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EXECUTIVE SUMMARY

This project is concerned with the development of operational strategies and dynamic
dispatching algorithms time sensitive and rapidly-changing commercial vehicle
operations. The algorithms are designed to use real-time information on vehicle
locations, characteristics of service requests and traffic network conditions to improve the
efficiency of freight mobility. These are specifically tailored to the needs of carriers
providing service to intermodal freight operations though they are applicable to general
truckload operations as well. The research involved the development of a new
approximation algorithm for time-constrained vehicle routing and scheduling problems
and examined the trade-offs between implementing global and locally optimal
assignment methods.

Project Highlights

The project involved active collaboration with JB Hunt Transportation Inc. This trucking
company was a natural partner in this research as they have the largest rail/ground
intermodal operations in the US.  The result of the project is a continued effort,

sponsored by JB Hunt to develop and test a prototype dispatching system in several of
their intermodal terminals early in the year 2000. In addition to supporting the research

with data and regular access to company engineers and analysts, JB Hunt made two
separate supporting awards totaling $65,000 to support this and related research on
intermodal operations planning.

The project resulted in the development of a new and promising approximation algorithm
for the time-constrained vehicle routing and scheduling problems. The approximation
algorithm developed can be applied to any multiple Traveling Salesperson Problem with
Time Windows (m-TSPTW) but is especially suited to problems in which the ratio of
assigned tasks to servers in an period is relatively small. It was specially developed for
the local truckload assignment problem and has very good average performance.
Relative to other solutions developed for related problems over the years, the algorithm is
extremely easy to implement. Anyone with an understanding of optimization and limited
software engineering skills could perform the implementation which uses a commercial
GIS package to obtain network travel times and Cplex or another similar commercial
optimization tool.

A simulation framework was developed in order to allow for the testing of assignment
algorithms and heuristics. The simulation framework combines a C++ model with the
Transcad Geographic Information System. Transcad is used for both visual display and
for off-line calculation of shortest network travel paths.

Extensive testing has been performed to compare the performance of globally and locally
optimal algorithms and heuristics and to examine the performance of algorithms with
problems of realistic size. Test reveal that globally optimal methods perform much better
with respect to minimizing distance traveled and meeting customer deadlines than do the
locally optimal insertion, addition and re-assignment heuristics examined to date.



However, lengthy discussion with trucking industry logistics managers and dispatchers
have revealed that dispatchers prefer assignment methods that rely on making relatively
small changes to schedules rather than rescheduling all unserved tasks several times
during the day. For this reason work towards improving the local assignment heuristics
continues.

A system for generating test problems was developed. Once a geographic region has
been selected customer locations are identified, problems are generated by selecting
customers randomly and assigning time windows from a distribution. Problems maybe
static but drawn from a distribution or may be dynamic in that the timing of service
requests are generated according to a Poisson process.

Both a library of test problems and the code to generate problems will be made available
to other researchers via the web site at the Institute of Transportation Studies at the
University of California, Irvine in March of 2000. The test library has been complete the
summer of 1999 but it is being updated to allow for a higher degree of flexibility in
problem generation.

Technology Transfer

The research described in this report has been presented at the meetings of the
Transportation Research Board (TRB) at the Institute for Operations Research and the
Management Sciences (INFORMS) and of the Optimization Days Conferences. Several
other presentations were made at universities and to trucking company executives.
These presentations are listed below:

"Real-Time Routing and Assignment for Trucking Operations", invited presentation,
University of Texas at Austin, February, 1999.

"Routing and Assignment for Local Trucking Operations Supporting Intermodal
Operaticns”, Presentation to Executives and Managers of JB Hunt Transport, Inc., Irvine,
February, 1999.

“"Dynamic Routing and Assignment for Trucking Operations", invited presentation,
University of Southern California, March, 1999.

"Real-Time Routing and Assignment for Trucking Operations", Optimization Days,
Montreal, May, 1999.

"Local Truckload Vehicle Routing with Strict Time-Window Constraints", INFORMS,
Philadelphia, November, 1999.

"Mixed Global and Locally Optimal Heuristics for Local Truckload Trucking Operations
with Strict Time-Windows", 79th meeting of the Transportation Research Board,
Washington DC, January 2000.



"An Algorithm for the Local Truckload Vehicle Routing Problem with Strict Time
Window Constraints", 79th meeting of the Transportation Research Board, Washington

DC, January 2000.

Two papers discussing this work have been submitted to academic journals. These
are:

Regan, A.C., S. Jagannathan, and X. Wang (2000), "Mixed global and local assignment
algorithms for quasi dynamic local truckload trucking operations with strict time-
windows", Transportation Research Record, forthcoming.

Wang, X and A.C. Regan (2000), Local truckload vehicle routing with hard time window
constraints, Transportation Research, Part B, under review.

The research problem, methods and results found are detailed in the rest of this
report.



INTRODUCTION

This report examines the trade-offs associated with local and global, but myopic,
assignment heuristics for local truckload trucking operations such as those associated
with drayage operations near intermodal facilities. These operations involve a
combination of loads that are known at the beginning of the day and those that arrive
dynamically throughout the day. Some of the dynamically arriving loads are revenue
generating moves while others are trailer, chassis or container repositioning moves.
Since a significant fraction of the day’s loads are known a priori, dispatchers would like
to be able to construct schedules for the day and then to make minor changes to these
schedules as the day progresses. We examine the efficiency of an operation in which
new loads are added to or appended to schedules constructed at the start of the day versus
one in which the whole system is re-optimized several times during the day. The re-
optimization method does not seek to preserve current schedules while the local
optimization techniques do. The examination of solutions is performed using a
geographic information system (GIS) based simulation model developed for this purpose.

CONTEXT

The context of this research is local truckload trucking operations in which a driver
moves a single load at a time from its origin to its destination. Each load has a specified
time-window within which it has to be picked up at the origin location and delivered at
the destination location. Local truckload operations contain a fairly high degree of
stochasticity. Carriers typically know only a portion of loads to be served at the start of
the day. Further, unexpected delays at intermodal terminals or customer locations can
require the reassignment of previously assigned loads. In addition the need to reposition
containers, trailers or chassis can arise at any time, effectively adding new moves to the
system. Decisions to accept (or reject) newly requested loads and assign a vehicle to
serve an. accepted load take place very quickly. In local operations, the acceptance

decision determines whether a load is moved by a company’s drivers or contracted to
another company. In the context of primary interest in this work, rail and maritime
intermocial operations, there are many dray operators available. These operators
specialize in taking last minute requests for relatively short moves. Decisions made in
the present affect the future state of the system. Since the decisions have to be made in
real-time, the speed of decision making is extremely critical.

