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ABSTRACT

Resistance of aggregate as a building material to cyclic freezing and thawing constitutes a critical
issue in design and construction of rigid pavements as well as other concrete structures. The
durability of aggregate to frost action is commonly assessed experimentally by subjecting small
concrete beams containing the aggregate to repeated cycles of freezing and thawing. Such
laboratory testing yields both durability factor and percent expansion, both comprising major
indicators of aggregate durability. Due to high cost and long time (3-5 months) involved in
completion of a single test according to ASTM C-666 (Method B), models that relate durability
to easily measured physical properties of the aggregate are highly effective and desirable in
pavement management studies. In this report, backpropagation neural networks are developed
from a large database containing data pertinent to 750 different experimental investigations on
concrete durability. The database was acquired from the Kansas Department of Transportation
(KDOT). The networks are designed to enable determination of durability factor and percent
expansion from five basic physical properties of the aggregate. The developed neural models were
found to classify the aggregates with regard to their durability with a relatively high degree of
accuracy. The experimental data and predictions were used to produce reliability factors that
determine the reliability of tested aggregate to meet specifications. In a second phase, the
developed neural models were also validated against 778 new experimental durability data sets.
The reliability matrix was also found to truly represent the model characterization based on new

experimental data. This indicates that the reliability matrix has stabilized.
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CHAPTER 1
INTRODUCTION

Concrete pavements are the most widely used type of pavements and continue to constitute
a high percentage of roadways worldwide. In 1990, a total length of concrete pavements of
approximately 130,000 miles was estimated to cover a large area of the United States (Huang
1993). The dependence on concrete pavements is attributed to their low maintenance costs and
their capacity to withstand high volumes and excessive loads of traffic. In regions where concrete
pavements is exposed to freezing and thawing, the pavement service life is more likely to be
affected significantly. Therefore, durability of concrete masses and particularly the composition
of the concrete matrix is a primary concern in the design and construction of concrete pavements
as well as other concrete structures.

One major component of concrete mixes for highway pavements is aggregate. In Kansas,
D-cracking of concrete pavements containing limestone coarse aggregate is thought to be
responsible for this mode of deterioration. Durability of limestone aggregate and the related
characteristics of the aggregate are presumed to be influential factors in the observed D-cracking.

Commonly, the durability of concrete is measured by testing its resistance to rapid cycles
of freezing and thawing (ASTM C 666-92). Aggregate suitability as a constituent in concrete
mixes is checked by preparing concrete specimens (beams) of prespecified dimensions
(approximate volume 0.60 ft’) containing the aggregate under investigation. After curing for a
certain period of time (up to 90 days), concrete beams are subjected to repeated cycles of freezing

in air (or water) at 0 °F and thawing in water at +40 °F such that each cycle is completed in a
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three-hour period of time. After a prespecified set of freezing and thawing cycles (not exceeding
36), the specimen is tested for fundamental transverse frequency and change in length. The
specimen's relative dynamic modulus of elasticity after ¢ cycles of freezing and thawing is
calculated as the ratio of squared values of fundamental transverse frequency at ¢ cycles and 0
cycles. The specimen is continued in the test until it has been subjected to 300 cycles or until its
relative dynamic modulus of elasticity reaches 60% of its initial value, whichever occurs first.
Alternatively, if the change in length is recorded then 0.10% expansion of the sample may be used
as the criterion for termination of the test. A complete freezing and thawing test may fypically last
for up to 4.5 weeks, depending on the aggregate and integrity of concrete mix, with a preliminary
3 months of curing, therefore, a total time of 4 to 5 months is needed to complete one test.

In this report, the durability of concrete is modelled by determining the durability factor
based on experimentally determined physical characteristics of the aggregate used to prepare the
beams. It is obvious that any prediction model will be beneficial to avoid the excessive testing time
and the associated high costs. To the best of the authors' knowledge, little or no similar
investigation and modeling effort is available in the literature. The experimental evaluation of the
physical properties of aggregate are much less time consuming and involves considerably less
amount of effort and cost as compared to freezing and thawing test. The physical properties of
aggregate under consideration in this study includes modified freeze and thaw (soundness),
absorption, specific gravity, and acid insoluble residue, requiring about 2 weeks, 12 hrs, 24 hrs,
and 3 hrs, respectively, for completion for a typical limestone coarse aggregate. Neural network-

based models are developed and compared for their accuracy in predicting the durability factors.



CHAPTER 2

EXPERIMENTAL TESTING AND EVALUATION

In this chapter, a brief description of the testing and evaluation protocols commonly used
in KDOT's laboratory for testing durability of concrete specimens is presented. The purpose of
this presentation is to provide a quick and an adequate amount of information of how the
experimental testing is performed. Additional information can be obtained from the original
sources of ASTM and AASHTO standards mentioned below.

