PB2000-106030

AR

A Roundabout Animation

Brvan Pearce
Per Gdrder
Travis FFolsom
University of Maine

The New Engiand University Transportation Center

[=

REPRODUCED BY: NTIS.

U.S, Department of Commerce
National Technical Information Service
Springfield, Virginia 22161

The New England
University Transportation
Center is a consortium

of 8 universities funded by
the U.S. Department of
Transportation, University
Transportation Centers
Program. Members of the
consortium are MIT, the
University of Connecticut,
University of Maine,
University of Massachusetts,
University of New
Hampshire, University of
Rhode iIsland, University
of Vermont and Harvard
University. MIT is the lead
university.

PROTECTED UNDER INTERNATIONAL COPYRIGHT

ALL RIGHTS RESERVED

NATIONAL TECHNICAL INFORMATION SERVICE

U.S. DEPARTMENT OF COMMERCE

The contents of this report
reflect the views of the
authors, who are responsible
for the facts and the
accuracy of the information
presented herein. This
document is disseminated
under the sponsorsiip

of the Department of
Transportation, University
Transportation Centers
Program, in the interest

of information exchange.
The U.S. Government
assumes no liability for the
contents or the use thereort.

Reproduced from
best available copy.

A Roundabout Animation

Bryan Pearce
Per Gdrder
Travis Folsom
University of Maine

Final Report

Year 10 (97/98)
Traffic Circle Animation
Project No. MEE10-2

Year 11 (98/99)
Data Collection for Traffic Circle Animation
Project No. ME11E-2

Technical Report Documentation Page

1. Report No.

2. Government Accession No.

3. Recipient’s Catalog No.

4. Title and Subtitle

A Roundabout Animation

5. Report Date
June 14, 2000

6. Performing Organization Code

7. Author(s)

Bryan Pearce, Per Garder, Travis Folsom

8. Performing Organization Report No.

9. Performing Organization Name and Address

University of Maine

Department of Civil and Environmental Engineering
Orono, ME 04469-5711

10. Work Unit No. (TRAIS)

11. Contract or Grant No.
DTRS95-G-0001

12. Sponsoring Agency Name and Address
New England (Region One) UTC
Massachusetts Institute of Technology
77 Massachusetts Avenue, Room 1-235
Cambridge, MA 02139

13. Type of Report and Period Covered

Final Report Year 10 (Sept 97-Aug
98) Traffic Circle Animation, Project
No. MEE10-2; and Year 11 (Sept 98-
Aug 99), Data Collection for Traffic
Circle Animation, Project No.
ME11E-2

14. Sponsoring Agency Code

15. Supplementary Notes

Supported by a grant from the US Department of

Transportation, University Transportation Centers Program

16. Abstract

This report describes work done on a roundabout animation program during 1998 and 1999. The round-
about animation program began as an undergraduate class project and was presented in February 1998 in the
New England University Transportation Center report “Animation of Traffic through Roundabouts.” This
new report presents the work funded by the Year 10 (97/98) grant Traffic Circle Animation (Project No.
MEE10-2) and Year 11 (98/99) grant Data Collection for Traffic Circle Animation (Project No. ME11E-2).
Undergraduate students were involved in all of these modifications.

The program is based on the principle of an autonomous agent. The cars are programmed to speed
up, to slow down, and to enter the roundabout based on an acceptable gap length. That is, the gap between
themselves and the cars around them. The actual gap is compared to an allowed gap that is based on vehicle
speed and assumed driver response time. If necessary, the vehicle speed is adjusted. The cars travel
through the roundabout following a randomly assigned path. Traffic flow values may be input into the pro-
gram manually during initialization. During simulation, the cars enter and exit randomly based on these
values. After the simulation, traffic count data and average delay data may be displayed.

17. Key Words

Roundabout, traffic circle, simulation, animation, delay

18. Distribution Statement

19. Security Classif. (of this report)

20. Security Classif. (of this page)

21. No. of Pages

22, Price

Form DOT F 1700.7

A Roundabout Animation - 2

Reproduction of form and completed page is authorized

Abstract

This report describes work done on a roundabout animation program during 1998 and
1999. The roundabout animation program began as an undergraduate class project and
was presented in February 1998 in the New England University Transportation Center
report “Animation of Traffic through Roundabouts.” This new report presents the work
funded by the Year 10 (97/98) grant Traffic Circle Animation (Project No. MEE10-2)
and Year 11 (98/99) grant Data Collection for Traffic Circle Animation (Project No.
ME11E-2). Undergraduate students were involved in all of these modifications.

The program is based on the principle of an autonomous agent. The cars are pro-
grammed to speed up, to slow down, and to enter the roundabout based on an acceptable
gap length. That is, the gap between themselves and the cars around them. The actual
gap is compared to an allowed gap that is based on vehicle speed and assumed driver re-
sponse time. If necessary, the vehicle speed is adjusted. The cars travel through the
roundabout following a randomly assigned path. Traffic flow values may be input into
the program manually during initialization. During simulation, the cars enter and exit
randomly based on these values. After the simulation, traffic count data and average de-
lay data may be displayed.

A Roundabout Animation - 3

Acknowledgement

We want to thank everybody involved in this project. This includes numerous
undergraduate students who during class time suggested methods and procedures for how
traffic through roundabouts can be simulated and animated. We particularly want to
mention three undergraduate students, Joshua Coombs, John Larson, and Travis Folsom
for their field observation, programming and documentation work.

We also want to acknowledge the New England University Transportation Center
for funding this work. The original funding source is U.S. Department of Transportation.

A Roundabout Animation - 4

Table of Contents

A ROUNAADOUE ANIINALIOT 1veenveeeeneeecitiiesireeireeesseeecinresreesssassssrasesenessssesesesssontesassassiesssrsnssnsnsasssssasssasassssanssannss 1
Technical Report Documentation Pagec..cvrriiiniiiesen e 2
AADSITACE 1o eeeeeeeee s eeseeaessneeeeeeaseeaneesatesttassseassesassersserssanseesbaassesrsesareaneseas e s ne s ne s aas e b S e b e s e e b e e e ae s be st b e abesaneeas 3
ACKNOWIEAZEIMENL .. .vcveeieetetere et e b e bbb 4
T ADLE OF COMEEIILS nvveaveeevesreseeeeeeeesnesenteseteasesasesassesssersesssasssesssasssnessnemsessseensessnnesstssisassssiassasasassenssesssnsstsasnenns 5
A ROUNAADOUE ATITIAION «.eeeeveeeeeeeeiiieiereeeeisteeeteeaeseesassassstessaraseseeesssessanesessussssstesssnesersasessbsnsssssesssassarssansanas 6
TIEEOTUCTION ..o eeeertveereseseesassssstrareessseesassssnnsesaesassassnsneneeaensesseessmanabesasasassssssssrannsassssaesnssasrnsananensas 6
THOUSE RUIES vt eeeeeeeeeeeeeeeeeeeeeeetassstesseseeeassesesseseseaessaessrbaeesbesessesensasesenessbesssbatesrbnssrrenn bt aesabbaansaeansnesenes 7
COOTAINALE SYSLEITL 1.vevvueevinreucrenieeeiesiitiie et r e se et b e r s ek s st b 7
SEEUD ... vevevevererteresereeresestete e ee e s e ee b b st s bbb s s bbb e bR SRR bR bbb bbb 7
THE FHLES e nnveeeeeeeeeeeeeese e e et e e eeeesestesstsesaseeeasbeaasseeesssarsssaassbaesabasesasteasbserass s e anesanbesats s srne s s neeseatsaantbensaras 9
Code — The Rules 10 DEPth ..o 10
GENETAl DECIATALIONS —..cneeeeeereeieeieeiteeeeaeeetsesesaesereeesabteasbasessessabeaesreeesnesasestssabsssntnessrnesensbeasssaassnasanes 10
TIEEEAL €O oot ee et e et e e aesats et e easeaseeasaessaeasseamseeseeesseemre s e e saesabesaa b e s beasasasan e b s e et b esabasrsaans 12

Pt AlCULATIONS —.veevvvereeeeeeereeeeeeeeeestesresessestsesstssresasessesaseenseasessssesseesmeesresensernssaissssasesssnsrasassssnsserenne 13
TEETIET eveeeeee e eeeeeeeeeeeereeseeeeaeeeseeennesasesast et eeassasssessseneaeseastaas e asseasseensee s eear e e e ennnesa s e s b s e aa b e s an s e aaar s e b eaarars 14
ANAACALS e e eeeee e eeeee e v et eseeeeeeeeeeeeeeattesasresaseaeasseaasbeeernre s beaansseeasbasaneete s be e e b et e nrne e s b e s s a e e s s be e e b r e e baeaats 15
TS BUP ...ttt ettt et ee et b bbb Rk s 15
AQJUSESPEEAS =ittt s 18

IV OVEC TS oo eeeeeeeeeeese e e eeeeee s e eee et s esiasesseseaseeaassasatasanssesssseensseeasaseaeneeesaneeenabeeanan e sabas s betesrnn e e ansnataa e 21
COMNCIUSION. 1. eeeeeeeeeteeeeereeee e ee e e eeeeeeesasssnseeassesasesesssarasseesasaeesbatensetensbeeeseaessmneeansesaaasss srbsessnseersnneasssassbeaes 23
Appendix A — SHNULAON COAEovimrieiiireiiiees s 24

A Roundabout Animation - 5

A Roundabout Animation

Introduction

When traffic volumes at an intersection increase to a point where the travel time through
it becomes long, or they increase to a point where the intersection becomes unsafe,
something should be done. Usually in the United States, the solution is to use a traffic
light. However, this does not always solve the delay problem. If done right, the traffic
circle can be a more efficient and safer solution.'

This paper is an update of an ongoing project of the University of Maine Round-
about Model (UMRoM). This project started in 1996 as a homework assignment for CIE
115, Computers In Civil Engineering. It was then embraced by one of the students who
helped it a few more steps in evolution. The original system has been retained with
changes and additions to increase the realism of the modeled traffic.

Our program simulates cars travelling through a traffic circle. Since actual traffic
data changes from day to day, and from rush hour to nighttime, we have designed the
program to allow the user to can edit the traffic flow data. The program simulates the
traffic flow by calculating the vehicle movement in discrete time steps. With each repeti-
tion, or timestep, a certain amount of “model time” passes. A variable, deltaT, holds the
value of this time step, for example 0.5 seconds. The simulated time and a data recording
time can be set by the user. The traffic simulator will shows the vehicles moving along
their appropriate paths. The user can also view the “traffic counts” generated by the pro-
gram. These counts can be converted to vehicles per hour when the simulation is com-
plete), as well as its average time that the cars are in the simulation. Other options allow
the user to view all paths, and to have the model operate one step at a time.

The program development started with the traffic circle as an octagon, centered in
the window. From there, it has progressed to a circle with entrances and exits. We have
now simulated the recently constructed Gorham Roundabout’. The current version of
UMROM now includes a feature to easily allow the setup for any roundabout with six or
less entrance approaches and six or less ‘exits’ in any order or combination.

The simulation employs the concept of autonomous agents. When the program is
initially set up, each car (the agent) is assigned a set of characteristics that help to define
how it should act as it travels through the traffic circle. Each vehicle then follows the
traffic ‘laws,” according to those characteristics.

1 Retting, Richard, 1996. Urban Motor Vehicle Crashes and Potential Countermeasures. Transportation
Quarterly 50/3:19-31.

2 Schoon, C.C., and J. Van Minnen, 1993. Accidents on Roundabouts. R-93-16 SWOV - Stichting
Wetenschappelijk Onderzoek Verkeersveiligheid. The Netherlands.

3 OQurston, Leif, 1994. Nonconforming Traffic Circle Becomes Modern Roundabout. Leif ourston and

Associates, Santa Barbara, California, 93111.
4 Jorgensen, Else, and N. O. Jorgensen, 1994. Safety of 82 Danish Roundabouts. Report 4 - IVTB, Danish

Technical University.
Garder, Per, 1999. Little Falls, Gorham—Reconstruction to a Modern Roundabout, TRRecords No.
1658 Highway Geometric Design and Operational Effect Issues, pp 17 -24.

A Roundabout Animation - 6

House Rules

Prior to writing the program, a set of rules were defined that would describe how
vehicles behave. First, how could we keep the vehicles from crashing into one another?
How is it done in real life situations? Drivers adjust their speed to match that of the car
in front of them. Therefore, they will decelerate as soon as they feel they are in danger of
hitting that car. Different drivers will do this at different times, depending on how fast
they are going. We developed a system such that if a car follows another too closely,
then the car in back, or the backcar, will slow.

Merging with traffic at a yield was studied and a system was advanced. We used
gap and lag for the model. Lag is called into effect when a car has open road ahead of it
and has a car that it might have to yield to.
The time it will take for the car on the left
to reach the intersection is lag. Gap is a '
time gap between two cars in the stream
of traffic that we are yielding to. On av-
erage lag is smaller than gap. When the
actual lag or gap is larger than desired the
car at the yield will merge.

Next, we needed to decide how the
cars would enter the simulation, and
where they would enter the simulation.
Based on traffic volumes the cars are ran-
domly entered into the simulation. This
also depends on the physical space avail-
able, that is, a car may not occupy an al-
ready occupied space. Once the cars en-
ter, how do they know where to go? In
real life, a driver usually knows his or her
destination, we randomly assign each car a specific exit, based on traffic volume. This
will be explained further in AddCars.

Figure 1 — Coordinate System

Coordinate System

The coordinate system used is a standard Cartesian, ranging from -200 * scale feet to
200 * scale feet in both directions (see Figure 1). The scale is defined in the sister pro-
gram used to prepare the simulation for any given roundabout.

Setup

In the previous version of UMRoOM the roundabout and its segments were “hard wired”
into the program. That is each value was measured, by hand, and then typed into the
code. This process was laborious as well as extremely time consuming. To make the
model more useful a sister program was created which allows for rapid setup of any new
roundabout (See Figure 2). The program allows the user to load any picture and then
click on the picture to place the points that define the segments that the cars follow.

A Roundabout Animation - 7

The roundabout setup program allows the user to accomplish many things from
telling the program where the roads are to naming the roads. The user may load any
standard picture of a roundabout into the program. From here, they are able to pick
pOintS over the };E{Rondabout setup :Gorham
roads in the pic- |
ture. To make ed-
iting the setup
smoother the user
is also able to de-
lete or move
points. Points are
defined by clicking : ; : - Path Setup Tools
with the mouse. A ’ A Firid Pathic
segment joins two
points and has a
direction. To make
a segment, the user
clicks on the first
point of the seg-
ment and then the
second. The first
point of a segment
would be defined
by the simple idea
that that point
would be the first
point in the seg-
ment that the car
would pass over.
As with points, the program allows for the removal of segments.

Setups can be saved either in progress or when completed. All setups for the
roundabout may be loaded thorough simple save and load dialogue boxes, similar to the
ones used to open a file in Microsoft Word. More options are available to the user, such
as being able to control the appearance of points, segments, and their labels. One may
also make segments and/or points invisible.

Once the segments are placed, the program finds all the possible paths for the traf-
fic flow. The program first finds segments that have a beginning point that does not co-
incide with the end-point of a different segment. Therefore, that segment must be an en-
trance into the system. From here, the routine takes that segment and finds another seg-
ment that has a starting point that is the same as the first end point. The algorithm will
continue to cycle this way from segment to segment and keep track of each path found.
When there are two segments branching from an end-point, a routine is used to find
which segment is on the right. The path is copied and we continue on to the right seg-
ment. The right segment is the segment that then would be the exit of the roundabout
(assuming right hand drive).

Nurnber of Paths

Figure 2 — Setup Form

A Roundabout Animation - 8

The process for finding the right segment is done using vector cross products.
First, we define the two segments as vectors. Then if we cross the right with the left the
resulting vector will be positive. Along with checking for two segments that start from
one segment, two segment with a single endpoint (a yield) are also located. The program
will again use cross products to find which segment is on the right. This is done to find
which of the two segments have to yield.

Once a path is completed, our algorithm will find the next path from the same ori-
gin. This is where the copy of the last path is used. Starting from the segment on the left
(we took the right last time), we continue looking for “next” segments as before. The
program finds all paths until a 360° circuit of the roundabout has been completed. It will
discard the redundant path just found move
on to the next entrance segment. The cycle
continues and stops once all the starting
segments have been used.

Now that all the paths have been
found the user can then review all of the
paths and remove all of the invalid paths.
An example of an invalid path is given in
Figure 3. A driver must follow the (red)
dotted arrow and not the path shown. The
user can decide to remove this incorrect
path. Now the operator of the program
must click on the “set path names” button
to name all of the entrances and exits. At
this point the user is almost done, all that is
left is for the user to set the scale of the
drawing by clicking on two points of the Figure 3 — An Invalid Path
map and stating how far apart they are.

