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Chapter 1: Introduction

Problem Statement

Motor vehicle crashes are one of the 10 leading causes of death in the United

States ranking only after cancer, heart disease, stroke, and respiratory infections (The
World Almanac and Book of Facts: 1996). About 450,000 people have died on our
highways over the last decade (Table 1). Another 30 million were left injured in the 300
million crashes that occurred (Bureau of Transportation Statistics 1995). Americans
spend over $500 billion per year on automotive transportation. They travel 2.1 trillion
vehicle-miles and incur over $72 billion in crash costs every year (The World Almanac
and Book of Facts: 1996). This $72 billion is almost equal to the total costs incurred by
all levels of government for all highway construction, maintenance, and operations in one
of the past years. The social and humanitarian costs are obviously also high - 60 percent
of those dying and 70 percent of those injured are in the highly productive 15 to 45 year
old age group (The World Almanac and Book of Facts: 1996). These figures portray the
extent of the problem and the immediate need for corrective action.

Having recognized the need for corrective action, the first step towards an
effective solution is to identify the primary causes for the current situation. The “nut
behind the whe’el” is usually perceived as the cause of most traffic crashes and it is not
hard to find statistics to support this claim. This perception often leads to the assumption
that crash countermeasures must concentrate on changes in driver attitudes and behavior.
For instance, Henderson (1971) compared contemporary ways of thinking about traffic

deaths and injuries to the way people used to think about cholera. Since cholera struck




Table 1

Fatality Rates on American Highways

Year Fatalities Fatality Rate Vehicle Miles Fatality Rate
per 100, 000 Traveled per 100 Million
population (Billions) VMT
1966 50,894 26.0 926 5.5
1967 50,724 25.7 964 5.3
1968 52,725 26.4 1016 5.2
1969 53,543 26.6 1062 5.0
1970 52,627 25.8 1110 4.7
1971 52,542 254 1179 4.5
1972 54,589 26.1 1260 4.3
1973 54,052 25.6 1313 4.1
1974 45,196 21.2 1281 3.5
1975 44,525 20.7 1328 3.4
1976 45,523 20.9 1402 3.2
1977 47,878 21.8 1467 33
1978 50,331 22.7 1545 33
1979 51,093 22.8 1529 33
1980 51,091 22.5 1527 3.3
1981 49,301 21.5 1553 3.2
1982 43,945 18.9 1595 2.8
1983 42,589 18.2 1653 2.6
1984 44,257 18.7 1720 2.6
1985 43,825 18.4 1774 2.5
1986 46,087 19.1 1835 2.5
1987 46,390 19.1 1921 24
1988 47,087 19.2 2026 2.3
1989 45,582 18.4 2096 2.2
1990 44,599 17.9 2144 2.1
1991 41,508 16.5 2172 1.9
1992 39,250 15.4 2240 1.8
1993 40,150 15.6 2297 1.7
1994 40,676 15.6 2347 1.7

Source: Bureau of Transportation Statistics (1995).




mostly poor people, the disease was attributed to their undesirable ways of life. People
believed that Cholera would be obliterated only if the poor would change their ways.
Henderson points out that control of the environment (i.e., purified water and
construction of sewage systems), not changes in behavior, brought the disease under
control. He concludes that focusing too much on the driver as the cause, and therefore the
solution to crashes, often masks our ability to see other changes that could reduce injuries
and deaths.

It is important to realize that crashes are generally the result of bad decisions by
the driver made in an environment created by the engineer. Thus, the engineer has a good
deal of influence on the likelihood of a driver making a bad decision. This prompted
Anderson (1976) to say that engineers could attack the lion’s share of the safety problem
if they got beyond the driver error myth. Hence, the role of transportation engineers for
setting a stage for the safe and efficient movement of goods and people cannot be

overstated.

The Need for Hishwayv Safety Research

Transportation Engineering can be defined as the study of the complex
interactions among drivers, vehicles and roadways. Crashes result when there is a conflict
between at least two of these elements. Hence, if one is to create an environment to
reduce the likelihood of conflicts among these elements, one must have a thorough
knowledge of the complex relationships.

Highway safety research aims at understanding these relationships better so that

the basic objective of safety can be satisfied while still serving traffic demand. This is




achieved by trying to identify the elements responsible for the occurrence of crashes and
by learning how to predict future crash occurrences. At the same time, the last decade has
seen a decreasing trend in resources for highway improvements, whereas traffic demand
continues to increase. Hence, there is a strong need for the judicious use of existing
resources. Safety research helps to do this by identifying those features which, when
improved, give the maximum safety benefit for the resources invested. These reasons
make safety research indispensable under the present circumstances.

Since travel demand has risen consistently through the years (Table 1), one might
expect highways in America to be much more dangerous now than in the past. Yet,
statistics show that this is not true and that America’s highways are much safer today
than ever. Table 1 shows the trend in total number of fatalities and their corresponding
rates on a yearly basis. Though the exposure is increasing, it can clearly be seen that rates
are decreasing consistently over the years and so are the number of fat_alities. For
example, about 46,000 people died in crashes on America’s highways in the year 1990. If
however, fatal crashes occurred in 1990 at the rate they occurred in 1967, there would
have been almost 120,000 deaths (Hensing 1991). This increased safety can be attributed
to better highway planning and design, improved traveler information systems and
innovative road safety devices - all the results of highway safety research in combination

with advances in medical care and vehicle safety features.

Past research has given us information in a number of areas that has proved vital
for the construction of safe roads in an economical way. For example, research has
revealed that crash rates decrease with an increase in lane width up to about 12 feet

(Zegeer 1981), after which the safety gains are either negative or very marginal. This



finding has been adopted as standard practice in the design of most modern roads. Apart
from identifying the elements that are directly related to crash occurrence, research has
also given us an idea of the typical conditions under which crashes occur. For instance,
research shows that 70 percent of fatal crashes take place at night, of which 60 percent
involve only one vehicle (Polanis 1995). This can be useful information when deciding
what counter measures need to be taken.

Thus, the past two decades have seen important progress in providing a safer
roadway environment for American road users. However, as statistics suggest, there is
still room for improvement. We do not yet have a complete understanding of the nature
of crashes and what causes them. Complete understanding of the nature of crashes could

prove extremely useful in further reducing the crash occurrence on our roads.

Objectives and Scope

Highway safety research, as the above discussién suggests, could mean a very broad
range of topics, of which crash prediction methods are a small but important part. It
essentially deals with quantifying the relationship between the crashes observed at a site
and the existing traffic and geometric conditions. These prediction models can give us an
idea of which are the important variables and how much each of them contribute to
causing the observed crashes at a site.

Traditionally, crash prediction models have tended to be macroscopic in nature.
For instance, researchers have tended to use summary statistics on traffic such as annual
average daily traffic (AADT), rather than microscopic measures such as hourly volume

counts. Another example of a macroscopic model is one that considers all crashes




together rather than splitting crashes by type. Microscopic data such as hourly volume
counts have generally been used only to quantify relationships between crashes and
traffic flow at a single site. In the few cases in which researchers have used hourly
volumes or have split crashes by type, importance has not been given to the geometric
effects and hence, these studies cannot be applied to all sites. A useful study would look
at how both the hourly volume counts and the geometric effects jointly contribute to the
observed crashes at various sites.

Such is the focus of this thesis which incorporates traffic condition variables
(level of service) along with geometric characteristics to predict crash frequencies at eight
different two-lane state highway locations across the state of Connecticut. In order to do
this, hourly volume counts on every day for the period between October 1990 to
September 1996 were obtained for each of these eight sites. Poisson Regression was used
to build separate models to predict single and multi-vehicle crash frequencies. It was
found that traffic and geometric characteristics affect these two crash types in very
different ways and hence a split such as this is very much warranted. For instance, it was
found that while single vehicle crashes tend to decrease with an increase in shoulder
width, the trend is reversed with multi-vehicle crashes. Similarly, level of service (LOS)
seems to be a much more important predictor variable for single vehicle crashes than for
multi-vehicle crashes.

Chapter 2 of this thesis is a literature review that traces a number of important
studies that have contributed to knowledge in crash prediction and methods. The third
chapter elaborates on the database and some of its limitations. Poisson regression is

discussed in Chapter 4 with a brief account of the nature of the distribution and its



assumptions. Chapter 5 describes the model form used, its advantages and the

preliminary models that were estimated. The final models are established and discussed
in detail in Chapter 6. Chapter 7 concludes the thesis by giving the important conclusions
from this study and suggesting future areas of research. It also includes a section that

talks about the database and how it could be enhanced.




Chapter 2: Literature Review

On Relating Crashes to Traffic Flow

In performing an experiment, the number of successes achieved largely depends
on the number of trials performed. Scientists call this “exposure,” or the number of
opportunities for success or failure. This can be extended to predicting crashes on a
highway. The number of crashes observed on a highway naturally depends on the amount
of traffic flowing on it. However, this relationship seems to be complex and is not
understood thoroughly. Hence, we cannot assume a priori that the number of crashes
observed is linearly related to the number of vehicles counted (like with a roll of dice).

Increasing traffic on a roadway can increase the chance of a crash
disproportionately. First, the fact that there are more vehicles on the road means that we
are increasing the number of trials performed, and hence there is a greater likelihood éf a
crash occurring. Additionally, since there are more vehicles on the road, there are more
interactions between vehicles. This ﬁlrther increases the likelihood of a crash occurring.
A number of researchers have investigated this complex interaction in the past.

One of the first such studies was by Gwynn (1967) who analyzed crashes and
traffic flow on U.S Route 22 through the city of Newark, New Jersey. Hourly volumes on
every day between the years 1959 and 1963 were classified into 100 volume ranges by
magnitude. Crash rates were computed and plotted against volume class. He found a
distinct “U” relationship, with more crashes observed at the higher and lower traffic
volumes. It is important to note that absolute volumes were used in this study rather than

a measure of congestion such as volume/capacity ratio.



Zhou and Sisiopiku (1997) performed a similar study on Interstate 94 in
Michigan. This study was slightly different from the previous one in that it included
volume/capacity (v/c) ratio instead of the absolute traffic volume. The results were very
similar to that of Gwynn, as they found a distinct “U” relationship between v/c ratio and
crash rates. In this case, since only one roadway segment was considered, v/c ratio is
probably just the same as considering the absolute traffic volume where the capacity is
not variable.

An interesting extension of these studies would be to consider multiple roadway
segments in the study. In such a case, the absolute traffic volume might not be a good
measure in predicting crashes since different segments can have different capacities.
Instead, as Frantzeskakis (1983) suggests, congestion measures such as the v/c ratio or

the level of service (LOS) may be better predictor variables.

Model Form

From the studies summarized above, it appears that the crash rate does not remain
constant with changes in traffic flow. This suggests that a linear model might not be
suitable for predicting crash frequencies. Apart from this, a number of other arguments
have been made against linear regression models. Jovanis and Chang (1986) question the
application of a continuous distribution such as the normal distribution in modeling the
occurrence of crashes, a discrete process. Crash data are typically heteroscedastic (i.e.,
variance of the residual is not constant) and hence violate the equality of variance
assumption of a linear model. Even variance stabilizing transformations (modeling a rate

instead of the number of crashes) are shown to violate these assumptions regarding




variance and give inaccurate estimates. Finally, there is a chance that a linear model will
predict negative crash rates, which are meaningless.

As an alternative to linear regression, Jovanis and Chang suggest Poisson
regression for predicting crashes. The Poisson distribution is a right skewed distribution
that replicates the occurrence of rare events such as crashes better than a normal
distribution. Joshua and Garber (1990) used linear and Poisson regression models in
predicting truck crashes in the state of Virginia. The study included a critical comparison
of the two models. It was found through this study that Poisson models describe the
relationship between truck crashes and associated traffic and geometric variables better
than the linear models. A number of other studies (e.g., Miaou et al. 1992) concluded
likewise and it is now widely accepted that Poisson regression is the most appropriate

tool for crash modeling.

Extensions of the Poisson Model

A central assumption of the Poisson regression model is that the mean and
variance of the distribution representing the error are equal. However, crash data
frequently exhibit variances greater than the mean; this condition is called “over-
dispersion.” Miaou and Lum (1993) attributed this condition to pos;ible inaccuracies in
exposure data and to omission of some important variables in the model. As a result of
over-dispersion, tests of the significance of variables in the models are rendered
inaccurate, though the coefficient estimates remain reliable (Agresti 1990).

A number of solutions have been proposed for the over-dispersion problem but

the one that is becoming increasingly popular is the use of a Negative Binomial model.
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The Negative Binomial model is a simple extension of the Poisson model in that it
relaxes the assumption regarding the equality of variance (Hadi et al. 1995). Hadi et al.

used the Negative Binomial and Poisson models in estimating the effects of cross section
design elements on crash rates. Negative Binomial models were shown to describe crash
rates more effectively than the corresponding Poisson models. Over-dispersion can also
be corrected using the “over-dispersion parameter” (Agresti, 1990). This parameter is
defined as the ratio of the variance to the mean. To correct over-dispersion, Agresti

suggests dividing the t-statistics by the square root of the over-dispersion parameter.

Geometric Variables

Among the most useful features of a good crash prediction model is its ability to

tell us how much each of the variables present in the model contributes to the observed

crashes. In most models, exposure is the most important variable in explaining the
variation in crashes. However, a part of the Variation is also explained by the geometric
characteristics of the site. Apart from systemic influences, if one is interested in reducing
crashes at a site, one can do so only by controlling the geometric factors. Hence, a
thorough understanding of the contribution of geometric elements to crashes is necessary.
One of the most important early studies was that of Dart and Mann (1970). This
study was aimed at identifying causes for high crash rates in Louisiana. Though this
study applied linear regression models in trying to explain crashes, some important
findings surfaced. For instance, it was found for the first time that cross slope was
important, and crashes are associated with poor drainage. This is a useful finding for

places like Louisiana, where the rainfall is heavy.
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Zeeger et al. (1981) studied the effects of lane and shoulder width on crashes.
This study was limited to two-lane roadways. It was found that lane width had a marked
effect on crashes. Crash rates decreased with an increase in lane width until a width of
about 12-ft, after which the rates started increasing again. The same trend was also
observed with shoulder width though to a much lesser extent. A number of other studies
have confirmed this trend (Milton and Mannering 1997).

Ivan and O’Mara (1997) studied two-lane roadways in the state of Connecticut.
Just like a number of earlier studies, they found the frequency of intersections on the
segment to be one of the most important predictor variables. This is probably because as
the frequency of the intersections increases, so does the conflict opportunity. However, it
is important to realize that crashes occurring at mid-block may be completely different
from those at an intersection. The two locations can be operating at entirely different v/c
ratios and exposure levels, and crashes can be caused by very different geometric
characteristics (Frantzeskakis 1983). Bared and Vogt (1997) studied mid-block crashes
apart from intersection crashes using different exposure variables for both. The measure
used for the intersection exposure was the product of the major and minor AADTs. This
study reported satisfactory results for both models.

Due to the research done over the last decade, we now have a fair idea of how the
geometric elements on a highway influence the crashes occurring on it. For instance, the
effects of shoulder width, lane width and access points are quantifiable to a fair degree of
accuracy. What is needed now is modeling at a greater detail. Fortunately, there has been
a trend toward microscopic modeling. In other words, researchers are increasingly

modeling two-lane roads apart from multi-lane roads and separating single vehicle
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crashes from multi-vehicle crashes. This is because these crashes seem to have very
different causes (Persaud and Mucsi 1995). Persaud and Mucsi used derived hourly
volumes to test the effect of light conditions on the two types of crashes. The study found
that light conditions affect each of these types very differently. For instance, multi-
vehicle crashes were found to be occurring during the daytime when the light conditions
were good whereas the single-vehicle crashes were more likely to occur after sunset.
Also, it was found that while single vehicle crashes were associated with narrow lanes
and shoulders, multi-vehicle crashes were associated with wider lanes and shoulders.
Hence, Persaud and Mucsi suggest that each of these types be modeled separately.

