a function of the aircraft type. For 1996 and 2005, the descent trgectory that was used
corresponded to procedural descents obtained by looking at the descent trajectory of flights
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under current operations (summarized in Table F-1). For aircraft whose speed during descent
was significantly below that specified in the table, the speed during descent was obtained from
that observed in actual descents for that aircraft. The trgjectory (distance versus altitude) was
maintained as specified in Table F-1.

Table F-1. Description of Procedural Descent Trajectory
Altitude | Distance From Airport. | Speed (kts) Descent Rate

(fpm)
25000 [ 125 445 1000
20,000 |90 400 1670
15000 |70 400 1250
10,000 |50 250 830

For the years beyond 2005, the descent tragjectory was obtained by averaging the descents
obtained in ETMS data by aircraft type after atitude plateaus were removed. This provided a
descent in which aircraft were allowed to descend uninterrupted.

The genera aviation, or unscheduled aircraft, trgectories were assigned based on their actua
trgectories as reported in the ETMS messages. These messages represent the position updates
(at 5-minute increments) for all controlled flights in the NAS. This could be done for the 1996
baseline data since GA and miilitary flights were obtained from the ETMS data. Thus, there was
a one-to-one correspondence between the GA/military demand data and the ETM S data set. The
trgectories of new GA/military flights, added by the FDG, were obtained by copying the
trajectory of an existing flight between the origin and destination for that same equipment
category. Note that no projection for fleet mix of genera aviation or military aircraft was
attempted.

Assignment of Trajectories— Enhanced Scenario

Optimized trajectories were developed for the enhanced scenario beginning with the baseline
trajectories for each year using the OPGEN portion of the NARIM suite of tools. Traectories
were optimized only for the portion of the flight above 24,000 feet in 1996 and 2005. Beyond
2005, the portion of the flight above 15,000 feet was optimized for distance or fuel. Thus, the
climb and descents to and from 24,000 feet and 15,000 feet were held constant in 1996-2005 and
2010-2015, respectively.

Flights that flew less than 1,000 nmi in the baseline were not optimized for minimum fuel, but
had their distances reduced as much as possible so that active specia use airspace (SUA) was
still avoided. For these flights, the direction around SUA was held constant. (If the aircraft went
left of SUA, it continued to go left around the SUA.) Only the portion of the flight above the
cutoff altitude described in the preceding paragraph was modified. For flights that did not climb
above the cutoff atitude, the flight trgjectory was not modified. As the distance of the flights
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reduced, the flight speed was assumed to remain constant between the two scenarios, thus the
times at each waypoint were modified to reflect the shorter flight paths. The arrival time was
preserved between the baselines and the modified scenarios. The arrival time was preserved
since this is what airlines prefer. If the airlines knew they could leave later (and possibly fill
more seats) and still arrive on time they would rather do that than get to the destination early.

Flights that flew more than 1,000 nmi in the baseline, for which we had no aircraft performance
data, were assumed to fly the minimum distance as above.

The remaining flights that flew more than 1,000 nmi in the baseline were modified above the
cutoff altitude so that they would consume a minimum amount of fuel while still meeting the
same time en route. If the flight could fly faster and reduce the consumed fuel further, it was
assumed to do so. If the flight could not meet the desired time due to constraints, it was assumed
to fly inaminimum time. Certain constraints were imposed on the allowable trgjectories. These
constraints are summarized below.

Aircraft performance constraints (maximum thrust, maximum speed, etc.).

Avoidance of active SUA.
Flights must cruise at valid atitudes for direction of flight. In 1996, current valid cruising
altitudes for direction of flight were assumed. For 2005 and 2010, Reduced Vertical Separation

Minima (RVSM) rules of flight were imposed. In the 2015 scenario, no altitude limits were
imposed, since it was assumed that flights were alowed to cruise climb.
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Appendix G: Fuel Burn Calculation®

This appendix describes more fully the fuel burn assumptions and methodologies used in this
study. To calculate arcraft fuel burned, the following factors were considered: aircraft
performance, aircraft weight, and flight trgjectory. In many instances, aircraft performance data
is not widely available from industry; therefore, alternative assumptions and methodol ogies must
be considered and applied to calculate the fuel burned for the remaining aircraft that operate in
the NAS.

