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Foreword

The papers contained in this volume were among those presented at the 79th Annual Meeting of the
Transportation Research Board in January 2000. Nearly 1 ,600 papers were submitted by authors; more
than 1,000 were presented at the meeting; and approximately 600 were accepted for publication in the
2000 Transportation Research Record series. The published papers will also be issued on CD-ROM,
which will be available for purchase in late 2000. It should be noted that the preprint CD-ROM dis-
tributed at the 2000 meeting contains unedited, draft versions of presented papers, whereas the papers
published in the 2000 Records include author revisions made in response to review comments.

Starting with the 1999 volumes, the title of the Record series has included “Journal of the Trans-
portation Research Board” to reflect more accurately the nature of this publication series and the peer-
review process conducted in the acceptance of papers for publication. Each paper published in this vol-
ume was peer reviewed by members of the sponsoring committee listed on page ii. Additional
information about the Transportation Research Record series and the peer-review process can be
found on the inside front cover. The Transportation Research Board appreciates the interest shown by
authors in offering their papers and looks forward to future submissions.
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best available copy.
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Cellular Telephone Conversation

While Driving

Effects on Driver Reaction Time and

Subjective Mental Workload

Roberto Abraham Tokunaga, Toru Hagiwara, Seiichi Kagaya, and

Yuki Onodera

The effects of conversation through a cellular telephone while driving
on driver reaction time and subjective mental workload (SMWL) were
investigated. Two vehicles equipped with measurement devices were
used to measure reaction time. The drivers’ SMWL was measured by
the National Aeronautics and Space Administration Task Load Index
procedure. The experiment was conducted on an expressway in Japan.
Thirty-one subjects participated in the experiment; 19 were young and
12 were elderly drivers. Each subject was asked to follow a leading vehi-
cle and to keep a constant distance while following. The subjects per-
formed four tasks: (a) following a leading vehicle, (b) operating a cellular
telephone while following the leading vehicle, (c) performing a simple
conversation task, and (d) performing a complex conversation task on a
cellular telephone with the experimenter while following the leading vehi-
cle. The results of these experiments indicated that the performance of the
telephone tasks increases the reaction time and SMWL of the drivers, as
was shown in a previous study. The results also indicated that the com-
plex conversation task produced an increase in reaction time as compared
to the simple conversation task, independent of age group. Furthermore,
the experiment indicated that the SMWL also increased significantly in
the complex conversation task as compared to the other tasks.

In 1996, the authors conducted an experimental study using a driving
simulator developed by the Civil Engineering Research Institute of
the Hokkaido Development Bureau (/). The primary objective of this
study was to investigate how the location of a cellular telephone in a
vehicle affects driver reaction time and subjective mental workload
(SMWL). In the experiment, a cellular telephone with a hands-free
system (HFS) was placed on the left side of the dashboard, and a cel-
lular telephone with no HFS was placed on the front-passenger seat.
The results of the experiment showed that the location of the cellu-
lar telephone significantly affected the drivers’ reaction times and
that the SMWL of the subjects using an HFS telephone was less than
that of the subjects using a cellular telephone placed on the front-
passenger seat. However, since this experiment was conducted in a
driving simulator, the question remained of how driver reaction time
and SMWL would be affected under real driving conditions.

Alm and Nilsson conducted a number of studies on drivers’ behav-
jor as a function of mobile telephone tasks while driving (2, 3). These
studies were conducted in a Swedish Road and Traffic Institute dri-
ving simulator. In the most recent study, they investigated the effects

Transportation and Traffic Engineering Laboratory, Department of Urban and
Environmental Engineering, North 13, West B, Kita-ku, Sapporo 080-8628,
Japan.

of a mobile telephone task in a car-following situation on the re-
action time and SMWL of the driver (2). They concluded that using
a mobile telephone while driving had negative effects on driver
behavior. However, there are, naturally, differences between the fecl-
ing of risk while driving in a simulator and that of driving on a real
road, and this may affect driver behavior.

In 1997, an experimental study was conducted on an express-
way (4). The primary objective of this study was to investigate how
conversation through a cellular telephone with an HES while driving
affects driver reaction time and SMWL. Sixteen subjects participated
in the experiment. Half of the subjects had experience in using a cel-
lular telephone while driving. The number of participants was small;
however, the results of that investigation indicated that conversation
affects both drivers’ reaction times and SMWL. Nevertheless, it
could not clarify how much the driver was affected according to the
conversation type.

The objectives of this study were

e To investigate whether talking through a cellular telephone
while driving has negative effects on driver reaction time and
SMWL according to conversation type, and

e To determine whether the reaction time and SMWL of an elderly
driver using a cellular telephone while driving are better than those
of a young driver.

In this study, changes in driver reaction time and SMWL were
investigated as a function of conversation type. The experiment
consisted of two types of conversations through cellular telephone
while driving: the first an easy conversation and the other more
complex. The experiment was carried out on an expressway in
Hokkaido, Japan.

METHODS
Subjects

Thirty-one subjects, 22 to 65 years old, participated in the experi-
ment. The subjects had a minimum of 3 years driving experience
and traveled an average of 12 480 km annually. All subjects had pre-
vious experience using cellular telephones. Nineteen subjects (mean
age, 23.95 years) were young drivers (16 male and 3 female), and
the other 12 subjects (mean age, 62.75 years) were elderly drivers
(all male). Table 1 shows the subject demographics.
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TABLE 1  Subject Demographics

Young Subjects Age Driving Exp. (years)| Annual Driving (km)
Average 23.95 5.11 12211
SD 2.78 3.07 6630
Average + SD 26.73 8.18 18840
Average - SD 21.17 203 5581
Subjects 19 19 19

Elderly Subjects Age Driving Exp. (years)| Annual Driving (km)
Average 62.75 39.17 12750
SD 2.26 3.86 5941
Average + SD 65.01 43.02 18691
Average - SD 60.49 35.31 6809
Subjects 12 12 12

Experimental Site and Vehicles

The experiment was conducted on the Central Expressway in
Hokkaido in May 1999. The total length of the test section was
50.6 km, between the West-Ebetsu interchange (start and end point)
and the Iwamizawa interchange (turnaround point). Most of the
test section was flat and straight. One test section (25.3 km) was
completed in about 20 min. Two vehicles were used in the experi-
ment. The experiment staff drove the leading vehicle and con-
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trolled the driving speed during each experimental run. The subject
drove another vehicle following the leading vehicle. Instruments
installed in the leading vehicle driven by the experiment staff and
the following vehicle driven by the subject measured the driver’s
reaction time.

Cellular Telephone with HFS

A cellular telephone with an HFS was fixed on the left side of the
dashboard in the experimental vehicle driven by the subject. The
HFS consisted of an external microphone and antenna. During each
run, the experimenter in the leading vehicle called the subject using
a cellular telephone. Figure 1 shows the cellular telephone under
driving conditions.

Subjective Mental Workload

The National Aeronautics and Space Administration Task Load
Index (TLX) procedure was used to estimate the drivers’ SMWL ).
NASA-TLX is a multidimensional rating procedure that provides a
global SMWL score based on the average of subjective ratings of six
factors: mental demand, physical demand, time pressure, effort,

Site of cellular telephone equipped with
hands-free system

reaction time

Site of switch buttons to measure the driver's

FIGURE 1 A cellular telephone with a hands-free system and switch buttans on the
steering wheel to measure the driver's reaction time.
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performance, and frustration. Each factor was presented as a 12-cm
line with a title explanation and bipolar descriptors at each end (e.g.,
high/low). After driving, the subjects were asked to rate on a paper
form each of these factors. Then numerical values (1 to 10) were
assigned to scale positions during data analysis in the laboratory.
Finally, the global SMWL rate was computed from the six ratings
given by the subject.

Multiple Data Recording System

Reaction time is defined as the interval from the time when the emer-
gency warning lights of the leading vehicle come on to the time
when the subject presses the switch buttons installed on the steering
wheel. Due to the large number of measurements required for the
computation of reaction time, it was necessary to develop a multiple
data recording system, as shown in Figure 2. The sampling rate of
the multiple data recording system is 20 data per second. This sys-
tem was installed in the subject’s vehicle, and a similar system with-
out a laser radar system was installed in the leading vehicle. Table 2
shows the data by the multiple data recording system. The computer
program of the multiple data recording system integrates the data
through a serial port.

The following distance—that is, the distance between the front of
the following vehicle and the rear of the leading vehicle—was mea-
sured continuously by a laser radar system. The system generated
short laser pulses, and it received those pulses reflected from the rear
of the leading vehicle. The following distance was calculated by
multiplying the travel time by the speed of light. A potentiometer

Emergency Warning Lights
Cellujar Telephone

Speed Sensor

A/D Converter /

179m | | f- = !i’ |
] @ _‘_L:_“ -

Leading Vehicle (4WD Nissan Safari 87)

Video Camera

Brake Lamp

) .@gwuwm"m_u»
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TABLE 2 Contents of Sensor Data File

Leading Vehicle (4WD NISSAN SAFARI)
Sampling Number 20 data per second
Time Record hh:mm:ss
Counter counting number
Brake Lamp on/off

Following Vehicle (4 Door Sedan TOYOTA VISTA)
Sampling Number 20 data per second

Time Record hh:mm:ss
Following Distance meters

Counter counting number
Lateral Acceleration at the Center of Gravity (X) G

Longitudinal Acceleration at the Center of Gravity (Y) G

Throttling Data volts

Braking Data volts

was employed to monitor the position of the accelerator pedal, and
a pressure sensor was employed to measure the position of the brake
pedal. For accurate electronic measurements of distance of the vehi-
cle, a transmission sensor was used. The transmission sensor gen-
erated an electrical pulse when the vehicle moved. Six pulses were
generated with each revolution of the front tire. After the signals
were amplified, the computer program converted them from analog
to digital data. The digital data were transferred through a serial port
to the multiple recording systems.

An onboard digital video camera was installed in the rear of the
passenger compartment to record the driving scene and subject’s
voice. The emergency warning lights of the leading vehicle could

Cellular Telephone with

Hands-Free System Counter Display

Data Collector

A/D Converter

Laser Radar Head

Experimental Vehicle (4Door Sedan Toyota Vista 85)

Data Collector

Driver Experimenter 2 /

1.80m

Laser Li gvhtw

FREAS N G S P

Microphone Subject Video Camera

FIGURE 2 Instrumented vehicles and multiple measurement system.
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be recognized in the driving scene. The driving scene contains a
counter display that allows synchronization between the recording
video frame and the sampling data number recorded by the multiple
recording systems. The counter displays the pulse number generated
by the transmission sensor.

Task and Experimental Design

The dependent variables in this study were the reaction time and the
SMWL of each driver. Major independent variables were the follow-
ing four tasks and the drivers” groups (elderly or young). During the
experiment, an experimenter in the leading vehicle suddenly turned
on the emergency warning lights during the driving task and once dur-
ing the conversation task in order to measure the subject’s reaction
time. Each subject was required to perform the following four tasks:

* Driving task (round-trip): to drive the experimental vehicle on
the test section at a constant distance behind the leading vehicle.

® Operation task (round-trip): to push the “ON” key for receiv-
ing a telephone call while performing the driving task. During the
experiment, each subject received two calls from the experimenter.

* Simple conversation task (one time): to engage in a simple con-
versation with the experimenter over the cellular telephone while per-
forming the driving task. The conversation was about current driving
conditions and navigation of the test section (time of conversation:
approximately 2 min).

* Complex conversation task (one time): to engage in a conver-
sation with the experimenter answering a series of mathematical
problems. For example: “How muchis 7+1—1+ 1+ 1?” After two
problems, the experimenter asked the subject to remember the first and
second answers. Then the experimenter repeated the process adding
one more problem (time of conversation: approximately 2 min).

Experimental Procedure

Before the experiment, the subjects were given instructions regard-
ing their tasks. They also were allowed time to become familiar
with the operation of the experimental vehicle and the cellular tele-
phone. The subjects were instructed to maintain a distance of about
50 m behind the leading vehicle, and to use the distance between
illuminated delineators along the center of the test road as a refer-
ence distance. The above-mentioned four tasks were performed
during each run, and the task order was completely randomized.
The driver of the leading vehicle maintained a speed of 90 km/h,
The driver of the leading vehicle suddenly turned on the emergency
warning lights for a period of 5 s. Each subject drove one round-
trip of the test section. As soon as the run was completed, each sub-
ject was asked to rate the six SMWL factors for each of the four
tasks after reading the rating scale definitions and instructions.
Each subject first provided ratings on six subscales for each task.
The subject also answered a few questions concerning the use of
the cellular telephone system while driving.

RESULTS
Drivers’ Reaction Time

Analysis of the recorded data was conducted in the laboratory after
the experiment. Due to technical problems, data were not recorded

Transportation Research Record 1724

TABLE 3 Average and Standard Deviation Values of Drivers’
Reaction Time

Young Subjects
Time (scc.) _ i Task Conditions
Driving Task Driving Task Simple Complex
{Northbound) (Southbound) | Conversation| Conversation
Average 0.63 0.66 0.85 0.97
SD 0.20 0.26 0.40 0.35
Average+SD 0.83 0.92 1.25 1.32
Average-SD 0.43 0.40 0.45 0.62
Subjects ) 19 19 19 19
Elderly Subjects
Time (sec.) . i '_I‘ask Conditions
Driving Task Driving Task Simple Complex
(Northbound) (Southbound) | Conversation | Conversation
Average 0.76 0.61 0.82 0.99
SD 0.32 0.16 0.22 0.08
Average+SD 1.08 0.77 1.04 1.07
Average-SD 0.44 0.45 0.60 0.91
Subjects 10 10 10 10

for two runs involving elderly subjects, and data for only 10 of the
12 subjects in the elderly group were available for analysis.

Table 3 shows the average and standard deviation values of driv-
ers’ reaction time during the performance of driving and different
conversation tasks. Drivers’ reaction time during the driving task
(round-trip) was less than 0.76 s. Drivers’ reaction time during the
simple conversation task was longer than that for the driving task.
In addition, drivers’ reaction time during the complex conversa-
tion task increased even more than during the simple conversation
task. Thus, a negative effect was found on both groups’ reaction
times during telephone tasks. Moreover, the complexity of con-
versation directly influenced the increase in drivers’ reaction time.
Figure 3 shows a box-plot diagram of the drivers’ reaction times.
The edges of each box indicate the 25th and 75th percentiles of the
data. The horizontal line in the middle of the box indicates the
median of the data.

A two-way analysis of variance (ANOVA) was performed to
compare the four tasks and the groups. There were no significant
differences between the groups. The Tukeys pairwise multiple

2.0

ry
[y}

(—IDriving, Northbound

£ Driving, Southbound

Reaction Time (seconds)
o

o

Ml Simple Conversation

0.0 i : Il Complex Conversation
Subjects 10 10 10 10 19 19 19 19

Elderly Subjects Young Subjects

FIGURE 3 Drivers' reaction times as a function of age and task.
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TABLE 4 Average and Standard Deviation Values of Drivers’ SMWL

Young Subjects
Task Conditions
Rate (pts.) N . Operation Operation .
Driving Task|Driving Task Task Task Simple Complex
(Northbound) | (Southbound) | (Northbound) | ( Southbound) | Conversation | Conversation
Average 3.86 3.83 5.03 4.74 5.04 6.90
SD 1.68 1.84 1.93 2.01 1.90 1.69
Average+SD 5.54 5.67 6.96 6.75 6.94 8.59
Average-SD 2.18 1.99 3.10 2.73 3.14 5.21
Subjects 19 19 19 19 19 19
Elderly Subjects
Task Conditions
Rate (pts.) N . Operation Operation .
Driving Task|Driving Task Task Task Simple Complex
(Northbound) | (Southbound) | (Northbound) (Southbound) | Conversation | Conversation
Average 4.00 3.63 4.72 4.15 4.49 5.31
SD 1.32 1.24 1.57 1.50 143 1.79
Average+SD 532 4.87 6.29 5.65 5.92 7.10
Average-SD 2.68 2.39 3.15 2.65 3.06 3.52
Subjects 12 12 12 12 12 12
comparisons method was performed to see the differences among ferences except for the increase in drivers” SMWL for the complex
pairs. There were significant increases in drivers’ reaction times conversation task as compared with the other tasks.

between the southbound driving task and the simple conversation
task and between the round-trip driving task and the complex

conversation task. DISCUSSION OF RESULTS AND CONCLUSION

In this study, driver reaction time and SMWL were investigated as
a function of conversation type and age group. The results of this
study showed that using a cellular telephone while driving had neg-
Analysis of drivers’ SMWL from NASA-TLX data was con- ative effects on driver reaction time and SMWL, as was shown in a
previous study conducted in 1997. The drivers’ reaction times were
longer in both groups while performing the complex conversation

Drivers’ SMWL

ducted in the laboratory after the experiment. Table 4 shows the
average and standard deviation values of drivers’ SMWL points
rated on driving and different telephone tasks. Drivers’ SMWL
values for the driving task (round-trip) were less than 4.00 points
in both groups. Young and elderly drivers’ SMWL values for the
operational task (round-trip) were bigger than that of the driving 10
task. Meanwhile, drivers’ SMWL values for the simple conver-
sation task were close to their operational task. Finally, drivers’
SMWL. values for the complex conversation task increased more
than that of the simple conversation. Nevertheless, elderly driv-
ers’ SMWL value for the complex conversation task was less than
that of the young drivers’ SMWL value. Thus, a significant effect
was found on both drivers’ SMWL for telephone tasks, and the
complexity of conversation directly influenced drivers” SMWL.
Figure 4 shows a box-plot diagram of the drivers’ SMWL. The
edges of each box indicate the 25th and 75th percentiles of the data.
The horizontal line in the middle of the box indicates the median
of the data. ll l l N E]Simple Conversation

A two-way ANOVA was performed to compare the six tasks and
the groups. There were significant differences in the variation pat-
tern between the groups [F (5, 145) = 3.254, P-value < 0.05]. The
Tukeys pairwise multiple comparisons method was performed to see
the differences among pairs of tasks. There were no significant dif- FIGURE 4 Drivers' SMWL as a function of age and task.

[_1Driving, Northbound

[1Driving. Southbound

[C"1Operation, Northbound

e £ Operation, Southbound

SMWL Values (pts.)

0 R Complex Conversation
Subjects 12 12 12 12 12 12 19 19 19 19 19 18

Elderly Subjects Young Subjects
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task than while performing the simple conversation task. Further-
more, for both age groups the SMWL increased significantly in the
complex conversation task as compared to the other tasks.

The authors predicted that cellular telephone use as a function
of two types of conversation while driving would increase elderly
drivers’ reaction times and SMWL more than that of the young
drivers. However, there was no significant difference between the
increment of elderly drivers’ reaction times and SMWL and that of
young drivers. The elderly drivers’ performance may have been
related to extensive annual driving distance and driving experience.
In addition, it should be noted that the elderly drivers participating
in this experiment were carefully selected for safety according to
driving experience and psychophysics capabilities.

Conversation more complex than that used in this study could
increase the driver reaction time and SMWL even further. In this
study, the experiments were conducted under limited conditions.
Thus, further investigations are needed.
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Aggressive Driving and

Road Rage Behaviors on
Freeways in San Diego, California

Spatial and Temporal Analyses of

Observed and Reported Variations

Sheila Sarkar, Alanna Martineau, Mohammad Emami,

Mohammad Khatib, and Karen Wallace

The California Highway Patrol in San Diego County receives cellular
telephone calls reporting unsafe driving. The content of the calls varies,
with drivers complaining about speeding cars driving over 161 km/h
(100 mph) and other drivers weaving and cutting off or tailgating. In
some cases, the driving conditions were even more volatile with drivers
describing harassment, assaults with a weapon, or running other vehi-
cles off the road. There were about 1,987 reported incidents from the
freeways of San Diego for the months of April, June, and September
1998. The information received by the dispatchers was tabulated and
put into five different categories. Analyses indicated that 24.6 percent
of the calls were for “Aggressive Driving 1” (speeding plus some other
behavior, such as unsafe lane changes or passing); “Aggressive Driving 2”
(weaving and cutting) was reported most frequently (27.1 percent of all
calls); about 12.5 percent of the calls were for “Aggressive Driving 3”
(tailgating); “Speeding Alone” calls comprised 19.8 percent of the total;
and the rest were for “Road Rage” (16.1 percent). Of the 1,987 calls,
33 percent were generated on Interstate 5, the busiest and longest in
the county, followed by Interstate 15, which accounted for 22 percent
of the calls. The high number of calls can be attributed to the high
average daily traffic volumes at each interchange and the longer inter-
state lengths. Similarly, Interstate 8 seemed to have a lower number of
calls than expected, because the urban portion of the freeway is not as
long and the remaining distance had fewer vehicles at each interchange.
This was further corroborated and both volume and length were robustly
correlated with the number of phone reports per freeway. Additionally,
chi-square tests indicated that the time of the day and day of the week
influenced the type and number of calls received.

This paper analyzes the data set that consists of reports made by
drivers on their cellular telephones. Drivers often call in to report
various types of transgressions that they observe on the San Diego,
California, freeways. These include traffic violations, excessive speed-
ing, threats, and verbal assaults. Data were compiled for 3 months
(April, June, and September) of 1998 within San Diego County. This
is with the exception of 5 consecutive days in April for which the data
were unavailable (April 11-15).

S. Sarkar, A. Martineau, M. Emami, and K. Wallace, California Institute of Trans-
partation Safety, San Diego State University, 5500 Campanile Drive, San Diego,
CA 82182-1324. M. Khatib, Department of Civil and Environmental Engineering,
San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-1324.

All calls (1,987 incidents) made to the California Highway Patrol
(CHP) dispatchers reporting perceived driving transgressions were
included in these analyses. Callers would report the driving behaviors
that they felt were dangerous. The reported incidents were assigned
a computer-aided dispatch (CAD) number, a reference number for
CHP records. Other information recorded was date, time, location,
type of offense, and, sometimes, a description. The information pro-
vided in the CAD records then was classified for analysis under six
categories: speeding, tailgating, running vehicles off the road, weav-
ing, cutting vehicles off, and other. The applicable categories were
checked off and if any additional information was provided above
and beyond that accounted for by the categories, a description also
was recorded. Table 1 shows an example of the compiled data.