This rescarch has two equally important goals. The first is to develop assignment
strategies suitable for real-time implementation. The second is to examine the costs
associated with two customer service-driven operational strategies. One of these
strategies is to try to maintain schedules developed early in the day and to limit changes
to fairly simple ones. The trade-offs between implementing global optimization
techniques that minimize the overall cost to provide service but may make significant
changes to previous schedules and those which make only “local” changes to schedules
(insertions, additions and removal of at most one load at a time) are examined.
Dispatchers favor solutions with few major mid-day changes so that repositioning moves



and extra driver tasks not included in the assignment problem may be scheduled and so
that drivers may predict at the beginning of the day to within 30 minutes or an hour when
their work day will end. The other strategy is one in which sub-fleets of drivers are fairly
small and fairly stable, meaning drivers work in the same area every day and pickup and
deliver to the same set of customers. The advantage here is that drivers become very
. familiar with the street network and traffic pattern in the relatively small geographic
region to which they are assigned. This familiarity saves them time and, perhaps more
importantly, can reduce the likelihood of accidents. In addition they develop good
relationships with major customers in their primary zones. These relationships may
facilitate reductions in both the length and variability of dock times.

The first of these operational considerations is examined in this paper. The second is the
subject of on-going research motivated in part by research that has shown that significant
network economies of scale (and density) exist in truckload drayage services (Walker,
1992). Whether large companies take advantage of these economies despite sub-fleet and
sub-area partitioning is of significant interest. A geographic information system (GIS)
based simulation model that is integrated with a CPLEX based optimization model has
been developed for this purpose.

RELATED RESEARCH

The long haul truckload trucking problem has attracted considerable attention in the past
few years. The dynamic vehicle allocation problem has been attacked from many angles
incorporating present and future (forecast) demands, deterministic and stochastic
variables by optimization-based and heuristic algorithms. Powell (1996) presents various
formulations and solution methods for this problem which is typically includes long
distance moves and a longer planning horizon. This research differs in that we restrict
ourselves to local truckload moves such as those in and around intermodal facilities and
to a set of work that must be completed during a single 24-hour period. Demands arise
within a compact geographic region near one or more intermodal facilities (rail or
maritime facilities or both). These problems are simpler in some respects than the
traditional dynamic vehicle allocation problems in that we do not consider repositioning
moves made in anticipation of future demands. Vehicles are busy, waiting at an
intermodal facility or waiting at the depot for an assignment. In certain respects however,
these problems are more complicated than the traditional vehicle allocation problems.
Loads have strict time window constraints, and dock times (loading, unloading and
waiting times) may be unpredictable as can service times at intermodal facilities. These
stochastic elements, combined with travel times subject to recurring and non-recurring
congestion have a significant affect on the ability of dispatchers to assign a driver a full
day's work, even if one hundred percent of the days' demands are known at the start of
the day.

This problem lends itself to formulation as a vehicle routing problem with time windows
but differs from typical VRPTW problems in two ways. First, the moves are full
truckload moves and do not allow in-vehicle consolidation. Second, in this problem the



vehicles are assigned only a small number of moves during the planning horizon which is
typically a single work day.

These problems fall into a class of those in which it is difficult to accurately describe the
fluctuation of demands and service times and in which it is not cost effective to make the
effort to characterize and explicitly include stochastic elements in the solution. In real
time applications, trade-offs between computational complexity and solution quality
exist. The complexity of accurately modeling uncertainty and the complexity of
algorithms which explicitly consider stochastic elements justifies the use of a
deterministic vehicle routing model as an important part of the strategies used to make
online (real-time) assignments. Regan, Mahmassani and Jaillet (1996, 1998) presents a
set of heuristics for real-time assignment and routing for dynamic carrier fleet operations.
That work assumes that no demands are know a priori and that loads must be assigned (in
order to ensure time-window feasibility) immediately after they are requested.
Furthermore, the assignment rules rely on purely local optimization techniques, which
miss out on system-wide assignment opportunities. The approach described in this
research assumes that a significant fraction of demands are known at the beginning of the
assignment period and seeks to take full advantage of this information while at the same
time retaining flexibility to react to changes if need be. Yang, Jaillet and Mahmassani
(1999) extended earlier analysis considerably, and developed a global optimization-based
formulation of the real-time truckload pickup and delivery problem which they call
myopic because it involves only information known at the time of solution in a highly
dynamic environment. Their work suggests that even a myopic system-wide
optimization technique performs better than purely local assignment techniques. The
problem they solve corresponds to our problem. However they examine systems which
are even more dynamic. Because this method is intended for eventual implementation in
operations, we assume, as is typically the case in real operations, that a large fraction of
demands are know at the start of day. In addition, the research described in Yang et al.
(1999) has as its focus smaller problems as it was intended to develop new insight into
dynamic problems rather than lead to an operational system.

The real time Jocal truckload pickup and delivery problem has attracted relatively little
attention from the research community. Until recently, few carriers had intermodal
operations of the size inviting the development of automated routing and scheduling
systems and the large local pickup and delivery problems faced by private fleets typically
involved primarily fixed routes. Examples of work on this topic are found in Ball,
Golden, Assad and Bodin (1981), Powell and Gittoes (1996) and Powell, Snow and
Cheung (200X). The work by Ball et al develops route construction and improvement
heuristics for truckload vehicle moves while Powell et al develop and test, fairly
extensively, near optimal assignment heuristics for truckload vehicle operations,
including short haul operations. Finally, Powell, Towns and Marar (200X), examine the
performance of global verses local assignment techniques for truckload trucking
operations when dispatchers reject some fraction of the assignments provided by the
dispatching system.

