PB2001-104037

DAL

LOGIC-BASED, PERFORMANCE-DRIVEN ELECTRIC
VEHICLE SOFTWARE DESIGN TOOL

FINAL REPORT

FEBRUARY 2001

Report Budget Number KLK305
Report Number NO1-10

Prepared for

OFFICE OF UNIVERSITY RESEARCH AND EDUCATION

U.S. DEPARTMENT OF TRANSPORTATION
Prepared by

NIATT

NATIONAL INSTITUTE FOR ADVANCED TRANSPORTATION TECHNOLOGY

UNIVERSITY OF IDAHO

Donald M. Blackketter, PhD, PE
David G. Alexander, Graduate Student

REPRODUCED BY: m

_U.S. Department of Commerce T
i i ion Service
Springfield, Virginia 22161

DISCLAIMER

The contents of this report reflect the views of the authors,
who are responsible for the facts and the accuracy of the
information presented herein. This document is disseminated
under the sponsorship of the Department of Transportation,
University Transportation Centers Program, in the interest of
information exchange. The U.S. Government assumes no
liability for the contents or use thereof.

Technical Report Documentation Page

1. Report No. 2. Govemment Accession No. 3. Recipient's Catalog No.
4, Title and Subtitle 5. Report Date
LOGIC-BASED, PERFORMANCE-DRIVEN ELECTRIC VEHICLE Feb 2001
SOFTWARE DESIGN TOOL ebruary

6. Performing Organizational Code

8. Performing Organization Report No.

7. Author(s)
Donald M. Blackketter; David G. Alexander NO1-10
8. Performing Organization Name and Address 10. Work Unit No. (TRAIS)

National Institute for Advanced Transportation Technology; University of
ldaho: PO Box 440901; Engineering Physics Building 115A; Moscow, 1D
83844-0901 :

11. Contract or Grant No.

DTRS98-G-0027

13. Type of Report and Period Covered
Final Report, July 1998-August 2000

12. Sponsoring Agency Name and Address

U.S. Department of Transportation; Research and Special Programs
Administration; 400 7th Street, SW; Washington, DC 20590-0001

14. Sponsoring Agency Code
USDOT/RSPA/DIR-1

15. Supplementary Notes
A poster presentation was made at the ADVISOR User Conference in Costa Mesa, CA, Aug.23-24, 2000, and a similar
| paper published in the Proceedings of the conference. Related report: NIATT NO1-12.

16. Abstract

The goal of this research was to develop computer-based logic algorithms and build them into SmartHEV, a series hybrid
electric vehicle software design program. Computer-based logic algorithms were developed to improve the success and
rate of convergence of systems of equations as well as prevent systems of equations from being improperly defined during
the unknown variable identification process. The system of equations that governs the operation of a series hybrid electric
vehicle is derived from the road load power equation. SmartHEV is the result of combining the computer-based logic
algorithms with the governing equations that describe the performance of a series hybrid electric vehicle. In SmartHEV, any
variable can be specified as unknown, unlike most vehicle programs that determine vehicle performance using only one set
of unknown variables. This added fiexibility can result in a more complicated system to solve; however the computer-based
logic algorithms improve convergence properties such that there is little to no added expense in solution time. SmartHEV is

a flexible and fast software program that is to be used by design engineers for the analysis of series hybrid electric
vehicles.

17. Key Words 18. Distribution Staternent

Unrestricted. This document is available to the public
Dual fuel vehicles; light vehicles; numerical analysis; vehicle | through the National Technical Information Service,

dynamics; optimization; algorithms. Springfield, VA, 22161.
19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price
Unclassified Unclassified

