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PARTI: Explaining Two-Lane Highway Crash Rates Using Land
Use and Hourly Exposure

ABSTRACT

This paper describes the estimation of Poisson regression models for predicting both
single and multi-vehicle highway crash rates as a function of traffic density and land use,
as well as ambient light conditions and time of day. The study focuses on seventeen rural,
two-lane highway segments, each one-half mile in length with varying land use patterns
and where actual hourly exposure values are available in the form of observed traffic
counts. Land use effects are represented by the number of driveways of various types on
each segment. Hourly exposure is represented for single-vehicle crashes as the total
vehicle miles traveled and volume/capacity ratio; for multi-vehicle crashes it is the
product of the hourly volumes on the main highway and the roads intersecting it along the
study segment.

For single-vehicle crashes, the following variables were found to be significant,
with a positive or negative effect as noted: daytime (6am-7pm, negative effect), the
natural log of the segment volume/capacity ratio (negative), percent of the segment with
no passing zones (positive), shoulder width (positive), number of intersections (negative),
and driveways (mixed effects by type). Good multi-vehicle crash prediction models had
quite different variables: daylight conditions from 10am-3pm and 3-7pm (positive),
number of intersections (negative), and driveways (positive for all types). The results
show that traffic intensity explains differences in crash rates even when controlling for
time of day and light conditions, and that these effects are quite different for single and
multi-vehicle crashes. Suggestions for future research are also given.

INTRODUCTION

This study is motivated by research results found by the first author (Ivan et. al,,
1999), specifically that single-vehicle and multi-vehicle highway crashes occur under
markedly different circumstances with respect to traffic volume, light and roadway
conditions. Many other researchers have found similar results. For example, Persaud and
Mucsi (1995) found that the effect of daylight conditions is different for single-vehicle
and multi-vehicle crashes. For single-vehicle crashes the potential is higher at night,
whereas for multi-vehicle crashes the opposite is the case. Persaud and Mucsi also found
that while single-vehicle crashes tend to increase with shoulder width, the trend is the
opposite with multi-vehicle crashes.

The previous research (mentioned above) by the first author investigated
predictive variables for both types of crash using Poisson regression. One variable was
hourly Levels of Service (LOS) computed from actual traffic volumes measured at
permanent count stations on two-lane highways in Connecticut. Site characteristics were
extracted from the Highway Performance Monitoring System (HPMS), and daylight
conditions were also considered.

Specifically, single-vehicle crashes were found to occur at better LOS — most at
LOS A, next most at LOS B, and the least at LOS C, D or E. These findings are
consistent with results reported by Zhou and Sisiopiku (1997). Single-vehicle crashes also
seemed to occur where there are narrow shoulders and poor sight distance. Light
conditions were not significant. Conversely, LOS did not help predict the number of
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multi-vehicle crashes at all — the best predictive variables were the number of signalized

intersections, a dummy indicating whether or not the facility is a principal arterial, and the

percentage of trucks using the road. The number of intersections and truck percentage
both increased the number of multi-vehicle crashes; the principal arterial indicator
decreased the number of crashes. Again, light conditions were not significant.

These findings raised several issues:

1. Good LOS tends to occur at night when volumes are low, so is the single-vehicle
crash rate higher then because there are fewer vehicles on the road (LOS effect),
or because more drivers are drowsy or less alert (time of day effect)?

2. LOS was computed for highway segments (segment LOS effect), but multi-
vehicle crashes are more related to vehicle conflicts, so would a traffic intensity
variable that includes volumes on cross roads be a better predictor (intersection
LOS effect)?

3. Is the surrounding land use significant for predicting single-vehicle or multi-
vehicle crash rates (conflict or distraction effect)?

In fact, several researchers have recently investigated some of these issues. Mensah and

Hauer (1998) studied the relationship between crashes and time of day. They concluded

that it is more accurate to estimate separate models for daytime and nighttime conditions,

or at least to include a variable to control for the differences between these two time of
day conditions. Levinson and Gluck (1997) reviewed studies of the safety effects of
driveway access spacings, finding that for many different types of highways, access type
and density are good predictors of crash rates. Consequently, the research described in
this paper aimed to answer the above questions using these results as a starting point.

STUDY DESIGN

We prepared a study design which permits us to answer these questions. Following are

specific features we included in the design:

1. Single-vehicle and multi-vehicle crashes are modeled separately. We included all
crashes occurring on each study segment irrespective of severity. Information
about crashes came from Connecticut Department of Transportation (ConnDOT)
accident experience reports.

2. Hourly exposure data is collected from ConnDOT two-lane automatic traffic
recorder (ATR) sites. However, we expanded our data set by redefining our
analysis sites exclusive of HPMS locations. Specifically, we defined one-half mile
(approximately 0.8 km) highway segments each with homogeneous cross-
sectional features (lane and shoulder width), that were also near enough to the
ATR sites that the hourly volume could be considered consistent. This permitted
us to define a total of seventeen sites with a greater variety of site characteristics
than in the previous research. However, we no longer had the HPMS to get all of
the site data needed. We will discuss acquisition of site description data sources in
the next section.

3. Hourly traffic volumes for the intersecting roads (none of which are state
highways) over the entire six year period were simply unavailable, so we used
tube counters to observe an average daily traffic (ADT) count for each road over
one day, which we then converted to annual average daily traffic (AADT) counts
using factors generated by ConnDOT for this purpose.
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4, We again determined light conditions for each hour of data. Light condition is
classified as dawn, day, dusk, or dark according to sunrise and sunset times
estimated using the Applied Environmetrics Meteorological Table developed by
the National Bushfire Research Unit.

5. Finally, we defined a variable called time of day with five categories: AM peak (6-
10am), midday (10am-3pm), PM peak (3-7pm), evening (7-11pm) and nighttime
(11pm-6am).

In addition to the temporal variables just described, we included characteristics to
describe each site. Following are characteristics describing the geometric features:

1. shoulder width, in feet

2. percent of segment with no passing zones, and

3. number of intersections on the segment.

Land use effects are represented by the number of driveways observed on each highway

segment, classified into the following categories:

1. private residence,

2. apartment building with more than four units,

3. gas station,

4. retail,

5. industrial,

6. office, and

7. other (including churches, campgrounds and other recreational sites).
STUDY DATA

The driveway variables listed above are not available from HPMS. Rather than making
time-consuming and costly field visits to each site, we used the ConnDOT photolog
archives to find this information. The photolog archives are a collection of driver’s eye
view images taken at 0.01-mile (16.1-meter) increments along the entire length of every
state highway in Connecticut, stored on laser disk. Figure 1 is an example of a photolog
image, including the pop-up grid, which is useful for measuring the size of roadway
features, such as lane and shoulder width. We have a photolog station in our computer
laboratory at UConn. By using the photolog, we were able to collect this information
without leaving our building.

Once all of the data were collected, they were compiled into a single file for
analysis. Following is the procedure:

1. We started with one case for each hour of the six year period for each site.

2. Next, we merged in the traffic volume and light condition data, so for each hour
we knew the two-way segment and intersecting road volumes and whether it was
dawn, daylight, dusk or dark at the time.

3. Then we added the crash data, or the number of single-vehicle and multi-vehicle
crashes that occurred during each hour. Very few cases had more than one crash,
and of course, the vast majority had none.

4. Then we defined the time of day variable and computed the volume/capacity (v/c)
ratio for each case. The capacity was estimated using the site characteristics and
procedures published in the Highway Capacity Manual (TRB 1994) for rural two-
lane highway segments (there was no intersection control of any kind on any of
the main segment approaches for any of the study sites).
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5. Because there were so few cases with crashes (recall that each case represents one
hour at each site over the six-year period), we needed to aggregate the dataset.
Otherwise, the vast majority of cases would have no crashes, and special
modeling techniques would be required. In the aggregated data set, each case
represents a unique combination of site, calendar year, light conditions, time of
day and v/c range in 0.1 increments. Tables 1 and 2 list for each study segment the
number of cases with 0, 1, 2, 3 and 4 crashes as well as the total crash count.

6. Finally, the site characteristics (which vary only by site and sometimes by year)
were merged into the database.

METHODOLOGY

We estimated non-linear Poisson regression models for single-vehicle and multi-vehicle
crashes using quasi-likelihood estimation techniques. The Poisson distribution assumes
that the mean and the variance of the data set are equal. This assumption is often violated
for crash data because the variance is greater than the mean, a phenomenon called over-
dispersion. When the assumption is violated, the efficiency of the parameter estimates is
lost, and the t-statistics are corrupt since they are based on biased standard errors. Quasi-
likelihood estimation, as implemented in the S-Plus statistical package, accounts for over
or under-dispersion in the count observations by estimating the over or under-dispersion
parameter as part of the process (S-Plus 1995).

In the model estimation process we weighed each aggregated case by the number
of cases, or hours, it represented in the original, unaggregated database. We did this
because many cases in the aggregated data set represented a large number of hours, such
as daylight conditions in the middle of the day at moderate v/c range, while other cases
represented a very small number of hours, such as daylight conditions in the evening at
high v/c range. This way the procedure works harder at fitting the more commonly
observed cases, rather than trying to fit the rare and common cases equally well.

Following is the general form for our prediction model:

N=Ve® @

where N is the number of crashes, ¥ is the exposure to crashes, x is a vector of
independent (predictor) variables, and f is a vector of estimated coefficients. For single-
vehicle crashes, the standard exposure measure was used — million vehicle miles traveled
at the site. Note that in this study, because all segments have the same length, this
measure is simply defined as million vehicles. However, for multi-vehicle crashes, we
used a different measure based on one suggested by Vogt and Bared (1998), and defined
as follows:

9 Y -12
v, = AADT, | x10 @)
! ,EZH thADTS ,,,z‘:

where
V, is the exposure observed under conditions ¢, defined by site, year, light
conditions, time of day and v/c range,
H, is the set of hours under which conditions ¢ are observed,
g, is the traffic volume observed during hour 4,
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AADT, is the Annual Average Daily Traffic (AADT) observed on the main

highway segment,

n is the number of side roads intersecting the main highway along the half-mile

segment, and

AADT,, is the AADT on side road segment m.

Essentially, this formula estimates the hourly volume on the intersecting roads by
assumning that the ratio of the hourly volume to the AADT is the same as on the main
highway segment. Then, the main highway segment hourly volume is multiplied by the
sum of the intersecting road hourly volumes and divided by one million squared and used
as the exposure measure for multi-vehicle crashes.

In model estimation for both types of crash, we first estimated models using only
the temporal variables: v/c (defined in ranges), light condition, time of day and exposure.
These effects were all entered as categorical treatments, as were the site effects. Exposure
was defined for single-vehicle crashes as the total of all aggregated hourly volumes. For
multi-vehicle crashes it was defined as the value defined in Equation (2). The revised
model form for this estimation phase is:

1+
Nyjia=Vygia SXPB+S LA T +X) ®)

where
N, 3, is the number of crashes in year y at site i observed under light conditions j at
time of day k and with a v/c range /;

V. is the exposure associated with N, ;

o is an estimated exponent parameter;

B is an estimated intercept parameter;

S, is the estimated effect of site i;

L, is the estimated effect of light conditions J;

T, is the estimated effect of time of day &, and

X, is the estimated effect of v/c range /.
Note that the o parameter permits the exposure to contribute to the crash rate as well as to
scale the number of crashes (linear multiplier by the crash rate). After finding the best
temporal variables for predicting each type of crash, we estimated models using those
temporal variables and the more detailed site characteristics using the following mixed form,
with all symbols as defined previously:

N a=V s €xp (B +L+ T X)) @)

RESULTS
Temporal Factors

Table 3 summarizes results of single-vehicle crash model estimation using only the
categorical temporal and site factors, including the temporal factor coefficients and t-
statistics (all t-statistics reported in this paper are adjusted for over-dispersion). The site
factors were included in the models simply to control for variation among the sites; since the
next phase of the analysis focused on actual site characteristics, the categorical site factor
coefficients provide little useful information (other than whether or not they are significant)
and are therefore omitted here for brevity.



As with the previous research cited earlier, Model 1 shows that light conditions are
not significant at 95 percent confidence for single-vehicle crashes, although the new time of
day variable is significant. Consequently, Model 2 was estimated without light conditions
(to eliminate insignificant variables); here more time of day categories become significant.
However, further investigation (paired t-tests) revealed that these time of day groups can be
combined into two groups that are significantly different from one another: daytime (6 am -
7pm) and nighttime (7pm - 6 am). Model 3 was then estimated with only these two
categories of time of day. The positive coefficient on nighttime shows that more crashes
occur at night, even though v/c is also considered.

