National Technical Information Servi

PB2002-101236

LAV

Joint
Transportation
Research
Program

JTRP

FHWA/IN/JTRP-2000/21

Final Report

DEVELOPMENT AND APPLICATION OF LINEAR
SCHEDULING TECHNIQUES TO HIGHWAY
CONSTRUCTION PROJECTS

David J. Harmelink
Rene Antonio Yamin

October 2000

Indiana
Department
of Transportation

Purdue
University

REPRODUCED BY: N.!_B-

Department of Commerce

Springfield, Virginia 22161

FINAL REPORT

FHWA/IN/JJTRP-2000/21

DEVELOPMENT AND APPLICATION OF LINEAR SCHEDULING
TECHNIQUES TO HIGHWAY CONSTRUCTION PROJECTS

by

David J. Harmelink, PhD
Assistant Professor
and
René Antonio Yamin, MSCE
Graduate Research Assistant

Division of Construction Engineering and Management
School of Civil Engineering
Purdue University

Joint Transportation Research Program

Project No. C-36-67YY
File No. 9-10-50
SPR-2330

In Cooperation with the
Indiana Department of Transportation and the
U.S. Department of Transportation
Federal Highway Administration

School of Civil Engineering
Purdue University

October 2000

TECHNICAL REPORT STANDARD TITLE PAGE

1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No.
FHWA/IN/JITRP-2000/21
4. Title and Subtitle 5. Report Date

Development and Application of Linear Scheduling Techniques to Highway

Construction Projects October 2000

6. Performing Organization Code

7. Author(s) 8. Performing Organization Report No.

David J. Harmelink and Rene Antonio Yamin
FHWA/IN/JTRP-2000/21

9. Performing Organization Name and Address 10. Work Unit No.
Joint Transportation Research Program
1284 Civil Engineering Building
Purdue University

West Lafayette, Indiana 47907-1284

11. Contract or Grant No.

SPR-2330
12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered
Indiana Department of Transportation]
State Office Building Final Report
100 North Senate Avenue

Indianapolis. IN 46204

14. Sponsoring Agency Code

15. Supplementary Notes

Prepared in cooperation with the Indiana Department of Transportation and Federal Highway Administration.

16. Abstract

Crucial to the successful outcome of major highway construction and reconstruction projects today is the ability to accurately
plan, predict and control the construction process. Evermore sensitive to budget control, schedule control, resource allocation and impacts
on the motoring public, highway constructors today require sophisticated project management tools to achieve project goals. One of the
tools recently being used across the country is project scheduling. The use of scheduling techniques on highway projects has grown out
of the successful application of these methods to building construction for the past 20 to 30 years. Unfortunately, the effective application
of traditional scheduling techniques to highway construction has been limited because major highway construction project activities are
fundamentally different than those typically found on a building project.

Major work activities on typical highway construction/rehabilitation projects are linear activities. Unfortunately, currently
accepted scheduling techniques (Critical Path Method and bar charts) are unable to accurately model projects consisting primarily of
linear work. Contractors and transportation officials are increasingly frustrated with CPM’s inability to provide relevant planning and
project management information. A recently rediscovered technique called Linear Scheduling coupled with advances in computer
technology and software has the potential to provide significant advancement to highway construction project scheduling and
management. Further research is necessary however, to advance the underdeveloped Linear Scheduling technique to the point of actual
implementation.

A method of producing linear schedules for use in planning and managing suitable highway construction projects, is provided.
The ultimate product of this research is a Linear Scheduling Tool (PULSS — Purdue University Linear Scheduling Software) comprised of
methods, procedures and software tools that allow for implementation of the Linear Scheduling Method. Furthermore, this software is
able to:
o Allow schedulers to visually plan highway construction projects
o Calculate the controlling activity path of such schedules
O Be able to print reports of the status of the schedule

17. Key Words 18. Distribution Statement

Highway construction, Project management, Project Control, No restrictions. This document is available to the public through the
Linear projects, Linear Scheduling, Software application. National Technical Information Service, Springfield, VA 22161

19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price

Unclassified Unclassified 78

Form DOT F 1700.7 (8-69)

TABLE OF CONTENTS

TABLE OF FIGURES........coccotiniinmersrneeseenvassersessssnsssssessssssssssssnmesesmssesmsssssmees v
IMPLEMENTATION BEPORTccoicciiiremrriramerrsersessesssesssssssssnssessenssessmsesssenneses '
. INTRODUCTION.....ciicierrermerrsrericsnneressssnssesanesesssssrssssessssaneressnsessssnssnssnsnssses 1
L1 Problem Statement.ot enaans 3
1.2 Objective of the STUAYeveceiiieeeeeeeece e 3
Il. PRIOR RESEARCH AND DOT WORK......cccetemeeerrmirccesessnneesienesassssssssns 5
1.1 lowa DOT (1993, 1994 & 1995):.cuuiiiciiieiie et 5
1.2 Florida DOT (1999):....ii ittt ettt et e s e 8
IL3 PennDOT oo e a e naans 9
4 Other BESBAICN ..cvei e e e e e 10
ll. CONTROLLING ACTIVITY PATH — LSM ALGORITHM.....covveeeereirmemnes 11
HET ACHVIEY TYDES c oottt e e e e e e eee e 11
1.2 Activity SEqUENCE LiSt ...cccuveieieciiiiieee e 12
L3 UDWAID PASS .uvviiiiiiiiei e ceeeeeee e e eee e et ee e e e e e e e e e ees e e enneennes 13
.4 DOWNWAID PASS....cciciiieiiieeiiie e ceeee e eeeene e 15
IV. PURDUE UNIVERSITY LINEAR SCHEDULING SOFTWARE (PULSS) 17
[V.1 PULSS DESCHPION ...uutiriiieiieeieireeeeeecereee e e e eeeeeseeetre e e e e eeeeeresseaeneeeees 17
V.2 Star/ENA DAtcoccieeeiiieeciiee et e e 18
V.3 HOW o USE PULSS ...ttt 19
IV.4 Flow Diagrams and Codeceeeeiiiieeiiiiieeeeeee et eeeneenee 21
IV.5 Files and Installation procedure.......c.cccveeeeeeeeiiiiiiirieeee e eeeeeeeeeneenns 22
V.6 Known limitations and further improvements...........ccccoveueereeeecveeicenenne 23
V. ALFATESTS OF PULSS.....ccociiiimtriecrsreerresssmnesenerssssssnsssnssssssesssssessessanns 24
V.1 [-465 with Berns ConStruCtionccecccviieecciiiiee e 24
V.2 Walish Construction — US 231 (South River Road project in West
Iz 172 Y] 1 () RO 25
VI. CONCLUSIONS AND RECOMMENDATIONSccccrrveememrernisneeneesssens 27
AV R @] o o] § 1= o T RS 27
VI.2 Further BESEAICH......cooi ittt e e s 28

APPENDIX A
APPENDIX B
APPENDIX C

--

TABLE OF FIGURES

Figure 3.1 — Activity Types of Linear Schedules..............coccvevrrrennne...
Figure 3.2 — Linear Schedule..............coooveiiieieiiiiiiceecec e,
Figure 3.3 — Possible Activity Sequences...........ccccccvveciieeee e,
Figure 3.4 — Least Time and Least Distanceccccccoveevvireveeeenen,
Figure 3.5 — Potential Controlling Segments............cccccceevvevveivecenennn..
Figure 3.6 —Upward Passeeeeuuiieccieece et
Figure 3.7- Downward Pass and Controlling Activity Path.....................
Figure 4.1 — Linear Schedule Layout Screen...........c.ccccoeeevveveeeiinennne.
Figure 4.2 — Linear Schedule Layout Frame...............coooecvveeeeveeeenn...
Figure 4.3 — Create Activity Dialog BOXcccoceviiivineiicci e
Figure 4.4 — Multiple Production Rates dialog box...........ccc.cccvevvvveenne...
Figure 4.5 — ASL Information dialog boX.........cccccceevvveieveiiiiieecrieeeeen.
Figure 4.6 — Controlling Activity Path.............cccccv i
Figure B.1 — FINDLD Flow Diagramccccuveeeeeeeeeeieeeeeiee e
Figure B.2 — UPASS Flow Diagramc.ccccovviiiiiiiiiiiieiie e
Figure 5.1 — PHASE Il 1-465 Project Linear Schedule...........cccouue........
Figure 5.2 — US231 South River Road Projecccoeeevvevvvevenecnnn...

PROTECTED UNDER INTERNATIONAL COPYRIGHT
ALL RIGHTS RESERVED

NATIONAL TECHNICAL INFORMATION SERVICE
U.S. DEPARTMENT OF COMMERCE

Reproduced from
best available copy.

implementation Report

Crucial to the successful outcome of major highway construction and
reconstruction projects today is the ability to accurately plan, predict and control
the construction process. Evermore sensitive to budget control, schedule
control, resource allocation and impacts on the motoring public, highway
constructors today require sophisticated project management tools to achieve
project goals. One of the tools recently being used across the country is project
scheduling. The use of scheduling techniques on highway projects has grown
out of the successful application of these methods to building construction for the
past 20 to 30 years. Unfortunately, the effective application of traditional
scheduling techniques to highway construction has been limited because major
highway construction project activities are fundamentally different than those

typically found on a building project.

The predominant technique used in building construction today is the
Critical Path Method (CPM). This technique has evolved over the past several
decades into highly sophisticated and computerized applications, which only
recently have been applied to major highway construction projects. Linear
scheduling techniques have been in existence long before CPM but have not
received the same amount of attention and development effort. Within the last
ten years however, as the need to effectively repair and rebuild major
transportation infrastructure, linear scheduling techniques are again being

developed.