Form DOT F 1700.7 (8-72) Reproduction of compieted page authorized

LOGIC-BASED, PERFORMANCE-DRIVEN ELECTRIC
VEHICLE SOFTWARE DESIGN TOOL

FINAL REPORT

FEBRUARY 2001

Report Budget Number KLK305
Report Number NO1-10

Prepared for

OFFICE OF UNIVERSITY RESEARCH AND EDUCATION

U.S. DEPARTMENT OF TRANSPORTATION
Prepared by

NIATT

NATIONAL INSTITUTE FOR ADVANCED TRANSPORTATION TECHNOLOGY

UNIVERSITY OF IDAHO

Donald M. Blackketter, PhD, PE
David G. Alexander, Graduate Student

NIATT

EXECUTIVE SUMMARY

Two goals were pursued concurrently during this research. The first goal was to develop a
performance-driven, steady state, hybrid electric vehicle (HEV) software design tool that
would provide design information to the University of Idaho FutureTruck 2000 Suburban.
The second goal of this research effort was to develop logic-based, computer algorithms that

could be used to outperform numerical solvers currently available.

The HEV design software, SmartHEV, is a flexible and robust model of steady state HEV
operation. The power flow through the vehicle components is modeled using the road load
power equation. The components that are modeled include the battery pack, alternator,
alternative power unit (APU), electric motor, transmission, differential, and wheels.
SmartHEYV integrates a user-friendly interface with logic-based algorithms that allow the
selection of combinations of known and unknown variables. This flexibility in selecting
known and unknown variables is a unique feature of SmartHEV. Known variables can also
be used to step through a range of vehicle operation in order to calculate optimum
performance levels. Parametric results can be plotted and compared against other design
configurations. Through the process of selecting known and unknown variables, a user can
gain tremendous insight into the relationships of the vehicle components and the variables

that describe them.

Several logic-based algorithms were developed and implemented in SmartHEV to improve
convergence success and rate of convergence for general systems of equations. The
algorithms developed include

e Rewriter

e VarSelect

» Solution Path

e Best Solution Path

e Swap-and-Solve

Logic-Based Performance Driven Electric Vehicle Software Design Tool 1

NIATT

The equation Rewriter algebraically manipulates variables within equations to eliminate
potential solving problems. The VarSelect routine guarantees that the user specify a non-
singular set of unknown variables; the routine also provides tremendous flexibility and
insight during the selection of known and unknown variables. The Solution Path and Best
Solution Path algorithms determine the best strategy for solving a system of equations; this
often results in faster computational speeds when compared to traditional solving strategies.
The Swap-and-Solve routine determines alternative solution strategies that can be used to
find a valid solution when convergence problems exist. These algorithms are integrated in a
Windows environment that manages known and unknown variables and their solutions,
making variable identification and selection easier for the user. The engineering design
analyst will find that using these algorithms will reduce computational time and improve

convergence success when solving linear and nonlinear systems of equations.

PROTECTED UNDER INTERNATIONAL COPYRIGHT
ALL RIGHTS RESERVED

NATIONAL TECHNICAL INFORMATION SERVICE
U.S. DEPARTMENT OF COMMERCE

Reproduced from
best available copy.

Logic-Based Performance Driven Electric Vehicle Software Design Tool 2

NIATT

DESCRIPTION OF PROBLEM

Electric Vehicle Simulation and Modeling

Vehicle simulation software is essential to vehicle design and development. All current
vehicle software simulations, however, require that components be specified prior to running
the simulations. This works well if the user’s goal is to gain insight into a particular design.
Unfortunately, when the design has not yet been established, running multiple simulations on
proposed vehicles can be time-consuming. SmartHEV is a vehicle software design tool that
does not require a vehicle to be completely specified before performing a steady state

simulation.

SmartHEV is a vehicle component design tool written in VisualBasic 6.0 that uses algorithms
currently under development at the University of Idaho [1, 2]. SmartHEV can accept
performance goals as well as component specifications as input based on steady state vehicle
operation. The user-friendly graphical interface provides a platform allowing engineers to
mix-and-match vehicle components and performance goals. The components that are
modeled include the wheels, driveshaft/differential, transmission, electric motor, battery
pack, alternator, and APU. The road load power includes effects due to aerodynamic drag,

rolling resistance, uphill climbing and component efficiencies.