This paper investigates both the frequency and patterns for aggres-
sive driving and road rage on the freeways of San Diego County. The
problem of aggressive drivers has been around for a long time. In
1968, Parry wrote an entire book about aggression on the road ().

Although the two terms “aggressive driving” and “road rage”
often have been used interchangeably, the National Highway Traf-
fic Safety Administration (NHTSA) has chosen to separate them
into two disparate categories. There has been little consensus in
the literature thus far as to an adequate definition of these terms.
Connell and Joint state that road rage can be used to refer to any-
thing from “any exhibition of driver aggression” (Z, p. 27) to road-
side assault (including murder). In some cases, aggressive driving
is seen as a traffic offense and road rage is seen as a criminal
offense (3). In a presentation at the Aggressive Driving Conference
(October 19, 1998, Los Angeles, California), Richard Compton
gave a specific definition of aggressive driving as a combination
of certain traffic offenses. Aggressive driving has been said gener-
ally to include excessive horn honking, running red lights, traffic
weaving, tailgating, headlight flashing, braking excessively, exces-
sive speeding, profanity or obscene gestures, and blocking the pass-
ing lane. NHTSA describes road rage as the more extreme cases of
aggressive driving (3).

The types of behaviors included under these umbrella terms often
vary and it is not necessarily useful to take a checklist approach. This
is especially true in the case of road rage if it is to be considered a
“criminal offense.” Joint similarly has referred to road rage in a
broad sense as any display of aggression by a driver but also sug-
gests that the term often is used to refer to the more extreme acts of
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TABLE 1 Example of Recorded Information for Five Cellular Telephone Reports, June 1, 1998

CAD | Date | Time Location Speeding |Tailgating| Running |Weaving| Cutting | Other Description
# vehicle vehicle
off off
road
111 | 6/1/98 | 0711 [SB 805 JNO Palm 1 1 In and out of traffic
Ave.
183 | 6/1/38 | 0831 [NB 805 JNO EB 1 |Throwing objects
94 at vehicle
246 |6/1/98 | 0950 |SB 5 JSO Via De 1 1 |Slamming brakes
La Valle in front of vehicle
351 | 6/1/98 | 1218 |SB 805 JSO 1 Unsafe lane
Telegraph changes
Canyon Rd
3562 16/1/98 | 1215 |SB 15 JSO 1 In and out of traffic
Mission Rd.

Norte: The reported information was sometimes relevant to more than one category, and in some cases a description also was provided.
JNO = just north of; JSO = just south of; NB = northbound; SB = southbound; and EB = eastbound.

aggression (4). The line between aggressive driving and road rage
is even blurrier, with Mizell’s definition stating that aggressive driv-
ing is “an incident in which an angry or impatient motorist or pas-
senger intentionally injures or kills another motorist, passenger, or
pedestrian, or attempts to injure or kill another motorist, passenger,
or pedestrian, in response to a traffic dispute, altercation, or griev-
ance” (5, p. 5). Ellison-Potter et al. indicate that aggressive driv-
ing is any driving behavior fueled by frustration, anger, or both,
that psychologically and physically endangers others whereas road
rage refers to the more extreme and psychopathological cases of
aggressive driving involving homicidal intent (6). Shinar has used
the frustration aggression model that was first proposed by Dollard
etal. in 1939 (7, 8). According to him, aggressive driving is a syn-
drome of frustration-driven behaviors enabled by a driver’s envi-
ronment. These behaviors can either take the form of “instrumental
aggression,” which allows the aggressive driver to move ahead at
the cost of infringing on other road users’ rights (weaving, cutting,
running red lights), or “hostile aggression,” which is directed toward
the object of frustration (7, 9).

Obviously, both aggressive driving and road rage need to be oper-
ationally defined in such a way that they can be used both for prac-
tical and legal purposes. From a legal perspective, mens rea or the
state of mind at the time of an offense is an essential factor to con-
sider for criminal prosecution (6). If the distinction between aggres-
sive driving and road rage includes a traffic versus criminal offense
differential, the definition of these terms should in some sense
address the state of mind of the perpetrator. First and foremost,
“road rage” as the term implies is associated with a state of anger or
hostility directed at some driver. This may not necessarily be true of
aggressive driving. This paper proposes that aggressive driving be
described as driving that is intentionally inconsiderate of other driv-
ers (i.e., negligent), as Shinar describes, intentionally infringing on
the rights of others (7). This type of driving is not directed at any one
individual, but rather toward other drivers in general. For example,
this would include such behaviors as weaving and cutting, passing
on shoulders, and following too closely. The intentional component
of this definition precludes certain types of actions from being clas-
sified as aggressive driving. Thus, if a driver makes a lane change
and does not see a vehicle in the next lane, this driver may inadver-
tently cut someone off. This would not be considered aggressive.
This driver is inattentive and probably would be apologetic for the

action. Someone who is driving aggressively, however, would not
feel apologetic because he or she is intentionally ignoring the rights
of others on the road. That is not to say that these actions differ in
terms of dangerousness. However, if the victim in this scenario
realizes that the act was unintentional, he or she might be less
likely to retaliate against this inattentive driver. One of the most
detrimental consequences of aggressive driving is that it may cause
another driver to become angry and retaliate—a stage that would
be considered road rage.

Whereas aggressive driving is directed toward other drivers in
general, road rage is considered to be directed toward a specific
driver. The driver exhibiting road rage also is clearly, intentionally
inconsiderate of other drivers’ rights. However, the road rager—
unlike the aggressive driver—is targeting a particular individual. As
implied earlier, aggressive driving may instigate retaliation and thus
a state of road rage. Anger is a necessary condition of road rage but
not of aggressive driving, and road rage further includes an intent to
cause emotional or physical harm. Road rage therefore would
include behaviors such as running a vehicle off the road, throwing
objects at a vehicle, threatening another driver, assaulting another
driver, using a vehicle as a weapon, and directing verbal threats or
obscene language toward another driver. Note that behaviors such
as tailgating or slamming brakes in front of another vehicle could be
considered either road rage or aggressive driving, depending on the
circumstances. For example, if a driver exhibits weaving, cutting,
and tailgating as a pattern in general, then this would be considered
aggressive driving. Conversely, if a driver is cut off by someone and
retaliates by following this individual too closely (i.e., tailgating),
this would be considered road rage. Similarly, if a driver frequently
weaves in and out of traffic and slams on the brakes, the behavior
would fall into the aggressive-driving category. If, however, a driver
slams on the brakes to retaliate against someone following too closely,
the behavior would be considered road rage. By this line of reason-
ing it can be seen that inattentive driving, aggressive driving, and
road rage are each dangerous in their own right. However, it is espe-
cially important to note that aggressive driving can very easily result
in anger and retaliation and thus escalate to road rage.

Because this paper discusses incidents of aggressive driving and
road rage according to these definitions, the offense category infor-
mation is used to form five new categories (see Figure 1). In some
cases, the information available for a particular phone call is not suf-
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FIGURE 1 Percentage of cellular telephone calls reported for
the five categories (AGB. = aggressive driving; 1 = speeding plus
other unsafe activity; 2 = weaving or cutting; 3 = tailgating).

ficient to determine whether the incident is aggressive driving or road
rage. Furthermore, when the call is merely reporting something such
as excessive speeding, by these definitions the incident cannot nec-
essarily be classified as aggressive driving. If someone is just speed-
ing and there are no other drivers in his or her path, then the behavior
is not necessarily inconsiderate of others. Of course, this is open to
debate. It might be that someone speeding excessively is inconsider-
ate in the sense that even if traffic is minimal, the speeder is still
putting others at risk and therefore is inconsiderate of others’ rights
on the road. Because of this ambiguity, isolated reports of speeding
are put into their own category. This category is considered a type of
aggressive driving because this reported speeding behavior probably
was accompanied by some other aggressive act, although this is not
certain. The category was labeled “Speeding Alone” and there were
393 calls (19.7 percent of all calls) reporting incidents of this type for
the months of April, June, and September 1998.

On a related note, aggressive driving that involved speeding with
any other type of transgression was labeled “Aggressive Driving 1.”
This means that the report was speeding and one or more of the other
categories (unsafe lane changes, unsafe passing). There were 489
such incidents (24.6 percent) reported by callers from the freeways
of San Diego.

Another very frequent pattern of aggressive driving is drivers
weaving and cutting through traffic. This type of incident likely
occurs during times of major congestion and therefore is less likely
to involve speeding. For this reason, a separate category labeled
“Aggressive Driving 2” included incidents of reported weaving
or cutting or both, without any mention of speeding. There were
537 calls (27 percent) reporting such incidents.

The final category for aggressive driving (“Aggressive Driving 37)
consists of incidents that reported tailgating. Tailgating is a more
severe form of aggressive driving, and in some cases these reports
probably are referring to incidents of road rage, although this can-
not be determined from the information available. There were
248 incidents (12.5 percent) of Aggressive Driving 3.

The last category is for incidents that could not be classified as
aggressive driving and are assumed to be primarily incidents of
road rage. Any reported incidents of running vehicles off the road
were included in this category, as were any incidents that were only
checked off as “other.” Furthermore, some of the reports were not
placed into any of the original offense categories (see Table 1) so
are included in this final category as well. This category was labeled
“Road Rage” and there were 320 incidents (16 percent) of this type.
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The description data (see Table 1) were coded and aggregated into
five content categories. The first pertains to unsafe lane changes and
is labeled as such. It consists of reports such as “all over the road,”
“swerving,” and “using all lanes to pass.” This type of description
was significantly correlated with incidents of Aggressive Driving
1—r(1,987) = .33, p < .001—and with Aggressive Driving 2—
r(1,987) = .12, p <.001. This makes sense, of course, because both of
these categories contain incidents related to unsafe lane changes. The
second content category pertains to inappropriate passing and con-
tains statements such as “passing on the shoulder, center divide, turn
Janes, and across double solid lines.” This type of comment also was
significantly correlated with Aggressive Driving 1-—r(1,987) = .12,
p < .001—and Aggressive Driving 2—r(1 ,987)=.12,p<.001. The
third content category contains descriptions related to speeding,
such as large vehicles speeding or estimates of speed, most of which
were “90+” (i.e., 90 mph or more, or over 145 km/h) or “100+” (over
161 km/h). This type of description was significantly correlated with
Aggressive Driving 1—r(1,987) = .14, p < .001—and, intuitively,
these descriptions were strongly correlated with the Speeding Alone
category—r(1,987) = .52, p < .001.

The fourth category contained descriptions that were incidents of
road rage. These were “harassing or threatening others verbally,”
“using rude language or gestures,” “flashing high beams or head-
lights,” “honking,” “slamming on brakes in front,” “preventing
others from passing,” “threatening others with a weapon” (e.g., knife,
gun, throwing objects), “firing shots,” “hitting vehicles with objects,”
“hitting other vehicles with vehicle,” “chasing another vehicle,”
“trying to run someone down,” and “trying to run someone off the
road.” It should be clear that all of these descriptions are considered
road rage because they appear to be targeting a particular individual
and are not incidents of aggressive driving in general. There was a
robust correlation between these descriptions and the category Road
Rage—r(1,987) = .42, p <.001. Road rage originally was just con-
sidered an “other” category but it was reclassified to Road Rage
because most of the incidents in the category contained descriptions
that were consistent with the stated definition of road rage. And
finally, the last description category contained reports that were
somewhat miscellaneous. These included “racing, playing chicken
or other games,” “motorcycle stunting,” “trying to cause an accident,”
“almost hitting someone,” “running red lights,” and “hit-and-run”
incidents. These descriptions also were significantly correlated with
the Road Rage category because of the large proportion of road rage
descriptions—(1,987) = .11, p <.001.

SPATIAL ANALYSES OF CELL PHONE CALLS

The spatial analyses of the cellular telephone calls show that 33 per-
cent of the calls are reporting incidents on Interstate 5, followed
by Interstate 15, which generates about 22 percent of the calls,
whereas Interstates 8 and 805 have about 12 and 11 percent, respec-
tively (see Table 2 and Figure 2). The fact that over 70 percent of
the calls are generated by these four freeways is not surprising
because they are the major freeways, particularly Interstate 5,
which is the oldest and longest (127 km, or 79 mi) and has the
heaviest volumes [average daily traffic (ADT) of more than
160,000 vehicles per day at each interchange]. The remaining
30 percent of the calls come from all the other freeways and high-
ways in San Diego County, and most of them (except CA-78) report
less than 5 percent of the total incidents.
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TABLE 2 Spatial Distribution

of Calls
Freeways Frequency Percent
5 655 33.0
15 448 225
8 241 12.1
805 213 10.7
78 121 6.1
163 68 3.4
94 57 2.9
not a freeway 43 22
52 40 2.0
215 * 37 1.9
67 27 1.4
74* 10 5
125 9 5
76 4 2
54 4 2
79 3 2
56 2 1
905 2 1
165 1 1
212 1 .1
70 1 1
Total 1987 100.0

* not in San Diego County but the
calls were received by San Diego
CHP Dispatch Office

ANALYSES OF AGGRESSIVE DRIVING
BEHAVIORS REPORTED BY CALLERS

The purpose of this paper is to compare the frequency and patterns
of aggressive driving behaviors reported by callers on the four major
freeways (Interstates 5, 15, 8, and 805) that generate the highest
number of calls (Figure 2). Figure 3 shows the freeway map for San
Diego. As mentioned earlier, calls reported to CHP dispatchers for
the months of April, June, and September were aggregated under the
following categories: Aggressive Driving 1 (speeding and some other
behaviors), Aggressive Driving 2 (weaving and cutting), Aggressive
Driving 3 (tailgating), Speeding Alone, and Road Rage (Figure 1).
In general, Aggressive Driving 2 and Aggressive Driving 1 were

35
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El Percentage

Rte. 805 Rte. 78

-5 1-15 -8

Rte. 163  Rte. 94

FIGURE 2 Frequency of calls by freeways.
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the most frequently reported. Speeding Alone was reported about
20 percent of the time with the majority of the callers reporting esti-
mated speeds of over 161 km/h (100 mph). But the fact that 12 per-
cent and 16 percent of the calls were reporting some hostile behaviors
toward other drivers (Aggressive Driving 3 and Road Rage, respec-
tively) is important. Figure 4 provides a breakdown of the types of
driving behaviors observed in the four main freeways (5, 15, 8, and
805). The percentage breakdowns for the freeways closely corre-
spond to the overall percentages but there are some differences.
Interstates 8 and 805 have fewer Speeding Alone incidents than
either Interstate 5 or Interstate 15. There are, however, proportion-
ately more Road Rage and tailgating (Aggressive Driving 3) reported
on Interstate 8 compared to the other types of behaviors.

COMPARISON OF EXPECTED AND OBSERVED
VARIATIONS IN DRIVING BEHAVIORS FOR
FOUR FREEWAYS

Chi-square tests were done to estimate if the reported incidents for
each of the five categories—Aggressive Driving 1, 2, 3, Speeding
Only, and Road Rage—would be equal to the expected number for
each of the four freeways. The tests showed the following: Aggres-
sive Driving 1 (speeding and some other offense) was much higher
in’l-5 and I-15—%2(3) = 82.8, p < .001. Aggressive Driving 2
(incidents of weaving and cutting) was much higher than expected
inI-5—y2(3)=72.2, p < .001. For Speeding Alone, the chi-square
was significant—yx2(3) = 98.4, p < .001—because of a dispropor-
tionately large number of reports for I-5. The other behaviors,
Aggressive Driving 3 and Road Rage, were either lower or almost
equal to the expected number of calls.

EXPECTED VERSUS OBSERVED NUMBER
OF INCIDENTS IN FOUR FREEWAYS BASED
ON LENGTHS OF FREEWAYS

There is significant variation in the lengths of the four freeways that
are being analyzed within 'San Diego County. The longest freeway
within the county is Interstate 8 (124 km or 77 mi), followed by
Interstate 5 (116 km or 72 mi), Interstate 15 (87 km or 54 mi), and
Interstate 805 (47 km or 29 mi). Typically, chi-square tests use
expected values by dividing the total number of observations by the
number of groups (e.g., 1,987 observations by 4 groups). However,
the length variation among the freeways of interest is an important
factor when comparing these freeways. The disparities in length
were taken into account in the chi-square tests that were done to
assess whether the observed and estimated numbers of incidents
reported were proportional to the lengths of the freeways. To do this,
the percentage distribution for each of these freeways was derived.
These percentages were used to arrive at the estimated number of
incidents for all incidents together and for each category.

VARIATIONS IN TYPES OF INCIDENTS
BY FREEWAYS

The chi-square test indicates that the number of incidents reported
for each freeway differed significantly from the expected numbers
even when the length of the freeway was taken into account—
X*(3) =280.6, p < .001. Our analyses showed that Interstate 5 had
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considerably more incidents when the lengths were considered.
Interstates 15 and 805 also had higher numbers when length was
taken into account. Interstate 8, however, had a lower number of
incidents reported when length is taken into account.

For Aggressive Driving 1 incidents, the chi-square test indicated
that observed values differed significantly from expected values
based on length—y3(3) = 93.6, p < .001. In particular, there were
many more incidents reported for Interstate 5 than expected (0=177,
E = 114), slightly more for Interstate 15 (O = 109, E =91), little dif-
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ference for Interstate 805 (O =29, E =22), and less than expected for
Interstate 8 (0 =36, E=T71).

This pattern of residuals was observed for all five classifications
of driving, and chi-square tests indicated that for Aggressive Driv-
ing 2, Aggressive Driving 3, Speeding Alone, and Road Rage,
observed values were significantly different from expected values
based on length. These data suggest that taking length into account
does not ameliorate the discrepancies in the proportion of total
reported incidents for these four freeways.
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FIGURE 4 Breakdown of aggressive driving and road rage categories for Interstates 5, 15, 8, and 805.
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It was felt that traffic volume on the freeway is an important fac-
tor to take into account when discussing the number of incidents
reported. Therefore, other freeway data are included to assess the
relationship among incidents, length, and traffic volume. Although
the majority of this paper has focused on the four freeways, this
analysis includes the cell phone reports from the 10 most frequently
reporting freeways in San Diego County (see Table 2).

ADT data are available from the California Department of Trans-
portation (Caltrans) in San Diego County. Averages over a year are
reported for each interchange on the freeways. These data were used
to compute an overall average volume for each interchange for the
10 freeways. Both volume—r (10) = .69, p < .029—and length—
r(10) = .77, p < .001—were robustly correlated with the number of
phone reports per freeway.

The above analysis explains why Interstate 8 has a lower than
expected number of incidents. The urban section of Interstate 8,
where the volumes at each interchange are more than 183,000, is
only 27 km (17 mi); another 11 km (7 mi) has a volume of 60,000
vehicles per day for each interchange; and for the remaining length
the volume drops sharply to 14,000 vehicles per day. For the same
reason, Interstate 5 has more than expected incidents, as this long
stretch of freeway has more than 160,000 vehicles per interchange.

VARIATION IN AGGRESSIVE DRIVING
AND ROAD RAGE BEHAVIORS BY TIME OF YEAR

To estimate if there were any differences in the types of behaviors
reported by the time of the year, a chi-square test was done for com-
paring June and September after combining Aggressive Driving 1, 2,
and 3 and leaving Speeding Alone and Road Rage as separate cate-
gories (note: April was excluded because of the missing data). There
were no differences in aggressive driving behaviors between June and
September—y?(1) = 0.052. For Speeding Alone, the chi-square test
was not significant—y?2(1) = 3.247, p = 0.072—and for Road Rage,
the chi-square was significant—y2(1) = 5.258, p = 0.022.

VARIATION IN BEHAVIORS BY TIME OF DAY

To estimate whether the different types of aggressive behaviors cate-
gorized here varied by time of day, chi-square tests were done to
assess the variations. Phone calls for Aggressive Driving 1 (speeding
and some other behavior) were found to be higher between 9 a.m. and

TABLE 3 Residuals for Chi-Square Tests
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9 p.m., with the highest number of calls reporting such incidents being
fromnoon to 3 p.m. (O=111,E=61.1)and 3 to 6 p-m. (O=110;
E =61.1)—y*(7) =216, p < .001. Reports of Aggressive Driving 2
(weaving and cutting) were quite high between 9 a.m. and 6 p.m., and
the 3 to 6 p.m. time period (O = 154; E = 67.1) had the highest num-
ber of reported incidents, which corresponds with the peak hours of
travel——y*(7) = 260, p < .001. Aggressive Driving 3 (tailgating) was
highest between 12 noon and 6 p.m.—y2(7) =99.7, p < .001. Speed-
ing Alone incidents reported were higher than expected between
12 noon and 3 p.m., followed by 3 to 6 p.m. and 9 a.m. to 12 noon—
X*(7)=100.5, p < .001. Road Rage incidents were reported more fre-
quently during the 3 to 6 p.m. time period (O = 90; E = 40); the
number of reports was marginally greater from noon to 3 p.m. and

"6 to 9 p.m.—y2(7)=143.6, p < .001.

Chi-square tests were significant indicating that each freeway did
exhibit differences in the driving behaviors based on time of day. The
time period when aggressive driving, speeding, and road rage were
reported most was 3 to 6 p.m. for all four freeways. Aggressive driv-
ing in general was reported more often between 9 a.m. and 6 p.m.
(for convenience, all three types of aggressive driving categories
were combined for this analysis). Interstates 5 and 15 had significant
variations for aggressive driving by time of day—y2(7) = 192.3,
P <.001, and y*(7) = 111.1, p < .001, respectively—with the highest
reported for 3 to 6 p.m.

VARIATIONS IN BEHAVIORS BY DAY OF WEEK

The chi-square tests indicated that the number of calls varied by the
day of the week for all incidents together and in each category (see
Table 3). The number of calls was greater than expected on Fridays,
followed by Wednesdays. Sunday had a lower than expected num-
ber of calls, followed by Monday and Saturday. For each separate
category the trends were similar to the overall pattern with minor dif-
ferences. Thursday generated a higher number of calls for Aggres-
sive Driving 1 (speeding and something else). Aggressive Driving 2
(weaving and tailgating) was unusually high on Fridays.