An important drawback of most of these models is the lack of information about
the traffic conditions under which the crashes occurred. This information can be
extremely vital in explaining crashes and forms the first step if one is looking to modei in
greater detail. For instance, by just considering AADT, two roadways with the same
AADT and geometric conditions but very different peaking characteristics cannot be
differentiated. In such a case, a model considering just the AADT will predict the same
crash rates at both these sites. However, the peaking characteristics can be captured easily
if one has accurate hourly volume information and hence the exact LOS at which the trips
were made. Secondly, incorporating this information about the traffic conditions along
with the other geometric variables can bring out the true effect of the geometric variables.
Since crashes are usually caused by the combined effect of traffic and geometric

characteristics, absence of vital traffic conditions can confound the geometric effects.
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Proposed Extensions

From a number of recent studies (Bared and Vogt, 1997) it appears that modeling
in greater detail is much more powerful in bringing out the effects of specific variables.
Another drawback of traditional models is that the analysis is localized to only the times
and conditions when a crash occurred. For instance, in trying to study the effect of
surface conditions on crash occurrence, traditional models have information on the
surface condition only at the time when the crash occurred. In such a case, one does not
have an idea of the number of successful trips made under the same surface conditions.
However, it is important to have both the number of successful trips and the number of
failed trips under specified conditions, for a better model.

The present study tries to incorporate a number of the above mentioned elements.
Unlike a lot of other studies it was not assumed a priori that there exists a linear
relationship between traffic volume and crash frequency. Instead, the exponent on thé
exposure term is estimated along with the other parameters in the model. In an attempt at
microscopic modeling, multi-vehicle and single-vehicle crashes are investigated
separately and accurate information about traffic conditions is incorporated in the form of
LOS variables. Another important feature of this study is that all trips at a site are given
equal importance. In other words, the analysis is not limited to those trips that ended in a
crash. Finally, for the first time, LOS variables are used in combination with geometric
variables in modeling crash occurrence. Since it was thought that crash occurrence on
two-lane roads can be completely different from that on multi-lane roads, these types had

to be separated while modeling crashes. This study considers only two-lane roads.
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Chapter 3: The Database

The database used in this study consists of five individual smaller data sets
obtained from a number of different sources. Following is a list of these data sets, which
are subsequently discussed in detail.

1. ATR Database
2. HPMS Database
3. Crash Database
4. Light Database

5. Precipitation Database

ATR Database:

The Connecticut Department of Transportation (ConnDOT) maintains thirty-
seven continuous count stations called automatic traffic recorders (ATRs) to record
traffic data through the entire year. The ATR locations are essentially spot locations on
the roadway, each of which is given a station number. Figure 1 shows the location of
these sites. Since hourly volume counts are otherwise difficult to obtain, the ATR data
predominantly dictated the sites to be chosen for the study. All ATR data were available
in the form of ASCII text files. A page from a sample record of the ATR data is shown in
Figure 2 and some important variables are explained below:

1. Station Identification: As mentioned above, each of the stations is given a station

number by which it can be identified.
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2. Direction of Travel: The volume is recorded for each direction of travel on the

roadway. Directions are given in codes as defined by ConnDOT.

3. Year, Month, Date and Day: This is the exact date and day (day of the week) on

which the count was taken is contained in this field.

4. Traffic Volume: These variables contain the actual volume counted for each of the 24
hours on the specified date.

ATR data were obtained for each of the eight two lane ATR locations for the period from

October 1990 to September 1996. This database was very important since it provided the

exact exposure for each hour during this period on each of the roadways considered.

Also, by matching the crash database (to be described later) with the ATR database by

site, date and time, we could get an idea of the traffic conditions under which each of the

crashes occurred.

HPMS Database:

The geometric characteristics of the sites under study are contained in this database.
ConnDOT maintains Highway Performance Monitoring Sites (HPMS) all over the state
of Connecticut. These are randomly selected segments of roadway that are continuously
monitored for existing conditions of the roadway, environment and traffic factors. The
HPMS sites have uniform geometric characteristics throughout their length.
Unfortunately, there were a number of ATR locations that did not coincide
exactly with any of the HPMS sites. Of the 37 ATR locations, we could find 28 HPMS

segments that were close to an ATR location, eight of which were two lane roadways that
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Table 2

Study Site Locations

HPMS Id Town Name Location

A001093490 | Waterford From Oil Mill Road to Niantic River Road

A005047810 | East Windsor From 0.06 mi Nor_th of Route 140 to East Windsor
— Enfield Town Line

A007054780 | Kent Ffom North Kent Road #2 to Kent Cornwall Town
Line

A008063640 | Colebrook From Sandy Brook Road to 0.31 mi North of Sandy
Brook Road

A012037490 | Killingly Erom North Street to 0.08 mi North of Peckham

ane

A066025050 | Hebron From 0.05 mi West of Country Lane to South
Bound Route 85

A081002310 | Clinton From Egypt Lane to Opposite Indian River

A124002030 | Darien From Pembrook Road to Darien New Canaan

Town Line

came under this study. The exact locations of each these eight sites is shown in Table 2.

Care was taken to see that there were no major intersections between the ATR location

and the corresponding HPMS site. This was done to ensure that the approximation about

traffic volumes at the site was valid. A sample sheet from the HPMS database is shown in

Figure 3. The database contains about 70 variables; those relevant to this study are

explained below:
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HPMS ID: This refers to the 10 character code given to each of the HPMS sites (e.g.
A001093490). Positions 2-4 represent the route number in which the segment is

located (in this case Route 1). The last five digits represent the starting milepost of the

segment (in thousandths of a mile).

Functional System: This refers to functional classification given to each of the

roadways. This functional class can be one of 12 categories listed below:

1 - Rural Principal Arterial -- Interstate
2 - Rural Principal Arterial -- Other
6 - Rural Minor Arterial
7 - Rural Major Collector
8 - Rural Minor Collector
9 - Rural Local
11 - Urban Principal Arterial -- Interstate
12 - Urban Principal Arterial -- Other Freeways and Expressways
14 - Urban Principal Arterial Other
16 - Urban Minor Arterial
17 - Urban Collector
19 - Urban Local

Of these categories, the eight segments in this study fall in 2, 6, 7 and 14.

Section Length: The length of the segment is expressed in miles with three decimal
places (XXX.XXX). Each of the eight segments measures approximately 0.5 to 1.5
miles in length.

Lane Width: The prevailing lane width to the nearest foot is reported in this data item.
Each of the sites in this study has lane widths of either 11 feet or 12 feet

Right Shoulder: Since the present study considers only two lane roadways, only the
right shoulder width is of relevance. The shoulder width is reported to the nearest
foot. The shoulder widths range from 0 to 8 feet amongst the sites under

consideration.
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e Sight Distance: This represents the percent of length of the roadway segment with
sight distance of at least 1500 ft. This is the measure of the passing sight distance as
prescribed by the Highway Capacity Manual (Transportation Research Board 1994).

e Speed Limit: This represents the posted speed limit on the segment.

e Peak Capacity: This represents the hourly capacity expressed as the total of both
directions for two lane roadways. This data item in combination with the hourly
volume was used to compute the v/c ratio and hence the LOS during each hour at
each of the sites.

e Drainage Adequacy: This variable is a qualitative measure of the drainage conditions

at the site. Each of the sites is given one of the three drainage ratings shown below:
1 - Good Drainage implying no flooding, erosion or other
damage.
2 - Fair Drainage implying that a little maintenance effort is
required.

3 - Poor Drainage implying that there is severe flooding and
other drainage problems.

e Signals: This represents the number of intersections with a signal controlling the route
being inventoried.

e Stop Signs: This represents the number of intersections with a stop sign controlling
the route being inventoried.

e Other or no Controls: This represents the number of intersections where the route

being inventoried is not controlled by either a signal or a stop sign -- or is controlled

by other type of signing or has no controls.
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Crash Database:

This database contains detailed information about all crashes that occurred
between October 1990 and September 1995 in each of the eight selected HPMS sites.

Crash experience on Connecticut’s roadways is maintained in a computer database and is
stored as ASCII text files. The crash information about the eight sites was extracted from
this database and formatted. A sample output from this database is shown in Figure 4.
Some of the important information obtained through this database is discussed below:

e Date and Time: The date and the time at which the crash took place.

o Location: The exact mileage on the segment where the crash took place.

e Light Condition: The light conditions when the crash took place.

o Surface Condition: The condition of the surface when the crash took place (ice, wet,

dry etc.)
e Crash Type: The type of the crash. This should be one of the fourteen crash types as

defined by ConnDOT.

e Cause of the Crash: The cause of the crash as perceived by the officer reporting the

crash.

e Vehicles Involved: The type of vehicles involved in the crash and the direction in

which each of them was proceeding.
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A NI P LUaN e L2 rd .

TOWN OF WATERFORD - ROUTE NUMBER 1 LOCATION
093.49 094.70

PREPARED 09 30 96 PERIOD FROM 01 01 8% TO 09 30 95

MON DA
LIGHT SURF COLLISION INJURIES RAMP TOT
MILEAGE ALPHA DESCRIPTION OF ACC. LOCATICN RDWY. FACT. CASE # DAY TH TE YR
HOUR COND COND WEATH TYPE K A B C TYPE INJ

**-k*****************************************************************************
****************************************************

093.49 INT OIL MILL RD TW TN RD UNDIVD 002918 SAT Jaw 27 20
1400 DAYLT DRY - CLEAR TURN-INTS ) - . P .
DRIVER VIOLATED TRAFFIC CONTROL

WB VAN VEHICLE GOING STRAIGHT
SB AUTO PAS : VEH TURNING LEFT FROM PROPER LANE
-1 Y .

093.49 INT OIL MILL RD MW TN RD UNDIVD 008473 THU MAR 23 89
. 1305 DAYLT DRY CLEABR HD-ON TRN
DRIVER FAILED TO GRANT RIGHT OF WAY

WB AUTC PAS VEH TURNING LEFT FROM PROPER LANE
EB AUTO-SW VEHICLE GOING STRAIGHT :

NB JEEP-TYP STOPPED FOR TRAFFIC SIGNALS

093.49 INT OF OIL MILL RD po TN RD UNDIVD 071611 SAT SEP 01 80

1651 DAYLT DRY CLERR REAR END
DRIVER FOLLOWING TOO CLOSE

EB AUTO PAS VEHICLE GOING STRAIGHT
EB TRUCK ST STOPPED FOR TRAFFIC SIGNALS
093.49 INT OLD MILL RD KS TN RD UNDIVD 103787 SUN JaN 27 91

1055 DAYLT DRY CLEAR FIXED OBJ
DRIVER INCAPACITATED

WB TRUCK ST VEHICLE GOING STRAIGHT
STRUCK GUIDE RAIL OFF RD LEFT
093.49 INT OIL MILL RD DF TN RD UNDIVD 104203 MON JAN 25 93

1519 DAYLT DRY CLEAR REAR END
DRIVER FOLLOWING TQO CLOSE

WB TRUCK ST VEHICLE GOING STﬁAIGHT
WB AUTO PAS STOPPED FOR TRAFFIC SIGNALS
093.49 INT OLD MILL RD PR TH RD UNDIVD- 114295 SAT MBR 28 92

1027 DAYLT DRY' CLEAR REAR END
DRIVER FOLLOWING TOO CLOSE

EB AUTO PAS VEHICLE GOING STRAIGHT

EB AUTO PAS STOPPED FOR TRAFFIC SIGNALS

- - -1 1

093.49 ON OIL MILL RD RJ TN RD UNDIVD 130843 SUN JUN 13 93

1735 DAYLT DRY CLEAR BACKING
DRIVER INATTENTIVE : )
SB AUTO PAS VEH BBCKING ALONG ROADWAY
SB AUTO PAS STOPPED FOR TRAFFIC SIGNALS
CONNECTICUT DEPARTMENT OF TRANSPORTATION
ACCIDENT EXPERIENCE
TOWN OF WATERFORD ROUTE NUMBER 1 LOCATION
093.49 094.70 .
PREPARED 09 30 96 PERIOD FROM 01 01 89 TO 09 30 85
MON DA
LIGHT SURF COLLISION INJURIES RAMP TOT

Figure 4

Sample Record of Crash Data
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Light Data:

This data set contains the sunrise and sunset times for each site on every day of
the period in consideration. Information about sunrise and sunset times was obtained in
order to get an idea of the light conditions under which the trips were made. Data were
obtained from the Applied Environmetrics Meteorological Table developed by the
National Bushfire Research Unit (1995). This software calculates the sunrise and sunset
times at a site whose geographic locations are known (latitude and longitude). Since the
sunrise/sunset times did not change drastically from day to day on the same site, the
timings were calculated only every 10 days. The exact locations of each of the sites were
deciphered using a detailed map of Connecticut. The three categories for the light
condition variable are as defined below:

Light - The time of the day between one hour after sunrise and one hour before sunset.
Dark - The time of the day after sunset and before sunrise.

Dusk - The hour after sunrise and the hour before sunset.

Precipitation Database:

This database obtained from the National Meteorological Center contains hourly
precipitation levels at various stations all over the state. Precipitation data were obtained
in an attempt to get an idea of the surface conditions when the trips were made. For each
of the HPMS sites, a corresponding precipitation station was selected (based on distance)
and the surface condition during each hour was classified as wet or dry based on the

precipitation information. However, this information was not incorporated in the final
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database because these data were available only on selected days of the year, resulting in
©

an extremely small sample of cases that could include these data.

Database Merging:

Each of these individual databases explained above (except the precipitation
database) were then merged together by site, date, time and direction of travel to
constitute the final comprehensive data set. Thus, each individual case in this combined
data set represented one hour of data from a selected site, and had information from each
of the four data sets discussed above.

The selection of sites for study as noted above was based largely on the
availability of data. Data that were obtained were checked for adequate representation in
important variables. For instance, they were checked to see if there were a substantial
number of sites from both rural and urban areas. Similarly, they were checked to see if
there was reasonable representation as far as the functional system class was concerned.

The current database seemed overall to satisfy these conditions.
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Chapter 4: Methodology

The normal distribution is a convenient approximation to the binomial distribution

when the number of trials in an experiment is sufficiently large. In particular, for this

approximation to be valid, the sample size must conform to the following restriction:

5
min( 77 ,1-77)

n>=

Where # is the required number of observations and 7 is the probability of observing a
success in a trial. However, in many instances, the value of 7 can be so small that n
(number of observations) needs to be extremely large for a normal approximation to be
valid. For instance, in crash modeling, 7 can be as small as 10°® and thus can require
extremely large sample sizes for normal approximations. Thus, using the normal

approximation can often be erroneous in modeling real world data such as crashes.

The Poisson Regression

The Poisson distribution is a discrete probability distribution that provides a good

approximation to the binomial when 7 is small and # is large but n 7 is less than 5.
According to this distribution, the probability of observing y successes in # trials is given

by the formula:

P(y)= A"/ y!
where A is the average rate of success (here n7T =4 )
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In particular, the Poisson distribution has been useful in finding the probability of y

occurrences of an event that occurs randomly over an interval of time provided certain

assumptions are met:

1. Events occur one at a time; therefore, two or more events cannot occur at the same
time.

2. The occurrence of an event in a given period does not change the probability of an
event occurring in some later period.