The algorithms provide valuable information to the user. Because component specifications
and performance parameters are linked to the variables, the user learns how a change in one
variable affects other variables. This way the user can focus on the correct set of variables in

order to modify a component design to get a desired performance.

Need for Advanced Numerical Techniques and Algorithms

Because of the large number and complexity of components in an electric vehicle, modeling

and simulation results in a large system of equations that can be difficult to solve. Difficulties

Logic-Based Performance Driven Electric Vehicle Software Design Tool 3

NIATT

arise when solving large sets of equations for a variety of reasons. Depending on the known
and unknown variables, some systems require initial guesses to be close to their actual value.
Other systems produce multiple answers, some of which would be physically impossible to
use in a design. Still other systems produce answers that are near singular or were improperly
derived resulting in numerical instability. These problems can be daunting and at times, even

insurmountable.

Not only are the systems of equations difficult to solve, but they are also difficult to manage,
simply because of the limits of human cognitive ability. The human mind can successfully
manipulate approximately only eight chunks of information at one time [3]. Given that each
variable and each operator in an equation are chunks, two simple equations can challenge the
limits of human cognitive ability. Algorithms that help manage variables and their values can
be of tremendous help when solving large systems of equations. Several of the design
algorithms that were developed during this project provide structure to a user for selecting
known and unknown variables and assigning values, often without the user needing to

understand how this is accomplished.

Logic-Based Performance Driven Electric Vehicle Software Design Tool 4

NIATT

APPROACH AND METHODOLOGY

SmartHEV Program Development

SmartHEV simulates the steady state operation of an HEV based on the relationships derived
from the road load power equation. The road load power accounts for the rate of energy
required to power a vehicle and is based on the first law of thermodynamics. The power
required at the wheels to maintain a vehicle at a prescribed velocity under various driving
conditions is calculated using the following equation, adapted from SIMPLEYV, an electric

vehicle simulation program [4]:

P(t)=P,_ +P

aero rolling +P grade +P, acc + B bearing * (1)
P_ero is the power demand as a result of aerodynamic drag; Proning 1s the load due to the
resistance of the road on the wheels; Pgrqq. is the power required to climb a hill; Pgc. is the
power necessary for acceleration; and Ppearing is the power required in overcoming the

resistance of the bearings and the final drive shaft.

The total power P(t) necessary to meet the velocity is transmitted to the drive shaft. This
power request is then translated into a specified torque and speed at the drive shaft. Using the
torque and speed at the drive shaft, the demand on the transmission is determined. With the
transmission gear ratio, the requested torque and speed from the electric motor are
determined. The losses through the inverter are calculated using a constant inverter efficiency

coefficient.

The power requested at the high voltage bus is used to determine the total power available for

discharging and charging the battery pack. The total battery power is defined as

P,

bat

=P

alt

+P _+P,, 2)

Logic-Based Performance Driven Electric Vehicle Software Design Tool 5

NIATT

where, P, is the power from the alternator used to charge the pack, Py, is the BUS power
demand, and P, is the power required for auxiliary loads. Power discharging from the
batteries is positive; power is negative when recharging. Equation (2) balances the power
from each vehicle component. This configuration enables the user to determine the power
demand from each component while holding the power from the remaining components at
zero and thus determine the steady state power demand from each component necessary for

continuous operation.

The power demand necessary to maintain a vehicle at a prescribed velocity is split between
the battery pack and the alternator. The power through the alternator is adjusted using a
constant alternator efficiency, and the alternator then requests power from the APU. The
battery pack discharge efficiency is considered in relation to the heat losses due to chmic

heating and an approximate constant efficiency.

The battery pack component was modeled with an open circuit battery voltage, internal
resistance and load voltage. A voltage loop equation was derived in order to calculate the
current at the battery pack. The current was found using the positive root of the quadratic
equation which resulted from the voltage loop, with internal resistance and open circuit

voltage held constant.