Once the process of setting up the roundabout is done the user clicks the “create round-
about files” button and the information is saved.

The Files

There are four files created by the setup program. They all have the name given by the
user but they have different extensions. They are pth, pts, seg, and set. These abbrevia-
tions stand for path, points, segments, and segment setup respectively. The path file
holds information of how many entrance and exit segments are in the simulation. In ad-
dition, this file contains the names of the entrance segments and exit segments. These
will be the road and highway names appearing on a real simulation. The last information
within this file is combinations of entrances and exits for each path. This data is used to
retain the list of segments for each path.

The point file holds the name of the picture that is used for the map and the loca-
tion of the point used in the simulation. A segment is defined by two “points.” These
locations are in the Cartesian system as described earlier. The segment file is a list of the
ordered numbers of the points and the associated segments. The scale is saved in the
segment setup file. Along with scale, the .seg files holds additional information for every
segment. The information is stored in the format NextSegl., NextSegR, followed by the

A Roundabout Animation - 9

five segments called LeftSegs(1) to LeftSegs(5). These variables will be explained later
in this paper.

Code — The Rules in Depth

General Declarations —

Before we get too involved in the explanation of the code, we should describe what vari-
ables are being used and why. For those who read this in color, green italic annotation is
original to the code; blue annotation has been added for clarification.

Private Type Point ‘this is a variable type defined by us to hold the x and y coor-
dinates of the endpoints of the segments

x As Single ‘the x coordinate

y As Single ‘the y coordinate
End Type

Private Type segment ‘The paths are several linked segments
carsIn(20) As Integer 'list of cars in each segment — last car first
totCars As Integer 'number of cars in a segment
endPt As Integer 'index of segment ending point
startPt As Integer ‘index of beginning point of segment

leftSegs(5) As Integer 'when entering the circle look for cars on the five
segments to the left

nextSegL As Integer ‘index of next segment continuing in circle - "0" if
none

nextSegR As Integer 'index of next segment leaving circle - "0" if none
End Type

Private Type Car ‘this type defines the properties of the cars

type As String Type of auto. car, bus or truck

accel As Single ‘car’s rate of acceleration

active As Boolean ’if a car is being used or not

color As Long ‘the car’s color

colort As String ‘the name of the car’s color

deSpeed As Single desired speed or how fast the car “wants” to go

length As Single ‘the car’s length

width As Single ‘the car’s width

locationf As Single ‘location of car’s front in the segment

locationb As Single 'location of car’s back in the segment

new As Boolean ‘if this is true the program will know not to “erase” the
car after the first time step

nextsegf As Integer ‘next segment car front is headed for

nextsegb As Integer ‘next segment car back is headed for

"-1" for an exit segment and "0" if not assigned yet
segmentf As Integer 'number of the segment car’s front is on

A Roundabout Animation - 10

segmentb As Integer 'number of the segment car’s back is on

speed As Single 'actual speed

exit As Integer ‘assigned exit segment

begintime As Single ‘time the car enters

entrance As Integer 'segment the car enters on

carspeedup As Integer for debugging

lag As Single 'lag data for entering circle

gap As Single 'Minimum accepted gap

Follow As Single 'Follow-up value

Tail As Single 'How close a car will get to the one in front of it

yield As Boolean 'Tells if the car is yielding

YieldTime As Single 'The time a car starts to yield, for measuring how
long a car yields

CarsYielded As Integer 'Number times the car has been through the yield
process
End Type

Private myPts(200) As Point ‘array of points

Private mySegs(100) As segment '‘array of segments

Private myCars(100) As Car ‘array of cars

Private oldFront(100) As Point, oldBack(100) As Point ‘these hold the old posi-
tions of the cars

Private numCars As Integer ‘number of cars

Private numSegs As Integer ‘number of segments

Private deltaT As Single, yieldPt As Single ‘the time that passes each timestep,
the point where the cars “look™ to enter the circle

Private black As Long ‘the color black

Private carFront As Point, carBack As Point ‘endpoints of the cars

Dim TimeSteps As Long ‘number of timesteps

Dim PutCarInNow(6) As Single ‘the probability that a car will enter

Dim counter(6, 6) As Integer 'keeps track of the mean delay time

Dim TimeHolder As Single ‘keeps track of when to add a car

Dim frontcar As Integer, backcar As Integer 'these six variables are used to con-
trol speed, the car in front, the car in question

Dim thisseg As Integer, nextseg As Integer ‘the segment backcar is on, the seg-
ment it is going to

Dim gap As Single, allowedGap As Single ‘the gap between your car (backcar)
and the car in front (frontcar), and minimum gap allowed between them

Dim numpoints As Integer, numsegs As Integer number of points and segments

Public roundname As String ‘Name of the roundabout files

Private Startn(6, 6) As Way ‘An array of entrances and exits

Private startname(6) As String The names of the entrances of the Roundabout
Private endname(6) As String 'The names of the exits of the roundabout
Public starthum As Integer ‘Number of entrances of the roundabout

Public endnum As Integer ‘Number of exits of the roundabout

A Roundabout Apimation - 11

Private Turn(6, 6) As Single
making any given turn.

Private scalenum As Single
Private SpeedDif As Single
Private difference As Single
contested intersection

Private path As String

Private Rtime As Single
Private CurrentTime As Single

These, of course, are not all of the vari-
ables used. They are, however, the ma-
jor ones. The others shall be described
as needed.

Initial Code -

When the program starts, a main menu is
displayed (See Figure 4). The operator
is able to choose whether to simulate a
roundabout or prepare a roundabout for
simulation. After choosing to simulate, a
new form is displayed with only one
button active. That is the Input Data
button on the Simulation form (See Fig-
ure 5.). When this button is clicked, an
open dialogue box is displayed to allow

'Scale of the roundabout files

‘This holds the calculated chance of a vehicle

'Differences in Current car and car yielding to

'path to where the files are
'For real time calculations

'Differences in the time it will take to get to

"The current time of the system

Main Menu

Figure 4 — Main Menu

selection of the roundabout files. Once the roundabout is picked, the program gathers all

XX Roundabout Sim

v “lripui Car and Diiver Data 1

r
r
r
r

- DeBuging Tools ----=s-rritam oo

Deaw Segrients I~ Carsinlnfo
Sirigle Step
DeBugest

Draw Car Ends

Y Pos

i515

Show Output Data !

. R ce |

Show [elay Data]

Load Roundabout-§ - Input Data |

Elapsed Time |g Seconds

Figure 5 — Simulation Form

A Roundabout Animation - 12

the information
about the round-
about by reading
the appropriate
.pth, .pts, .seg,
and .set files.
The input
data button is
now active and
when that is
clicked a sepa-
rate form comes
up that allows
the controlling
data for the pro-
gram to be ed-
ited. This new
form, frmInput
(see Figure 6),

uses a MSFlexGrid control, and holds the vehicles per hour data for each path. A method
for editing this data, and a way to change the time for which the program will run, or
runtime, as well as the time at which the output data starts recording are also included on
this form. The user may also define the length of a time step, or how much time passes
between

movements of Input Control Data Here l

the cars. A

“real time” And tumon'to

choice has also ! 2 3 4

been added; Hop In Noit| Frog d Wg:] Hop In Soul| Frog id Eas

thus, the time Fiog rd West 37 0 0
. L% s Hopin Soutk

that passes in . ° JEo g Ean

the simulation | Hop In North

is that same as

passes 1n the : ' You can change the data in the grid by clicking on the desired entry ard
real world. : Supplying the new value. Below enter the rin length in minutes, and the

‘ ' length of tine before data will be racorded in minutes. When done, click
The default oK.

data is entered

Run for Minutes
under the ‘ i Gk I
form load ’ Exclude the First]T“ - Minutes
event, that is, , Time Steps]'1"" Minutes T~ Real Time
when the form :
loads into Figure 6 — Input Form
memory.

Once this is finished, the Setup button becomes active (See Figure 5). The code
under (or associated with) this button is fairly straightforward. It initializes variables and
properties to be used later, and it calls procedures that setup the points, and segments.

In PointSetup the program opens the file point.txt and reads in the x and y coordi-
nates for each of the points. EndPointSetup “hardwires” the indexes of the points that
define each segment. SegSetup sets the length property of each segment, and sets the
leftSegs, nextSegL and nextSegR properties. These last two variables help set up the di-
rection in which the traffic will move. They are set up according to the direction of
movement. NextSegR will be the segment on the right, if there is a choice. If there is no
choice, then nextSegR will have the value of zero and nextSegL will be the next segment.
LeftSegs are used to see if there is room to enter the actual circle. If there is a car ap-
proaching the circle and there is another car within the circle to the left of the intersec-
tion, on one of the LeftSegs, then there is no room to enter and the first car must wait.

PathCalculations -

The Setup button also calls the procedure PathCalculations. This procedure implements
the logic that will decide where the cars will enter the circle, when they will enter the cir-
cle, and where they will go once they do. PathCalculations reads the data from the
MSFlexGrid on frmInput (See Figure 6), and, for each entrance, it calculates the prob-
ability that a car would turn in a certain direction. It will also calculate the probability of
cars entering each entrance at each timestep.

A Roundabout Animation - 13

In computing the probabilities, PathCalculations uses an array that is the number
of entrances by the number of exits. For example, if there were 2 entrances and 3 exits
then the array would be 2 by 3. The “odds” for a path being taken given the entrance is
calculated. The value for 2,1 for example is the simple probability that a car will turn at
the first exit. The value of 2,2 is the simple probability of a car making the second turn
plus the value for the first. The last value, or 2,3 is the simple probability of a car making
the third turn and the value of the second turn, this would be one because this is the last

turn.

This will be elaborated on in the explanation of AddCars. The last step in Path-
Calculations is to originate the PutCarInNow variable for each entrance. The value for
these variables is the probability that a car would enter on the appropriate entrance in any

timestep.

Timer -

Once the code for the Setup
button is finished, the Run but-
ton becomes active. Clicking
this button enables the Timer,
enables the Stop button, and
disables itself. The Stop button
simply does the opposite of the
Run button. However, the
Timer becomes the central
nervous system of the whole
program (See Figure 7). It calls
the two major components of

!

i=1 ‘keeps track of cars
j =0 ‘keeps track of entrances

Is Cari
Available?

N Y

i = numCars?

!

Add 1 to timesteps

Must keep track

Y

Call
procedure
CheckTime
Is it time to
stop?

Call procedures
AddCars and MoveCars
Output current time in
seconds to the Elapsed
Time textbox

One
Step at a Time?

Figure 7 - Flowchart for the Timer

> j=j+1

Call the procedure
CheckProbability

The last
ntrance

The last car,

Figure 8 — Flowchart for AddCars

A Roundabout Animation - 14

the animation control,
AddCars and MoveCars. If
the Single Step checkbox is
checked then the Timer will
turn itself off and turn the Run
button back on. This will con-
tinue until the box is un-
checked. In addition, the
Timer calls the procedure
CheckTime. This checks to see
if it is time to stop the anima-
tion and relevant computa-
tions, and will do so if neces-
sary.

AddCars -

AddCars searches all the cars being used until it finds the first four that are inactive (See
Figure 8). Each car is given a chance to enter one of the four entrances. CheckProbabil-
ity determines if a car will enter or not (See Figure 9). It does so by first returning a ran-
dom number. If this number is less than the appropriate PutCarInNow variable, then
CheckProbability will let the car enter and the procedure EnterNow will be called. When
a vehicle is “allowed in”, the CarSetup routine is called.

CarSetup—

This routine uses the current car in the myCars array and makes sure that the active prop-
erty is set to true. It also sets the type, dimensions, color and desired speed for each car
based on the values given in the traffic statistics window (Figure 10). The operator is al-
lowed to make traffic that consists of any
percentage of cars, trucks, and buses. Of
course, these various vehicles may have

> For k = 1 to exit-
num - 1

\ Putcarion | different properties depending on their

x = Rnd entrance j | type. Numbers with a mean and standard

a random number g(’“}gkto deviation are randomly assigned based on
exif

a normal distribution. The New Property
is set to true so the program knows that
this is the first time each car will be
Call the drawn.

procedure EnterNow makes the car active
EnterNoW | and sets its location to the beginning of
the entrance segment or behind the last car
< on the segment if there are cars that are
. M » off the screen waiting to enter. Next, the
Figure 9 — Flowchart for CheckProbability car’s destination is made known using the
FindExit procedure. This is where the

other variables defined in PathCalculations are used.

FindExit is based on the logic that the sum of all the probabilities of a car taking
one of any number of possible paths is one. Remember when finding the values for the
array we kept adding the previous variable to the correct probability to get the next. If we
use a random number generator to get a number between zero and one, we can use these
variables to determine which direction the car will turn. Below is a section of the code
with an example.

X <=
turn(j,k)

A Roundabout Animation - 15

Car i’S:tatistics E, Bus Statistics \{ Truck Statistics
~Car Speeﬂ and Acceleration

Average Car Speed [MPH] | FE‘-.‘ Standard Deviation (MPH] [5
 Acceleration [ft/sec™2) 7 Stardard Deviation [ft/sec”2) | El1
‘ Deceleration (ft’sec”2) 3 Standard Deviation [ft/sec”2] {ET—-—

’Avérage CarLength [Feet} ;-1.3'._‘ Average Car Width [Feet) | ?U

r Dyrive’r Preferences
Average Lag [séconds] FENE Standard D eviation [secondé] W
‘ Average Critical gap [secands] 394 Standard Deviation [seconds) [41 o
“Average F’o"ow-Up [seconds) 248 ‘ Standard Deviation [seconds) W
Tailing Giap (seconds) 2 Standard Deviation [seconds] “ﬁ:l““““
~Road Statistics

- Yield Point [feet from intersection) ;20 -

-~ Traffic Mis

Precent Bus 'ig % Precent Truck ;D % Precent Cars

100 %

Done

Figure 10 — Traffic Statictics

j =myCars(i).segment ‘the entrance the car is on., let’s say 2

x =Rnd ‘a random number between 0 and almost 1, let’s say 0.754832

Fork =1 Toendnum —1 ‘endnum in this case will be 3. So k will be 1 then 2.
If X < Turn(j, k) Then ‘first time we are checking turn(2,1) which = .333
‘No .754832 is larger than .333
“The second time we would be checking turn(2,2) which = .666 again < .754832
myCars(i).exit = Startn(j, k).ExitSeg
Exit For
End If

A Roundabout Animation - 16

Next k
If k = endnum Then ‘Yes k = 3 and endnum = 3 therefore this is our turn.
myCars(i).exit = Startn(j, k).ExitSeg ‘This sets the segment that the car
‘will take for a right turn.

End If

The sample car will be turning left. This part has been set up so the exits will be ran-
domly picked, but also they will depend on the vehicles per hour that should follow the
paths. X is found using the Rnd function, a random number generator. If it is less than
turn(j,k) then it will take the exit for startin(j,k).

EnterNow calls the FindNextSegment procedure after executing FindExit. First,

we check to see if there are any seg-
ments beyond the segment that the car
fronts and backs in question are on
(see Figure 11). If there are no seg- Car-Back .
ments then the car’s nextseg property
is set to negative one. Thus, the pro-
gram will remove the car from the
simulation. Next, we want to know if
there is a choice of going left or right.
If not, the segment’s nextSegl prop-
erty will become the car’s nextseg
property. However, if there is a
choice, we need to know if this is

nextsegL

/—— Car-Front

nextsegR

segLength

v

Direction of Trave!

A Car Travelling along a Segment

where the car will turn. If the car exits
here then nextseg becomes the
nextSegR property; otherwise, it is nextSegL. Interested readers may want to look at the
code:

Figure 11 — Car-Fronts and Backs

segin = myCars(i).segmentf 'segment the front of car 1 is in
If segin = -1 Then ‘The front of our car is out of the simulation and ignore it.
MyCars(I).nextsegf = -1
Elself mySegs(segin).nextSegL = 0 Then 'We are on the exit ramp
myCars(i).nextsegf = -1
ElseIf mySegs(segin).nextSegR = 0 Then ‘There is only one segment in front of
this segment
myCars(i).nextsegf = mySegs(segin).nextSegL
Elself myCars(i).exit = mySegs(segin).nextSegR Then ‘This is the exit the car is
looking for and will take the right turn.
myCars(i).nextsegf = mySegs(segin).nextSegR
Else “This is not the car’s exit and will stay in the roundabout.
myCars(i).nextsegf = mySegs(segin).nextSegL.
End If

This routine is repeated for the back point of the car as well. This procedure has
worked very well, and has been only slightly modified since the spring course in 1996.

A Roundabout Animation - 17

The most important of these was in changing how the cars decided to turn off the circle.
In the original homework program, the decision was made by probability within Find-
NextSegment. Now the exit is already known, a priori, all we need to do is compare
nextSegR with the exit.