The motivation for this research is the intermodal operations of one of the largest



truckload carriers in the US. The company uses optimization software to assist with the
development of schedules for their long haul (over-the-road) drivers but not for their
local operations. Current assignment methods rely on dispatchers (load managers) to
solve, without the assistance of a scheduling system, what is essentially a bipartite
assignment problem at the beginning of the day followed by nearest-load assignments for
the rest of the day. The variability in handling and travel times in congested urban
networks coupled with some uncertainties about equipment availability have made this
assignment 1aethod the norm in most local operations.

In addition, local operations are driven by many somewhat intangible factors including
customer service and safety constraints that favor sub-fleets of relatively few drivers
working in the same areas and with the same customer set from day to day. These
operations have been historically fairly well managed by dispatchers. However, a sharp
increase in recent years in the use of rail intermodal transportation has led local
operations to become much more complex and increasingly large, inviting the
development of computer aided dispatching systems. In addition to involving more than
a hundred drivers and hundreds of loads everyday, these problems increasingly include
more than one rail terminal and a fairly wide geographic region.

THE MYOPIC GLOBAL ASSIGNMENT PROBLEM

The problem solved is a myopic version of the truckload vehicle assignment problem
with time window constraints, which does not anticipate the future and simply assigns the
vehicles to serve as many known loads as possible. Because travel takes place in a
compact region, it is not necessary to consider the future locations of vehicles as is
typical in the long haul version of this problem (see for example Powell, 1988). Of
course, local operations are in fact somewhat dynamic in nature. A fraction of loads to be
moved in a given day become known only a short time before service must take place,
trailer repositioning moves are added to the system as the day progresses and loads must
sometimes be reassigned due to traffic, customer dock and intermodal facility delays.
The assumption we make is that the assignment problem will be resolved several times as
the day progresses and more information becomes known.

If we treat each loaded trip as a node, the problem may be viewed as an asymmetric
multiple traveling salesman problem with time window constraints (m-TSPTW). A
major difficulty to solve the m-TSPTW problem arises from the time window constraints.

There are generally three classes of approximation methods used to deal with the time
windows. One explicitly considers the time window constraints in the construction of
routes. This class of methods includes Dantzig-Wolf decomposition, which is used to
decompose the coverage constraints, Lagrangian relaxation, in which the coverage
constraints are relaxed, and state space relaxation in which the feasible space of a
dynamic programming algorithm is reduced (see for example Kolen Rinnooy Kan and
Trienekens, 1987). Both Dantzig-Wolf decomposition and Lagrangian relaxation lead to



shortest path sub-problems with time window constraints, which has been shown to be
NP-hard (Dror, 1994).

The second class of methods is the relaxation of the time window constraints. Network
relaxation methods solve a network problem after relaxing the time window constraints
and then partition the windows according to the last infeasible solution. According to
Desrosiers ef al (1986), this method is inferior to the Dantzig-Wolf decomposition
method. Lagrangian relaxation of time widow constraints is reported to generate results
worse than those keeping the time window in the sub-problems (Desrosiers, Sauve and
Soumis, 1983).

A third class of methods to deal with the time window constraints is to discretize them.
The idea is to replace continuos time constraints and individual assignment variables with
a bundle of assignment variables, each corresponding to a different point in time. An
carly example of this approach is seen in the work by Appelgren (1969, 1971) in which a
ship scheduling problem is solved. A paper by Levin (1971) uses the same strategy to
generate flight assignments in which each move has a set of alternate service times. The
method described in this paper is inspired by the work of Appelgren and Levin but differs
in several ways. In the work by Appelgren the service time windows are not actually
continuous variables. Shipments must begin on exactly one day and travel times are
naturally expressed as integer multiples of days. The paper by Levin introduces the
notion of "bundles" of flow variables. However, no attempt is made to address the issue
of how many flow variables the bundles should contain or to examine the trade-offs
between coarser and finer discretization.

A more recent application of time window discretization can be seen in Swersey and
Ballard (1984), where a school bus scheduling problem is solved using a time window
discretization method to minimize fleet size. Graham and Nuttle (1986) compare the
performance of a time window discretization method against two heuristics for solving
the school bus scheduling problem and found that it had good results. The main
complaint about the method was that due to computational issues of the time an LP

relaxation of the problem was solved and that when this did not have an integer solution
that manually adjusting the non-integer variables could be difficult.

Discretization methods have been rarely used in recent years. The likely reason for this is
that the method results in an exponentially expanded network. However, recent advances
in computing have made this method more attractive than in the past. In addition, we
show later that the relatively small number loads assigned to each vehicle at any given
time makes this problem well suited to this method.

In this work we develop an iterative method for solving m-TSPTW problems using time
window discretization. At each iteration we generate and solve an over constrained
version of the problem and an under constrained version. The over constrained problem
provides us with a feasible solution and an upper bound on the cost of the optimal
solution. The under constrained problem provides us with a lower bound on the cost of
the optimal solution. As far as we know, no other researchers have provided such a

10



bound.

We develop and implement a scheme in which the solution is guaranteed to be non-
increasing in subsequent iterations.

The organization of this section of tiis report is the following: first we introduce the
formulation, then we then present the over-constrained and under-constrained problems
formulations. Next, we introduce the time window partitioning method in which non-
increasing costs are guaranteed and present some empirical results.

Notation

Let:

N = the set of nodes for loads,

K = the set of vehicles,

0i = the starting node for vehicle i,

a, b = the beginning and end of the time window for load 1.

T; = the service time for load i,

t;; = the time needed to service load i and then travel to the pickup location of

load j (the handling time at load i, the loaded travel time for load i and the empty travel
time between the destination of load 1 and the origin of load j),
Cij = the cost of travel from the destination point of load i to the origin of load j,

M = an infinitely large constant.

The flow variables are present in the problem if a feasible assignment of a vehicle from
its starting location and each load and between loads is possible. The flow variable Xj;
is equal to one when there is an assignment in which load j is served by the vehicle
departing node i; it is equal to zero, otherwise.