While most of the v/c categories are significant in these first three models, the
coefficients do not follow a logical pattern. Our previous research found the LOS effect to
gradually diminish as v/c increased (Ivan et al. 1999), but this pattern is not found here.
Therefore, the categorical v/c variable was replaced by a continuous variable, the natural log
of v/c, in the estimation of Model 4. Model 4 also drops the a exponent on exposure (million
vehicle miles traveled), which was not significant in any of the models. Recall that this
exponent was added to 1.0, representing an effect of the exposure on the actual crash rate,
rather than just on scaling the number of crashes. Model 4 thus gives the following model
with all factors significant at 95 percent confidence:

-0.33 -0.73+1.22D+S,
N,=V X, e :

it

>

where N, is the number of crashes at site i under conditions ¢, ¥}, is the exposure at site i
under conditions ¢z, X, is the v/c under conditions ¢ (moved out of the exponential expression
to simplify the mathematics), D is a dummy variable equal to 1.0 only if conditions ¢ are
observed at nighttime (7pm-6am), and S, is the effect of site i.

Table 4 shows the results of estimating categorical temporal and site factor models
for multi-vehicle crashes. Models including segment v/c are omitted because this variable
is not significant in any of them, which is consistent with previous research findings. One
difference from the previous multi-vehicle crash estimation findings, though, is that light
condition is now significant along with the new time of day variable. However, due to the
strong correlation between light conditions and time, we combined these into a single
variable which included a category for each observed combination of these two variables;
models that contain this combined variable consistently perform better than models that
include them separately, as indicated by the smaller residual deviance on the one included
in Table 4.

When comparing paired differences among all levels of the combined variable, only
two levels are significantly different from the others. These two levels are daylight conditions
between 10am and 3pm and between 3pm and 7pm, and both increase the rate of multi-
vehicle crashes. The additive exponent on multi-vehicle exposure is also significant, but
negative, which means the effect of the product of the volumes on the main and intersecting
roads is less than 1.0. This is not alarming, since this quantity is the product of two traffic
volumes, and therefore has units of vehicles-squared; it thus might be more proper to use the
square root of this exposure measure as the reference. This final temporal model for multi-
vehicle crashes has many more coefficients than the one for single-vehicle crashes, so it is
not practical to show it in the text.



Site Factors

The categorical site variable was significant for both types of crash (for at least a
majority of sites in each model estimated), indicating that even when controlling for temporal
factors, site characteristics still explain some of the variation in each type of crash. Therefore,
our next step was to estimate models using the site characteristics added to the best model
for each type of crash just presented. Table 5 presents. results for single-vehicle crash
prediction models that consider the driveway variables, along with several key site variables:
shoulder width, percent no passing zone and the number of intersections, all of which were
found to be significant for predicting highway crashes in previous research (Ivan and O’Mara
1997). The first model considers all driveways in one variable, rather than by categories. The
coefficient on driveways is insignificant at 95 percent, and the shoulder width coefficient has
the wrong sign — we expect crash rate to decrease as shoulder width increases. The second
model considers each type of driveway separately, but only three are significant: gas station
driveways decrease the single-vehicle crash rate, but apartment and other driveways increase
it. Shoulder width again has an unexpected positive coefficient. These results will be
discussed more later.

Table 6 shows the results for similar models estimated for multi-vehicle crashes.
Here, total driveways is significant, but this model does not perform very well (note the
higher residual deviance). In the second model, the apartment, gas station, retail and office
driveway types are combined into one category called commercial, because there were not
many sites with these driveway types. What is most interesting here is that other driveways
are most dangerous (i.e. greatest coefficient), followed by industrial, commercial and lastly
by residential. Other driveways consists of churches, campgrounds and other recreational
sites which have inconsistent traffic volume patterns, so drivers on the main road may not
expect to see vehicles entering and leaving. Industrial driveways are likely to have slow
moving trucks entering and leaving, increasing the opportunities for vehicle conflicts.

DISCUSSION

Contrary to expectations, driveway variables were significant for predicting single-vehicle
crashes as well as multi-vehicle crashes. The best single-vehicle crash models tell us that
sites with a lot of gas station driveways and street intersections tend to have fewer single-
vehicle crashes, and that sites with a lot of apartment driveways tend to have more single-
vehicle crashes. This might be explained by the fact that gas stations are often well lit and
increase the nighttime visibility, helping drivers to stay on the road (recall that the single-
vehicle crash rate is greater in the evening). Similarly, in the vicinity of intersections, drivers
might be more cautious and either reduce their speeds or increase their alertness levels. There
is no obvious explanation for the positive effect of apartment driveways and shoulder width.
The multi-vehicle crash rate increases with all types of driveway, but mostly with industrial
and other (churches and campgrounds) driveways. This is probably because industrial
driveways involve slow-moving vehicles entering and leaving the roadway, and drivers do
not expect to see traffic entering and leaving the other driveways.

Time of day is significant for both types of crash, but in different ways. single-vehicle
crashes occur most often in the evening and at night, which is consistent with most other
research findings (Mensah and Hauer 1998). What is significant about this finding is that v/c
was also considered, and both variables are still significant. This time of day is more
dangerous probably because drivers are more likely to be drowsy and less alert (or driving



under the influence) than at other times of day, and thus more likely to lose control of their
vehicles. On the other hand, multi-vehicle crashes are more likely to occur under daylight
conditions at midday and during the evening peak period. This is when traffic volumes are
the heaviest, and there are more discretionary trips than in the morning peak period.

Hourly exposure was also significant for both types of crash, but represented
differently. For single-vehicle crashes, there is a negative-exponential relationship with the
segment v/c, indicating that crash rate is highest at low v/c, drops sharply to a point, and then
levels off. This is consistent with previous findings. Conversely, for multi-vehicle crashes
the segment v/c is not significant at all, probably because it has only to do with the intensity
of traffic on the main road, and nothing to do with the intensity of conflicts between
intersecting roads. Instead, the additive exponent on the multi-vehicle exposure is significant
as a predictor variable. Also noteworthy is that when this estimated exponent on multi-
vehicle exposure is added to the offset exponent (1.0), the result is very close to 0.5,
indicating that the offset is actually the square root of the exposure measure. This is actually
quite intuitive, given that the exposure measure is in units of vehicles squared; this issue is
explored in a forthcoming paper by the first two authors.

Note that we have limited driveway data, especially for gas station, apartment and
office driveways. Therefore, the driveway coefficients should be interpreted carefully. Their
effects should be investigated with more data before putting much stock in their significance,
particularly for single-vehicle crashes, since these effects are not intuitive.

On the other hand, the time of day effects are strong and quite easily explained.
Traffic at different times of day is composed of travelers making different types of trips, and
drivers have different levels of alertness at night and during the day. It appears that the
morning peak period is the safest time to be on the road; perhaps the traffic stream consists
primarily of commuters who are familiar with their travel routes and all act more predictably
than drivers at other times of day.

CONCLUSIONS

Three issues were raised in the introduction, which were to have been addressed by this

paper. These issues are restated below, along with what was learned about them:

1. The first issue was whether the single-vehicle crash rate is higher at night due to a
time of day effect or to the lower traffic intensity at that time. The findings reported
in this paper show that actually both of these factors appear to influence the single-
vehicle crash rate. This demonstrates clearly that traffic intensity is extremely
important for accurately predicting single-vehicle crash rates and analyzing the
causes of high crash rate locations more intelligently.

2. The second issue was whether or not the new intersection-related traffic exposure
variable would be a better predictor for the multi-vehicle crash rate than a traditional
segment-related traffic intensity variable (segment LOS) apart from being used as the
exposure offset. In fact, these findings show this to be the case — the segment LOS
was not significant in any of the multi-vehicle crash models estimated, but the new
exposure term was significant as an additive exponent. Knowing the actual traffic
intensity is thus just as important for multi-vehicle crashes.

3. The third issue was whether or not the surrounding land use (represented by
driveways of various types) would be significant for predicting single-vehicle or
multi-vehicle crash rates. The findings suggest that the number of driveways of



different types is indeed significant for predicting both types of crash. However, due
to the limited sample size (only seventeen sites) and variability in these variables, we
do not advise transferring these findings to other sites. The findings do suggest,
however, that this is a factor that warrants more investigation, as it shows promise
in explaining why some highway segments have much higher crash rates than others
that are identical in other ways.

ACKNOWLEDGMENTS

This paper is accepted for publication in Accident Analysis & Prevention. These results were
also presented at the 24th International Forum on Traffic Records and Highway Information
Systems in Minneapolis, July 26-29, 1998.

REFERENCES

Tvan, J. N. and O’Mara, P. J. Prediction of non-freeway traffic accident rates in Connecticut
using Poisson regression. Presented at Transportation Research Board Annual
Meeting, Washington DC, paper no. 970861; 1997.

Tvan, J. N., Pasupathy, R. K., Ossenbruggen, P. J. Differences in causality factors for single
and multi-vehicle crashes on two-lane roads. Accident Analysis and Prevention
31(?): 695-704; 1999.

Karlaftis, M. G. and Tarko, A. P. Heterogeneity considerations in accident modeling.
Accident Analysis and Prevention 30(4): 425-33; 1998.
Levinson, H. and Gluck, J. Safety benefits of access spacing. Traffic Congestion and Traffic
Safety in the 21 Century, ASCE Conference, Chicago IL; 458-464; 1997.
Mensah, A. and Hauer, E. Two problems of averaging arising in the estimation of the
relationship between accidents and traffic flow. Transportation Research Record
1635: 37-43; 1998.

Persaud, B. N. and Mucsi, K. Microscopic accident potential models for two-lane rural
roads. Transportation Research Record 1485:134-139; 1995.

S-PLUS User’s Manual, Version 3.3 for Windows. Seattle: Statistical Sciences Division,
Mathsoft, Inc.: 1995.

Transportation Research Board (TRB). Highway Capacity Manual. Washington DC: Special
Report 209, National Research Council; 1994.

Vogt, A. and Bared, J. Accident models for two-lane rural segments and intersections.
Transportation Research Record 1635:18-29; 1998.

Zhou, M. and Sisiopiku, V. Relationship between volume-to-capacity ratios and accident
rates. Transportation Research Record 1581:47-52; 1997.



Figure 1. Sample ConnDOT Photolog Image
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Table 1. Single-Vehicle Crash Counts by Study Segment

Segment Number of Cases by Single-Vé¢hicle Crash Count Crash
Number 0 1 2 3 Total Count
1 150 6 156 6
2 202 6 1 , 209 8
3 195 2 197 2
4 161 8 169 8
5 202 2 204 2
6 321 3 324 3
7 373 9 1 383 12
8 358 11 1 370 13
9 346 6 1 353 8
10 240 3 1 244 5
11 162 2 164 2
12 189 11 200 11
13 173 5 1 179 7
14 185 2 187 2
15 276 7 283 7
16 310 4 314 4
17 229 2 231 2
TOTAL 4072 89 5 1 4167 102
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Table 2. Multi-Vehicle Crash Counts by Study Segment

Crash

Segment Number of Cases by Multi-Vehicle Crash Count

Number 0 1 2 3 4 Total Count
1 153 3 156 3
2 202 7 209 7
3 170 18 4 2 3 197 32
4 166 2 1 169 4
5 196 7 1 204 9
6 300 17 6 1 324 29
7 363 19 1 383 21
8 354 13 3 370 19
9 320 25 8 353 41
10 231 13 244 13
11 157 5 2 164 9
12 190 10 200 10
13 174 5 179 5
14 187 0 187 0
15 282 1 283 1
16 305 9 314 9
17 223 8 231 8

TOTAL | 3973 162 26 2 4 4167 220
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Table 3. Temporal Factor Models for Single-Vehicle Crashes

Model 1 Model 2 Model 3 Model 4
Coeff. t-value | Coeff. t-value | Coeff. t-value | Coeff. t-value

Intercept 0.019  0.026 | -0.44 -0.07 0.47 0.97 -0.73 -1.92
Ln(V) (10° veh.-miles) -0.019 -0.12 | -0.10 -0.70 | -0.06 -0.52
Light Dawn 1.06 1.49
Condition