Once we have found the next segment for which we are heading, we need to up-
date the carsIn array. The carsIn array is set up to hold 50 numbers but we have to have
slots for both the fronts of cars and the backs of cars. So, the carsIn array will hold 25
cars. The odd carsIn (carsIn(1), carsIn(3), carsIn(5)...) hold the values of the back of the
car that is in the spot. A zero means no car. The even carsln (carsIn(2), carsIn(4), car-
sIn(6)...) hold the values of the front of a car that is in the spot. When updating the ar-
ray, we move all of the cars in the array to the next two highest slot in the array for ex-
ample (carsIn(1) goes to carsIn(3) and carsIn(2) goes to carsIn(4)) and put our car in slot
one or two.

We now know where the car has entered and where it will exit, and can update the
grid on frmVPH (see Figure 12). EnterNow calls the procedure UpdateOutput to accom-
plish this task. Of course, UpdateOutput will do nothing unless the elapsed time has
reached the time at which data starts recording. When it is time to record data, the proce-
dure enters another nested case statement (this one relies on the car’s entrance and exit)
to determine which cell in the grid to increment by one.

Before the car ;
moves, we must ad-

\-‘ehile per Hour

just the car’s speed Vehicles per Hour
so it will not be
hkely to crash into Hop.in ZB-UIFrog(d 28.DlHor:lrn 24_0|Fl°g'd | Entr Sum

the car in front of it.
We do this by calling
the procedure Ad-
justSpeeds. (The ‘
crash rate at a mod- Vide Bt Form
ern roundabout is
typically around one
per 2 million entering
vehicles.® We disre-
gard this small prob-
ability in our simula- Figure 12 — Vehicles Per Hour Display
tion, and assume that
cars do not collide when estimating average delays.

The last two steps EnterNow performs are to set the car’s begintime property and
the car’s entrance property. These will be used later in the procedure FindDelayTime.

AdjustSpeeds -

In AdjustSpeeds, we set values to the variables: accel, taken from the acceleration
property of the given car; backcar, car i or the car being controlled (conceptually the car

Gérder, Per, 1998. Little Falls, Gorham—A Modern Roundabout, Maine Department of Transporta-
tion, Bureau of Planning, Research & Community Services, Transportation Research Division, Final
Report, Technical Report 96-2b.

A Roundabout Animation - 18

we are in which we are riding); thisseg, the segment backcar is on; and nextseg, the seg-
ment to where backcar is heading. Typical speed and acceleration values have been ob-
tained within this project, and are also presented in separate publications.7 ® The logic for
AdjustSpeeds is given in the flow chart labeled Figure 13.

Set the accel, backcar,
thisseg, and nextseg
variables. ‘the acceleration,
the car in question, the
segment backcar is on, and
the segment coming up,
respectively

Find position of rd _

’ ind a value for

5| backcar’s front 3| Set the allowedGap > frontcar’s back
in thisseg’s variahle e :

carsln array that’s the car in

Is gap <
Allowed and lag
allowed?

allowed and lag

A
Find Gap variable

Ata
Yield?

Is gap >

> allowed

Speed Up

Already
Yielding?

Is a allowable
gap coming in the
traffic?

Speed Up

Slow Down
Is gap <
N Allowed Speed Up
Slow Down
Stay Yielding

Figure 13 — Flowchart for AdjustSpeeds

At this point, AdjustSpeeds enters a “do loop” in order to find a value for j. This is the
index of the place of the front of the backcar in the carsln array for thisseg. j becomes

7 Gérder, Per, 1998. Little Falls, Gorham—A Modern Roundabout, Maine Department of Transporta-
tion, Bureau of Planning, Research & Community Services, Transportation Research Division, Final

Report, Technical Report 96-2b.
& Modern Roundabout Practice in the United States. A Synthesis of Highway Prac-tice. NCHRP Synthe-

sis 264, TRB, Washington D.C., 1998.

A Roundabout Animation - 19

useful when trying to find the value of frontcar, the car in front of backcar. Here we set
the values of lookLeftSeg and lookLeftCar. They are used if the car is approaching an
intersection. What happens then will be explained later.

The routine sets the speedup variable to a number from 1 to 4. A 1 means the car
can speed up; a 2 means that the car has to slow down; a 3 means that the car yields to
another car in the roundabout; finally a 4 means that the car is speeding up from a
stopped position. Now, we find the value of allowedGap, using the equation: allowed-
Gap = myCars(i).Tail * myCars(backcar).speed + 2. The myCars(i).Tail is the value
taken from car statistics window. myCars(backcar).speed is backcar’s speed. The two is
added because if the speed were 0 the allowed gap would be O and that would cause
problems.

Once these variables are defined, we can find the value for the back of the front-
car. First, we check thisseg. Because of the way the carsln array is set up, we can see if
frontcar is on thisseg by adding one to j and then checking that spot in the array for a
number other than zero. A non-zero number will indicate the back of the frontcar, and
Gap’s value will be the difference of frontcar’s back location and backcar’s front loca-
tion. If there is no car in front of backcar on thisseg, we look to see if nextseg is negative
one, meaning that the car will be leaving the simulation. If this is the case nothing needs
to be done and we can move on. However, if this is not the case, we need to find out how
far ahead the next car is. We do this by calling the aptly named procedure FindFrontCar.

FindFrontCar uses the same variables we have already defined in AdjustSpeeds.
It first initializes the Gap variable with the length of thisseg that backcar has not yet trav-
eled. Then it uses a Do loop to find frontcar. Let us look at the code:

gap = mySegs(thisseg2).length - myCars(backcar).locationf ‘the remaining length
of thisseg

Do ‘the program will loop back to here

frontcar = mySegs(nextseg2).CarsIn(1) ‘the rear of the last car on nextseg
frontcarfront = mySegs(nextseg2).CarsIn(2) ‘the front of the last car on nextseg

If frontcar <> 0 Then ‘is there a car on nextseg?
gap = gap + myCars(frontcar).locationb ‘add the length of nextseg trav-
eled by frontcar if there is one.
Exit Do
Else
gap = gap + mySegs(nextseg?2).length ‘add the entire length of nextseg if
there is not.
End If
thisseg2 = nextseg? ‘if frontcar wasn’t found we need to find the next nextseg
If mySegs(thisseg2).nextSegR = 0 Then ‘this part is just like FindNextSegment
nextseg2 = mySegs(thisseg2).nextSegL
Elself myCars(backcar).exit = mySegs(thisseg2).nextSegR Then
nextseg?2 = mySegs(thisseg2).nextSegR
Else
nextseg2 = mySegs(thisseg2).nextSegL
End If

A Roundabout Apimation - 20

If nextseg2 = 0 Then gap = 4 * allowedGap + gap ‘to make sure that the gap will
be large and there won’t be abnormal slowing down right before exiting the simulation.
Loop Until gap > allowedGap Or thisseg2 >= 99 ‘keep looking until it doesn’t
matter

The second to last line was added because the cars were slowing prematurely, just before
they got on the last segment before leaving the simulation. As they came close to the be-
ginning of the last segment, the gap would only be a small amount plus the length of the
last segment. Thus, Gap would be smaller than allowedGap, and the car would slow.
Typical values of critical gaps were observed and researched through studies of literature
within this project and integrated into the code.

FindFrontCar was created to find an accurate value for Gap. With this value, we
can now adjust backcar’s speed if necessary. If Gap is less than the allowedGap, we need
to slow backcar and speedup is set to 2. We also must check to see if there is a car to the
left at a yield. If there is a car to the left we find how far away it is. If the car is back
further than the acceptable lag then we will go faster if we can, speedup = 1. Lag is the
time it takes for a car that one would have to yield to, to reach the intersection. When the
car to the left is closer than the acceptable lag we will slow to a stop and yield to the other
car, speedup = 3. When we are yielding we start looking for an acceptable gap so we can
drive into the roundabout, speedup = 4.

Once the speedup is defined, we act accordingly. If speeding = 1, we will accel-
erate. To do this we add the product of accel, the acceleration in ft/sec” and the time that
has passed since last we checked, deltaT to backcar’s speed. Next, we check backcar’s
speed. if more than the desired speed, we set the speed to the desired speed. When
speedup is 2, the car must slow because it is getting too close to the car in front of it.
This is done by subtracting the product of modaccel, the acceleration in ft/sec® and the
time that has passed since last we checked deltaT from backcar’s speed. Modaccel is the
modified acceleration of the car. This takes in account how close the two cars are and the
difference in their speeds. Therefore, when one car is “coming up fast” to a slow car it
will brake harder. Again, we check the new speed, if it is less than O it is set to 0. A
speedup of 3 means that the car has to yield. This is the same processes of slowing down
but the yield variable is set to true, to know that the car is yielding. On a speedup of a 4,
the driver give it a little higher acceleration so the car will join traffic smoothly.

MoveCars —

The procedure MoveCars has been split into two sub-procedures: SwitchSegments, which
moves the cars along, calls adjust speeds and switches the segments the cars are on when
necessary; and DrawCars, which draws and erases the cars as they move around the traf-
fic circle.

SwitchSegments loops through all the “active” cars (the cars with their active
property set to true). It calls AdjustSpeeds for every one, and advances the cars along the
segments. It does the latter using the equation: myCars(i).locationf = myCars(i).locationf
+ myCars(i).speed * deltaT, and: myCars(i).Jlocationb = myCars(i).locationb + my-
Cars(i).speed * deltaT. This moves both the front and rear of the car the distance the car
would have traveled in one timestep. Therefore, when we multiply the car’s speed with
the elapsed time we get the distance the car has actually gone.

A Roundabout Anjmation - 21

If either part of the car’s location becomes larger than the length of the segment it
is on, then the car has moved onto the next segment and must be treated accordingly.
First, the carsIn array for thisseg must be updated. When that is done, we check to see if
the car is leaving the simulation, in which case nextseg equals negative one. If it is, then
the car is made inactive, New Property is set to be true, and it is erased so that it does not
leave a “blip” on the screen. We also call the procedure FindDelayTime at this point.
This uses a nested case statement to find the proper cell in the MSFlexGrid control. Once
found, it will update the average delay (see Figure 14). If the car is not leaving the
simulation, then we must update the carsln array of nextseg. After that, we call Find-
NextSegment to find the new nextseg, and correct the car’s location so it will fit its new
segment.

The animation is the apparent motion of our drawings. In actuality the drawings
are not moving.
In the traffic cir-
cle program, the

cars, are being Mean Time

drawn and erased ,

?md drawn. again Hop In Nort| Fiog id We:|Hop In Soull Frog1d Ea
in a different Flogrd We| 137 15.3 220

place, creating Hop In . Soul 87 125 1B
Frogrd-Eas 2 ‘ 15.4 14.

Hop In Naitt B 0 7

the illusion of
motion. Initially,
the cars were just
round dots. H= :
When we ex- Hide Delay Data l *Al data here is given i Seconds
tended them into
lines, we had
trouble orienting
them. The cur-
rent method of
drawing the cars
is by drawing a
line from the
front of the car to
the back of the car. This helps to make the vehicle appear to be making smooth turns.

DrawCars loops through all the “active cars”, and will find their new x and y co-
ordinates, measured at the two ends of the car. It does this by finding the endpoints of the
segment the car is on and interpolating the car’s coordinates using the coordinates of the
endpoints and the car’s location. It will then find the angle of the segment, theta, and the
car’s endpoints as described above. After setting the draw width to the width of the car,
it will draw the car using Visual Basic’s line method. If the car’s new property is not set
to true then DrawCars will erase the old drawing of the car at its old position. If it were
set to true then DrawCars would do nothing except set the new property to false, because
there is no old drawing to erase. Lastly, DrawCars will store the coordinates of the car’s
endpoints so it can erase it during the next time step.

Figure 14 — Mean Time of Traffic

A Roundabout Animatjon - 22

Conclusion

This simulation and animation program has now little resemblance to the initial home-
work problem. The program has a sense of realism with the ability to simulate any
roundabout with various approach and exit combinations, rather than only a circle with
four spokes in orthogonal positions. The new method of setting up a roundabout for
simulation is swift and reasonably effortless. The improved version also allows for ma-
nipulating the traffic flow data in many ways not possible before. The composition of the
traffic can be changed easily as well as how “drivers” behave, e.g., critical gap choice.

The program now shows us the average time that the cars spend traveling through
the roundabout simulation. Traffic volumes are given upon the completion of a simula-
tion. Thus, we can verify how many cars took what kind of turn, and make sure this
number corresponds to the input value (actual or assumed flows).

This output gives us an idea of the control delay of a roundabout, and how this
delay varies with entering volumes and accepted gaps. Accepted gaps, in turn, vary with
geometric characteristics. However, the program has not yet been validated against its
real life counterpart.

The model has been modified to include large vehicles such as trucks or buses
that may encompass several model segments.

A Roundabout Animation - 23

Appendix A - Simulation Code

Option Explicit
Private Type Point
X As Single
Y As Single
End Type

Private Type Way
StartSeg As Integer
ExitSeg As Integer

End Type

Private Type segment
CarsIn(52) As Integer Tlist of cars ends in the
segment.
’An Odd number means a back of
a car,
’An even number means a front of
acar.
totCars As Integer ‘number of cars in segment
endPt As Integer ’index of ending point
length As Single length of segment in feet
leftSegs(6) As Integer 'when entering the cir-
cle look for cars
nextSegl. As Integer ‘index of next segment
continuing in circle - "0" if none
nextSegR As Integer ‘index of next segment
leaving circle - "0" if none
startPt As Integer ‘index of beginning point
End Type

Private Type Car

type As String Type of auto. car, bus or
truck

accel As Single ‘car’s rate of acceleration

decel As Single Car’s rate of braking

active As Boolean if a car is being used or
not

color As Long

colort As String

deSpeed As Single 'desired speed

length As Single

width As Single

locationf As Single ‘location of front in the
segment

locationb As Single ’location of back in the
segment

new As Boolean

nextsegf As Integer 'next segment car front
is headed for

nextsegb As Integer 'next segment car back
is headed for

™-1" for an exit segment and

"0" if not assigned yet

segmentf As Integer ‘number of the segment
front is on

segmentb As Integer number of the segment
back is on

speed As Single ‘actual speed

exit As Integer ’assigned exit segment

begintime As Single time enters

entrance As Integer ‘segment enters on

carspeedup As Integer for debuging

lag As Single Tag data for entering circle

gap As Single ‘Minamim accepted gap

Follow As Single Follow-up value

Tail As Single ~ How close a car will get to
the one in front of it

yield As Boolean ‘Tells if the car has al-
readey yielded

YieldTime As Single The time a car starts to
yield, for measuing how long a car yields

CarsYielded As Integer Number times the car
has been through the yield process
End Type

Private myPts(200) As Point ‘array of
points

Private mySegs(100) As segment ‘array of
segments

Private myCars(100) As Car ‘array of cars
Private oldFront(100) As Point, oldBack(100) As
Point

Private numCars As Integer
cars

Private deltaT As Single, YieldPt As Single Rate
of timesteps and how far from intersection car
yields

Private black As Long

Private carFront As Point, carBack As Point
‘endpoints of the cars
Dim TimeSteps As Long
timesteps

Dim PutCarInNow(6) As Single time it
takes for the next car to enter
Dim counter(6, 6) As Integer
the mean delay time

Dim TimeHolder As Single
of when to add a car

Dim frontcar As Integer, backcar As Integer
these six variables are used to control speed
Dim thisseg As Integer, nextseg As Integer ‘Cur-
rent segment car is in and next segment car will
be in

Dim gap As Single, allowedGap As Single

'Used to determin if a car needs to slow down
Dim numpoints As Integer, numsegs As Integer
‘number of points and segments

number of

number of

keeps track of

keeps track

Public roundname As String ‘Name of the
roundabout files
Private Startn(6, 6) As Way "An aray of

entrances and exits

Private startname(6) As String The names of
the entrances of the Roundabout
Private endname(6) As String
the exits of the roundabout
Public startnum As Integer
entrances of the roundabout

The names of

Number of

A Roundabout Animation - 24

Public endnum As Integer Number of
exits of the roundabout
Private Turn(6, 6) As Single
car making certin turns
Private scalenum As Single
roundabout files

Private SpeedDif As Single
Current car and car yielding to
Private difference As Single 'diffenences in
the time it will take to get to contested intersec-
tion

Percentage of a
‘Scale of the

Diffenences in

Private path As String ‘path to where the
files are

Private Rtime As Single For real time
calculations

Private CurrentTime As Single The current

time of the system
Private Sub OpenDia()

End Sub
Private Sub btnLoad_Click()

Dim i As Integer, j As Integer
roundname =""
cdbLoad.FileName = App.path
On Error GoTo ErrHandler
cdbLoad.ShowOpen

roundname = cdbLoad.FileName
i = InStr(1, roundname, ".")

path = Left(roundname, i)

Open roundname For Input As #4
Input #4, startnum, endnum

Fori=1 To startnum
Input #4, startname(i)
Next i

Fori=1 To endnum
Input #4, endname(i)
Next i

Fori=1 To starthum
Forj=1To endnum
Input #4, Startn(i, j).StartSeg, Startn(i,
J)-ExitSeg
Next j
Next i