Formulation
objmin Y Y (M+c)x, (1.0)
ieN+{o, [keK} jeN\{i}
> Xo.j $1 VieK (1.1)
N1
<1 VjeN (1.2)

ieN+{0klkeK)

X~ 2 Xm20  VjeN (1.3)
ieN+{oklksK} meN
Xij(Ti+tij—Tj)SO (1.4)
a.<T.<h, VieN (1.5)

X is binary; forall ieN+{g keK},jeN,i#] (1.6)
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Constraints (1.1) require the vehicles to leave each load at most once. Constraints (1.2)
indicate that each load be served at most once. Constraints (1.3) say that a vehicle
departs from a load only if it serves the load first. Constraints ( 1.4) enforce the temporal
relationship of consecutive loads. Constraints (1.5) specify the time window constraints.
Constraints (1.6) are the binary constraints.

The objective function is a multi-objective one. The infinitely large value M is a
sufficiently large constant that ensures that the assignment covers as many feasible loads
as may be possibly served.

The problem in this paper is slightly different from the typical m-TSPTW problem. The
vehicles are not required to return to depot after each service during the day. There is no
a priori guarantee that each load could be served. The objective is to serve as many loads
as possible. These differences are in fact trivial. It is easy to show that by adding
dummy vehicles, dummy source (sink) node and links of zero cost that this problem may
be transformed to the typical m-TSPTW.

Over-constrained and Under-Constrained Methods

The traditional way to deal with the non-linear time window constraints using integer
programming is to linearize them. However, the linearized constraints are very loose
because they are not the facets of the polytope of the convex hull of the feasible solutions
(Langevin, Soumis and Desrosiers, 1990). In the method we present here the time
constraints are taken into account in a pre-processing step in which two versions of the
problem are constructed. The first is over constrained and the second is under
constrained.

The flow variables X;; correspond to links from vehicles to loads, and those between
loads. Possible links are determined by the time window constraints associated with each
load. If the time window is a single time point, then the problem is reduced to a fixed
schedule problem (Derosiers et al, 1995). This kind of problem has a clear and exact
network representation and can be solved very efficiently.

Suppose we consider only the end points of the time window of both the first and the
second Ioad when we set up links between two loads for the network; then we obtain a
network that ignores some possible links. We refer to this method as the over constrained
method. Suppose we only consider the starting point of the time window of the first load
and the end point of the time window of the second load when we set up the link between
two loads; then we end up with a network that includes some infeasible links. We refer
to this method as the under constrained method. The over constrained method leads to a
network from which we obtain a feasible solution while the under constrained method
provides a lower bound for the solution.

Figures 1 and 2 show the feasible links excluded and infeasible links included in the two
methods.

12
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Figure 1) Over-constrained network +
It is not possible to reach load 1 after leaving at the latest time in the time window for
load 2 or to reach load 2 after leaving at the latest point in the time window for load 1.

However, as is shown above, it is possible to serve load 1 after serving load 2 in the early
part of the time window for load 2.

1 / L1
.\ <: time

B vehicle @® load ~y3 link D Time window

Figure 2) Under-constrained network
v

It may be observed that the under constrained network might permit infeasible links. If

the vehicle leaves load 1 at the end of its time window it will have no way to reach load 2

within its time window. In fact, this network may contain cycles.

In the over constrained method we replace constraints (1.4) and (1.5) with the following:
X;(btt;-b) <0 (1.7)

In the under constrained method we replace constraints (1.4) and (1.5) with the
following:

X, (a,+t,b,) <0 (1.8)

Constraints (1.7) define the links for the network of over constrained method. Constraints
(1.8) define links of network from under constrained method. If the coverage constraints
(1.1) are relaxed, the formulation from the over-constrained method is a network flow
problem on an a-cyclic network. There are very efficient algorithms to solve such
problems. However the network generated using the under constrained method is likely
to contain cycles as can be seen in figure 2.
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If we use the formulation from the under-constrained method, there is some infeasible
space included in the solution space. While for over-constrained problem, there is some
feasible space excluded. As a result, the optimal solution to the linear relaxation of the
formulation by the under constrained method Z*, the integer solution to the under
constrained method Z,, over constrained method Z.F and the global optimal integer
solution Z," can be placed in the following order:

LP IP P 1P
Z SZ, 52,57,

Time Window Reduction and Partitioning

In general, the bigger the time windows, the bigger the gap between Z/* and Z,, as well
as between Z," and Z,,*. Sometimes the gap between the two methods is so large that
we cannot determine if we have reached an acceptable solution with respect to the
optimal value.

The partitioning method is based on the observation that if the time windows are smaller,
the gap between Z," and Z;"* is reduced. To do this, the original window is partitioned
into several parts. Each part is considered as a sub-load. At most one of the sub-loads of
any load may be served. The vehicle that leaves a sub-load must have entered to the
same sub-load. In this way, the number of feasible links excluded by the over
constrained method is reduced; similarly, the number of infeasible links included in the
under constrained method is also reduced.

The problem is how to select the width to partition the time windows because smaller
widths lead to much larger problems. The iterative solution method in which an upper
and lower bound is obtained at each time iteration allows us to begin by solving problems
of reasonable size. If the ratio between lower bound and upper bound is unacceptable
then the width selected is too large. In that case we select a smaller partition and solve the
problem again. In the tests problems presented, a series of widths is arbitrarily selected
to start with two hours and to end with 0.1 hours. The way to partition is as follows.
Suppose the pre-selected width for partitioning is d, and that the load has a window (ai,
b;)). First, determine the number of sub-loads for this iteration by taking the smallest
integer that is greater than (bi-a;) divided by d. That is ceil[(bi-a;)/d] where ceil(x) is the
ceiling function that finds the smallest integer greater than x. Then partition the window
into this many parts evenly.