The equations derived from modeling the power flow through each component between the
road and the battery pack were compiled and were used as the system equations in
SmartHEV. These equations accurately model a series HEV. The system of equations can be
altered by the user, but proper care must be taken to maintain numerical stability. The user is
not presented with the equations upon starting SmartHEV. Vehicle configurations are
explored by the user in the graphical interface where only the components and their variables

are presented.

The interface for SmartHEV was designed to be flexible, easy to use, and dynamic. A user

can indicate any variable as known by selecting its name or using the up/down arrow next to

Logic-Based Performance Driven Electric Vehicle Software Design Tool 6

NIATT

the variable value. All variables appear either on the main screen or on the pulldown menu.
The variable value box turns yellow when it is selected as known or orange if selected as
unknown. When the user clicks a variable label that is unknown, a dialog box appears. The
dialog box lists all possible variables that can be exchanged with the selected unknown
variable. If a variable is selected from the list, it becomes unknown and the variable that was
originally selected becomes known. This interchange maintains a non-singular system of

equations.

Units for all variables are displayed when the pointer (mouse arrow) hovers over a variable
label. The user can change the variable units by right-clicking on the variable label. A list of
possible common units in both the International System (SI) and the English System is

provided for each variable.

SmartHEV continuously verifies whether or not sufficient variables have been selected as
known and/or unknown to make a valid set of solvable equations. When a valid set exists,
SmartHEV will solve the set and display the results. A change in a known value will cause
changes in unknown variable values, but only those unknown variable values that change
will appear in yellow text with an orange background. Unknown variable values that do not
change remain in black text on an orange background. The changes in text and background
colors make it easy to determine which unknown variable values are dependent on known
values. Whenever a known value is selected or changed, the results are automatically updated
on the screen. Tremendous insight can be gained by observing the different variable

interactions caused by the various component relationships.

Advanced Numerical Techniques and Algorithms

The design algorithms presented in this research were combined into a general, linear and
nonlinear equation solver. The solver is general in the sense that the user can input any

equation or system of equations. The unique design algorithms pre-process the variables and

Logic-Based Performance Driven Electric Vehicle Software Design Tool 7

NIATT

equations and then send the optimized set of equations to the solving engine, which utilizes a
standard Newton-Raphson method for systems of equations. The design algorithms—the
Rewriter, VarSelect, Solution Path, Best Solution Path, and Swap-and-Solve—are invisible
to the user and, except for a few initialization parameters, require little user input.

The five design algorithms that were developed perform one of two distinct functions. First,
the algorithms manipulate system equations and variables in order to improve convergence
success and speed. Second, the algorithms prevent the modeling analyst from making

mistakes during variable selection and definition.

Rewriter Algorithm

The Rewriter algorithm analyzes and rewrites equations that are input by the user in an
equation editor screen. If possible, it rewrites equations algebraically to remove unknown
variables in the denominator of fractions. While simple, this approach eliminates a potential a
“divide-by-zero” error. Because the Newton-Raphson method is an open method, it is
possible that, if the unknown variable were in the denominator, the denominator could go to
zero. The Rewriter eliminates this potential error whenever possible (see Fig. [1]). A flow

chart for the Rewriter is illustrated in Fig. (2).

=¢ = a=c-b

SITEN

c

TN

a+2)=d - (d-a)c=b

Figure 1. Two equations as rewritten by the Rewriter algorithm

VarSelect Algorithm

The VarSelect algorithm contains two logic routines called the U_Select and the K_Select.
Once equations are input in the equation editor and rewritten by the ReWriter routine, all
variables are parsed from the equations and displayed as labels and variable value boxes on

the screen. Initially, no variable is known or unknown. The user selects the known variables

Logic-Based Performance Driven Electric Vehicle Software Design Tool 8

NIATT

and those that are unknown and therefore to be solved. Once a variable is selected as known,
the K_Select routine identifies any other variable(s) that must be unknown based on the first

variable as known. If K_Select determines that a variable must be unknown, its background

Tag leading negative
sign, i.e. (VI), (-
V1)), or -V1+V2.