Traditionally, crashes have been modeled with a normal distribution (linear
regression) but linear regression has a number of disadvantages as far as modeling
crashes is concerned. First, the use of a continuous distribution for modeling a discrete
process such as crash occurrence is not very suitable. Second, the normal distribution is a
symmetric distribution and does not replicate crash occurrence accurately. A right
skewed distribution such as the Poisson distribution has been shown to be better. A
number of researchers have elaborated on this topic and have suggested the Poisson
distribution as a superior alternative in crash modeling as discussed in Chapter 2. Based
on these arguments, a Poisson regression analysis was chosen to model crashes in the
present study.

The most critical step in a Poisson regression analysis is obtaining an estimate of
2 . The Poisson distribution assumes the presence of an average crash rate (4 ) that
remains constant over time. This average crash rate is estimated by a regression analysis
with the geometric and traffic conditions as candidate variables. Thus, we estimate an

average rate for every unique combination of these independent variables. We then go on
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to use this estimated rate in calculating the probability of observing a fixed number of .
crashes, over the conditions for which the average rate applies.

In order to estimate the rate for the given conditions, we need to assume a model
form that relates this average rate to the explanatory variables. A number of model forms

can be found in the literature. For instance, some of the model forms suggested are

LA = B(X)P (X)) (X,)P (X )P e
2. A= Po+X1B1+XoBr+X3B3+XgPBg+...+E

3. A= BoBD™ (B2)™: (B) L (Ba)y K+ e

4 ) = e[i0+Xlﬁ,+X2ﬁ2+X3ﬂ3+XABA+...+8

where

B, = intercept,

,31 s ﬁ 25 [33 , [34 = regression coefficients to be estimated
X1,X7,X3, X4 = geometric variables
A = the crash rate
& = error term

The choice of a model form is largely arbitrary (Valavanis 1959) and the present study

uses the model form 4. Model form is discussed in greater detail in the next chapter.

Over-dispersion

A common criticism of the Poisson distribution is its assumption that the variance
of the data be equal to the mean, since in modeling real world data, we frequently

encounter situations where the observed variance is different from the mean. Usually, the
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observed variance is greater than the mean (over-dispersion) though some studies have
also reported the reverse condition (under-dispersion). In Poisson regression, the
violation of the variance assumption does not change parameter estimates (Agresti 1990).
However, all t-statistics are rendered inaccurate and thus need to be corrected. Agresti
suggested dividing the t-statistics by the square root of the over-dispersion parameter

(7 %) in order to obtain the correct significance levels of the regression coefficients.

Here, the over-dispersion parameter is given by:

where: ¥ 2_ computed chi — squared value of the model.

N = number of observations
p = number of coefficients considered in the model.

In order to address the over-dispersion problem, researchers are also resorting to
the use of a negative binomial model instead of a Poisson model. A negative binomial
model is similar to the Poisson model in every respect other than the equality of the mean
and variance assumption; In other words, the only difference is that this stipulation is
relaxed. A number of recent studies have used negative binomial regression with
promising results.

Another solution to the over-dispersion problem is the use of quasi-likelihood
estimation techniques to model estimation. Unlike maximum likelihood estimation,
quasi-likelihood estimation does not need to make any distribution assumption. The
maximum-likelihood and quasi-likelihood methods use the same transformation functions

while modeling data that follow a Poisson distribution. The advantage of the quasi-
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likelihood method is that it allows for separate mean and variance structures. Quasi-
likelihood estimation computes the dispersion parameter and assumes that the variance is

equal to the product of the mean and the dispersion parameter. Thus, the over and under-
dispersion problems are automatically taken care of. The present study uses the quasi-

likelihood estimation techniques in model estimation. The software package used for this

purpose is S-PLUS (1995).

Model Form

As described in Chapter 2, the exposure term explains most of the variation in
crash prediction models. This is because this term gives vital information about the
number of trips made in the site. This being the case, an important step in the model

building process is the decision regarding the place where the exposure term can be

incorporated in the model. A number of different forms have been used in the past. For
instance, we could have the exposure term on either the right or the left side of the

equation as illustrated below:

Crashes = Veﬁo +B.X +B,X,+...

Rate= Crashe%/: e'B0+B'X1 +8,X, +...

where V= exposure and other symbols are as defined earlier.

These two model forms do not convey the same meaning. For instance, the first
equation uses the exposure as information for predicting the number of crashes. The

second model, by trying to model the rate, is indirectly modeling exposure also. Thus, it
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does not use exposure as information, unlike the first model. Also, since it seems more
reasonable to assume that the number of crashes (being an integer) rather than the crash
rate is Poisson distributed, the first model form is used here.

The next important decision that was made with respect to model form was about
the exponent on the exposure variable. The above two models assume that the crash
fréquency is linearly related to the exposure. However, a number of studies have proved
that this assumption is false. In fact, the crash frequency seems to have a non-linear “U”
shaped relationship with exposure. Keeping these points in mind, the model form was
changed to incorporate the possibility of a non-linear relationship between crashes and
exposure. Thus, along with the coefficients of the geometric and traffic elements, the
exponent on the exposure was also estimated. The revised model form is shown below:

Crashes =V “ePotPXith ot
Where = exponent on exposure to be estimated

Tn an attempt to model at greater detail, the possibility of modeling single and
multi-vehicle crashes separately was investigated. It was hypothesized that single and
multi-vehicle crashes occur under very different traffic and site conditions. For instance,
Figure 5 shows the dependence of single and multi-vehicle crash rates on the shoulder
width.

From the graph, it appears that single vehicle crashes are associated with narrow
shoulders, while the relationship appears much more complex in the case of multi-vehicle
crashes. It must be noted however, that this graph might not reveal the true relationships,
since these are plots of total average crash rates versus shoulder width. In order to capture

the true relationship, all elements that affect the crash rates need to be controlled, to
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Figure 5. Crash Rate versus Shoulder Width

isolate the effect of shoulder width. In spite of this, there seems to be sufficient evidence

to suspect that single and multi-vehicle crashes have different causal factors.

In order to shed more light on the above issue, preliminary model estimation was
performed. This estimation is discussed in more detail in the next chapter. The
preliminary analysis was essentially aimed at grouping sites that were similar with
respect to the occurrence of single and multi-vehicle crashes. Since the traffic and light
conditions were controlled for, the similarity in sites was purely based on geometry and

land use.

Model and Variable Selection

Model selection is perhaps the most important step in the modeling process.
When modeling phenomena such as crashes, where there are a high percentage of zeros,

traditional goodness of fit tests such as Pearson’s chi-square or the likelihood ratio
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statistic are no longer valid. This is because these statistics are poorly approximated by
the chi-squared distribution (Agresti 1990). A useful alternative is the Akaike’s
Information Criterion (AIC). AIC recognizes that the objective of a statistical forecasting
model is to convey as much information as possible with a minimum number of
variables. Invariably, the information conveyed by a model increases as you add more
variables to the model. Hence, there is a clear conflict between trying to incorporate more
information into a model while at the same time reducing its complexity. AIC helps to
trade off between these two competing objectives in evaluating competing models, and is
given by:

AIC Value = -2(maximum likelihood) + 2p
where p is the number of parameters in the model. Models with a lower AIC are
preferred.

As mentioned previously, the statistical software package S-PLUS was used for
the Poisson regression analysis. S-PLUS uses a procedure that is similar to the forward
selection procedure in linear regression. As a first step, the user specifies a base model,
which should include all those variables that the user wishes to force into the model.
Typically, a null model (containing no variables) is specified as the base model. Next, the
user also specifies the pool of variables to choose from for the final model. Thereafter, S-
PLUS adds or deletes variables one at a time until the model cannot be improved any
further. The AIC is used as the criterion for evaluating the model at every step. Apart
from the AIC, two other important factors were used in checking the correctness ofa

model:
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Engineering judgment: This is just to make sure that the variables selected into the model

have coefficients and signs that make intuitive sense and that their contribution to the
model can be explained logically. As mentioned previously, it is common that a
regression analysis sometimes chooses variables that merely explain the current crash
dataset, rather than selecting those variables that physically cause the crash. The only
solution to this problem is to specify a meaningful set of variables to choose from, and to
check if the variables selected for a model make engineering sense. In this study, all
variables in the candidate models were checked for their signs and magnitude to make
sure that they are meaningful.

Significance: Another important check is to ensure that the model includes only variables
that are statistically significant. In other words, it must be known with reasonable

confidence (95%) that the coefficient of every variable is not actually zero.

These checks were performed on every model that was considered in the

preliminary and the final analysis.
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Chapter 5: Preliminary Models

In crash studies, the candidate variables for a regression analysis are usually
highly correlated. This is probably because we can rarely find roads that are designed
with highly differing design standards with respect to different geometric features. For
example, we seldom find a site that has high design standards for shoulder width but very
poor design standards for lane width. This being the case, the researcher has the
important role of helping the regression analysis select the variables that actually cause
the crash, as opposed to allowing it to merely pick those variables that seem to explain
crashes statistically. The researcher can do this by carefully picking out the pool of
candidate variables considered for regression. In order to do this, it would be helpful to
have an idea of which geometric variables are likely to cause crashes.

Prior to building the final crash models, a preliminary model estimation was
undertaken. This step had two main objectives:

1. To group similar sites (with respect to crash rates) and thus get an idea of the
important geometric variables affecting crashes.

2. To check if the grouping of sites is similar with respect to single and multi-vehicle
crash rates. A difference in grouping for each crash type would validate a split
modeling in crashes (since it would mean a difference in the causal factors).

In this preliminary analysis, the actual geometric variables were not included, but each

site was given a dummy id that represented its unique combination of geometric

characteristics. A new qualitative variable called “site_id” was introduced, which had the

eight dummy ids as its classes. In order to isolate the geometric variables causing the two
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types of crashes, the traffic and the light conditions had to be controlled. The three

variables used in this analysis are explained below in more detail.

Site id (SITE_ID): As mentioned earlier, “site_id” is a categorical variable that represents
the unique combination of geometric characteristics at each site, and takes the following

values:

.Rte 1l
.Rte 5
.Rte 7
.Rte 8
.Rte 12
. Rte 66
. Rte 81
.Rte 124

O~ O\ AW —

Level of Service (LOS): This variable is based on the Highway Capacity Manual (HCM)

1994 methodology for computing LOS on two-lane highways. The HCM prescribes the

computation of LOS based on the available sight distance, type of terrain and the
prevailing traffic condition (v/c ratio). Here, the capacity depends on the existing
geometric conditions at the site and is also computed according to the methods prescribed
by the HCM. Following are the values it takes:

I.LOS A

2.LOSB

3.LOSC

4.LOSD
5.LOSE

Light Conditions (L_Conds): “L_Conds” was introduced to capture the prevailing light

conditions when each trip was made. The computation of this variable including a
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detailed description of each of the classes was given in Chapter 3; they are assigned

values as follows:

1. Light
2. Dark
3. Dusk
To aid understanding of the preliminary analysis, an example of the results from
an estimated model are displayed and discussed in detail in the following section.
Shown in Figure 6 are results from a model estimated with the independent

variables site id, LOS and light conditions. The dependent variable in this case is the total
crash frequency. All three independent variables are categorical, so the regression
coefficients in the model were estimated as treatment contrasts. When considering
treatment contrasts, S-PLUS considers every variable level (except the base) as a dummy.
The base levels for the model in Figure 6 are Rte. 1, LOS A and light condition “light.”
Thus, the intercept represents the crash rate for the base level, i.e. for Rte. 1 at LOS A
and during daylight conditions. The coefficient shown on Rte. 7 is with respect to Rte. 1
and the coefficient on LOS B is with respect to LOS A. This means that the crash rate on
Rte 7 is (e'*? — ") units less than that on Rte 1, all other conditions being the same.
The t-statistics shown are for the null hypothesis that the difference in means
between the particular class and its base case is 2er0 ( U g, 1054 park — K reat,L0satign =0 ).
Thus, since the t-value is —4.51, at 95% confidence we can reject the null hypothesis that
Rte. 1 is not different from Rte. 7, all other conditions being the same. In this manner,
each of the sites can be statistically compared to the base case (Rte. 1). However, only
comparisons with the base case can be performed with these results. In order to make all

pair-wise comparisons, paired t-tests need to be performed between all pairs of sites. This
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Coefficients:
Value
(Intercept) -10.22
site_id 2 ( Rte 5) -1.96
gsite_id 3 ( Rte 7) -1.32.
site_id 4 ( Rte 8) -1.30
site_id 5 ( Rte 12) 0.71
site_id 6 ( Rte 66) -1.71
site_id 7 ( Rte 81) -1.63
site_id 8 ( Rtel24) -0.92
LOS 2 (B) -0.48
LOS 3 (C) -0.64
LOS 4 (D) -0.57
LOS 5 (E) -0.46
L_Conds 2 (Dark) 0.14
L Conds 3 (Dusk) 0.22
(Exp on Exposure) a 0.94

Accidents=V"’e

] 5
B0+2ﬂ,,»xile_i</,» +2
J

3
ﬁl_jLOS_j+Z PBayL_Conds,
k=l

1.

std. Error

16

.51

.29

.49

.28

.31

.49

.39

.29

.36

.46

.53

.25

.29

.09

-8

10.

(Dispersion Parameter for Quasi-likelihood family taken to be 1.253302 )

Sample Results from S-PLUS

Figure 6

39

t value
.79
.83
.51
.66
.57
.58
.33
.35
.64
.77
.24
.86
.57

.76
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is essentially equivalent to changing the base level each time. As mentioned before, these

comparisons are an important part of the analysis in this chapter.

Single Vehicle Crash Models

Four models were estimated for the single-vehicle crashes; their results are

displayed in Table 3. Important results and interpretations are discussed below.

Each of the first two models (Models 1 and 2) has just one explanatory variable.
Neither of these models performs as well as Models 3 or 4 (Models 1 and 2 have high
AIC and deviances). This suggests that both LOS and the site characteristics
(represented by site id) are very important together in explaining single vehicle
crashes.
Based on the AIC criterion, Model 3 is the best model. In fact, adding the light
variable to Model 3 (i.e Model 4) seems to have no effect. This is because LOS and
light conditions may be highly correlated, because most of the sites experience
similar traffic conditions at similar times of the day, particularly on weekdays.
Having chosen Model 3 as the best model, all pairwise comparisons were performed
to test differences between sites (Table 4). As explained earlier, a t-value of less than
1.96 means that there is no evidence to suggest dissimilarity between sites. Simply
using this criteria alone leads to no clear groupings; the following grouping is based
on the smallest t-statistics.