Major work activities on typical highway construction/rehabilitation projects
are linear activities. Unfortunately, currently accepted scheduling techniques
(Critical Path Method and bar charts) are unable to accurately model projects
consisting primarily of linear work. Contractors and transportation officials are
increasingly frustrated with CPM'’s inability to provide relevant planning and

project management information. A recently rediscovered technique called

Linear Scheduling coupled with advances in computer technology and software
has the potential to provide significant advancement to highway construction
project scheduling and management. Further research is necessary however, to
advance the underdeveloped Linear Scheduling technique to the point of actual

implementation.

The overall objective of this work is to provide INDOT and
contractors with a method of producing linear schedules for use in planning and
managing suitable highway construction projects. The ultimate product of this
research being a Linear Scheduling Tool comprised of methods, procedures and
software tools that allow for implementation of the Linear Scheduling Method.
Furthermore, this software is expected to:

Allow schedulers to visually plan highway construction projects
Calculate the controlling activity path of such schedules
Be able to print reports of the status of the schedule

This research provides INDOT and contractors with PULSS (Purdue
University Linear Scheduling Software). PULSS is a fully functional prototype
software that allows the visual planning of highway construction based on the

linear scheduling method.

Contribution of the study include the following:

Complete code for each of the subroutines and programs contained in
PULSS.

Installation instructions of the software

Practical applications of the prototype in two INDOT projects in Indiana

Positive feedback from contractors regarding the utilization of the method.

vi

In addition to PULSS, this research provides INDOT with insights into
contractors opinion regarding the utilization of linear scheduling for project
management and control. With PULSS, INDOT is able to further develop and
integrate the software with its current project management tools improving further

the existing methods for cost analysis and control.

However, for full implementation of PULSS additional “modules” have to
be developed, and hence, further research is suggested. One of the proposed
modules is the Risk assessment module, which would allow project planners to
estimate the risk of project delay based on existing productivity rates. This
additional capability will provide the linear scheduling method with statistical

analysis tools comparable to those of CPM.

vii

l. Introduction

Crucial to the successful outcome of major highway construction and
reconstruction projects today is the ability to accurately plan, predict and control
the construction process. Evermore sensitive to budget control, schedule
control, resource allocation and impacts on the motoring public, highway
constructors today require sophisticated project management tools to achieve
project goals. One of the tools recently being used across the country is project
scheduling. The use of scheduling techniques on highway projects has grown
out of the successful application of these methods to building construction for the
past 20 to 30 years. Unfortunately, the effective application of traditional
scheduling techniques to highway construction has been limited because major
highway construction project activities are fundamentally different than those
typically found on a building project. Where most of the activities on a building
project are discrete, sequentially-related activities, activities on a highway project
are linear in nature and related spatially. Major activities proceed along the path
of the project separated by some reasonable distance. Delays occur when there
are conflicts in the space occupied by adjacent activities, not necessarily by the

duration of the activities.

The predominant technique used in building construction today is the
Critical Path Method (CPM). This technique has evolved over the past several
decades into highly sophisticated and computerized applications, which only
recently have been applied to major highway construction projects. Linear
scheduling techniques have been in existence long before CPM but have not
received the same amount of attention and development effort. Within the last
ten years however, as the need to effectively repair and rebuild major
transportation infrastructure, linear scheduling techniques are again being

developed.

The lowa Department of Transportation (IDOT) has commissioned three

research projects over the last six years on the application of linear scheduling

techniques to highway construction projects. Other DOT’s have also initiated
similar projects trying to assess the implementation potential of LS, as well as
ways to computerize the method (Florida, Pennsylvania and Virgina). In addition,
currently at Purdue a method of leveling resources in a linear schedule and the
prediction of productivity rates for non-stationary linear activities using simulation

have been developed.

Within the Indiana Department of Transportation today, the use of
advanced scheduling techniques is relatively low. The current specification only
requires contractors to provide a Gannt (bar) chart. A survey performed for IDOT
in 1993 indicated that nearly all states have scheduling specifications. These
specifications typically require the Contractor to furnish the Engineer with a
“Progress Schedule”, typically using CPM, showing the order of the work and the
time required for the completion. This schedule would be used to establish major
construction operations (or salient features or controlling items) and to check
progress. As the use of CPM schedules become more widespread however,
there appears to be a growing concern, as indicated in the IDOT projects, as to
the ability of the critical path method to accurately model linear type activities.
The only means by which a linear activity can be modeled by CPM is to artificially
break the activity up into a sequential series of shorter activities. Unfortunately,
every time an activity is divided the logical relationships needed to model the
activity increase as well. Within a very short time the number of activities and
relationships becomes so complicated and cumbersome to manage that the
value-added by the schedule is significantly impacted. On the other hand, if the
activities are not subdivided the natural variations in productivity of linear

activities over significant distances cannot be interpreted by the CPM schedule.

Certainly there must be an alternative to using CPM to model linear
projects. Linear scheduling provides a means of modeling linear activities as a
continuous set of points on a line rather than discrete events. Although severely
underdeveloped when compared to CPM, the ability to model linear activities as

a continuous set of points provides significant advantages over CPM. For
example, the productivity can vary in any way necessary to accurately model the
expected productivity of an activity. CPM requires that the productivity of any
discrete activity is constant. Imagine a PCC paving operation moving away from
a concrete batch plant using a fixed number of trucks. At some distance from the
batch plant, the number of trucks will affect the rate of the paver. As the paver
continues to move away from the batch plant the production rate will continue to
diminish. This effect, the non-linear rate, and the affect it has on subsequent

linear activities is impossible to model using CPM.
1.1 Problem Statement

Major work activities on typical highway construction/rehabilitation
projects are linear activities. Unfortunately, currently accepted scheduling
techniques (Critical Path Method and bar charts) are unable to accurately model
projects consisting primarily of linear work. Contractors and transportation
officials are increasingly frustrated with CPM’s inability to provide relevant
planning and project management information. A recently rediscovered
technique called Linear Scheduling coupled with advances in computer
technology and software has the potential to provide significant advancement to
highway construction project scheduling and management. Further research is
necessary however, to advance the underdeveloped Linear Scheduling

technique to the point of actual implementation.
1.2 Objective of the Study

The overall objective of this work is to provide INDOT and
contractors with a method of producing linear schedules for use in planning and
managing suitable highway construction projects. The ultimate product of this
research being a Linear Scheduling Tool comprised of methods, procedures and
software tools that allow for implementation of the Linear Scheduling Method.

Furthermore, this software is expected to:

Allow schedulers to visually plan highway construction projects

Calculate the controlling activity path of such schedules
Be able to print reports of the status of the schedule

As part of the study the researchers will test the prototype software with
different Indiana highway contractors. From this collaboration researchers will be
able to identify the shortcomings of the prototype as well as practical
enhancement needed for a fully working product.

I Prior research and DOT work

Although the existence and use of linear schedules (also called string
diagrams by the English) by French engineers can be traced as far as the 1800’s
(Ibry), and European and Arabic countries have been using it for different
purposes (mostly train scheduling and construction management), linear
schedules have not been very popular among US engineers.

In recent years however, renewed interest by different department of
transportations (DOT) in the US have rediscovered Linear Schedules (LS) and
have initiated through multiple research a process of exploration for
computerization and application potential of the LSM. Through these research
projects DOT’s want to determine if LS tools are at a level of development so that
they can be used to assist in project planning and control, and hence they could
be required as part of the specs for Highway construction. Following a brief

summary of the most resent and relevant studies is shown:

.1 lowa DOT (1993, 1994 & 1995):

The lowa DOT required Critical Path Methods (CPM) schedules on some
larger or more schedule sensitive projects; however, their expectation for
enhanced project control and improved communication of project objectives was
not fully met by the CPM. As a result, the lowa DOT commissioned Prof.
Rowings of lowa state center for engineering to perform two different research
projects on scheduling for highway construction in the state. The first research
project had the following objectives:

To evaluate the existing state-of-the-art scheduling techniques used by
other states,

To develop a new or improved methods that will enable lowa DOT to
determine a reasonable contract duration,

To develop a method to monitor the project progress more accurately, and

To develop procedures to objectively evaluate the time impacts of

changes and extra work.

As a result of this project, the researchers identified the Linear Scheduling
Method as an appropriate alternative scheduling method to the CPM for highway
construction projects. As part of the study researchers evaluated the LSM in a
diverse group of project, concluding that the LSM held great potential for project
management applications in the highway construction area, particularly in those
projects were the most important activities were linear and had variable

production rates.

As a follow-up study a second research project was started. This second
project was directed to evaluate in greater detail the real potential of LSM as a
project management technique to be used in the state projects. For this purpose
three projects were identified and researchers were involved early in the planning
stage throughout the completion of the project. It was anticipated that by applying
LSM to several projects from early in the planning phase through the construction
of the project, that the technique could be refined to meet the needs of the users
in the following ways:

The benefits LSM may present for lowa DOT personnel in the areas of
understanding the contractors “plan of attack” and also being able to monitor
actual work progress would be indentified.

A determination of how construction managers would use LSM to manage
their projects would be made. The necessary information, and form of the
information, required by managers to function effectively would be identified.

A consistent set of symbols to describe the various types of activities
involved in a typical highway construction project would be developed.

A comparison of how CPM is used by Contractors and IDOT currently with

how LSM may be used would be made.