Day Base

Dusk 0.15 0.19

Dark 0.84 1.56
Time of 6am-10am Base Base
Day

10am-3pm | 0.58 1.52 0.46 1.32

3pm-Tpm 0.81 2.00 0.72 1.96

7pm-1lpm | 0.74 1.24 1.33 4.09

llpm-6am | 0.74 1.23 1.31 3.80

6am-7pm Base Base

Tpm-6am 0.97 4.49 1.22 5.47
v/iC 0-0.1 Base Base Base

0.1-02 -0.80 -3.49 | -0.83 -3.71 | -0.7% -4.08

02-03 -1.75 426 | -1.81 -4.46 | -1.66 -4.44

03-04 -0.59 -1.52 | -0.68 -1.79 | -0.64 -1.82

04-0.5 -1.50 -348 | -1.54 -3.65 | -1.44 -3.67

>0.5 -1.68 -2.95 | -1.78 -3.16 | -1.54 -2.96
Ln (V/C) -0.33 -3.52
Residual Deviance 320,526 321,545 322,562 328,535
Degrees of Freedom 4137 4140 4143 4148
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Table 4. Temporal Factor Models for Multi-Vehicle Crashes

Model 1 Model 2 Model 3 Model 4
t- t- t- t-
Coef. value | Coef. value | Coef. value | Coef. value
Intercept 3.72 2.96 4.81 424 | 5.24 447 | 3.15 242
Ln (V) (10" veh?) -047 -8.04 | -043 -824 | 038 -7.09 | -0.51 -8.21
Light Dawn -0.68 -1.32 | -1.09 -2.16
Condition
Daylight Base Base
Dusk -1.24  -2.89 | 099 -2.34
Dark -0.95 -3.01 | -032 -2.17
Time of 6am-10am Base Base
Day
10am-3pm 0.51 2.92 0.49 291
3pm-7pm 0.66 3.72 0.58 3.51
7pm-11pm 0.74 2.18 0.00 0.00
1 1pm-6am 1.30 3.63 0.58 3.11
Light/ Day, 6am-10am Base
time
Dark, 6am-10am 437 -1.22
Dark, 3pm-7pm -0.67 -1.15
Dark, 7pm-11pm -0.19 -0.86
Dark, 11pm-6am 0.27 1.27
Dawn, 6am-10am -0.76 -1.46
Day, 10am-3pm 0.53 2.95
Day, 3pm-7pm 0.67 3.73
Day, 7pm-11pm -045  -0.50
Dusk, 3pm-7pm -0.70  -1.33
Dusk, 7pm-11pm -044  -0.59
Residual Deviance 345,102 351,016 348,911 343,936
Degrees of Freedom 4142 4146 4145 4139
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Table 5. Site Factor Models for Single-Vehicle Crashes

Driveway Types Driveway Types Separated
Combined
Coefficient t-value Coefficient t-value
Intercept -2.30 -4.15 -2.36 -4.26
Ln(v/c) -0.36 -4.83 -0.24 -3.18
Dummy (6am-7pm) -1.17 -6.25 -1.38 -7.42
Pct. No passing zone 0.03 5.20 0.03 5.50
Shoulder width 0.06 2.39 0.13 4.49
Intersections -0.15 -2.57 -0.37 -6.23
Total driveways -0.01 -1.38
Gas station driveways -0.65 -4.71
Apartment driveways 1.43 7.31
Other driveways 0.11 2.92
Residual deviance 354,831 342,561
Degrees of freedom 4160 4158
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Table 6. Site Factor Models for Multi-Vehicle Crashes

Driveway Types Driveway Types
Combined Separated
Coefficient t-value Coefficient t-value
Intercept -4.10 -12.55 0.81 1.42
Ln(V) -1.01 -51.03 -0.65 -16.51
Light / Day, 6am-10am Base Base
time Night, 6am-10am |  -5.08 -1.91 420 1176
Night, 3pm-7pm -1.31 -2.19 -0.86 -1.53
Night, 7pm-11pm -0.49 -2.13 -0.28 -1.31
Night, 11pm-6am -0.53 -2.66 0.06 0.32
Dawn, 6am-10am -1.51 -2.83 -0.98 -1.95
Day, 10am-3pm 1.13 6.63 0.70 4.23
Day, 3pm-7pm 1.12 6.29 0.80 4.72
Day, 7pm-11pm -1.46 -1.62 -0.73 -0.86
Dusk, 3pm-7pm -1.04 -1.95 -0.79 - -1.57
Dusk, 7pm-11pm -1.30 -1.70 -0.68 -0.95
Intersections 0.17 3.60 -0.81 -8.21
Total driveways 0.08 11.02
Residential driveways 0.04 3.74
Commercial driveways 0.14 13.28
Industrial driveways 0.26 3.01
Other driveways 0.31 9.54
Residual deviance 411,331 361,354
Degrees of freedom 4153 4150
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PART II: Representing Traffic Exposure in Multi-Vehicle Crash
Prediction for Two-lane Highway Segments

ABSTRACT

This paper describes a study of multi-vehicle crash potential on two-lane rural highways in
Connecticut. Seventeen highway segments were studied over the time period October 1990
to October 1996. The effects of three temporal factors - traffic volume, time of day and light
condition - on multi-vehicle crashes are investigated using Poisson regression. Special
attention is given to the representation of traffic exposure for multi-vehicle crashes.

The square root of the product of hourly volumes on the highway segment and the
intersecting roads appears to be the best representation of multi-vehicle crash exposure. This
product also contributes more to multi-vehicle crashes at night than during the day. In
addition, using light and time combination gives better results than using the variables
separately. Higher multi-vehicle crash risk is found in general irrespective of traffic volume
from 10am to 7pm.

The impact of segment geometric characteristics appears to be much less important
than for single-vehicle crashes when the temporal factors explain more causality of multi-
vehicle crashes. Transportation engineers should realize that upgrading geometric
characteristics might not reduce multi-vehicle crashes as much as single-vehicle crashes.

INTRODUCTION

Multi-vehicle (MV) crashes on rural two-lane highways have become a critical issue of
highway safety. Rural two-lane highways constitute a substantial portion of the North
American highway network; according to Kalakota et al., approximately 2.5 million miles, or
63 percent of US highway mileages (7). Furthermore, fifty percent of fatalities occur on two
lane rural highways, giving this highway type a higher crash rate (per vehicle mile of
exposure) than all others; for example, four to seven times higher than on rural interstate
highways. Multi-vehicle crashes also accounted for over 70 percent of injuries, injury
crashes, and all crashes (2).

Estimation of the crash potential of road sections usually requires defining a
relationship between crash rate and the exposure to crashes, traditionally, million vehicle
miles traveled (VMT). This exposure metric has worked well for predicting segment-related
crashes or single-vehicle (SV) crashes. However, past studies have revealed that MV and SV
crashes relate to exposure differently. For example, Ivan et al. found that SV crashes tend to
occur at better LOS, whereas LOS did not help predict the number of MV crashes at all (3).
Furthermore, Kulmala also found the risk of MV crashes to increase as the traffic volume of
the intersecting road increases. Therefore, VMT used in predicting SV crash rates may not be
appropriate in predicting MV crashes (4).

Consequently, the focus of this study was to find the appropriate exposure term to
represent the effect of traffic volume on MV crash experience for two-lane rural highways in
Connecticut. We collected several variables describing traffic volume at 17 study sites,
including Annual Average Daily Traffic (AADT) on the highway segment, the sum of the
AADT’s on roads intersecting the segment and the volume observed on the highway segment
in that hour.
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Several models for predicting MV crashes were estimated using Poisson regression to
find the best way to account for the effect of traffic intensity. These models also controlled
for light conditions, time of day and site effects to separate the effects of these variables and
more accurately identify which help explain the MV crash rate. The exposure metrics
investigated in our models were segment volume/capacity ratio, the aggregated hourly
volume on the highway segment, the aggregated hourly volume on intersecting roads, and a
new exposure term defined specifically for MV crashes (the aggregated product of hourly
volume on the segment and the intersecting roads). Logistic and square root forms of these
variables were also considered. The findings indicated that the new exposure term, which
incorporates traffic volume on both the segment and the intersecting roads, performs the best.

METHODOLOGY
Poisson Regression
When events of a given group occur in discrete degrees, the probability of occurrence of a
particular event in a specified number of trials may be described by the binomial distribution
(5). If in a given experiment the number of times a particular event occurs is small compared
to the number of opportunities for an event to occur, and the average number of times the
event occurs has a finite value, the Poisson distribution can adequately approximate the
binomial distribution. The crash frequency along a highway segment, a non-negative discrete
quantity, meets these requirements.
Using Poisson regression, it is possible to accommodate a nonlinear regression relationship
between the dependent and independent variables. The dependent variable, crash frequency
for this study, is defined as the product of the crash rate in crashes per unit exposure and a
measure of traffic exposure. We define the dependent variable this way, that is, scaling the
crash rate by exposure, because it is more accurate to assume that the number of crashes
(rather than the crash rate) has a Poisson distribution (6).

This definition may be written as:

N=VA ()

where

N is the number of MV crashes,

V is a measure of traffic exposure, and

A is the MV crash rate, in crashes per unit exposure.

Then, we relate crash rate to explanatory variables as follows:

A=e" 2)

where

x is a vector representing explanatory variables, and

B is a vector representing a set of parameters to be estimated.

The exposure metric ¥ could be used not only for scaling the number of crashes with
an exponent of 1.0 but also as a predictive variable to allow the exposure to have an

additional contribution towards explaining MV crash variation. For example,

N=V%e* (3) or, by
moving the unknown exponent o (to be estimated) into the exponential expression,
N — ea InV +fx ( 4)
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In this case, o is not restricted to any particular value.

One important feature of Poisson regression is that it assumes the variance of the
dependent variable is equal to its mean value in the entire dataset. For crash data, this
assumption is often violated, with a higher variance being observed. This problem is called
over-dispersion. To deal with it, the regression coefficients are estimated using the quasi-
likelihood estimation technique, as implemented in the S-PLUS statistical package (7). With
quasi-likelihood methodology, an over-dispersed Poisson regression model can be estimated
by supplying the appropriate link and variance functions for the Poisson family.

Study Design

One of the complex issues in highway safety evaluation is how to incorporate a numerical
measure of exposure, the opportunity for a crash to occur, in the analysis. For SV crashes, for
example, exposure is usually defined as the vehicle-miles traveled (VMT). However, for MV
crashes, it is more intuitive to investigate measures that incorporate intersecting road
volumes, for example, the product of the AADT’s on the intersecting roads, as suggested by
Vogt and Bared for intersection crashes (8). Moreover, exposure is a good predictor of crash
rates. Finding volume/capacity to be significant for predicting SV crashes (3) inspired us to
consider exposure for MV crash prediction too, but in a different form.

Four basic exposure metrics were considered to account for traffic intensity in this
study: (a) v/c ratio, (b) hourly volume on the highway segment, (c) hourly volume on the
intersecting roads, and (d) the product of the hourly volumes on the highway segment and the
intersecting roads. The effects of these exposure metrics were investigated by changing the
exposure metric while keeping the other significant variables, which represent the prevailing
roadway conditions, the same in every model.

V/C ratio was computed as the observed hourly volume for each hour in the original
data divided by the capacity of the segment. The capacity was calculated using procedures in
the Highway Capacity Manual (9). V/C ratio is represented in two forms: one is a categorical
variable ranging from 0 to 1 in 0.1 increments, the second a continuous representation, the
natural log of the vi/c.

Connecticut Department of Transportation (ConnDOT) permanent count stations
provided the hourly volume on each highway segment we studied for the six year period
from October 1990 to October 1996. However, the hourly volume on intersecting roads is not
available directly. Figure 1 illustrates how the hourly volume on intersecting roads was
derived. It shows an example study site, which is a half-mile (0.8 km) long highway segment
with three unsignalized intersections. Assuming the hourly variations in traffic volume on the
intersecting road to be similar to those on highway segment, we estimated the total hourly
volume on the intersecting roads to be

s, <
=7 ;Q, (3)

where
g,, is the estimated sum of the hourly volumes on intersecting roads for that hour,

q,, is the observed hourly volume on the segment for that hour,

Qs is the estimated AADT on intersecting road i,
Qs is the observed AADT on the segment, and
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n is the number of intersecting roads (in this case 3).
Note that this quantity is computed for every site and each hour of the study period.