CONCLUSIONS

This paper offers a spatial analysis (by major freeways) of aggres-
sive driving behavior patterns that driver-callers report to CHP dis-
patchers. It also brings into focus the fact that the perception of
endangerment due to aggressive driving and speeding is high. It is

Driving Catego Monday | Tuesday | Wednesday Thursday | Friday | Saturday | Sunday Expected
Aggressive 1 -13.9 .1 -10.9 16.1 21.1 -3.9 -8.9 69.9
Aggressive 2 -13.7 6.3 9.3 2.3 40.3 -1.7 -36.7 76.7
Aggressive 3 -2.4 36 -4 7.6 86 34 -134 35.4

Speeding Alone -15.1 9 14.9 -12.1 11.9 49 -5.1 56.1

Road Rage -14.7 -7 16.3 13 14.3 -5.7 -10.7 45.7

ALL -59.9 10.1 29.1 15.1 96.1 -15.9 -74.9 283.9
INCIDENTS
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significant that at least 30 incidents are reported each day when only
10 percent of the people report such acts. A separate study done by
Sarkar using employees in San Diego found that 1 out of 10 drivers
called in aggressive behaviors.

Discussion of the frustration-aggression model by Dollard et al. (8)
and Shinar’s premise that congestion could be a contributing factor
to aggression (7) can be partially proven by the authors’ findings—
that the type of behaviors that are reported vary and increase spatially
and temporally. More research and study need to be conducted on this.

It is important to note that the information offered by the callers
to the dispatchers is voluntary, making these data unique and use-
ful. The fact that drivers define clearly when and where their driving
conditions were being compromised by someone else can be very
useful in defining aggressive driving and predicting the precursors
to violent confrontations on freeways. The authors are planning to
use these data to predict if certain sections of the freeways receive
more calls than others.

The caller information used here to conduct the analyses exists in
every city, and the San Diego Transportation Management Center
(TMC) should be commended for taking the leadership in tabulating
these data and providing the information to the California Institute
of Transportation Safety for analysis. Similar endeavors are encour-
aged at other TMCs. Data such as those used in this paper are valu-
able to researchers and law enforcement and could be used in many
ways, such as developing good public awareness and education cam-
paigns. If similar data are compiled longitudinally for a certain num-
ber of years, then researchers and professionals could predict trends
as well as determine spatial variations in unsafe driving patterns by
time of day and day of week. The development of “smart highways”
and the efficient use of law enforcement depend on a strong infor-
mation base. The authors urge TMCs to work closely with local
transportation safety research institutes to develop a useful database
that would make it easier to understand, define, and predict spatial
and temporal variations in aggressive driving.
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Attention-Based Maodel of Driver
Performance in Rear-End Collisions

Timothy L. Brown, John D. Lee, and Daniel V. McGehee

Several driver-performance factors contribute to rear-end collisions—
driver inattention, perception-reaction time, and limitations of the human
visual system. Although many evaluations have examined driver response
to various rear-end collision avoidance systems (RECAS) display and
algorithm alternatives, little research has been directed at creating a
quantitative model of driver performance to evaluate these alternatives.
Current considerations of driver behavior in developing warning algo-
rithms tend to ignore the fundamental problem of driver inattention
and assume a fixed driver reaction time with no further adjustment
after the initial response. A more refined model of driver response to
rear-end crash scenarios can identify more appropriate and timely
information to be displayed to the driver. An attention-based rear-end
collision avoidance model (ARCAM) is introduced that describes the
driver’s attention distribution, information extraction and judgment
process, and the reaction process. ARCAM predicts the closed-loop
nature of collision response performance and explains how the driver
might use RECAS warnings.

Rear-end collision avoidance systems (RECAS) may help alleviate
an important traffic safety problem. Front-to-rear-end crashes involv-
ing two or more vehicles currently represent approximately one-
fourth of all collisions. Specifically, the National Safety Council
reported that there were approximately 11.3 million motor vehicle
crashes in 1995, of which 2.7 million were rear-end crashes (about
23.8 percent of the total) (/). According to the General Estimates Sys-
tern and Fatal Accident Reporting System, in 1992 there were approx-
imately 1.4 million police-reported rear-end crashes. These rear-end
crashes constituted approximately 23 percent of all police-reported
crashes, but only about 4.7 percent of all fatalities. Beside the in-
juries and fatalities caused by rear-end crashes, rear-end crashes also
cause approximately 157 million vehicle hours of delay annually, or
approximately one-third of all crash-caused delays.

Several driver-performance factors contribute to rear-end
collisions—driver inattention, perception-reaction time, and limi-
tations in the human visual system. Driving an automobile is a com-
plex task, one that requires the operator to scan the environment
constantly and respond properly in order to maintain control, avoid
obstacles, and interact safely with other vehicles. Knipling et al.
estimated that driver inattention accounted for 64 percent of all
police-reported rear-end crashes (2). All drivers experience some
level of inattention while driving (e.g., talking to passengers, day-
dreaming, adjusting in-vehicle controls, or noticing extravehicle
distractions). Inattention can be manifested in the various ele-
ments of driver behavior such as failing to attend to the roadway
or not processing the information from the environment. As in-
attention is the primary cause of rear-end collisions, a model that
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examines the attentional aspects of the rear-end collision would
be a valuable tool.

Over the past 10 years, the focus on technological solutions to the
rear-end crash problem has intensified. Many prototype systems
have been developed and tested to determine the best possible
method for warning drivers of potential rear-end collisions. These
systems have been developed and tested to identify algorithms and
displays that will help drivers avoid rear-end collisions (3,4). A few
have been marketed—primarily for commercial vehicle operations
(Vorad, Nissan). These prototype and operational systems have
employed a number of algorithms and displays.

Although many evaluations have examined driver response to
various display and algorithm alternatives, little research has con-
sidered creating a quantitative model of driver performance to aid in
these evaluations. Most systems have been designed using many
simplifying assumptions regarding human performance. A fixed
driver reaction time to the warning, constant braking at a given level,
and a continuously inattentive driver are examples of these assump-
tions. Although these assumptions simplify the problem and allow
for some analyses of the algorithms, they do not provide a compre-
hensive explanation of how the algorithm and driver interact (5).
A more sophisticated attention-based quantitative model can provide
more precise and accurate design guidance. This paper describes
such a model: the attention-based rear-end collision avoidance mode!
(ARCAM). ARCAM provides a flexible tool to examine the sim-
plifying assumptions currently being made in RECAS algorithm
development. Additionally, ARCAM will integrate the empirical
data concerning driver attention and perception into the rear-end
collision context.

THESIS

A quantitative model of the rear-end crash scenario will allow for
the examination of a wide range of factors that affect the driver’s
ability to avoid collisions, including warning systems, without the
time and expense required for field and simulator studies. The ele-
ments that define a rear-end collision situation include the driver as
an information processor, the driver’s vehicle and its related brak-
ing performance, and the lead vehicle’s braking behavior. Figure 1
shows that this representation assumes that the effects of other vehi-
cles are negligible. The inputs to the model are a desired index of
cautiousness and lead vehicle behavior. The outputs of the model
are the speeds and relative positions of the two vehicles.

A computational model of the driver can examine potential rear-
end collision circumstances with and without RECAS to determine
the safety benefit of RECAS. Current considerations of driver behav-
ior in developing warning algorithms tend to assume a fixed driver
reaction time with no further adjustment after the initial response (3).
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A more refined model of driver response to rear-end crash scenarios
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can identify how these assumptions affect the joint driver-RECAS

system and whether more appropriate and timely information can be
displayed to the driver. This paper presents a conceptual model that
outlines the structural requirements of predicting driver response to
rear-end collision situations.
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shows an expanded view of the driver module, ARCAM. ARCAM
is much more complex than a simple reaction time and step func-
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control; however, some aspects of lateral control will be briefly
addressed. As ARCAM will not initially attempt to explain driver
performance other than longitudinal control, the implementation of
this theoretical model into a quantitative model is simplified com-
pared to more general models of the driver that have been attempted
in the past (6). By starting with a more manageable model, it can be
implemented and incrementally expanded to include more situa-
tions. The driver’s attention distribution, the information extraction
and judgment process, and the reaction process are all incorporated
in this model. The inputs to this model are desired index of cautious-
ness, tau, expansion rate, and velocity. The index of cautiousness,
tau, and expansion rate will be discussed in the following sections.
The outputs of the model are deceleration and steering response.

Attention

For the driver to react to a rear-end collision, his or her attention
must, to some degree, focus on the lead vehicle. Typical driving does
not require constant attention to the forward roadway; a surplus of
visual scanning capacity exists that approaches 50 percent at times
for driving (7). Because the driver’s attention might not be focused
on the forward view, he or she may not notice the visual cues that
indicate a possible rear-end collision (4). Senders et al. predict that
an observer will sample the environment at the rate information
changes and that the glance length will be dependent upon the infor-
mation in the sample (8). In general, they found that the duration of
any given glance was between 0.3 and 0.5 s and that the sampling rate
reflected uncertainty regarding the system state. A driver’s attention
to the roadway also depends on an uncertainty about the informa-
tion contained in the last forward view. This uncertainty increases
until it reaches an unacceptable level, at which time the driver will
return attention to the forward view to decrease the uncertainty
about the situation (9, 10). The uncertainty grows as a function of
the information density of the road, the velocity of the driver’s
vehicle, the rate of forgetting, and the time interval over which the
road is not being attended (9, 11). The driver’s uncertainty about
the environment also can be explained by the following simplified
equation, where ¢ is the time since the last sample and the constants
define the situation (10):

Standard deviation of memory position = o + A x ¢ 0]

For the rear-end collision situation, uncertainty grows concerning
the potential of a collision with the vehicle ahead. Collision potential
is defined as the relationship between how much distance is required
to stop and how much distance is available to stop. When the driver
is unsure that the collision potential is safe, attention is shifted back
to the roadway. The concept of collision potential is explained more
thoroughly in the discussion of information extraction and judgment.
The parameter o of the simplified uncertainty equation defines the
initial uncertainty associated with the driver’s estimate of collision
potential. This parameter can be estimated by using known uncer-
tainty in driver estimates of time-to-collision (TTC), the distance to
the lead vehicle, and the distance required to stop. The parameter A
can be estimated by analyzing eye-glance behavior of drivers per-
forming a secondary task that requires them to divert their eyes from
the road for as long as they think it is safe. The duration and timing
of glances as a function of headway and speed can be used to esti-
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mate this parameter. Once these constants have been estimated, this
equation can be used to model how the driver looks toward and away
from the driving environment.

The driver’s attention distribution has significant effects on his or
her ability to react to a possible collision situation. The driver’s re-
action time to the actions of the lead vehicle will be increased by the
amount of time required to return his or her attention to the lead vehi-
cle. This increase in reaction time includes both the time spent look-
ing away from the road and the time required to transition attention
back to the roadway. Pashler summarizes many studies of the time
course of selective attention that examine how long it takes for a cue
to initiate selective processing by location (/2). The results of these
studies suggest that the transition time for attention to the roadway
might range between 100 and 250 ms.

This component of the model can guide RECAS design by iden-
tifying the benefit a warning can provide to a periodically distracted
driver by redirecting attention to the roadway. This can be accom-
plished by comparing how long it would take the driver to return
attention to the roadway with and without the warning.

In summary, the attention component of ARCAM converts colli-
sion potential and time since the last sampling of the roadway into
a level of uncertainty that guides drivers to direct their attention to
the road. It also identifies the delays associated with this process,
including the time required to switch attention to the roadway.

Information Extraction and Judgment

The second component of the driver model describes the informa-
tion extraction from the environment and the judgment of the need
to brake. An early description of driver behavior provides a theoret-
ical framework for explaining how drivers decide to decelerate (13).
This theoretical framework describes the driver as attempting to
move through the environment that is represented as a field of safe
travel. This field is specified by visual information, and the driver
moves along a path that avoids obstacles that would impede loco-
motion. This path follows the field of safe travel, which is a combi-
nation of all paths that the driver can take unimpeded. The field of
safe travel has a positive “valence” with the center of the path hav-
ing the highest positive valence, whereas obstacles have negative
valences. The destination of the driver also has a large positive
valence, which controls the overall course of the vehicle. The field
of safe travel is not static and moves with the vehicle. It is indepen-
dent of driver perceptions and describes the physical characteristics
of the vehicle and the environment that govern safe travel. For lon-
gitudinal control, the field of safe travel extends to where the lead
vehicle would be in the time taken for the driver to stop the vehicle.
The driver uses a preferred normal deceleration as the basis for
this determination. A good estimate of this normal braking level
is 0.20 g (14).

The premise of the field theory of driving is that the driver will
attempt to follow this field of safe travel, thus avoiding other vehi-
cles and obstacles in the roadway. The driver does this through
steering adjustments and velocity corrections. For steering adjust-
ments, steering can be considered “a perceptually governed series
of reactions by the driver of such a sort as to keep the car headed into
the middle of the field of safe travel” (15, p. 122). The deceleration
of the vehicle is controlled by the index of cautiousness (IC), which
is the ratio between the field of safe travel (FST) and the minimum
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stopping distance (MSD). The inverse of the index of cautiousness
is the collision potential (CP). This relationship is defined as

IC = __1_ = _-—FST = FZST )
CP MSD -v'/2a

where V is the velocity of the driver’s vehicle and a is the preferred
acceleration for stopping. As the field of safe travel is reduced, the
collision potential increases, and the driver reduces speed to keep
the stopping distance less than the length of the field of safe travel.

To determine the field of safe travel and one’s position in it, the
driver periodically samples the forward view and makes judgments
concerning the field and possible collisions. The attention module
implies that no detection of dangerous situations can occur unti the
driver attends to the forward view in order to process the information
(16, 17). After attention is returned to the roadway, the driver must
use perceptual cues to detect dangerous situations. There are two
main perceptual cues that can be used in detecting collisions: tau (t)
and critical expansion rate (CER). Both T and CER are employed
in determining the field of safe travel and the collision potential.

CER is defined as the rate of change of the angular size of an
object (18). The threshold for drivers’ ability to detect relative motion
(expansion rate) is 0.003 rad/s (79). Below this critical expansion rate,
the driver is unable to determine that the range between the vehi-
cles is being reduced. When this value is exceeded, the driver can
detect a change in the field of safe travel and a potential collision
situation.

When the driver can detect the relative motion between the vehi-
cles, T is used to aid in judging impending collisions. The ratio of
angular size to the angular expansion rate defines 1. Tau has been
used to describe how a person perceives and reacts to collision situ-
ations (20). In a small-angle situation, T corresponds with time-to-
collision. Tau is used to estimate collision potential by defining the
extent of the field of safe travel:

EST = R + (v + ij - 3)
TTC ’

where R is the range to the vehicle ahead and 1* is the time required
for the driver’s vehicle to brake to a stop. However, the driver’s abil-
ity to estimate TTC is imprecise. This error in estimating TTC ranges
from 1 s at low speeds to 0.4 s at higher speeds (2/). This error
accounts for some of the initial uncertainty about collision potential
and could result in an increased reaction time or failure to respond to
a collision situation.

Signal detection theory (SDT) translates the index of cautiousness
into a decision to adjust velocity (22). SDT describes this process
with two parameters, d’ and . The d’ parameter reflects the preci-
sion of drivers’ estimates of the index of cautiousness, and P reflects
the criterion that, when crossed, triggers a decision. The criterion
reflects the driver’s degree of conservatism, whereas sensitivity is
related to the severity of the collision situation (i.e., more severe col-
lision situations have a greater chance of detecting the need to brake
than less severe situations). The sensitivity and criterion for the
model can be varied to examine many different types of drivers, that
is, drivers with differing visual abilities and driving styles. When the
index of cautiousness exceeds the driver’s criterion, then the driver
will begin to slow to avoid a collision. If the threshold has not been
exceeded, then the driver will continue driving normally. SDT makes
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explicit the fact that sometimes drivers respond to conditions that do
not warrant it, yet at other times responding too late or not at all.

This component of ARCAM can help identify situations in which
RECAS can provide the greatest benefit to drivers. Specifically,
combinations of headway, speed, and lead-vehicle deceleration that
may be particularly difficult for drivers to estimate collision potential
accurately can be identified.

In summary, the information extraction and judgment component
of the model converts environmental information such as T and CER
into a decision concerning the need to decelerate and collision poten-
tial. It also identifies the delays associated with this component,
which include the time required to extract the information from the
environment.

Response Selection

The third component of the model describes the driver response
based on the judgment made in the information extraction and judg-
ment component. If a potential collision has been detected, the driver
may respond by releasing the accelerator, applying the brakes, and
steering the vehicle. The driver’s response is influenced by the exist-
ing conditions and physical limitations of the vehicle (deceleration
rates). If the driver responds early enough, the option of either steer-
ing or braking is available. But if the driver responds too late, the only
option will be to steer to avoid the vehicle; however, this is not always
possible due to the presence of other vehicles and roadside obstacles
and terrain.

The braking portion of the response has not been easy to quantify
(23-26). The exact mechanism used for modulating braking response
has remained mostly undefined. Previous research suggests that
braking depends on a driver’s perception of optic flow (23) and the
rate of change of range and range rate (26). The field theory of driv-
ing provides a useful foundation to define driver response (/3). For
each driver, there is a level of index of cautiousness (IC) that the
driver prefers to maintain; this level of IC is the critical (IC¢) value
for the driver. Driver response depends on situational severity, which
can be defined relative to IC.:

Situational severity = CP x IC, )

When the decision has been made not to decelerate, the driver
maintains speed by keeping the accelerator pedal depressed. When
a decision to decelerate has been made and the situational severity is
approximately 1, the driver releases the accelerator pedal but does
not apply the brakes. When the decision to decelerate has been made
and the situational severity is greater than 1, the driver applies the
brakes and decelerates. The level of deceleration and speed of tran-
sition from accelerator to brake are determined based on preferred
normal deceleration and the situational severity. Deceleration is con-
tinued until the collision potential has been reduced to an acceptable
level—CP x ICr < 1.

Although there are a number of models of driver steering, the
obstacle avoidance model may best explain driver steering in this situ-
ation (27). This model explains obstacle avoidance as lane change,
control in the other lane, and return to the original lane. This model
is based upon a steering response initiated by an error between the
desired path of the vehicle and its current centerline. This model
allows for steering to avoid the obstacle using a control theory mech-
anism and may be useful in predicting steering response to a slowing
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or stopped vehicle. However, this steering model must be integrated
with the braking portion of driver response.

Most descriptions of drivers’ response to RECAS assume a step-
braking response. This element of the model will help determine
how a closed-loop braking response affects the benefit of RECAS.

In summary, the response selection component of the model con-
verts collision potential into deceleration. In addition, it specifies
delays associated with moving from the accelerator to the brake and
depressing the brake.

Mode! Outputs: Reaction Time and Response

Providing a framework for better understanding and predicting driver
reaction time in rear-end collision situations is an important contri-
bution of ARCAM. Driver information processing and motor control
introduce delays in each component of ARCAM. Many studies have
been conducted that examine the perception-reaction time (PRT),
generating widely varying estimates. ARCAM may help reconcile
these results so they can be applied to RECAS design. The PRT
includes all delays associated with the model from information
extraction through reaction. The time delay associated with each com-
ponent of ARCAM suggests that for a braking response, the PRT is
influenced by whether the driver is expecting the event or not, the spe-
cific perceptual characteristic of the situation, and the severity of the
situation. When the driver is alerted to an event, the PRT will be less
than if not alerted. In a study by Johannson and Rumar, it is suggested
that when braking is anticipated, a correction factor of 1.35 s must be
added to find the unalerted PRT (28). This 1.35-s correction factor
was validated on Jowa driving simulator experiments in which the
baseline reaction-time values were 2.34 to 2.53 s for an “unexpected”
event (29). Based upon the model of the driver, this correction factor
for reaction time may be attributed to a delay in attending to the road
(attention module) relative to the alerted case.

A reexamination of the data obtained by McGehee et al. provides
additional information about how a driver responds to a RECAS
warning (29). The drivers’ mean response to a RECAS warning, for
a stopped lead vehicle, was 0.29 s to accelerator release, 0.90 s to
brake application, and 2.32 s to maximum brake application. The
mean time between brake application and maximum braking was
1.41 s for drivers with RECAS. Additionally, the 90th percentile time
to brake application was 1.3 and 1.6 s for the two RECAS conditions
examined in that study.

Another study that examined response to a lead-vehicle-moving
scenario produced similar findings, but the mean response for
accelerator release was 1.2 s instead of the 0.3 s found for the lead-
vehicle-stopped scenario. This reaction time reflects a less severe
lead-vehicle-moving scenario, thus allowing the driver more time
to respond. Additionally, this study found that improvements in
driver response were mainly the result of changes in initial accelera-
tor release (McGehee, Lee, and Brown, unpublished data). This range
of results is consistent with the predictions of ARCAM. Experimen-
tal situations will affect drivers’ reaction time and response through
the mechanisms of attention, perception, and motor control limits.

FINDINGS

ARCAM is a conceptual tool that can examine the rear-end collision
situation and identify the implications for design and evaluation of
RECAS. There are two main areas of interest in this regard: the
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validity of the conceptual model and the evaluation of RECAS
warning effectiveness.

Validity of Conceptual Maodel

The closed-loop structure of ARCAM is an important contribution
to its validity. Current algorithms and models assume that drivers do
not adjust their response after making the initial decision. Data from
recent studies examining RECAS show that drivers respond in a
closed-loop fashion to rear-end collision situations. If the response to
arear-end collision were an open-loop process, it would be expected
that the driver would make an initial reaction and then the response
would remain unchanged; whereas, in a closed-loop process, the
driver adjusts the response based upon new information. In a recent
study, McGehee et al. found that 21 of 30 drivers made adjustments
following the initial reaction (29). Figure 3 plots six variables for 7 s
for one driver’s response to a collision situation. The figure shows that
the driver’s first response is to brake. The driver then releases the
brake somewhat and begins a steering maneuver; during this steering
maneuvet, the driver then increases brake application to avoid the col-
lision. This response suggests that the driver is adjusting the response
based upon changes in the driving environment.