As part of the study researchers produced as-built schedules of the
projects and gather impressions by both contractors and IDOT inspectors on the

performance and usability of the LSM.

All objectives of the study were accomplished and it was confirmed that
the visual capabilities of the LSM provided both Contractors and IDOT personnel
a clear insight about linear activities that could not be achieved by using CPM.

Researchers concluded that the LSM had great potential as a project
management tool for both contractors and IDOT personnel. However, it was also
commented that the elaboration of LS was cumbersome and that a computerized
tool for creating these schedules was needed for it to be really valuable and
widely accepted by Contractors. Such software tool should bring to LS a degree
of functionality as rich and as comprehensive as that found in micro computer

based CPM software on the market at the time.

For this implementation algorithms needed to be developed that could
provide the information necessary to successfully meet highway construction
management needs. Some of the tasks that the application will need to perform
are:

Determine and identify the critical path based on activity logic and
location.

Reconcile the various project calendars.

Provide a library of resource that can be used to determine production
rates and equipment requirements to meet planned production rates.

Allow for input of as-built information graphically or through a spreadsheet
format which imitates the inspector’s progress reports.

Track progress against the baseline schedule and display graphically and
in text-based reports the schedule variance of completed and in-progress

activities, and the anticipated activity dates of activities not completed.

Finally, the research team recommended IDOT to extend the research to

develop a LS application with the abovementioned capabilities.

.2 Florida DOT (1999):

Herbsman and Glagola (1999) performed a study for the Florida DOT, in
which they found through a survey to different DOTs that out of thirty seven (37)
respondents, sixty-five percent (65%) were not familiar with the LSM; twenty five
(27%) were somewhat familiar and only three (3) DOT’s (constituting 8%) were
very familiar with this scheduling method. In addition, researchers found that
although the LS is considered by contractors more intuitive and easy to use, they
have not been successfully adopted in the highway construction industry for
basically the following reasons:

Government agencies (as owners) fail to recognize the benefits of linear
scheduling and adopt its use.

Computerization of the method _

Limitations in functionality when compared with network based scheduling
tools (Resource allocation, resource leveling, critical path calculations, float, and

completion time confidence interval estimation)

As part of the study researchers developed a software application called
Florida Linear Scheduling Program (FLSP), which allows schedulers to create LS
using a set of screens done in VBA for Access. The prototype allows user to
introduce general information about the project (start/end dates, name of project,
working days). Other information is then introduced in a sequence of screens that
prevent users from scheduling physically conflicting activities. For scheduling
activities of the project, users are given three different data input options:

Start and Finish dates are known

Productivity Rate is known

S-Curve

For every input option, different resource selection procedures are offered.
The software can then present usage histograms for a particular resource, as

well as, production rate charts. In addition, users can access a database for

standard production rates.

The output capabilities of the FLSP are:
Linear schedules graph
Resource histogram

S-curves

Although the FLSP handles resource usage and provides users with an S-
curve to monitor the financial progress of the project, the program has the
following identified shortcomings:

It does not fully exploits the visual planning capabilities of Linear
Schedules. Instead, the user has to perform an iterative process introducing
activity information using dates and stations without been able to see its physical
layout and how it is compared to other activities.

The program does not calculate the controlling activity path (CAP); hence
estimating which activities are controlling is not possible, failing to incorporate
one of the most important and needed features of the LSM.

Representation of the project is done placing the stations in the Y axis and
time in the X axis. This representation resembles the Line of Balance
representation used in manufacturing scenarios, and does not provide users the
plant view of the project which provides with visual clues for improved planning
and control

As conclusions of the study, researchers ratify the linear scheduling
technique as a superior technique for planning and controlling highway

construction projects, as well as, a valuable tool for prove or disprove claims.
.3 PennDOT

PennDOT recently funded a study called “Comparison Of Critical Path
Method (CPM) Of Scheduling and the Linear Scheduling Method (LSM)".
According to Prof. H. Randolph Thomas, “the objective of this work order is

evaluate the suitability of the LSM for use on large capital projects and compare

9

the results from the LSM to the CPM schedule developed contractually for
several sections of 199. The criteria for comparison is to determine if the LSM
monitors schedule progress better than the CPM schedule and if the graphical
visualization of the LSM schedule shows physical constraints in a way that will
permit a shortening of the overall project schedule. The work plan in general will
involve tracking the bi-weekly contract CPM schedules on two sections of 199. A
parallel LSM schedule will be developed for comparison. The input data for the
two schedules will be obtained from the bi-weekly progress meetings.”

As part of this research, Penn State sought cooperation from Purdue
University researchers to create the initial LS schedules and its updates. These
will be continuously compared against the CPM schedules.

1.4 Other Research

In addition to the research directly funded by different DOT’s in the US,
there are several academics working towards solving some of the issues faced
by the LSM to achieve wide acceptance. These advances have taken the LS
from a graphical tool to a more analytical and CPM-like type of scheduling tool
(Harmelink 1995, Mattila 1997 and Shu-Shun 1998), as well as, development of
software applications of LS (Harmelink 1995, Harmelink & Yamin 2000 with the
PULSS, Herbsman and Glagola (1999) with the Florida Linear Scheduling
Program (FLSP)) that offer features comparable to those of the CPM.

10

lll. CONTROLLING ACTIVITY PATH - LSM ALGORITHM

One of the most significant advancement made for towards a wide
acceptance and use of linear schedules was the Linear Scheduling Model (LSM)
developed by Harmelink (1995). The model identifies and analyzes seven types
of activities that can occur on a linear schedule identifying a set of those activities
that are controlling activities. Other, or non-controlling, activities have float similar
to that defined in CPM, but in the LSM it is called Rate Float. The LSM also
provides a means of tracking progress to allow statusing and updating linear

schedules to predict future completion dates.

The software application PULSS automates the LSM algorithm
allowing users to visually plan highway construction projects, and calculate the
controlling activity path (CAP) of such schedule. Following is a brief summary of
the LSM components and steps needed to calculate the CAP in LS.

.1 Activity Types

To understand the procedure for determining the controlling activity path in
a linear schedule it is necessary to become familiar with the different types of
activities that can appear on a linear schedule. Previous research has suggested
that there are three types of activities that can appear in a linear scheduie: linear,
block, and bar (Vorester et al. 1992). The LSM retains the three basic activity
types but refines linear and block activities into specific subtypes. Linear activities
are divided into the following four specific subtypes:

Continuous full-span linear (CFL)

Intermittent full-span linear (IFL)

Continuous partial-span linear (CPL)

Intermittent partial-span linear (IPL)

The block-type activity is divided into the following two types:
Full-span block (FB)

11

Partial-span block (PB)

These subtypes relate to whether or not the activity spans the entire
location of the project and whether or not the activity is in continuous or
intermittent operation. Fig 3.1. shows all of the activity types as they would
appear on a linear schedule. The procedure to determine the controlling activity
path in a linear schedule involves three steps:

Determine the activity sequence list

Perform the upward pass

Perform the downward pass

.2 Activity Sequence List

The activity sequence list (ASL) identifies all of the possible logical
sequences through the activities on a linear schedule. The controlling activity
path is defined as the continuous path of longest duration through the project and
defines the sequence of activities that must be completed as planned to finish the
project within the overall planned duration. Generally, the activity sequence with
the longest duration (or the least free time) contains all of the activities on the
controlling activity path. There are some exceptions to this, and will not be
discussed in detail in this paper.

Although not a necessary step in actually determining the controlling
activity path, the activity sequence list is fundamental to understanding the
process of determining the controlling activity path in a linear schedule and also
provides a basis for the development and implementation of the LSM algorithm in
CAD environments.

The activity sequence list must describe the order in which activities will
occur at any location on the project. Fig 3.2 shows a simplified example of a
typical highway construction project linear schedule. This project has three CFL
activities: A, C, and G. Also assume that there is a “0” time CFL activity at the

12

beginning (start) and at the end (end) of the project. Intermediate activities, any
activities that are not CFL activities, will always lie between two CFL activities.
For example, activity B, a PB, and activity C, two bars (B), lie between CFL
activities A and D. The activity sequence list must describe the activity sequence
through these activities, regardless of location. Fig. 3 shows the logical sequence
of activities for this project. Notice, that for the CFL activities start, A, D, G and
end, there cannot be multiple logical paths because these activities span the
entire project. However at intermediate locations between CFL activities, there
may be multiple paths. The possible activity sequences can be determined by
examining the order of activities at any possible location (vertical line) between
the CFL activities. The vertical dashed lines on Fig. 3.2 show the possible activity
sequences through this sample linear schedule. The five possible paths are
represented schematically in Fig. 3.3 and the activities involved in each path are
listed. As in CPM scheduling, the goal is to find the longer continuous path
through this sequence of activities. This path will define the controlling activity

path and determine when and where activities are controlling.

.3 Upward Pass

The goal of the upward pass is to determine which activities or portions of
activities could potentially be controlling. The process starts with the beginning of
the project and progresses upward, identifying the path with the least free time
between each pair of continuous full-span activities. In each case the activity for
which the potential controlling segment is being determined is designated the
origin activity. The origin activity will always be a CFL activity, and the earliest
point in time on this activity is designated as the origin. The next CFL activity in
the sequence list will be the target activity. The potential controlling segment of
the origin activity can be determined by examining the relationship between
these two activities. All activity types other than CFL activities are examined with
respect to the upper- and lower-bounding CFL activities.