To investigate the efficacy of exposure metrics for predicting MV crashes, we used
equation (3) to find the appropriate exposure measure as the multiplier for MV crashes. Note
that we do not restrict the exponent o to a value of 1.0. ¥, (aggregated hourly volume on the

segment), V,, and V, (aggregated hourly volume on the intersecting roads), and V,,, (our
new exposure metric) were examined as possible forms of ¥, and defined as follows:

Vi = 2.4, (6)
he H,
v, =24, Q)
he H,
Vr, = 2,4,.4;, ®)
he H,

where
¢ is the condition defined by site, year, light condition, time of day and v/c  range,
H, is the set of hours under which condition ¢ is observed.
V., is essentially equivalent to the VMT used as exposure for SV crashes since every

study segment is of the same length. 7, was observed from the ATR data, but V; is an

estimate derived from the intersecting road AADT’s and the hourly volume on the segment
on the basis of the assumptions mentioned earlier. Vs is the summation of the product of
“hourly exposure on the highway segment and all intersecting roads on the segment for a

specific hour. This metric is inspired by a similar exposure measured by Vogt and Bared,
who used the product of average daily traffic (ADT) on two intersecting roads (with different
exponents) as the exposure for predicting crashes at the intersection of the two roads. It was
significant with a exponent of 0.8 on main road ADT and 0.5 on minor road ADT in their
models (8).

The natural log of zero is undefined, causing a problem in computing ¥, and V,,, for

segments having no intersecting roads. We arbitrarily chose to set 7, in equation (7) and

g,, in equation (8) equal to 1.0 for segments with no intersecting roads. Setting these values

to 1.0 enables the log transformation to be taken without distorting the data in a meaningful
way.

Based on the analysis results, the best representation was selected as the offset for
further estimation. The effects of exposure during different times of day are also investigated
through further refinement of this equation.

Data Compilation

Our analysis focused on two-lane, rural highway segments in Connecticut. We chose
segments near Automatic Traffic Recorder (ATR) stations so we could get observed hourly
traffic volume on highway segments directly. Then we identified segments near each ATR
with unique geometric cross-sections, but could be assumed to have the same mainline traffic
volumes. Consequently, no signalized intersections are included in the segments, since the
traffic volume would likely differ significantly on either side of such junctions. This results
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in our identifying seventeen one-half mile (0.8 km) long highway segments to use as our
study sites.

We defined three types of variables: temporal factors, geometric characteristics and
crash experience. The temporal factors include traffic volume, time of day, and light
conditions, and vary by time. We obtained hourly traffic volumes from ConnDOT for the
time period October 1990 to October 1996 for all ATR stations located on two-lane highways
corresponding to our study sites. However, traffic volumes on intersecting roads for each
study site were not available. Instead, we estimated the AADT for each road on the basis of
an Average Daily Traffic (ADT) observed using tube counters on each road over one day,
and seasonal variation factors generated by ConnDOT for this purpose. Time of day was
defined as a categorical variable according to typical variation in traffic volume and trip
purposes. The five categories are: AM peak (6-10am), midday (10am-3pm), PM peak (3-
7pm), evening (7-11pm) and nighttime (11pm-6am). Light conditions for each time period
were classified as dusk, day, dawn and dark according to sunrise and sunset times estimated
by a computer program, the Applied Environmentrics Meteorological Table developed by the
National Bushfire Research Unit. Geometric characteristic data were represented indirectly
using segment ids. Since there are too few sites to make statistically reliable inferences about
geometric characteristic causality, we instead focused on temporal factors, and especially
exposure, or traffic volume. The crash data for these study sites for the years from 1990 to
1996 were provided by ConnDOT from their Accident Experience database.

Once we had all the data we needed, the next step was to compile them into a single
file for analysis. The data were combined so that each case represented a single hour of the
six year period for each site with the hourly volume, light condition, segment id, time of day,
and the number of crashes that occurred during that hour at the location. Obviously, most
cases did not have any crashes and very few of them had more than one crash. Consequently,
we aggregated the crash and volume data in this original dataset on site, study year, time of
day, v/c ratio and light condition as indicated in Equations (6) through (8) so that most cases
at least had some crashes. After aggregation, the original 850,000 observations were reduced
to 4,167 cases, each representing a unique combination of site, study year, light conditions,
time of day and v/c ratio. Table 1 is an example of aggregated data set. All the model
estimations and tests were performed on the aggregated data set.

Variables and their definitions in Table 1 are listed as follows:

segmt_id study segment id (1-17)
cat_year categorical year
1 10/90 — 09/91

2 10/91 - 09/92
3 10/92 —09/93
4 10/93 — 09/94
5 10/94 — 09/95
6 10/95 - 09/96
cat_time categorical time

1 6am - 10am
2 10am - 3pm
3 3pm — 7pm

4 7pm — 11pm
5 11pm — 6am
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lit_cond light condition

0 dark
1 dawn
2 day
3 dusk
cat v_c categorical v/c ratio
multi number of multi-vehicle crashes
main aggregated hourly volume on highway segment
Cross aggregated hourly volume on intersecting roads
newmv aggregated product of hourly volume on highway segment and

intersecting roads
In the model estimation process we weighted each aggregated case by the number of
original cases it represented in the unaggregated database. The effect of weighting by number
of cases is to place greater emphasis on observed highway conditions with greater frequency
than on those with less frequency. Our rationale is that we want the regression procedure to
work harder at fitting the more commonly observed cases than those observed less
frequently.

ANALYSIS RESULTS

Find the Appropriate Offset

The following models are designed to permit identifying the most effective exposure metric;
their results are presented in Table 2.

Model 1. N =V, exp(f3 +8,+L,+T,) ®

Model 2. N=V,*V," exp(B +S; + L; +T}) (10)
Model 3. N=V,, " exp(B +S,+ L, +T,) (11)
Model 4. N =V, " exp(B + S,+ L, +T,) (12)

where

S; is the effect of site i,

L; is the effect of light condition j,

Ty is the effect of time of day %, and

O O, Oy, and 3 are the parameters to be estimated.

The values presented in Table 2 are the exponents of potential exposure metrics and
coefficients for segment id, time of day and light condition. The t-values are statistics for
testing whether or not each coefficient estimate is significantly different from zero.
Coefficients in shaded bold face are significantly different from zero at 95% confidence level
with a t-value larger than 1.96. The dispersion parameter for each model is estimated in S-
PLUS to account for the over-dispersion problem in the crash dataset (7). Null Deviance is
twice the negative of the log likelihood ratio for the saturated model (defined as a model with
a parameter for each record in the dataset, thus permitting perfect predictions). Residual
deviance is twice the negative of the log likelihood ratio for the model being fitted. The
residual deviance is a measure of fit; the larger the deviance, the worse the fit for models
with the same null deviance. Each deviance has degrees of freedom equal to the difference
between the number of parameters in the model and the number in the saturated model (the
number of cases) (10).
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The results for model 1 show that the exponent of ¥}y is significantly different from 0
with a value less than 1. Not surprisingly, the exponent of ¥}, is significant again in model 2
when both V3, and V7 are used to account for traffic intensity. However, the exponent of V7 is
not significantly different from 0 and has a negative sign. Recall that we derived V7 using
equation (4) and (7), so model 2 could actually be rewritten as

n 1

‘ >0
Model 2: N =V, %" Eé—— exp(f+S;+L; +T}) (13)

§

Finding o, to be not significantly different from 0 indicates that the ratio of AADT’s

on the intersecting roads to that on the highway segment does not explain the effect of the
conflict between the vehicles on the segment and those on the intersecting roads. The
negative exponent would also indicate the crash frequency decreases as the proportion of
vehicles entering the junction from the intersecting roads increases. These findings are
contrary to Kulmala, in which the share of minor-road traffic has the most importance for
crossing accidents (an exponent of 0.8) (4). The estimation error was probably caused by
using estimates rather than observed values for the hourly volume on the intersecting roads,
which are potentially suspect. The new metric, V', attempts to represent the potential for
intersecting vehicle conflicts on the roadway, which may help account for the occurrence of
MYV crashes. The estimated power of Vs in model 3 is significantly different from 0 as
expected with an exponent of 0.53.

Since Vi is the product of the volumes on the highway segment and the intersecting
roads, it is intuitive to instead consider the square root of Vs as an offset, a scaling
multiplier on the right hand side of the model. (Note that the estimated value for the exponent
on Vyyis 0.53 in model 3.) When we used square root of Vyy as the offset and Viyyas a
predictor in model 4, the additive exponent on ¥y is not significantly different from 0,
indicating that square root of ¥y, may be the appropriate multiplier for the MV crash rate.
Although models 3 and 4 have a slightly higher residual deviance, the others (models 1 and
2) have key coefficients that are contrary to expected signs, or are insignificant. The square
root of Vs appeared to be the best offset for models predicting MV crash rate, and it is used
as the offset in the following models.

Exposure/Time of Day Interactions

The time of day variable is related to several aspects of driver characteristics, which may also
vary by trip purpose. It also reflects drivers’ alertness due to circadian rhythms, which are
considered to contribute significantly to motor vehicle crashes (77). On the other hand, light
conditions, while obviously related to time of day, are not constant with time of day through
the year, particularly in a location as far north as Connecticut. Instead, this quantity captures
variability in roadway visibility conditions. Poor visibility is more likely to cause drivers’
errors by reducing advance warning time and not having time to respond to unexpected
events. .

We investigated time of day and light condition using categorical analysis to
determine which categories are significant in predicting MV crashes. Studying time of day
and light condition together is complicated because the same light condition could cross
more than one time of day. These two variables cannot strictly be considered to be
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independent of one another, and thus, the estimates of their coefficients could be confounded.
Consequently, we considered two model forms for exploring the relationship between these
two quantities and the MV crash rate.

Model 3. N=V,, " exp(B + S, +L, +T,) (11)

Model 5. N =V, exp(B+S,+LT,,) (14)

where LT} indicates the observed combination of light condition j and time of day .

The first formulation (model 3, repeated for convenience) includes light condition and
time of day effects separately, while the second (model 5) combines them into one variable,
with one category for each combination. Table 3 presents results from estimating these
models in the format of the previous tables. In these models, the base condition is the
category of the variable that is used as a reference in comparison to the other categories and
is “day” and “6am-10am” for light condition and time of day, respectively. For the combined
variable, it is “day, 6am-10am”. The t-statistics test whether or not each coefficient estimated
is significantly different from the base case (day and 6am-10am).

The paired t-statistics given in Table 4 and Table 5 test whether or not the differences
between each pair of categories of light and time or light-time combination are significant.
The test results in Table 4 show that 6am-10am is distinctly different from all other times of
day, but the others are not. On the other hand, differences among light conditions are not as
clear. However, the paired t-test statistics for the light-time combination in model 5 (Table 5)
indicate different results. Only two levels of light-time combination are significantly different
from the others with a positive sign, which together represent daylight conditions between
10am and 7pm. This suggests MV crash rate is higher midday and in the evening peak; both
increase the rate of MV crashes. The lower residual deviance value of model 5 indicates that
using light and time combination gives better results than using the variables separately,
probably because it represents the interaction between light condition and time of day more
accurately.

The effect of exposure may not be consistent during the entire day. In other words,
the contribution made by the same amount of exposure to MV crashes may change by time of
day. To investigate the effect of exposure during different times of day, we added unique V
variables for all time of day categories except for the base case, 6am-10am, such that:

K(:{VMV lfT:k (15)

0 otherwise
where Vx is the exposure variable for time of day k, and 7 is the time of day for the case.

The hypothesis that exposure has different effects for different time of day category
was tested by estimating model 6:

Model 6. N =V V.* exp(B+S,+LT,) (16)
which permitted a different exponent on ¥ for each time of day category.

If the paired t-test procedure suggests the exponents on time-specific exposure
variables are different from each other, it means that exposure indeed has a different effect at
these two times of day. The t-test pairwise comparisons in Table 6 for model 6 indicate that
the exponents on exposure for time periods from 6am to 11pm are not significantly different
from each other. However, all of them (6am-10am, 10am-3pm, 3pm-7pm, 7pm-11pm) are
different from 11pm-6am. We can therefore group the effect of exposure into two
significantly different categories: nighttime and non-nighttime. The exponent on Vyy is
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larger from 11pm-6am than at other times of day, suggesting that the same magnitude of
exposure causes more multi-vehicle crashes at night than at other times.

We also segregated exposure by the new light-time combination variable in model 7
to see how the effect of exposure varies by each category of these combined factors.

Model 7. N =V,#V;* exp(B+ S, +LT,) (17)

The paired t-test statistics in Table 7 indicate that there are two distinct groups of
exposure effect segregated by light-time combination. The exponents on exposure during day
6am-10am, dawn 6am to 10am, day 10am to 3pm, day 3pm to 7pm and dark 7pm to 11pm
are not significantly different from each other, while all of these are significantly different
from the others. These five levels of combination together represent all times of the day
except for the time period from 11pm to 6am. The result is essentially the same as we
obtained when exposure is segregated by time of day.