Close #4

cmdInput.Enabled = True

c¢mdSetUp.Enabled = False

cmdRun.Enabled = False

cmdStop.Enabled = False

cmdClear.Enabled = False
frmSim.pctPix.Picture = LoadPicture(App.path +

“\Input.jpg")

Call ResetGrids
Exit Sub

ErrHandler:
> User pressed Cancel button.
Exit Sub

End Sub
Private Sub cmdClear_Click()
Dim i As Integer, j As Integer

pctPix.Cls
For i =1 To startnum
Form3.grdVPH.Row =1
Forj=1Toendnum + 1
Form3.grdVPH.Col = j
Form3.grdVPH.Text = CStr(0)
Next j
Next i

Fori=1To6
Forj=1To6
counter(i, j) =1
Next j
Next i

For i = 1 To startnum
Form5.grdDelays.Row =1
Forj =1 To endnum
Form5.grdDelays.Col = j
Form5.grdDelays.Text = CStr(0)
Next j
Next i

Fori=0 To startnum - 1
Form4.Labelr(i).Visible = False
Next i

Fori=0 Toendnum - 1
Form4.Labelc(i).Visible = False
Next i

Form3.cmdVPH.Enabled = False

cmdRun.Enabled = False

TimeSteps = 0

CurrentTime = TimeSteps

frmSim.pctPix.Picture = LoadPicture(App.path +

"\setup.jpg")

End Sub
Private Sub crndDelay_Click()

Form5.Show

End Sub
Private Sub cmdInput_Click()

Call InputGrids

frmSim.pctPix. Picture = LoadPicture(App.path +
“\setup.jpg")

End Sub

A Roundabout Animation - 25

Private Sub cmdNewSetup_Click()

frmMainMenu.Show
frmSim.Hide

End Sub
Private Sub cmdOutput_Click()

Form3.Show

End Sub
Private Sub cmdQuit_Click()

End

End Sub
Private Sub cmdRun_Click()

Rtime = Timer
Timerl.Enabled = True
cmdStop.Enabled = True
cmdRun.Enabled = False
cmdClear.Enabled = False
frmDeBug.Show
frmSegProp.Show
frmCarsIn.Show

End Sub

Private Sub cmdStop_Click()

Timer1.Enabled = False
cmdRun.Enabled = True
c¢mdStop.Enabled = False
cmdClear Enabled = True

End Sub
Private Sub Command1_Click()

frmSim.Hide
frmStats.Show

End Sub
Private Sub Form_Load()

c¢mdSetUp.Enabled = False
cmdRun.Enabled = False
cmdStop.Enabled = False
cmdClear.Enabled = False
cmdInput.Enabled = False

End Sub
Public Sub InputGrids()

cmdSetUp.Enabled = True
Form4.Show

End Sub
Public Sub ResetGrids()

Dim i As Integer, j As Integer

Form4.grdInput.Rows = startnum + 1
Form4.grdInput.Cols = endnum + 1

Form4.grdInput.Col =0

Fori=1 To startnum
Form4.grdInput.Row =1
Form4.grdInput. Text = startname(i)

Next i

Form4.grdInput.Row =0

Fori=1 To endnum
Form4.grdInput.Col =i
Form4.grdInput.Text = endname(i)

Next i

For i =1 To startnum
Form4.grdInput.Row =i
For j = 1 To endnum

Form4.grdInput.Col =j
Form4.grdInput. Text = 30
Next j
Next i

Fori=0 To startnum - 1
Form4.Labelr(i). Visible = True
Next i

Fori=0To endnum - 1
Form4.Labelc(i). Visible = True
Next i

Form5.grdDelays.Rows = startnum + 1
Form5.grdDelays.Cols = endnum + 1

For i =1 To startnum
Form5.grdDelays.Row =i
Forj=1To endnum

Form5.grdDelays.Col = j
Form35.grdDelays.Text = CStr(0)
Next j
Next i

FormS5.grdDelays.Col =0

For i =1 To startnum
FormS.grdDelays.Row =1
Form5.grdDelays.Text = startname(i)

Next i

FormS5.grdDelays.Row =0

Fori=1 Toendnum
FormS5.grdDelays.Col = i
Form5.grdDelays.Text = endname(i)

Next i

Form3.grdVPH.Rows = startnum + 1
Form3.grd VPH.Cols = endnum + 2

For i =1 To startnum
Form3.grdVPH.Row =i
For j =1 To endnum
Form3.grdVPH.Col =
Form3.grdVPH.Text = CStr(0)
Next j
Next i

Form3.grdVPH.Col =0
Fori=1 To startnum
Form3.grdVPH.Row =1

A Roundabout Animation - 26

Form3.grdVPH.Text = startname(i)
Next i

Form3.grdVPH.Row = 0

Fori=1 To endnum
Form3.grdVPH.Col =i
Form3.grdVPH.Text = endname(i)

Next i

Form3.grdVPH.Col =i
Form3.grdVPH.Text = "Entr. Sum"

End Sub
Private Sub Form_Unload(Cancel As Integer)

End

End Sub
Private Sub CMDSETUP_CLICK()

Dim X As Single, i As Integer, j As Integer, k As
Integer
Dim picname As String

cmdRun.Enabled = True
cmdClear.Enabled = True

Randomize

black = RGB(0, 0, 0)
Erase mySegs

Erase myCars

Open path + "pts" For Input As #1
Input #1, picname

Open path + "set” For Input As #3
Input #3, scalenum

frmSim.pctPix.Picture = LoadPicture(App.path +
"\" + picname)

YieldPt = CSng(frmStats.txtYieldPt. Text)
pctPix.Scale (-200 * scalenum, 200 * scalenum)-
(200 * scalenum, -200 * scalenum)
pctPix.DrawMode = 10

pctPix.DrawStyle = 0

pctPix.DrawWidth = 1

Call PointSetup
Call EndPointSetup
Call SegSetup

numCars = 100
deltaT = CSng(Form4.txtDeltaT)

Call PathCalculations
'Call CarSetup

TimeSteps =0

Fori=1To4
Forj=1To4
counter(i, j) =1
Next j

Next i

End Sub
Private Sub PointSetup()
Dim i As Integer

i=0
Do While Not EOF(1)
i=i+1
Input #1, myPts(i).X, myPts(i).Y
myPts(i).X = myPts(i).X * scalenum
myPts(i).Y = myPts(i).Y * scalenum
Loop

numpoints = i
Close #1

End Sub
Private Sub EndPointSetup()

Dim i As Integer
Open path + "seg" For Input As #2

i=0
Do While Not EOF(2)

i=i+ 1

Input #2, mySegs(i).startPt, mySegs(i).endPt
Loop

numsegs = i
Close #2

End Sub
Private Sub SegSetup()

Dim i As Integer, j As Integer

For i =1 To numsegs
If cbxShowSegs.Value = 1 Then
pctPix.Line (myPts(mySegs(i).startPt). X,
myPts(mySegs(i).startPt).Y) _
-(myPts(mySegs(i).endPt).X,
myPts(mySegs(i).endPt).Y), black
End If

With mySegs(i)
Jength = ((myPts(mySegs(i).startPt). X -
myPts(mySegs(i).endPt).X) * 2 _
+ (myPts(mySegs(i).startPt).Y -
myPts(mySegs(i).endPt).Y) 2) # 0.5

Input #3, .nextSegL, .nextSegR,
JeftSegs(1), .leftSegs(2), .leftSegs(3),
JeftSegs(4), .leftSegs(S), .leftSegs(6)

End With
Next i

Close #3

If cbxShowSegs.Value = 1 Then
For i = 1 To numpoints

A Roundabout Animation - 27

petPix.Circle (myPts(i). X, myPts(i).Y), 3
Next i
End If

End Sub
Private Sub PathCalculations()

Dim i As Integer, j As Integer
Dim sum(6) As Single

‘new method for calculation of turns

For i =1 To startnum
sum(i)=0
Form4.grdInput.Row =i

Forj =1 To endnum
Form4.grdInput.Col = j
sum(i) = sum(i) +

CSng(Form4.grdInput.Text)

Next j

Forj=1Toendnum- 1
Form4.grdInput.Col = j

If sum(i) <> 0 Then
Turn(, j) = (CSng(Form4.grdInput. Text)
/ sum(i)) + Turn(i, j - 1)
Else
Turn(i, j) =0
End If

Next j
Next i

Entrance data
"The following code is trying to make the data
more accurately reflext the input data
For i =1 To startnum

PutCarInNow(i) = (sum(i) / 3600)

’Seconds pet timestep * cars per hour / seconds
per hour = cars per timestep
Next i

End Sub

Private Sub pctPix_MouseMove(Button As Inte-
ger, Shift As Integer, X As Single, Y As Single)

txtX. Text = X
txtY. Text=Y
End Sub

Private Sub timerl_timer()

Dim Ptime As Single, TimePass As Single,
dummy As Single

If Form4.chkRTime.Value = 1 Then
Ptime = Timer
TimePass = Ptime - Rtime
Rtime = Timer
CurrentTime = CurrentTime + deltaT

deltaT = TimePass

Else
TimeSteps = TimeSteps + 1 counts the

timesteps
CurrentTime = deltaT * TimeSteps

End If
dummy = CurrentTime
txtElapsedTime. Text = Format(dummy,

HHHE #HE)

If chkSingleStep.Value = 1 Then
Timerl.Enabled = False
cmdRun.Enabled = True

End If

Call AddCars
Call MoveCars

Call CheckTime

If chkDeBug.Value = 1 Then
Call DeBugPrint
Call SegProp

End If
If chkCarsIn.Value = 1 Then

Call CarsInlnfo
End If
End Sub
Private Sub CarsInInfo()
Dim i As Integer, j As Integer
frmCarslIn.pctCarsIn.Cls
For i = 1 To numsegs
frmCarsIn.pctCarsIn.Print "seg ";i; " ";
Forj=1To20
frmCarsIn.pctCarsIn.Print mySegs(i).CarslIn(j);
Next j
frmCarsIn.pctCarsIn.Print mySegs(i).CarslIn(j)
Next i
End Sub

Private Sub AddCars()
Dim i As Integer, j As Integer
=0

For i = 1 To numCars
If myCars(i).active = False Then 'We can add
it somewhere
j=j+1
Cali CheckProbability(i, j) To see if it is
time to enter a car
If j = startnum Then Exit For
End If
Next i

End Sub
Public Sub CheckProbability(i As Integer, j As
Integer)

Dim k As Integer
Dim X As Single

X = Rnd Randomly decide when to enter

A Roundabout Animation - 28

If X <= PutCarInNow(j) * deltaT Then 'it’s time
to put a car in

myCars(i).segmentf = Startn(j, 1).StartSeg
myCars(i).segmentb = Startn(j, 1).StartSeg
myCars(i).entrance = Startn(j, 1).StartSeg
Call CarSetup(i)
Call EnterNow(i)

End If

End Sub
Public Sub EnterNow(i As Integer)

Dim Y As Single, j As Integer, k As Integer,
segin As Integer, lastCar As Integer

segin = myCars(i).segmentf
lastCar = mySegs(segin).CarsIn(2)

Finds the location of last car on segment if their
is no car in segment then the car starts at the be-
gining
If myCars(lastCar).locationf <= 15 Then

myCars(i).active = True

myCars(i).locationf = my-
Cars(lastCar).locationb - 10 'Puts a car 5 feet
behind the last car

myCars(i).locationb = myCars(i).locationf -
myCars(i).length
Else

myCars(i).active = True

myCars(i).locationf = 5

myCars(i).locationb = myCars(i).locationf -
myCars(i).length
End If

Call FindExit(i)
Call FindNextSegment(i)

Fork=1To2
For j =50 To 2 Step -1
mySegs(segin).CarsIn(j) = my-
Segs(segin).CarsInG - 1)
Next j
Next k

mySegs(segin).CarsIn(l) =1

mySegs(segin).CarsIn(2) = i

mySegs(segin).totCars = my-
Segs(segin).totCars + 1

Call AdjustSpeeds(i)
Call AdjustSpeeds(i)

TimeHolder = deltaT * TimeSteps
myCars(i).begintime = TimeHolder
myCars(i).entrance = segin

End Sub
Public Sub FindExit(i As Integer)

Dim segin As Integer
Dim X As Single
Dim j As Integer, k As Integer

X =Rnd

For j = 1 To startnum

If Startn(j, 1).StartSeg = myCars(i).entrance
Then Exit For
Next j

Fork=1Toendnum- 1
If X < Turn(j, k) Then
myCars(i).exit = Startn(j, k).ExitSeg
Exit For
End If
Next k

If k = endnum Then
myCars(i).exit = Startn(j, k).ExitSeg
End If

Call UpdateOutput(i, j, k)

End Sub

Public Sub FindNextSegment(i As Integer)

If you are in the subroutine then you are trying
to figure out

‘where the car i is going next.

Dim segin As Integer

segin = myCars(i).segmentf ‘segment the front of
cariisin

If segin = -1 Then

Elself mySegs(segin).nextSeglL = 0 Then 'We
are on the exit ramp

myCars(i).nextsegf = -1
Elself mySegs(segin).nextSegR = 0 Then

myCars(i).nextsegf = mySegs(segin).nextSegl
Elself myCars(i).exit = mySegs(segin).nextSegR
Then

myCars(i).nextsegf = my-
Segs(segin).nextSegR
Else

myCars(i).nextsegf = mySegs(segin).nextSegL
End If

segin = myCars(i).segmentb

If mySegs(segin).nextSegl. = 0 Then 'We are on
the exit ramp

myCars(i).nextsegb = -1
Elself mySegs(segin).nextSegR = 0 Then

myCars(i).nextsegb = my-
Segs(segin).nextSegl
Elself myCars(i).exit = mySegs(segin).nextSegR
Then

myCars(i).nextsegb = my-
Segs(segin).nextSegR
Else

myCars(i).nextsegb = my-
Segs(segin).nextSegl.

A Roundabout Animation - 29

End If

End Sub
Public Sub UpdateOutput(i As Integer, st As
Integer, en As Integer)

Dim segin As Integer, j As Integer, k As Integer,
esum As Integer
Dim exsum As Integer

If CurrentTime >= (Form4.txtETime.Text * 60)
Then

Form3.grdVPH.Row = st

Form3.grdVPH.Col = en

Form3.grdVPH.Text =
CStr(CInt(Form3.grdVPH.Text) + 1)

For k = 1 To startnum
esum =0
Form3.grdVPH.Row =k

For j = 1 To endnum
Form3.grdVPH.Col =
esum = esum +
ClInt(Form3.grdVPH.Text)
Next j

Form3.grdVPH.Col =
Form3.grdVPH.Text = esum
Next k
End If

End Sub
Public Sub AdjustSpeeds(i As Integer)

Dim j As Integer, k As Integer, g As Integer, h
As Integer

Dim accel As Single, YieldPt As Single, Yield-
seg As Integer

Dim lookLeftseg(2) As Integer, lookLeftcar(2)
As Integer

Dim speedup As Integer 0 = Not set, 1 = Speed
up, 2 = Slow down, 3 stop

Dim moddecel As Single ‘Modified rate of de-
celeration

speedup =0
accel = myCars(i).accel

backcar =i car we are in

thisseg = myCars(backcar).segmentf
nextseg = myCars(backcar).nextsegf
allowedGap = myCars(i).Tail * my-
Cars(backcar).speed + 6

gap=0

1=0
k=0

For j =2 To 50 Step 2 'This routine will find
where "our" car is.
If i = mySegs(thisseg).CarsIn(j) Then Exit
For

Next j
If j >= 52 Then Exit Sub

If mySegs(thisseg).CarsIn(j + 1) <> 0 Then
there is a car end in front of
"our" car on this

segment

frontcar = mySegs(thisseg).Carsin(j + 1)

gap = ((myCars(frontcar).locationb - my-
Cars(backcar).locationf))
Elself mySegs(thisseg).CarsIn(j + 2) <> 0 Then
‘there is a car front in front of

"our" car on this

segment

‘this SHOULD
NOT happen

‘will mean a coli-
sion.

Elself nextseg = -1 Then ‘this is an exit seg-
ment but add to gap so there is no slow down
gap = gap + 4 * allowedGap
Else
Call FindFrontCar(i) Finds the next car in
the path of the car we are "in"
End If

Forg=1To6 ‘This finds the first car on the
feft.