Group 1: Rtes 5, 7, 12, 66

Group 2: Rtes 1, 81

Group 3: Rtes 8, 124
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Table 3
Preliminary Models for Single Vehicle Crashes

Variable Model 1 Model 2 Model 3 Model 4
Intercept -11.00" -13.57 -13.09 -12.78
(-10.03)° (-10.88) (-10.75) (-7.74)
Rte 1 Base Base Base
Rte 5 -2.50 -1.12 -1.19
(-2.71) (-1.35) (-1.42)
Rte 7 -0.38 : -0.66 -0.65
(-1.1D) (-2.14) (-2.10)
Rte 8 -0.97 -1.66 -1.64
(-141) (-2.74) (-2.62)
Rte 12 -7.49 -6.91 -6.96
(-0.70) (-0.78) (-0.79)
Rte 66 -1.42 -0.68 -0.70
(-3.70) (-1.89) (-1.94)
Rte 81 -0.76 -0.01 -0.06
(-1.51) (-0.03) (0.12)
Rte 124 -0.72 0.87 0.79
(-2.29) (1.91) (1.69)
LOS A Base Base Base
LOSB -1.32 -1.67 -1.60
(-3.75) (-5.18) (-4.52)
LOSC -2.54 -2.83 -2.74
' (-5.17) (-6.08) (-5.42)
LOSD -2.99 -3.80 -3.67
(-4.14) (-5.34) (-4.93)
LOSE -1.91 -3.49 -3.31
(-3.85) (-5.30) (-4.55)
LIGHT Base
DARK 0.02
(-0.08)
DUSK -0.23
(-0.47)
Exponent 0.86 1.14 1.16 1.13
on Exposure (9.52) (9.82) (10.51) (8.21)
Dispersion 0.80 0.90 0.60 0.60
Null Deviance 363.50 363.50 363.50 363.50
Residual Dev. 218.72 204.73 185.98 185.80
AIC Value 236.72 216.73 211.98 215.80
1 -> Variable coefficient 2 -> t-statistic corrected for over-dispersion
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Table 4

Comparing Sites with Respect to Single Vehicle Crashes
(paired t-statistics)

Rte 1 Rte 5 Rte 7 Rte8 | Rtel12 | Rte 66 | Rte 81 | Rte 124
Rte 1 - 1.04 1.65 2.11 0.61 1.46 0.02 -1.48
Rte 5 -1.04 - -0.43 0.41 0.51 -0.42 -0.99 -1.83
Rte 7 -1.65 0.43 - 1.27 0.55 0.04 -1.02 -2.47
Rte 8 -2.11 -0.41 -1.27 - 0.46 -1.17 -1.80 -2.83
Rte 12 | -0.61 -0.51 -0.55 -0.46 - -0.55 -0.61 -0.68
Rte 66 | -1.46 0.42 -0.04 1.17 0.55 - -1.50 -2.61
Rte 81 | -0.02 0.99 1.02 1.80 0.61 1.052 - -1.30
Rte 124 | 1.48 1.83 2.47 2.83 0.68 2.61 1.30 -
. Bold face indicates failed t-tests

e A close examination of similar sites revealed that the shoulder width and truck

percentage could be important variables. However, a clear picture about the

individual geometric features causing crashes did not emerge. This was probably

because the relative amounts by which each characteristic affects crashes could not be

judged merely by observation.

The level of service (LOS) is very important in predicting single vehicle crashes,

as are the geometric characteristics. It is suspected that the LOS itself is highly correlated

with the geometric characteristics, because it is the geometry that determines the capacity

of a roadway, and LOS is computed from the capacity. Also, it should be noted that the

single vehicle crash rate decreases monotonically as the LOS becomes poorer. This is

probably because drivers are much more careful when there is lot of traffic on the road.
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Another plausible reason is that the better levels of service are more likely to be observed

during very early and very late hours of the day, when the drivers can be very tired or

sleepy.

Multi-Vehicle Crash Models

Results from the regression for the multi-vehicle crashes are displayed in Table 5.

Important results and interpretations are discussed below.
The best model is Model 1 since it has the lowest AIC value (391.28). It should be noted
that this model includes only “site id” amongst the three candidate variables. The fact that
LOS was not included in the best model was very surprising. However, it must be
remembered that the site LOS has been computed as the LOS for the section, ignoring
any intersections on the segment. Thus, the actual LOS for the section may be vastly |
different from the LOS based on the computed capacity. Since most multi-vehicle crashes
are likely to take place at intersections, the LOS variable does not give any vital
information in explaining these crashes.

The table of t-statistics for the pair-wise comparison of sites is shown in Table 6.

e Based on these t-statistics for Model 1, we arrived at the following grouping of sites:

Group 1: Rte. 1
Group 2: Rtes. 5,7, 66, 81
Group 3: Rte. 12

Group 4: Rtes. 8,124
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Table 5
Preliminary Models for Multi-Vehicle Crashes
Variable Model 1 Model 2 Model 3 Model 4
Intercept -10.08/ -9.88 -9.98 -11.31
(-11.53)° (-12.04) (-10.72) (-7.33)
Rte 1 Base Base Base
Rte 5 -2.03 -2.28 -2.30
(-3.72) (-3.86) (-3.78)
Rte 7 -1.86 -1.84 -1.81
(-4.19) (-4.12) (-3.99)
Rte 8 -1.17 -1.11 -0.94
(-2.10) (-1.90) (-1.50)
Rte 12 0.88 0.86 1.01
(3.13) (3.00) (3.18)
Rte 66 -1.95 -2.09 -2.21
(-5.70) (-5.45) (-5.35)
Rte 81 -2.59 -2.67 -2.63
(-3.15) (-3.22) (-3.05)
Rte 124 -0.99 -1.54 -1.66
(-4.00) (-3.18) (-3.13)
LOS A Base Base Base
LOSB 0.64 0.15 0.14
(1.67) (0.38) (0.32)
LOSC -0.14 0.21 0.33
(-0.32) (0.49) (0.67)
LOSD -0.18 0.63 0.76
(-0.39) (1.16) (1.24)
LOSE 0.46 0.83 0.86
(1.02) (1.28) (1.21)
LIGHT Base
DARK 0.26
(0.79)
DUSK 0.45
(1.27)
Exponent 0.88 0.76 0.86 0.96
on Exposure (12.20) (10.37) (10.73) (7.96)
Dispersion 1.37 1.44 1.38 1.40
Null Deviance 788.97 788.97 788.97 788.97
Residual Dev. 373.28 504.44 370.26 367.97
AIC Value 391.28 516.44 396.26 397.97

1 -> Variable coefficient
2 -> t-statistic corrected for dispersion
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Table 6

Comparing Sites with respect to Multi-Vehicle Crashes

(paired t-tests)

Rte 1 Rte 5 Rte 7 Rte8 | Rtel12 | Rte66 | Rte 81 [ Rte 124
Rte 1 - 4.35 4.90 2.45 -3.66 6.67 3.69 4.69
Rte 5 -4.35 - -0.31 -1.36 -6.09 -0.16 0.67 -2.17
Rte 7 -4.90 0.31 - -1.18 -6.79 0.20 0.94 -2.21
Rte 8 -2.45 1.36 1.18 - -4.29 1.46 1.72 -0.36
Rte 12 3.66 6.09 6.79 4.29 - 8.66 4.91 7.03
Rte 66 | -6.67 0.16 -0.20 -1.46 -8.66 - 0.87 -3.13
Rte 81 -3.69 -0.67 -0.94 -1.72 -4.91 -0.87 - -2.24
Rte 124 |} -4.69 2.17 221 0.36 -7.03 3.13 2.24 -

Boldface indicates a failed t-test

e TFrom a close examination of similar sites, shoulder width and truck percentage

seemed to be important again. However, as we had noted in the case of single vehicle

crashes, a clear picture of the elements of roadway geometry affecting crashes could

not be obtained.

e From the four models shown, it can be observed that the site id is much more

important than the level of service in explaining multi-vehicle crashes. This is much

different from findings with single-vehicle crashes, where the level of service was

very important. This will be discussed in more detail with the final models.
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Thus, we have seen that the present exercise did not reveal a clear picture of the
important geometric features causing crashes. However, it revealed important differences
between single and multi-vehicle crashes that have validated the categorization of the
crashes. For instance, the grouping of sites for multi-vehicle crashes is completely
different from that for single vehicle crashes. This suggests that the geometric elements
affecting single-vehicle crashes are completely different from those causing multi-vehicle
crashes. Secondly, it can be observed from multi-vehicle Model 3 (though not the best
model) that the multi-vehicle crash rate increases as the level of service becomes poorer.
This is completely different from the relationship we saw in the case of single vehicle

crashes.
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Chapter 6: Final Models

After the preliminary analysis for the single and multi-vehicle crashes, the next

step was to incorporate the actual site variables in place of the site ids. Variables
describing LOS and the light conditions (L.COND) were retained in their original form
for the final analysis. The list of geometric variables and their abbreviations as used in the
models are shown in Table 7. All of these variables énd their classes were explained in
detail in Chapter 3. The models for the single and multi-vehicle crashes included the
same geometric variables as candidates for the final model.

As mentioned previously, the statistical software package S-PLUS was used for
the Poisson regression analysis. The null model was formed using the original base
values for categorical variables and the pool of candidate variables contained all the
geometric, traffic and light variables, and all possible two way interactions of these

variables.

Single Vehicle Crash Models

Table 8 shows the results for the single-vehicle crash models; the following
paragraphs include a detailed explanation of the steps involved in selecting the best
models. The variables included in the model at each step and the pool of candidate

variables are outlined for clarity.
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Table 7

Site Variables Used
Variable Name Explanation Type of Range or Classes
Variable (found in data)
CLIM_ZON Climate Zone Categorical 1 = Freeze Cycle
2 = Freeze-Thaw Cycle
FUNC_SYS Functional System of | Categorical 2 = Prin. Arterial
the Roadway 6 = Minor Arterial
7 = Major Collector
LAN_WID Lane Width Continuous
11 and 12 ft
P_PAR Peak Parking Categorical 1 = Present
2 = Absent
RUR_URB Location Type Categorical 1 =Rural Area ,
3 = Urbanized (50 — 199)
4 = Urbanized ( > 200 )
SHO_RIGH Shoulder Width Continuous
0-8ft
SIGHT_DI Percent of Roadway | Continuous
with Sight Distance 0, 10 and 80 %
>1500 ft
SIGNALS No of Signalized Continuous
Intersections 0—1
SIN_TR_D Percentage of Trucks | Continuous
in Daily Traffic 0—4%
SIN_TR_P Percentage of Trucks | Continuous
in the Peak Hour 0-2%
SPEED_LI Speed Limit Continuous
35, 40, 45 mph
UNSIG No of Unsignalized | Continuous
Intersections 0-6

Population in 1000s
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Final Models: Single Vehicle Crashes

Table 8

Variable Modell | Model 2 | Model3 | Model4 | Model5 | Model 6
Intercept -16.26 -13.97 -15.60 -14.65 -14.78 -12.80
(-11.63) (-12.91) (-12.11) (-11.27) (-11.74) (-11.34)
LOS A Base Base Base Base Base Base
LOSB -1.66 -1.57 -1.69 -1.64 -1.65 -1.60
(-5.20) (-4.96) (-5.16) (-5.08) (-5.22) (-4.78)
LOSC -2.87 -2.44 -2.91 -2.73 -2.81 -2.51
(-6.35) (-5.84) (-6.33) (-5.95) (-6.27) (-5.39)
LOSD -3.76 -3.15 -3.99 -3.71 -3.90 -3.10
(-5.5D) (-5.0D) (-5.73) (-5.28) (-5.72) (-4.59)
LOSE -3.34 -2.57 -3.81 -3.43 -3.70 -2.35
(-5.65) (-5.73) (-6.33) (-5.53) (-6.31) (-5.01)
P_PAR 2.38
(5.56)
SIN_TR_P 1.21 1.30 1.61 1.47
(3.47) 3.17) (3.69) (3.68)
SHO_RIGH 1.41 -0.30 -0.33 -0.27 -0.11
(4.03) (-4.83) (-4.56) (-4.23) (-2.14)
CLIM_ZON 0.96
(3.20)
SIGHT_DI -0.01 -0.02 -0.02
(-1.64) (-2.30) (-2.45)
LAN_WID
UNSIG 0.34
4.21
SIGNALS 0.54
(1.92)

Exponent 1.16 1.09 1.21 1.14 1.18 1.13
on Exposure (-11.63) (10.92) (11.64) (10.80) (11.71) (10.83)
Dispersion 0.67 0.67 0.65 0.66 0.64 0.73
Null Deviance | 363.50 363.50 363.50 363.50 363.50 363.50
Residual Dev. 182.25 192.28 183.81 183.54 185.95 193.96
AIC Value 200.25 206.28 201.81 203.54 203.95 209.96

Values in parentheses are t-statistics after correction for dispersion
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Step 1: All Variables Included
Model 1: LOS, P_PAR, SIN_TR_P, SHO_RIGH

Initially, when the entire list of candidate variables was available for regression,
Model 1 was selected as the best model through the step-wise search procedure. This
model included LOS, peak parking, percentage single unit trucks in the peak hour, and
shoulder width. Though the AIC value was very good for this model, a number of
important flaws were observed. For instance, the inclusion of peak parking as an
important variable in predicting single vehicle crashes did not make any engineering
sense. As mentioned in Chapter 3, this variable has two classes (“parking allowed” and
“not allowed”), but seven of the eight sites came under the second category (“not
allowed”) for this variable. Hence, it is possible that this variable was just acting as a site
specific dummy (for the only site that allowed parking — Rte. 1). Thus, this variable did
not have sufficient representation of its classes. Another important drawback of the
model is that shoulder width has a positive sign, suggesting that single vehicle crashes are
associated with wider shoulders. This result is unexpected and therefore rejected.

As explained in the previous chapters, these problems probably arose because the
candidate variables are highly correlated, and in such a case, the regression procedure
may not pick those variables that physically cause the crash. Hence, since it is known that
peak parking is not a desirable variable, it was removed from the pool of candidate

variables. The step-wise procedure was performed again without this variable.
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Step 2: P_PAR excluded
Model 2: LOS, UNSIG

In Model 2, the trends in level of service are similar to those found in Model 1.
UNSIG has a positive coefficient suggesting that single-vehicle crashes increase with an
increase in the number of unsignalized intersections. This relationship between the
number of unsignalized intersections and single-vehicle crashes cannot be explained
intuitively, so UNSIG was removed so that the model could include more meaningful
variables.

Step 3: P_PAR and UNSIG excluded
Model 3: LOS, SIN_TR_P, SHO_RIGH, CLIM_ZON

Model 3 includes CLIM_ZON in addition to the variables in Model 1. The only
two classes of CLIM_ZON that were present in the database were 1 and 2. Class 1
represents sites that come under a “freeze” cycle while class 2 represents those that have
a “freeze-thaw” cycle. Since only two classes of climate zone are present, there is not
enough variation in the dataset for this variable. Also, the difference in the single vehicle
crash rates between these two classes could not be sufficiently explained. Hence, this
variable was the next to be removed from the pool of candidate variables.

It can be seen that Model 3 is very similar to Model 1 in the variables that it
includes. However, SHO_RIGH has a more meaningful negative sign in Model 3 unlike
Model 1. LOS and SIN_TR_P have very similar coefficients in both Models 1 and 3.

Thus, the step-wise regression procedure was continued with CLIM_ZON removed.
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Step 4: P_PAR, UNSIG and CLIM_ZON excluded
Model 4: LOS, SIN_TR_P, SHO_RIGH, SIGHT_DI, SIGNALS

It should be observed that this model is similar to the Models 1 and 3 in the
variables included except that Model 4 includes SIGHT_DI and SIGNALS rather than
P_PAR or CLIM_ZON. Most of the variables included in this model take predictable
signs. For instance, sight distance was included for the first time, and has a negative
coefficient suggésting that single vehicle crashes are associated with sites where the sight
distance is poor. The main shortcoming of this model was the inclusion of the number of
signals. Similar to UNSIG, the relationship between the single-vehicle crashes and the
SIGNALS could not be explained and hence, this variable was removed in the next step.
SIN_TR_P was again included in this model with a positive sign and though not as

serious as the inclusion of UNSIG, this is another minor drawback of the model. Apart

from this, LOS and SHO_RIGH take expected trends.