Reaction-time data also provide support for the closed-loop
nature of the response. Specifically, the data show that drivers
adjust the brake pressure based upon the current state of the envi-
ronment; they do not make a simple step-brake response when they
begin braking. For example, the time between initial brake appli-
cation and maximum braking is 1.4 s (29). This reflects a braking
profile that is modulated by the driver’s perception of the collision
situation. This implies that the driver does indeed act as a closed-loop
system, consistent with ARCAM.

The reexamination of the data in McGehee et al. provides addi-
tional validation of ARCAM (29). The data show that the driver
does not immediately brake following the initial accelerator release;
instead 0.6 s expires before the driver brakes. This delay reflects a
process of information extraction and judgment. This characteristic
of the model, validated with empirical data, is important because it
shows that warnings may only return the driver’s attention back to the
roadway to obtain information rather than directing a response. The
closed-loop nature of the driver’s response to the RECAS warning,
the delay between accelerator release and initial braking response, and
the braking profile all provide validation for the conceptual model.

Effectiveness of RECAS Warnings

ARCAM has important implications for the design of RECAS.
Specifically, the effectiveness of a RECAS warning depends on
how drivers interpret the warning. One possibility is that the warn-
ing focuses the driver’s attention to the roadway. Another possi-
bility is that it causes the driver to immediately react. How an alert
or a warning causes the driver to react has significant implications
for the design of a system. For example, if the warning causes the
driver to react immediately, the reaction time, from accelerator to
brake, will be relatively small. However, if the warning causes the
driver to process information from the environment, then that re-
action time will be longer while the driver extracts information
from the environment.

The model described in this paper contains several important
features that support an accurate prediction of driver response. For
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FIGURE 3 Closed-loop response to a rear-end collision situation.

example, the intermittent selective focus of attention and the un-
certainty growth function describe a potential mechanism underlying
inattention. These features provide a means of augmenting a RECAS
warning algorithm to account for this inattention and determining the
benefits that could be achieved. The information extraction and judg-
ment process defines how T and CER can be used to define the field
of safe travel for the driver and the potential for colliding with the
lead vehicle. This provides for identification of the circumstances
under which drivers may misperceive the situation and RECAS will
be most beneficial. The use of collision potential in directing the
response selection process allows ARCAM to reflect the complex
closed-loop braking profiles used by drivers. These complex decel-
eration profiles will allow for a more accurate prediction of the
benefits of RECAS. These features provide a basis for ARCAM to
improve RECAS warnings.

CONCLUSION

ARCAM brings together empirical findings from several studies to
provide a solid basis for examining how the driver interacts with
RECAS. Existing data validate the basic structure of ARCAM by
showing that the driver operates in a closed-loop manner, adjusting
the initial response as a result of subsequent observations. It also is
clear that the RECAS warning causes the driver to extract informa-
tion from the environment before reacting. These findings provide
initial validation for the conceptual model of the driver that has been
developed. The components of ARCAM provide a structure for
interpreting conflicting reaction-time data and also provide several
important recommendations for the design of warning algorithms
and displays.
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Findings on the Approach Process

Between Vehicles

Implications for Collision Warning

Mark A. Brackstone, Beshr Sultan, and Michael McDonald

Over the past 10 years there has been a growing body of research into
modeling and describing driving behavior, particularly for situations
that occur on motorways. This interest has arisen from the need to assess
safety and capacity benefits that could be produced by changes to road
design, operation, signage, and in-vehicle advanced transport telematics,
such as collision warning (CW) or autonomous cruise control. For the
most part these investigations have focused on “close” or “car” fol-
lowing, which describes the maintenance of a time- or distance-based
following headway. However, often overlooked, and of equal impor-
tance, is the “approach” process, describing how a driver decelerates
when approaching a slower vehicle. There are several competing theo-
ries of the behavioral basis underlying this process, including, for
example, those based on time-to-collision or optic flow. There are,
however, very few data against which such models can be assessed and
systems designed. Presented are the results from an exploratory,
instrumented vehicle study designed to assess approach mechanisms.
The two key features of the process are explored: the circumstances
under which driver deceleration is instigated, and the process govern-
ing the control of the deceleration itself. Finally, there is a brief assess-
ment of the implications of these findings for the design of CW systems,
in which realistic warnings may prove vital to their acceptance by the
driving public.

Increasing pressure to alleviate congestion and reduce the frequency
and severity of accidents has led over the past 10 years to increased
investment in advanced transport telematics technologies. One par-
ticular subgroup of these systems, generally termed “advanced vehi-
cle control and safety systems,” is designed to advise motorway
drivers about safe following distances and the existence of poten-
tially dangerous closing situations (collision warning, or CW) (J).
In some systems, intervention can occur by controlling the throttle
or brake to achieve “safe” conditions (autonomous cruise control, or
ACC) (2). An increased understanding of “normative” driver behav-
ior clearly is essential to the design and assessment of such systems,
for the following reasons:

¢ To allow the compilation of accurate driver models that may be
used to assess the impact of such systems, either at an individual
vehicle-vehicle level (3) or at a greater scale through microscopic
simulation (4); and

e To allow the design of systems that are realistic, that is, ones
that mimic true human responses while removing error through
misperception or delay.

Transportation Research Group, Department of Civil and Environmental Engi-
neering, University of Southampton, Southampton 5017 1BJ, United Kingdom.

Although a substantial amount of research has been performed or
is underway in the examination of the “following” process relevant
to ACC (5), comparatively little has been published concerning the
“approach” or closing process critical to the design of CW. A vari-
ety of studies is now underway into the quantification of the rear-
end collision problem through epidemiological studies (6), and there
is ample evidence in terms of accident figures to justify increased
attention to this area (7). Additionally, the causative elements of
accidents or “close calls” arising during approach have been well
explored both qualitatively (8) and quantitatively, through investi-
gations into driver visual search patterns (9) and misperceptions of
relative motion cues (10). There are, however, few sources that have
attempted to measure the process itself.

Additionally, a distinction must be drawn between measuring
driver actions on approach (when the driver decided to instigate decel-
eration) and at the point at which the driver perceived the approach.
The latter may be several seconds before the former, and the delay
imposed between perception and action will involve physical move-
ment times as well as a potential delay until the driver decides that
the approach has become sufficiently “critical” to warrant action.
Although many experiments have been performed according to the
“perception paradigm,” it is the action itself that is of interest to the
authors, as it is this that any CW system should seek to replicate. It
is, however, instructive to pursue the investigations using the per-
ception variables in addition to those used in conventional engineer-
ing, as this may contribute to the formulation of a coherent model of
behavior, and indeed the literature leads these authors to examine
two basic measures with which the driver may relate.

The first indicator may be the optic flow 6,, the rate of change of 8,
the apparent visual angle of the vehicle ahead with respect to time (¢).
This is approximated as 6,=-W.DV/DX?, with W the effective width
of the lead vehicle, DX the distance between that vehicle and the
observer, and DV the relative speed between them (a negative value
indicating closing). Note that in this paper the optic flow is stated in
units of milliradians per second (mr/s). It is quite logical that decel-
eration could not begin until it is possible for the driver to perceive
this relative motion—that is, when 6, exceeds a threshold, com-
monly held to be around 3 mr/s (1 /). Studies of this variable are well
known and have been in place in driver behavioral models for sev-
eral decades (/2-14), and the approach has been adopted by
Leutzbach and Wiedemann (/5) and others as the basis for a series
of simulation models used in traffic engineering and control.

The second and perhaps more obvious indicator of the urgency or
criticality of the approach process is that of time-to-collision (TTC),
which is the time after which a collision would occur if both vehi-
cles were to continue at the same speed (/6). This may be derived
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simply as TTC = DX/DV, or TTC = 6/6,. Research here has consis-
tently shown that drivers have a tendency to underestimate TTC, at
times by as much as 60 percent (I7) [although other research has
indicated that this may only be true when the driver is on a collision
course (/8)], and that additionally there may be a dependence on
ground speed (1), initial observation distance (/9), and closing
speed (20).

Although a theoretical model has been proposed by Lee (/4) con-
cerning the relationship between the point at which the driver com-
mences deceleration in terms of TTC (TTC,..) and the required
magnitude of the average subsequent deceleration required to avoid
a collision, few studies have attempted to quantify this or any other
threshold that could be used in parameterizing this behavior. Of those
that have, van der Horst examined drivers decelerating to a stop from
various speeds on a test track, the drivers being instructed to wait until
the last possible second before braking, and being split into two
groups, each of which was allowed to brake only at certain levels (21).
These findings indicated that at low speeds (8.3 m/s=30km/h, a high-
approach speed from these authors’ point of view), TTCg,, may be
around 1.3 t0 2.2 s, and subsequent behavior may be characterized by
a TTC,;—the minimum value of TTC obtained—of around 0.3 to
0.7 s less. Van Winsum and Heino, using a driving simulator to exam-
ine behavior in car following at “low” speeds (40 to 60 km/h), found
that the response of a following vehicle when faced with a decelerat-
ing lead vehicle was characterized by typical TTCg,. values of 5 to
16 s with a TTC,, of 2.5 to 5 s (22). Perhaps the most interesting
study, however, is that of Spurr (23), who examined the time-series
behavior of 15 drivers in an experiment similar to that undertaken by
van der Horst. Although these individual deceleration traces seemed
on inspection to be quite erratic, on reducing these to a dimensionless
coordinate system (proportional to DV—duration of brake application
versus percentage of brake application time elapsed), it was con-
cluded that, on average, most drivers’ responses could be character-
ized by a sudden reaction up to a maximum deceleration followed by
a distinctive decay curve.

From the cited research, it is possible to conclude that although
many indications exist concerning deceleration behavior during the
approach process, few dedicated studies have been undertaken, par-
ticularly on real roads at typical speeds, leaving a substantial gap in
our knowledge of an important driving behavioral process (from a
safety standpoint at least). The study reported in this paper intends
to provide some initial data and insights on which further experi-
ments may be based. It specifically examines the circumstances
under which driver deceleration is instigated, the process governing
the control of the deceleration, and how this knowledge affects
designs currently in place for collision warning systems.

METHOD

The experiments undertaken in this paper have been performed using
an instrumented vehicle, that is, a vehicle equipped with distance-
and speed-measuring sensors, which may be driven within the traf-
fic stream as a platform from which to observe the behavior of a test
driver or adjacent road users. The vehicle has been assembled over
the past 2 years at TRG Southampton (24) and is equipped with the
following:

¢ An optical speedometer, accurate to £0.02 m/s at typical
motorway speeds.

¢ A radar range finder, fitted to the front of the vehicle to measure
the distance and relative speed between the test and lead vehicles.
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The unit has a measured accuracy of £0.2 m in range and £0.4 m/s in
relative speed.

¢ A video-audio monitoring system allowing a permanent visual
record of each experiment to be made—useful for an analysis of
macroscopic features—apparent to the driver but not detectable to
the sensors (e.g., lane, visual conditions, and lead vehicle type).

Information from each of the sensors is sent to a controller PC at
a rate of 10 Hz and recorded in 5-min blocks. Once each experi-
mental run has been finished, the logged data are directly transferred
to a removable 1-Gb cartridge and taken for analysis, where dedi-
cated processing software is used to compile time-series records of
the behavior of the instrumented vehicle and a selected radar target
(in this case, the vehicle directly ahead in the same lane).

Data for analysis in this series of experiments were collected
using three university employees, unconnected with the research,
ages 25 to 35, who drove regularly on the class of road used in this
study. Each subject drove the test vehicle on laps of a 21-km test
course on the two-lane dual carriageway A35 near Bournemouth in
the United Kingdom for approximately 45 min. The drivers were
instructed to drive at a “cruising” speed of their choice, in the near-
side lane unless otherwise instructed, and that if their path were to
become blocked by a slower vehicle, they were to decelerate as they
saw fit and follow. The time of day chosen for the experiment (typ-
ically midmorning) was selected in order to minimize flow levels
and, hence, allow a clearer interaction between the vehicles (mini-
mization of the chance of the target vehicle changing lanes or other
vehicles moving into the intervening gap during the approach).
A familiarization period of approximately 30 min of each subject
with the vehicle was allowed for the duration of the 35-km drive
from the experimental base to the test site.

In total, 70 approach processes were observed, and in each case a
time series representing ground speed, DV, and DX was isolated.
Further examination of these traces was undertaken to ensure that
the lead vehicle maintained an approximately constant speed during
the approach process, in order to ensure that the behavior of the test
drivers was solely affected by changes in DX and DV caused by their
actions alone. To this end, each trace was examined, and those judged
as being “unstable” (the lead speed varied by more than 2 m/s over the
course of the series, nine in total) were removed from the analysis.
Typical cases from this examination are given in Figures 1 and 2.

ANALYSIS OF APPROACH PROCESS
Start of Approach Process

The first question to be addressed is, “At what point and under what
conditions do drivers start their approach process?” From the time
series, it is possible to isolate distinct “action points” in which the
drivers of the test vehicle start to decelerate, after which their accel-
eration becomes continuously negative, hence eliminating “throttle/
brake switch-over noise” (25), the time between zeroing the accel-
erator and activating the brake. This is presented in Figure 3. As
stated earlier, there are several candidate models that may describe
this situation, and findings concerning their validity both overall
(for all subjects combined) and individually are as follows.

Initial investigations sought to examine the relationship between
DX and DV (see Figure 4), described by a linear relationship of the
form DX = constant + gradient X DV, the coefficients of which are
presented in Table 1. An alternative relationship between DT (time
headway) and DV (see Figure 5) also was investigated, described by
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a linear relationship of the form DT = constant + gradient X DV, the
coefficients of which also are presented in Table 1. As can be seen,
neither of these models provides a particularly good fit to the data.
It is clear, then, that no simple linear relationship can adequately
describe the data sets, and therefore the values of the instantaneous
optic flow at these points, 6,, start, are examined. A strong lognormal
distribution was found from the data with a group mean of 2.0 mr/s
(through a Kolmogorov Smirnov test, KS =0.80, see Table 2). Inter-

estingly, these values are less than those suggested as minimal per-
ception thresholds in the literature, which are of the order of 2.4 to
2.7 mr/s (11, 26). It would seem highly likely that the subject may
not have assessed the situation in terms of optic flow but also may
have considered the overall dilation of the image over a period of
time, the so-called Weber ratio, A/0 ~ 0.12 (10). However, due to
the nature of the experiment, a real-road trial, the elimination of this
factor through occlusion is clearly impossible.
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approach process.

It is interesting to compare these values against those predicted
by Leutzbach and Wiedemann, who implemented a normal distri-
bution factor in their simulation model for the approach process to
produce just such a spread between a minimum and maximum thresh-
old, corresponding to 0.3 and 3.2 mr/s with an average 1.4 mr/s (/5).
This is illustrated in Figure 6, along with a new minimum threshold
of 0.8 mr/s later suggested by Reiter (27). An examination of the
dependence on DX, however, reveals that there is a strong recipro-
cal relationship between the threshold used and the intervehicle
spacing present, indicating that a more appropriate threshold may
indeed be one related to TTC, that is, a constant TTCy,,.. Indeed,
an analysis of these points reveals that they are normally distrib-
uted around a group mean of 11.70 s (standard deviation 2.29 s) to
a degree of significance of KS =0.93 (Table 2). (Although it would
be premature to comment on intersubject variability with such a
low number of subjects, it is interesting to note that the distribu-
tions of all the parameters examined were found to be identical for
each subject at the p < 0.05 confidence level.)

Control of Approach Process

The second issue to be addressed is how the driver decelerates to
approach the lead vehicle smoothly once the approach process has

TABLE 1 Coefficient Table for Deceleration Action Points

Fit parameter

Model Subject Constant Gradient P

DV-DX  Subject 1 -3.19 -0.057 0.66
Subject 2 -3.15 -0.0537 0.56
Subject 3 -1.62 -0.068 0.70
Overall -2.71 -0.060 0.66

DT-DV  Subject 1 027 -0.31 0.64
Subject 2 0.69 -0.30 0.47
Subject 3 0.86 -0.27 0.63
Overall 0.59 -0.29 0.58

begun. The initial step taken to examine this process was to plot the
deceleration time profiles in dimensionless coordinates following
Spurr (23); for an example, see Figure 7. In contrast to his conclu-
sions, however, the authors find that there is a great deal of variation
in the observed profiles, and in some cases the first peak of the pro-
file is not the maximum value, with that occurring at a second or
sometimes third peak. The degree of variation observed is indeed
highly significant and at times may change from deceleration to
acceleration. The reasons for this reversal in behavior will be dis-
cussed later. A significant effect is found, however, on examination
of the values of TTC,,;, where a distinct lognormal grouping is found
with a group mean of 8.41 s (KS = 0.63), demonstrated in Table 2.
The value taken by TTC,,, has an obvious relationship to the max-
imal deceleration (DC,,) observed during this time (the later a
driver brakes, the harder he must decelerate). Indeed, DC,,, is found
to decrease almost linearly with TTC,, with an 72 of ~ 0.6, where
a lognormal distribution is again observed with a group mean of
—0.87 m/s? (KS = 0.64), as shown in Table 2.

IMPLICATIONS FOR COLLISION
WARNING SYSTEMS

Despite a substantial body of work in the assessment of potential
benefits of CW as an aid to headway observation (28, 29), there is
little work available in the establishment of such systems for long-
range warnings such as those that would be required by an inatten-
tive driver during approach. The few references that are available,
which are primarily reports on work performed by Japanese car
manufacturers, reveal a number of interesting features, shown in
Figures 8 and 9.

To begin with, if this paper’s data are compared with a theoretical
warning line (30) based on simple newtonian equations of motion and
reaction times, it is seen that in the majority of cases, the test drivers
would have crossed such a threshold, primarily on account of their
willingness to use a greater level of deceleration than may otherwise
have been predicted. Turning attention to empirical investigations,
it is found that a variety of experiments have been undertaken. Fujita
et al. conducted a collision avoidance test, measuring when drivers
approaching a stationary obstacle altered their course in order to
steer around it; and a warning line, which approximately delineated
the closest conditions that a driver would attain for a given speed
before responding, was fitted to these data points (3/). Comparing
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approach process.

this relationship with the present study’s response points reveals a
good match at lower approach speeds (< —10 m/s). However, the
Fujita results would appear to be somewhat too “close” above these
speeds, whereas this study’s drivers already had started decelerating
up to 20 to 40 m (~1.5 to 3 s) earlier.

Kuge and Ueno conducted an experiment very similar to the cur-
rent one on a test track using a confederate lead vehicle and a range
of specified approach speeds, finding in general an approximately

TABLE 2 Statistics for the Distribution of Key Parameters
Associated with the Approach Process

Stats.
Parameter + Subject Mean StDev. KSs*
Distrib. tested
Busun (mrs?)  Subject 1 222 116 0.96
lognormal Subject 2 1.84 0.72 0.91
Subject 3 1.86 0.82 045
Overall 2.00 0.95 0.80
TTCstant Subject 1 11.20 248 0.88
normal Subject 2 12.02 2.38 0.84
Subject 3 12.00 2.03 0.88
Overall 11.70 2.29 0.93
TTCrin Subject 1 7.72 1.57 0.84
lognormal Subject 2 7.82 1.89 0.95
Subject 3 9.40 2.55 0.95
Overall 8.41 2.01 0.63
DCrax Subject 1 -0.89 0.32 0.55
lognormal Subject 2 -0.82 0.34 0.71
Subject 3 -0.88 0.37 0.99
Overall -0.87 0.34 0.64

“KS: Kolmororov Smimov statistic.
® mrfs: milliradians per second.

linear relationship for the deceleration action point with compara-
tively little variation across the speeds tested—40 to 80 km/h ~11
to 22 m/s (32). The discrepancies between these findings and the
current study may be due to the lower speeds and differences in
experimental conditions (test track versus real road). Further ver-
ification of the overall magnitude of the current findings is given by
Hasimoto et al., who, using five test drivers approaching a moving
vehicle on a test track, found that deceleration commenced at a head-
way of 2.4 t0 4.5 s for a DV of 10 to 40 km/h and at ground speeds of
40 to 70 km/h (33). Although no details are given on the dependency
of these figures on DV or ground speed, this would be equivalent in
the current experiments to a distance of 77 to 104 m. This provides a
good maich at the lower speeds, though it would appear to be a bit
low at higher speeds.

A number of other formulations also are available, although in
most cases experimental data are absent, at least in the published
sources. For example, Watanabe et al. have put forward two rela-
tionships relating distance to approach and ground speed, with the
condition for speeds over about 70 km/h, producing a linear relation-
ship (34). Although suitable for closing speeds over about 10 m/s,
they would seem to introduce decelerations too early below these
speeds. (In some cases a warning would appear at 40 m, or about 9 s
before the point at which the driver would start to brake.) To a certain
extent this is due to the fact that the CW actuator system is not able to
use braking as part of the deceleration process and is limited to throt-
tle control and downshifting, and hence it must start decelerating ear-
lier in some instances. Whether a driver would accept this limitation
as a reason for a “premature” deceleration is another matter.

An alternative formulation is offered by McGehee (35) and eval-
uated as an aid to headway maintenance by Dingus et al. (29), in
which a graduated series of warnings is offered to the driver con-
sisting of colored bars and icons, the color of which is dependent
on the closing situation (Figure 9). As can be seen, such a warning
system may be quite valuable, particularly over closing speeds of
around 10 m/s when the activation of the warning system alone may
act to alert the driver that he has passed his usual deceleration point.
Below such a closing speed, however, there may be both advantages
and disadvantages to such a system. There are a number of points
(13) in which the driver would have decelerated in the orange/amber
zone, and the presence of this warning may eventually result in the
driver decelerating earlier, resulting in a “safer approach.” There are
a large number of points in the green zone, however, and this may
cause a problem in that a driver may not take such a warning in a
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positive way and modify his or her behavior but would instead view
the system as being intrusive.