The positive additive exponent on exposure at night from 11pm to 6am has shown
that exposure influences MV crash more (same exposure will cause more MV crashes) at
night than during the day. It is important to note, however, that many fewer cases of MV
crashes are observed at night. This does not contradict with our findings, though, since the
exposure would be considerably lower at night than during the day.

Final Models

Many factor levels in model 7 are not significantly different from one another, so it is
misleading to report estimates for all of their effects. It is more appropriate to only include
factor levels we know for certain are distinct from one another. Consequently, we removed
insignificant factor levels one variable at a time, re-checking t-statistics at each step. Model 7
includes exposure represented by Vi segmented by light-time combination, the segment ids,
and light-time combination. As shown in Table 7, only the exposure for dark 11pm-6am has
a significantly different effect from the exposure for the other categories of light-time
combination. Therefore, we dropped all other segregated exposure categories, and estimated
model 8.

Model 8. N = V;’”’”ng’:“ exp(B +S; + LT}) (18)

The paired t-tests for light and time combination in model 8 are presented in Table 9.
Dark 11pm-6am, day 10am-3pm and day 3pm-7pm are significantly different from all the
other light and time combination categories. Positive signs on day 10am-3pm and day 3pm-
7pm indicate these two time periods are more dangerous times to be on the road. Model 9
was then estimated with all but these three categories removed.

Model 9. N =V p®s exp( B+S, + LTpe1 6 + LTppios + LTpps ) (19)

Up to now, we have only discussed the effects of temporal variables such as traffic
volume, light condition and times of day. Obviously, it is reasonable to expect that conditions
of the site might also impact the occurrence of MV crashes. Consequently, Table 10 gives the
result of paired t-tests for differences among the site effects in model 9. Only two of the 17
sites, Rte. 32 and Rte. 6, are significantly different from the others in a consistent manner.
The chance of being involved in a MV crash when travelling on these two highways is
several times higher than on the others.
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Model 10 was then estimated with only these two segment effects (dropping the
nonsignificant ones).

Model 10. N =V V% exp( B + S+ Sy + LTpgyy- + LTppio-s +LTpys 1)

DK11.6

(20)

Only the significant categories of segregated exposure, light and time combination, and
segments are left in this model. However, VA}";);”'G and LTpk;;.¢ are no longer significant.

Following is model 10 with the symbols replaced by the estimated exponents and
coefficients.

N= stgV;:fs exp(—9.89 +2.488, + 2.06S, — 1.22LT 16 + 0.8LT 0 5 +0.99LT 5 )
(21)

CONCLUSIONS

This paper estimates models for predicting MV crash potential by taking into consideration
temporal factors associated with MV crash occurrence, especially the representation of traffic
exposure. The following points are concluded on the basis of this study.

Results confirmed ¥, number of vehicles on the highway segment, does not seem to
be appropriate as an exposure for MV crash rate, since its exponent is less than 1.0. This
suggests the number of trials is less than the number of vehicles travelling on the segment,
which is conjecture. However, the square root of the product of the hourly volume on the
highway segment and the intersecting roads appears to be better as an offset for MV crash
prediction. Because the product is in unit of vehicles squared, it makes sense to take square
root to bring the offset into unit of vehicles, resulting in an easily explained means of
defining the number of trials.

When the effect of ¥y is segregated by time of day or light and time combination,
the effect of exposure could be divided into two groups: 6am-11pm and 11pm-6am. During
different time intervals, the same magnitude of exposure has a different contribution to MV
crashes. In other words, traffic contributes more to MV crashes at night than during the day.
This may be because drivers do not expect there to be any other cars on the road when
driving at night; so since they are not prepared for the situation, the chance to get involved in
MV crashes increases significantly, especially with poor visibility when it is dark.

In addition, we found higher risk in general irrespective of traffic volume from 10am
to 7pm. Drivers may be less alert at this time of day due to circadian rhythms. The
considerable diversity of drivers (trip purposes, ages) on the road at that time also could
contribute to a higher risk. Some drivers may be not familiar with the road, which increases
the risk of having crashes.

An interesting finding is that the number of significant sites decreases as the exposure
representation becomes more detailed in explaining causality. There are only two out of
seventeen sites significant in the final model. The impact of site characteristics on MV
crashes appears to be much less significant than was noted in SV crash studies.

One could argue then, that improving geometric characteristics can reduce the SV
crash occurrences considerably, but that the resulting flatter curves, wider lane and wider
shoulder widths encourage drivers to go faster, exacerbating the possibilities for not being
prepared for interactions with other vehicles. The safety benefits achieved in SV crash
reduction by better geometric features may not be achievable for MV crashes. Agencies
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responsible for transportation should be aware of this situation — the improvement of
geometric characteristics may not help reduce MV crashes. They need to make informed
decisions as opposed to guesses about the influence of geometric elements on traffic
accidents.

This phenomenon also calls for a further examination of the relationship between
crash rate and geometric characteristics. Future study aimed at stratifying MV crashes into
categories such as head-on, rear end and angle collisions may help explain the influence of
geometric characteristics better. Models with geometric variables should be estimated and
evaluated for each type of MV crash to learn which characteristics really contribute to MV
crashes. We would not expect variables good for SV crash estimation such as lane width and
shoulder width to also be good for predicting all types of MV crashes, though they might be
good for head-on crashes. Instead, features such as number and type of driveways and
intersections may play a more important role for other MV crashes. This suggests that we
should concentrate on correcting the site conditions that contribute to the kinds of crashes
experienced at a given highway location, rather than just upgrading the highway design
blindly, hoping this will reduce MV crashes. This could also mean focusing on the land use
environment as well as the highway design, or installing devices to control vehicle speeds,
such as traffic calming.

ACKNOWLEDGMENT
This paper was presented at the 79™ Annual Meeting of the Transportation Research Board in
Washington DC, January 2000.

REFERENCES

1. Kalakota, K. R., Seneviratne, P. N., and Islam, M. N. Influence of Geometric Design
Variables on Accident Rates on Two-lane Rural Highways. V71 Rapport 380A: 207-226;
1992.

2. Haskin, A. F., Fearn, K. T., Kao, L., Miller, T., Porretta, K., Adams, and J., Munao, J.
Accident Facts, 1995 Edition. National Safety Council, Statistics Department: 1995.

3. Ivan, J. N, Pasupathy, R. K., and Ossenbruggen, P. J. Differences in Causality Factors
for Single and Multi-vehicle Crashes on Two-lane Roads. Accident Analysis and
Prevention (in press); 1999.

4. Kulmala, R. Safety at Highway Junctions Based on Predictive Accident Models. Third
International Symposium on Intersections without Traffic Signals, Portland, Oregon
U.S.4.; 151-157; 1997.

5. Greenshields, B. D., and Weida, F. M. Statistics with Applications to Highway Traffic
Analysis. The Eno foundation for highway traffic control, Connecticut, 1952.

6. Bernardo, N. R. and Ivan, J. N. Predicting Number of Crashes Versus Crash Rate using
Poisson Regression. Presented at Transportation Research Board Annual Meeting,
Washington DC, paper no. 980995; 1997.

7. S-PLUS User’s Manual, Version 3.3 for Windows. Seattle: Statistical Science Division,
Mathsoft, Inc.: 1995.

8. Vogt, A. and Bared, J. Accident Models for Two-lane Rural Segments and Intersections.
Transportation Research Record 1635: 18-29; 1998.

9. Highway Capacity Manual, 2nd Edition. Transportation Research Board Special Report;
1994.

27



. 10. Clayton, D., and Hills, M. Stastical Models in Epidemiology. Oxford University Press,

1993.
11. Lin, T. D., Jovanis, P. P. and Yang, C. Z. Time of Day Models of Motor Carrier Accident

Risk. Transportation Research Record 1467: 1-8; 1994.

28



9'0050¥L £8'c6Ce 99891 i 4 0 € I [4 0L1
TOI616S ¥9°1v0F 6L80C 0 1 0 £ I [4 691
VeLisil PO 81 8LL 0 S [4 [4 1 4 891
L'8LOTLE ELCES 18LC 0 4 [4 [4 1 [4 L91
6'vLY6YE vi8 1Sty 0 £ [4 [4 1 [4 991
evEoP8Il SL'LTITS ¥199¢C 0 [4 [4 4 I [4 §91
£V9801¢ $8'16¢61 $65001 0 I [4 [4 1 [4 91
L'SL6E01 8Tt 9Lt 0 £ [4 1 I [4 £91
TE9ETTT SY'L1801 L099§ 0 [4 [4 1 I [4 91
96L70ST L1S91 9198 0 1 [4 1 I [4 191
L'TLI8LL SI'e8E Y7861 0 [4 1 i ! [4 091
L'16580% PO ELTY £6L1T 0 1 I 1 i [4 651
C1'1829¢ §9°56T (44! 0 [4 0 1 I [4 861
£078EYT L1°C8LT L9tP1 0 1 0 [ 1 [4 LST
L69¢T (444 L69ET 0 1 0 S 9 I 961
0962 jd! 096T 0 (4 £ 14 9 1 Sol
PLOET 671 VLIE]L 0 1 £ 14 9 1 ¥S1
1261 6 1261 0 [4 [4 ¥ 9 ! €5l
09201 LO1 09701 0 1 [4 14 9 1 [43}
00¢ I 00T 0 [4 0 14 9 ! 151
£5619 9¢ll £5619 0 i 0 ¥ 9 1 0s1
L861 5 L861 0 £ £ £ 9 1 6Vl
S8LEL 65 G8LE] 0 [4 £ £ 9 1 8p1
4! [44} 9T¢61 0 I £ £ 9 1 Lyl
SIL 1 SIL 0 S [4 £ 9 1 vl
AULMOU $8010 urew pynui ITATIRD puos I aw1ed Ie0kje0 prjwdos

opdwexy vje peiedaid8y '] 9iqe],



Table 2. Evaluating Potential Exposure Offsets

Model 1* Model 2* Model 3* Model 4**

Value | t-value Value | t-value t-value Value t-value

Value

(Intercept)

In(Vag)

In(vy)

In(Vav)

segment2 (Rt. 1)

segment3 (Rt. 1)

segment4 (Rt. 81)

segment5 (Rt. 81)

segment6 (Rt. 32)

segment7 (Rt. 124)

segment8 (Rt. 6)

segment9 (Rt. 6)

1.02

segment10 (Rt. 5)

segmentl1 (Rt. 12) 0.37 0.44 0.37 0.44

segment12 (Rt. 30) 0.60 0.73 0.60 0.73

segmentl3 (Rt. 8) 025 0.29 0.25 0.29

segmentl4 (Rt. 8) -3.88 -1.21 I -3.90 -1.22 Q -3.95 -1.19 -3.95 -1.19
segmentl15 (Rt. 66) -143 -1.16 | -1.58 -1.27 -1.17 -0.94 -1.17 -0.94

segment16 (Rt. 66) -0.18 -0.21 -0.18 -0.21

segment17 (Rt. 217) 2077 | -088 | -0.77 | -088

light (dusk) 7 89‘»;
gt (@)
Tight (dar) b e w

time (10am-3pm)

time (3pm-7pm)

time (7pm-11pm)

time (11pm-6am)

Dispersion Parameter 209 12 T
Null Deviance (df) 574877 | 4166 574877 | 4166 574877 4166 | 497181 4166
Residual Deviance (df) 337960 | 4142 337665 | 4141 345133 4142 | 345133 4142

Coefficients in shaded bold face are significant at 95%

* no offset I
** offset is VMVU2
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Table 3. Segregating New Exposure Offset by Time of Day and Light Condition