This method is further improved by employing time window reduction methods
commonly used for preprocessing VRPTW problems. There may be some part of the
time window, which is of no use to the assignment since no vehicle is able to reach the
load within that time. That part of the window is eliminated in order to reduce the size of
the problem. This method is described in Desrochers, Desrosiers and Solomon (1992).
From here on, we refer to reduced time windows when we mention them. Then the
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formulation after window partitioning can be modified as follows:

objMin > > (-M+¢)Xij (2.0)
ieN+{o, [keK} jew \{i}
3 ()= ()
2 X<l Vie{g,lkeK}+o (1)
8075 (i)
> X<l Vieo (2.2)
ieu)+(oklkel(}
8(1)#3 ()
> X <1 VEeN (2.2
{/BG)=E} iew+{g keK}
8(i)#d ()
‘ Z Xij_ Z ijZO Vieo 2.3)
’i{i’;:é%;'““’ 3 (mye5 )
Xij(Ti+t;=T)<0 V(ij)eAd@)=#8(G) (24)
Xijj isbinary View+{g keK},jeN,i#]j (2.6)

8(i) denotes the load associated with sub-load i. @ is the set of all sub-loads. Oy is the
node for vehicle k. K is the set of vehicles. Constraints (2.2°) stipulate that at most one
sub-load be served for each load. a; and b; represent the beginning and end of the time
window of the sub-load i. In the same way, the over constrained and under constrained
methods define the links between sub-loads. After constraints (2.4) and (2.5) are
replaced with definite links, the formulation possesses a structure that has a network flow
sub-problem after decomposing or relaxing the constraints (2.1), (2.2) and (2.3). In this
paper, a branch and bound, method is used to solve the problems by using Cplex®.

A Discretization Scheme with Monotonically non-Increasing Costs

Another observation is that a smaller length to partition the window usually but not
necessarily leads to a better feasible solution. An example here shows this point.
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Figure 3) Selection of the discretization point

Figure 3 shows that if the time window at the left is partitioned into two parts, there could
be the assignment in which the vehicle goes to two loads in a row as shown by arrows in
the figure. But if a smaller width is adopted and the longer window is partitioned into
three parts the over constrained method would not allow this assignment. The vehicle can
only serve one load, which is worse than the solution from a larger partitioning width.

To guarantee that the over constrained method lead to no worse solutions in subsequent
iterations, a special scheme is used. First partition the time window into two parts at the
optimal service time from last iteration. Then use the pre-selected width to partition both
parts of the window. In addition, we include a special sub-load whose time window is
limited to the first time point of the load’s time window.

Here we summarize the procedure used:

1. Select a series of widths used for partitioning.

Partition the window into two parts at the time points where the service is delivered at

last iteration from over constrained method, then select the first unused width in the

pre-selected series to partition the two parts; at the first iteration, partition the whole

window directly. Add the first time point of the original window as a sub-load.

Generate over and under constrained formulations and solve the two formulations.

4. If the ratio between lower bound and upper bound is acceptable, no smaller width can
be used, or machine time is run out, stop; otherwise, select the next width to be used
and return to step 2.

[F8 ]

Problem Testing

Using the GIS package TransCAD, we generated a set of representative problems based
on real data. The problem generation package is part of a larger GIS based fleet
management simulation model described in Jagannathan (1999) and Regan, Jagannathan
and Wang (2000). The loads are generated by selecting randomly from known customers
in the service area. Time windows are randomly assigned based on the distribution
shown in table 1, which roughly corresponds to the time windows associated with loads
known at the start of day.
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Table 1. Probabilities associated with time windows of varying length

Time window 7:00-7:30 AM 8:00-9:30AM 8:00AM-12:00PM | 12:00-5:00PM
(0.5 hours) (1.5 hours) (4 hours) (5 hours)
Probability 0.1 0.15 0.35 0.4

For the problems in the test set, we begin with the vehicles at the depot (which in this
problem is very near the rail yard) and make all vehicles available for the duration of the
day. Vehicles are not required to return to depot after each service. Travel distances
correspond to the shortest network travel distance. Travel time is assumed to be 35 miles
per hour, reflecting congestion levels in the test region. The average loaded distance is
quite short, less than twenty miles long. A handling (typically dock time) of forty
minutes is assumed for each load though in an actual operation the handling time would
be customer specific. We present results from 30 problems of 20 vehicles and 75 loads.
Twenty was selected because it is the typical maximum size of a local sub-fleet handled
by a single load manager (dispatcher). In the test, the cost is the empty travel distance.
We set the parameter M to 10000 in the test since it is much larger than even the sum of
the total empty travel distance. We then present results from 30 similarly generated
problems of 40 vehicles and 150 loads. For these larger problems two observations are
made. The first is that these larger problems reach optimality in earlier iterations, on
average. The second is that for larger problems only limited iterations are possible
because the size of the problems expands too quickly.

The widths to partition the time window at iterations are as follows:

Table 2. Partitioning width

Iteration 1 2 3 4 5 6 7 8 9 10 11 12

Width 2 1.75 1.5 1.25 1.00 0.75 0.6 0.5 0.4 0.3 0.2 0.1
(hours)

We solve the problems using CPLEX® version 5.0 with no special modifications. The
later versions of this software (6.0 and 6.5) are known to have faster solution times,
particularly for Mixed Integer Programming (MIP) problems. Therefore, exact times
presented here should be considered relative solution times. In addition, the solution
times could be further improved by the addition of a more sophisticated decomposition or
relaxation method. One of the goals of this research was to develop a method simple
enough to be implemented by engineers with only limited training in algorithm
development. This method can be implemented by anyone with limited programming
skills and an understanding of the workings of commercial optimization software.

Tests

All tests are run on a desktop computer, a 400 MHZ Pentium II PC with 256 MB RAM.
Three aspects of the method are tested. The optimality of the upper bound solution
(feasible solution) in terms of the ratio of the cost of the lower bound to upper bound; the
tightness of the lower bound as opposed to two other alternatives and their corresponding
machine time.
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The Optimality of the Solutions

The ratio of the cost of the solutions associated with the under and over constrained
formulations after the first two iterations are provided in table 3 and figure 4. It may be
observed that even when a width as large as two hours is used to partition the windows
the solutions are quite good. Here the cost does not include the term M.