Step  5: P_PAR, UNSIG, CLIM_ZON and SIGNALS excluded
Model 5: LOS, SIN_TR_P, SHO_RIGH, SIGHT_DI

Model 5 appears to be the best model, with all variables taking expected signs and
all their coefficients being significantly different from zero. Though Model 5 appears the
best, it still includes SIN_TR_P whose presence is troublesome. The preliminary
estimation had revealed that single-vehicle crashes were associated with better levels of
service and hence, the inclusion of a peak hour variable is questionable. For instance, the
model would have made much more sense if SIN_TR_D was included rather than
SIN_TR_P. Hence, a number of other steps were performed before the final model was

selected. The first step was to exclude the peak hour truck variable.
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Step 6: SIN_TR_P excluded from models
Model 6: LOS, SHO_RIGH, SIGHT_DI

Model 6 shows the results after removing the peak hour truck variable. The model
performs very well as far as the signs of the variables and their significance are
concerned and appears to be the best model from an engineering point of view. The
model, however, has a much higher AIC value than Model 5. Thus, on the basis of
goodness of fit and engineering judgement criteria, the best single-vehicle crash models
were identified to be Models 5 & 6. However, both these models had some minor
drawbacks as mentioned above and hence were scrutinized further.

In all the models considered to this point, the level of service was included as an
important variable. From the coefficients of each of the classes of LOS, it can be
observed that there is a decreasing trend. In other words, the single vehicle crash rate
seems to decrease as the level of service becomes poorer, up to LOS D, after which there
is a slight increase. As observed with the preliminary estimations, this is probably
because single-vehicle crashes generally occur during less congested conditions.

However, this trend in LOS is not conclusive since the t-values tell us only the
significant difference of a class as compared to its base class (LOS A). For instance, we
do not know if there is a significant difference between the levels of service D and E
though the coefficients suggest an increasing trend. Thus, in order to evaluate the
differences between the other levels of service (apart from LOS A), paired t-tests need to
be performed. Having chosen models 5 and 6 for further investigation, paired t-tests for

LOS were performed for each of these models.
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Table 9
Comparing the Levels of Service (Single Vehicle Models, 5 and 6)
(paired t-tests)

LOS A LOSB LOSC LOSD LOSE
1
tosa | e | sw | as | So
Loss | o - 230 | 24 218
osc [ §55 | S - 0ss | om
oso | 35 | 3% | ass - 108
ose | Sl | 8% | om | s -

Bold face indicates failure to reject Null-Hypothesis of no difference between coefficient
values (at 90% confidence)

1 Model 5
2 Model 6

Table 9 shows the results from the paired t-tests performed for Models 5 and 6. It
can be seen for both models that the higher levels of service (A, B) are significantly
different from each of C, D and E. For Model 5, LOS C is significantly different from D
and E at 90% confidence. However, for the same model, there is no evidence to suggest
any difference between LOS D and E. In Model 6, there is no evidence to suggest any
difference between levels of service C, D, E. Hence, in order to get significantly different
LOS, the following grouping was performed:

Model 5: LOS A LOSB LOSC LOS (D & E)

Model 6: LOS A LOS B LOS (C,D & E)
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With this grouping of the levels of service, three models were tested. Table 10
summarizes the results of each of these models with the merged levels of service. Models

7 and 9 correspond to Models 5 and 6 with the levels of service merged. As mentioned
before, it was thought that a variable such as SIN_TR_D would make Model 5 more
meaningful than SIN_TR_P. Model 8 shows the results after replacing SIN_TR_P with
SIN_TR_D in Model 7. As can be observed, SIN_TR_D is not significantly different
from zero and the model performs very poorly with a high AIC value. Model 10 is a
further extension of Model 9 with SPEED_LI included. As can be observed from Table
10, this model has the lowest AIC value. Thus, Models 7, 9 and 10 remain as the final
competing models, so further analysis was limited to these models.

After merging LOS, paired t-tests were performed for Models 7 and 9 again, to
check if all classes were significant. The results are summarized in Tables 11 and 12. We
can observe that with such a grouping of the LOS, we obtain classes that are statistically
different from each other.

Looking at the coefficients on LOS in Models 7 and 9, it can be seen that the
single vehicle crash rate decreases monotonically with a decrease in the level of service.
Since the levels of service were all shown to be significantly different, we can be
confident that we have captured the true relationship between the single vehicle crash rate
and the level of service. As the last step, the variable SIN_TR_P was removed from the
candidate variables and the search for the best model was continued. The next best model
(Model 10) was very similar to models 7 and 9 in that it included level of service, sight
distance and shoulder width as important variables. Apart from these, speed limit was

also included in the final model. The signs of the coefficients are very similar to Models
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Table 10

Final Models: Single Vehicle Crashes
Variable Model 7 Model 8 Model 9 Model 10
Intercept -14.88 -13.06 -13.06 -8.91
(-12.22) (-10.48) (-11.84) (-4.13)
LOS A Base Base Base Base
LOS B -1.66 -1.66 -1.65 -1.59
(-5.30) (-4.89) (-4.91) (-4.90)
LOSC -2.83 -2.53
(-6.31) (-5.36)
LOS (D, E) -3.71 -2.59
(-7.01) (-5.90)
LOS (C,D, E) -2.56 -2.76
(-6.57) (-6.86)
SIGHT_DI -0.02 -0.02 -0.02 -0.02
(-2.30) (-2.31) (-2.44) (-2.49)
SHO_RIGH -0.27 -0.12 -0.12 -0.15
(-4.36) (-2.32) (-2.33) (-2.84)
- SIN_TR_P 1.49
(3.80)
SIN_TR_D -0.01
(-0.06)
SPEED_LI -0.09
(-2.10)
Exponent 1.19 1.16 1.16 1.13
on Exposure (12.13) (11.26) (11.50) (11.53)
Dispersion 0.64 0.75 0.75 0.71
Null Deviance 363.50 363.50 363.50 363.50
Resid. Deviance 186.01 194.94 194.96 191.44
AIC Value 202.01 210.94 206.96 205.44

Values in parentheses are t-statistics after correction for dispersion
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Table 11

Comparing Levels of Service for the Final Model (Single Vehicle Model 7)

(paired t-tests)

LOS A LOS B LOS C LOS (D, E)
LOS A - 5.30 6.32 7.01
LOSB 5.30 - 2.99 4.83
LOS C 6.32 2.99 - 1.96
LOS (D, E) 7.01 4.83 1.96 -

All classes are significantly different from each other at 95% confidence

Table 12

Comparing Levels of Service for the Final Model (Single Vehicle Models, 9 and 10)

(paired t-tests)

LOS A LOSB LOSC,D,E
LOS A - o o
LoS B +90 - Tes
LOS G D, E 56 Hp -

All classes are significantly different from each other at 95% confidence

1 -> Model 9
2 -> Model 10
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7 and 9. Speed limit is observed to have a negative coefficient, indicating that roads with
a higher speed limit have a lower single-vehicle crash rate. This does not necessarily
mean that increasing the speed limit on a roadway will decrease the crash rate. Instead
such a trend was observed probably because roads with higher speed limits are generally
designed better. It should also be noted that other researchers (Bared and Vogt 1997 and
Ivan and O’Mara 1997) have observed similar trends.

At this stage, the final models chosen are 7, 9 and 10. Since the relationship of
peak truck percentage to single-vehicle crashes is not understood clearly, the validity of
Model 7 can be questioned. In comparing Models 9 and 10, important questions about
speed limit arise because speed limit is not a basic variable, but is a function of the
existing conditions on the roadway and hence does not directly affect the crash rate.
Hence, the presence of such a variable is not very desirable.

The above discussions suggest Model 9 to be the best single V;hicle crash model.
The variables included are LOS, shoulder width and sight distance. All variables are
statistically significant and take signs that make intuitive sense. The AIC value, though
not as impressive as the other models considered, still suggests a good fit with a

minimum number of variables.

Some Important Observations

In modeling single-vehicle crashes, it can be observed that the data were
underdispersed. This condition, though not very common, is not very surprising. This
condition may be associated with the large number of cases observed to have no single-

vehicle crashes. Also, the cases with non-zero observations had a small number of single
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vehicle crashes and thus produced very little variation. In essence, a larger dataset might
have mitigated this problem but underdispersion could be an innate characteristic of

single vehicle crashes.

The exponent on exposure has been uniformly observed to be slightly greater than
1.00. This further confirms the non-linear relationship between crashes and traffic flow.
Light conditions did not emerge as an important variable in predicting single-vehicle

crashes probably because of its correlation with the level of service

Multi-Vehicle Crash Models

In modeling multi-vehicle crashes, a procedure similar to that adopted for single
vehicle crashes was followed. The same candidate variables were used in modeling
multi-vehicle crashes and the base model was specified to be a null model in step-wise

regression. Table 13 summarizes the results from the multi-vehicle crash modeling.
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Final Models: Multi Vehicle Crashes

Table 13

Variable Model 1 | Model2 | Model 3 | Model4 | Model 5 | Model 6
Intercept -1.25 -17.44 -2.14 -23.24 -21.21 -22.23
(-0.57) (-9.43) (-1.18) (-14.01) (-6.75) (-14.78)
RUR_URB 1.12
3) (4.43)
RUR_URB -0.24
4) (-0.36)
SPEED_LI -0.13 -0.12
(-2.36) (-2.59)
SHO_RIGH 0.36 0.86 0.39 0.59 0.67 0.47
(4.14) (5.93) (4.60) (5.03) (3.81) (5.15)
ROW_WID -0.04 -0.04 -0.04 -0.01
(-3.55) (-3.76) (-4.32) (-0.73)
FUNC_SYS 6.71 6.50 6.51 5.98
6) (8.22) (8.96) (8.01) (9.12)
FUNC_SYS 5.83 5.69 5.67 5.35
@) (7.26) (7.64) (7.08) (7.52)
FUNC_SYS 4.55 6.65 5.92 6.11
(14) (6.85) (9.03) (5.11) (9.51)
SIGNALS 1.41 2.18 1.96 2.36
(3.79) (7.13) (3.88) (7.73)
UNSIG 0.38 0.35 0.12
(2.23) (4.51) (0.53)
P.PAR 1.60 0.80 1.03
(2.82) : (1.57) (1.61)
SIN_TR_P -2.60 -2.61
(-8.68) (-9.27)
SIN_TR_D 1.39 0.95 1.39
(6.36) (1.57) (5.94)
Exponent 0.88 0.88 0.88 0.89 0.88 0.87
on Exposure (11.96) (12.69) (12.19) (12.99) (12.71) (13.06)
Dispersion 1.47 1.29 1.41 1.31 1.30 1.31
Null Deviance 788.97 788.97 788.97 788.97 788.97 788.97
Residual Dev. 379.20 367.78 379.39 365.38 364.57 368.44
AIC Value 395.20 387.78 393.39 383.38 386.57 384.44

Values in parentheses are t-statistics after correction for dispersion

60




Step I: All Variables Included
Model 1: RUR_URB, SPEED_LI, SHO_RIGH, ROW_WID, SIN_TR_P

When all the variables were included in the pool of candidate variables, Model 1
was chosen by the software to be the best model. The model has a number of drawbacks.
First, the inclusion of a variable such as speed limit is not desirable for reasons discussed
in the previous section. Also, from the sign of SIN_TR_P, the model suggests that the
multi-vehicle crash rate decreases with an increase in the perceﬁtage trucks in the peak
hour. This trend, though possible, is very unlikely. Another shortcoming is the inclusion
of the variable ROW_WID. Variables such as lane width may be preferred to right of
way width, since the effect of lane width on crashes is more direct. Lastly, the model has
a high AIC value and a high residual deviance. As the next step in the analysis, either
ROW_WID or SPEED_LI had to be removed from the pool of candidate variables to
permit more meaningful geometric variables to be included. Since the inclusion of
SPEED_LI was considered to be a bigger problem, this variable was removéd from the
list of candidate variables
Step  2: SPEED_LI excludeé’

Model 2: RUR_URB, SHO_RIGH, ROW_WID, FUNC_SYS, SIGNALS, UNSIG,
P_PAR

After speed limit is excluded from the analysis, Model 2 becomes the best model
and includes the variables shown. P_PAR is one of the variables that are included in this
model. It should be noted that the presence of peak hour variables is acceptable when
modeling multi-vehicle crashes unlike single vehicle crashes. This is because, intuitively,
multi-vehicle crashes should be associated with congested traffic conditions unlike what

was found with single vehicle crashes. However, the inclusion of P_PAR has other
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problems. Peak parking as described previously has “presence” or “absence” as its levels.
Amongst the eight sites that were considered in the present study, only one allowed
parking. Hence, there is definitely not sufficient representation from all classes of this
variable. It appears that this variable is acting as a dummy id for the Rte 1 site. Hence,
P_PAR was not considered for further analysis. It should be noted that this model
includes ROW_WID just as in Model 1 and this remains another shortcoming. Apart
from these arguments, the model performs well. The variables take expected signs, are all
significantly different from zero and the model has a low AIC value. An important
observation from Models 1 and 2 is that the coefficient on shoulder width is positive.
This suggests that multi-vehicle crashes are associated with wider shoulders. This point
will be discussed in greater detail later on in this chapter.

Step 3: P_PAR excluded
Model 3: SPEED_LI, SHO_RIGH, ROW_WID, UNSIG, SIN_TR_P

Model 3 drops out functional system but includes speed limit, shoulder width,
right of way width, number of unsignalized intersections and the peak percentage of
single unit trucks. This model is similar to Model 1 in the variables included and their
signs (except location type), and suffers from the same drawbacks. The right of way
width and speed limit take expected signs (negative). It is observed again that the
shoulder width has a positive coefficient. It appears from these three models that the
functional system is an important variable for the performance of the multi-vehicle crash
model. Hence, as the next step, FUNC_SYS was retained but SPEED_LI and

ROW_WID were excluded from the analysis in order to improve the model.
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Step 4: FUNC_SYS included, SPEED_LI and ROW_WID excluded
Model 4: SHO _RIGH, FUNC_SYS, SIGNALS, P_PAR, SIN_TR_D

Model 4 is among the best models for multi-vehicle crashes. The model has a
very low AIC value and the variables take predictable signs. For instance, the “percent
daily trucks” and the “number of signalized intersections” variables have positive
coefficients. The only drawback of this model is the inclusion of the peak parking
variable but it turns out that this variable is not significantly different from zero, and
hence was removed from further analysis. Before this step was performed, it was checked
if UNSIG or SPEED_LI could make Model 4 better.

Step 5: ROW _WID, UNSIG included
Model 5: SHO_RIGH, ROW_WID, FUNC _SYS, SIGNALS, UNSIG, P_PAR,
SIN_TR_D

Model 5 considers right of way width and the number of unsignalized
intersections in addition to the variables considered in Model 4. This model has neither of
the two variables right of way width and unsignalized intersections, significantly different
from zero. Hence, it was established that these variables do not add any more
information to Model 4, thereby making Model 4 better. As mentioned earlier, the only
drawback of model 4 is the presence of the parking variable. This variable was thus

removed in the next step.

Step  6: P_PAR, ROW _WID and UNSIG excluded
Model 6: SHO_RIGH, FUNC_SYS, SIGNALS, SIN_TR_D

Model 6 appears to be the best model in predicting multi-vehicle crashes on two-

lane roads. It includes shoulder width, functional system, number of signalized
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intersections, and percent daily trucks as its selected variables. As observed with the
previous models, shoulder width has a positive coefficient. The signalized intersection
variable and the percent daily truck variable have positive coefficients conveying an
increasing relationship with multi-vehicle crash rates. The model has all continuous
variables statistically significant and a low AIC value. On these bases, this model was
chosen for further investigation.

Functional system happens to be the only non-continuous variable included in the
final multi-vehicle crash model. The next step in reforming the model was to check if this
categorical variable had all its classes significantly different from each other. Thus,
paired t-tests were performed between the classes of the functional system variable for

Model 6. The results are displayed in Table 14.