The following three specific elements must be determined to describe the

relationship between these two activities:

13

Least-time (LT) interval. This is the shortest time interval between any two
consecutive activities. Consecutive activities are activities that can be connected
in time (vertically) without crossing another activity. The LT interval will always
occur at a vertex of one of the activities in question. Vertices occur at the end
points or anywhere the slope changes on a linear activity, at the corners of box
activities, and at the endpoints of bar activities.

Coincident duration. This is an interval in the time during which the two
activities connected by the LT interval are both in progress.

Least-distance (LD) interval. This is the shortest distance between the two
activities that lies within the coincident duration interval and intersects the LT

interval.

Figure 3.4 shows an example of a pair of CFL activities for which the LT,
coincident duration, and LD have been identified.

In this step, the origin activity is always viewed as if it were the first activity
in the activity sequence. Therefore, the segment from the origin up to where the
target activity begins will always be a potential controlling segment. Somewhere
during the time after the target activity begins and the origin activity ends, there is
a line along which the controlling activity path must occur. It is logical to assume
that this path will occur where activities are closest to each other. The LD interval
describes the location at which this closest point occurs. Once the LD interval
has been determined, the point of intersection with the origin activity is called the
critical vertex as shown in Figure 3.5. The segment of the origin activity between
the origin and the critical vertex is a potential controlling segment for this activity,
and the LD interval becomes a potential controlling link between the origin and
target activities. The determination of which portion of the potential controlling
segment is actually controlling is determined in the downward pass. The target
activity in this step of the upward pass becomes the origin activity for the next
step and the process repeats until ali the potential controlling activity segments
have been determined. Figure 3.6 identifies the potential controlling segments in

14

a linear schedule comprised of only CFL activities. The actual controlling activity
path may contain all or part of the potential controlling path but it will not contain

any other activity segments.

.4 Downward Pass

The purpose of the downward pass is to determine which portions of the
potential controlling segments are actually on the controlling activity path. This
step can be compared with the backward pass used in CPM scheduling, which
identifies activities that do not have float. In the case of linear activities on a
linear schedule, the backward pass identifies segments of activities for which the
production rate cannot decrease without extending the duration of the project.
This also means that segments of activities not on the controlling activity path
have rate float. An activ_ity that has rate float can progress at a slower rate than

planned without affecting the duration of the project.

To perform the downward pass, start with the end of the last activity on the
project. In this example, that point would be the end of activity F, as shown by
point 1 in Figure 3.7. Next, follow activity F back in time, or downward on the
linear schedule, until the potential controlling link with activity E is reached, as
shown by point 2 in Figure 3.7. The segment identified by these two points
determines the portion of activity F that is a controlling segment and the potential
controlling link is now a controlling link. A controlling link is a point in time where
the controlling activity path changes from one activity to another. Move
horizontally to activity E along the critical link beginning at point 2 on Figure 3.7,
and repeat the process performed on activity F to find the controlling segment on
activity E. If, while moving back in time along an activity, the beginning of the
activity is reached before a potential controlling link with a preceding activity is
reached, a new critical link is established at the beginning of the activity. This is
illustrated by the new critical link established with activity A at point 3 on Figure
3.7. Repeat the process of identifying critical segments and critical links by

15

moving downward through the linear schedule until the start of the project is
reached.

Once the downward pass is complete, the controlling activity path through
the linear schedule has been identified. Notice, on Figure 3.7, that each
controlling segment has endpoints identified. These endpoints describe when
and where (at what time and location) the activity will become a controlling
activity and when and where it will cease to be a controlling activity.

16

IV. Purdue University Linear Scheduling Software (PULSS)
IV.1 PULSS Description

PULSS (v1.0) is a prototype software that serves as a proof of concept for

NDTANA DEPARINENT OF TRANSPORTATION the computerization of the LSM algorithm that
determines the controlling activity path in a linear
schedule. It was developed within a Computer Aided
Design (CAD) environment to take advantage of the
visual capabilities of Linear Schedule and offer the

user a friendly and simple way to visually plan linear

schedules of highway construction projects.

In general, CAD applications provide the graphical environment in which
engineering and architectural models can be created. These models are drawn
as graphical entities (lines, points, circles, etc) that are abstractions of physical
objects. These entities can be drawn in a two-dimensional (X, Y) or a three-
dimensional (X, Y, Z) coordinate system space. Looking at dimensions from a
broader perspective, any of the XYZ axes can also be used to represent

attributes other than distance, such as time.

Linear schedules represent construction activities in a two-dimensional
coordinate system of time and space. By converting one the XYZ dimensional
axes to time coordinates, CAD can be used to model linear construction
activities. Computerized spreadsheets convert dates in Gregorian calendar
format (mm/dd/yyyy) into integer numbers by counting the elapsed days since
some point in time, typically January 1, 1900. The “elapsed day” calendar is
referred to as a Julian calendar. For example, a normal date in Gregorian
calendar such as October 1, 1998, is represented in a Julian calendar as an
integer number 36,017, the number of days elapsed since 01/01/1900. This

integer date is then used as the Y coordinate of all points in the drawing

17

To implement the LSM algorithm in CAD, the Y coordinate is considered
as the time dimension (date) and the X coordinate the spatial dimension
(location). Time and space are only two of the attributes of an activity in a linear
schedule. CAD can represent other attributes as well. Table 1 shows the

relationship between a construction activity’s attributes and the CAD

environment.
Activity Characteristic CAD equivalence
Name of Activity LAYER name of object
Start/End Location X coordinate in drawing
IV.2 Start/End Date Y coordinate in drawing
Duration Delta Y coordinate
Productivity Slope of line between Start and
end point
Resources Metadata (extended data)

(i) Table 4.1. Attribute Relationships

Name of activity: A fundamental property of entities in CAD is the layer on
which they exist. Entities on these layers can be manipulated in various ways
such as making them visible or invisible, changing their color, or a number of
other attributes. In LSM, the entities that represent a construction activity exist
on a unique layer with the activity name.

Start/End location: X coordinates from entities representing activities are
equivalent to location of the activity in the project.

Start/End Date: Y coordinates from entities representing activities are
equivalent to dates represented by Julian calendar dates (integer numbers)

Duration: Activity durations are determined by the difference in Y
coordinates of the start and end points of activities.

Productivity: Measured in units of space per units of time (feet/day) is
represented by the slope of linear activities.

18

Resources: Metadata, also called entity extensions, are attributes that
can be associated with particular entities in a drawing. In the proposed
framework, this metadata field can be used to include the number and type of

resources that the activity consumes for its completion.

Modeling construction activities in the manner described above provides
the basis for the implementation of the LSM algorithm that calculates the
Controlling Activity Path in a linear schedule. CAD environments provide
comprehensive sets of functions to manipulate entities. These functions along
with the development environment included in CAD packages can be exploited to
implement the LSM algorithm briefly described on chapter Il of this report.
Depending on the particular CAD package, routines can be written in a variety of
programming languages, such as Visual C, Visual Basic and different flavors of
LISP. These development tools and functions allow the manipulation of
graphical entities, selection of objects according to different layers or positions in
the drawing space and distance calculations between different objects to name a

few.

IV.3 How to use PULSS

PULSS allow users to visually create linear schedules and most
importantly, automates the calculation of the controlling activity path. The whole

process from creating a LS to calculating the CAP is done in four steps:

Step 1 - General Project Information: The user has to introduce general
information about the project (start date, start station, end station, working days,
etc). This is done by clicking the layout button () from the LSM menu bar. The
user is prompted with the layout screen (Figure 4.1). After this information is

introduced the layout for the linear schedule is created as shown in Figure 4.2.

19

Step 2 — Create activities: In this step the user introduces information for
each activity to be scheduled. This process is started by clicking on the Create
and information about the activity can be introduced through the dialog box
shown in Figure 4.3. Users can select the type, length and direction of the activity
(linear, full-span from right to left). Activity duration can be introduced in three
different ways:

Providing the total duration of the activity

Providing start and end dates for the activity

Providing the productivity rate of the activity. If the activity has multiple
productivity rates, this can be accommodated and the user is prompted with the
screen for this purpose (Figure 4.4).

Multiple production rate: Multiple productivity rates can be indicated by
defining the different start/end dates and stations, or by providing productivity
rates directly.

Step 3 — Activity Sequence List Calculation: After all the activities are
drawn into the schedule layout, the Activity Sequence List has to be calculated.
For PULSS v1.0 this process is not automatically done and the user has to click
on the Calculate ASL button (). PULSS will indicate when the process has
been performed (Figure 4.5). Once the ASL is calculated users can proceed to
perform the CAP calculation.

Step 4 - Controlling Activity Path Calculation: Once the ASL is
calculated the user can click on the Calculate CAP button (), and PULSS will
draw the CAP for the schedule in color red using a different layer named
“controlling” (Figure 4.6).

IV.3 Programming details

Operating System, Environment and languages

20

Operating system: Windows — Most common platform and approved by
INDOT

CAD program: AUTOCAD r14 with ARX and VBA support. Although
INDOT has selected MicroStation as their preferred CAD package, by the time
this research project was initiated AUTOCAD was being extensively used by
INDOT. In addition, AUTOCAD is widely adopted by contractors and engineers,
and ultimately PULSS is designed to be used by contractors and not so much by
INDOT.

Programming Language: For the full implementation of the LSM algorithm,
different programming languages were used:

LISP: List processing language is a very efficient language for AutoCAD
programming and automation of tasks. In addition, there are several LISP editing
tools that aid in the programming and debugging of the application. For PULSS
development the LISP editor used was VISUAL Lisp (VLISP), which provides
editing, compiling for LISP and Object ARX code.

Dialog C Language: Some of the initial development of user interfaces
was developed in DCL language which is a compatible, yet primitive, user
interface design language.