CONCLUSIONS

From these findings, it is possible to come to clear conclusions
regarding the approach process on motorways, namely that it may
be described by a process characterized by

o A set TTCyun, characterizing when drivers may start decelerat-
ing, which differs with each event and may be drawn from a normal
distribution of mean 11.7 s; and

¢ A particular TTC,,;,, again differing for each event and drawn
from a lognormal distribution with a mean of 8.4 s, characterizing
the maximum criticality that is likely to be acceptable.

(Itis clearly open to debate whether TTC,;, is the true second char-
acterizing measure in the process, as it is equally valid to state that
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the driver is decelerating at a subjectively judged comfortable
value and that TTC,, is merely the result of this factor combined
with the particular choice of TTCqy, in each instance. For CW design,
however, this is a moot point.)

Clearly, the experiment itself is not without weaknesses. Over and
above the issue of sample size, it is possible to question the deriva-
tion of the start points, as these have been subjectively extracted from
the time-series traces. A more exacting method should involve direct
monitoring of brake/accelerator displacement and pressure. These
criticisms aside, the authors believe that this experiment has sig-
nificantly increased their understanding of the process concerned.
It is tempting to undertake a more exhaustive analysis of the decel-
eration traces in an attempt to understand the relationship between
the magnitude and temporal placements of each of the maximum
and secondary peaks. However, a cursory examination of the traces
in Figure 7 does not encourage such an investigation, and, indeed,
attempts made by Spurr to find a more detailed relationship between
braking magnitude and external conditions over time did not suc-
ceed (23). Additionally, although it is possible to examine the impli-
cations of the current data to a warning in a situation in which the lead
vehicle brakes, the authors believe this would be misleading, with a
large number of additional variables likely to be present that would
impact behavior, such as anticipation and brake-light activation.

Comparison of these features with those that would be used as the
basis of CW systems under development has revealed that although
some provide suitably positioned warnings, others may alert the
driver far too early. This has important implications for system
effectiveness, as the driver may choose to deactivate the system if
it is perceived to be providing unnecessary advice. These are impor-
tant issues that must be further addressed before marketing of CW
can begin.

It is the authors’ belief that, although far from conclusive, their
findings have given a good indication of the factors (and their mag-
nitudes) that should be used in modeling this process. Work will
continue in the next few years in increasing the statistical validity of
the model formulated, deriving a suitable CW threshold, and, per-
haps more importantly, relating the end of the closing process to the
start of car following.
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Emergence of a Cognitive

Car-Following Driver Model
Application to Rear-End Crashes with a

Stopped Lead Vehicle

James A. Misener, H.-S. Jacob Tsao, Bongsob Song, and Aaron Steinfeld

Rear-end crashes are a major roadway safety problem, and the poten-
tial of crash countermeasures to address this has long been recognized.
High-frequency or severe-consequence scenarios are focused on the
general lead-vehicle-not-moving (LVNM) case and specific crash sce-
narios. Operating scenarios are identified, and frequencies are assessed.
From these, a small number of prevalent LVNM crash scenarios are iden-
tified as the focus for subsequent model development and crash counter-
measure efforts, These scenarios suggest nominal atmospheric, roadway,
lighting, vehicle, and driver conditions in designing cost-effective safety
features to avoid LVNM rear-end crashes. From this, emergent models
for cognitive car following are developed, based on fusing current knowl-
edge. This will serve as a foundation for further model development
efforts as well as for future human-factors experiments.

It is widely acknowledged that the rear-end crash problem is ripe for
potential crash countermeasure systems. Because up to one-quarter of
all crashes involving two or more vehicles are rear-end collisions (/)
and because automotive forward-sensing systems are becoming avail-
able, rear-end collision avoidance systems (CASs) could yield sig-
nificant benefit, probably sooner than a CAS for other crash types.
With this as a primary motivation, considerable research has been
devoted in the past to the rear-end crash problem and from a variety
of perspectives: to establish a case for rear-end collision warning sys-
tems (1), to further this case by estimating societal benefits of such
systems (2), and also to critically examine warning system human-
interface specifics such as frequency and timing (3). Along the way,
a body of crash-causing statistics and scenarios has been generated
(4-6), and it has been used in several analyses to assess the efficacy
of rear-end crash countermeasures (7, 8). The state of knowledge
acquired from this research is summarized quite well in Dingus (9).
In a complimentary tack, automated rear-end CASs also have been
examined. Different assumptions and designs have been reported
with varying degrees of automated intervention (/0—12), but a com-
mon thread is the baseline investigation of the magnitude of the prob-
lem, generated from several studies (I, 4-6).

This paper’s focus is those rear-end crashes in which the lead vehi-
cle is not moving or stopped prior to the crash. Such crashes have been
referred to as lead-vehicle-not-moving (LLVNM) rear-end crashes.
(For convenience, LVNM rear-end crashes will be referred to simply
as LVNM crashes.) To design vehicle features that provide significant

J. A. Misener, B. Song, and A. Steinfeld, California PATH, Institute of Trans-
portation Studies, University of California at Berkeley, Richmond Field Station,
1357 South 46th Street, Building 452, Richmond, CA 94804-4638. H.-S. J. Tsao,
Department of Computer, Information and Systems Engineering, San Jose State
University, One Washington Square, San Jose, CA 95192-0180.

safety gain against LVNM rear-end crashes, major crash scenarios
must be identified and their frequency and severity assessed. Thus,
this research identified a small number of highest-frequency LVNM
crash scenarios based primarily on National Accident Sampling Sys-
tem (NASS) General Estimates System (GES) data. Although a sig-
nificant portion of the LVNM crashes occurred under off-nominal
conditions—for example, in darkness, on a wet surface, on curved
roads, or with an impaired driver—the majority of LVNM crashes
occurred under benign circumstances. This motivated the authors’
approach of focusing on nominal driving conditions but ensuring the
extensibility of the models to off-nominal conditions.

Identifying major LVNM crash scenarios alone is not sufficient for
the purpose of identifying and developing advanced technologies to
avoid LVNM crashes. Pertinent human perception and cognition
need to be understood, and, specifically, the factors leading to decel-
eration decision making need to be identified. Simply put, designing
safety features to assist the driver requires a clear understanding of
relevant driver behavior. In the context of determining appropriate
crash countermeasures for the highest-frequency LVNM scenarios,
this points to the importance of accurate models for drivers’ detection
of a stopped vehicle ahead and deceleration decision making in such
nominal conditions. Based on current knowledge about human cog-
nitive processes and performance, the authors identified or developed
several such models.

Their work differs from that reported above in two significant
respects:

e The focus of this study is on the rear-end crash scenario, with
the assumption that the researchers can understand—and eventually
affect—crash countermeasures or roadway design changes within
specific geometric configurations.

¢ To understand driver behavior for the purpose of developing
vehicle features to assist the driver in avoiding LVNM crashes, this
study develops cognitive driver-following models and deceleration
decision-making models for drivers as they encounter a rear-end
crash situation. They are embodied in closed-form mathematical
models, with assumptions of the motivations and control objectives
of drivers, which are intended to be implemented in an “intelligent
vehicle” microsimulation (/3). ’

In the next section, the crash-epidemiological database is reexam-
ined with a renewed focus in understanding the highest-frequency
rear-end crash scenario (and variants), along with accompanying
categories and variables. The roles of some key variables in scenario
construction are discussed in the following section, with an empha-
sis on their relevance to driver and vehicle characteristics. Then the
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subsequent section develops the underpinnings of a driver car-
following model to analyze specific rear-end collision scenarios.
Finally, concluding remarks, including a discussion of future work,
are given in the last section.

DEFINING SCOPE: SCENARIOS AND FACTORS
OF REAR-END CRASHES

Rear-End Crash Scenarios

The immediate focus is on LVNM crashes because of the high pro-
portion of such crashes reported in the latest available (1997) NASS
GES (10,009 LVNM crashes from a sample of 55,562 represented
crashes) (/4). The authors chose not to address the companion
severity and likelihood components in determining LVNM crash
scenarios. They also recognize that an LVNM crash may involve
three or more vehicles and, actually, multiple LVNM vehicles. Only
the initial rear-end collision is considered because crash counter-
measures are presumed to be most effective in warning and control
up to the crash. Nevertheless, postcrash control to avoid secondary
crashes also may be possible, as shown in Chan and Tan (I5).

To ensure a complete and rigorous analysis of crash data in identi-
fying highest-frequency LVNM crash scenarios, the authors exam-
ined all possible building blocks or variables for scenario construction
that can be reconstructed and analyzed with the 1994 and 1997 NASS
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GES databases. The analysis was guided by the results reported in
Kanipling et al. based on 1990 NASS GES data (/6). In fact, the vast
majority of their observations and analysis results remains valid
through the years and has been used in the current analysis when
appropriate. The current definitions differ only in that Knipling et al.
use the term lead-vehicle stationary instead of this study’s LVNM.
(In an LVNM crash, the struck vehicle may have just slowed down to
a complete stop before being struck or may have been stationary for
a longer period of time. The data item “Accident Type” in the GES
does not distinguish the two. Other data items may be used to infer
the precrash activity of the struck vehicle, but only vaguely.)

The four most frequent LVNM scenarios are listed in Table 1,
with totals and frequencies based on the 10,009 LVNM crashes
reported from 1997 GES data given in parentheses. The rationale
behind selecting these four scenarios will be discussed. Note that
nearly 75 percent of all LNVM crashes fall within the first two
scenarios. For this reason, this paper will further focus on “near
intersection” and “midblock” nonfreeway scenarios.

Rear-End Crash Factors

The 1997 GES was systematically examined to identify crash sce-
narios. The objective was to focus on key variables to efficiently sort
the important causal variables of crashes, along with correlations. In
this manner, the authors arrived at categories and the importance of

TABLE 1 Four Most Frequent LVNM Scenarios (14)
SCENARIO 1: “NEAR SCENARIO 2: SCENARIO 3: SCENARIO 4: “NON-
INTERSECTION” “MIDBLOCK” “FREEWAY” INTERSECTION
JUCTION”

The struck vehicle
stopped at or near an
intersection.

(4,274; 43%)

The struck vehicle
stopped due to traffic
congestion or at the
end of a long queue of
vehicles waiting to pass

The struck vehicle
stopped on a freeway.
(1828; 18%)

The struck vehicle
stopped at a non-
intersection junction,
e.g., a junction
between a regular

through an roadway and a
intersection. driveway, an alleyway,
(3080; 31%) or a ramp, Or an
unknown type of
junction.
(827, 8%)

e Scenario l.1:
stopped at or near a
signal (2,539; 25%)

e Scenario 1.2:
stopped at or near a
stop sign (542; 5%)

e Scenario 1.3:
stopped at an
intersection with no
signals or signs in
the travel direction
(but possibly and
even likely with
signals or signs in
the crossing
directions) (111;
11%)

(A more precise
description of this
scenario is that the
struck vehicle stopped
on a non-freeway travel
lane, but was not
proximate to any
junction, e.g., an
intersection, a ramp, a
driveway, an alleyway,
railroad crossing, etc.
The current title of the
scenario is actually an
inference made based
upon this more precise
description.) '

e Scenario 3.1.
on an urban freeway
(881; 9%)

e Scenario 3.2:
on a rural freeway
(231; 2%)

e Scenario 3.3:
on an urban/rural .
freeway (716; 7%)

@ The freeways on which the crashes occurred run through both urban and rural areas in the primary sampling unit (the
basic unit of geographical area for accident reporting). The GES infers this based on the police accident reports, which
in general report only the freeway identity and the location on the freeway but not whether the accident scene is located

on an urban or rural section of the freeway.
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scenario-descriptive variables, as well as those that center about the
vehicle and the driver actions. The approach consists of the following
three steps.

Step 1: Obtain Comprehensive Listing of Possible
Crash-Causing Variables

To ensure a complete and rigorous examination of all possible sce-
narios, the authors began with a comprehensive list of variables and
the associated variable values. Not only were factors contributing to
LVNM accidents considered but also possible discriminators for
technology requirements. For example, the study considered the pos-
sibility that a striking vehicle changed lanes from a lane with slower
traffic only to find (too late) a vehicle having stopped in the destina-
tion lane. Also considered was the availability of data in developing
the list. A “stutter stop” originally was considered but was removed
from consideration because of a lack of data. The variables are listed
in Table 2 by category.

Step 2: Focus on Key Variables

To avoid dimensional explosion, the authors next focused on one
individual variable at a time and examined the (marginal) frequen-

TABLE 2 Key LVNM Crash Variables
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cies of different values. For example, they examined roadway sur-
face (dry, wet, snow, etc.) and calculated the absolute and relative
frequencies of LVNMs occurring on these types of surfaces.

Quickly removed from the next stage of consideration were all
those values of an individual variable or even an entire category of
variables that accounted for a very small percentage of all LVNM
crashes. As an example, the “disabled (stalled) or parked vehicle in
travel lane” value was removed from further consideration because
this occurred in less than 1 percent of all LVNM accidents. Also
eliminated was “Driver Impairment” (e.g., alcohol, drug, drowsi-
ness) from further consideration because this category of variables
accounted for less than 5 percent of LVNM accidents. Other such
variables removed from further consideration in this step include
“Crash Trajectory—immediately after lane change” and “Mechanical
Failure” (of striking vehicle).

Other variables also have been excluded from explicit considera-
tion in constructing the small number of highest-frequency crash sce-
narios. “Driver Age” is not considered because the goal is to develop
technologies to assist drivers of all ages, although its distribution is
much skewed and very informative. “Speed Limit” and “Speed of
Striking Vehicle Prior to Collision” are not explicitly considered
because the goal is to develop technologies to assist the driver at a
wide range of speeds. “Vehicle Type” is excluded for similar reasons.
Also, because of the focus on frequency, “Damage” is excluded,
although it, by itself, could be a criterion for a “high value” scenario.

CATEGORY 1: STRUCK LVNM VEHICLE

Variable 1.1: Reason For Stopping

traffic signal
traffic sign

traffic congestion

stutter stop

stalled or parked in travel lane (e.g., double parked)

prior to turning at intersections without signals or signs in the travel direction
stopped at the end of a long queue behind a signal or sign

parked on the shoulder or by the curb

CATEGORY 2: CONTRIBUTING FACTORS

Variable 2.1: Roadway Configuration

intersection (signalized or not)
curve
grade

type (urban highway, city streets, etc.)

Variable 2.2: Roadway Surface Conditions

Variable 2.3: Visibility

e lighting conditions
e atmospheric conditions

Variable 2.4: Speed Limit

CATEGORY 3: STRIKING VEHICLE

Variable 3.1: Driver Impairment

e  drinking

e physical/mental impairment, e.g., drowsiness
e distraction, e.g., phone, radio, passenger, etc.

Variable 3.2: Driver Age

Variable 3.3: Crash Trajectory

e same lane
e immediately after lane change

Variable 3.4: Speed Of Striking Vehicle Prior To Collision

Variable 3.5: Mechanical Failure

CATEGORY 4: VEHICLE-DESCRIPTIVE

Variable 4.1 Vehicle Types (Struck and Striking)

Variable 4.2 Damage (Severity)
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Hence, only a few variables survived this one-variable or marginal
distribution analysis. Since the focus was on frequency, rather than
likelihood, the authors temporarily removed from consideration vari-
ables such as roadway curvature, roadway grade, roadway surface
conditions, lighting condition, and atmospheric condition in defin-
ing scenarios. However, they revived their consideration to check for
possible strong correlations between the selected scenarios and these
variables.

This process led to the explicit consideration of only those vari-
ables related to “Reason for Stopping” and nominal “Roadway Con-
figuration,” all of which appear in one or more of the four scenarios
defined in Table 1.

Based on 1994 and 1997 GES data, the authors estimated the mar-
ginal distributions of the individual values of the variables listed in
Table 1. As mentioned earlier, many, but certainly not all, of these
distributions have been estimated and charted by Knipling et al. (16)
based on the 1990 GES data, and the current findings regarding
these do not deviate significantly from theirs. Note that Knipling
et al. focused on descriptive statistics whereas the current study’s goal
goes beyond that and to actually constructing highest-frequency sce-
narios for LVNM countermeasure development, based on the pre-
vious and the current additional descriptive statistics. Because of the
difference in goals and the continued validity of the earlier findings
(based on 1990 data) for the 1994 and 1997 data, the focus will be
on those additional descriptive statistics that were not addressed in
Knipling et al. and on scenario construction. The statistics provided
in Table 1 are examples of such additional descriptive statistics.

Step 3: Analyze Key Variables and Their
Interaction, Followed by Checking for Strong
Correlation Between Key Variables and
Other Variables

Based on the analysis outlined in Steps 1 and 2, the variable combi-
nations were narrowed down to those specified in the scenarios
defined in Table 1. After having reached the scenarios, the authors
checked for possible correlations between the selected scenarios and
the variables or values that were temporarily removed from consid-
eration for scenario development but still contributed significant per-
centages in the LVNM accidents—for example, wet or other slippery
roadway surface conditions, a curved roadway, a grade or hill crest,
or darkness. No such strong correlations were found to exist. It was
determined, for example, that 75 percent of the LVNMSs occurred dur-
ing daylight and that the rest occurred during either “dark and lighted”
or “dark and unlighted” conditions. Although the daylight accidents
clearly are much more frequent than their “dark” counterparts, the lat-
ter may actually have much higher occurrence likelihoods when the
volume of traffic traveling in daylight or darkness also is considered.
(The same can be said about roadway surface conditions, roadway
curvature, roadway grade, and so forth.)

However, because of the preponderance of daytime crashes,
the authors chose to focus on this kind of nominal but “high value”
scenario. Furthermore, although combining multiple adverse
conditions—for example, the combination of darkness, wet roadway
surface, curved road, hillcrest, and driver impairment—may increase
the likelihood of an LVNM crash, the probability of these conditions
occurring simultaneously is low, and hence the corresponding scenario
tends not to be a high-frequency one.
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In short, because of dimensional explosion, not all the possible
combinations of variable values were considered. However, through
examination of the marginal distributions of the individual variables
and a large number of selected possible correlations among some of
the variables, the authors were able to discern the important vari-
ables from the unimportant variables. In other words, the Pareto
phenomenon occurs, in which a small number of variables uniquely
characterize the vast majority of the LVNM accidents.

The absence of off-nominal factors in the four highest-frequency
crash scenarios led to a focus on the “fundamentals.” This is a pru-
dent approach, anyway, because countering nonnominal factors
tends to be more complex than dealing with nominal conditions.
Despite the focus on nominal conditions, models were developed
that already address, or can be extended to cover, nonnominal con-
ditions. Through the models and their validation and calibration, a
combination of human-driver and scenario-modeling parameters
can be identified and LVNM crash countermeasures developed. As
will become clearer later, the models may be useful not only for
dealing with off-nominal conditions but also for preventing rear-end
crashes in lead-vehicle-moving (LVM) scenarios.

DISCUSSION OF KEY VARIABLES

In order to determine the cognitive factors that lead to a car-following
driver model for rear-end crashes and microsimulation-based studies
based on this model, the taxonomy of key variables discussed earlier
should serve as a foundation—and also could be further embellished.
That is, of the four listed categories—"struck LVNM vehicle,” “con-
tributing factors,” “striking vehicle,” and “vehicle-descriptive”—
only the third, striking vehicle, pertains directly to the driver; the
others pertain to the description of the scenario. It still is impor-
tant to consider variations to the scenario, as better highway or
vehicle designs can yield insight to the contributing-factors and
vehicle-descriptive categories.

However, the striking-vehicle category is of primary importance to
any subsequent analysis, and the variables within that category require
more detailed discussion, which follows. Some of the other key vari-
ables also are discussed. The emphasis on “high value” scenarios led
to the focus on nominal conditions.

Driver Impairment

Approximately 3 percent of LVNM crashes reported in the 1990
GES involved charges of driving under the influence (DUI) of alco-
hol or drugs. Less than 5 percent of the LVNMs reported in either
the 1994 or 1997 GES involved driver impairment. This will be dis-
counted as the frequency of occurrence is low vis-a-vis the study’s
“high value” countermeasures and analyses approach.

It has been shown that drivers occasionally will look away with
short glances (/7). If the distracting task requires a longer time, they
typically will utilize multiple 1- to 1.5-s glances rather than one long
fixation. Thus, in normal, otherwise unimpaired driving, a distraction
latency of up to 1.5 s could be added.

Driver Age

According to the 1990 GES data, drivers between the ages of 15 and
19 were involved in 594.4 rear-end crashes per 100 million vehicle
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miles traveled, whereas all other drivers were involved in only
569.8 rear-end crashes (/6). Attributes such as higher risk taking
among younger populations, and compensatory low-risk behavior
and experience by older drivers, outweigh the younger drivers’
ability to react faster in collision-imminent situations.

Crash Trajectory

Within the GES database, there is a “Corrective Action Attempted”
data field that “describes the actions taken by the driver of this vehi-
cle in response to the impending danger.” The nonhighway cases with
this field were examined in Wiacek and Najm (5), showing that for
the top two LVNM rear-end scenarios, the majority of the drivers
made no action prior to impact (78.4 percent and 68.6 percent for each
scenario). A small percentage braked only (15.5 percent and 25.7 per-
cent), while less than 4 percent steered only or braked and steered.
Moreover, the 1990 GES data show that 87 percent of the striking
vehicles in an LVNM crash were “going straight,” with 13 percent of
them turning. The turning-left movement was almost three times as
likely to result in a rear-end crash as turning right. The fact that most
drivers do not swerve is corroborated by Hatterick and Bathurst—of
the 265 rear-end crashes they examined, the most frequent maneuver
was to steer straight and brake (18).

In Yoo et al., a simulator collision-warning study is described,
in which there was a subset of eight unwarned, unalerted subjects
who encountered a lead vehicle cutting in from a parked position on
the side of the road (19). Only one of the subjects swerved to miss
the lead vehicle; the other seven crashed and did not swerve. All
subjects applied the brakes during the incident. Finally, in Adams,
drivers’ initial response to an obstacle is to brake (20). Once begin-
ning the braking action, some drivers also added a swerve compo-
nent. It is unclear when such steering actions occur or at what angle
magnitude. However, Adams also reports on clinical studies show-
ing a relatively high incidence of steering maneuver reactions (20).
One possible reason is that most of the studies cited were con-
ducted with simulators and test tracks, thus leading to low-traffic
scenarios with limited obstacles on the side of the road. This low-
risk environment may have made swerving more acceptable to
drivers.