Model 3 Model 5 Model 6 Model 7

Value t-value Value | t-value Value | t-value Value t-value
(Intercept)
In(V)
In(Vie3) 0.02 0.20
In(Vi7) 0.10 1.09
In(V;11) 0.05 0.43
In(Vy6)
In(Vpke 10)
In(Vpks7)
In(Vpx7.11)
In(Voki)6)
In(Vpws 10) -0.31 -1.33
In(Vihvio3) -0.02 -0.20
In(Vpys7) 0.06 0.65
ln(VDy7'1 1) 0.66 0.76
In(Vpys 7) 0.24 0.67
In(Vou7.11) 0.99 1.03
segment2 (Rt. 1) 0.09 0.11 -0.15 -0.18 -0.13 -0.16
segment3 (Rt. 1) 1.61 1.94 1.30 1.50 1.32 1.57
segment4 (Rt. 81) 0.42 0.47 0.46 0.51 0.36 0.40 0.37 0.43

segment5 (Rt. 81)

segment6 (Rt. 32)

segment?7 (Rt. 124)

segment8 (Rt. 6)

segment9 (Rt. 6) 0.51 0.60 0.72 0.83 0.17 0.17 0.19
segment10 (Rt. 5) 0.84 1.02 1.01 1.20 0.55 0.65 0.58 0.69
segmentl1 (Rt. 12) 0.37 0.44 0.55 0.65 0.08 0.09 0.10 0.12
segment12 (Rt. 30) 0.60 0.73 0.75 0.90 0.31 0.37 0.34 0.41
segment!3 (Rt. 8) 0.25 0.29 0.37 0.43 0.03 0.04 0.06 0.07
segment14 (Rt. 8) -3.95 -1.19 -3.93 -1.17 -3.90 -1.18 -3.92 -1.21
segmentl5 (Rt. 66) -1.17 -0.94 -1.12 -0.89 -1.20 -0.96 -1.19 -0.98
segment16 (Rt. 66) -0.18 -0.21 0.00 0.00 -0.54 -0.61 -0.52 -0.60
segment!7 (Rt. 217) -0.77 -0.88 -0.54 -0.61 -1.23 -1.33 -1.22 -1.35
light (dusk)

light (dawn)

light (dark)

time (10am-3pm)

time (3pm-7pm)

time (7pm-11pm)

time (1 lpm-6am)

dark, 6am-10am -4.37 -1.22

dark, 3pm-7pm -0.67 -1.15

dark, 7pm-11pm -0.19 -0.86

dark, 11pm-6am 0.27 1.27

dawn, 6am-10am -0.76 -1.46 -0.72 -1.36 3.46 1.13
day, 10am-3pm 0.23 0.18 0.74 0.57
day, 3pm-7pm -0.91 -0.66 -0.35 -0.25
day, 7pm-11pm -0.45 -0.50 -1.06 -0.57 -9.53 -0.76
dusk, 3pm-7pm -0.70 -1.33 -2.09 -1.46 -4.24 -0.77
dusk, 7pm-11pm -0.44 -0.59 -1.08 -0.59 -14.54 -1.02
Dispersion Parameter 212 218 214 202

Null Deviance (df) 574877 4166 574877 4166 574877 | 4166 574877 4166
Residual Deviance (df) 345133 4142 343936 4139 340872 4135 339860 4129

* Coefficients in shaded bold face are significant at 95%
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Table 8. Pruning Insignificant Factors

(Intercept)

NLNEWMV

MVDK6.10

Model 7 Model 8 Model 9 Model
10
Value I t-value | Value | t-value | Value | t-value | Value | t-value

MVDK3.7

MVDK7.11

MVDKI11.6

MVDW6.10

MVDY10.3

MVDY3.7

MVDY7.11

MVDU3.7

MVDU7.11

segment2 (Rt. 1)

-0.46

segment3 (Rt. 1)

0.92

segment4 (Rt. 81)

0.28

segment5 (Rt. 81)

segment6 (Rt. 32)

segment?7 (Rt. 124)

segment8 (Rt. 6)

segment9 (Rt. 6) 0.17 0.19 0.04 0.04 -0.28 -0.34
segment10 (Rt. 5) 0.58 0.69 0.46 0.54 0.21 0.26
segmentll (Rt. 12) 0.10 0.12 -0.02 -0.02 -0.29 -0.36
segment12 (Rt. 30) 0.34 041 0.23 0.27 -0.01 -0.01
segmentl13 (Rt. 8) 0.06 0.07 -0.04 -0.04 -0.23 -0.28
segmentl4 (Rt. 8) -3.92 -1.21 -3.89 -1.18 -3.91 -1.26
segment15 (Rt. 66) -1.19 -0.98 -1.23 -0.98 -1.29 -1.09
segmentl6 (Rt. 66) -0.52 -0.60 -0.64 -0.73 -0.92 -1.12
segmentl7 (Rt. 217) -1.22 -1.35 -1.34

dark, 6am-10am

dark, 3pm-7pm

dark, 7pm-11pm

dark, 11pm-6am

dawn, 6am-10am

7

gy

day, 10am-3pm

day, 3pm-7pm -0.35 -0.25

day, 7pm-11pm -9.53 -0.76 -0.28 -0.32

dusk, 3pm-7pm -4.24 -0.77 -0.63 -1.22

dusk, 7pm-11pm -14.54 -1.02 -0.3 -0.41

Dispersion Parameter 202 214 190 210

Null Deviance (df) 574877 | 4166 | 574877 | 4166 | 574877 | 4166 | 574877 | 4166
Residual Deviance (df) | 339860 | 4129 | 341409 | 4138 | 343181 4145 | 413608 | 4159

* Coefficients in shaded bold face are significant at 95%
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PART III: The Impacts of Using a Safety Compliance Standard in
Highway Design

INTRODUCTION
To objectively test and evaluate safety, I introduce a compliance standard into the highway design
process. The principle of individual lifetime risk is used to establish the standard.” A highway design
location or site s, is defined to be operating at an acceptable risk when an individual’s chance of
being involved in a fatal crash over a lifetime of motor vehicle travel at s is equal to or less than 1 in
1000, or 6" = 107. Site s is defined “hazardous™ if it fails to meet this criterion.
The highway design process as presented in this paper uses a design algorithm derived from
basic concepts of:
e highway design, or level of service (LOS) considerations,
e risk analysis, or the principle of individual lifetime risk, and
e statistical modeling.
The algorithm will be described and a case study will demonstrate how it is applied and the
design algorithm will be critiqued.

OVERVIEW OF THE DESIGN ALGORITHM
The design algorithm is formulated as a constrained optimization model using well-established
principles of traffic flow and accepted highway design guidelines:

Objective: maximize u €]
Constraint set: subject to <O (fatal) 2
m; S0, (irgury) 3)
T, <O, (property damage) 4

The objective is to maximize average operating speed % because speed is considered to be
a most important LOS measure in design. “Speed and travel time are fundamental measurements of
traffic performance of the existing highway system, and speed is the key variable in the redesign or
design of new facilities.” “Except for local streets where speed controls are included intentionally,
every effort should be made to use as high a design speed as practical to attain a desired degree of
safety, mobility and efficiency while under the constraints of environmental quality, €CONnOMICs,
esthetics and social and political impacts.”

A design is considered safe when the safety compliance constraint set is satisfied. That is,
the predicted crash probabilities resulting in fatality 7, injury 7; and property damage 7p are less
than or equal to the corresponding compliance probabilities for fatality @, injury @ and property
damage @p.

! paul J. Ossenbruggen, 6A Method of Identifying Hazardous Location Using the Principle of Individual Lifetime
Riskd, 9 Risk: Health, Safety & Environment 83, (winter 1998).

2 Adolf D. May, Traffic Flow Fundamentals 116 (1990).

3 Am. Ass’n State Highway and Transportation Officials (AASHTO), A Policy on Geometric Design of Highway
and Streets 62 (1994).
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In this paper, logistic regression is used to calibrate a crash prediction model for injury 7.
The data set comprised of police accident reports, traffic volume and speed records for a six-year
period at eight different, undivided two-lane highways in urban and rural Connecticut. The
constrained optimization model for injury is:
maximize u (1)
subject to T, <0,. 3)
The model development, discussion and case study are focused on this model. Each of the # , @,
and 77, models are presented in turn.

THE AVERAGE OPERATING SPEED MODEL
The objective to maximize average operating speed # is the concept used by highway designers.
Average operating speed # is a function of the free-flow speed u, measured in miles per hour

(mph), traffic flow v measured in vehicles per hour §ph) and highway capacity ¢ (vph). It is
calculated as:

L'Z=0.5uf(li,f1—%) (%)

The equation is derived from Greenshield’s linear speed-density model and flow-density-
speed relationship.
Figure 1 shows that the average operating speed # model with %, = 60 mph and ¢ =

2,800 vph does a nice job of representing the Highway Capacity Manual® LOS letter rating system
for a two-lane, undivided highway under ideal traffic conditions. An ideal condition is passenger cars
traveling at an average operating speed of no less than 60 mph on level terrain with a 100% passing
zone and with a 50/50 directional traffic flow split. A 50/50 split means that there are an equal
number of passenger cars in each lane.

An ideal two-lane, undivided highway has a bidirectional flow capacity of ¢ = 2,800 vph. If
one or more conditions are not met, then the capacity is reduced. Adjustments are made for grades
> 3 percent, directional distributions other than a 50/50, heavy vehicle usage, lane widths < 12 ft,
and shoulder widths < 6 ft.

Design Optimization: For design optimization, free-flow speed u is used as the control
variable. A solution satisfying the conditions of the optimization model, maximizing u subject to:

n, <@, ,is designated as an optimum solution uf . For design, u, is used as a design specification
and u; refers to a design specification that satisfies the objective function and the safety compliance

constraint.

4 gee Nicholas A. Garber & Lester S. Hoel, Traffic And Highway Engineering, 184-85 (1997). Greenshield’s

J
flow-speed-density relationship isv = w.k.
5 Transportation Research Board, Highway Capacity Manual (HCM), Special Report 209. National
research Council, Washington, DC. (1994).

k
Modelis 7 =u ! {1 - ;— ]where k = traffic density in vehicles per mile (vpm) and k; = jam density (vpm). The

41



The free-flow speed u, is a function of driver sight distance as determined by horizontal

and vertical roadway curvature, right-of-way dimension, lane and shoulder widths, or in other
words, the geometric alignment of the highway.5 The design specification u, affects average

operating speed # and highway capacity
c. For example, the average speeds for two highways designed for u, = 60 and 45 mph given the

same traffic flow v = 1000 vph are 7 = 54 and 49 mph, respectively.
Highway Capacity: Using Greenshield’s linear speed-density relationship, highway
capacity is calculated as:

A (6)

where vehicles k; = jam traffic density measured in vehicles per mile (vpm). Given ¢ = 2,800 and
u, = 60 mph, the jam density for ideal conditions is estimated to be k; = 187 vpm. This value of

jam density k; is assumed to be the same for all design specifications u, for both ideal and non-

ideal traffic conditions.
For example, given k; = 187 vpm for the two design specifications above, highway
capacities are calculated to be ¢ = 2,100 and 2,800 vph for u,= 45 and 60 mph, respectively.”

Furthermore with k; assumed to be a constant, the highway capacity formula reduces to a linear
function, c=48.5-u, .
Speed Maximization: Given a traffic flow v, the solid line speeds in Figure 1 are calculated

as E=0.5-uf(1+4/1—%) and the broken line speeds are calculated as

u, =0.5 -(1 - 1—% ) Since # >, and the design objective is to maximize i , the solutions

given by #, are not of interest for design optimization. Furthermore, since c¢=48.5-u,, the

objective function is written as the function of the control variable u, exclusively:

maximize u =O.5~uf(1+ 1—%8.5_%) )

This function draws attention to the fact that the , specification directly affects the highway speed

and capacity.

*In this paper, specific values of the geometric factors will not be given. The important point is that the
value of uscan be achieved by specifying one or more geometric alignment factors. For example, if us <

60 mph, then a particular value of 1 can be obtained by specifying a lane width <12 ft or by specifying
a combination of lane width < 12 ft and shoulder width < 6 ft. Of course, other combinations can also

lead to the desired value of uz.

"The Highway Capacity Manual uses adjustment factors to adjust the capacity ¢ for non-ideal

.
conditions. Consider a design specification #, =45 mph. An adjustment factor for narrow lanes and

restricted shoulder width is f, = 0.75. The capacity is ¢ = 2800 f,, = 2,100 vph.
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Safety Considerations: Driver convenience and speed are often sacrificed by reducing the
average operating speed i . Theoretically, this can be achieved through (1) the geometric alignment
of the highway and through (2) speed limit control.

Geometric Alignment and Traffic Calming: Highway designers and planners are under
pressure to construct a high-speed highway system because there is an insatiable worldwide desire
for mobility.8 The construction of “big roads”, that is, wide, straight roads with geometric alignment
to maximize driver sight distance are favored.

The design algorithm puts less emphasis on mobility (reducing congestion and delay °) for
purposes of improved highway safety and more emphasis on controlling speed through geometric
design. It permits the use of narrow highway lanes and reduced sight distance to control speed by
forcing drivers to slow down.

According to traffic calming advocates, “Bigger roads increase people’s mobility” is a
myth.10 They claim that straight, wide roads encourage greater speed and encourage motorists to
take greater risks. They show that measures to force drivers to slow down are effective in
controlling speed and reducing injury and fatal crashes in cities and residential communities. They
claim that the crash toll can be reduced by more than 40 percent when traffic-calming methods are
implemented.