Ratio at Iteration 1 Ratio at iteration 2
1 Hﬂm——m—“’—- 1
0.93 g —o2 ¢ 0.98 v * ¢
095> o~ e o * 0.96 * A
o 094 o 094
T 092 < - € 092 . S Y
i 09 0.9 |
:’ 0.88 4 * 0.88 -
y 0.86 . . L 0.86 : - — land?
0 10 20 30 0 10 20 30
instance Instance
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Table 3. The ratio of the cost of lower and upper bound in iterations 1 and 2

Problem Instance

Iteration 1

Iteration 2

1 1.0 NA

2 1.0 NA

3 0.96401 1.0

4 0.97838 1.0

5 0.97305 0.9782
6 1.0 NA

7 0.91203 0.91203
8 0.95538 0.99594
9 1.0 NA
10 0.97717 0.97717
11 1.0 NA
12 1.0 NA
13 0.98536 1.0
14 1.0 NA
15 0.96806 0.96806
16 0.99618 1.0
17 1.0 NA
18 0.95863 0.9993
19 0.98326 0.98358
20 0.91734 0.99524
21 0.99821 1.0
22 1.0 NA
23 1.0 NA
24 0.92423 0.92423
25 0.99227 0.99227
26 0.99518 1.0
27 1.0 NA
28 0.96672 0.96996
29 1.0 0.96996
30 0.88405 0.92211
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Tightness of Alternative Lower Bounds

Because the time required to solve for the lower bound at each iteration may be long, two
alternative methods are considered for the generation of a lower bound. The first is to
solve the LP relaxation of the original formulation (1.0)-(1.6). We call this solution L1.
The other alternative is to solve the LP relaxation of the under constrained formulation
(2.0)-(2.6). We cail L2. In this formulation the time window constraints are linearized as
in Desrosiers, et al, (1986). Equations (2.4) are replaced with equations (2.4%).

Xij(Ti+t;—T) <0 V(i) € A5 (1) #6(j), 2.4)
T+t,-T, < (1-X;)M vV (1,)) € A,6 (1) 5 (j), (2.4)

Figure & compares the tightness of each of these bounds for iterations 1-6, presenting
only problems that remain unsolved in each iteration. We refer to the under constrained
method in this figure as UC. It may be observed that the improvement obtained by using
the lower bound from the under constrained, and more computationally expensive
method is limited, on average. However this does not exclude the possibility that in some
instances the under constrained method provides a much tighter lower bound than its LP
relaxation. In one of the thirty problems examined the gap between the two lower bounds
after two iterations was more than 5%. This suggests that if this method is applied in off-
line situation where the solution times are allowed to be fairly long, that implementing
the tighter lower bound has considerable benefit. However, if the method is used in an
on-line situation then the bound associated with the LP relaxation of the under
constrained formulation should be used because the limited improvement in the lower
bound is not worth the corresponding increase in solution time. Three of the thirty
problem instances are not included in the table because we were unable to obtain the
optimal solution for these problems despite obtaining tight bounds for these solutions.
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Figure 5) Comparison of Three Lower Bounding Method

Table 4) Number of Unsolved Problems in Iterations 1-6

lteration 1 2 3 4 6
Width 2 1.75 15 1.25 0.75
Number Unsolved 30 19 10 7 5

Comparison of Solution Times for Three Lower Bound Alternatives

In the operation of interest here, solutions must be obtained rapidly. Figure 6 presents the
cumulative solution times for iterations 1-6 for the three methods, L1, L2 and UC (under
constrained IP). The cumulative time includes the solution time for the under constrained

problems and over constrained problems.

It is worth mentioning here that it is very difficult to solve the original integer
programming formulation of this problem directly. For the 30 problems examined, none
could be solved using a standard branch and bound method directly. We contrast this
with the fact that all of them can be solved in under constrained formulation by branch

and bound method within a couple of minutes.
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Figure 6) Cumulative solution times for iterations 1-6

Tests of Larger Problems

A natural question is how this method performs on larger problems. According to the
same distribution as in the 30 problems just tested, we generated thirty more instances of
40 vehicles and 150 loads. The solution times for these problems were relatively long. In
the system this method is intended to support solution times must be no more than 30
minutes. Less than five minutes is preferable because dispatchers will sometimes
disagree with a solution found (due to information available to them but not available to
the decision support system) and will need to remove some loads for assignment outside
the optimization framework. For that reason we examine only the solution that may be
obtained for the larger problems within this time constraint. We present the results
obtained after the first iteration.

Figure 7 shows the ratio between the lower bound and upper bounds for the larger
problems. It may be observed that the discretization method appears to work better on
larger problems than on small ones. Even with a width of two hours, many of the
problems are solved to optimality and most are solved to within a gap of 2%.

The average time required to obtain the first feasible solution (the solution of the over
constrainzd formulation) for the thirty problems was 438.8 seconds. The average time
required to generate the lower bound using the under constrained method was 255.8
seconds. The under constrained method takes less time because the solution obtained
from the over constrained formulation is used as a cut off point for the branch and bound
algorithm. The time required to solve the LP relaxation L1, in order to find a
corresponding lower bound is less than one minute. For three of the thirty problems we
were unable to solve for the lower bound from the under constrained formulation.
However, for these problems the cost of the LP relaxation L1 was exactly equal to the
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cost of the feasible solution (the optimal solution was found). For the 27 problems for
which we were able to obtain the bound associated with the first iteration of the under
constrained problem, the value of these lower bounds were exactly the same. Figures 7
and 8 show the gap between the upper and lower bounds and also the solution times
required to find the first feasible solution for each of the 30 larger problems. Figure 8
shows the solution times for over constrain *d formulation (feasible solution) only.

Ratio of Costs between Lower Bound
and Upper Bound at Iteration One
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Figure 7) Ratio of Lower to Upper Bound A fteration One

Solution Times for Over Constrained
Method at [teration One
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Figure 8) Solution Times for the upper bound at first Iteration
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CONCLUSIONS RE: MYOPIC ASSIGNMENT

A method to develop vehicle assignments for local truckload operations is examined and
a set of problems based on real data has been examined. Test results presented in this
paper focus on relatively small, but operationally realistic problems. Under constrained
and over constrained method are presented. The under constrained nicthod is used to
evaluate the optimality of the feasible solution obtained using the over constrained
method. A cost non-increasing partitioning scheme is developed for impiementation in
the iterative solution process.

Test results show that smaller partitioning width and larger problems lead to higher level
of optimality, but longer machine time. Over constrained and under constrained method
provides a mean to compromise between the optimality and machine time. Test result
suggest that using what is now a relatively slow commercial optimization package that
operational problems of reasonable size can be solved quickly. In addition, the method
examined results in sub-problems that are simply network flow problems. Therefore,
decomposition techniques could be applied along with time window partitioning method
discussed in order to solve larger problems more quickly. Empirical analysis suggests
that for these problems, partitioning longer time windows into two-hour windows from
which a solution will be selected results in good solutions. For the problems of this size,
the loss of optimality introduced by discretization is limited as is indicated by the ratio
between upper bound and lower bound. For real-time operations, solving the LP
relaxation of the under constrained or original formulation seems the most efficient
method for obtaining a lower bound. On the other hand, if machine time is not a big
concern, under constrained method instead of its LP relaxation is preferable.