Rocks of limestone are crushed to pass through 3/4" and retained on +3/8" sieves. Portion
of the sieved aggregate are used to measure the following physical properties:

i. Specific gravity: saturated surface-dry density (GSSD) and oven-dry density (GDRY) using

[AASHTO T-103 (x)].

ii. Absorption (ABS) using [AASHTO T-103 (x)].
iii. Modified soundness or modified freeze and thaw loss-ratio (FT) using [AASHTO T-103

Wl
iv. Total acid insoluble residue (ACIDR) using [AASHTO T-103 (y)].

The remaining portion of the sieved aggregate is used to prepare three replicates of beams
according to ASTM C-192 as follows:

1. Mix Design: Monarch Cement (Type II) with 25% aggregate (-3/4" to +1/2"),

25% aggregate (-1/2" to +3/8"), 50% FA-A, Y.C.F. of 601.6 Ib/yd, w/c=0.4431
to 0.4784, air=>5 to 7%, and slump of 1.5" to 2.5". These proportions total to an

approximate volume of 0.60 ft.



Curing: samples are cured in moisture room for 67 days, air-dried for 21 days, and

subsequently soaked in water for and additional 2 days. The total curing time =90
days.

Record reference data: the data recorded are the 90-day values of weight, dynamic
modulus of elasticity, and length of sample at 40 °F.

Rapid freezing and thawing: this test is carried out according to ASTM C666-
Procedure B (rapid freezing in air and thawing in water, temperature range= 0°F
to +40 °F). Test is terminated after 300 cycles or when sample achieve 60% of
initial modulus (whichever occurs first). Otherwise, terminate beams when average
expansion reaches 0.10%(do not compute any durability factor).

Calculations: upon completion of a test, the following are calculated: i) weight
change, ii) percent expansion, iii) relative dynamic modulus of elasticity, and iv)

durability factor.

For all types of concrete construction, according to KDOT specifications a coarse

aggregate made of crushed limestone is designated as durable and resistant to freezing and thawing

if the test results meet the following three conditions:

1. Durability Factor, DF> 95.
2. Expansion, EXP(%)< 0.025.

3. Modified freezing and thawing (Soundness), FT> 0.85.

The KDOT testing protocol for a given aggregate is shown in Fig. 2.1.
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CHAPTER 3
DATA AND VARIATION OF DURABILITY

The Kansas Department of Transportation (KDOT) has been using crushed limestone in
construction of rigid pavements for long period of time. Testing of limestone has produced a large
database pertaining to experimental testing of aggregate durability. Typically, soundness of
aggregate (modified freeze and thaw) is the first experimental indicator of the potential of a given
aggregate to be further tested for durability factor using concrete beam specimens. No testing for
durability factor (DF) is performed if the modified freezing and thawing (FT) of aggregate is
below 0.85. Moreover, for those aggregate with FT> 0.85, durability factor is not computed if
expansion (EXP) of the concrete beams due to cyclic freezing and thawing exceeds 0.10%. A large
database containing data from 1080 tests on aggregaté and on durability factor of poured concrete
beams was generated by collecting experimental data from various test records. After eliminating
those tests where testing for DF was not appropriate and other cases where EXP > 0.10 %, the
database size reduced to a total of 750 data sets covering a wide variety of aggregate properties
and testing conditions. The soundness (FT) of aggregates in the database ranged from 0.85 to
0.99; aggregate absorption (ABS) ranged from 0.18 to 9.94; specific gravity based on dry
conditions (GDRY) ranged from 1.96 to 2.7, specific gravity based on saturated surface-dry
conditions (GSSD) ranged from 2.14 to 2.72; and total acid insoluble residue (ACIDR) ranged
from 0.62 to 37.34. The resulting durability factor, DF, for all tests in the database spans over a
relatively wide range of 25 to 100, and the percent expansion, EXP, ranged from 0.0 to 0.1.

In an attempt to study the variation of both DF and EXP with the aggregate physical



properties, variation plots are generated from the database containing 750 data sets which are
displayed in Fig. 3.1 (a through j). Generally, these plots revealed no clear or distinct relationship
to exist between any of the physical properties of aggregates and either DF or EXP. The observed
independence of DF or EXP on any of the physical properties of aggregate may indicate a strong
interrelation of the various physical properties that can not be ignored when studying the
variability of DF or EXP. While this interrelation can be significant, one may clearly notice that
no relationship exists between either DF or EXP and the modified freeze-thaw (FT) (Figs. 3.1-a
and 3.1-b) when this parameter (i.e. FT) is considered alone. On the other hand, the data shown
in Figs. 3.1-c and 3.1-d may indicate good relationship between absorption (ABS) and both DF
and EXP. Despite the observed scatter in the variational plot one may notice a trend of increasing
DF by increasing ABS. This trend is also verified by considering Fig. 3.1-d where a trend of
decreasing EXP with increasing ABS can be seen. While such relationships are rather unusual,
it is shown later that the developed neural models will provide a more realistic relationship since
such models account for the variability in all parameters. In Figs. 3.1-e and 3.1-f the trend of
decreasing DF and increasing EXP by increasing GDRY (and similarly of GSSD displayed in
Figs. 3.1-g and 3.1-h) also presents an unrealistic behavior. However, such relationships between
DF or EXP and one parameter can be anticipated when ignoring the effect of other parameters.
Data from phase 1 were used to determine the relationship between DF and EXP. Figure 3.2
shows that decreasing trend between DF and EXP prevails, which is rather expected.
Regardless of the observations that might be drawn from the variational plots presented in
Fig. 3.1, one can clearly postulate a strong dependence of all of the aggregate physical properties
among each other. This obviously can necessitate the development of a model that combines the