ObjectARX: Is an API language for AutoCAD. Its syntax is similar to C++
but it is specifically made for AutoCAD. Its name comes from AutoCAD Runtime
extension.

Visual Basic Applicaion (VBA): Different macros were developed in Visual
basic application for AutoCAD Release 14 has full support and functionality of
such language offering increased versatility and easier user interface design. As

a disadvantage, protection of the code for the macro is weak.

IV.4 Flow Diagrams and Code

As part of the programming effort for the PULSS, a set of flow diagrams of
the LSM algorithm were elaborated so that future improvements and

modifications could be easily achieved. In addition, all coding was done in a

21

structured format with detailed description at the beginning of each subroutine or

macro. All flow diagrams and codes are included in Annex 1.

IV.5 Files and Installation procedure

The installation process for PULSS v1.0 is still a rather manual one,

certain files have to be directly copied onto different directories of ACADR14, and

in order to create a “desktop icon” some manual alteration of the ACADR14 icon

have to be done.

For PULSS installation the following files most be copied as shown in the

following table:

Directory

File

ACADR14/

ACADR14.Isp

ACAD.rx

ACAD.dvb

PULSS.arx

ASL.omp

ACT.bmp

CAP.bmp

LAYOUT.bmp

PULSSIlogo.bmp

ACADR14/SUPPORT/

ACAD.mnu

LAYOUT.Isp

LAYOUT.dcl

ACADR14/TEMPLATE/

LSMPROTO.dwt

22

IV.6 Known limitations and further improvements

PULSS cannot calculate CAP is there is a time period where there is no
activity being executed in the project. It is recommended that if such time of no-
activity is represented by a BAR activity.

PULSS does not differentiate between intermittent and continuous

activities. All activities are considered continuous for the CAP calculation.

23

V. Alfa tests of PULSS

As part of any software development project, prototypes of the program
have to be used by user that could be considered “typical users” of the future
application. For this project several contractors were contacted but finally only
two accepted to dedicate some time to provide us with information about their

projects. The results of this “alfa-test” is shown as follows:
V.1 1-465 with Berns construction

The first company contacted, Berns construction of Indianapolis,
provided valuable information for testing PULSS. Several sites visits and
scheduling meetings were held both at the offices and job-site office. From these
meetings researchers could understand how schedulers plan the work and what
are their needs. Some test schedules were elaborated and reviewed. From these
meetings contractors offered the following valuable comments:

The linear schedule should include (allow) the possibility of considering
the width of the lanes being paved. Space restrictions directly affect productivity
and the way the job is scheduled. By including this “third” dimension scheduling
jobs will be more realistic and will provide contractors with a greater value added
over other conventional methods.

A report in spreadsheet format is necessary in order to execute the
schedule.

Include muitiple productivity rates in schedules.

Prototype is not very user-friendly.
In addition to their direct comments, researchers learned that the company

uses plan view of the highway to be built (showing only certain landmarks and

the number of lanes). Scheduling was done mainly by superintendents, and

24

some coordination was obtained from the scheduling engineering. The method

used is simple and easy to communicate. No controlling path is calculated.

The prototype was tested several times by scheduling PHASE II of the I-
465 project just before it started on June 26, 1999. The linear scheduled was
obtained by representing the existing schedule in the linear scheduling format
shown in Figure 5.1. Once the scheduled was introduced the controlling path was
calculated and shown to the contractors. However, at this point some problems
with the prototype were encountered impairing researchers to continue working
in the project. These issues were considered of extreme importance and no
further experiments were deemed appropriate until the “bugs” were identified and

solved.

From examining multiple times the code and logic of the software

application, the following issues were identified:

When there are non-working periods in the schedule that were not initially
specified in the layout of the linear schedule, the prototype fails to calculate the
controlling path.

In certain cases the activity sequence list of the project is different that the
assumed total least time group of activities. Hence, a new algorithm has to be
developed in order to include those cases were our initial assumption does not
hold.

V.2 Walsh Construction — US 231 (South River Road project in
West Lafayette)

Walsh Construction was approached due to their involvement in the
construction of the US 231 (South River Road project) in West Lafayette. This
project, although small, offered the possibility of a quicker updating and

monitoring.

25

Several meetings were held with the project manager, out of which the

schedule shown in Figure 5.2 was done.

From this project, researchers learned:
The schedule was done every six weeks and revised every two.
The prototype needs an easier way to create plan views of the project.

Uncertainty for activity durations has to be incorporated in the schedule.

26

VL. Conclusions and Recommendations
VI.1 Conclusions

All of the objectives proposed by this study were achieved. Through
the development of PULSS v1.0, INDOT and highway contractors have a linear
scheduling software that allows to visually plan projects, calculate the controlling
activities and present standard reports in Excel format. PULSS also proves that
the computerization of the LSM is feasible, eliminating one of the more frequent
arguments against the LS. We are confident that this step will allow the further
refinement of the software tool taking it one step further in its evolution towards a

mainstream application used by all highway contractors and DOT’s..

In addition, and based on the feedback received from contractors that

were contacted to use PULSS, we learned the following:

Linear schedules are easer to understand, review and change than CPM
schedules. To scientifically prove this, further usability and human-computer
interaction studies could be performed.

There is still some work to do to incorporate in LS a feature that will allow
planners to avoid physical conflicts when working in a multiple {ane highway. This
experience was particularly important for Berns Construction when repaving the
I-465.

The best environment for development of the tool might not be ACAD as
initially assumed, since the use of this program is required and costly for
contractors. In addition, the lower the learning curve and acquisition costs the
faster the adoption.

INDOT Inspectors were not familiar with Linear Schedules, much less with
the LSM technique.

27

V1.2 Further Research

Further research is recommended on the following areas that were
indicated by contractors as needing improvement:

Visualization. Issues with linear scheduling and scheduling work that is
performed in the same stations in different lanes. This would allow contractors to
improve space, equipment and time utilization.

Human-computers interaction. Several of the interfaces of PULSS can be
improved to be more user friendly. Other area needing improvement is the on-
screen presentation of the linear schedules generated. These representations
are sometimes difficult to see completely. The larger the project the more difficult
the visualization in the screen.

It is recommended to continue the development of the application since
results and feedback from contractors is encouraging. However, full collaboration
from Inspectors is required, since they will also be important users of the product
and consumers of the information generated with it.

Uncertainty and delay risk estimation. The LSM only deals with
deterministic scenarios and does not allow the planner to perform statistical
analysis on the schedule. This would be equivalent to have PERT for CPM. As
LSM evolves and its features are improved, the next logical step is the inclusion
of such risk/statistical analysis capabilities. Contractors find this feature
particularly useful for performing “what-if” analysis and accurately estimate the
project duration.

Information sharing with other INDOT software should be explored in
depth since most of the information used to build LS is also used for billing and
quality assurance.

INDOT should conduct workshop for its contractors and inspectors were
linear schedules are discussed, as well as, their differences and benefits over
CPM.

28

APPENDIX A

FIGURES

29

Time (days)

Continuous
Full-span Linear

Continuous Partial

Intermittent Linear

Partial Linear

Bar

Partial Block

Intermittent Full-
span Linear =
-

-
-
-
-
-

Continuous Full-

| span Linear

Full-span Block

Location (stations)

Figure 3.1 — Activity Types of Linear Schedules

30

(sAep) oun,

Location (stations)

Figure 3.2 — Linear Schedule

31

Start

A 4
>

hr
% F

Sequence 1 - Start-A-B-D-G-End
Sequence 2 - Start-A-B-D-E-G-End
Sequence 3 - Start-A-B-D-E-F-G-End
Sequence 4 - Start-A-C-D-F-G
Sequence 5 - Start-A-D-F-G

Figure 3.3 — Possible Activity Sequences

Y.

End

32

Time (days)

Target Activity

Coincident Lezjlst fime
duration interval
Least distance / Origin Activity
interval
Origin

Location (stations)

Figure 3.4 — Least Time and Least Distance

33

Time (days)

Target Activity

Identify potential critical link
between origin activity and
target activity

Origin Activity

Critical Vertex

Identify potential controlling
segment of origin activity
(segment between origin and
critical vertex

Location (stations)

Figure 3.5 — Potential Controlling Segments

34

Time (days)

Least time intervals (LT)

Potential
controlling
segments

Least distance
intervals (LD)

Location (stations)

Figure 3.6 — Upward Pass

35

Time (days)

Controlling
activity
segments

B
Non-controlling

potential activity
segments °

Non-controlling
activity segments

Controling link

Location (stations)

Figure 3.7- Downward Pass and Controlling Activity Path

36

__ Figure 4.1 Linear Schedule Layout Screen

12earsa 6l

2re1 9

el]
LRIy 1wr7ee

1/31/99

Anessa

2%]

37

Figure 4.3 — Create Activity Dialog Box

38

Figure 4.5 — ASL Information dialog box

39

Figure 4.6 — Controlling Activity Path

4 AutoCAD - [Examplet) B

40

APPENDIX B

Flow Diagrams and PULSS code

41

Figure B.1 — FINDLD Flow Diagram

&
For each vertioe of the
] Orgnactiviy(overt)
Orgin
3 Acsidty
inonect
a0 Y) B0, ¥
Construct an awxdiary PT g X g Yo} Auxbiary Line.
horizontal ine at Y - cx T
(L]
i am(0D, cxr PT)
ba (1000, eadr PTo)
S{carTust 3 festPbintio Bw tagat er
For each point in the o= { corTguist) fest pointin B tgot actvky -
Targetactvity(Totlist)
LDtemp = nit

LDiemp = distarce from
ves Intersection to origin

Aux_ line
intersects Target

activity
LDlemp =fist (PT , .inters)

1t LDtemp = il

If variable
LD has some
vaiue

I distance
LDtemp <D

LD = LDlemp

© = curent PT

Last point
of Target
activity?