If my-
Segs(mySegs(thisseg).leftSegs(g)).CarsIn(2) <>
0 Then

lookLeftcar(1) = my-
Segs(mySegs(thisseg).leftSegs(g)).CarsIn(2)
Exit For

End If

Next g

If myCars(lookLeftcar(1)).segmentb <= 6 Then
For g = myCars(lookLeftcar(1)).segmentb To
6

For h=1To 50 Step 2
If my-
Segs(mySegs(thisseg).leftSegs(g)).CarsIn(h) =
lookLeftcar(1) Then
Exit For
End If
Next h

If h> 1 Then This will set the second car
on the left
h=h-1
lookLeftcar(2) = my-
Segs(mySegs(thisseg).leftSegs(g)).CarsIn(h)
Else
Exit For
End If
Next g
Ifh=1Then
h=g
Forg=hTo6 'This will set the second
car on the left

A Roundabout Animation - 30

If my-
Segs(mySegs(thisseg).JeftSegs(g)).CarsIn(2) <>
0 Then

lookLeftcar(2) = my-
Segs(mySegs(thisseg).leftSegs(g)).Carsln(2)
Exit For
End If
Next g
End If
Else
lookLeftcar(2) = 0
End If

If lookLeftcar(1) = lookLeftcar(2) Then
lookLeftcar(2) =0
End If

YieldPt = frmStats.txtYieldPt
If mySegs(thisseg).leftSegs(1) <> 0 Then
If mySegs(thisseg).endPt = my-
Segs(mySegs(thisseg).leftSegs(1)).endPt And
YieldPt < mySegs(thisseg).length Then
Yieldseg = thisseg
Elself mySegs(thisseg).endPt <> my-
Segs(mySegs(thisseg).leftSegs(1)).endPt And
YieldPt > mySegs(thisseg).length Then
YieldPt = YieldPt - mySegs(nextseg).length
Yieldseg = thisseg
Elself mySegs(thisseg).endPt = my-
Segs(mySegs(thisseg).leftSegs(1)).endPt Then
YieldPt = mySegs(thisseg).length
Yieldseg = thisseg

Else
Yieldseg = nextseg
End If
End If
'difference As Single

> Code that might not be needed now.

s

j < mySegs(thisseg).totCars Then Deal with cars
in this segment first

> If Gap > allowedGap Then
’ speedup = 1

> Else

’ speedup =2

> End If

If thisseg = Yieldseg And gap > allowedGap
Then ’We must look to see I there is a need to
yield

speedup = YieldLag(YieldPt, Yieldseg, look-
Leftcar(1), lookLeftcar(2), thisseg)
Elself thisseg = Yieldseg And gap < allowedGap
Then

speedup =3

SpeedDif = myCars(frontcar).speed - my-
Cars(backcar).speed
Elself myCars(backcar).yield = True And thisseg
= Yieldseg Then It is time to start looking a
gaps

speedup = YieldGap(lookLeftcar(1), lookLeft-
car(2), thisseg)
Elself gap > allowedGap Then

speedup = 1 ‘Give it the gas!
Else
speedup = 2 Slow it down bud!
SpeedDif = myCars(frontcar).speed - my-
Cars(backcar).speed
End If

If speedup = 0 Then speedup = 1
myCars(backcar).carspeedup = speedup

Select Case speedup
Case I 'Speed up

myCars(backcar).speed = my-
Cars(backcar).speed + accel * deltaT

If myCars(backcar).speed > my-
Cars(backcar).deSpeed Then my-
Cars(backcar).speed = myCars(backcar).deSpeed

If myCars(backcar).speed < 0 Then my-
Cars(backcear).speed =0

myCars(backcar).yield = False
Case 2 ’‘slow down

SpeedDif = SpeedDif * 2

moddecel = myCars(backcar).decel +
Abs(SpeedDif)

If moddecel < 12.88 Then moddecel = 12.88

myCars(backcar).speed = my-
Cars(backcar).speed - moddecel * deltaT

If myCars(backcar).speed > my-
Cars(backcar).deSpeed Then my-
Cars(backcar).speed = myCars(backcar).deSpeed

If myCars(backcar).speed < O Then my-
Cars(backcar).speed = 0
Case 3 ’slow down or stop at yield
SpeedDif = SpeedDif * 2
moddecel = myCars(backcar).decel +
Abs(SpeedDif)
If moddecel < 12.88 Then moddecel = 12.88
myCars(backcar).speed = my-
Cars(backcar).speed - moddecel * deltaT
If myCars(backcar).speed < 0 Then my-
Cars(backcar).speed =0
myCars(backcar).yield = True
Case 4 ‘start from stop

myCars(backcar).speed = my-
Cars(backcar).speed + 20 * accel * deltaT

If myCars(backcar).speed > my-
Cars(backcar).deSpeed Then my-
Cars(backcar).speed = myCars(backcar).deSpeed

myCars(backcar).yield = False
End Select

End Sub

Private Function YieldGap(lookLeftcarl As In-
teger, lookLeftcar2 As Integer, thisseg As Inte-
ger) As Integer

Dim GapTime As Single, xflag As Boolean
Dim distance As Single

Dim LeftDis As Single, LeftTime As Single,
RightTime As Single

A Roundabout Animation - 31

Dim accel As Single

Dim i As Integer, j As Integer

Dim ModLag As Single 'modified lag time ac-
cepted

Dim ModGap As Single ‘'modified lag time ac-
cepted

Dim YieldTimeLength As Single ’‘modified
accel = myCars(backcar).accel

xflag = False

If lookLeftcarl = 0 And gap >= allowedGap
Then

YieldGap =4

Exit Function
End If

Fori=1To6
If mySegs(thisseg).leftSegs(i) = my-
Cars(lookLeftcarl).segmentb Then
j=i-1
Exit For
End If
Next i

LeftDis = mySegs(mySegs(thisseg).leftSegs(j +
1)).length - myCars(lookLeftcar1).locationf

Fori=jTo 1 Step -1

LeftDis = LeftDis + my-
Segs(mySegs(thisseg).leftSegs(i)).length
Next i

LeftTime = LeftDis / (my-
Cars(lookLeftcarl).speed + 0.001)

RightTime =
CSng((mySegs(myCars(backcar).segmentf).lengt
h - myCars(backcar).locationf) / (my-
Cars(backcar).speed + 0.001))

difference = LeftTime - RightTime

If difference >= myCars(backcar).lag Then
finds the time diference between when car on
the left
'and car we are "in"
reaches the contested point.
If gap >= allowedGap Then

YieldGap =4
Exit Function
End If

Else ‘finds the distance between the two left
cars
If myCars(lookLeftcarl).segmentb = my-
Cars(lookLeftcar2).segmentf Then
distance = myCars(lookLeftcar1).locationb
- myCars(lookLeftcar2).locationf
Elself lookLeftcar2 = 0 Then

YieldGap =3
Exit Function
Else

distance = my-
Segs(myCars(lookLeftcar2).segmentf).length -
myCars(lookleftcar2).locationf

i=my-
Segs(myCars(lookLeftcar2).segmentf).nextSegL
Do
If myCars(lookLeftcarl).segmentb = i
Then
distance = distance + my-
Cars(lookLeftcarl).locationb
Exit Do
Else
distance = distance + mySegs(i).length
i = mySegs(i).nextSeglL
End If
Loop
End If

GapTime = distance / (my-
Cars(lookLeftcar2).speed + 0.001)
End If

If GapTime >= myCars(backcar).gap And differ-
ence < myCars(backcar).lag Then

YieldGap =4
Else
YieldGap =3

SpeedDif = myCars(lookLeftcarl).speed -
myCars(backcar).speed
End If

End Function

Private Function YieldLag(YieldPt As Single,
Yieldseg As Integer, lookLeftcarl As Integer,
lookLeftcar2 As Integer, thisseg As Integer) As
Integer

Dim LeftDis As Single, LeftTime As Single,
RightTime As Single
Dim i As Integer, k As Integer

If (((mySegs(myCars(backcar).segmentf).length)
- (myCars(backcar).locationf)) > YieldPt) Or
lookLeftcarl = 0 Then

YieldLag =1
Exit Function
End If
LeftDis =

CSng((mySegs(myCars(lookLeftcarl).segmentf)
Jength) - myCars(lookLeftcar1).locationf)

Fori=1To6
If myCars(lookLeftcarl).segmentf = my-
Segs(thisseg).leftSegs(i) Then
=1-
Exit For
End If
Next i

Fori=kTo 1 Step -1

LeftDis = LeftDis + my-
Segs(mySegs(thisseg).leftSegs(i)).length
Next i

LeftTime = LeftDis / (my-
Cars(lookLeftcarl).speed + 0.001)

A Roundabout Animation - 32

RightTime =
CSng((mySegs(myCars(backcar).segmentf).lengt
h - myCars(backcar).locationf) / (my-
Cars(backcar).speed + 0.001))

difference = LeftTime - RightTime

If difference >= myCars(backcar).lag Then

YieldLag = 1
Else
YieldLag =3

SpeedDif = myCars(lookLeftcarl).speed -
myCars(backcar).speed

myCars(backcar).YieldTime = CurrentTime
End If

End Function
Private Sub DeBugPrint()

Dim i As Integer

Fori=1To 15
frmDeBug.msfgDeBug.Row =i
If myCars(i).active = True Then

With myCars(i)
frmDeBug.msfgDeBug.Col = 1
frmDeBug.msfgDeBug.Text = .type
frmDeBug.msfgDeBug.Col = 2
frmDeBug.msfgDeBug.Text = .colort
frmDeBug.msfgDeBug.Col = 3
frmDeBug.msfgDeBug.Text = "ON"
‘Select Case .carspeedup
Case 1

"Case 2

End Select
frmDeBug.msfgDeBug.Col = 4
frmDeBug.msfgDeBug.Text = .deSpeed
frmDeBug.msfgDeBug.Col = 5
frmDeBug.msfgDeBug.Text = .speed
frmDeBug.msfgDeBug.Col = 6
frmDeBug.msfgDeBug.Text = .segmentf
frmDeBug.msfgDeBug.Col =7
frmDeBug.msfgDeBug.Text = .segmentb
frmDeBug.msfgDeBug.Col = 8
frmDeBug.msfgDeBug.Text = .locationf
frmDeBug.msfgDeBug.Col =9
frmDeBug.msfgDeBug.Text = locationb
frmDeBug.msfgDeBug.Col = 10
frmDeBug.msfgDeBug.Text = .length
frmDeBug.msfgDeBug.Col = 11
frmDeBug.msfgDeBug.Text = For-
mat(Sqr((((oldFront(i).X - oldBack(i).X) * 2) +
((oldFront(i).Y - oldBack(i).Y) » 2))),
"###0.00™)

End With
Else
frmDeBug.msfgDeBug.Col = 3

frmDeBug.msfgDeBug.Text = "OFF"
End If
Next i

End Sub
Private Sub SegProp()

Dimi As Integer
frmSegProp.pctSeg.Cls

Fori=1To 100
frmSegProp.pctSeg.Print i;
frmSegProp.pctSeg.Print mySegs(i).length
Next i

End Sub
Private Sub MoveCars()

Call SwitchSegments
Call DrawCars

End Sub
Public Sub SwitchSegments()

Dim i As Integer, j As Integer, seglengthf As
Single, seglengthb As Single
Dim thisSeggf As Integer, nextSeggf As Integer
Dim thisSeggb As Integer, nextSeggb As Integer
Dim dum As Integer, k As Integer
For i = 1 To numCars
If myCars(i).active = True Then 'move car --

distance = rate * time

Call AdjustSpeeds(i)

thisSeggf = myCars(i).segmentf

nextSeggf = myCars(i).nextsegf

thisSeggb = myCars(i).segmentb

nextSeggb = myCars(i).nextsegb

seglengthb = mySegs(thisSeggb).length

seglengthf = mySegs(thisSeggf).length

myCars(i).locationf = myCars(i).locationf +
myCars(i).speed * deltaT

myCars(i).locationb = myCars(i).locationb
+ myCars(i).speed * deltaT

If myCars(i).locationf > seglengthf Then
exit or move car to next segment

If nextSeggf <> -1 Then
For k=2 To 50 Step 2
If mySegs(thisSeggf).Carsln(k) =i
Then
dum =k
Exit For
End If
Next k
mySegs(thisSeggf).CarsIn(dum) = 0

myCars(i).segmentf = my-
Cars(i).nextsegf

Fork=1To?2

A Roundabout Animation - 33

For j = 50 To 1 Step -1 This makes
space in carsin of the next segment
mySegs(nextSeggf).CarsIn) =
mySegs(nextSeggf).Carsing - 1)
Next j
Next k

mySegs(nextSeggf).CarsIn(2) = i
Call FindNextSegment(i) 1i is the index
of the current car

myCars(i).locationf = (my-
Cars(i).locationf - mySegs(thisSeggf).length)
Else
myCars(i).locationf = my-
Cars(i).locationf
End If
End If

If myCars(i).locationb > segLengthb Then
‘exit or move car to next segment

For k=1 To 49 Step 2
If mySegs(thisSeggb).CarsIn(k) = i

Then
dum =k
Exit For
End If
Next k

mySegs(thisSeggb).CarsIn(dum) = 0
If nextSeggb <> -1 Then
‘mySegs(nextSeggb).totCars = my-
Segs(nextSeggb).totCars + 1

mySegs(nextSeggb).CarsIn(1) =i ‘shift
current car into next segg

myCars(i).segmentb = my-
Cars(i).nextsegb

Call FindNextSegment(i) i is the index
of the current car

myCars(i).locationb = (my-
Cars(i).locationb - mySegs(thisSeggb).length)
Else
Fork=1To49 Step 2
> If mySegs(thisSeggb).CarsIn(k) = i
Then dum =k
Next k

mySegs(thisSeggb).CarsIn(dum) =0
mySegs(thisSeggb).CarsIn(dum + 1) =

myCars(i).active = False turn car off

myCars(i).new = True

petPix. FillColor = myCars(i).color ‘set
car color

petPix.DrawWidth = myCars(i). width

pctPix.Line (oldFront(i).X, old-
Front(i).Y)-(oldBack(i).X, oldBack(i).Y), _

myCars(i).color ‘erase for the last
time

Call FindDelayTime(i)

End If
End If
End If

Next i
End Sub

Public Sub FindDelayTime(i As Integer)
Dim j As Integer, k As Integer
Dim ave As Single, t As Single, sum As Single

If CurrentTime >= (60 *
CSng(Formd4.txtETime.Text)) Then
t = CurrentTime - myCars(i).begintime

For j = 1 To startnum
If Startn(j, 1).StartSeg = myCars(i).entrance
Then Exit For
Next j

For k = 1 To endnum
If Startn(j, k).ExitSeg = myCars(i).exit
Then Exit For
Next k

Form5.grdDelays.Row = j

Form5.grdDelays.Col = k

sum = CSng(Form5.grdDelays.Text) * coun-
ter(Form5.grdDelays.Row,
Form5.grdDelays.Col)

sum = sum +t

counter(Form5.grdDelays.Row,
Form5.grdDelays.Col) = coun-
ter(FormS.grdDelays.Row,
FormS5.grdDelays.Col) + 1

ave = sum / counter(Form5.grdDelays.Row,
Form5.grdDelays.Col)

Form5.grdDelays.Text = Format(ave, "##.0")
End If

End Sub
Public Sub CheckTime()

If (deltaT * TimeSteps) >=
(Form4.txtRTime.Text * 60) Then
Timerl.Enabled = False
cmdStop.Enabled = False
cmdRun.Enabled = True
cmdClear.Enabled = True
Form3.cmdVPH.Enabled = True
End If

If CurrentTime >= CSng(Form4.txtRTime. Text
* 60) Then
Timerl.Enabled = False

A Roundabout Animation - 34

cmdStop.Enabled = False

cmdRun.Enabled = True

cmdClear.Enabled = True

Form3.cmdVPH.Enabled = True
End If

End Sub
Public Sub CarSetup(i As Integer)

Dim X As Single
X =Rnd

If X < CInt(frmStats.txtBus.Text) / 100 Then
myCars(i).type = "BUS"
Elself X < (Clnt(frmStats.txtBus. Text) +
Clnt(frmStats.txtTruck.Text)) / 100 Then
myCars(i).type = "TRUCK"
Else
myCars(i).type = "CAR"
End If
Randomize
With myCars(i)

.active = False

X =Rnd
If X <0.2 Then
.color = vbRed
.colort = "RED"
Elself X < 0.4 Then
.color = vbBlue
.colort = "BLUE"
Elself X < 0.6 Then
.color = vbGreen
.colort = "GREEN"
Elself X < 0.8 Then
.color = vbBlack
.colort = "BLACK"
Else
.color = vbCyan
.colort ="CYAN"
End If

If .type = "CAR" Then

.accel = NormalDis(frmStats.txtCAccel,
frmStats.txtCAccelDev)

.decel = NormalDis(frmStats.txtCDecel,
frmStats.txtCDeStdev)

.Follow = Nor-
malDis(frmStats.txtCFollow,
frmStats.txtCFollowDev)

.gap = NormalDis(frmStats.txtCCGap,
frmStats.txtCCGapDev)

Jag = NormalDis(frmStats.txtCLag,
frmStats.txtCLagDev)