Thus, as an overall observation, it is probably safe to assume
that most drivers who rear-end an LVNM either make no action or
brake. It seems that a small percentage incorporates a steering
component.

Speed of Striking Vehicle Prior to Collision

In the GES, travel speed is estimated by the police. Drivers’ or wit-
nesses’ estimates in the “narrative” section of the police accident
report are supposedly not used but are still likely to influence police
estimates. Since approximately 14 percent of the LVNM cases in
1990 resulted in a charge of speeding and 27 percent for other charges,
including 3 percent for alcohol or drugs, a driver might lie lest he or
she would be charged with speeding. Still, in 70 percent of the 1990
LVNM crashes, the precrash travel speed was unknown. Among
those in which the travel speed was reported, the median was 35 km/h
(22 mph), and 2.5 percent had a precrash speed of 88.5 km/h (55 mph)
or higher. The median speed of 35 km/h (22 mph) is consistent with
the typical two nonhighway LVNM scenarios.
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Mechanica! Failure

Mechanical failures accounted for a minute percentage of LVNM
crashes and were eliminated from further consideration in this study.

Other Variables
Roadway Surface Conditions A\

According to our analysis of 1994 GES LVNM data, 73 pércent of
LVNM crashes occurred on dry roadway surfaces, with 76 percent
of interstate crashes on dry roadway surfaces and 71 percent on city
streets where signals or signs were present. Hence, the “high value”
focus of any rear-end-crash countermeasure effectiveness analysis
would be on dry roadway surfaces first, but other surface conditions
also should be considered in due course.

Visibility and Lighting Conditions

The 1990 GES data suggest that 76.5 percent of LVNM crashes
occurred during daylight. According to our analysis of 1994 GES
data, 78 percent occurred during daylight, 13 percent during dark-
but-lighted conditions, and 5 percent during dark and unlighted con-
ditions. On interstate highways, 76 percent occurred during daylight,
12 percent during dark-but-lighted conditions, and 7 percent dur-
ing dark and unlighted conditions. On city streets where signals or
signs are present, 76 percent occurred during daylight, 17 percent
during dark-but-lighted conditions, and 4 percent during dark and
unlighted conditions. In all cases, dawn and dusk were insignificant
(for LVNM crashes only). Therefore, the “high value” focus should
be on daylight.

Braking

Because of the preponderance of light-duty vehicles, they will be
our primary—but not exclusive—focus. In the Task C3(1) Interim
Report, braking distributions were derived from vehicle stopping-
distance data published in Consumer Reports and applied to sales
figures from the Automotive News Market Data Book (21). The dis-
tribution contains 2 years of domestic unit sales, 199495, with data
on maximum braking rates covering approximately 85.5 percent
of the 29,870,481 vehicles sold in the United States during those
2 years. To build these distributions of car and light truck braking rates
corresponding to dry and wet pavement conditions, the brake stopping
distances were paired with the corresponding market class and unit
sales data, then converted to deceleration rates. The mean and the stan-
dard deviation for the dry pavement test were 0.867 g and 0.059 g,
respectively. Derating factors could be applied to these data to obtain
an emergency braking distribution. It would take into account the
decreased braking capability of vehicles due to anticipated “wear and
tear” and the fact that typical drivers are not able or are not trying to
stop their vehicles as quickly as test drivers.

It has been difficult to gather data about the braking profile of
drivers in crash-imminent situations and on appropriate derating fac-
tors. However, non-emergency comfortable braking rates from the
surrounding traffic, especially in the 35-km/h (22-mph) nonhighway
traffic scenarios, can be taken from Lloyd et al., in which decelera-
tion rates of drivers approaching stop signs are measured for speeds



34  Paper No. 00-1481

of 5to 18 m/s (22). The mean and standard deviation of the decel-
eration rates of the drivers tested were found to be 0.2 g and 0.04 g,
respectively.

CAR-FOLLOWING DRIVER MODEL
FOR REAR-END CRASHES

This section describes models developed in order to understand
the human cognitive processes and deceleration decision making,
to identify possible weaknesses of a human driver, and to explore
how technological countermeasures may improve the driver’s
performance—all in the context of preventing LVNM crashes. As
mentioned earlier, despite the focus on nominal conditions, these
models already address or can be extended to cover off-nominal
conditions. In fact, they are useful not only for dealing with off-
nominal conditions but also for preventing rear-end crashes in which
the lead vehicle is moving.

Driver responses to a rear-end collision warning system will be
different from those for unassisted drivers. This study’s modeling
scheme first will utilize driver response-time distributions to describe
driver responses both with and without warnings.

A driver’s response to a forward stimulus (e.g., brake lights) is
broken into two subunits. Response time is the sum of the reaction
time (the time from the appearance of the stimulus to the removal of
the foot from the accelerator pedal) and the movement time (the time
to move the foot from the accelerator pedal to the brake pedal).
Additionally, two elements of perception should be considered in
human vision- and cognition-based detection models: acquisition
(defined for these purposes as proximal obstacle or vehicle detection
probability P, at range x) and tracking (defined for these purposes
as deceleration x’ relative to the driver). After a brief description
of nomenclature, we will propose several acquisition models and
longitudinal tracking models.

Brief Description of Nomenclature Used for
Driver Response Time

Response-time classifications are described as follows:

e Alerted: the driver is aware, ready, and expecting to brake.

e Surprised: the driver is in a neutral driving state and is respond-
ing with some degree of urgency to a surprising stimulus.

e Unalerted: the driver is in a neutral driving state and is respond-
ing to an unsurprising stimulus.

The following potential modifier also is defined:

o Distracted: The driver is not looking at the road prior to his
or her response. This latency typically will only be paired with
“surprised” or “unalerted.”

The definition listed for “alerted” is similar to that used by Olson
and Sivak (23). The drivers were told the purpose of the test and were
asked to repeat the test under alerted conditions. In the alerted con-
dition, the drivers were asked to respond as quickly as possible upon
sighting the obstacle. This distribution therefore would be classified
as alerted.

The mean unalerted response-time distribution to standard brake
lamps in traffic was reported in Sivak and Flannagan (24); the time
for in-traffic responses to brake signals from standard brake lamps
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is 1.25 s, with a standard deviation of about 0.46 s. Also, from ear-
lier in this paper, these response-time classifications can further be
modified by a distraction latency (typically 1 to 1.5 s). Since a driver
who is expecting to brake (alerted) will probably not look away,
this modifier is seen as only being used with surprised and un-
alerted (depending on how surprised the driver is upon detecting
the stimulus).

Since the model will not include perceptual impairments due to
curves, low visibility, and driver impairment (i.e., DUI), perceptual
information processing failure by the driver needs to be represented
through the driver response-time distribution. It is probably safe to
assume that the drivers who typically enter dangerous LVNM sce-
narios have some sort of misperception of the locations, speeds,
and/or accelerations involved in the event. Such drivers will be
modeled by the slow tail of the distribution since the extreme
response times (e.g., beyond three sigma) are probably a result of
such misperceptions.

Driver Response-Time Distribution
Without Warning

This distribution describes a population that has a reduced level of
alertness since there will be no advance warning of the LVNM.
Therefore, the most logical response-time classification to use for this
case is surprised. This selection is further reinforced by the fact that
data on surprised response times were collected from drivers who
were not exposed to collision warning systems (23).

Driver Response-Time Distributions With Warning

A warning display will result in a modified response-time distribu-
tion. For example, an in-dash display will require the driver to refocus
on a shorter focal distance, which can be captured in the response
time. Due to the supplementary prompting of the warning, this dis-
tribution also should describe a population that has an elevated level
of alertness.

Because it is a reasonable bound for the warned LVNM scenario,
the previously mentioned alerted response-time mean and standard
deviation will be used (23). With a salient crash-warning signal
(visual, audible, tactile, and/or haptic), it is presumed that the mean
response time of the following driver would be less than the surprised
mean, but not as low as the alerted mean.

To additionally address the change in focal distance between the
exterior road scene and an interior visual warning, it is assumed that
a driver will quickly and accurately glance (saccadic eye movement)
to an interior display (i.e., the driver is familiar with the location of the
display). The model human processor technique will be used as
bounds (25): eye movement = (70 ~ 700) ms. [This is a raw value; it
does not include the impact of driving. Actual saccadic eye-movement
times (travel plus fixation time) can vary considerably depending on
the task and the skill of the observer. In Russo, 70 ms is listed as the
minimum time and 230 ms as typical time (26). The largest time given
by Busswell for eye movements in reading is 660 ms (for first-grade
children) (27), which Card et al. rounded to 700 ms (25).]

Acquisition (Detection) Models and
Sensitivity to Inclement Weather

Detection probability at LVNM crash warning distances of 100 to
150 m of an alerted, nondistracted driver usually is assumed to be
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near 1.0 (28), but the more interesting case is inclement weather.
Even though poor visibility conditions are not regarded as the
“high value” case, they are shown in Table 2 to be an important
contributing factor, and their effect will be quantitatively illustrated.

Bailey-Rand Contrast and Similar Models:

The Bailey-Rand (BR) model incorporates, in a compact manner, the
first-order effects of luminance contrast. To do so, it assumes that
targets are static and can be represented by circles with varying con-
trasts to an appreciably uniform (and therefore uncluttered) back-
ground (29, 30). Given these simplifications, the prediction of the
detection probability as a function of range x, P,(x), is relatively
straightforward:

2 1/2
P,,:li—l— 1—exp—4.2(&—1)
2 2 Cr
+ when gﬁ >1,
T
— wheng-R— <1, €))
T
where
[t
C, = 10710 log[3440 (D/x) +0.5] . and 2)
C
Cr = : (3)

1+ SGR|:exp (3.912%) - 1}

where Cyis the human detection threshold, and D/x is an angular res-
olution term that may be expressed in terms of line pairs/target (when
viewed through a vision enhancement device), cycles/mrad, or some
other appropriate measure of spatial frequency. Also, Cy is the appar-
ent contrast and is expressed as a function of C,, the physical target
contrast with the local surround; SGR is the sky-to-ground luminance
ratio; the parameter D is the diameter of the equivalent-area target
circle; and x is the detection range.

The BR model also includes a target visibility V factor, or the
maximum range to a target with Cy = 1, where Cy is diminished no
more than 2 percent. Atmospheric phenomenology—specifically,
the magnitude of weather obscuration affecting P,— can be repre-
sented in V by pairing it with a Beer-Lambert or Koschmeider’s Law
multiplier:

() = e )

where T(A) is the transmittance, and a is the precipitation volume
extinction coefficient (km'). Expressions for a are available in the
form br¢ and values for b and c for a variety of natural and man-
made obscurants, and also as a function of density, for example,
rain rate (37).

Limitations of the BR model primarily include the aforementioned
assumption of static, circular targets. However, it has been success-
fully applied in U.S. Department of Defense applications (30), on non-
circular targets and on natural backgrounds with considerably more
clutter than many highway scenes. In this case, the LVNM target is
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not static relative to the approaching vehicle’s velocity. Moreover, it
is certainly not circular, nor the surround clutter-free or devoid of spa-
tial or glare cues. There is also no explicit driver search model in the
BR formulation; rather, each 0.33-s BR glimpse is assumed to be in-
dependent, which is reasonable if it is expected that with the presence
of an LVNM collision warning signal, the driver will contain any
alerted search within the lane directly ahead. [Note that a viable alter-
native would be the PCDETECT model (32), which takes into account
driver age and glare, but the BR is used at this point for its simplicity,
as it clearly highlights the importance of understanding and modeling
target, background, and weather characteristics toward distal vehicle
detection. It serves to illustrate the effects of atmospheric conditions
and how this can be quantitatively characterized.]

In applying the BR model to the LVNM case, the following
parameter values are substituted into Equation 1:

¢ In determining Cr, D =2.26 m (4 m? target).
¢ In determining Cg,

L,-L R,—R, 05-015
CO = = = =

L, R, 0.15

23 (5)

The L, and L, quantities are target and background luminance, respec-
tively. Given the same insolation, they equate to first order to R, and
R,, the target and background reflectances. Substituting readily
available values for R, and R, yields a value for Cy (31).

® SGR = 1.4, a typical value for clear skies and desert conditions
(31). Values for desert-floor reflectivity should be near those for
asphalt reflectivity (33), and the environment is nearly clutter-free,
similar to unobscured road surfaces. Variations due to SGR typically
are due to different sky conditions (e.g., clear versus diffuse) and ter-
restrial surface reflectivities (e.g., snow versus desert versus forest
canopy). The range of SGR values is 0.2 (clear sky, snow surface) to
25 (diffuse sky, forest-canopy surface).

Using the BR input values for the ranges considered (x = 90 —
160 m), Cr (90 m) = 0.033, and Cx/Cy > 1. For a singular 0.33-s
glimpse, P,= 1.0 at a typical V=10 000 m (31). This confirms intu-
ition: a visually unimpaired and alerted human performs well in an
unobscured, direct line-of-sight detection task over LVNM detection
ranges.

Longitudinal Tracking Model

A cognitive car-following model is developed as a tool to under-
stand and study “unfolding” rear-end crashes, that is, precursor
actions of either following or stopped vehicles that lead to an LFNM
crash event. In Hoffmann and Mortimer, a perception model of
range and range rate based on a “looming” effect of the car in front
is proposed (34). In the model, the looming angular target size and
its rate of increase (or decrease) are described. According to the
model, at distances such that dw/dr < 0.003 rad/s, drivers are unable
to discern differences in relative speed. However, at values above
this threshold (i.e., at shorter distances), drivers scale perceived
speed in a practically linear relationship with respect to a visual
angle (), at just-noticeable increments of 60/ = 0.12. This can be
expressed as

6
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where

R = the perceived range rate between the driver and the forward
vehicle or obstacle,

R = the distance between the vehicles,

@ = the rate of visual change, and

d = the forward vehicle or obstacle diameter.

This model has been modified with a cognitive description of the
driving objective and control behavior by observing that when a
driver visually perceives that the range rate is equal to zero, he or
she maintains a comfortable time gap to the car in front as his or her
tactical (i.e., near-term) driving objective.

A comfortable time gap is derived from the individual headway
choice studied in Blackwell and McCready (29). In that study, a time
gap is defined as

T =

8

£ )
v
where v is the current speed of the following car. According to
observed time gaps, the mean time-gap values were categorized to
at least four kinds of psychologically distinct zones: danger, critical,
comfortable, and pursuit. The limits of time gap for these zones are
0.6, 1.1, and 1.7 s, respectively. For example, a driver is in the com-
fortable zone when the time gap is between 1.1 and 1.7 s. These are
based on a relatively small sample, and by Japanese social norms;
nonetheless, they serve as important elements (whose values could
be adjusted later) in this study’s subsequent models.

Another approach, given in Ohta, is based on time-to-collision
(TTC) (35). TTC is defined from simple kinematics as

Transportation Research Record 1724

In the literature, several studies on estimates of TTC are reported
(36-38). In these studies, TTC to a stationary object such as LVNM
is consistently underestimated.

According to the hypothesis suggested in van der Horst, both the
decision to start braking and the control of braking are based on the
estimated TTC available from the optic-flow field (39). In experi-
ments with 12 male student drivers who were instructed to leave
braking until the last possible moment, TTC values ranged from 2.1
t0 2.9 s for normal, non-emergency braking and from 1.2 to 1.9 s for
hard braking.

From the relations just described, Figure 1 is an illustration of the
fused model including the driver’s perception and cognitive feelings
in car-following behavior, in which each zone is based on time head-
way when the current velocity is 26.5 m/s (60 mph). Zones I, I1, III,
and V are where the driver cannot detect the range rate directly
based on Equation 6. To provide a clear graphical representation of
these zones, a limited range of speed is included in Figure 1. The
range of speed shown in the figure is particularly relevant for rear-
end crashes with the lead vehicle moving, but the fused model is
intended for both LVNM crashes and LVM crashes.

Since the range perception model of a driver is considered, the
range threshold is +4.452 m when the current speed is 26.5 m/s and
the time gap is 1.4 s, as shown in the figure. According to the range-
rate perception model in van der Horst (39), Zones IV, VI, and VII
(with Zone VII—and Zone V-——also the danger zone to an LVNM)
are in the approaching region, where the range rate is negative and
perceptible to a driver. Conversely, Zone VIII is the separating zone.
Zones IV, VI, and VII are categorized by the TTC of the driver when
a stationary vehicle is detected. Since normal braking is applied
when the actual TTC is between 2.1 and 2.9 s, the Zone VI area can
be generated for the driver to start the normal braking.

__k Based on Figure 1, a driver will minimize the time leading up to
TTC = —— (8) . . . o
R Zone 1I, that is, the comfort zone, and maximize the time within
60 T T L] { T T T T )
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FIGURE 1 Regional medel of driver car-following or braking behavior.
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Zone II. Since the control objective for following a car is to be in
Zone 11, the control behavior will reflect this. For instance, sup-
pose that a male driver is located in Zone I'V with a range less than
the upper limit of Zone 1. Since the driver has a perception of clos-
ing (range rate), he begins to reduce velocity for the state to tra-
verse one of Zones I, III, or V. Once the driver enters Zone 11, he
feels comfortable, and he will maintain current throttle pedal posi-
tion. However, if the driver enters Zone V, he will brake to avoid
a rear-end crash. Otherwise, he will choose one tactical behavior
between changing a lane and following a leading car, based on
road environment such as the positions of the vehicles in the adja-
cent lane. Consequently, LVNM—and for that matter, many LVM—
traffic scenarios can be explained and analyzed through the driver
perception zones in Figure 1.

Range rate is an important factor with respect to safety and com-
fort, also recognized by Fancher and Baraket who have formulated
a car-following decision model based on the perception model dis-
cussed (40). Their model defines state space in terms of regions of
the range versus range-rate phase graph. It features a comfortable
following zone and a driver control objective to fall within that zone.
In comparison, this paper’s model also uses the previously men-
tioned perception model but has relatively many zones, each with its
own control law, depending on whether the time gap is larger or
smaller than comfortable and whether the range rate is positive or
negative. There are also separate regions for braking and hard brak-
ing, which are defined by TTC values. Since the time gap is related
only to the range and speed, the range rate therefore is used to define
the car-following objective.

FUTURE WORK

The authors have identified a small number of predominant LVNM
crash scenarios on which they based their driver model development
efforts. Further model development efforts will be conducted inso-
far as “tuning” the microscopic LVNM and LVM car-following
mathematical formulations of perception and motivation with avail-
able car-following data. Because in situ observations of LVNM
crashes are rare, this tuning likely will be in the form of experimen-
tal work with California PATH Program vehicles. Moreover, these
models can be extended easily to nonnominal situations, for example,
detection in low-visibility conditions.

The authors next will focus their work on microsimulation-based
analyses of the “highest value” rear-end crash scenarios, to include
the rear-end crash car-following model described here, along with
existing detailed models of the roadway environment and vehicle
dynamics (3). Their ultimate objective will be to accurately describe
and understand LVNM to the extent that they consequently can quan-
titatively understand the dynamics of potential crash countermeasures
or roadway design changes.
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Response to Simulated Traffic Signals
Using Light-Emitting Diode and

Incandescent Sources

John D. Bullough, Peter R. Boyce, Andrew Bierman, Kathryn M. Conway,
Kun Huang, Conan P. O'Rourke, Claudia M. Hunter, and Akiko Nakata

Simulated light-emitting diode (LED) traffic signals of different lumi-
nances were evaluated relative to incandescent signals of the same nom-
inal color and at the luminances required by the specifications of the
Institute of Transportation Engineers. Measurements were made of
the reaction times to onset and the number of missed signals for red,
yellow, and green incandescent and LED signals. Measurements also
were made of subjects’ ability to correctly identify signal colors and of
their subjective brightness and conspicuity ratings. All measurements
were made under simulated daytime conditions. There were no signifi-
cant differences in mean reaction time, percentage of missed signals,
color identification, or subjective brightness and conspicuity ratings
between simulated incandescent and LED signals of the same nominal
color and luminance. Higher luminances were needed for the yellow and
green signal colors to ensure that they produced the same reaction time,
the same percentage of missed signals, and the same rated brightness
and conspicuity as a red signal at a given luminance. Equations fitted to
the reaction time data, the missed signals data, and the brightness and
conspicuity ratings for the LED signals can be used to make quantitative
predictions of the consequences of proposed changes in signal luminance
for reaction time, brightness, and conspicuity.

In North America, the Institute of Transportation Engineers (ITE)
sets photometric specifications for traffic signals (see Table 1) (/).
Typically, traffic signal modules use incandescent lamps and col-
ored filters to produce red, yellow, and green signals. However, in
1998 the ITE published an interim specification for light-emitting
diode (LED) modules, which specified luminous intensities for LED
modules at 85 percent of those for modules using incandescent
lamps (2). The results from the following experimental work could
be used by decision makers for considering the consequences of
adopting or revising the interim LED specification. Using an appa-
ratus that simulated 200-mm LED and incandescent signals seen
from 100 m under daytime conditions, the authors measured

® The reaction time to signal onset,

¢ The number of missed signals,

¢ The number of signals correctly identified by color, and
® Subjective ratings of brightness and conspicuity.

Reaction time is important because the onset of a signal (in partic-
ular, a red signal) should cue a driver to take appropriate action upon

Lighting Research Center, Rensselaer Polytechnic Institute, 21 Union Street,
Troy, NY 12180.

approaching an intersection (slowing down, stopping, or continuing
at the same speed). Of course, detecting the onset of a signal at all
is important and missed signals must be minimized. The correct iden-
tification of signal colors and subjective impressions of signals when
approaching them help ensure safe traffic flow through intersections.
This paper summarizes research to investigate responses to simulated
traffic signals under daytime conditions. A detailed description of
this research is available (3).