Replace tangent with
sine/cosine.

Replace integer
exponential with
multiplication.

]1

Remove unnecessary
or redundant
parenthesis.

Remove divides by
multiplying equation
by denominator.

Figure 2. Rewriter flow chart

color is changed to orange, in which case the variable can no longer be selected as known.
However, if at a later time the user decides that it would be advantageous to have the
unknown variable known, the VarSelect routine will identify all known variables that could
be swapped or exchanged with that unknown variable. These two operations give tremendous
insight into the interactions between variables and equations and provide the user with

valuable information for making informed design decisions. A non-singular set of variables

Logic-Based Performance Driven Electric Vehicle Software Design Tool 9

NIATT

and equations is maintained throughout the variable selection process, thereby increasing the

chances of convergence.

The logic used in the VarSelect routine has evolved over the past several years. The
VarSelect routine determines a valid set of known and unknown variables based on the
number of variables present in each equation and the frequency of variables in all equations.
The selection of known and unknown variables is independent of any mathematical operator.
Earlier applications developed at the University of Idaho, such as SmartSolve 1.2 [1],
SmartSolve 2.2 [2] and Kinematics and Dynamics [5] have used similar routines with great

SUCCess.

Solution Path/Best Solution Path Algorithms

A significant amount of work to determine the most efficient strategy to solve systems of
equations was conducted in the 1960s and 1970s. Ramirez and Vestal outline two algorithms
that help select a set of unknown variables in order to decouple a system of equations [6]. A
system of equations that is decoupled has the fewest number of equations that must be solved
simultaneously. In a decoupled system, each unknown variable is solved using one equation.
This is known as a sequential solution path. The algorithms outlined by Ramirez and Vestal
are designed to help structure and organize a large set of equations to facilitate calculating by
hand. Christensen, Lee, and Rudd have published similar work [7, 8]. Much of this work has

never been implemented into a numerical solver or coded into a computer program.

The main function of the Solution Path is to determine a solution path that minimizes the
number of simultaneous equations that must be sent to the numerical solver. Once a variable
is determined as unknown, either by the user or the VarSelect routine, the Solution Path
checks to see if enough variables have been specified as known in order to solve for a
specific unknown. The Solution Path routine also determines the order of solving each

unknown variable.

Logic-Based Performance Driven Electric Vehicle Software Design Tool 10

NIATT

The Solution Path uses information from the structure of the equations and variables to make
decisions, much like the VarSelect routine. Ramirez and Vestal outlined two algorithms used
for determining the best-known variables and the best solution path [6]. The Solution Path
routine diverges from their work by allowing the user to select any set of known and
unknown variables, on which the solution path is then based. SmartHEV uses the Solution
Path routine to determine whether or not the set of equations to be solved contains coupled
equations (multiple equations used to solve multiple unknown variables at the same time) or

sequential equations (one unknown variable used to solve one equation at a time).

The Solution Path algorithm is a powerful tool for solving systems of equations.
Simultaneous solution paths require guess values to be close to their solved value. However,
a sequential solution path does not necessarily require careful guesses. This is particularly
true with systems of equations where linear equations can be solved early in the sequential
solution path and nonlinear equations can be solved later. Additionally, sequential solution

paths tend to iterate to a solution faster than simultaneous solution paths.

The Best Solution Path routine, also based on the work of Ramirez and Vestal [6], is similar
to the Solution Path routine, except that it determines the best solution path without using the
known and unknown variables selected by the user. However, the Best Solution Path also
determines the degree to which each variable is nonlinear. The variables with higher degrees
of nonlinearity are given more weight for being known variables. This information is then
used to determine the best-unknown variables. Best-unknown variables are typically linear
and result in the least number of coupled equations. A list of the best-unknown variables is

generated and used in the Swap-and-Solve routine, which is outlined below.