Table G-1isalist of al aircraft models for which detailed performance data was available for
analysis. The aircraft performance data was derived from the FAA LINKMOD model. The data
and its relative contribution to the total fuel consumed in the NAS were analyzed.

Table G-1. Aircraft Modelsfor Which Detailed
Performance Data was Available

Aircraft Model | Description
A300 Airbus 300

A310 Airbus 310

A320 Airbus 320

A330 Airbus 330

A340 Airbus 340
B727-100 Boeing 727-100
B727-200 Boeing 727-200
B737-200 Boeing 737-200
B73F Boeing 737-400
B73S Boeing 737-300
B73Vv Boeing 737-500
B747-100 Boeing 747-100
B747-200 Boeing 747-200
B747F Boeing 747-400
B757-200 Boeing 757-200
B767-200 Boeing 767-200
DC10-10 Douglas DC10-10
DC10-30 Douglas DC10-30
DC8-63 Douglas DC8
DC9-30 Douglas DC9-30
DC9-50 Douglas DC9-50
L1011 Lockheed L1011
MD11 McDonnell Douglas MD11
MD80 McDonnell Douglas MD80

An anaysis of NASA CR-4700 indicated that the aircraft found in Table G-1 contributed to 87%
of al fuel consumed globally. The remaining aircraft, for which fuel burn models was not

! This appendix was developed by Stephane Mondoloni (CSSI, Inc.) and Diana Liang (FAA/ASD-400).
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available, affected only the remaining 13% of the fuel burn. It was therefore concluded that a
fuel burn approximation for any aircraft not included in Table G-1 would have only a dlight
impact on results of the analysis.

As a secondary check on the relative contribution to total fuel burn, the total fuel consumption
was computed on a day of traffic using actual flown traffic data and using the method described
below. Similarly, the results indicate that 89% of all fuel consumed was attributable to those
aircraft for which we had performance data.

For ce balance equation

A force balance equation was used to calculate fuel burned for al aircraft listed in Table G-1.
Once the trgjectory and the model number were obtained for a flight, a numerical integration of
the fuel weight was performed from the arrival to the departure point. This proceeded as a find
value problem using an ordinary differential equation (ODE) describing the weight (W)
summarized below. Note that it was assumed that the climb angle was small enough for the lift
to be approximately equal to the weight.

W
L= Irv’s C, - lift co-efficient  Cp - Drag co-efficient

M - Mach number  r- density

Drag = CD(CL,IVI)JZ-rVZS S-referencearea V- airspeed
W - weight FF - fuel flow

T =Drag +Wsin(g)- £% T = thrust t=time

W — h = dtitude g- climb angle

& =-FF(T,h,M)

Once the initial weight was found, the total fuel consumed for this flight was simply the initial
weight minus the final weight.

Aircraft without performance data

For the remaining aircraft where detailed performance data was not available, the equation above
reduces to the following:

= Wik + k, Sin@) + k&

The k's are constants to be determined through ordinary least squares (OLYS) regression on the
fuel flow obtained using the method described previously. A lower limit was imposed on the
fuel flow to ensure against negative burn rates when aircraft are descending or decelerating

rapidly.

In order to determine if the curve fitting approach was approximately valid for different types of
general aviation aircraft, we obtained the fuel consumption (in gallons per hour) for different
types of aircraft from the Aviation and Aerospace Almanac (1997). From the above equation, an
average weight is implied by the average fuel consumption. Table G-2 shows that the implied
weights are indeed typical for the aircraft listed.
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Table G-2. Implied Weights given Fuel Consumption and Typical Air craft