Jength = frmStats.txtCarLength + 2 *
Rnd

.new = True

.speed = NormalDis(frmStats.txtCSpeed,
frmStats.txtCSpeedDev)

.speed = .speed * (22/15)

.deSpeed = .speed

.Tail = NormalDis(frmStats.txtCTail,
frmStats.txtCTailDev)

.width = frmStats.txtCarWidth + Rnd

Elself .type = "BUS" Then

.accel = NormalDis(frmStats.txtB Accel,
frmStats.txtB AccelDev)

.decel = NormalDis(frmStats.txtBDecel,
frmStats.txtBDeStdev)

.Follow = Nor-
malDis(frmStats.txtBFollow,
frmStats.txtBFollowDev)

.gap = NormalDis(frmStats.txtBCGap,
frmStats.txtBCGapDev)

Jlag = NormalDis(frmStats.txtBLag,
frmStats.txtBLagDev)

Jength = frmStats.txtBusLength + 2 *
Rnd

.new = True

.speed = NormalDis(frmStats.txtBSpeed,
frmStats.txtBSpeedDev)

.speed = .speed * (22 / 15)

.deSpeed = .speed

.Tail = NormalDis(frmStats.txtBTail,
frmStats.txtBTailDev)

.width = frmStats.txtBusWidth + Rnd

Elself .type = "TRUCK" Then

.accel = NormalDis(frmStats.txtT Accel,
frmStats.txtT AccelDev)

.decel = NormalDis(frmStats.txtTDecel,
frmStats.txtTDeStdev)

.Follow = Nor-
malDis(frmStats.txtTFollow,
frmStats.txtTFollowDev)

.gap = NormalDis(frmStats.txtTCGap,
frmStats.txtTCGapDev)

Jag = NormalDis(frmStats.txtTLag,
frmStats.txtTLagDev)

Jength = frmStats.txtTLength + 2 * Rnd

.new = True

.speed = NormalDis(frmStats.txtTSpeed,
frmStats.txtTSpeedDev)

.speed = .speed * (22/15)

.deSpeed = .speed

.Tail = NormalDis(frmStats.txtTTail,
frmStats.txtTTailDev)

.width = frmStats.txtTWidth + Rnd

End If

.yield = False
End With

’for debuging
¢ sk sk ok sk sk sk s ofe ok sk sk stk sk sk ok she sl sfe ek sk skoske sk

Pk s ok o ok ke ok ok sk sk sk sk stesk st skok sfeskoloior ok sk oksk

If chkDeBug.Value = 1 Then
frmDeBug.Show

End If
End Sub

Private Function NormalDis(Mean As Single,
StDev As Single) As Single

A Roundabout Animation - 35

Dim Pi As Double

Pi=3.14159265358979
If StDev = 0 Then
NormalDis = Mean
Exit Function
Else
If Rnd > 0.5 Then
NormalDis = CSng(Mean + ((2 * StDev
2) * (Log(Rnd * StDev * (2 * Pi) * 2))))
Else
NormalDis = CSng(Mean - ((2 * StDev " 2)
* (Log(Rnd * StDev * (2 * Pi) * 2))))
End If
End If

End Function
Public Sub DrawCars()

Dim fbegx As Double, fbegy As Double, fendx
As Double, fendy As Double

Dim bbegx As Double, bbegy As Double, bendx
As Double, bendy As Double

Dim i As Integer, Pi As Single

Dim fnewx As Double, fnewy As Double,
bnewx As Double, bnewy As Double

Dim segf As Integer, segb As Integer, theta As
Double, X As Double

Pi=3.141592
For i = 1 To numCars
If chkCarEnds.Value = 1 Then
If myCars(i).active = True Then
segf = myCars(i).segmentf
segb = myCars(i).segmentb

fbegx = myPts(mySegs(segf).startPt). X
fbegy = myPts(mySegs(segf).startPt).Y
fendx = myPts(mySegs(segf).endPt).X
fendy = myPts(mySegs(segf).endPt).Y
bbegx = myPts(mySegs(segb).startPt). X
bbegy = myPts(mySegs(segb).startPt).Y
bendx = myPts(mySegs(segb).endPt). X
bendy = myPts(mySegs(segb).endPt).Y

If fbegx <> fendx Then
If fbegx < fendx Then
X = (fendy - fbegy) / (fendx - fbegx)
Else
X = (fendy - fbegy) / (fbegx - fendx)
End If

theta = Atn(X)

fnewx = fbegx + myCars(i).locationf *
Cos(theta)

fnewy = fbegy + myCars(i).locationf *
Sin(theta)

carFront. X = fnewx

carFront.Y = fnewy

Else

X = (fendy - fbegy) / my-
Segs(segf).length

fnewx = fbegx

fnewy = fbegy + myCars(i).locationf *

carFront. X = fnewx
carFront.Y = fnewy
End If

If bbegx <> bendx Then
If bbegx < bendx Then
X = (bendy - bbegy) / (bendx -

X = (bendy - bbegy) / (bbegx -

End If
theta = Atn(X)
bnewx = bbegx + myCars(i).locationb
* Cos(theta)
bnewy = bbegy + myCars(i).locationb
* Sin(theta)
carBack.X = bnewx
carBack.Y = bnewy
Else
X = (bendy - bbegy) / my-
Segs(segb).length
bnewx = bbegx
bnewy = bbegy + myCars(i).locationb
*X
carBack.X = bnewx
carBack.Y = bnewy
End If

If myCars(i).new = False Then
petPix.Circle (oldFront(i).X, old-
Front(i).Y), 5, myCars(i).color
pctPix.Circle (oldBack(i).X, old-
Back(i).Y), 5, myCars(i).color Erase old cars
Else
myCars(i).new = False
End If

pctPix.Circle (carFront.X, carFront.Y), 5,
myCars(i).color
petPix.Circle (carBack.X, carBack.Y), 5,
myCars(i).color
oldFront(i).X = carFront.X ‘remember
location to erase on next time step
oldFront(i).Y = carFront.Y
oldBack(i).X = carBack. X
oldBack(i).Y = carBack.Y
End If
Else
If myCars(i).active = True Then
segf = myCars(i).segmentf
segb = myCars(i).segmentb

fbegx = myPts(mySegs(segf).startPt). X
fbegy = myPts(mySegs(segf).startPt).Y
fendx = myPts(mySegs(segf).endPt).X
fendy = myPts(mySegs(segf).endPt).Y
bbegx = myPts(mySegs(segb).startPt).X
bbegy = myPts(mySegs(segb).startPt).Y
bendx = myPts(mySegs(segb).endPt). X
bendy = myPts(mySegs(segb).endPt).Y

A Roundabout Animation - 36

If fbegx <> fendx Then
X = (fendy - fbegy) / (fendx - fbegx)
theta = Atn(X)

If fbegx < fendx Then
fnewx = fbegx + myCars(i).locationf
* Cos(theta)
fnewy = fbegy + myCars(i).locationf
* Sin(theta)
Else
fnewx = fbegx - myCars(i).locationf
* Cos(theta)
fnewy = fbegy - myCars(i).locationf
* Sin(theta)
End If

carFront.X = fnewx
carFront.Y = fnewy

Else
X = (fendy - fbegy) / my-
Segs(segf).length

fnewx = fbegx
fnewy = fbegy + myCars(i).locationf *
X
carFront. X = fnewx
carFront.Y = fnewy
End If

If bbegx <> bendx Then

X = (bendy - bbegy) / (bendx - bbegx)
theta = Atn(X)

If bbegx < bendx Then
bnewx = bbegx + my-
Cars(i).locationb * Cos(theta)
bnewy = bbegy + my-
Cars(i).locationb * Sin(theta)
Else
bnewx = bbegx - my-
Cars(i).locationb * Cos(theta)
bnewy = bbegy - my-
Cars(i).locationb * Sin(theta)
End If

carBack.X = bnewx
carBack.Y = bnewy

Else
X = (bendy - bbegy) / my-
Segs(segb).length

bnewx = bbegx
bnewy = bbegy + myCars(i).locationb
* X
carBack.X = bnewx
carBack.Y = bnewy
End If
petPix.DrawWidth = myCars(i). width
If myCars(i).new = False Then
pctPix.Line (oldFront(i).X, old-
Front(i).Y)-(oldBack(i).X, oldBack(i).Y), my-
Cars(i).color Erase old cars
Else

myCars(i).new = False

End If

pctPix.Line (carFront. X, carFront.Y)-
(carBack.X, carBack.Y), myCars(i).color Draw
new ones

oldFront(i).X = carFront.X remember
location to erase on next time step

oldFront(i).Y = carFront.Y

oldBack(i).X = carBack.X

oldBack(i).Y = carBack.Y

End If
End If

Next i

End Sub
Public Sub FindFrontCar(i As Integer)

Dim thisseg2 As Integer, nextseg2 As Integer
Dim frontcarfront As Integer ‘used to okk for a
front of cars

backcar =i

thisseg2 = myCars(backcar).segmentf
nextseg? = myCars(backcar).nextsegf
gap = mySegs(thisseg2).length - my-
Cars(backcar).locationf

Do
frontcar = mySegs(nextseg2).CarsIn(1)
frontcarfront = mySegs(nextseg?).CarsIn(2)

If frontcar <> 0 Then

gap = gap + myCars(frontcar).locationb

Exit Do
Elself frontcarfront <> 0 Then

Exit Do This stops gap where the next

segment starts.
"This is because of a car merging.

Else

gap = gap + mySegs(nextseg2).length
End If

thisseg2 = nextseg2

If mySegs(thisseg2).nextSegR = 0 Then

nextseg2 = mySegs(thisseg2).nextSegL
Elself myCars(backcar).exit = my-

Segs(thisseg2).nextSegR Then

nextseg2 = mySegs(thisseg2).nextSegR
Else

nextseg? = mySegs(thisseg2).nextSegl
End If

If nextseg2 = 0 Then gap = 4 * allowedGap +
I%zcl)l?)p Until gap > allowedGap Or thisseg2 >= 99
End Sub
Begin VB.Form frmDeBug

Private Sub Form_Load()
Dim i As Integer
msfgDeBug.Row = 0

A Roundabout Animation - 37

msfgDeBug.Col =0
msfgDeBug.Text = "Car #"
msfgDeBug.Col = 1
msfgDeBug.Text = "Type"
msfgDeBug.Col =2
msfgDeBug.Text = "Color"
msfgDeBug.Col = 3
msfgDeBug.Text = "Active”
msfgDeBug.Col = 4
msfgDeBug.Text = "DeSpeed”
msfgDeBug.Col =5
msfgDeBug.Text = "Speed”
msfgDeBug.Col = 6
msfgDeBug.Text = "Segf"
msfgDeBug.Col =7
msfgDeBug.Text = "Segb"
msfgDeBug.Col = 8
msfgDeBug.Text = "LocF"
msfgDeBug.Col =9
msfgDeBug.Text = "LocB"
msfgDeBug.Col = 10
msfgDeBug.Text = "Length”
msfgDeBug.Col = 11
msfgDeBug.Text = "Drawn Len"

msfgDeBug.Col =0

Fori=0To 15
msfgDeBug.Row =i
msfgDeBug.Text =1

Next i

End Sub

Attribute VB_Name = "frmStats"
Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = False
Attribute VB_Predeclaredid = True
Attribute VB_Exposed = False

Private Sub Command1_Click()

frmStats.Hide
frmSim.Show

End Sub

Private Sub Form_Terminate()

frmSim.Show

End Sub

Private Sub Form_Unload(Cancel As Integer)
frmStats.Hide

frmSim.Show

Exit Sub

End Sub
Private Sub txtBus_Change()

If txtBus.Text = "" Then txtBus.Text =0

txtCar.Text = 100 - txtBus.Text - txtTruck. Text

End Sub

Private Sub txtCar_Change()

txtCar.Text = 100 - txtBus.Text - txtTruck. Text
End Sub

Private Sub txtTruck_Change()

If txtTruck.Text = "" Then txtTruck.Text =0
txtCar.Text = 100 - txtBus.Text - txtTruck.Text
End Sub

Attribute VB_Name = "frmOpt"
Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = False
Attribute VB_Predeclaredld = True
Attribute VB_Exposed = False

Private Sub Command1_Click()
frmOpt.Hide

frmNewPts.Enabled = True
frmNewPts.Show

End Sub

Private Sub Form_Terminate()
frmOpt.Hide
frmNewPts.Enabled = True
frmNewPts.Show

End Sub

Private Sub Form_Unload(Cancel As Integer)
frmOpt.Hide

frmNewPts.Enabled = True
frmNewPts.Show

End Sub

Attribute VB_Name = "frmNewPts"
Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = False
Attribute VB_Predeclaredld = True
Attribute VB_Exposed = False
Option Explicit
Private Type Point

X As Single

Y As Single
End Type

Private Type path
segment(40) As Integer
totalseg As Integer

End Type

Private Type Routs
path(7) As path
numpath As Integer

End Type

Private Type Way
StartSeg As Integer
ExitSeg As Integer

End Type

A Roundabout Animation - 38

Private Type segment

carsIn(20) As Integer 1list of cars in the seg-
ment

totCars As Integer ‘number of cars in segment

endPt As Integer ‘index of ending point

length As Single length of segment in feet

leftSegs(6) As Integer 'when entering the cir-
cle look for cars

nextSegl As Integer ‘index of next segment
continuing in circle - "0" if none

nextSegR As Integer ’‘index of next segment
leaving circle - "0" if none

startPt As Integer ‘index of beginning point

slope As Single

leftt As Integer

rightt As Integer

straightt As Integer

ut As Integer

direction As String
End Type

Private Bl As Long, Rd As Long, Gn As Long,
Be As Long, Wt As Long

Private ptN As Integer, first As Integer, second
As Integer ’is point counter

Private segN As Integer

Private myPts(100) As Point ‘array of
points

Private mySegs(100) As segment ’array of
segments

Private myStarts(10) As Integer, myStartCount
As Integer

Private myEnds(10) As Integer, myEndCount As
Integer

Private totalPaths As Integer, Grandtotal As In-
teger

Private picname As String, path As String
Private starts(5) As Integer Holds up to 5 start-
ing segment values

Private drive(6) As Routs 'Paths of trafic
Private Stoppoint As Integer 'Helps keep track of
splits

Private startnum As Integer Number of starting
segments

Private startname(6) As String Name of starting
segment

Private endnum As Integer Number of ending
segments

Private endname(6) As String Name of ending
segsment

Private exits(42) As Integer 'Holds the exit num-
bers

Private Startn(6, 6) As Way

Private e As Integer, d As Integer, ¢ As Integer,
w As Integer, pathnum As Integer

Dim SetScale As Boolean, scalenum As Single
Dim x1 As Single, x2 As Single, y1 As Single,
y2 As Single

Dim Wrong(42) As Integer
Dim roundfile As String
files

Path to the saved

Private Sub btnBack_Click(}

frmNewPts.Hide
frmMainMenu.Show

End Sub
Private Sub btnCreate_Click()

Dim X As Integer
‘code for the creation of the SegSet file.
File is used for .nextsegR, .nextsegL,
Jleftsegs(1), .leftsegs(2)
‘current state WORKING.
If scalenum = 0 Then
X = MsgBox("You must set the scale before
doing this.", vbOKOnly, "Error")
Exit Sub
End If

Call save
Call MakeSetSet
Call MakePaths

End Sub
Private Sub MakeSetSet()

Dim i As Integer, j As Integer, k As Integer

Dim r As Integer, s As Integer, t As Integer, z As
Integer

Dim answer As String

Dim al As Integer, bl As Integer, a2 As Integer,
b2 As Integer

Cls
Call Redraw
Fori=1To6

For j = 1 To drive(i).numpath
For k = 1 To drive(i).path(j).totalseg - 1
If my-

Segs(drive(i).path(j).segment(k)).endPt = my-
Segs(drive(i).path(j).segment(k + 1)).startPt
Then

r=0

Fors=1To42

If exits(s) =

drive(i).path(j).segment(k + 1) Thenr=r+1

Next s

Ifr=1 Then

my-
Segs(drive(i).path(j).segment(k)).nextSegR =
drive(i).path(j).segment(k + 1)

Elselfr = 0 Then

my-
Segs(drive(i).path(j).segment(k)).nextSegL =
drive(i).path(j).segment(k + 1)
End If
End If
Forr=1To segN

If my-
Segs(drive(i).path(j).segment(k)).endPt = my-
Segs(r).endPt And r <>
drive(i).path(j).segment(k) Then