The Solution Path and Best Solution Path algorithms use a similar sequence of steps to
determine a solution strategy based on the number of variables and the number of times a
variable is present. The algorithms generate a matrix of zeros and ones (the occurrence
matrix) that represents the existence of a variable in an equation. For example, Table 1 shows

the occurrence matrix for the following equations:

Logic-Based Performance Driven Electric Vehicle Software Design Tool 11

NIATT

& +b=c Ga)
a+d =sin(c) (3b)
a*b=cle (Bo)

Table 1 Occorrence Matrix

Variables (a |b |c |d | e
Eq.(3a) |11 }1 0
Eq.3b) |1 {0 |1|1]0
Eq.(3¢) |1]1]1}0]1

The solution path can be determined by reviewing the occurrence matrix. Our example has
three equations; therefore, there can only be three unknown variables. Careful selection of
the unknown variables will result in a sequential solution path; in other words, all equations
can be decoupled. If the sum of the rows for any variable is equal to one, that variable is
present in only one equation. The equation that contains the one occurrence of that variable
must be used to solve for that variable. In Table 1, variables d and e have sums equal to one.
Therefore, d and e would be best identified as unknown variables. These variables are not
coupled with any other equation. In fact, any other variable can be selected as unknown and

the system would be decoupled.

This would not be the case if d or e were known. If both d and e were known, no variable
would have a row that summed to one. This would indicate that a simultaneous set of
equations existed. In that case, all three equations would have to be solved simultaneously to

solve this system.

If b and e were known and a, ¢, and d unknown, the system would be partially coupled.

Equations (3 a) (3 ¢) could be solved simultaneously for variables a and c¢. With these results,

d could be solved sequentially.

Logic-Based Performance Driven Electric Vehicle Software Design Tool 12

NIATT

The Solution Path and Best Solution Path evaluate the occurrence matrix in a similar way as
described above. The rows containing ones are summed for each variable. Variables with a
sum equal to one are solved first. For some systems of equations, this will be how all the
variables are solved. When there is no variable with a sum equal to one, the Solution Path
and Best Solution Path determine the smallest set of coupled equations that can be solved.
Once an equation is identified as solvable, it is removed from the occurrence matrix. The
columns for each variable in the occurrence matrix are added again and searched for a value
of one. The algorithm proceeds until all equations have been removed from the occurrence

matrix.
Swap-and-Solve Algorithm

The Swap-and-Solve routine provides an additional solving strategy when the system of
equations does not converge to a solution. The Swap-and-Solve routine uses the VarSelect
and the Best Solution Path routines to iterate on a solution in the event that the Newton-
Raphson method fails to converge based on the known and unknown variables selected by
the user. When the Swap-and-Solve routine runs, it compares the unknown variables selected
by the user with the best-unknown variables that were determined by the Best Solution Path.
If a best-unknown variable is missing from the list of unknowns specified by the user, that
variable is added to a list of potential swap variables. Variables that the user selects as known
but that are best-unknown variables are called swap-unknown variables. Variables that are

unknown but are better as known variables are called swap-known variables.

All of the swap-unknown variables are exchanged with originally unknown variables and a
solution path is generated. The solution path with the most decoupled equations is selected as
the Best Solution Path. The swap-unknown variable is then seeded with a guess that is its
actual known value, and the swap-known variable is seeded with a guess of unity. The Best
Solution Path is then sent to the solver. If the system converges to a solution, the swap-

unknown value is compared with the variables known value. If the values are nearly the

Logic-Based Performance Driven Electric Vehicle Software Design Tool 13

NIATT

same, within a specified tolerance, the system has solved correctly; otherwise the Best

Solution Path is sent to the false-position routine

The false-position routine uses the false-position bracketing method to iterate on the swap-
known value in order to bring the swap-unknown variable within a specified tolerance of its
known value. The swap-known variable was set as a known variable in the set of equations,
but it was originally an unknown variable. Its swap-known value is only a guess. The upper
and lower limits for the swap-known variable are first determined. This guarantees that the
root exists within the bounds. Once the swap-known variable is successfully bracketed, the
false-position method iterates on the swap-known variable until the difference in the swap-

unknown value and its known value are with the tolerance limit.