Table 14

Comparing Difference Between Levels of Functional Sysfem Class
(Multi Vehicle Accident Models)

Rural . . Urban
Principal Rural Mlnor Rural Major Principal
. Arterial Collector p
Arterial 6 - Arterial
) © @ a4
Rural Principal
Arterial (2) - 8.96 7.64 9.02
Rural Minor
Arterial (6) 8.96 - 1.51 0.48
Rural Major
Collector (7) 7.64 1.51 - 1.57
Urban Principal
Arterial (14) 9.02 0.48 1.57 -

Bold face indicates no significant difference between indicated classes at 95%

confidence.
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The functional system variable for these data has four classes coded as 2, 6, 7 and
14. Each of these is explained in detail in Chapter 3. From the table of t-statistics, it

appears that class 2 is significantly different from the other classes, but there is no
evidence to suggest any differences among the rest of the classes. Thus the variable
classes were merged into two groups (class 2 and all others) and Model 6 was re-
evaluated. Results from this estimation are displayed in Table 15 as Model 7; the t-
statistic for level 2 of the functional system suggests that it is significantly different from
the class representing the rest of the levels for this variable. As the results indicate, the
other variables do change in sign, and remain statistically significant even after the
merging of the levels of functional system.

Model 7 for multi-vehicle crashes includes shoulder width as one of its variables.

Shoulder width has been included in this model as a continuous variable of the first

degree (exponent = 1.00). A problem we often face with continuous variables of the first
degree is that non-linear relationships cannot bé captured. For instance, by including
shoulder width in the present form, we are forcing the regression to fit a straight line (by
estimating a single coefficient) to the observed data. However, as Chapter 2 elaborates,
previous studies have indicated that the crash rates might not be linearly related to
shoulder width. In order to incorporate the possibility of a non-linear relationship with
crash rate, models were estimated with shoulder width included as a categorical variable
along with the same variables as Model 7. Based on Figure 6, which plots crash rate
versus shoulder width, a number of different categorizations were tried and the results

from this analysis are displayed in Table 15 as Models 8, 9 and 10.
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Table 15

Final Models: Multi Vehicle Crashes

Variable Model 7 Model 8 Model 9 Model 10
Intercept -15.87 -14.72 -15.32 -18.57
(-14.69) (-14.07) (-11.13) (-12.89)
FUNC_SYS Base Base Base Base
6,7, 14)
FUNC_SYS -5.79 -3.34 -4.05 -7.98
(2) (-9.83) (-8.79) (-7.55) (-7.09)
SIGNALS 2.31 1.50 2.53 3.55
(7.78) (4.40) (6.39) (8.53)
SIN_TR_D 1.26 1.01 1.40 2.24
(6.84) (5.39) (4.92) (8.17)
SHO_RIGH 0.44
(5.15)
SHO_RIGH Base
(<=2)
SHO_RIGH 1.16
=2 (5.07)
SHO_RIGH Base
(<=3)
SHO_RIGH 0.71
=3) (1.84)
SHO_RIGH Base
(<=4
SHO_RIGH 3.79
=4 (4.48)
Exponent 0.88 0.90 0.87 0.91
on Exposure (13.83) (13.57) (11.67) (13.22)
Overdispersion 1.30 1.32 1.69 1.33
Null Deviance 788.97 788.97 788.97 788.97
Resid. Deviance 370.88 374.07 400.26 384.67
AIC Value 382.88 386.07 412.26 396.67

Values in parentheses are t-statistics after correction for overdispersion
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Model 8 includes shoulder width in the form of two classes (<=2 ft and > 2ft).
This model, though it has significantly different shoulder classes, performs poorly. The
deviance and hence the AIC value is very large for this model. Model 9 is an attempt at
another classification of shoulder widths based on the graph in Figure 6. From this figure,
it appears that the multi-vehicle crash rate increases with shoulder width up to a width of
3 ft after which it starts decreasing again. This model, though expected to perform well,
also has high deviance and AIC values and performs much worse than any of the models.
This is probably because the trends within the classes are not constantly increasing or
decreasing. Model 10 tries another classification of shoulder widths (<=4ft and > 4{t) but
also performs poorly.

Surprisingly, none of these models perform as well as the original model, where
shoulder width was a continuous variable. It was thought that the models with shouldef
classes would perform at least as well as the model with shoulder width as a continuous
variable. However, it appears that none of the classifications that were attempted seemed
to improve the existing model. This is probably because, though there might be internal
fluctuations in the trends, there seems to be an overall increase in crash rates with an

increase in shoulder widths.

Some Important Observations

It can be observed that in modeling multi-vehicle crashes, the data were now
overdispersed. This condition is contrary to what was observed with single vehicle
crashes. Two reasons could be cited for this condition. First, multi-vehicle crashes by

nature exhibit large variances in their occurrence. In other words, their occurrence is
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more unpredictable than single vehicle crashes that seem to behave in a much more
orderly fashion. Another reason might be there were not enough data on single vehicle
crashes. Overdispersion in crashes is more in agreement with previous experiences in
crash modeling. Also, the exponent on the exposure term was uniformly Jess than 1.00.
This again confirms the non-linear relationship between crashes and traffic flow.

It is a little surprising that the LOS did not turn out to be an important variable for
multi-vehicle crashes. This may be because the poor LOS was not sufficiently
represented in the dataset. This might also have to do with the fact that a large portion of
the multi-vehicle crashes occur at intersections and the LOS variable was computed for
the section between the intersections, not at the intersections themselves.

It was noted that shoulder width had a positive coefficient indicating that multi-
vehicle crashes were associated with wider shoulders. This may be because the presence
of wider shoulders encourages drivers to attempt to use shared lanes as protected left and
through lanes ( Persaud and Mucsi 1995) causing crashes even when it is not safe to do
so. To be sure, the data suggest that crash rate decreases with an increase in shoulder
width up to about 3 feet, then increases again. Bared and Vogt (1997) also reported this
finding.

Functional system was an important variable in explaining multi-vehicle crashes.
Though this is not a fundamental variable like shoulder width or lane width, it is
important because it can be thought of as representing driver expectation. For instance,
based on the design and the location of a particular road segment, the driver
automatically expects to drive at a particular speed and this may be completely different

from the speed limit or safe speed at the site. This perception by the driver and the
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roadside environment can be thought of as being represented by the FUNC_SYS

variable.
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Chapter 7: Conclusions and Recommendations

The current study involved the development of prediction models for single and
multi-vehicle crashes on two lane roadways. Data on geometric characteristics, hourly
traffic volumes, number and type of crashes etc. were obtained from the Connecticut
Department of Transportation. In addition to this, light data was also incorporated, by
computing the sunrise and sunset times at each of the eight sites included in this study.

A Poisson regression analysis was performed to obtain separate models for single
and multi-vehicle crashes. In both of these models, traffic volume turned out to be the
most important predictor. Specifically, traffic volume was found to be related to both
single and multi-vehicle crashes in a non-linear fashion. Single and multi-vehicle crashes
seemed to occur under quite different conditions and were caused by different factors.
For instance, it was found that single vehicle crashes mostly occurred during less
congested times of the day (high levels of service) and decreased as congestion increased
(low levels of service). On the other hand, multi-vehicle crashes did not show any such
clear correlation with the congestion levels.

As far as geometric characteristics go, single vehicle crashes increased with
decreasing shoulder width while multi-vehicle crashes showed the exact opposite trend.
The other important causal geometric factor for single vehicle crashes was sight distance
with the crashes more likely at lower sight distances. For multi-vehicle crashes, in
addition to shoulder width, an increase in the number of signals and the percentage of

single unit trucks seemed to increase the number of multi-vehicle crashes observed.
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Model form was found to be a critical factor that determines how well a
prediction model performs. This has been proved time and again in the past and this

current research further confirms this. For instance, we might know that a particular
explanatory variable is very powerful in explaining crashes at a site but what is also
important is the way in which this variable is introduced inside the model. This needs
knowledge of the exact relationship between the dependent variable (crashes) and the
predictor (say traffic flow). Unfortunately, in most cases we are not aware of the exact
nature of this relationship.

We faced this exact problem with respect to traffic flow. It was seen that crashes
were very highly correlated with respect to traffic flow. By modeling crash rate instead of
crashes or by assuming that the exponent of exposure in the model is 1.00, we are
implicitly assuming a linear relationship between crashes and exposure. Since this was
not a proven fact, an assumption such as this might not be valid. In order to test this, and
to give the model more flexibility, exponent onéxposure was computed through the
modeling process. It was found that this exponent was statistically different from 1.00
thereby rendering the linear relationship hypothesis invalid.

The volume of traffic as was mentioned earlier, seems to be the single most
important predictor of crashes. This was because in both single and multi-vehicle crash
models, traffic flow (exposure variable) explained most of the variance in observed
crashes. This being the case, a good model requires accurate data about the traffic
conditions in the site, preferably even hourly volume counts. Use of Annual Average
Daily Traffic (AADf) to approximate the vehicle miles traveled at a site might reduce the

natural variance that exists in exposure data and this might result in heavy
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underdispersion. Apart from retaining the natural variation in traffic data, the hourly
volumes also give us important clues about the congestion levels at the site in the form of
the level of service variable (LOS). This proved to be an important variable in predicting
single-vehicle crashes.

Surprisingly, multi-vehicle crashes did not seem to depend on LOS. This is
probably because, most of the multi-vehicle crashes occurred at intersections and LOS at
a controlled intersection can be completely different from that computed at mid-block.
However, the current study did not have enough data to compute the LOS at intersections
separately. This being the case, the LOS computed at mid-block was substituted for the
intersection LOS. This was probably why the analysis did not pick up a strong
relationship between the multi-vehicle crashes and LOS.

It has been suggested (Frantzeskakis 1983) that the exposure at intersections
should be expressed as the product of the volumes on the major and the minor
approaches. Again, due to lack of data on the minor street volumes and information about
the exact location of accidents, intersection accidents could not modeled separately. This
might have been a large source of variation in the accidents observed.

The final models for single and multi-vehicle accidents emerged after a series of
steps that involved the removal of a number of variables. These variables were included
in course of the initial variable selection done by the statistical package. However, these
variables had to be examined carefully by the researcher to make sure that they made
engineering sense. For instance, the percentage single unit trucks in the peak hour
(SIN_TR_P), was one of the most important variables in predicting single vehicle

accidents. This made no engineering sense because “SIN_TR_P” happens to be a peak
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hour variable and single vehicle crashes are unlikely to occur during peak hour
conditions. Similarly, the number of signals (SIGNALS), was another variable that
emerged as one of the important variables in predicting single vehicle accidents. This
again made no engineering senese because single vehicle crashes are much more likely to
occur at mid-block. Apart from correlation between candidate variables, no other reason
could be cited for the above phenomenon. Similar trends were also observed in modeling
multi-vehicle accidents.

A major pitfall of a regression analysis with categorical variables is the lack of
adequate representation of the different classes of a variable. For instance, peak parking
was an important variable in predicting multi-vehicle accidents. It had two different
classes, “Parking Allowed” and “Parking Not Allowed”. The variable had to be removed
because the lack of variation precluded its true effect to be computed. Instead, it was |
likely acting as a site specific dummy variable for Rte. 1, which happened to be the only
site that allowed parking. Similarly, there were some variables such as climate zone and
lane width which were also not considered because there was not enough variation in the
variables themselves.

Among the site variables, shoulder width was an important variable for both
single and multi-vehicle accident prediction. Interestingly, single vehicle crashes were
found to be associated with narrow shoulders while multi-vehicle crashes were found to
be associated with wider shoulders. These finding might have some important
implications. Since single vehicle crashes are mostly “run-off road”, this might mean that
a wider shoulder is actually reducing the risk of such a crash, probably because drivers

have more time to react. Also, these wider shoulders are causing more multi-vehicle
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crashes probably because drivers are tempted to go around other stopped vehicles. This is
probably leading to rear-end collisions.

At every step, it was found that single-vehicle crashes had completely different
characteristics than multi-vehicle crashes. This validated the split modeling that was
hypothesized. Strangely, light conditions did not seem to affect any of these crashes

possibly due to a correlation with LOS or other variables.

Suggestions for Future Research

An important area in which the dataset was lacking was the number of sites
considered and the number of years of crash data. Because of these limitations, crashes
could be split only into single and multi-vehicle categories and not any further. With
additional data, accidents could further be split into their types such as rear—ends, angie
collisions, head-ons, side swipes and run-off road. However, if such a modeling is
undertaken, it should be ensured that there is sufficient data for each type of accident. At
the same time, data should not be manually picked to ensure this, since it might cause a
bias. It was found that the two types considered (single and multi-vehicle) were
completely different; a further split might produce even better results.

As stated previously, this study did not model intersection accidents separately. If
information on the exact location of the crashes on the site and the location of
intersections is obtained, this modeling can be done more effectively. Further, it would be

more useful if one could obtain the volume counts on the minor roadway also. Apart from
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this, it might help to get data on the accurate percentage of trucks and other types of
vehicles also.

Finally, an empirical Bayesian approach that takes into account the history of the
roadway and the crashes observed on it could produce much better models. As we know,
the Poisson process is a “memoryless” process. In other words, just the fact that a site has
experienced a high crash rate is not enough reason for the process to assume that the site
will observe a high crash rate in the future. However, this historical information about the
site is made use of in a Bayesian approach. Probably, a combination of Poisson
regression and an empirical Bayesian method may be considered. This way, the
extraneous influences on the roadway that cannot be represented by any variable can be

accounted for.
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A Method of Identifying
Hazardous Highway Locations

Using the Principle of Individual Lifetime Risk

Paul J. Ossenbruggen””

Introduction

A scientific method for identifying hazardous highway locations is
presented. The method employs the basic principles of probability and
expected value theory, in which motor vehicle accidents are treated as
random events. The risk R is defined as the expected loss or damage
associated with the occurrence of a harmful event and is calculated as
the product of R = h8 where h is the number of individuals exposed to
a given harmful event, and 0 is the probability of the event taking place.
For the purpose of identifying a hazardous highway location, 6 is the
probability that an individual will be killed in a motor vehicle accident
within a given year and h is the number of vehicle trips made at a given
location. The highway risk R is therefore the expected number of fatal
accidents per year for a given highway location.

A primary source of accident information is a report form that
contains over thirty items.! These items collectively characterize a
crash, its outcome, and the possible cause. State regulations vary, but
typically a crash involving property damage over $1,000, injury or
death must be reported. The form includes several items describing the
motor vehicle(s), driver(s), occupants, and crash location, with space
provided for a description of the accident and a collision diagram.
Photographs of the event and surroundings are often attached. To
illustrate the use of the hazardous highway location identification
method, counts of fatality and injury producing collisions were

The work was supported by a grant from the U.S. Department of Transportation,

University Transportation Centers Program.
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! Uniform Police Accident Reporting Form.
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obtained from the Town of Durham, New Hampshire (NH), Police
Accident records from 1990 to 1997. Values for the highway exposure
h were obtained from traffic count records,? and individual demand
for highway services was obtained from the National Personal
Transportation Survey.3

Table 1 contains a list of factors describing motor vehicle accidents
in Durham and throughout the nation.? Investigation of the accident
records generally shows traffic accidents are rare. For example, an
estimated 30 million trips were made in Durham each year, yet, during
the same time period, only about 250 injury and property damage
accidents and one fatal accident are reported. Expressed as a
probability, the chance of an accident resulting in either injury or
property damage is about 8 in 1,000,000. The probability of a fatal
collision, estimated to be 3 in 100 million, is much smaller. For this
reason, probability theory is used to derive a lifetime highway risk
model and to develop a method for hazardous highway location
identification.