Fort=1To42

A Roundabout Animation - 39

If Wrong(t) =
drive(i).path(j).segment(k) Then

Call yield(i, j, k, 1)
Exit For

Elself Wrong(t) =r Then

Call yield2(i, j, k, 1)
Exit For

Elself Wrong(t) = 0 Then

al =
myPts(mySegs(r).startPt). X -
myPts(mySegs(r).endPt).X

al =
myPts(mySegs(r).startPt).Y -
myPts(mySegs(r).endPt).Y

bl =

myPts(mySegs(drive(i).path(j).segment(k)).start
Pt).X -
myPts(mySegs(drive(i).path(j).segment(k)).endP
t).X

b2 =
myPts(mySegs(drive(i).path(j).segment(k)).start
Pt).Y -
myPts(mySegs(drive(i).path(j).segment(k)).endP
t).Y

If (bl *a2)-(b2 *al)>0

Then
Wrong(t) =r
Call yield2(, j, k, 1)
Exit For
Elself (bl * a2) - (b2 *al) <0
Then

Wrong(t) =
drive(i).path(j).segment(k)
Call yield(i, j, k, 1)
Exit For
End If

End If
Nextt
End If
Nextr
Next k
Next j
Next i

Call FindLefts ‘calls the code that will find
the 6 leftsegs

Open roundfile + "set" For Output As #3
Write #3, scalenum

Fori=1To segN

With mySegs(i)

Write #3, .nextSegl., .nextSegR, .leftSegs(1),
JeftSegs(2), .leftSegs(3), .leftSegs(4),
JeftSegs(5), leftSegs(6)

End With
Next i

Close #3

End Sub
Private Sub MakePaths()

Dim i As Integer, j As Integer, k As Integer
Open roundfile + "pth'>' For Output As #4
Write #4, startnum, endnum

Fori=1 To startnum
Write #4, startname(i)
Next i

Fori=1 To endnum
Write #4, endname(i)
Next i

Fori=1 To startnum
For j =1 To endnum
Write #4, Startn(i, j).StartSeg, Startn(i,
j)-ExitSeg
Next j
Next i

Close #4

End Sub
Private Sub btnDir_Click()

frmNewPts.pctPix.Cls
Call Redraw

frmNewPts.btnBack Enabled = False
frmNewPts.btnDir.Enabled = False
frmNewPts.btnOptions.Enabled = False
frmNewPts.btnRedraw.Enabled = False
frmNewPts.btnRemove.Enabled = False
frmNewPts.cmdClear.Enabled = False
frmNewPts.cmdFindPaths.Enabled = False
frmNewPts.cmdLoadpic.Enabled = False
frmNewPts.cmdReadExistingSetup.Enabled =
False

frmNewPts.cmdSaveSetup.Enabled = False
frmNewPts.cmdShowPath.Enabled = False

Call Getlnfo

End Sub
Private Sub GetInfo()

Dim i As Integer, j As Integer, k As Integer, r As
Integer
Dim Check(6) As Integer

For i =1 To startnum

pctPix.Cls

petPix.Line
(myPts(mySegs(drive(i).path(1).segment(1)).star
tPt).X,
myPts(mySegs(drive(i).path(1).segment(1)).start
Pt).Y)- _

A Roundabout Animation - 40

(myPts(mySegs(drive(i).path(1).segment(1)).end
Pt).X,
myPts(mySegs(drive(i).path(1).segment(1)).end
Pt).Y)

pctPix.CurrentX =
(myPts(mySegs(drive(i).path(1).segment(1)).star
tPt).X +
myPts(mySegs(drive(i).path(1).segment(1)).end
Pt).X)/2

If
myPts(mySegs(drive(i).path(1).segment(1)).start
Pt).Y >
myPts(mySegs(drive(i).path(1).segment(1)).end
Pt).Y Then

pctPix.CurrentY =
myPts(mySegs(drive(i).path(1).segment(1)).start
Pt).Y +2
Else
petPix.CurrentY =
myPts(mySegs(drive(i).path(1).segment(1)).end
Pt).Y +2
End If
pctPix.Print drive(i).path(1).segment(1)
startname(i) = ""

Do
startname(i) = InputBox("What is the name,
and Direction of the entering road along segment
" & drive(i).path(1).segment(1) & "?", "Road
Name", "", 6000, 4050)
Loop While startname(i) =
Next i

Fori=1To6
For j = 1 To drive(i).numpath
For k = 1 To endnum
If
drive(i).path(j).segment(drive(i).path(j).totalseg)
= Check(k) Then
Exit For
Elself Check(k) = 0 Then
pctPix.Cls
pctPix.Line

(myPts(mySegs(drive(i).path(j).segment(drive(i).

path(j).totalseg)).startPt). X,
myPts(mySegs(drive(i).path(j).segment(drive(i).
path(j).totalseg)).startPt).Y)- _

(myPts(mySegs(drive(i).path(j).segment(drive(i).

path(j).totalseg)).endPt). X,
myPts(mySegs(drive(i).path(j).segment(drive(i).
path(j).totalseg)).endPt).Y)

petPix.CurrentX =

(myPts(mySegs(drive(i).path(j).segment(drive(i).

path(j).totalseg)).startPt).X +
myPts(mySegs(drive(i).path(j).segment(drive(i).
path(j).totalseg)).endPt).X) / 2

If

myPts(mySegs(drive(i).path(j).segment(drive(i).
path(j).totalseg)).startPt).Y >
myPts(mySegs(drive(i).path(j).segment(drive(i).
path(j).totalseg)).endPt).Y Then

pctPix.CurrentY =
myPts(mySegs(drive(i).path(j).segment(drive(i).
path(j).totalseg)).startPt).Y + 2
Else
pctPix.CurrentY =
myPts(mySegs(drive(i).path(j).segment(drive(i).
path(j).totalseg)).endPt).Y + 2
End If
pctPix.Print

drive(i).path(j).segment(drive(i).path(j).totalseg)

endname(k) =""

Do

endname(k) = InputBox("What is

the name, and Direction of the exiting road along
segment " &
drive(i).path(j).segment(drive(i).path(j).totalseg)
& "7", "Road Name", "", 6000, 4050)

Loop While endname(k) =""

Call MakeWay(k,
drive(i).path(j).segment(drive(i).path(j).totalseg))

Check(k) =
drive(i).path(j).segment(drive(i).path(j).totalseg)

Exit For

End If
Next k
Next j

Next i

frmNewPts.btnBack Enabled = True
frmNewPts.btnDir.Enabled = True
frmNewPts.btnOptions.Enabled = True
frmNewPts.btnRedraw.Enabled = True
frmNewPts.btnRemove.Enabled = True
frmNewPts.cmdClear.Enabled = True
frmNewPts.cmdFindPaths.Enabled = True
frmNewPts.cmdLoadpic.Enabled = True
frmNewPts.cmdReadExistingSetup.Enabled =
True

frmNewPts.cmdSaveSetup.Enabled = True
frmNewPts.cmdShowPath.Enabled = True
frmNewPts.btnScale Enabled = True

End Sub

Private Sub MakeWay(endnumber As Integer,
endseg As Integer)

Dim i As Integer, j As Integer, k As Integer, r As
Integer

Fori =1 To startnum
For j = 1 To drive(i).numpath
If
drive(i).path(j).segment(drive(i).path(j).totalseg)
= endseg Then
For k = 1 To drive(i).path(j).totalseg
Forr=1To42
If drive(i).path(j).segment(k) = ex-
its(r) Then
Startn(i, endnumber).StartSeg =
drive(i).path(1).segment(1)
Startn(i, endnumber).ExitSeg =
exits(r)
End If
Nextr
Next k

A Roundabout Animation - 41

End If
Next j
Next i

End Sub
Private Sub btnOptions_Click()

frmNewPts.Enabled = False
frmOpt.Show

End Sub
Private Sub btnRemove_Click()

’Alows user to remove a desired path.
‘Current state WORKING.

Dim i As Integer, j As Integer, k As Integer, r As
Integer
Dim pickpath As Integer, count As Integer

pickpath = txtRemove.Text

If Grandtotal = 0 Then
cmdShowPath.Enabled = False
btnRemove.Enabled = False
i = MsgBox("No more paths available.",

vbOKOnly, "Error")
Exit Sub

Elself pickpath > Grandtotal Then
i = MsgBox("There is not a path with that

number.", vbOKOnly, "Error")
Exit Sub

End If

Fori=1To6
count = count + drive(i).numpath
If count >= pickpath Then
pickpath = pickpath - (count -
drive(i).numpath)
Exit For
End If
Next i

For j = pickpath To drive(i).numpath - 1
For k = 1 To drive(i).path(j + 1).totalseg
drive(i).path(j).segment(k) = drive(i).path(j
+ 1).segment(k)
Next k

If drive(i).path(j).totalseg > drive(i).path(j +
1).totalseg Then
For k = drive(i).path(j + 1).totalseg To
drive(i).path(j).totalseg
drive(i).path(j).segment(k) = 0
Next k
End If

drive(i).path(j).totalseg = drive(i).path(j +
1).totalseg
Next j

j = drive(i).numpath
For k = 1 To drive(i).path(j).totalseg

drive(i).path(j).segment(k) = 0
Next k

drive(i).numpath = drive(i).numpath - 1

Grandtotal = Grandtotal - 1
IblPath.Caption = Grandtotal

End Sub
Private Sub Clear()

‘clears all segments, points, paths.

Erase myPts()

Erase mySegs

Erase drive

Erase exits

Grandtotal = 0

segN =0

ptN=0

IbiPath.Caption = Grandtotal
Redraw

End Sub
Private Sub btnScale_Click()
Dim X As Integer

pctPix.Cls

X = MsgBox("Pick two points that you know the
distance of on the drawing.", vbOKOnly, "Set
Scale")

SetScale = True

x1 = 1000

x2 = 1000

yl=0

y2=0

frmNewPts.btnCreate.Enabled = True
End Sub
Private Sub cmdClear_Click()

Call Clear

End Sub
Private Sub cmdFindPaths_Click()

Dim i As Integer, j As Integer
New code for the ultimate finding of all pos-
siable paths.

Call FindStarts

Call FindPaths
IblPath.Caption = Grandtotal

i = MsgBox("Done.", ,"")
btnDir.Enabled = True

Call CountEnds
cmdShowPath Enabled = True
btnRemove.Enabled = True

End Sub
Private Sub FindPaths()

A Roundabout Animation - 42

‘code to finds the paths in a circle.
‘Current state is sorta WORKING.

Dim doneflag As Boolean, Turn As Boolean
Dim i As Integer, k As Integer, j As Integer, 1 As
Integer, t As Integer, s As Integer

Dim counter As Integer, r As Integer, g As Inte-
ger, counterx As Integer, z As Integer

Dim answer As String

Dim dum As Routs

Dim al As Integer, bl As Integer, a2 As Integer,
b2 As Integer

r=0

Grandtotal = 0
doneflag = False
Turn = False

Fori=1 To startnum

k=0
Do
k=k+1
If k = 1 Then Turn = False

j=1
drive(i).path(k).segment(j) = starts(i)
doneflag = False
If Turn = True Then
1 = Stoppoint - 1
j=l+1
Turn = False
End If

Do

l=]
j=j+1

counter =0
Fort=1 To segN

If my-
Segs(drive(i).path(k).segment(l)).endPt = my-
Segs(t).startPt Then

counter = counter + 1

If counter = 1 Then
drive(i).path(k).segment(j) = t

Elself counter <> 0 Then

Fors=1Toj-1
drive(i).path(k +
1).segment(s) = drive(i).path(k).segment(s)
Nexts

Stoppoint = j
Turn = True

Forq=1To 42
If exits(q) = t Then
drive(i).path(k +
1).segment(j) = drive(i).path(k).segment(j)

drive(i).path(k).segment(j)
=t
Exit For
Elself exits(q) =
drive(i).path(k).segment(j) Then
drive(i).path(k +
1).segment(j) =t
Exit For
End If
Next q

If g =43 Then
r=r+1

al =
myPts(mySegs(t).startPt).X -
myPts(mySegs(t).endPt).X
a2 =

myPts(mySegs(t).startPt).Y -
myPts(mySegs(t).endPt).Y

bl =
myPts(mySegs(drive(i).path(k).segment(j)).start
Pt).X -
myPts(mySegs(drive(i).path(k).segment(j)).endP
1).X

b2 =
myPts(mySegs(drive(i).path(k).segment(j)).start
Pt).Y -

myPts(mySegs(drive(i).path(k).segment(j)).endP
t).Y

If(bl *a2)- (b2 *al)>0

Then
exits(r) =
drive(i).path(k).segment(j)
drive(i).path(k +

1).segment(j) =t
Elself (bl * a2) - (b2 *al) <
0 Then
exits(r) =t
drive(i).path(k +
1).segment(j) = drive(i).path(k).segment(j)
drive(i).path(k).segment(j)
=t
End If

Exit For
End If
End If
End If
Next t

If counter = 0 Then doneflag = True
Loop While doneflag = False
j=j-1
drive(i).path(k).totalseg = j

Fors=1Toj
counterx =0
Forq=1Toj
If my-
Segs(drive(i).path(k).segment(s)).endPt = my-
Segs(drive(i).path(k).segment(q)).endPt Then
counterx = counterx + 1

A Roundabout Animation - 43

Next q

If counterx > 1 Then
drive(i).numpath =k - 1
Grandtotal = Grandtotal +

drive(i).numpath
Exit Do
Exit For
End If
Next s
Loop
Next i

End Sub
Private Sub FindStarts()

‘code to find the starting segs for all
"Current state is WORKING.

Dim i As Integer, j As Integer, k As

Next k
Next j
Next i

End Sub
Private Sub emdLoadpic_Click()

Dim i As Integer, t As Integer, f As Integer, o As
Integer
Dim roundname As String

On Error GoTo ErrHandler
frmNewPts.cdbCircle.DialogTitle = "Choose
Background Diagram”
frmNewPts.cdbCircle.FilterIndex = 1

paths. frmNewPts.cdbCircle .FileName = App.path
frmNewPts.cdbCircle.ShowOpen
roundname = cdbCircle.FileName

Integer frmNewPts.pctPix.Picture = LoadPic-

Dim TotStart As Integer *total of segs with this ture(roundname)

start point.

k=0
Fori=1TosegN
TotStart = 0

Forj=1TosegN

i =InStr(1, roundname, ".")
roundfile = Left(roundname, i)
Call SetCap

picname = roundname

If mySegs(i).startPt = mySegs(j).endPt Do

Then TotStart = TotStart + 1
Next j

t=0
t = InStr(1, picname, "\")
picname = Right(picname, Len(picname) - t)

If TotStart = O Then Loop While t <> 0
k=k+1 Exit Sub
starts(k) =i
ErrHandler:
End If * User pressed Cancel button.
Next i Exit Sub
startnum = k End Sub
Private Sub cmdQuit_Click()
Fori=1Tok
If starts(i) = O Then startnum = startnum - 1 End
Next i
End Sub
End Sub Private Sub cmdReadExistingSetup_Click()
Private Sub CountEnds()
Dim i As Integer, roundname As String
Dim i As Integer, j As Integer, k As Integer On Error GoTo ErrHandler
Dim ends(6) As Integer
Call Clear
endnum = 0
Fori=1To6 roundname =""
For j = 1 To drive(i).numpath cdbOpen.FileName = App.path
Fork=1To6 cdbOpen.ShowOpen
If ends(k) = roundname = cdbOpen.FileName
drive(i).path(j).segment(drive(i).path(j).totalseg) i = InStr(1, roundname, ".")
Then roundfile = Left(roundname, i)
Exit For

Elself ends(k) = 0 Then
endnum = endnum + 1

Open roundfile + "pts" For Input As #1
Open roundfile + "seg" For Input As #2

ends(k) =
drive(i).path(j).segment(drive(i).path(j).totalseg) Input #1, picname
Exit For frmNewPts.pctPix.Picture = LoadPic-
End If ture(App.path + "\" + picname)

A Roundabout Animation - 44

i=0
Do While Not EOF(1)
i=i+1
Input #1, myPts(i).X, myPts(i).Y
Loop
ptN =i
i=0
Do While Not EOF(2)
i=i+ 1
Input #2, mySegs(i).startPt, mySegs(i).endPt
Loop
segN =1
Close #1: Close #2
Call Redraw
Call SetCap
Exit Sub

ErrHandler:
Exit Sub
End Sub
Private Sub cmdSaveSetup_Click()

Call save

End Sub
Private Sub save()

Dim i As Integer, roundname As String
On Error GoTo ErrHandler

c¢dbOpen.ShowSave

roundname = cdbOpen.FileName
i = InStr(1, roundname, ".")
roundfile = Left(roundname, 1)

Call SetCap

Open roundfile + "pts" For Output As #1
Open roundfile + "seg" For Output As #2
Write #1, picname
Fori=1To ptN
Write #1, myPts(i). X, myPts(i).Y
Next i
Fori=1To segN
Write #2, mySegs(i).startPt, mySegs(i).endPt
Next i
Close #1: Close #2
Exit Sub

ErrHandler:
Exit Sub
End Sub
Private Sub SetCap()

Dimi As Integer
Dim roundnamex As String

roundnamex = roundfile
Do
i=0
i = InStr(1, roundnamex, "\")
roundnamex = Right(roundnamesx,
Len(roundnamex) - i)