The Swap-and-Solve routine can find a solution for problems that other solvers cannot
because it eliminates the need for more accurate guesses. If the user-specified known and
unknown variables result in a coupled solution path, good guesses—sometimes even within
tenths of a percent of the solved value—are often necessary in order to converge to a

solution. Guesses this accurate are often difficult to determine.

The Swap-and-Solve routine decouples the solution path by swapping known and unknown
variables. The resulting solution path may be sequential, and therefore may not require
accurate guesses in order to converge. If the first swap does not result in a convergent
solution, the Swap-and-Solve routine will find the next variable to swap that minimizes the
number of coupled equations in the solution path. Once a solution is found, even though it is
based on a guessed known variable, the method of false-position will bring the swap-known
value close to its true value on successive iterations. When the Swap-and-Solve routine is
called it is typically not the set of equations that is faulty, but rather the solution path. Using
the Swap-and-Solve technique to find a better solution path can make the difference between

success or failure when solving systems of equations.

Logic-Based Performance Driven Electric Vehicle Software Design Tool 14

NIATT

FINDINGS; CONCLUSIONS; RECOMMENDATIONS

SmartHEV

Figure 3 shows the graphical user interface (GUI) of SmartHEV. The variable value boxes
have adjustments that change the value by 10 percent for every click of the up or down
arrow. The variable value with the dark background and light numbers in Fig. 3 indicate that
the variable has changed value because of a change that was made to a known variable value.
All major components are easily visible, each containing a set of variables that govern the

performance of the HEV.

Figure 3. SmartHEV GUI

Table 2 lists the results from four different design iterations of SmartHEV based on the input
parameters and performance goals listed in Table 3. In Table 2, the first column indicates the
results with no power provided by the battery pack. Column two lists the results with no
power provided by the APU. The third column, Hybrid I, lists the model results based on a
hybrid operation. Neither the APU nor the battery pack output power was specified. Hybrid
11, in the fourth column, was designed with a known APU power output of 30 kW. As a

Logic-Based Performance Driven Electric Vehicle Software Design Tool 15

NIATT

result, the APU speed and torque were adjusted to accommodate the constant APU power

output.

Table 2 Design Results from Four Different Scenarios

No Battery Pack | No APU | Hybrid | | Hybrid Il Units

Road Load 33,835 33,835/ 33,835 33,835 watts
Accel. Power 3,478 3,478 3,478 3,478 watts
Grade 20,463 20,463 20,463 20,463 watts
Aero. 5,989 5,989 5,989 5,989 watts
Rolling 3,065 3,065 3,065 3,065 watts
Bearing 838 838 838 838 watts
Motor Power 35,616/ 35,616] 35,616 35,616 watts
Motor Speed 92.7 92.7 92.7 92.7 rev/s
Motor Torque 61.2 61.2 61.2 61.2 Nm
APU Power 51,400 0.0 34,557 30,000 watts
APU Speed 110 0.0 100 80 rev/s
APU Torque 73.9 0.0 55 60 Nm
APU Eff. 0.25 0.0 0.19 0.20

Batt. Power 0.00] 48,830; 16,000 20,330 watts
Batt. Current 0.0 245 80 102 amps
Alt. Power 48,830 0.0 32,829 28,500 watts
Alt. Current 244 0.0 164 143 amps
Gear ratio 6.67 6.67 6.67 6.67

SmartHEV was bench-tested against the Advanced Vehicle Simulator (ADVISOR)
developed at the National Renewable Energy Laboratory (NREL). ADVISOR is a recognized
industry standard for simulating alternative fuel vehicles. The sizes of the vehicle
components were based upon the following performance goals: constant grade of 6 percent,
maximum speed of 40.2 m/s, and acceleration of 0-26.9 m/s in 12 sec. Because SmartHEV is
a vehicle design tool rather than a vehicle simulation tool, the performance criteria had to be
modified to make comparisons with ADVISOR valid. SmartHEV determined the vehicle
component sizes for each performance criteria separately. The grade test was performed
under constant speed at 24.6 m/s (55 mph). SmartHEV then calculated the component sizes

based on the maximum speed at zero grade. The best effort acceleration was determined at

Logic-Based Performance Driven Electric Vehicle Software Design Tool 16

NIATT

zero grade as well. The results were compared and the maximum component size was
determined. The design parameters shown in Table 3 were input to both SmartHEV and
ADVISOR. Table 4 shows the comparison between the SmartHEV simulation and the one
run in ADVISOR.