Last point
for Origin
activity?

For eath vertice of
Target activity { tvert }

!

Construct an auxiiary
horizontal line at Y

i

For each point in the
Origin activity (orist)

LDtemp = nit

LDtemp = distance from

Aux, line intersection to origin
intersects Target activity
actvity? LDiemp =fist (PT _inters)

i LDtemp = nif

if variable
LD has some
value

If distance
LDtemp <LD

© = current PT

Last point
of Target
activity?

RETURN UPASS

Figure B.2 - UPASS Flow Diagram

Read form the Activity
Sequence List (.ASL file)
and set the first activity as
the Origin activity

For each activity in the
rest of the ASL

l

Apply VLIST (gets all
vertices of activities)
subroutine on both the
Origin and Target
activities

|

To find the least time
apply FINDLT
subroutine

I

To find the least
distance apply FINDLD
subroutine

Write the
activity name,
vertices, LT
and LD to the
LNK file

Set the current activity
as the origin activity

Is this the last
activity in the ASL

43

Figure B.3 - FINDLT Flow Diagram

Foreach:
Paoint of Origin Activity

(PToon)
DONE=0
UNDER=0

l

Foreach:
Point of Target Activity

ot
LTtemp =0

If the considered points have the
same X coordinate then set:

LTtemp = (XY s Xoga¥ig)

Case B

Check to see if X, is lower than
X, SO that distance from Origin
Act. and Target Act. can be
determined

Set UNDER=PT,

L

Case C

Using the stope of Target Act. the
distance between Origin and
Target Act. can be calculated

LTTEMP = (X0 (¥, - Yo)

End COND
No LTiemp calculation has been
done, therefore a new PT,__ hes
arget
to be considered

If BoundP LT
NOT instruction

if LT does not have a value set:
LTtemp=LT

if the prior value of It is greater
than the new LTtemnp the least
one is selected and set:
LT=tTtemp

if Distance of
LTtemp <LT

tast PT,...?

origin ©

RETURN UPASS

Case A:

Target Activity

Origin
Activity

Xog = X

Case B:

Target Activity

P

. Origin
X Activity
X Xorg Fa¥al
PTa
Case C: D —f-
Target Activity .
. B
UNDER .
A . _:_7—
c : .
& v
Koy Yorg) .
. Origin .
. Activity " E
........................... —k
A
X gt
D=C*A/B

LT=E+D-Y,,

44

;***

j*¥*** This routine determines the path and name of the Fokkk
;**** drawing that is being used. Fkkk
;**** % k% %
jRE xR DRWPATH %k k

;***

(setq acadObject (vlax-get-acad-object))
(setg acadDocument (vla-get-ActiveDocument acadObject))
(setqg fullpath (vla-get-Path acadDocument))

(setq path (substr fullpath 1 (- (strlen fullpath) 4)))

;***

;j*¥*** This routine takes the ename of a poly line and ok Kk
;¥*** yeturns a list of the vertices. *kkx
;**** * %k k%
jrREEE VLIST * ok ok

;***

**%%* this returns a list of vertices in a POLYLINE

(defun vlist (poly / ed en templist)
(setqg en (entnext (dxf -1 (entget (ssname poly 0)))))
(setg ed (entget en))

(setg templist (list (dxf 10 ed)))

(while (and (setq en (entnext en)) (setqg ed (entget en))

45

(/= "SEQEND" (dxf 0 ed)))

(setqg templist (append templist (list (dxf 10 ed))))

) ;while

);vliist

,-***

;**** This routine takes the vertice list of a the origin *kok ok
;**** and the target activities and returns the LT. *k ok ok
;**** *k k%
jREER FINDLT *k kK

l-***

(defun findlt (actl act2 / ptl pt2)
(setqg 1t nil
actlrl nil

act2rl nil)

(if (/= (car (car actl)) (car (last actl)));its a line
(progn
(1f (< (cadr (car actl)) (cadr (last actl)))
(setqg actlrl 1)
)y it

) iprogn

(if (/= (car (car act2)) (car (last act2)));its a line

(progn
(if (< (cadr (car act2)) {(cadr (last act2)))
(setqg act2rl 1)
yiif
) iprogn

):if

(if (= (or (/= actlrl 1) (/= act2rl 1)) T)

;*¥*** this nested foreach finds the LT from actl to act2
(progn
(foreach ptl actl
(setqg done nil)

(setg under nil)

(foreach pt2 act2

(setg lttemp nil)

(cond

({(= done T))

({= (car pt2) (car ptl)) (setqg lttemp (list ptl pt2))

(setqg done T))

((« (car pt2) (car ptl)) (setqg under pt2))

((and (> (car pt2) (car ptl)) (/= under nil))

(setqg lttemp (list ptl (list (car ptl)
ptl) (car under))

(+ (*

(-

(/ (- (cadr pt2) (cadr under)) (- (car pt2)

under)))}

(cadr under)) 0.0)))

(car

(car

47

(setg done T))

) ;cond
(cond
({(= lttemp nil))
((not (boundp 'lt)) (setqg 1t lttemp))
({< (distance (car lttemp) (cadr lttemp)) (distance (car

1t) (cadr 1t)))

(setg 1t lttemp))

) ;cond

) ; foreach)

) ; foreach

;¥*** this nested foreach finds the LT from act2 to actl

(foreach ptl act2
(setqg done nil)

(setqg undexr nil)

(foreach pt2 actl

(setg lttemp nil)
(cond
((= done T))

({= (car pt2) (car ptl)) (setq lttemp (list ptl pt2))
(setqg done T))

({(« (car pt2) (car ptl)) (setq under pt2))

48

((and (> (car pt2) (car ptl)) (/= under nil))

(setqg lttemp (list ptl (list (car ptl) (+ (* (- (car
ptl) (car under))

(/ (- (cadr pt2) (cadr under)) (- (car pt2) (car
under))))

{(cadr under)) 0.0)))
(setqg done T))

) ;cond

(cond
({(= lttemp nil))
{(not (boundp 'lt)) (setq 1t lttemp))

{(< (distance (car lttemp) (cadr lttemp)) (distance (car
1t) (cadr 1t)))

(setqg 1t lttemp))

) ;cond

) ; foreach)

} ; foreach

) ; progn

;

x***x%% Tf both activities are right to left **x*xk*xx*

(progn
(foreach ptl actl
(setqg done nil)

{setqg under nil)

49

(foreach pt2 act2

(setg lttemp nil)
(cond
((= done T))

({(= (car pt2) (car ptl)) (setqg lttemp (list ptl pt2))
(setg done T))

({> (car pt2) (car ptl)) (setqg under pt2))
((and (< (car pt2) (car ptl)) (/= under nil))

(setg lttemp (list ptl (list (car ptl) (+ (* (- (car
ptl) (car under))

(/ (- (cadr pt2) (cadr under)) (- (car pt2) (car
undexr))))

(cadr under)) 0.0)))
(setg done T))

} ; cond

(cond
((= lttemp nil))

({not (boundp 'lt)) (setq lt lttemp))

((< (distance (car 1lttemp) (cadr lttemp)) (distance (car

1t) (cadr 1t)))

(setg 1t lttemp))

) ; cond

} ; foreach)

) ;foreach

50

;¥*** this nested foreach finds the LT from act2 to actl

(foreach ptl act2
(setqg done nil)

(setq under nil)
(foreach pt2 actl

(setg lttemp nil)
(cond
((= done T))

((= (car pt2) (car ptl)) (setqg lttemp (list ptl pt2))
(setqg done T))

((> (car pt2) (car ptl)) (setq under pt2))
({and (< (car pt2) (car ptl)) (/= under nil))

(setq lttemp (list ptl (list (car ptl) (+ (* (- (car
ptl) (car under))

(/ (- (cadr pt2) (cadr under)) (- (car pt2) (car
under))))

(cadr under)) 0.0)}))
(setqg done T))

) ;cond

(cond
((= lttemp nil))
({not (boundp 'lt)) (setq 1lt lttemp))

({< (distance (car lttemp) (cadr lttemp)) (distance (car
1t) (cadr 1t)))

(setqg 1t lttemp))

) ;cond

51

) ; foreach)

) ; foreach
) ;progn
); end if

) ;defun findlt

;***

;¥%¥** This routine takes the vertice list of a POLYLINE and * ok ok ok
;**x*¥* returns a list of vertices that are within the limits *kkk
;***x* of the LT and the coincident duration of the origin * ok ok %k
;¥*** and target ko k
jREEE VERTS *k kK

,-***

(defun verts (act / ptl pt2 pt3 pt4 dmin dmax templist templist2)

(foreach ptl act
(if (and (or (<= (cadr ptl) (cadr (car 1lt)))
(<= (cadr ptl) (cadr (cadr 1t))))
(or (>= (cadr ptl) (cadr (car 1lt)))
(>= (cadr ptl) (cadr (cadr 1t)))))

(setg templist (append templist (list ptl)))

52

) ;foreach

(setg dmin (cadr (car tglist))

dmax (cadr (car orlist)))

(foreach pt2 tglist
(if (< (cadr pt2) dmin) (setq dmin (cadr pt2)))); if, foreach
(foreach pt3 orlist