Loop Whilei <> 0

roundnamex = Left(roundnamex,
Len(roundnamex) - 1)

frmNewPts.Caption = "Roundabout setup :" +
roundnamex

End Sub
Private Sub cmdShowPath_Click()

‘Shows any requested path, mostly for debug-
ging.
‘current state WORKING

Dim i As Integer, j As Integer, k As Integer
Dim pickpath As Integer, count As Integer

pickpath = txtShow.Text
frmNewPts.pctPix.Cls

Fori=1To6
count = count + drive(i).numpath
If count >= pickpath Then
pickpath = pickpath - (count -
drive(i).numpath)
Exit For
End If
Next i

Forj=1To7
If j = pickpath Then
For k = 1 To drive(i).path(j).totalseg

If frmOpt.optRedPath.Value = True Then
frmNewPts.pctPix.ForeColor = Rd

If frmOpt.optBluePath. Value = True
Then frmNewPts.pctPix.ForeColor = Be

If frmOpt.optBlackPath.Value = True
Then frmNewPts.pctPix.ForeColor = Bl

If frmOpt.optGreenPath.Value = True
Then frmNewPts.pctPix.ForeColor = Gn

pctPix.Line
(myPts(mySegs(drive(i).path(j).segment(k)).start
Pt).X,
myPts(mySegs(drive(i).path(j).segment(k)).start
Pt).Y)- _

(myPts(mySegs(drive(i).path(j).segment(k)).end
Pt).X,
myPts(mySegs(drive(i).path(j).segment(k)).endP
.Y

If k=1 Then

pctPix.CurrentX =
(myPts(mySegs(drive(i).path(j).segment(k)).start
Pt).X +
myPts(mySegs(drive(i).path(j).segment(k)).endP
1).X)/2

If
myPts(mySegs(drive(i).path(j).segment(k)).start
Po.Y >
myPts(mySegs(drive(i).path(j).segment(k)).endP
t).Y Then

A Roundabout Animation - 45

pctPix.CurrentY =
myPts(mySegs(drive(i).path(j).segment(k)).start
Pt).Y +2
Else
petPix.CurrentY =
myPts(mySegs(drive(i).path(j).segment(k)).endP
t).Y+2
End If
pctPix.Print "Enter”
Elself k = drive(i).path(j).totalseg Then
petPix.CurrentX =
(myPts(mySegs(drive(i).path(j).segment(k)).start
Pt).X +

myPts(mySegs(drive(i).path(j).segment(k)).endP
1).X)/2

If
myPts(mySegs(drive(i).path(j).segment(k)).start
Pt).Y >
myPts(mySegs(drive(i).path(j).segment(k)).endP
t).Y Then

petPix.CurrentY =

myPts(mySegs(drive(i).path(j).segment(k)).start
Pt).Y +2

Else

pctPix.CurrentY =

myPts(mySegs(drive(i).path(j).segment(k)).endP
1).Y +2

End If

pctPix.Print "Exit"

End If
Next k
Exit For
End If

Next j

End Sub
Private Sub btnRedraw_Click()

Call Redraw

End Sub
Private Sub Form_Load()

frmNewPts.width = 7350
frmNewPts.pctPix.Scale (-200, 200)-(200, -200)
'set user scale

Bl = RGB(0, 0, 0)

Rd =RGB(255,0,0)

Gn = RGB(0, 255, 0)

Be =RGB(0, 0, 255)

Wt = RGB(255, 255, 255)
frmNewPts.pctPix.DrawMode = 10 Not xor -
same as the clock problem
frmNewPts.pctPix.DrawStyle = 0 ‘Solid line
ptN=0

End Sub
Private Sub Redraw()

Dimi As Integer
frmNewPts.pctPix.Cls
If frmOpt.chkPoint.Value = 1 Then

If frmOpt.optGreenPoint.Value = True
Then frmNewPts.pctPix.ForeColor = Gn

I frmOpt.optBluePoint. Value = True Then
frmNewPts.pctPix.ForeColor = Be

I frmOpt.optBlackpoint. Value = True Then
frmNewPts.pctPix.ForeColor = Bl

If frmOpt.optRedPoint. Value = True Then
frmNewPts.pctPix.ForeColor = Rd

Fori=1ToptN

frmNewPts.pctPix.Circle (myPts(i).X,

myPts(i).Y), 3

Next i

End If

H frmOpt.chkPNum.Value = 1 Then
If frmOpt.optGreenPNum. Value = True
Then frmNewPts.pctPix.ForeColor = Gn
If frmOpt.optBluePNum.Value = True Then
frmNewPts.pctPix.ForeColor = Be
If frmOpt.optBlackPNum.Value = True
Then frmNewPts.pctPix.ForeColor = Bl
If frmOpt.optRedPNum.Value = True Then
frmNewPts.pctPix.ForeColor = Rd
Fori=1To ptN
frmNewPts.pctPix.CurrentX =
myPts(i). X
frmNewPts.pctPix.CurrentY =
myPts(i).Y
frmNewPts.pctPix.Print i
Next i
End If

If frmOpt.chkSeg.Value = 1 Then
If frmOpt.optBlackSeg.Value = True Then
frmNewPts.pctPix.ForeColor = Bl
If frmOpt.optRedSeg.Value = True Then
frmNewPts.pctPix.ForeColor = Rd
If frmOpt.optBlueSeg. Value = True Then
frmNewPts.pctPix.ForeColor = Be
If frmOpt.optGreenSeg. Value = True Then
frmNewPts.pctPix.ForeColor = Gn
Fori=1To segN
pctPix.Line (myPts(mySegs(i).startPt).X,
myPts(mySegs(i).startPt). Y)- _
(myPts(mySegs(i).endPt). X,
myPts(mySegs(i).endPt).Y)
Next i
End If

If frmOpt.chkSNum.Value = 1 Then

If frmOpt.optBlackSNum.Value = True
Then frmNewPts.pctPix.ForeColor = Bl

If frmOpt.optRedSNum. Value = True Then
frmNewPts.pctPix.ForeColor = Rd

If frmOpt.optBlueSNum.Value = True Then
frmNewPts.pctPix.ForeColor = Be

If frmOpt.optGreenSNum.Value = True
Then frmNewPts.pctPix.ForeColor = Gn

Fori=1TosegN

frmNewPts.pctPix.CurrentX =

(myPts(mySegs(i).startPt). X +
myPts(mySegs(i).endPt).X) / 2

A Roundabout Animation - 46

frmNewPts.pctPix.CurrentY =
(myPts(mySegs(i).startPt).Y +
myPts(mySegs(i).endPt).Y) / 2
frmNewPts.pctPix.Print i
Next i
End If

End Sub
Private Sub Form_Unload(Cancel As Integer)

frmSim.Show

End Sub
Private Sub pctPix_MouseDown(Button As In-
teger, Shift As Integer, X As Single, Y As Sin-

gle)

IF on a point remove it
Dim i As Integer
Dim length As Single, aclength As String

If SetScale = True Then
If x1 = 1000 And x2 = 1000 Then
xl =X
yl=Y
petPix.Circle (x1, y1), 6, vbRed

Else
petPix.Cls
x2=X
y2=Y
petPix.Line (x1, y1)-(x2, y2)
length = ((x1 - x2) A2 + (y1 -y2)~2)~ 0.5
aclength = InputBox("What is the lenght of
this line?", "Length", "", 5000, 4500)
If aclength = "" Then
scalenum = 1
SetScale = False
Call Redraw
Else
scalenum = CSng(aclength) / length
SetScale = False
pctPix.Cls
Call Redraw
End If
End If
Else
If optPoints = True Then
If Button = 1 Then *make a new point or
remove old one
Fori=1 To ptN
If (Abs(X - myPts(i).X) < 6 And Abs(Y -
myPts(i).Y) < 6) Then
RemovePoint (i)
Call Redraw
Exit Sub
End If
Next i
ptN=ptN + 1
myPts(ptN).X = X
myPts(ptN).Y =Y
Call Redraw
End If
Elself optSegments = True Then

If first = 0 Then
Fori=1To ptN
If (Abs(X - myPts(i).X) < 6 And
Abs(Y - myPts(i).Y) < 6) Then
first =i
petPix FillStyle = 1
petPix.Circle (myPts(i). X,
myPts(i).Y), 6, Rd
Exit For
End If
Next i
Else
Fori=1To ptN
If (Abs(X - myPts(i).X) < 6 And
Abs(Y - myPts(i).Y) < 6) Then
second =i
segN =segN + 1
mySegs(segN).startPt = first
mySegs(segN).endPt = second
Call Redraw
first=0
second =0
Exit For
End If
Next i
End If
Elself optMove = True Then
If first = 0 Then
Fori=1To ptN
If (Abs(X - myPts(i).X) < 6 And
Abs(Y - myPts(i).Y) < 6) Then
first=1i
petPix.FillStyle = 1
pctPix.Circle (myPts(i). X,
myPts(i).Y), 8 Gn
Exit For
End If
Next i
Else
myPts(first). X = X
myPts(first).Y =Y
Call Redraw
first =0
End If
Elself optRemoveSeg = True Then
Dim dum(5) As Integer, j As Integer, k
As Integer
Fori=1ToptN
If (Abs(X - myPts(i).X) < 6 And
Abs(Y - myPts(i).Y) < 6) Then
first =i
petPix. FillStyle = 1
petPix.Circle (myPts(i).X,
myPts(i).Y), 8, Be
Exit For
End If
Next i
Fori=1To segN
If mySegs(i).endPt = first Then
i=j+1
dum(j) =i
End If
Next i
Fori=jTo 1 Step -1

A Roundabout Animation - 47

For k = dum(i) To segN - 1
mySegs(k) = mySegs(k + 1)
Next k
segN =segN - |
Next i
first=0
Call Redraw
End If
End If
End Sub
Private Sub yield(i As Integer, j As Integer, k As
Integer, r As Integer)

Dim s As Integer

For s =1 To segN

If mySegs(r).startPt = mySegs(s).endPt And r
<> s And (mySegs(s).nextSegL. = r Or my-
Segs(s).nextSegR =r) Then

my-
Segs(drive(i).path(j).segment(k)).JeftSegs(1) =r

my-
Segs(drive(i).path(j).segment(k)).leftSegs(2) = s
mySegs(drive(i).path(j).segment(k -
1)).JeftSegs(1) =r
mySegs(drive(i).path(j).segment(k -
1)).JeftSegs(2) =s
End If
Next s

End Sub
Private Sub yield2(i As Integer, j As Integer, k
As Integer, r As Integer)

Dim s As Integer, z As Integer

For s =1 To segN
If mySegs(drive(i).path(j).segment(k)).startPt
= mySegs(s).endPt And
drive(i).path(j).segment(k) <> s And (my-
Segs(s).nextSegl. = drive(i).path(j).segment(k)
Or mySegs(s).nextSegR =
drive(i).path(j).segment(k)) Then
mySegs(r).leftSegs(1) =
drive(i).path(j).segment(k)
mySegs(r).leftSegs(2) = s

Forz =1To segN
If mySegs(z).nextSegl. =r Or my-
Segs(z).nextSegR =1 Then
mySegs(z).leftSegs(1) =
drive(i).path(j).segment(k)
mySegs(z).leftSegs(2) = s
End If
Next z
End If
Next s

End Sub
Private Sub RemovePoint(i As Integer)

Dim j As Integer
Forj=iToptN-1
myPts(j).X = myPts(j + 1).X

myPts(§).Y = myPts(g + 1).Y
Next j
ptN=ptN - 1

End Sub
Private Sub FindLefts()

Dim a As Integer, b As Integer, c As Integer, d
As Integer, e As Integer, f As Integer, g As Inte-
ger, h As Integer

Dim sum As Integer, back(2) As Integer

Fora=1To segN
sum =0
If mySegs(a).leftSegs(1) <> 0 Then
b = mySegs(a).leftSegs(1)
¢ = mySegs(a).leftSegs(2)
Ford =1 To segN
If mySegs(c).startPt = mySegs(d).endPt

Then
sum = sum + 1
back(sum) =d
End If
Nextd

If sum>1Then ‘code to see which
segment is in the circle
Forh=1To42
If back(1) = Wrong(h) Then
d = back(2)
Exit For
Elself back(2) = Wrong(h) Then
d = back(1)
Exit For
End If
Next h
End If
sum =0
Fore =1 To segN
If mySegs(d).startPt = mySegs(e).endPt

Then
sum = sum + 1
back(sum) =e
End If
Nexte

If sum> 1 Then ‘code to see which
segment is in the circle
Forh=1To42
If back(1) = Wrong(h) Then
e = back(2)
Exit For
Elself back(2) = Wrong(h) Then
e = back(1)
Exit For
End If
Nexth
Else
e = back(1)
End If
sum = 0
For f=1To segN
If mySegs(e).startPt = mySegs(f).endPt
Then
sum = sum + 1

A Roundabout Animation - 48

back(sum) = f
End If
Next f
If sum> 1 Then ‘code to see which
segment is in the circle
Forh=1To42
If back(1) = Wrong(h) Then
f = back(2)
Exit For
Elself back(2) = Wrong(h) Then
f = back(1)
Exit For
End If
Nexth
Else
f = back(l)
End If
sum =0
For g =1 To segN
If mySegs(f).startPt = mySegs(g).endPt
Then
sum = sum + |
back(sum) =g
End If
Next g
If sum> 1 Then ’code to see which
segment is in the circle
Forh=1To42
If back(1) = Wrong(h) Then
g = back(2)
Exit For
Elself back(2) = Wrong(h) Then
g = back(l)
Exit For
End If
Next h
Else
g = back(1)
End If
sum = 0
With mySegs(a)
JleftSegs(3) =d
JeftSegs(4)=¢
JleftSegs(5) =1
JleftSegs(6) = g
End With
End If
Next a
End Sub

Attribute VB_Name = "frmPath"
Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = False
Attribute VB_PredeclaredId = True
Attribute VB_Exposed = False

Private Sub btnDone_Click()
frmPath . Hide

frmNewPts.Enabled = True
frmNewPts.Show

End Sub

Private Sub Form_Terminate()
frmPath.Hide
frmNewPts.Enabled = True

frmNewPts.Show
End Sub

Private Sub Form_Unload(Cancel As Integer)
frmPath.Hide

frmNewPts.Enabled = True

frmNewPts.Show

End Sub

Attribute VB_Name = "frmMainMenu"
Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = False
Attribute VB_Predeclaredld = True
Attribute VB_Exposed = False

Private Sub btnQuit_Click()

End
End Sub
Private Sub btnRoundSetUp_Click()

frmNewPts.Show
frmMainMenu.Hide

End Sub
Private Sub Command2_Click()

frmSim.Show
frmMainMenu.Hide

End Sub

Attribute VB_Name = "Form5"

Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = False

Attribute VB_Predeclaredld = True
Attribute VB_Exposed = False

Private Sub cmdhide_Click()

Form5.Hide

End Sub

Private Sub Form_Load()

Dim startnum As Integer, endnum As Integer
Dim startname(6) As String, endname(6) As
String

Dim i As Integer, j As Integer

End Sub

Attribute VB_Name = "Form4"
Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = False
Attribute VB_PredeclaredId = True
Attribute VB_Exposed = False

Private Sub chkRTime_Click()

If chkRTime.Value = 1 Then
txtDeltaT Enabled = False
Else
txtDeltaT .Enabled = True
End If

End Sub

A Roundabout Animation - 49

Private Sub cmdOK _Click()
Form4.Hide

End Sub
Private Sub Form_Load(}

Dim i As Integer, X As Integer

grdInput.ColWidth(0) = grdInput.ColWidth(0) *
I.1

End Sub
Private Sub grdInput_Click()

Dim usrinput As String

grdInput.Col = grdInput.MouseCol
grdInput.Row = grdInput. MouseRow

usrinput = InputBox("What is the new number?",
"Input Number")

grdInput. Text = usrinput

End Sub

Private Sub grdInput_KeyPress(KeyAscii As
Integer)

Dim usrinput As String

usrinput = InputBox("What is the new number?",
"Input Number")

grdInput.Text = usrinput
End Sub

Attribute VB_Name = "Form3"
Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = False
Attribute VB_PredeclaredId = True
Attribute VB_Exposed = False

Private Sub ecmdhide_Click()
Form3.Hide

End Sub
Private Sub cmdVPH_Click()

Label10.Caption = "Vehicles per Hour"

Fori=1 To frmSim.startnum
grdVPH.Row =i

For j =1 To frmSim.endnum + 1
grdVPH.Col =
If i =5 And j = 5 Then Exit For
grdVPH.Text = For-
mat((CSng(grdVPH.Text) * 60) /
(CSng(Form4.txtRTime.Text)), "###.0")
Next j
Next i

cmdVPH.Enabled = False
End Sub

A Roundabout Animation - 50