Table 3 Design Parameters

Mass 1413 kg
Acceleration 0.1 m/s?
Velocity 246 m/s
Grade 0.06

Drag Coefficient 0.335

Frontal Area 2 m?
Rolling Coefficient 0.006

Bearing Loss 9.6 Nm
Wheel Radius 0.282 m
Battery Voltage 200 volts {
Battery Resistance 0.0045 ohms

Table4 Component Power Requirements for SmartHEV and ADVISOR

Component SmartHEV ADVISOR
APU 46 kW 49 kW
Battery Modules | 29 @ 12V 29 @12V
Alternator 44 kW 56 kW

Logic-Based Performance Driven Electric Vehicle Software Design Tool 17

NIATT

Numerical Techniques and Algorithms

The five logic-based algorithms, Rewriter, VarSelect, Solution Path, Best Solution Path, and
Swap-and-Solve, have been successfully implemented into SmartHEV. A variety of
combinations of known and unknown variables can be selected with confidence, knowing
that a solvable set of equations is maintained. If a particular arrangement of known and
unknown variables is difficult to solve, SmartHEV will swap variables to find a viable
solution path. Information provided to the user while selecting variables and component
parameters is extremely helpful and insightful. Knowing which components are affected by
changes in particular variables guides the user towards workable design solutions. The results

are fast, accurate, and easy to follow.

Future Work

SmartHEYV is still in the validation process. It will be calibrated with NIATT’s FutureTruck
2000 Suburban data. SmartHEV will then be incorporated into an on-road vehicle simulation

program called Clean Vehicle Energy Management, which was developed at the University
of Idaho.

Further work on the logic-based algorithms will continue, specifically in the areas of tracking
solved values and optimizing the Swap-and-Solve routine. We plan to add a Singular Value
Decomposition (SVD) routine that will identify over-constrained systems of equations. These
added features will lessen even more the dependency on providing accurate guess values for

unknown variables and add power and flexibility to the design process.

Logic-Based Performance Driven Electric Vehicle Software Design Tool 18

NIATT

REFERENCES

1. Glumbik, J. P., “Variable Interactions within Design Equations: A Methodology in
Equation Management,” MS Thesis, University of Idaho, 1997.

2. Benson, J. L., “Simultaneous Equation Algorithms for Variable Interaction in the

Solution Path,” MS Thesis, University of Idaho, 1998.

3. Sanders, M. S. Human Factors in Engineering and Design. 7% Ed. New York:
McGraw-Hill, 1993.

4. US Department of Energy, “SIMPLEV: A Simple Electric Vehicle Simulation
Program,” Version 2.0, DOE, Idaho Falls, ID

5. Blackketter, D. M., Kinematics and Dynamics Software, University of Idaho, 1996.

6. Ramirez, F. W. and C. R. Vestal, “Algorithms for Structuring Design Calculations,”
Chemical Engineering Science, vol. 27, 1972, pp. 2243-2222.

7. Lee, W. and Rudd D. F., “On the Ordering of Recycle Calculations,” American
Institute of Chemical Engineers, vol. 12, 1966, pp. 1184—-1190.

8. Lee, W., J. H. Christensen, and D. F. Rudd, D. F., “Design Variable Selection to
Simplify Process Calculations,” American Institute of Chemical Engineers, vol. 12,
1966, pp. 1104-1110.

Logic-Based Performance Driven Electric Vehicle Software Design Tool 19