The design algorithm and the traffic calming methods have a similar goal, but the manner in
which the goal is achieved differ. Traffic calming measures are generally employed in residential
communities where quality of life from high-speed traffic is threatened. Roads are calmed by
employing geometric alignment and other techniques, such as speed tables, chicanes, neck-downs
and interrupted sight lines, to impede a motorist’s ability to speed. These impediments dramatically
reduce the average operating speed, so much so, as to cause traffic diversion. Of course, this is
achieved through purposeful design. Through traffic motorists are encouraged to find alternate
roadways; therefore, both speed # and traffic volume v are reduced.

The geometric alignment methods contemplated for the design algorithm reduce speed less
dramatically without causing traffic diversion. Furthermore, introducing traffic diversion into the
design algorithm would greatly complicate the mathematics.

Speed Limit Control: Speed limit control is often employed to reduce speed u at sites
where crashes occur due to excessive speed or where excessive speed is considered a hazard. For
example, it is not uncommon to observe a highway with a posted speed limit s,= 30 mph with a

design specification u,= 60 mph. Clearly, the speed restriction would be unnecessary if the

® Andreas Schafer and David Victor, “The Past and Future of Global Mobility”, Scientific American,
(October 1997) pages 58 - 61.

9 Congestion and delay often accompanied with a long waiting line are a possibility when the traffic
flow v approaches the highway capacity c. In Figure where 1y = 60 mph and when v approaches ¢ =
2,800 vph, the average operating speed is about one-half usor # = 30mph . Under the same condition

for us = 45 mph, v approaches ¢ = 2,100 vph at # = 23mph . Either equation 5 or 7 can be used to

calculate # for ur =45 mph.
* Citizens Advocating Responsible Transportation (CART), Traffic Calming, The Solution to Urban

Traffic and a New Vision for Neighborhood Livability, Sensible Transportation Options for People
(STOP), 15405 S.W. 116th Avenue #202B, Tigard OR 997224-2600. (1989) Page 12.
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highway was safe at operating speeds that approach the design specification speed u, . The signage

is an attempt to control the average operating speed # for a highway design specification deemed
to be too fast and hazardous for site s.

In the context of design optimization, this design specification given in the example does not
satisfy the safety compliance constraint 7, <@, for u,= 60 mph. It is an infeasible solution;

therefore, u} #u, =60mph. The speed limit control method, while used in practice, is not

applicable to the philosophy or methods espoused. The aim of this paper is to design a safe highway
the first time, and to avoid the use of corrective traffic control schemes and costly roadway
reconstruction at hazardous sites.

THE ALLOWABLE SAFETY LIMIT MODEL
The allowable limit for fatality crashes @ is determined from the individual lifetime risk model'1,
0 =1-exp(-70-n -©) (8)
and the assignment of an acceptable lifetime risk 8= 10°. The annual exposure 7 = 664 trips per
year per person. Given these assignments, the allowable limit for fatal crashes is calculated to be @
=2.2 x 108, Given that one in about 55 serious injury crashes result in death, the allowable limit for
injury crashes is @; = 1.2 x 10, The assignment of @p is based on property damage costs and is
independent of individual lifetime risk considerations; therefore, it is outside the scope of this paper.
Figure 2 shows the effect of annual trip exposure 77 on @ for a constant acceptable risk
equal to 8= 107, If incentives to travelers to reduce the annual individual trip exposure 7 can be
found, then @; can be relaxed. In other words, the allowable limit of @; = 1.2 x 10 can be
increased. In the U.S. exposure 7 is increasing among a growing driver population. If an acceptable
lifetime risk equal to @ = 107 is to remain constant over time, then @; should be decreased to
account for the increased individual exposure to highway risk.

AN INJURY CRASH PREDICTION MODEL

Traffic volume counts, police accident reports and other descriptive materials for eight sites in
Connecticut for a period from 1990 to 1995 formed a data set for model calibration and validation.
Each site listed in Tables 1 and 2 are locations of continuous traffic counting stations that have been
grouped by posted speed limit s,. The characteristics given under the headings of Land Use,

Traffic Control and Geometric Design Factors in Table 2 show a variety of land use and roadside
activity adjacent to the sites and highway designs located in rural and urban areas in Connecticut.

Exploratory Data Analysis: Exploratory data analysis is an intuitive and effective means to
identify patterns and trends in the data and it often helps to identify statistically significant factors
prior to performing mode! calibration and validation testing.

" See supra note 1. Page 86. The model was derived from basic principles of probability using the
geometric and Poisson distributions. A premature death is considered to be a person who dies before
the age of 70 years. According to the National Personal Transportation Survey, in 1990 a person made
an average of 664 trips per year.
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The total, injury and fatal crashes and the estimates of the probability of crashes resulting in
property damage 7, and in injury 7, are given in Table 1. The probability 7, is estimated as the
ratio of the number of injury crashes to annual trip count.!? Similarly, 7, is estimated as the ratio of
the number of property damage crashes to annual trip count. For example, the estimates for Hebron
are 7, = 10/1.3x10°=7.7x 10°and &, = (23 - 10)/1.3x10 = 10.x10°%, respectively.

If 7, estimates are used to rank sites, Hebron is the most hazardous location because it has
the largest 77, value in Table 1. Darien and East Windsor with the two highest annual traffic volumes

and Darien and Waterford with the maximum number of injury and total crash counts are relatively
safe when comparing their 77, values to other sites. Annual trip count, a measure of exposure to

highway risk at a site s, plays a critical role in the 7, calculation and also in the site ranking.

Speed Limit Control: When comparing speed limit groups, the total, injury and fatal
crashes and the values of 7, and 7, in Table 1 are the largest at sites where the most restrictive

speed limit controls are used. Highway risk is the greatest at sites with posted speed limits of
35 and 40 mph than at sites with the least restrictive speed limit of 45 mph.

Land Use and Roadside Activity: The characteristics given in Table 2 show a diverse set
of land use, traffic control and geometric design characteristics for the sites in each of the speed limit
groups. However, no single characteristic seems to stand out in explaining why one site has a
greater crash probability than another one. Sorting the data set in different ways and using
contingency tables and scatter plots proved revealing.

The contingency table, Table 3, suggests that time-of-day and LOS rating may be important
explanatory variables. Comparing 77, and 7, values in the two time-of-day categories by the same

LOS rating show a pattern that suggests that there is a greater chance of being involved in a crash
during dusk than at any other time period of the day.

Comparing 7, and 7, values by LOS rating within the dawn, day and night category and
to a lesser degree within the dusk category suggests that the probability of being in a crash is
dependent on LOS rating. Travelers experiencing driving conditions rated as LOS A and B, are
more likely to be involved in a crash than at poorer LOS ratings. This suggests that the average
operating speed u is related to the crash probability.

Logit scatter plots, which are not shown in this paper, suggest location s, posted speed limit
Sp , time-of-day ¢ and shoulder width may be significant explanatory variables. A logit is calculated

as the natural logarithm of the ratio of the number of injury crashes to annual trip count or log [ﬁ,] .

The scatter plot for shoulder width suggests that shoulder widths of three feet or more tend to
reduce the probability of a crash resulting in injury.
The exploratory data analyses suggest that:
e LOS rating or vehicular speed is an important factor in explaining the number of crashes,
e aposted speed limit has little effect in minimizing highway risk, and
e time-of-day and shoulder width may be important factors in predicting crash probability.
Modeling Calibration Results: LOS rating, expressed as capacity utilization v/c, posted
speed limit s, , time period ¢ and the characteristics listed under the headings of Table 2 were

" Annual trip count is treated as a measure of highway risk exposure.
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introduced as candidate variables in logistic regression model calibration and testing. The method of
maximum likelihood was used to calibrate models and to estimate the variances and covariances of
their model parameters. Models were tested using the likelihood-ratio (Wilk’s statistic) and Wald
tests.13

The following crash prediction model*# satisfied validation testing

exp|-8.34—0.12-5,—034-1 -1.36-%J

Ty exp|-8.34-0.12-5,-034-1-136- /]

®
The time period variable # is a discrete variable where ¢ = -1 for dusk and ¢ =1 for dawn, day or
night (D/D/N). The variables s, and v/c are continuous variables with ranges of 35<s, <45mph
and 0 <v/c <1, respectively. All model parameters are significant at o = 5%.

Shoulder width, which showed promise in the exploratory data analyses, when treated as a
continuous variable was insignificant at 0, = 5%. When introduced as a discrete variable, it proved
to be a significant variable; however, the mode] was considered unsuitable for the general concepts
presented in this paper.

Model Properties: For purposes of crash prediction and highway design, a model should,

at minimum, be a function of variables reflecting the travel demand, land use and roadside activity,
and geometric design features at the site s. The crash prediction model 7, satisfies these minimum

requirements with the following variables serving various purposes:
e v, atravel demand input parameter,
e s,,asurrogate land use and roadside activity variable,
e ¢, aprinciple design variable,
e v/c, a measure of design performance LOS, and
e ¢, an indicator signifying that crash probability is a finction of time-of-day.

Travel Demand: The affect of travel flow v on 7, is most easily discerned with the plots
given in Figures 3 and 4. The major difference in the two figures is the designation of s,.
Comparing the two plots denoted dusk indicates that the probability of a crash is larger at a site
designated s, = 35 mph than the one designated s, =45 mph. The same relationship holds for
plots denoted dawn, day and night. _

" The safety compliance constraint, 77, <@, , is satisfied for all traffic volumes v except at
dusk for v < 500 vph for site designation s, =45 mph shown in Figure 3. The safety compliance
constraint is violated at dusk for all v and for dawn, day or night when v < 1,500 vph for site
designation s, =35 mph. Clearly, the highway risk is greatest at a site designated s, = 35 mph

than at a site designated s, =45 mph shown in Figure 4.

13 Alan Agresti, Categorical Data Analysis, Wiley Interscience. (1990) pages 112-117.

14 Kopl Halperin, A Comparative Analysis of Six Methods for Calculating Travel Fatality Risk, 4 Risk:
Health, Safety & Environment 14, (Winter 1993). Traffic engineers report fatality rate in the number of
fatalities per vehicle miles traveled (VMT). VMT is considered to be an inappropriate measurement for
public health hazards.
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The Surrogate Land Use and Roadside Activity Variable: The variable s, is an
indicator of how hazardous it is to drive at a site s. As a result, the variable s, is considered to be a
site characteristic variable.

Interpreting s, to be a traffic control measure leads to the claim that the probability of an
injury crash will decrease by increasing the posted speed limit s, at a site 5. Of course, this is
nonsense and a naive claim. Speed limits are imposed to reduce the probability of a crash not to
increase it. The only meaningful interpretation is that more restrictive speed limits are imposed at
more hazardous sites. A site designated s, = 35 mph has a greater highway risk than a site
designated s, =45 mph and likewise, sites designated s, = 35 and 40 mph have greater risk than
a site designated s, =45 mph.

The s, variable is not considered as traffic control measure in the crash prediction model.

In fact, the model suggests that a posted speed limit is an ineffective means of improving highway
safety. This finding is consistent with the findings of a study of raising and lowering posted speed
limits on 83 comparison sites over increments of 5, 10, 15 and 20 mph. The signs had no practical
significance in controlling speed.!>
LOS : As the v increases, both average operating speed u# and crash probability 7, decrease.
This result suggests that a loss in LOS is coupled with an improvement in highway safety. Stated
another way, it suggests that # and 7, are positively correlated. More simply stated, faster speed
is associated with greater highway risk.

Time-of-day Considerations: An individual is not exposed to the same travel volumes each
hour of the day, 2 = 1, 2, 3, ..., 24. Traffic flow varies by hour of the day. A key point in the design
algorithm considers this range of hourly traffic volume v, exposure with the use of marginal and

condition probabilities.
The constrained optimization model for injury written as a function free-flow speed u,
becomes:
Maximize U= th 378 (10)
h
subject to Ty = Py Ty <0, (11)
h

where the conditional probability for average operating speed given hour /# is:

ah=o.5-uf(1+ /1—%&5_% J (12)

the conditional crash probability for injury given hour 4 is:
exp|-8.34-0.12-5, ~0.34-£~0.028- /|

= , (13)
" l+exp|-834-0.125,-0.34-1-0.028- /|

T

** Federal Highway Administration, “Effects of Raising and Lowering Speed Limits on Selected
Roadway Sections”, Publication Number FHWA-RD-92-84. (January,1997)
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and p, = probability that an individual is traveling in hour /. The values of p, are estimated to be
the ratio of the hourly to daily traffic counts, p, = %:v . The summation can be interpreted as
h
h

the average daily traffic (4DT).
Consequently, the design process using marginal probabilities considers all hours of the day,
incorporating among other things the effects of (1) high speed on risk 7, and (2) high traffic volume

on LOS as measured by % .
Odds: Since the crash probabilities 7, are small numbers and can be difficult to

comprehend, the odds are summarized in Table 4.