BACKGROUND

The failure to see a traffic signal can be catastrophic, so several
studies have been conducted to determine the minimum luminous
intensities required of traffic signals. Most researchers consider
100 m as the minimum distance at which traffic signals need to be
clearly seen (4, 5). Cole and Brown investigated response times
and the number of missed signals for red 200-mm signals (6).
Normal-sighted and “protan” subjects viewed a schematic road
scene. The luminance of the scene simulating the sky was about
5000 cd/m? and a signal was placed about 3° left of and 1.5° above
the average direction of view. Reaction times and missed signals
were measured when subjects looked directly at the signal and
when they performed a tracking task. In general, as signal lumi-
nance decreased, reaction times lengthened and the probability of
missing the signal increased. Protan subjects also had longer re-
action times and more misses, as would be expected from their
decreased sensitivity to long-wavelength (“red”) light. Cole and
Brown concluded that red signals in daytime conditions required a
luminance of 5000 to 8000 cd/m? (6).

Fisher and Cole recommended that the intensities of yellow and
green signals be higher than red signals (7). They recommended
that the ratio of the luminous intensities for green to red signals be
1.33, and for yellow to red signals, 3.0. These recommendations
were repeated by the Commission Internationale de I’Eclairage (8).
The reason for the higher luminous intensity recommendations
may be related to the perceived saturation of the colors used in con-
ventional incandescent signals. In general, the red signal appears
more saturated than the yellow and green signals, and the perceived
brightness of a signal light increases for more saturated lights (9).
LEDs have narrow spectral power distributions resulting in more
highly saturated colors than incandescent signals, so questions have
arisen recently about the required intensities of LED traffic signals
relative to incandescent signals.
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TABLE 1 ITE Recommendations for Round 200-mm Traffic Signals and Associated Luminances (7, 2)

Signal color

Luminous intensity Average luminance Luminous intensity ~Average luminance

for incandescent for incandescent for LED signals for LED signals

signals (cd) signals (cd/m?) (cd) (cd/m?)

Red 157 5000 133 4250
Yellow 726 23,121 617 19,652
Green 314 10,000 267 8,500

METHOD
Apparatus

The approach used to evaluate simulated traffic signals is similar to
that employed by Cole and Brown (6). Subjects sat at a narrow desk
2 m from a 2.4-m by 2.4-m vertical wall (see Figure 1). The wall
was painted white (reflectance =0.87) above a horizon line located
1.1 m above floor level. Below the horizon line the wall was painted
gray (reflectance = 0.17). The wall simulated a driver’s view of the
sky and ground along a straight road in flat country. Sulfur flood
lamps with diffusers illuminated the wall uniformly so that the white
background near the center of the wall had a luminance of about
5000 cd/m?. The correlated color temperature of the flood lamps was
approximately 3850 K, with a broad spectral power distribution.

In the center of the wall on the horizon line, a small meter (4.8 cm
tall and 1.9 cm wide) was positioned, containing a horizontal pointer
that could be moved by turning a knob at the subject’s desk. This
meter enables the subject to perform a tracking task. A random volt-
age was applied to the meter so that the needle slowly drifted ran-
domly up and down unless the subject used the knob to keep the
needle stationary. The background of the meter was painted red with
a green band; subjects were instructed to keep the needle positioned
over the green band during the experiment.

At 2.5° above and 2.5° to each side of the tracking task were two
4-mm-diameter apertures that simulated 200-mm traffic signals
viewed from 100 m (or 300-mm signals viewed from 150 m). Vis-
ible through each aperture was the interior of a small integrating
sphere containing red, yellow, and green LEDs matching ITE color
specifications (). The spheres were used to ensure that the signal
luminance remained constant if subjects moved their heads slightly
while performing the experiment. The spheres also contained another

White painted region

Luminous
/ signals

Tracking task

FIGURE 1 View of the vertical wall from the subject's desk.

aperture through which a beam of light from an incandescent lamp
could be passed. The red and yellow LED signals were very close in
color to the red and yellow incandescent signals. The green LED sig-
nal appeared more saturated than the green incandescent signal, but
both green signals fell within ITE color specifications (1). The lumi-
nance of the LED signals could be varied by changing the current
through the LEDs, and the luminance of the incandescent signals
could be changed via neutral density filters located between the in-
candescent lamps and the spheres. The neutral density filters and red,
green, and yellow colored filters were mounted in computer-controlled
filter wheels.

LEDs and incandescent lamps have differing onset times, with
incandescent lamps taking 100 to 200 ms to reach full light output
and LEDs reaching full light output in much shorter times. In order
to eliminate this difference as a confounding variable in the exper-
iment, electromechanical shutters with opening times of 3.5 ms
were mounted in front of the sphere apertures, and the LEDs and
incandescent lamps were switched on before the shutter opened.

A control panel containing the knob for controlling the tracking
task and a switch for the reaction time was located at the subject’s
desk. Subjects were instructed to perform the tracking task with the
knob, and to hold down the switch until they detected the signal
onset, at which time they should release it. In this way, simple re-
action time to the signal onset was measured. Both the left and right
apertures were presented simultaneously and had the same color and
luminance during each trial. An override was built into the appara-
tus so that if the needle in the tracking task was not positioned over
the green area of the display, the presentation of the next stimulus
would be delayed. This helped to ensure that subjects looked at the
tracking task rather than the signal apertures. Subjects wore head-
phones that played white noise to mask sounds produced by the
opening of the shutter.

Reaction Time and Missed
Signal Measurements

To measure reaction time and missed signals, subjects performed
the tracking task and held down the switch. At random intervals
between 2 and 5 s, the simulated signals were presented and subjects
would release the switch upon detection, and then re-press it for the
next trial. The reaction time was measured as the time interval
between the onset of the stimulus and the release of the switch. If
the subject did not release the switch within 1 s after the onset of
the stimulus, the signal lights were extinguished and the trial was
counted as a miss. If the subject released the switch within 200 ms of
the onset, that trial was repeated, because 200 ms is the minimum
possible visual reaction time, determined by human physiology (10).
This process was repeated for 10 successive presentations of the
same luminance and signal color. Each combination of light source,
luminance, and color was presented in random order in sets of 10
during each experimental session. Ten subjects (five males, five



Bullough et al.

females) who had normal color vision, visual acuity of at least 20/25,
and were between the ages of 25 and 35 participated in the reaction
time and missed signals experiment. Each subject completed five ses-
sions. Table 2 shows the nominal luminances used for each type of
light source in a single session. The means of actual luminance mea-
surements of all conditions were within 7.5 percent of the nominal
luminances. Subsequently, 6 of the 10 subjects completed reaction
time and missed signal trials at lower luminances between 1000 and
5000 cd/m2. All of these data were combined for subsequent analysis.

The luminances in Table 2 were chosen with several criteria
in mind:

¢ The incandescent stimuli should match the luminance of signals
meeting the ITE recommendations (Table 1);

® One of the LED stimuli for each color also should have the ITE
luminance;

¢ The luminance range for the LED signals should be wide
enough to produce a clear increase in reaction time at the lowest
luminances;

o The LED stimuli should have at least one luminance that is the
same for all three colors; and

o The LED stimuli should include luminances corresponding to
the average luminances recommended for traffic signals in Europe
(red, yellow, and green = 12 732 cd/m?, corresponding to Euro-
pean Performance Level 3) and Japan (red, yellow, and green =
7639 cd/m?).

For the green signals, some of the LED conditions (marked with an
asterisk in Table 2) actually used the incandescent source rather than
a green LED, with the incandescent illumination filtered to produce a

TABLE 2 Light Sources Used in This Study
and Their Nominal Luminances

Light source Nominal luminance (cd/m?)
LED ~Red 12,732
LED ~Red 7639
LED - Red 5000
LED —Red 3408
LED —Red 2000
LED —Red 1500°
LED ~Red 1000
Incandescent — Red 5000
LED - Yellow 21,000
LED - Yellow 15,829
LED - Yellow 12,732
LED - Yellow 7639
LED - Yellow 5000
LED - Yellow 3000°
LED - Yellow 2000°
LED — Yellow 1500°
LED - Yellow 1000
Incandescent - Yellow 23,121
Incandescent — Green* 12,732
Incandescent ~ Green* 10,000
Incandescent — Green* 7639
Incandescent — Green* 6845
LED — Green 4500
LED - Green 3000°
LED — Green 2000°
LED - Green 1500°
LED - Green 1000
Incandescent — Green 10,000

SAdditional luminances used during the subsequent reaction time and missed
signals experiment.
*Incandescent source filtered to provide similar color to green LED.
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more saturated color similar to that emitted by the green LED. This

" was necessary in order to achieve luminances higher than 5000 cd/m?

for the green signal using the integrating spheres in the apparatus.

Color Identification, Brightness, and
Conspicuity Measurements

Measurements of perceived color and subjective ratings were made
in a separate experiment, using the same combinations of light source,
color, and luminance as in Table 2. While subjects performed the
tracking task, the right signal was presented peripherally, as described
earlier, for 1 s. After the presentation, subjects named the color of the
signal and rated its brightness and conspicuity on 10-point scales with
the ends labeled “very dark/very bright” and “invisible/very conspic-
uous.” Thirty subjects (14 male, 16 female) between the ages of 22
and 54 participated in this experiment.

RESULTS
Reaction Times

For three LED signal luminances (1000, 7639, and 12 732 cd/m?) at
which all three colors were presented, a within-subjects analysis of
variance was performed to determine the effect of luminance and
color on reaction time. Both luminance (F, 5 =32.2, p < 0.001) and
color (Fy,13 = 20.4, p < 0.001) had a statistically significant effect on
reaction time. The interaction between luminance and color also was
significant (F,35 = 10.0, p < 0.01). As expected, increasing lumi-
nance resulted in shorter reaction times. Additionally, the red signals
resulted in the shortest reaction times and green the longest.

For each session, and for each combination of source type, lumi-
nance, and color, the median of the 10 reaction times within each trial
was calculated. (The median is less sensitive to extreme values than
the mean.) Then, the mean of the five median values was calculated,
as well as the associated standard deviation. The mean reaction times
for the LED signals were fitted to an equation of the form

Y=al' +2Z Q)

where

Y = mean reaction time in milliseconds,
L = signal luminance in cd/m?,
Z = minimum possible reaction time (and was set to 200 ms),
and
a, n = fitting constants.

Equations of this type commonly have been fitted to reaction-
time data (/0-14) and are consistent with the latency of the visual
system’s response to stimuli of different luminous intensities (/5).
The values of the fitting constants, the goodness of fit (2) to the
data, and the mean reaction time at the ITE luminances (/) for each
subject are shown in Table 3. The fitted curves for each subject and
for each signal color were normalized to a value of 100 at the lumi-
nance corresponding to the ITE recommendation for that color ().
Then the y-values of the normalized curves for each subject and
color were calculated for a stepped series of luminances, and the
mean y-value and associated standard deviation were calculated
for each color for the subjects as a group. The results for each color
are plotted in Figures 2, 3, and 4. These functions are a tool that



TABLE 3 Fitting Constants and Goodness of Fit for Mean Reaction Times for Each Subiect
and Each Color

LED color Subject a n r Reaction time
at ITE (/)
luminance (ms)
Green A 3483 -0.383 0.97 302
Green B 4847 -0.326 0.69 441
Green C 22,835 -0.512 0.86 404
Green D 1423 -0.187 0.73 454
Green E 2969 -0.253 0.97 489
Green F 340,955 -0.860 0.99 324
Green G 10030 -0.393 0.92 469
Green H 6769 -0.374 0.71 406
Green I 404,720 -0.933 0.92 275
Green J 6918 -0.405 0.91 366
Yellow A 3057 -0.358 0.88 284
Yellow B 8655 -0.401 0.92 354
Yellow C 14,111 -0.501 0.80 292
Yellow D 1202 -0.175 0.92 407
Yellow E 1457 -0.165 0.85 478
Yellow F 102,413 -0.711 0.98 281
Yellow G 3499 -0.291 0.93 388
Yellow H 1996 -0.245 0.90 370
Yellow I 479,726 -0.984 0.82 224
Yellow J 5306 -0.386 0.83 310
Red A 1940 -0.350 0.88 298
Red B 7014 -0.411 0.91 412
Red C 1161 -0.231 0.88 362
Red D 381 -0.047 0.10 455
Red E 1779 -0.201 0.73 521
Red F 231,158 -0.878 0.94 331
Red G 1030 -0.160 0.87 464
Red H 1216 -0.201 0.94 419
Red 1 25,370 -0.640 0.59 309
Red J 1141 -0.226 0.84 366
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FIGURE 2 Percentage change in mean reaction time for the
red LED signal; 100 percent reaction time is at a luminance of
5000 cd/m?.

FIGURE 3 Percentage change in mean reaction time for the
yellow LED signal; 100 percent reaction time is at a luminance of
23 121 cd/m2.
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Paper No. 00-1474 43

can be used to predict the percentage change in reaction time for a
departure in signal luminance from the ITE recommendation.

Missed Signals

The mean percentages of missed signals for each LED signal color
are plotted in Figure 5 as a function of luminance. The percentage
of missed signals clearly increases with decreasing signal lumi-
nance, and this trend appears to be more pronounced for the green
LED signal than for the yellow or red signals. At the ITE luminances
for each color (1), subjects missed 0.7 percent of the red signals,
0.0 percent of the yellow signals, and 1.0 percent of the green sig-
nals. At 2000 cd/m?, there are clear differences among the colors in
terms of the percentage of signals missed (green, 26 percent; yellow,
7 percent; red, 2 percent).

Color Identification

For each combination of source, luminance, and color in the second
experiment, Table 4 lists the percentage of colors correctly identi-
fied by the 30 subjects as a group. It is clear that correct color iden-
tification is high, despite the fact that subjects did not view the
signals directly, but rather peripherally. The resolution of the data in
Table 4 is 3.3 percent, and there were no statistically significant dif-
ferences in color identification between incandescent and LED signals
at the ITE-recommended luminances (Z). Of the 10 misidentifications
of the green signal, 9 times it was thought to be yellow and once
(at 1000 cd/m?) to be red. Of the 9 misidentifications of the red sig-
nal, all 9 were thought to be yellow, and of the 16 misidentifications
of the yellow signal, all 16 were thought to be red.
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FIGURE 5 Percentage of signals missed by all subjects for each signal color

and luminance.



44 Paper No. 00-1474

Transportation Research Record 1724

TABLE 4 Percentage of Signals of Each Light Source, Color, and Luminance Correctly Identified

Light source

Nominal luminance (cd/m?)

Percent correctly identified

LED —Red 12,732 100.0%
LED - Red 7639 93.3%
LED - Red 5000 93.3%
LED — Red 3408 96.7%
LED —Red 2000 96.7%
LED —Red 1000 93.3%
Incandescent - Red 5000 96.7%
LED - Yellow 21,000 100.0%
LED - Yellow 15,829 90.0%
LED - Yellow 12,732 96.7%
LED - Yellow 7639 93.3%
LED - Yellow 5000 83.3%
LED - Yellow 1000 83.3%
Incandescent — Yellow 23,121 100.0%
Incandescent — Green* 12,732 100.0%
Incandescent — Green* 10,000 93.3%
Incandescent — Green* 7639 100.0%
Incandescent — Green* 6845 93.3%
LED - Green 4500 90.0%
LED - Green 1000 93.3%
Incandescent — Green 10,000 96.7%

*Incandescent source filtered to provide similar color to green LED.

Note: The resolution of the data is 3.3 percent.

Brightness and Conspicuity Ratings

Figures 6 and 7 show the mean brightness and conspicuity ratings,
respectively, for each combination of light source, luminance, and
color. As expected from the visual science literature (9, 15), bright-
ness shows a linear relationship to the logarithm of the luminance of
the signal, and the brightnesses of the red signals were higher than
for the yellow and green signals. A very similar relationship holds
for ratings of conspicuity, most likely because the uniform back-
ground used in the experiment meant that conspicuity was a simple
matter of its brightness. Also shown in Figures 6 and 7 are the best-
fitting logarithmic functions to the brightness and conspicuity rat-
ings for the LED signals only. Table 5 shows the constants for these
functions of the form

Y=Aln(l) + B (2)

where

Y = mean rating of brightness or conspicuity (ranging from
1to0 10),
L = luminance of the signal in cd/m?, and
A and B = fitting constants.

DISCUSSION OF RESULTS

Differences Between Incandescent
and LED Signals of Same Luminance

Using matched-pair #-tests, the reaction times for the incandescent
signals were compared to the reaction times for the LED signals at
the recommended ITE luminances (/). The difference between the
mean reaction times was not statistically significant for any of the
colors. With the same analysis used, there were also no statistically
significant differences (p > 0.05) between the LED and incandes-
cent signals in terms of missed signals, color identification, or their

brightness and conspicuity ratings. The signals were presented using
an electromechanical shutter that resulted in equal onset times for
each source. LEDs have shorter onset times than incandescent lamps
and under certain conditions result in shorter reaction times (/6).
The work described here did not measure this effect.
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FIGURE 8 Mean brightness ratings for each color and luminance
combination plotted against luminance. The lines are fitted through
the mean ratings for the LED signals only.
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FIGURE 7 Mean conspicuity ratings for each color and luminance
combination plotted against luminance. The lines are fitted
through the mean ratings for the LED signals only.

Differences Among Signal Colors

Red LED traffic-signal modules have been used in the field for sev-
eral years with considerable success (/7). This could be taken as evi-
dence that reaction time to and brightness and conspicuity of red LED
signals that conform to ITE recommendations are satisfactory in prac-
tice. The mean luminances of yellow and green LED signals that have
the same mean reaction time as the red LED signal with a luminance
of 5000 cd/m? are approximately 10 000 and 13 000 cd/m?, respec-
tively, using the fitting equations described in Table 3. With the func-
tions from Figure 5 used, the mean luminances of yellow and green
LED signals needed in order to have the same number of missed sig-
nals as the red LED signal at 5000 cd/m? are 7000 and 14 000 cd/m?,
respectively. In comparison, the mean luminances of yellow and
green LED signals that have the same brightness rating as the red
LED signal with a luminance of 5000 cd/m? are approximately
12 000 cd/m? for both colors, and the mean luminances of yellow
and green LED signals that have the same conspicuity rating as the

TABLE 5 Fitting Constants
and Goodness of Fit for Brightness
and Conspicuity Ratings

LED Color a b r
Brightness
Red 1.94 -10.18 0.98
Yellow 1.75 -10.10 0.99
Green 1.64 -9.12 0.96
Conspicuity
Red 2.04 -10.72 0.98
Yellow 1.81 -10.68 0.99
Green 1.53 -8.52 0.99
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red LED signal with a luminance of 5000 cd/m? are approximately
14 000 and 20 000 cd/m?, respectively.

This difference among colors (with red signals resulting in faster
reaction times, fewer missed signals, and higher ratings of brightness
and conspicuity) is consistent with the approach used by the ITE in
its recommendations (/, 2), and it also is consistent with previous
vision research investigating response to colored stimuli against
bright backgrounds (/8-20). This finding appears to disagree with
specifications such as those proposed in Europe and Japan, which
specify equal luminous intensity for each signal color.

Effects of Decreasing Signal Luminance

As previously discussed, the ITE-recommended interim signal lumi-
nances for LED signal modules (2) are 15 percent lower than the
recommendations for incandescent signals (7), possibly because
previous generations of LED signal modules were not able to meet
the standard recommendations. Table 6 shows the percentage changes
in reaction time and missed signals and changes in predicted rat-
ings of brightness and conspicuity that would be a consequence of
reducing the luminance of LED signals from the incandescent ITE-
recommended luminances (/) to the interim LED values (2). It is
hoped that similar exercises using these results can contribute to a
well-informed discussion of any proposed changes to traffic sighal
standards worldwide.

CAVEATS

The results in this paper were obtained under a specific set of con-
ditions, representing daytime conditions in clear terrain, and do not
address, for example, nighttime viewing conditions or viewing sig-
nals against a complex background of competing signals, signs, and
other stimuli. It seems likely that reaction times would be shorter
and perhaps less dependent on color in clear nighttime conditions
(12,19, 21} and that discomfort ratings might be higher if glare is per-
ceived. The subjects participating in this study were relatively young,
and it is likely that higher luminances would be needed for the detec-
tion of signals by older subjects. Finally, this work eliminated onset
time as a variable when measuring response; differences between
LED and incandescent onset times might result in different reaction
times (/6). These caveats emphasize the importance of understand-
ing the response to signals under different conditions, especially
nighttime conditions, and by older subjects before making specific
minimum or maximum performance recommendations for signal
luminances.
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TABLE 6 Predicted Changes in Mean Reaction Time, Missed Signals, Rated Brightness,
and Rated Conspicuity as Consequence of Reducing Luminance of LED Signals by 15% as in

Interim ITE Specification (2]

Measure Red LED Yellow LED Green LED
Percentage change in +2.4% +2.9% +4.1%

reaction time

Percentage change in from 0.7% to 0.8% no change from 1.0% to 1.2%
missed signals

Change in rated brightness  from 6.34 to 6.03 from 7.48 to 7.20 from 5.98 10 5.72
(1=very dark, 10=very

bright)

Change in rated from 6.66 to 6.32 from 7.51 to 7.21 from 5.57 t0 5.32

conspicuity (1=invisible,
10=very conspicuous)
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Behavioral Adaptation, Safety, and
Intelligent Transportation Systems

Alison Smiley

It is intrinsic to human nature to modify behavior to suit new condi-
tions. How drivers are likely to change the way they drive if their vehi-
cles are equipped with intelligent transportation system (ITS) devices is
considered. It is clear from the antilock braking system experience that
improvements in safety cannot be predicted on the basis of proof-of-
concept studies alone, in which one simply looks at changes in perfor-
mance of the task being aided, whether that is braking, navigation, or
detection of hazards. One also must look at changes in other aspects of
the driving task and at the type of driving being done to determine the
likely effect on safety. In particular, one should assume that there may
be trade-offs of mobility for safety, that is, more driving in more diffi-
cult conditions and at higher speeds leading to more crashes. Further,
one should expect drivers to attempt to increase productivity while
driving, given reduced driving task demand. The prolific use of cellular
phones is evidence of this behavior. Research is needed on driver men-
tal models of ITS devices, to ensure that drivers understand how they
function. The best design from a mechanistic point of view may not be
the most effective for drivers.