(if (> (cadr pt3) dmax) (setqg dmax (cadr pt3)))); if, foreach

(foreach pt4 templist

(if (and (>= (cadr pt4) dmin)

(<= (cadr pt4) dmax))

(setqg templist2 (append templist2 (list pt4)))

);1if

) ; foreach

; (princ templist2)

) ;jdefun verts

’-***
j*¥*** This routine takes each point in the list of possible **#*%*
j**** T,INK vertices that happen before in time that the LD *kok ok

j¥**% calculated in FINDLD. A 1list with all the LINKS *kkk

53

;*¥***% between pairs of activities is returned. Fokokok

;**** * kkk

jRI KK FINDLINKS Ak

’.***

(defun findlinks (orlist tglist / linktemp)
(setqg maxy (cadr (car 1d)))

(setqg link nil)

(foreach ptl orlist
(setg a (list 0.0 (cadr ptl) 0.0)
b (list 1000.0 (cadr ptl) 0.0))

(setq ¢ (car tglist))

(foreach pt2 tglist
(setg linktemp nil)

(if (inters a b c pt2) (setq linktemp (list (inters a b c pt2)
pti)))

(cond
((= linktemp nil))
((>= (cadr(car linktemp)) maxy))

((not (boundp 'link)) (setqg link (append link (list
linktemp))))

} ; cond

(setqg ¢ pt2)

) ; foreach

) ;foreach

54

(foreach ptl tglist
(setg a (list 0.0 (cadr ptl) 0.0)
b (list 1000.0 (cadr ptl) 0.0))

(setqg ¢ (car orlist))

(foreach pt2 orlist
(setg linktemp nil)

(if (inters a b c pt2) (setqg linktemp (list ptl (inters a b c
pt2))))

(cond
((= linktemp nil))
((>= (cadr(car linktemp)) maxy))

((not (boundp 'link)) (setq link (append link (list
linktemp))))

) ;cond

(setqg ¢ pt2)

) ;foreach

} ; foreach

); defun findlinks

,-***
;¥*** This routine takes each point in the list of possible ***=*

;*¥*** LD vertices and finds the point of intersection with *kokk

;**** the appropriate activity. The shortest LD is * %k ok

55

j¥**% returned. i

PR FINDLD ok ok ok

;***

(defun findld (orlist tglist / ldtemp)
(setg 1d nil
ldflag nil)
(foreach ptl orlist
(setg a (list 0.0 {(cadr ptl) 0.0)
b (list 1000.0 (cadr ptl) 0.0))

(setqg ¢ (car tglist))

(foreach pt2 tglist

(setg ldtemp nil)

(1f (inters a b c pt2) (setqg ldtemp (list (inters a b c pt2)

ptl)))
(cond
((= ldtemp nil))
((not (boundp '1ld)) (setq 1d ldtewmp))

({(< (distance (car ldtemp) (cadr ldtemp)) (distance (car
1d) (cadr 1d)})

(setg 1d ldtemp))
) ;cond

(setqg c pt2)

) ;foreach

) ;foreach

(foreach ptl tglist

56

(setq a (list 0.0 (cadr ptl) 0.0)

b (list 1000.0 (cadr ptl) 0.0)) ; this will have to change
- give the end station instead

(setg ¢ (car orlist))

(foreach pt2 orlist
(setq ldtemp nil)

(if (inters a b c pt2) (setg ldtemp (list ptl (inters a b c
pt2))))

(cond
((= ldtemp nil))
((not (boundp '1d)) (setqg 1d ldtemp) (setqg ldflag T))

((< (distance (car ldtemp) (cadr ldtemp)) (distance {(car
1d) (cadr 14)))

(setg 1d ldtemp) (setq ldflag T))
) ;cond

(setqg ¢ pt2)

) ;foreach

) ;foreach

(findlinks orlist tglist)

(if (= (= link nil) T)
(setg allld (list 1d))
(setqg allld (list 1d)
allld (append allld link))

}; end if

57

) ;defun f£indld

;**

;**%*% This routing reads from the file *.tnk all the possible *x*x

;**** horizontal links between any two activities. It is

j*¥*¥** called only when the Least Time ASL is NOT the

j¥*** controlling ASL

sk kkk
’

jRE KK FINDOTHERASL

* k%%

)k k Kk

* % %k

* %k ok Kk

* %k kK

;**

(defun findotherasl (name / temp)

(setg otherasl (open (strcat path ".TNK") "r"))
(while
(setqg temp (read-line otherasl))
(setq altlnk (append altlnk (list temp)))
) ;while

(close otherasl)

(setqg altlnklnum (length altlnk))
(setqg num 0
numberlnk 0)
(while

(= T (and (< num altlnknum) (/= altlnk nil)))

((setg num (+ num 1))

58

(while (= T (and (/= (car altlnk) "other 1link") (/= (car altlnk)
nil)))

(setqg temp (car altlnk)
altlnk (cdr altlnk)
altlnk (append altlnk (list altlnk))
flag 1)
); loop do to end of file
)
); end while

}; defun findotherasl

;***

;¥**¥* This routine automatically builds the activity *k kK
j**** sequence list in an external file (drawing name.ASL). ‘***%*
;¥*** _ASL stands for activity sequence list. * ok k ok
;*¥*** Tt uses the file drawing name.tsl created by a VBA * ok kk
;**** macro called auto-asl Kk ok ok
;**** * % %k K
jREXK MULTIPASS *kok ok

;***

(defun multipass (/ temp)
(setqg asll nil
asl 0
temp nil
templ nil

1tl nil)

(setqg aslfile (open (strcat path ".TSL") "r"))

(while

(setqg temp (read-line aslfile))

(setq asll (append asll (list temp)))
) iwhile

{(close aslfile)

(setqg aslnum (length asll))
(setqg num 0O
numberasl 0)
(while
(= T (and (< num aslnum) (/= asl nil)))
(setg num (+ num 1)

leasttime 0

asl nil
flag =0)
(while (= T (and (/= (car asll) "other asl") (/= (car asll) nil)))

(setg templ (car asll)
asll (cdr asll)
asl (append asl (list templ))
flag 1)

); loop do to end of file

(while (= flag 1)

(setqg asll (cdr aslil)

numberasl (+ numberasl 1))

(setq listtemp asl)

(setqg org (car asl))

(setqg asl (cdr asl))

(setg activ (car asl))

(setqg orlist (vliist (ssget "X" (list (cons 8 org) ' (0
"POLYLINE")))))

(setqg tglist (vlist (ssget "X" (list (cons 8 activ) '(0
"POLYLINE")))))

(findlt orlist tglist)

(setqg leasttime (distance (car 1lt) (cadr 1lt)))

(setg org activ)

(setg asl (cdr asl))

(foreach activ asl

(setq orlist (vlist (ssget "X" (list (cons 8 org) '(0

"POLYLINE")))))

(setqg tglist (vlist (ssget "X" (list (cons 8 activ) ' (0

"POLYLINE"))})))

)

here

(findlt orlist tglist)
(setg leasttime (+ leasttime (distance (cadr 1t) (car 1t})))
(setg org activ)

;foreach

(setg flag 0)

H

; when two different ASLs have the same LT something must be done

61

(if (/= leasttime nil)
(if (/= 1t1l nil)
(if (< leasttime 1t1)
(setq deftemp listtemp
1tl leasttime)
); end if
(progn
(setg 1tl leasttime
deftemp listtemp)
) iprogn
}; end if

)y; end if

) iloop do to flag = 0

); loop

(setg asllnkfile (open (strcat path ".ASL")
(foreach activ deftemp

(write-line (strcat activ) asllnkfile)
}; foreach

(close asllnkfile)

) ;defun multipass

I'W"))

62

;***

j**¥%*% This routine performs the upward pass using the .asl *okk ok

j**** file created with make asl. It creates the .1lnk file. #***

j***%* The .lnk file contains activity name and points and *kkk
;**** 1D and LT for each pair of activities. Fhkk
Rk Rk UPASS %k kK

;***

(defun upass (/ temp)

(setqg asl nil)

(setqg aslfile (open (strcat path ".ASL") "r"))
(while
(setg temp (read-line aslfile))
(setg asl (append asl (list temp)))
Y iwhile
(close aslfile)

(setg aslnum (length asl))

(setqg org (car asl))
(setqg asl (cdr asl))
(setg activ (car asl));test line

(setqg orlist (vlist (ssget "X" (list (cons 8 org) '(0
"POLYLINE")))))

(setq tglist (vlist (ssget "X" (list (cons 8 activ) '(0
"POLYLINE")))))

(findlt orlist tglist)

(findld orlist tglist)

63

(setqg Inkfile (open
(write-line (strcat
(write-line (strcat
(write-line (strcat

(close 1nkfile)

(setqg org activ)

(setqg asl (cdr asl))

(foreach activ asl

(strcat path ".LNK") "w"))

n(n n\uu org n\\un (etos orlist)")") lnkfile)

"(" (etos allld) (etos 1t) ")") 1lnkfile)

n ("

"\"" activ "\"" (etos tglist)")") 1lnkfile)

(setq orlist (vlist (ssget "X" (list (cons 8 org) '(0
"POLYLINE")))))

(setqg tglist (vlist (ssget "X" (list (cons 8 activ) '(0
"POLYLINE")))))

(£indlt orlist tglist)

(findld orlist tglist)

(setqg Inkfile (open (strcat path ".LNK") "a"))

(write-line (strcat " (" (etos allld) (etos 1lt) ")) 1lnkfile)