MIXED LOCAL AND GLOBAL ASSIGNMENT TECHNIQUES

Our research is concerned with the following: if dispatchers prefer purely local rather
than global changes to assignments, what is the cost in terms of operational efficiency?
Can we develop local assignment and reassignment techniques, which satisfy the desire
of dispatchers and at the same time, provide good solutions relative to the optimal one?
We compare a system in which we re-optimize (by solving the start of day problem)
during the day to one in which we rely on local techniques for mid-day reassignments.

Mid-day Assignment and Re-Assignment

For mid-day assignments we rely on solving a set of asymmetric traveling salesman
problems with time windows. Whenever a new load arrives in the system or a load
currently assigned requires reassignment we solve a traveling salesman problem with
time windows problem for each vehicle. Loads become candidates for reassignment if
they become time-window infeasible because of unexpected delays or because their
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assignments have become relatively inefficient due to a series of locally optimal
assignments. The traveling salesman problem (TSP) is one of the fundamental routing
problems and has been a subject of extensive research. It requires the determination of a
minimal cost cycle that passes through each demand node in a network exactly once. The
costs considered could be the total distance traveled, the empty distance traveled, or the
travel time. In this research context where each demand node is an origin-destination
pair, we minimize the empty distances traveled. The costs therefore are asymmetric

(Figure 9).

Origin 1 1 Destination 1
o
e2 ~
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e1, e;: empty distances

€ # €

Figure 9) Asymmetric costs

The TSP with time windows (TSPTW) is a TSP with time window constraints introduced
at each demand node. Without loss of generality, as in the start of day VRPTW, we
consider time windows at only the pickup locations. Unless dual time windows are
inconsistent, they may be easily transformed to one in which only pickup time windows
are required. Such inconsistencies may be identified if need be in a preprocessing step.

The TSPTW can be formulated as a mathematical program to obtain an optimal solution.
See for example, Desrosiers ef al (1995). However, in this research we assume that we
can solve the TSPTW problems encountered by complete enumeration. The
characteristics of the problem limit the number of tasks assigned to any vehicle at a time
to around five, though three is a more typical number.

The local assignment rules (dynamic dispatching heuristics) allow for the en-route
diversion of vehicles moving empty in the system (figure 10). That is, in addition to
being a candidate for assignment to any vehicle in the system, new loads may be assigned
to be the current load of any vehicles not moving loaded. The rule used to assign the load
to a vehicle simply looks for the vehicle for which the sum of the empty distances is least.
That is, we solve a TSPTW for each vehicle that includes the candidate load and select
the vehicle for which the cost of the TSPTW is least.
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Figure 10) En-Route Diversion

The Simulation Model

A simulation model was developed to analyze the efficiency of various assignment
techniques. It works in the following way. Assignments are provided to the simulation
model, which then moves loads over a street network. Customer locations are drawn
from a set of actual customer locations. As new loads arrive to the system they are
immediately assigned to a vehicle. At preset reoptimization points the simulation is
paused and a new globally optimal assignment is generated. This assignment is provided
to the simulation model, which resumes moving vehicles and serving loads.

The GIS Component

Described in detail in Jagannathan, (1999) the simulation model developed as a custom
application using the TransCAD Caliper Script programming language and GISDK.
Many of the functions listed in GISDK are used to manipulate the data and maps. For
example, to find the shortest path between any two points in the network, the function
ShortestPath( ) can be used. TransCAD database files provide the data (network
information) for the analysis. The visualization of the routes is accomplished using the
GIS tool. There are many in-built functions that can be used to achieve this. For
example: the function 4ddRoutes( ) can be used to add and display routes. Another
function AddAnnotation( ) displays routes, but as a frechand item.

An important requirement of the local assignment rules (dynamic dispatching heuristics)
is the determination of the state of the system at any instant in time and specifically when
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new loads arrive to be serviced. (This is to enable diversion of a vehicle from one task to
another to serve a load with close time-window constraints). By state of the system, we
mean, the location of the new load, each vehicle’s position and status and the sequence of
loads assigned to each load. All but the vehicle’s location are easily determined.

The vehicle’s location is the point on its path (on which it is traveling) at the current time.
Although the distance traveled from its origin can be calculated using the speed, current
time and time it began its move, it is not possible to find the coordinates (latitude,
longitude) of the location using TransCAD or the functions defined. To obviate this
problem, a simple scheme was devised wherein the location of the vehicles and loads is
identified using the node numbers.

Therefore, at any instant in time, a node number will identify the vehicle’s location (each
network is made of a set of nodes and corresponding links). This is made possible by the
fact that the function that is used to calculate the shortest path between any two points
(ShortestPath()) returns an array of links lying on the path. Using this information and
the link lengths, a milepost between the origin and destination is created. This can be
done for any given origin and destination. The milepost not only has the distance from
origin information but also the node number and the link number. A schematic diagram
of the milepost is shown in Figure 11.

Nodes Links
3234/\8293 3212 8209 5638 o
ori? ® ® Y et
ngin- - ggo3 3292 1932 2893 Destination
Milepost 0.0 0.30 0.70 0.90 1.00

Figure 11) Schematic diagram of the milepost created

The positions of the vehicles are updated at the occurrence of every event. The update is
done as follows: the distance traveled by the vehicle in the elapsed time (time between
events) from its previous location can be calculated (speed is given). Using the milepost
distance and node information, the node on the route closest to the distance traveled is
identified as the current location of the vehicle. If the distance traveled is greater (or
lesser) than the milepost of the closest node, that distance is stored as the extra distance
traveled (or to be traveled) by the vehicle. For example: In Figure 11, if the distance
traveled in the elapsed time is 0.55 distance units, and its previous location was the
origin, then the current location will be Node 3212, and the extra distance to be traveled
will be 0.15 distance units.