Type Consumption | Implied | Example Aircraft
GPH Weight
LBS
Piston 1-3 seats | 9.4 1178 Cessna 150 (985-16001bs)
Piston 1-6 seats | 26.6 3333 Piper PA-30 (2210-36001bs)
Prop 1-12 seats | 84.8 10626 Beech King Air (8500-14000Ibs)
Jet 2 engines 263.2 32982 Dassault Falcon 2000 (19980-350001bs)
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ADSB
AEE
AlP
AOC
APO
APP
ARTCC
ASAC
ASD
ASQP
ATA
ATC
ATS

BOS
BWI

CAASD
CAEP
CDTI
CNSATM
CO
CONUS
CRDA
CTAS

DAL
DCIA
DEN
DFW
DOT
DTW

EDMS
EPA
ETMS
EWR

FAA
FDG

Appendix L: Glossary of Acronyms

Automatic Dependent Surveillance - Broadcast
FAA Office of Environment and Energy

Airport Improvement Plan

Airline Operation Center

FAA Office of Aviation Policy & Plans

FAA Office of Airport Planning and Programming
Air Traffic Control Center

Aviation System Anaysis Capability

FAA System Architecture and Investment Analysis Division
Airline Service Quality Performance

Air Transportation Association

Air Traffic Control

Air Traffic Services

Boston Logan International Airport
Baltimore/Washington International Airport

Center for Advanced Aviation System Development
Committee on Aviation Environmenta Protection
Cockpit Display of Traffic Information

Communications, Navigation, and Surveillance/Air Traffic Management

Carbon Monoxide

Continental United States
Converging Runway Display Aid
Center-TRACON Automation System

Ddlas Love Airport

Dependent Converging Instrument Approaches
Denver Internationa Airport

Dallas/Fort Worth Airport

Department of Transportation

Detroit Metropolitan Airport

Emissions and Dispersion Modeling System
Environmenta Protection Agency
Enhanced Traffic Management System
Newark Airport

Federa Aviation Administration
Future Demand Generator
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— X

GA
HC

A
IAD
ICAO
IFR
ILS
IND
ITWS

JAX

L/D
LAAS
LAS
LAX
LTO

MAP
MCO
MIA
MSP
MTOW

NARIM
NAS
NASA
NASPAC
NAVAID
NEXCOM
NOx

OAG
ODE
OPGEN
ORD

PDX
pFAST
PIT
PRM

Genera Aviation
Hydrocarbon

Investment Analysis

Washington Dulles Airport

International Civil Aviation Organization
Instrument Flight Rules

Instrument Landing System

Indianapolis Airport

Integrated Terminal Weather System

Jacksonville Airport

lift-to-drag

Local Area Augmentation System
Las Vegas Airport

Los Angeles International Airport
Landing and Take-Off

Monitor Alert Parameter

Orlando Internationa Airport

Miami Internationa Airport
Minneapolis-St. Paul International Airport
Maximum Takeoff Weight

National Airspace Resource Investment Model

Nationa Airspace System

National Aeronautics and Space Administration

National Airspace System Performance Anaysis Capability
navigational aid

Next Generation Air/Ground Communications System
Nitrogen Oxides

Officia Airline Guide

ordinary differential equation
Optimized Trajectory Generator
O'Hare International Airport

Portland Airport

passive Final Approach Spacing Tool
Pittsburgh International Airport
Precision Runway Monitor
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00

N < X

RVSM

SATCOM
SETA

SFO

SMA

SMS

SMS
STARS P3|

STL
SUA

TAF
TMA
TPA
TRACON
u.s

VFR
VMC

WAAS
WSP

ZOA

Reduced Vertical Separation Minima

Satellite Communications

System Engineering and Technical Assistance

San Francisco International Airport

Surface Movement Advisor

Simulation Modeling System

Surface Management System

Standard Terminal Automation Replacement System, Preplanned Product
I mprovements

St. Louis International Airport

specia use airspace

Termina Area Forecasts

Traffic Management Advisor
Tampa Airport

Terminal Radar Approach Control
United States

Visud Flight Rules
visual meteorological conditions

Wide Area Augmentation System
Weather Systems Processor

Oakland Air Traffic Control Center
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