(write-line (strcat " (" "\"" activ "\"" (etos tglist)")")

inkfile)
(close 1nkfile)
(setq org activ)

) ;foreach

) ;defun upass

’-***

;**** This routine performs the downward pass using the .lnk ****
j**** file created with upass. * ok kk
jREEK *okdek
PRl DPASS * kK

64

’-***

(defun dpass (/ templist)

(ctline)

; this is done only for the last activity in the schedule

(setg templ (read (getline aslnum))
aslnum (1- aslnum)
name (car templ)
pts (cadr templ)
temp2 (read (getline aslnum))
aslnum (1- aslnum)
1d (car(car temp2))
temp2 (cdr temp2)

templist pts)

(setq ctlfile (open (strcat path ".CTL") "w"))

(write-line (strcat " (" "\"" name "\"" (etos templist)")") ctlfile)
(write-1line (strcat (etos 1d)) ctlfile)

(close ctlfile)

(setg templist (cadr 1d))

;** for activities between the last and the first activity

(while

(> aslnum 1)

(setqg templ (read (getline asglnum))
aslnum (1- aslnum)
name (car templ)
pts (cadr templ)
temp2 (read (getline aslnum))
aslnum (1- aslnum)
allld (car temp2)
ldnext (car (car temp2))
otherld (cdr (car temp2))

templist nil)

i the original control.lsp lacked distinguishing ldnexts. These
lines solve

; part of the problem

(while (= T (and (<= (cadr (car 1d)) (cadr (car ldnext)))
(/= otherld nil)))
(setg ldnext (car otherld)
otherld (cdr otherld))

}; while

; here a problem arises when ldnext is above 1d and the pt
considered

; is below both. To solve the problem we need to take other link
from the org

; activity to the tgt activity until that link is below 1d

; If there is no other link between activities in the existing
; Asl calculated by Multipass, other asl must be calculated using

; links between activities.

66

; This process is dynamic and will use the *.tnk file

; in which links between any pair of activities with conicident
duration

; have been determined.

; FINLDL would be applied to activity "name" and its corresponding
activity

; pair of the link in *.tnk

;if
(if (= T (and (<= (cadr (car 1d)) (cadr (car ldnext)))
(= otherld nil)))
;then

(findotherasl name)) ; this line directs to a subroutine
that tries to find

; links from the activity "name" to other
activity

;end if

(cond

; FOR ACTIVITIES THAT ARE LINES
((/= (car (car pts)) (car (last pts)));its a line
(if (< (cadr (car pts)) (cadr (last pts))) |
(setg pts (reverse pts)));if

(setg pcount 0

67

flagpt 0)
(while (and
(setqg pt (nth pcount pts))
(> (cadr pt) (cadr (car ldnext))));and
(if (<= (cadr pt) (cadr (car 1ld)))
(if (= flagpt 0)
(setq templist (append templist (list (cadr 1d)))
templist (append templist (list pt))
flagpt 1)
(setqg templist (append templist (list pt)))
)it
);1if
{setqg pcount (1+ pcount))

) ;while

(if (= (cadr pt) (cadr (car ldnext)))
(if (= flagpt 0)
(setg templist (append templist (list (cadr 1d)))
templist (append templist (list pt))
flagpt 1)
(setqg templist (append templist (list pt)))
)
(setg templist (append templist (list (car ldnext))))

);if

(setg ctlfile (open (strcat path ".CTL") "a"))

(write-line (strcat " (" "\"" name "\"" (etos templist)")")
ctlfile)

(write-line (strcat (etos ldnext)) ctlfile)
(close ctlfile))

; End line activities

; FOR ACTIVITIES THAT ARE BLOCKS
((= (cadr (car pts)) (cadr (cadr pts)));its a block
(foreach pnt pts
(if (< (cadr pnt) (cadr (car ldnext)))
(setqg pnt (list (car pnt) (cadr (car ldnext))))
(if (> (cadr pnt) (cadr (car 14)))

(setqg pnt (list (car pnt) (cadr (car 1d))))));if,

if
(setg templist (append templist (list pnt)))
) jforeach
(setq templist (append templist (list (car templist))))
(setq ctlfile (open (strcat path ".CTL") "a"))
(write-line (strcat " (" "\"" name "\"" (etos templist)")")
ctlfile)

(write-line (strcat (etos ldnext)) ctlfile)
(close ctlfile))

; End block activities

) ;cond

(setg 1d ldnext)

) ;while

;** For the last activity in the schedule which is ALWAYS FIRSTDAY

(setg templ (read (getline aslnum))

69

aslnum (1- aslnum)
name (car templ)
pts {(cadr templ)
templist (list pt))
(setg ctlfile (open (strcat path ".CTL") "a"))

(write-line (strcat " (" "\"" name "\"" (etos templist)")")
ctlfile)

(close ctlfile)

} ;defun dpass

’-***

j**** This routine draws the controlling activity path on *kok ok
;*¥*** the linear schedule in a layer named "CONTROLLING". *kok ok
I-**** *kk Kk
jRE K SHOW *k kK

’-***

(defun show ()
; (setg curlayer (getvar "CLAYER"))

; (setvar "CLAYER" "CONTROLLING")

(setqg ctlfile (open (strcat path ".CTL") "r"))
(while

(setqg templ (read-line ctlfile))

(setg temp (read templ))

(1f (= (type (car temp)) 'STR)

70

(setg temp (cadr temp)));if

(entmake '((0 . "POLYLINE") (40 . 0.05) (41 . 0.05) (62 . 1) (8
"CONTROLLING")))

(foreach pt temp

(entmake (list '(0 . "VERTEX") (setqg v (list 10 (car pt) (cadr
pt)))))

) ; foreach
(entmake '((0 . "SEQEND")))
) ;while

(close ctlfile)

; (setvar "CLAYER" curlayer)

) ;defun show

;***

;**** This routine counts the number of lines in the file *kkox
j**** "dwgname".LNK. This is needed for the downward pass * ok ok ok
;**** which needs the last line first. Sets ASLNUM to the * Kk %k
;*¥*** npumber of lines in the file. *kk Kk
pREEX CTLINE *kok ok

,-***

(defun ctline ()
(setg ctfile (open (strcat path ".LNK") "r"))
(setg aslnum 0)

(while

71

(read-1line ctfile)

(setg aslnum (1l+ aslnum))
};while
(close ctfile)

) ;defun getline

;***

;¥*** This routine takes a number and returns the line
;**** corresponding to that number from the "dwgname".LNK
prRxExx file.

FREHIE GETLINE

*, ok kK

*kkk

* k kk

* Kk Kk %k

;***

(defun getline (num / lineinfo count)
(setqg getfile (open (strcat path ".LNK") "r"))
(setqg count 0)
(while
(< count num)
(setg lineinfo (read-line getfile))
(setg count (1+ count))
) ;while
(close getfile)
(princ lineinfo)

) ;defun getline

72

,-***

j**** ETOS (Expression TO String) takes any expression and *okkk
;**** converts to a string. "STRings" are returned as double ***%*
j¥*%% wngTRings"". The READ function can be used to return Hokkk
j**** the original value of any string returned by ETOS. dkk ok
;**** ETOS *kkk

'.***

(defun etos (arg / file)
(1f (= 'STR (type arg)) (setg arg (strcat "\"" arg "\"")))
(setg file (open "$" "w"))
(princ arg file)
(close file)
(setg file (open "$" "r"))
(setqg arg (read-line file))
(close file)
(close (open "$" "w"))
arg

) ;defun ETOS

;* DXF takes an integer dxf code and an entity data list.

;* It returns the data element of the association pair.

.k
’

(defun dxf (code elist)

(cdr (assoc code elist)) ;finds the association pair, strips 1st
element

73

) ;defun

. %
7

;;;CAP shortcut to run all routines at once and draw the CAP

(defun CAP (/ 1lin)
(multipass)
(upass)

(dpass)

(show))

74

APPENDIX C

Linear Schedules from Alfa-test projects

75

.....

Ll

-

. s
\\ \\\\\\

\\\
\\\\\\\\\\\\\\\\\\\\\\\\\\

TS
\ 3

IASTITESITSNNSNETEATUCURNTCAR T NRNNTRS| SEERTTOR N TRLE R AR ERVRIRLRLN LI

: : : :
H i H i

H
3

H

§

A BinAmn

e

666192 2uNr -~ spodoudiPU] 4O UOILDNULSUO]) SUJdf - PUNOG U3WON - 123l 0oud gop-1

ajnpayog avaul 199f04d §p-1 I ASVHI — ['S 241514

.......

......

8L

. E g) s |
. = = s E an
g =
m -]
=
g
=
=
£
0 0 0 0 0 0
L 9 € I 1 0
IR RRRRRERRY | m i " ‘
— PLTEEL TR e ettt
! : | | 66/02/01
| “ | 1 ! ' : 2/0
| | i i i i !
T T F= !
g 4 : { ; | | !
i i i AN
_ ! ! “ _ . i 66/62/01
1 \ . j 1 H—
i ! _ i 1 RN
01 i) - e m _
J 1 | SIITSVEUNY 1 _ "
“ “ _ T T T ONI/AYd 7]
" ! | ! T ! T t
! | 1 o 1] i “ + -
ol _ i i ok . : _ n h - 66/20/11
_ ! “ i _, n “ " .
| i | | | -
- | | | | | | | |
1]] I 1 “ n “ I

6661 ‘G2 Joquazdas -

UOIIDNUISUOT HSTYM - 8333A030TM UOILVI013Y TE2 SN

aafo.d proy 1oAY YOS [€ZSN — 'S 2nBLy