In the next 5 to 10 years, intelligent transportation system (ITS)
devices will change the driving task dramatically. Vision enhance-
ment, collision warning, and navigation systems will become stan-
dard devices. The aim of these devices is to improve safety. However,
they all will change the nature of the driving task, inevitably leading
to driver adaptation. That adaptation may have safety consequences.

PERVASIVENESS OF ADAPTATION

Adaptation is defined by the Oxford Dictionary as “the process of
modifying to suit new conditions.” The concept of behavioral adap-
tation is sometimes confused with a controversial theory known
as “risk homeostasis.” This theory, promulgated most notably by
Wilde (Z, 2), claims that drivers have a target level of risk, and that
safety countermeasures that reduce risk stimulate increased risk
taking on the part of drivers so that a state of equilibrium or homeo-
stasis is maintained. According to Evans’ book Traffic Safety and
the Driver, this theory has been debated at length and debunked by
numerous traffic safety scientists (3). Evans points to the huge dif-
ferences in risk of a crash per kilometer on U.S. urban interstates
versus on rural arterial roads, as well as changes in crash risk per
kilometer over the past decades, as evidence that risk homeostasis
does not occur.

Risk homeostasis focuses on risk taking as being the motivating
force behind driver behavior. In contrast, it is the intelligent reallo-
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cation of attention and effort that is seen as the motivating force for
behavioral adaptation. Unlike the theory of risk homeostasis, there
is no expectation that behavioral adaptation will result in constant
crash rates. There is an expectation that, depending on the impact of
the countermeasure on the driving task, trade-offs such as mobility
for safety may be made, with the result that crash rates may not be
reduced to the level that would have been anticipated, had there been
no change in behavior.

When we drive we face constantly changing conditions to which
we must adapt. This adaptation occurs on many levels. It occurs in
response to both temporary and permanent changes in driver condi-
tion. Short-term adaptations occur as we are pressed for time and
take a chance of running a red light. Long-term adaptations occur as
we age. Older drivers slow by a few kilometers per hour on average
and allow longer headways (4, 5).

Adaptation occurs in response to the driving task. Mourant and
Rockwell show the dramatic narrowing of eye fixations when driv-
ers are closely following another vehicle (6). Rockwell found that
eye-glance durations related to car radio operation were reduced by
20 percent in heavy traffic as compared to light traffic (7).

Adaptations occur in response to the roadway environment. A
change in traffic signalization to provide an all-red clearance inter-
val will increase the numbers of drivers who enter the intersection in
the caution period. Increasing the lane width, widening the shoulder,
and resurfacing the roadway all result in higher speeds (8).

Adaptations also occur in response to changes in the vehicle.
Many changes have occurred in the past, prior to ITS, that likely
resulted in various adaptations. It may well be that the installation
of turn signals inside the vehicle increased the likelihood of drivers
signaling, especially in inclement weather. Automatic transmissions
may have speeded up the learning process for novice drivers who no
longer had to deal with shifting gears while controlling vehicle speed
and lane position. (The Young Drivers of Canada standard course
is 18 lessons for those learning on standard and 13 for those learn-
ing on automatic transmissions.) Power-assisted brakes must have
allowed drivers to approach situations requiring a stop at higher
speeds. Improved car handling is thought to be one of the elements
behind continual increases in average speed over the past 20 years.

Adaptation is intrinsically human. It is one of our most valuable
characteristics and the reason that a human presence is desirable to
monitor even the most highly automated systems—to deal with the
unexpected. Adaptation is a manifestation of intelligent behavior.

‘When seen in this context, the often-used definition of behav-
ioral adaptation as “those behaviors which may occur following the
introduction of changes . . . which are not consistent with the ini-
tial purpose of the change” (8) seems limiting. Assuming the pur-
pose of the change is to improve safety, the implication seems to be
that adaptation is both negative and unforeseen by the designers.
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Yet, one cannot expect drivers to maintain the same strategy and
pay the same attention to a task when assistance is provided. When
a task is ajded, the intelligent response is to reallocate attention and
to change one’s decisions so as to benefit from the aid. However, it
is frequently the case that engineers who develop in-vehicle devices
assume that drivers will not change their behavior. For example,
when antilock brakes were introduced, predictions about their impact
on safety were based on the assumption that only stopping distance
and directional control during braking would change—speed and
headways would not be affected (more on this later).

Why do engineers make such assumptions? According to Hauer,
it is likely that the reason lies in the fact that engineers are trained to
deal with the characteristics of inanimate matter such as loads, flows,
stress, strain, and that “Once the physics of the situation and the prop-
erties of the materials are understood, we can predict fairly well ‘what
will happen if> and make the corresponding design choices.” (9) In
contrast to inanimate matter, drivers adapt, and speed and headway
choices and reaction times cannot be considered to be invariant
quantities that remain the same once the roadway or the vehicle has
changed. That adaptation will occur is predictable—we should be
more surprised by its absence.

UNFULFILLED PREDICTIONS: ANTILOCK
BRAKING SYSTEM

A prime example of unfulfilled predictions because of adaptation is
the antilock braking system (ABS). Early studies of ABS were proof-
of-concept studies, in which drivers drove at a set speed and then
braked. Not surprisingly, braking distances were found to decrease on
wet surfaces. Moreover, directional control was maintained during
braking on wet or dry surfaces. Based on such studies, optimistic pre-
dictions were made. For example, according to Langwieder, “the uni-
versal adoption of ABS in Germany would result in a 10-15 percent
reduction in accidents involving heavy damages and/or injuries” (10).

Later studies considered the possibility of adaptation. A test track
study showed that when drivers could choose their speed, they trav-
eled slightly faster after practicing with ABS on wet surfaces, with
the result that the emergency stopping distance was no different than
with standard brakes (I1).

Other researchers made naturalistic observations of 213 taxi
drivers en route to an airport ({2). This sample of drivers was cho-
sen since they were likely to be pressed for time, leading to adaptive
changes. Measures were taken of speed, lane keeping, headway, and
seat-belt use. Questionnaires then were given out at the airport to
taxi drivers to establish whether their vehicles were equipped with
ABS or airbags or both, and to determine various demographic char-
acteristics. These were used in a regression analysis to ensure that
the effects seen were truly related to ABS or airbags. With ABS,
drivers were found to adopt significantly shorter time headways.
With airbags, there was no change found in measured behavior.

These were the performance effects. How was safety affected?
An extensive study was carried out by the Highway Loss Data Insti-
tute (13). A comparison of claim frequency and size was made be-
tween 1991 models without ABS, and 1992 models with ABS, based
on a total of 840,408 insured vehicle years. No significant differences
were found in either claim frequency (8 per 100 vehicles) or size
(average of $2,215 per 1991 model claim versus $2,293 per 1992
claim). Researchers then examined a subsample from the northern
states in the winter but still found no significant differences.
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Based on the performance studies, and on this crash rate study,
it appears that drivers with ABS adapted by trading off safety for
mobility, to the extent that there was no safety benefit—a far cry from
the predicted 10 to 15 percent based on proof-of-concept studies.

DRIVER TRADE-OFFS AFFECTING STRATEGY

That the type of adaptation that does occur is frequently in the
direction of less safety and more mobility should not be surpris-
ing. It is unfortunately the case that safety and mobility are fre-

~ quently, though not always, inversely correlated. An improvement

in mobility—higher speeds or easier lane changing—may result in
a decrease in safety. Mobility improvements provide an immediate
payoff—drivers get to their destinations faster. Safety improve-
ments are far more intangible—a change in the risk of a certain type
of accident from one every 100 years to one every 150 years. Itis
hardly surprising that drivers often choose greater mobility. The
payoff is certain and immediate.

Although the safety/mobility trade-off is well known [see, for
example, the extensive Organization for Economic Co-operation
and Development report (8)], there is a second type of trade-off that
influences driver strategy that may be important but has not yet been
discussed in the literature. It is likely to be of particular importance
for ITS devices, many of which will reduce driver workload. As
drivers receive assistance with navigation, with monitoring the road
ahead for hazards, and with keeping safe headways, the opportunity
arises for other, nondriving-related, activities to occur in the vehi-
cle. This was foreseen in an advertisement 10 years ago in which
BMW showed a driver’s-eye view of the German autobahn, with the
caption “The New Office!” We live in an age when people try to
accomplish more in less time. The proliferation of drivers using cel-
Iular phones, whether for business or pleasure, is evidence of the
desire to be more productive while driving (/4). With more driving
assistance from ITS devices, this trend can be expected to continue.

ITS AND ADAPTIVE EFFECTS

As in-vehicle systems change the nature of driving, they affect the
choices made by drivers. At the highest level, the strategic level,
they are likely to affect the decision to drive. Vision enhancement
systems may make drivers feel more comfortable about driving in
poor visibility. Collision warning systems may encourage a fatigued
driver to keep going when he might otherwise have stopped. A nav-
igation system may encourage tourists to explore more widely than
they might have otherwise.

In-vehicle systems also will affect the choices made at the tactical
level, that is, while driving. Anyone who has driven a vehicle with
brakes in need of maintenance knows that one becomes more cau-
tious, driving more slowly and with greater headways. It is hardly
surprising that drivers equipped with antilock brakes do the reverse.

In the following sections, various studies of ITS are reviewed, in
terms of the degree to which driver adaptation, at both the strategic
and tactical levels, was considered.

Adaptive Cruise Control Systems

A study of adaptive cruise control (ACC) by Fancher et al. is similar
to the early studies of ABS in that it is a proof-of-concept (/5). The
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effect of ACC was compared to that of standard cruise control and
no cruise control in an on-road test. Velocity and headway were mea-
sured. Not surprisingly, the results indicated that the ACC system
conferred a substantial margin of safety compared to the manual and
the cruise control modes. Driving was smoother and instances of
short headways less frequent.

This study demonstrates that ACC functions as designed, but
within very strict limitations. It does not address the larger question
of how drivers will change their strategy as a result of having ACC.
This is not to criticize this particular study, only to point out that
proof-of-concept is only the first stage of evaluation. Several studies
are needed, and at different stages of implementation (/6).

There is a need to examine changes in behavior that may result
from reducing driver workload. For example, on a strategic level,
drivers may do more driving or drive for longer periods with ACC.
They may be more inclined to drive in high-density traffic, to drive
when tired, and to spend more time attending to nondriving tasks
inside the vehicle. This may lead to a reallocation of attention, so that
less attention is given to the road ahead and more to in-vehicle tasks.
The result may be poorer detection of hazards (with the exception of
the moving vehicle ahead). A hazard of particular concern with ACC
is a stopped vehicle ahead. Currently these systems only respond to
moving vehicles—this is to avoid, for example, the vehicle slowing
inappropriately on a curve in response to a fixed object on the road-
side directly ahead of the vehicle. This means that the system will
not respond to a stopped vehicle—such as one at the end of a queue.
Because of drivers’ poor perception of closing velocity, such stopped
vehicles are particularly hazardous and especially so if the driver has
become dependent on the system to detect and respond to unsafe
headways. A lack of attention to the road ahead because of depen-
dence on ACC may contribute to crashes into such stopped hazards.
The final impact on safety will depend on the trade-off among fewer
crashes due to drivers being late in recognizing a reduced head-
way, more crashes due to inappropriate dependence on the system
to detect stopped vehicles, and more crashes due to greater exposure.

Vision Enhancement Systems

Vision enhancement systems (VES) are intended to assist drivers
in detecting hazards, particularly pedestrians and animals, under
low-visibility conditions. These systems improve visibility of a
central area of the road scene through the use of infrared detection.
Bossi et al. examined potential adaptive effects at dusk and at night
using such a system in a driving simulator (/7). At night, there is a
greater discrepancy between visibility of the central field enhanced
by VES and the peripheral field of view. In a simulator study, they
showed that at night, but not at dusk, VES reduces target detection
and discrimination for peripheral targets outside the central field
enhanced through VES. No significant effect of VES on reaction
time was found.

This study examined an important aspect of adaptation—the
change in focus of attention induced by the system. The safety result
may be a decreased likelihood of crashes involving hazards on or near
the road but an increased likelihood of crashes involving hazards
entering the road.

Another concern is that with better detection of hazards, drivers
may be inclined to drive faster, with negative consequences for
safety. Studies in Finland found that improving delineation on roads
by using post-mounted reflectors on roads with substandard geo-
metrics resulted in an inappropriate increase in speeds and higher
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rates of nighttime collisions (/&). VES may well have the same
result.

On a strategic level, as with ACC, VES may result in more driving
in poor visibility, particularly for older drivers. The positive effect
is that mobility will be increased—whether the net safety effect also
is positive remains to be seen.

Navigation Systems

Navigation systems have received much attention from researchers
with regard to effects on performance (/9). Most studies have con-
sidered adaptations at the tactical level. For example, Antin et al.
examined visual search behavior for drivers using an ETAK navi-
gator, as opposed to drivers using a map or following a memorized
route (20). The ETAK system displayed a map and allowed the
driver to choose the map scale by using a zoom feature. The system
was autonomous and operated by “dead-reckoning.” Study results
showed that on the memorized route, 85 percent of glances were
ahead, at the road. With a map, this was reduced to 78 percent, and
with the ETAK navigator, only 57 percent of glances were at the road.

When subjects used the navigator, 33 percent of glances were
toward the display, as compared to only 7 percent toward the paper
map. Although subjects were permitted to read the map while they
drove, they chose to spend more time studying the map before start-
ing to drive (1.55-min study time versus 0.75-min study time for the
navigator) and less time using it while driving. Other studies of nav-
igation systems find similar results (2/, 22). Moreover, these stud-
ies find that the visual search of older drivers is particularly affected.
Glance times are longer and glances more frequent than is the case
for younger drivers.

These results certainly raise a concern about safety. However,
one cannot be sure of the effect without knowing much more about
where drivers are looking. Rockwell’s early studies of driver eye
movements suggest a fair amount of spare capacity (7). While driving
on highways with no traffic ahead, about two-thirds of driver fix-
ations were on targets other than road markings, signs, and other
vehicles (7). However, today’s roads are busier. Furthermore, one
does not know what spare capacity is available in today’s urban sit-
uations in which navigation systems will be referred to most often—
it is likely to be considerably less.

To date, visual demand associated with navigation systems has
been measured using video cameras that allow researchers to sepa-
rate glances at the navigation display from those at the mirrors and
those on the road scene ahead. However, greater resolution would
be required to determine what spare visual capacity exists as well as
to see what happens when a navigation system is in use. Particularly
needed is to know how far ahead the driver is looking and how
appropriately he or she monitors the traffic around the vehicle, both
with and without a navigation system. For example, the closer a vehi-
cle in front is, the more frequently it should be glanced at. A vehicle
exiting a driveway should be monitored more frequently if its speed
indicates it may cross the driver’s path.

A particular concern is vulnerable road users. Drivers pay great-
est attention to objects likely to cause them the most harm. Drivers
allow larger gaps when crossing in front of trucks as opposed to cars.
One study showed that drivers at a T-junction turning right spent
much more time looking left toward oncoming vehicles than right
toward pedestrians or bicyclists who were about to cross the driver’s
path (23). If drivers neglect the road ahead, they may be more likely
to neglect those that are more vulnerable, such as pedestrians and
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cyclists, and concentrate on the immediate threat of other vehicles
to themselves.

Although there are grounds for concerns about safety, there is also
reason to believe that drivers make adaptations in allocation of visual
attention that are appropriate to the traffic demand. For example,
Bhise and Rockwell examined driver sign-reading behavior in
low- and high-density traffic (24). Glance durations in high-density
traffic were approximately half those found for low-density traffic.
Reeves and Stevens found that drivers using a map-based naviga-
tion system in an on-road study had glance durations 30 percent less
than those found in a simulator study in which the traffic demands
were lower (25).

An on-road study using the ETAK navigator examined the influ-
ence of traffic density on attention to the display (26). Subjects used
the system to drive in unfamiliar areas that varied greatly with respect
to traffic density. Video recordings were made of eye-scan patterns
for light traffic, heavy traffic, and traffic in which an incident (poten-
tial conflict with other vehicles or pedestrians) occurred. The atten-
tional demand of various roadway sections was rated and compared
to driver eye-scan patterns. As attentional demand increased, the
probability of a glance to the roadway center increased and the prob-
ability of a glance to the navigational display decreased. In addition,
the length of glances to the roadway center increased for high-density
as compared to low-density traffic and for incidents as compared
to high-density traffic. The authors concluded that their results
showed that drivers adapt their visual resources to account for in-
creases in roadway demand, and they reduce their attention to the
navigational display.

These data suggest that most drivers will tailor their glances to in-
vehicle displays or tasks to the driving workload. However, it is nec-
essary to examine changes in detection of on-road hazards to be sure
that safety is not compromised.

Such an approach was taken by Walker et al. who used the FHWA
driving simulator to compare driver detection performance, as well
as vehicle control, for various types of navigation systems (27).
These included maps, auditory messages, and visual displays. The
detection task involved watching dashboard instrument gauges. The
task difficulty was varied by the type of other traffic that was present,
the roadway width, the degree of wind gusts, and the difficulty of a
monitoring task.

Lane position variability was not affected by display modality or
complexity. However, subjects appeared to cope with greater display
complexity and greater task difficulty by dropping their speed and by
reducing the attention paid to the gauge monitoring task. The speed
on straight sections was not affected by the navigational device used.
Speed effects were only found just before and just after turns.

The gauge monitoring task was performed most poorly for the
paper-map group and next most poorly for the complex visual display.
This latter finding was mainly attributable to the performance of the
older subjects. Overall, subjects missed 16 percent of the signals pre-
sented. Older subjects using the map display or the paper map missed
large numbers of signals (approximately 40 and 50 percent, respec-
tively). Other types of visual and auditory devices (with the exception
of the paper map) were associated with much lower miss rates.

Although this study did examine the effects of changes in the focus
of visual attention on monitoring, the task used was an in-vehicle
monitoring task. The more critical monitoring task in driving is for
on-road hazards. The effect of navigation systems on such detection
remains to be studied.

There has been little research addressing changes in performance
at the strategic level for any ITS device. One experiment that did
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address this demonstrates some interesting adaptive effects of a nav-
igation system (2&). The results showed that unintentional (lost) users
of neighborhood streets benefited more from car navigation infor-
mation and revised their route more easily than those using simple or
detailed maps. Users of car navigation systems appeared to learn to
worry less about the consequences of getting lost and therefore inten-
tionally traveled relatively more on neighborhood streets to avoid
congested arterial streets. These authors concluded that widespread
use of route guidance systems and traffic congestion information will
increase neighborhood congestion unless countermeasures are taken.

In addition, adaptive effects were found with respect to the devel-
opment of a mental model of the area. The group provided with the
most route information recalled the fewest landmarks at every level
of route experience. The authors suggest that the car navigation
system substitutes for cognitive mapping of the route.

Further research is required on both the strategic and tactical
changes resulting from the use of navigation systems to determine
the likely safety effect. At the strategic level, there may be more
driving by unfamiliar drivers. At the tactical level, there may be less
attention to the road ahead, resulting in poorer detection of hazards.
The overall safety effect will depend on the impact of greater expo-
sure of unfamiliar drivers as well as the trade-off between reduced
attention required to the road ahead due to the navigation task and
greater attentional demand inside the vehicle.

Collision Avoidance Systems

As has been illustrated here, if the task is changed, drivers will mod-
ify their behavior. The task of designers and researchers is to ensure
that the design encourages optimal modification. This is done by
considering the likely changes in strategy and by modifying the
design to ensure the resulting behavior is appropriate to the design
goal of increased safety.

A good example of this approach is a study by Janssen et al. (29).
Performance was measured for three types of collision avoidance
systems (CAS):

® Driver’s braking distance shown by a horizontal red line
projected onto the windshield using a head-up display (HUD);

e Time-to-collision (TTC) plus pedal—4-s TTC trigger criterion
with the CAS applying accelerator counterforce; and

® TTC plus 1 s plus pedal—the preceding CAS with an addi-
tional trigger criterion of 1-s simple headway, either criterion being
sufficient.

These three systems were compared to a contro! condition as drivers
drove a simulator. Vehicles ahead were presented with an initial head-
way of 7 s and a relative closing speed of 10 to 40 km/h. In a quar-
ter of scenarios this vehicle braked after initial appearance. Frequent
but irregular oncoming traffic made passing difficult. The average
speed and the percentage of time that intervehicle headway was less
than 1 s were measured.

The results showed that only the CAS consisting of TTC plus
pedal counterforce provided a safety benefit. It reduced the percent-
age of time that the headway was less than 1 s, without increasing
average speed. In the degraded visibility conditions, the HUD that
showed braking distance significantly decreased driver safety by
increasing short headways relative to no CAS.

Based on a purely mechanistic analysis, one would expect the third
system to be better than the second. However, the results showed that
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adding a simple 1-s headway trigger criterion to TTC plus pedal sig-
nificantly worsened driver safety by increasing the proportion of
short (<1 s) headways and the average speed. This may have been
because with two distinct criteria, drivers found it more difficult to
understand how the CAS was operating. It is sobering to remember
that one of the first accidents with ABS involved a police officer in
a high-speed chase who removed his foot when he felt the unfamil-
iar vibration of the ABS brake. The driver’s understanding or men-
tal model of how the device operates is an important issue that has
received little attention to date.

SUMMARY AND CONCLUSIONS

It is intrinsic to human nature to modify behavior to suit new condi-
tions. A consideration of “intelligent behavior” and a review of a
sample of ITS studies strongly suggest that one should assume that
adaptation will occur when the driving task is changed. It is clear
from the ABS experience that safety cannot be predicted on the basis
of proof-of-concept studies alone. One cannot simply look at changes
in performance of the task being aided, whether that is braking, nav-
igation, or detection of hazards. One has to look at changes in other
aspects of the driving task and at the type of driving being done.

In particular, one should assume that there may be trade-offs of
mobility for safety, that is, more driving in more difficult conditions
and at higher speeds leading to more crashes. Furthermore, one should
expect drivers to attempt to increase productivity while driving, given
reduced driving task demand. The prolific use of cellular phones is
evidence of this behavior.

Research is needed on driver mental models of ITS devices, to
ensure that drivers understand how they function. The best design
from a mechanistic point of view may not be the most effective for
operators.
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