In the case of time-of-day, odds = 7,(4)/7,(B)=m,(t=-1)/m (t=1) where t = 1
(dusk) and ¢ = 1 (dawn, day or night) where v/c and s, are assigned the same values for ¢ = 1 and
¢ =-1. The odds of a crash resulting in injury is twice as great during dusk than during dawn, day or
night.

In the case of land use and roadside activity, the odds of a crash resulting in injury is 3.3
times greater at site s, = 35 mph than at site s, =45 mph. Clearly, a site designated as s, = 35

mph will be expected to pose the greatest highway design challenges.

Since average operating speed is a most important LOS measure and it is a function of v/c,
7 was used in the odds table with capacity ¢ = 2,800 vph. The odds of a crash resulting n an
injury is 2.7 times greater at # = 60 mph (LOS A) than at & =45 mph (LOS D).

CASE STUDIES
The design specification u, affects ¢, 7;, u, v/c and the LOS rating. Assigning it is critical in

design optimization. In this section, graphs of 7, are plotted as functions of u, where the travel
demand v is held constant.
Figure 5 contains 7, plots for sites designated s, = 45 mph for traffic volumes v = 400

and 2,000 vph at dusk and at dawn, day and dusk. For simplicity, the subscript h is not shown.
Figure 6 contains 7z, plots for sites designated s, =35 mph for the same traffic volumes and times-

of-day as in Figure 5. Inspection of Figure 5 shows that the safety compliance constraint, 7, <@, ,
is satisfied for a wide range of u, values at almost any time of the day and at both traffic volumes.
In contrast, Figure 6 shows that the safety compliance constraint is satisfied for a narrow range of

conditions.
Table 5 contains case study results for sites designated s, = 35, 40 and 45 mph. In each

case, the same annual trip count of 5.7x10° or ADT = 16,000 trips per day is assumed. The hourly
traffic volume v, = 400 vph is assumed for all hours of the day except for a two-hour dawn period

and for a two-hour dusk peak period. During these two-hour periods, v, = 2,000 vph. The 7, and
7 values are calculated as marginal probabilities given by equations 12 and 13. The candidates for
u} are given under column heading u .
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Sites s, = 40 and 45 mph. Inspection of case study results show that optimal solutions are
obtained for sites designated s, =40 and 45 mph. That is, maximum  # =52 mph subject to:
7, <@, is achieved.

Sites sp = 35 mph: The four candidate solutions for s, = 35 mph proved non-optimal.

The reasons for non-optimality are:
e safety non-compliance because 7, >0,

e traffic congestion and delay because v, > ¢, and
e acombination of these reasons.

Reducing the free-flow speed u, is marginally effective in reducing 7, . Inspection of any
one of the 7, plots given in Figure 6 shows that their slopes are slight. As a result, design
specifications u, <60 mph reduce 7, values to a relatively small degree.

Consider design specification u, =40 mph where 7, > @, and v, > c are cited as reasons
for non-optimality.

The safety constraint is in non-compliance when 7, is calculated as a marginal probability,
even though the site meets the safety compliance constraint during dawn and dusk. Figure 6 shows
x,;,, =@, for v, = 2,000 vph at dusk and 7, <@, for v, = 2,000 vph at dawn. A significant
portion of the ADT, however, occurs during the day and night when v, = 400 vphand ,,, >@,.

In addition, the capacity at u, =40 mphis ¢ = 1,870 vph; therefore, v,> ¢ during the
dawn and dusk. This design specification is also unacceptable for a reason of traffic congestion and
delay.

Relaxing the Allowable Limit: An option that remains to be explored is to increase the
allowable limit@, . This can be accomplished by reducing an individual’s exposure 7 to highway
risk. Suppose at site s, = 35 mph, an alternative is found to reduce individual exposure from 17 =
664 to 400 trips per person per year. The allowable limit is increased from @, = 1.2x10° to 2x10°
as shown in Figure 2. Now, the design specification #, = 60 mph satisfies the safety compliance
' constraint; thus 1, = 60 mph!

Given the heavy reliance on the private motor-vehicle in our daily lives, many motor-vehicle
trips are made out of necessity and not out of choice, an outcome of urban sprawl. The most
mundame tasks, such as buying a newspaper or a loaf of bread, require a trip to the store by
automobile. Convenience stores are outlawed by local zoning ordinances in many suburban
communities. Through coordinated transportation and land use planning efforts, both individual
exposure to the private motor-vehicle 7) and traffic volume v can be reduced. In addition to
promoting highway safety, attractive alternatives, like public transportation, pedestrian and bicycle
friendly communities, have far reaching social, public health and environmental benefits.

DISCUSSION

The purpose of this paper is to draw attention to a new outlook that the concept of individual
lifetime risk can bring to the highway design process. The design algorithm that was developed is
structured as a constrained optimization problem, with an objective to maximize average operating

49



speed subject to a safety compliance constraint. Case studies were analyzed using the design

algorithm and its models, average operating speed, allowable safety limit and crash prediction

models. Case study results, exploratory data analysis, and individual models used individually and

collectively give insightful meaning to the highway design process. For example, the crash prediction

model gives insights as to why a design may not satisfy the safety compliance constraint at a site;

and when this insight is introduced into the larger framework of constrained optimization, this

additional information gives further insights as to how an optimal design can be achieved. The

various analyses and case study results suggest that:

e highway risk or 77, is highly dependent on the land use and roadside activity adjacent to the site
S,

e reducing highway risk by geometric alignment is marginally effective,

e reducing highway risk by speed limit control is not considered to be a viable solution in the
context of design optimization,

e reducing highway risk by reducing individual exposure can be effective if attractive alternatives
to divert motor-vehicle users can be found,

e the concept of individual lifetime risk, odds and crash probability are useful for ranking risks and
for effective risk communication.

The crash prediction model, average operating speed and allowable safety limit models,
which are fundamental to the design process using a safety compliance standard, have shortcomings.
But, it must be realized that no model is “perfect” and no solution is without criticism. No model is
capable of incorporating all the multifaceted demands of the driver, the neighborhood, and the
various public and private organizations concerned with transportation service, environment, public
health, and financing. The models, even when used for design optimization, are unable to address
most of these demands.

The crash prediction model is the most severely flawed. Obviously, it can not be used to
address issues associated with fatal crashes. This limitation, the use of a surrogate variable for land
use and roadside activity, and the questionable result suggesting that “reducing highway risk by
geometric alignment is marginally effective”, are all directly linked to shortcomings in the data set.
There are practical difficulties in constructing the data set for model calibration.

First, the choice of the eight Connecticut sites was motivated by the need to obtain high-
quality annual traffic counts and speed data. Without it for instance, the exploratory analysis of LOS
rating and time-of-day and their significance as explanatory variables would not have been
discovered. It was unknown when the data set was compiled that the selected sites would only have
one fatal crash in six year period at the eight sites with an annual traffic count of 50 million. As a
result, model calibration had to be limited to crashes resulting in injury only.

Secondly, the posted speed limit, a surrogate variable, does not describe the characteristics
of the site. Expanding the data set to more sites with additional land use characteristics would be
beneficial. Recall that population and road class were the only characteristics available in the data
set. Of course, adding sites and land use characteristics must be done with care assuring that the
count data can be used to obtain reliable annual traffic counts, an essential measure of highway risk
exposure.

Thirdly, the suggestion that “reducing highway risk by geometric alignment is marginally
effective” was obtained by extrapolation. Specifically, the crash predictions and average operating
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speeds calculated for design specifications #, = 30 and 40 mph for site designation s, = 35 mph
P f P

given in Table 5 are suspect. The sites used in this study have highway design speeds of 50 mph and
greater. The highways have good sight distances and adequate lane and shoulder widths as given in
Table 2. The model calibration did not include data for highway designs of 30 and 40 mph;
therefore, the predictions for these highway design speeds are not supported by observation. A data
set consisting of sites with highway design speeds of 40 mph and less and sites where traffic calming
measures have been used is desirable. Models calibrated with this data set will clarify whether or
not geometric alignment is an effective method in reducing highway risk and speed. The predictions
given by the crash prediction model for design specifications u, = 30 and 40 mph seem

inconsistent with the results given by CART.16

Regardless of imperfections, the overall benefits of the crash prediction model outweigh its
shortcomings. Especially, when it is introduced into constrained optimization model, its benefits and
the potential usefulness of the design algorithm for highway design are demonstrated. The crash
prediction model, in its current stage of development, is considered to be a concept model.

“ See supranote 9.
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Site s

Darien
Killingly
Hebron

Waterford
Kent
Colebrook

East Windsor
Clinton

Site s

Darien
Killingly
Hebron

Waterford
Kent
Colebrook

East Windsor
Clinton

Table 1
Annual Trip Volume and Crash Counts

Injury

25
17
10
52
21

Fatal

OO O = OO0 000

Number of Number of

Stop
Signs

0
0
0

<

Posted Speed Limit Annual Trip Crash Counts
Sp (mph) Volume (x10%)  Total
35 17.7 56
35 8.1 34
35 1.3 23
Totals 27.1 113
40 4.7 72
40 34 19
40 4.6 7
Totals 127 98
45 11.0 6
45 7.1 6
Totals 18.1 12

Table 2

Site Characteristics
Land Use Traffic Control
Sp Population Road  Heavy
(mph) (x1000) Class  Vehicles Signals
(%)

35 50-200 UPA 3 0
35 <5 RMA 2 0
35 <5 RPA 3 1
40 50-200 UrPA 1 1
40 <5 RMA 1 0
40 <5 RMA 1 0
45 > 200 UPA 2 0
45 <5 RPA 1 0

UPA = Urban Principal Arterial,
RMA = Rural Minor Arterial,
RPA = Rural Principal Arterial
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Tp T,
(x10°%) (x10°%
1.8 14
2.1 2.1
10. 7.7
2.3 1.9
11. 4.5
2.9 5.6
2.9 1.5
5.0 2.7
0.5 0.0
0.3 0.6
04 0.2

Geometric Design

Lane Shoulder

Width  Width

(feet) (feet)

11 2

12 4

12 8

12 3

12 1

11 2

12 5

12 1

Sight
Distance
(feet)

1,500
1,350
1,350

1,500
1,350
1,200

1,500
1,500



‘ Table 3"

Contingency Table of Annual Traffic Volume and Crash Counts

18

Time-of-day LOS Annual Traffic Counts TTp V%
Count (x10°) Total Injury x10) (x10°%)
Dawn/Day/Night A 6.1 85 41 7.2 6.7
B 17.9 62 17 2.5 1.0
C 7.7 17 4 1.7 0.5
D 46 12 6 1.3 1.3
E 6.4 16 4 1.9 0.6
Dusk A 3.0 12 8 1.3 2.7
B 2.0 8 3 2.5 1.5
C 0.6 3 3 0.0 5.0
D 0.5 1 i 0 2.0
E 1.2 7 3 3.3 2.5
Table 4
Odds Table
{4
B 4 Odds ==+ (4)
n; (B )
Time-of-day t=-1 t=1 2.0
Land Use and Roadside Activity Sp =45 mph Sp =40 mph 1.8
. $p = 35mph 33
Operating Speed # =45 mph % = 50 mph 1.3
U =55 mph 1.8
7 = 60 mph 2.7
Table 5
Case Study Results (Annual trip count = 5.7x10%
Site 5p u; T, u u} =u,  Comments
(mph)
45 60 0.5 x10° 52 Yes U, = 60 mph
40 60 © 1.0x10° 52 Yes Uy = 60 mph
35 60 1.8x10° 52 No T,>0;
50 1.6x10° 41 No n,>0,
40 14x10° — No w,>W0,;,v,>c¢C
30 1.1x10° _ No v,>cC

17 David W. Hosmer and Stanley Lemeshow, Applied Logistic Regression, Wiley Interscience. (1989) pages 25-
37.

*® The v/c ratios for each site were calculated using the highway geometric design characteristics given
in Table 2. The data for each site were then sorted by LOS rating and then combined to form this table.
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