The use of the term “hazardous highway location” might suggest
that the purpose of developing the method is solely to identify poorly
designed highways. Clearly, given the factors listed in Table 1, fatal
accidents may occur on even the best designed highways. The objective
of the model and identification method is to identify those locations
that have an incidence of fatal crashes which is higher than what is
considered acceptable. Once a hazardous highway is identified, factors
including poor design, driver error, traffic congestion, poor weather
conditions, and lax law enforcement, can be investigated to determine

the cause or causes of the accident.

The Lifetime Highway Risk Model
A model for calculating 8, the probability that an individual will be
killed in a fatal crash over his or her lifetime, is derived from geometric

and Poisson probability distributions.

2 N.H. Dept. Transp., Bur. Transp. Planning, Automatic Traffic Recorder Data for
1990-1994.

3 Stat. Abstract U.S., National Personal Transportation Survey — Summary of
Travel Trends 1969 to 1990, 86 (115th ed. 1995).

4 Nat'l Highway Traffic Safety Admin. (NHTSA), Traffic Safety Facts 14, 43,
144-45 (1994).
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The trip number in which an individual is killed is assumed to have
a geometric distribution. The probability that an individual will be
killed on trip number T, where t = 1,2, ... oo, is expressed as
P(T=t)=w(-wt !,
where ® is the probability that an individual will be killed in a single
motor vehicle trip. In other words, P(T = t) is the probability that an
individual will make t - 1 trips without being killed and then will be

killed on trip t.
Table 1
Motor Vehicle Crash Factors and Driver Characteristics

¢ Crashes are Rare. The Durham Police report about 250 motor
vehicle crashes per year. It is estimated that over 30 million trips are

made annually in Durham, NH.

*  Crashes Vary with Traffic Conditions. Crashes are often assumed
to be related to traffic congestion and episodic events. An episodic

event, such as those triggered by special functions, e.g., sporting events

and concerts, is suspected of causing traffic shock waves that frequently

surprise drivers and cause a chain reaction of crashes.

s Crashes Vary by Collision Type. Accidents involve either single
motor vehicles, two or more vehicles and pedestrians. NHTSA for 1994

reported that, nationwide, 20,505 fatality crashes involved a single
vehicle; 15,718 fatality crashes involved multiple vehicles; and 5,472

fatality crashes involved pedestrians.

*  Crashes Vary Spatially. In 1994, approximately 60% of crashes in
Durham occurred on in-town, high-volume roads and parking lots. The

remainder occurred on out-of-town, high-speed roads.

*  Crashes Vary Temporally. Accidents: are reported at different
times of the day and in different seasons. In 1994, the number of
weekday fatalities reached a nationwide peak of 6 fatalities per hour

between 3:00 PM and 3:59 PM. The number of weekend fatalities

reached a peak of 6.5 fatalities per hour between 1:00 AM and 2:59 AM.

*  Crashes Vary with Driving Conditions. Accidents are reported for
wet, dry and icy pavements.

»  Crashes Vary with Drivers’ Physical Condition. Drivers are
involved in accidents when sober or under the influence of alcohol or

drugs. NHTSA reports that 41% of all fatal crashes in 1994 involved

alcohol. A driver's age can also affect his or her reaction time.

*  Crashes Vary with Driver Attitude. NHTSA reports that young
drivers tend to speed, and twice as many males as females are involved

in accidents.

*  Crashes Vary with Driver Experience. In 1994, NHTSA reported
that 16-20 year-olds had the highest fatality rate (30.7 per 100,000) and

55— 64 year-olds the smallest fatality rate (10.7 per 100,000).

An individual is assumed to make a total of n trips in a lifetime.
Mathematically, an individual is a survivor if the total number of trips T
exceeds the total number of trips n an individual can make in a lifetime.
The probability that an individual is a survivor is denoted by P(T > n)
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and is determined by summing P(T = t) over all trip numbers t greater
than or equal to n + 1. After simplifying, the survival probability, which
is expressed as a conditional probability since n is given, is
P(T>tN=n)=a" .

The number of trips that an individual makes in a lifetime is

assumed to be a random variable N with Poisson distribution,
P(N=n)=(eMn")/n! ,
where 1 is the mean number of trips made by an individual in a
lifetime. The probability that an individual is a survivor, expressed in
terms of N and P(T > N), is calculated by summing the product
P(T > t|N = n) x P(N = n) for n equal to and greater than zero. After
simplifying this expression, the product reduces to
P(T > N) = exp(-n ®). Since P(T > N) + P(T < N) = 1, the probability
that an individual will be killed in a motor vehicle crash is given by the
compound distribution®
0=P(T<N)=1-exp(-na) . (1)

This lifetime highway risk model forms the basis of the hazardous

highway location identification method.

A Safety Compliance Standard Using Individual Lifetime Risk

The lifetime highway risk model is a function of an individual’s
demand for highway services 1, and the probability of a fatal crash in a
single trip ®. To develop a method of hazardous highway location
identification, a “statistical traveler” will be defined and the traveling
behavior of the “statistical traveler” will be used to assign the model
parameter 7). Concepts of public health risk assessment of chronic low-
level exposure to chemical contaminants and the public’s perception of
highway risk will be used to assign 8 and, in turn, to determine .

The “Statistical Traveler:” According to the National Personal
Transportation Surveys,6 the average number of daily trips per
household for 1990 was reported to be 4.66. Given that there were 2.56
persons per household, the average person traveled about nine miles per
day while making 1.82 trips. In 1990, the average person made about
about 664.4 trips and traveled slightly less than 6,000 miles per year.

3 Marcel F. Neuts, Probability 224 (1973).

6 See supra note 3 at 636.
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For the purposes of hazardous highway location classification, 1990 is
assumed to be the base year and the “statistical traveler’ makes T} =
664.4 trips per year.

Public Health Considerations: Since a lifetime highway risk
probability is the same measure of effectiveness as that used in the
public health risk assessment of chronic low-level exposure to chemical

contaminants,78

public health and highway risks are therefore
comparable. As a result, the assignment of an acceptable lifetime risk
probability 8* for a toxic chemical will be used as a guide for assigning
an acceptable lifetime risk probability 6* for highways.

A national public health goal is to minimize the probability that an
individual will die prematurely from chronic low-level exposure to a
toxic chemical. For the purposes of risk assessment, a premature death
occurs when an individual dies from such low level exposure before
reaching 70 years of age. The probability that an individual dies
prematurely from chemical exposure is generally accepted to be on the
order of 8* = 1 in 1,000,000. The aim of a public health regulator is to
determine an acceptable daily intake (ADI) for humans such that a
premature death occurring has a probability of 6.

Animals are typically exposed to heavy dosages of chemicals relative
to the animal’s weight. The data are used to develop a dose response
function, which is used to determine a virtual safe dose (VSD). Once
known, an acceptable daily intake is determined from ADI = VSD/sf
where sf is a safety factor dealing with uncertainties associated with the
use of simple mathematical model structures; extrapolation of animal
response data from high to low chemical doses; biological, intake and
weight differences between animals and humans; and unknown
chemical effects on humans. Depending on the level of uncertainty,
safety factor assignments range in magnitude from 10 to 1,000.

The procedure adopted for highway risk will adopt the assumption
that a premature death is one that occurs before 70 years of age; i.e., the
“statistical traveler” is assumed to have the same life span of 70 years.
Given a fixed lifespan and 6%, the annual and single trip risk
probabilities of © and ® can be determined.

7 Leonardo Ortolano, Environmental Regulation and Impact Assessment 385-392
(1997).
8

Paul Ossenbruggen, Fundamental Principles of Systems Analysis and Decision-

Making 193-200 (1994).
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A Highway Safety Compliance Standard. The lifetime highway
risk probability will not be assigned a value as small as given for
chemical exposure: 8* = 1 in 1,000,000. Society will generally accept a
higher level of highway risk than chemical risk. Society’s perception and
acceptance of these risks are summarized in Table 2. For these reasons,
chemical risks, particularly those associated with carcinogenic
chemicals, are considered dread risks. Despite public awareness of their
dire consequences, motor vehicle accidents are considered less
threatening than dread risk. Consequently, a highway safety
compliance standard of 6* = 1 in 1,000 is considered to be a reasonable
assignment of risk. Statistical evidence will illustrate that this
assignment is sufficiently rigorous because, if met, there would be a six-
fold decrease in the number of fatal collisions reported nationally.

Given 0* = 1 in 1,000 and 1 = (664.4 trips per person per year) X
(70 years per lifetime), or 46,508 trips in a lifetime, a value of 2.2 in
100 million is obtained for ® using the lifetime highway risk model.
Substituting 1 = 664.4 and ® = 2.2 in 100 million into the lifetime
highway risk model once again, an annual value of 8 = 1.4 in 100,000 is
obtained for the highway compliance standard.

The same highway safety compliance standard of 6 = 1.4 in
100,000 is assumed to apply to all categories of highway systems. That
is, freeways, two lane undivided highways, local roads, etc. are expected
to provide the same level of safety. The assumption of a universal
standard differs from current practice of hazardous highway
identification, which categorizes highways by highway system type,
location (urban or rural), and other features. This point will be explored
in greater detail in the Discussion section.

The Method of Hazardous Highway Location Identification

Given the definition of risk R = h6 and the highway safety
compliance standard 0, the numerical value of R can be calculated. The
value of R is assumed to be an acceptable (or critical) number of fatal
crashes per year for a given location. Similarly, a highway safety
standard for injury accidents, RJ, will also be established. Given R and
R] and the fatality and injury counts, C and Cfj, it is a simple matter to
identify a highway location as being either safe or hazardous. In this
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section, the focus is on developing a fundamental understanding of the
definition of risk and how it applies to the method of hazardous
highway location identification.

Fatal Accidents: Each vehicle that passes a specific spot on a
highway is considered to be a candidate for a fatal motor vehicle
accident. Consequently, the average daily traffic (ADT) level is
considered the best and most practical measure of exposure; therefore,
the exposure h is assumed to be equal to ADT.

The number of fatal accidents occurring at a given spot within a
given year is represented by a random variable X. The probability of an
individual being killed in a fatal collision is assigned to be 0. The
probability of x events in h trials, P(X = x), is typically assigned a
binomial distribution. However, since is h = ADT >> 100, 6 << 0.01,
and h® < 20, the distribution of X can be approximated by a Poisson
distribution? with mean, A = h® = ADT 6. The acceptable number of
fatal crashes at a given location for a given time span is estimated to be

R=ADT 0=ADT [1 - exp(- } )] (2)

If the fatal crash count for a given location C exceeds the expected
number of fatal crashes R, then the location is classified as hazardous;
otherwise, the location is considered safe.

Injury Accidents: The hazardous highway location method can
also be extended to injury crashes. If Ci > Ry, then the location is
identified as hazardous. The principle of conditional probability and
national highway injury and fatal crash counts are used to establish a
safety compliance standard 07 for injury crashes and, in turn, Ry.

According to NHTSA, motor vehicle accidents, 1988-94 ranged
from 6 million to almost 7 million annually. During this period, the
percentages of fatality and injury causing crashes remained almost
constant at 0.6% and 32%, respectively. These data will be used to
estimate the probability of a injury crash in a single trip ®l.

The conditional probability  that, given an injury producing crash,
it will be fatal is estimated to be the ratio of the number of fatal
accidents to the number of injury producing accidents, or & = 18/1,000.
The probability of a fatal crash is the product of its conditional
probability given an injury-producing crash times the probability of an
injury-producing crash or ® = 8®y. Given ® = 2.2/million and & =

9 Jay L. Devore, Probability and Statistics 114 (1987).
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18/1,000, the value of @7 is calculated to be @1 = 1.2/million.
Substituting h = 664.4 and @ into the lifetime highway risk model, 8y
=1 - exp(- M ®), a value of the highway safety compliance standard for
injury crashes is calculated to be 8 = 7.8/10,000. An acceptable number
of injury crashes at a given location is then:
Ry=ADT 6; = ADT [1 - exp(- 1 @)] . (3)
Classification: If either C > R or C; > Ry, then the highway
location is classified as hazardous; otherwise, it is classifled as safe.

Table 2
Public Perception of Highway and Public Health Risks 10
Category Highway  Chemical Generalizations
Degree of Little Great Inthe U.S., fear of lingering death
Fear : from chemical exposure death

is greater than the fear of sudden
death from a vehicle crash.

Controllability ~ Great Little In comparison to a driver, individuals
exposed to toxic chemical have little
or no control.

Blame and Individual ~ Someone A negligent driver can be blamed

Injustice else for damages to involuntary victims
and himself. An injustice may have
occurred when involuntary victims are
involved and the driver is unharmed.
When the negligent driver only
harms himself, it can be argued
that justice has been served. In both
cases, it is reasonable to assume that
no financial gain is received by the
driver. A negligent chemical
manufacturer can be blamed for
exposing involuntary victims to toxic
chemicals while receiving financial
benefits from the sale of
products. In comparison to a
negligent driver, an injustice is
perceived to have occurred in this

incident.
Exposure Great Little The personal automobile is considered
Benefits essential to the economy of the U.S.

In comparison, the benefits derived
from a chemical tend to affect fewer
individuals or com panies.

10 Adapted from Adam M. Finkel, Comparing Risks Thoughtfully, 7 Risk 325
(1996).
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Case Study

Injury and fatal accident counts for Routes 4 and 108, both two-
lane, undivided highways in Durham, are used to illustrate the
identification method. Route 4 is a primary east-west corridor
connecting the capital, Concord, in the middle of the state to
Portsmouth on the Atlantic. Route 108 runs north-south.

The fatality and injury counts listed in Table 3 are divided into four
groups. The highways are similar, yet each stretch possesses some
distinctive characteristics. Route 4 West is a 2.25 mile stretch of
roadway with limited access and freeway-type features, including two
road-separated interchanges. A signalized intersection is located
midway between interchanges. The intersection has a generous right-of-
way, having paved breakdown lanes 9.5 feet in width and guardrails
located 10 feet from the edge of the driving lane. In contrast, Route 4
East is a three mile section of highway with a narrow right-of-way. Its
paved breakdown lanes range in width from 2-9.5 feet, with guardrails
located in some places as close as two feet from the edge of the driving
lane. Routes 108 North and South have highway characteristics most
similar to those of Route 4 East. However, Route 108 does not have
paved breakdown lanes.

Table 3 ‘
Motor Vehicle Fatal and Injury Accident Counts for Durham, NH 1
Route 4 E Route 4 W Route 108 N Route 108 §
Year C Cq C C1 C Cq C Cr
1990 1 8 0 3 0 7 0 3
1991 0 4 0 3 0 3 0 9
1992 2 12 1 2 0 4 0 3
1993 2 8 1 8 0 1 0 3
1994 0 3 0 3 0 3 0 5
1995 0 4 0 3 0 3 0 1
1996 | 6 0 2 0 3 0 6
Ave. 086 6.4 0.29 34 0 3.4 0 43

The average speeds on all these highways are estimated to be least
40 mph. The only exception is the one-half mile portion of Route 4
North, which is a business district with an average speed of about 35
mph. The ADT for Routes 4 East and West is 15,470 vehicles per day.

11" Durham, NH Police Dept., TIPS Accident Statistics Report {computer output
sheets, 1990-96).
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The ADT values for Route 108 North and South are 10,000 and 9,250
vehicles per day, respectively.

The values of C and Cj for Routes 4 and 108 are shown in Table 3.
The seven-year averages of C and Cj given at the bottom of the table
are used for classifying a highway location as either safe or hazardous.

Table 4 contains the results of analyses obtained using the
hazardous highway location identification method for stretches of
highways of length L, expressed in miles. All classifications were made
using the procedures described in the previous section.