Test Problems
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We present results based on thirty test problems that are similar to problems solved in the
field. Demands are generated by selecting randomly from among known customers in
the service area of the Los Angeles Basin region of Southern California (figure 12). All
moves either originate or terminate at the rail intermodal facility. Time windows for
loads known at the start of the day are randomly assigned based on the distribution shown
in table 4, which roughly corresponds to the time windows associated with loads known
at the start of day. Time windows for loads arriving during the day are randomly
assigned as well and are equally likely to be two, four or eight hours. The objective
function simply seeks to minimize empty distance traveled while serving as many loads
as possible.

Table 4a. Probabilities associated with time windows for the start of day problem

Time window 7:00-7:30 AM 8:00-9:30AM 8:00AM-12:00PM | 12:00-5:00PM
(0.5 hours) (1.5 hours) (4 hours) (5 hours)
Probability 0.1 0.15 0.35 0.4

Table 4b. Probabilities associated with time windows for the mid day problem

Time window 2 hours from request 4 hours from request 8 hours from request

0.333 0.333 0.333

Probability

For the problems in the test set, we begin with the vehicles at the depot (which in this
problem is very near the rail yard) and make all vehicles available for the duration of the
day. Vehicles are not required to return to depot after each service. Travel distances
correspond to the shortest network travel distance. Travel time is assumed to be 35 miles
per hour, reflecting congestion levels in the test region. The average loaded distance is
quite short, less than twenty miles long. A handling time (typically dock time) of forty
minutes is assumed for each load though in an actual operation the handling time could
be customer specific. We present here results related to solving 30 problems involving
20 vehicles in which 75 loads are known at the beginning of the day and an addition 75
loads are requested according to a Poisson arrival process between the hours of 10:00
AM and 2:00 PM. Twenty was selected because it is the typical maximum size of a local
sub-fleet handled by a single dispatcher. Four solution methods are compared. In the
base case the start of day solution is augmented only by local assignments. En-route
diversion is allowed. In the second case the start of day solution is augmented by local
assignments in which a re-assignment rule is applied whenever a new load is added to the
system. This re-assignment rule seeks to identify sub-optimal assignments and improve
these using exactly the same assignment technique as with new loads. Several simple
reassignment rules have been examined (Jagannathan, 1999). The one used in this test is
the following.

Reassignment rule
After the newly arriving load is assigned to a vehicle, ratio of the empty distance to

loaded distance associated with each load is calculated. These costs are arranged in
descending order and the top five percent of the loads are candidates for immediate
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reassignment. We consider reassignment for only those loads assigned to vehicles with
more than two loads currently assigned. The loads to be reassigned are treated as new
loads and are considered sequentially (beginning with the “worst”) for assignment to any
of the vehicles.

The third case is one in which reassignment is not considered, but at noon, after
approximately half of the dynamically arriving loads are known, the system is
reoptimized. The fourth case is one in which the system is reoptimized at noon and then
again at 2:00 after all of the new loads are known.

Figure 13) Map of study region

The test results are fairly conclusive. They indicate that significant opportunities for
improvement lie in the re-optimization of the system. Test results are quite similar to
those found by Yang ef a/(1999), in simulation experiments in an idealized network in
which loads are generated randomly in a unit square and vehicles move according to
Euclidean distance. In some cases they are more dramatic, this is likely travel in a
realistic street network favors the global optimization solutions more than Euclidean
travel.

Figures 14-16 present the average total distance traveled, the average system time (total

length of day from start to finish) and the average idle time per vehicle under the four
scenarios. The average values for the performance measures are presented as well as the
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upper and lower bounds on the confidence intervals for each performance measure. In all
cases the system in which reoptimization is done twice (after which point no changes
occur) performs best, followed by the system in which reoptimization is done after about
half of the new loads have arrived, followed by the system in which in addition to local
assignment heuristics the local reassignment technique is used.
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Figure 14) Average total empty distance traveled under four scenarios
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Figure 15) Average system time under four scenarios

Idle time
(excludes time between the start of day and
each vehicles first assignment)

hours
H
1

NoReopt Reassign Reopt(1) Reopt(2)

O Average mLower Bound jUpper Bound

Figure 16) Average idle time per vehicle under four scenarios
Some caution should be taken in the interpretation of these results. Although they make a

strong case for the implementation of a system wide (or sub-fleet wide) optimization
system in which at any time schedules are subject to change, the effect of stochastic dock

31



and travel times has not been examined in these tests. While these may make the system
wide optimization system method perform better with respect to the base case involving
only local changes, in order to maintain time window feasibility the system would need
to be reoptimized more often during the day producing less stable assignments. On-going
research is examining this question. In addition it may be possible to improve the base
case. Its likely that afternoon loads assigned at the beginning of the day “anchor”
schedules in ways that become inefficient as the day progresses. Excluding some of
these loads in the beginning of the day may improve the overall efficiency of the
assignment. Finally, from the point of view of service requests, the system examined has
a higher degree of dynamism than most actual intermodal operations. Since loads that
must be picked up at the rail yard are pre scheduled (albeit subject to delay) only around
half of the loads can be requested dynamically (in fact, the Los Angeles region favors
consumption over production so this value is less than half). In operations that are only
twenty or thirty percent dynamic a start of day optimization system followed by local mid
day changes may have advantages over the alternative.

CONCLUSIONS RE: MIXED ASSIGNMENT TECHNIQUES

Test results suggest that global optimization methods hold significant benefits over local
assignment techniques for the development of cost-effective schedules. The purely local
assignment and reassignment techniques under-perform global reoptimization with
respect to all measures examined.

The GIS based simulation model developed provides a robust environment for studying
the performance of assignment strategies. Travel times, now based on stable congestion
levels could be modified to reflect typical traffic network conditions. Handling times
could be easily drawn from a distribution rather than assumed static. These distributions
can be developed easily from historical data.

Continuing research has the following goals: 1) to develop assignment techniques which
combine the benefits of local assignment techniques and global optimization; 2) to
examine the operational impacts of implementing the global reoptimization techniques;
3) to examine the level of information technology necessary to successfully implement a
computer aided dispatching system for local rail intermodal operations; 4) to examine the
trade-offs associated with larger or smaller sub-fleets and sub-regions.
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