After further evaluation of the spatial distribution of collisions,
Route 4 West shown in Table 4 was reclassified. The method of
hazardous highway location identification is derived for a spot location,
but can also be applied to stretches of highway, as illustrated in Table 4.
Classifying stretches of highways has important practical significance,
but it should be realized that classifying crashes for long stretches can
inflate the counts of C and Cj, thereby increasing the likelihood that a
given stretch of highway will be classified as hazardous. For example,
the average C and Cj values for Route 4, a 5.25 mile stretch of
highway, are 1.14 and 9.8, respectively. In this case, the inequalities of
C > R and Cj < Ry remain the same, but these inequalities may
artificially give the impression that the 5.25 mile stretch of Route 4 is
hazardous. Spatial distribution of crashes should be therefore
considered in such cases.

Table 4
Hazardous Highway Location Classifications for Fatal Crashes in Durham
Location ~ ADT L R C R Cy; Classified
4E 15,470 2.25 0.22 0.86 12.1 6.4 Hazardous
4W 15,470 3 0.22 0.29 12.1 34 Safe*
108 N 10,000 1 0.14 0.0 7.8 34 Safe
108 9,290 3 0.13 0.0 72 43 Safe

* Note that C > R: therefore, according to the hazardous highway location method,
the stretch of Route 4 W is classified as hazardous. However, after considering spatial
distribution of crashes, Route 4 W was reclassified. See text for explanation.

Investigation of the two fatal accident reports for Route 4 West
shows that one crash occurred at a signalized intersection and the other
at an interchange. Given this, the C averages for Route 4 West in Table
4 have been modified. The average values at the signalized intersection
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and interchange are reduced to C = 0.15. No injury crashes were
reported at the interchange. All injury crash counts (Cy = 3.4 per year
including a total of eight injury crashes in 1993) are located at the
signalized intersection. Since C < R and Cj < Ry, the two locations on
Route 4 West satisfy the condition for a safe highway location, and the
entire 2.25 mile stretch of Route 4 West is therefore classified as safe.

In comparison, all six fatal crashes on Route 4 East listed in Table 3
occurred on Route 4 at four different local street intersections. Two
intersections on Route 4 were each the location of two fatal crashes.
Given this information and the fact that all four intersections within the
three-mile stretch of highway have similar design characteristics, the
entire stretch of Route 4 East is classified as hazardous. The average
number of injury crashes meets the highway safety standard, but the
number of fatal accidents exceeds the safety compliance standard by a
factor of four. While the average number of motor vehicle crashes on
Route 4 East may be considered small, the crashes that have occurred
on this stretch of highway have been extraordinarily violent.

Discussion

A Rigorous Safety Criterion.: Since the same safety compliance
standard of © = 1.4 in 100,000 is assumed to be applicable to all
highway classifications, the total number of fatal accidents satisfying
the highway safety compliance standard can be estimated and
compared to the reported number of fatal collisions that occurred
nationwide. NHTSA reported for 1990 that there were 39,836 fatal
crashes with 47,151 deaths, and 2,122,000 injury producing crashes.

Given 93 million households and 4.66 daily trips per household in
1990, the total number of trips per day is estimated to be TPD = (93
million) (4.66) = 433.4 million. The acceptable number of fatal crashes
for ® = 1.4 in 100,000 is TPD 6 = (433.4 million) (1.4/100,000) =
6,214. Likewise, the acceptable number of injury crashes for 81 = 7.8 in
10,000 is TPD 67 = (433.4 million) (7.8/10,000) = 340,355. The
reported numbers of fatal and injury producing collisions exceed the
number of fatal and injury producing accidents deemed acceptable by
the safety compliance standards by factors of 6.4 and 6.2, respectively.
These data give assurance that the highway compliance standards of 6 =
1.4 in 100,000 and 61 = 7.8 in 10,000 are rigorous and, at the same
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time, suggest that more work is needed to reduce the number of motor
vehicle crashes on the nation’s highways.

Highway Safety Trends: In accordance with the lifetime highway
risk model, the trip exposure 1| affects 0 and R and, in turn, affects the
safety classification of a highway location. The impact of exposure can
be most vividly illustrated by example.

In 1969, the U.S. population was 226 million, compared to 249
million in 1990. During this 31 year period, however, the number of
motor vehicle trips made per person increased by 50%. According the
National Personal Transportation Survey, the average person in 1990
made daily 1.21 trips. The “statistical traveler” of 1969 made 1 = 442
trips per year, compared to the “statistical traveler” of 1990, who made
1N = 664.4 trips per year. The average trip length of about nine miles per
trip has remained constant over this period.

Since an individual’s trip exposure was less in 1969, the highway risk
R is obviously less than the 1990 value. Given the same value of
® = 2.2 in 100 million as in 1990 and 1 = 442 trips per year, the
highway safety compliance standard for 1969 is calculated to be 8 = 9.5
in 1,000,000, a value less than 8 = 1.4 in 100,000 for 1990. Given 62.5
million households and 3.83 daily trips per household,
TPD = (62.5 million) (3.83) = 239.4 million trips per day. The
acceptable number of fatal crashes for 1969 is TPD 6 = (239.4 million)
(9.5/1,000,000) = 2,280. The reported number of fatalities for 1969 is
53,543 and the number of fatal accidents for 1969 was estimated to be
about 50,000. Both greatly exceeded the acceptable number of 2,280
fatal crashes per year.

The decline in the reported number of fatal crashes from 50,000 in
1969 to 39,836 in 1990 is an indication that the steps taken to improve
safety have been effective. Some of the most notable steps have been
providing motor vehicles with standard safety equipment such as safety
belts and collapsible steering wheel columns; making driving while
intoxicated a criminal offense; passing mandatory seat belt laws; and
educating the public to drive more responsibly.

Average Accident Rates: Various measures of the average accident
rate are used to describe highway safety and identify hazardous
locations.!?2 The accident rate per 100 million vehicles miles traveled
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(RMVM) is widely used in the analysis of accident data and for
highway safety comparison. For fatal accidents, the RMVM used for
stretches of highway is given by

_ (100-C)
RMVM = (365-L- ADT)
and for injury crashes, RMVM is given by

100-Ci
RMvM; - (! %365-L-ADT)

Comparing RMVM and RMVMj values for the Durham highways
with various highway system categories for NH and the U.S. shows that
the RMVM values for stretches of Route 4 East and West are larger
than the values for all of the highway categories listed in Table 5. With
the exception of Route 4 West, which was classified as safe after the
spatial distribution of crashes was considered, the Durham highway
classifications are consistent with the RMVM statistics for the system
categories given in Table 5.

Table 5
RMVM Measures for Durham and U.S. Highways 13
Location C RMVM Cq RMVM]
4W 0.29 2.25 3.43 270
4E 0.86 5.06 6.43 38.0
108N 0.0 0.0 3.43 93.93
108S 0.0 0.0 4.29 42.31
System Category: Urban Principal Arterial for 1992
NH 16 1.59 1,195 11891
us. 5,246 1.52 488,228 141.85
System Category: Urban Total Systems for 1992
NH 29 0.78 1,722 171.34
us. 15,202 1.12 781,631 227.09
System Category: Total Systems for 1992
NH 110 1.09 6,850 68.04
Us. 34,928 1.56 2,216,245 98.95

The Critical Accident Rate Factor Method: This method is used
to identify possible hazardous highway locations. If the critical accident
rate at a location is significantly higher than the average for that
highway system type, then the location is considered hazardous. To

12" Nicholas J. Garber & Lester A. Hoel, Traffic Highway Engineering 138-42
(1997); Conn. Dept. Transp., Accidents Records and Statistics Manual {1993).

23 F;ad. Highway Admin., Highway Safety Performance — 1992 5, 6, 16, 42
1995).
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illustrate, RMVM is used as a measure of effectiveness. The critical
accident rate is calculated as an upper-level confldence level using
statewide accident and traffic statistics, calculated from

RMVMe - RMVM  + Z - Srvvm

where RMVM , Sgpmym. and Z are the average, standard deviation,
and standard normal random variable for the sample, respectively. The
values of Z, for example, are 1.645 for 95% and 2.576 for 99.5% upper
confidence levels. A highway segment average is denoted as RMVM;
therefore, if RMVM > RMVM,,, then the segment is classified as
hazardous; otherwise, it is classified as safe.

In practice, the critical accident rate factor method compares the
accident history of a highway segment or intersection with the state
accident history of the same type. The data are carefully sorted by
highway system type, land use (rural and urban), geometric design, and
traffic control characteristics. The goal of this method is to identify
hazardous highway locations by category. In contrast, the goal of this
paper is to identify hazardous highways independent of system type or
any other type of categorization.

Sorting the data by highway category may lead to inconsistency
and confusion in classification. For example, Routes 4 and 108 are
designated to be urban principal arterial highways because the Durham
population of over 10,000 people exceeds the required minimum
population of 5,000. Given an urban designation, the RMVM values of
Durham are compared to areas with much greater population densities.
The NH statewide averages of RMVM and RMVM are 1.37 and
35.49 for rural principal arterial highways, and 1.59 and 118.91 for
urban principal arterial highways, respectively.

For simplicity, Z = 0 and RMVMer = RMVM and RMVMj, =
RMVM ;. Given RMVMI; = 35.49 and RMVM] = 38.0, Route 108
North is classified as hazardous when designated to be a rural principal
arterial highway and, given RMVM],, = 118.91, it is classified as safe
when designated a urban principal arterial highway .

Consider another example dealing with sample variability. Because
it reported a value for RMVM = 2.05, which exceeds the national
average of RMVM = 1.56 for 1992, South Carolina may be considered
one of the most dangerous states in the nation to drive. Ironically, for
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all urban principal arterial highways in South Carolina, no fatal
accidents were reported in 1992; therefore, RMVM = 0, Z = 0, and
RMVM,; = 0. Clearly, this statistic has little or no practical value in
hazardous highway identification.

In contrast, the hazardous highway identification method does not
lead to these types of anomalies because the method uses the same
fatality and injury compliance standards for all highway system types.

Abnormal Accident Rate Experience: The concepts of individual
lifetime risk are adapted to identify hazardous locations with abnormal
accident rate experience. In lieu of using statistical summaries
employed by the critical accident rate factor method, the upper
confidence level is calculated using the Poisson distribution. The
adaptation makes use of the following steps for a given highway
location: (1) estimating 0 using a risk definition of 0 = C/TPD, where
C is the number of reported fatal accidents, and (2) calculating the
critical X, for a given confidence level and the Poisson probability
distribution with mean A=ADT-6. The individual lifetime risk
method departs from the critical accident rate method of sorting
accident and traffic data by highway system type, land use, geometric
design, and traffic control characteristics. The same steps are used for
injury producing accidents.

Table 6
Abnormal Accident Rates for the Highways in Durham, NH
National Statistics Fatal Injury
Year c 8 TPD 6 6
1990 39,836 2,122,000 433.4M  9.2/100,000  4.9/1,000
* *
Xer Xer

Location ADT 95%  99.5% 95%  99.5%
Route 4 W 15,470 4 5 D N
Route 4 E 15,470 4 5 D0 2]
Route 108 N 10,000 3 4 61 68
Route 108 S 9,250 3 4 57 64

*
At two confidence levels

Tables 6 and 7 contain the critical values of X, and X[, for 95%
and 99.5% confidence levels, obtained for Routes 4 and 108. Table 6
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uses accident counts and TPD for the entire nation, whereas Table 7
uses accident counts and TPD only for NH. The Poisson distribution is
a discrete probability distribution; therefore, X, and X, are integers.
Since C < X, and Cg < Xf,;, Durham highways are not classified as
Jocations with abnormal accident rates. Comparison of 6 and 8y, as
well as other statistics Tables 6 and 7, shows that, relative to national
experience, NH is a safer place to drive.

Table 7
Abnormal Accident Rates for the Highways in Durham, NH

New Hampshire Statistics Fatal Injury
Year c 8] TPD 0 6
1992 110 1,978 417,000 5.7/100,000  1/1,000
* *
KXer Xler

Location ADT 95% 99.5% 95% 99.5%
Route 4 W 15,470 3 4 23 21
Route 4 E 15,470 3 4 23 27
Route 108 N 10,000 2 3 16 19
Route 108 S 9,250 2 3 15 18

*
At two confidence levels

Risk Communication: A most difficult task facing transportation
professionals is presenting scientific and technical facts to the public,
particularly when it is often hostile and suspicious because a proposal
may affect the status quo of a particular community. The results of
traffic safety analyses, such as statistical results of the critical accident
rate methods, cost-benefit analysis, and other planning tools are usually
not appreciated. Expressing highway safety in terms of the number of
accidents per RMVM or the loss of a life in monetary terms are often
neither understood nor easily accepted. Values of RMVM, for
example, are considered by transportation professionals to be valuable
for comparing and ranking the safety of different highway systems and
studying safety trends. At the other extreme, presenting a proposal
without reference to accident counts or other highway-related statistics
trivialize the importance of safety.

A benefit of using lifetime risk is that it can be expressed as a
probability © or an expected value measure R. Most people have been
exposed to the fundamental ideas of chance. Lotteries are
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commonplace. A person can appreciate the notion that an outcome is a
rare event if its chance of occurring over one’s lifetime is expressed as 1
in 1,000 or, on an annual basis, 1.4 in 100,000. Using the definition of
risk as an expected value, the highway safety compliance standard can
be restated in terms that may be more easily understood by some lay
people. For example, a compliance standard for Route 4 East was
determined to have an expected value of R = 0.22 and was used to
classify this highway stretch as hazardous. The same classification is
obtained by using whole numbers for the expected value of R and
rephrasing the definition of a safe highway. In other words, a highway
location is defined to be safe if no more than one fatal accident occurs
in a five year period. According to the data in Table 3, Route 4 East
had two fatal crashes in two successive years and is therefore classified
as a hazardous location because it does not meet the above definition.
Recently, the concern that some public health risks are trivial has led
to a debate on regulatory risk reform.!4 Highway risk has mostly
played a minor role in the debate. When it is discussed, the focus is
generally directed at the highway safety cost-benefit analyses that tend
to use figures which underestimate the value of life.15 The concepts for
describing highway safety using individual lifetime risk and a highway
safety compliance standard of 6* = 1/1,000 brings a different
perspective and hopefully better insight to the analysis and discussion of
a common risk in life that affects virtually everyone daily. By
introducing these highway risk concepts and a goal of achieving a
highway safety compliance standard into the regulatory risk reform
debate, some of the barriers preventing effective risk communication
between highway safety experts and the public may be overcome.

14" Stephen Breyer, Breaking the Vicious Cycle: Toward Effective Risk Regulation
10-29 (1992). See also, John D. Graham, Edging Toward Sanity on Regulatory
Risk Reform 11 Issues Science & Tech. 61-64 (1995).

15 Risk, Costs and Lives Saved, Getting Better Results from Regulation 137-49
(Robert W. Hahn, ed.1996).
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Conclusions

A scientific framework for hazardous highway location
identification is presented that considers both fatality and injury-
producing accidents, the concept of individual lifetime risk and
incorporates a safety compliance standard. A lifetime risk of 1 in 1,000
was chosen and defended by adopting principles from public health
regulation and the public’s perception of highway risk. The same safety
standard is assumed to apply to all highway system categories. Al
highways are therefore expected to provide the same level of safety.

Using national accident counts, it was demonstrated that the
selection of the value of lifetime risk is a rigorous standard. The
application of the method was demonstrated by a case study of
undivided two-lane highways in Durham, NH. It was shown that
classifying highways with the hazardous highway location method is
consistent with others used in practice. Since it employs the same
measure of effectiveness used in public health, highway and public
health risk can be compared and ranked. Further, since the method
employs both probability and expected numbers of fatality and injury-
producing crashes as measures of effectiveness, the results may be more
easily understood by the lay public.
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