7



influence of the various aggregate properties for the purpose of prediction of both the durability
factor and percent expansion of concrete beams. In Chapter 4, prediction models based on artificial
neural networks are developed from the available database of experimental durability. Due to the
considerable scatter in the data, statistical modeling is stipulated to be both non-viable and
inadequate to explain the scatter and interdependence of the various parameters. Preliminary
investigation of the conventional statistical correlation methods to model the present problem
revealed that predictions by the developed regression equations is far from the corresponding
experimental values. The several statistical models attempted in this study produced R?
representing agreement between predicted and experimental values not exceeding 0.15. Hence,
neural networks are used for modeling the DF and EXP of limestone aggregate in an attempt to

reduce this discrepancy.
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CHAPTER 4
MODEL DEVELOPMENT AND ANALYSIS

4.1. MODELING METHODOLOGY-- NEURAL NETWORKS

In order to understand the development of the aggregate durability neural models, it is
essential to briefly describe neural networks and discuss the methodology of neural computation.
In this chapter, neural networks are discussed and various stages in development and design of
neural models for predicting the durability factors and percent expansion of tested beams are
presented.

Neural networks are simply defined as highly nodal structures copied after the nervous
system of the mammalian cerebral, that when fed with appropriate data, can perform parallel
computation in a fashion analogous to that of the brain. The nodal structure of an artificial neural
network (NN) resembles a drastically oversimplified architecture of the biological structure of
neurons in the nervous system. Although there are many variations of neural networks, the
backpropagation neural network (BPNN) and its variants are currently the most widely used
networks due to their apparent efficiency to model highly nonlinear problems and their flexibility
to model a wide spectrum of applications in all research disciplines. BPNNs are multilayer
structures constructed of three different types of layers. An input layer containing the input nodes
receives information in form of signals from the external environment and process and forward
them to a set of subsequent layers called hidden layers. The hidden layers receive the processed
data and process and feed them forward towards an output layer where the solution of the problem

is pursued. A schematic representation of multilayer BPNN is shown in Fig. 4.1. As can be seen
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from Fig. 4.1, all nodes in one layer are connected (by links with appropriate and adjustable
weight) to all nodes in adjacent layers but no side connections are permitted in such a networking
scheme. One node receives signals from a number of nodes and integrate the signals as a weighted
average. This weighted sum is simply the sum of all signals multiplied by their respective weights.
The integrated signal at one receiving node is transformed to activation by using a transfer
function such as the sigmoidal function. Similarly, the transformed signal is transmitted forward
in a similar way to a following layer. The process is repeated until outputs are computed at the
output side of the network. For one example (data set), the produced outputs are compared to
actual (target) outputs and the error at the output side is used to calculate an error function. This
function is used along with a learning rule (e.g. modified generalized delta rule) to propagate the
error starting from the weights in the last layer and backward to other layers (hence the name
backpropagation) in order to modify the weights. The procedure of forward activation of signals
and the backpropagation of errors is repeatedly carried out until the error at the output side
reduces to prespecified minimum. This process is also performed for all examples (data sets) used
to train the network. For more details about the BPNN and other neural networks' algorithms and
architectures, the readers are referred to the huge amount of literature on neural computing such

as Simpson (1990) and Hassoun (1995).

4.2. MODEL DEVELOPMENT

Neural network development includes training a network on a number of data sets, and
testing the accuracy of the developed network on sets never been used during the training process.
Testing the network accuracy is performed using two sub-databases : testing database and

13



validation database. The testing database contains all the test sets used to check the prediction
capability of the network while the network is being trained on the training data. Alternatively,
a validation database is used after selecting the most appropriate network in order to examine the
network accuracy in predicting outputs for absolutely unseen cases. This procedure is actually
similar to what happens after releasing the network (or any other predicting model) to the customer
for use. For the aggregate durability database containing 750 data sets (examples), 548 sets were
randomly selected to train the networks, 119 data sets were used to test the networks'
generalization during the training process, and the remaining 83 sets were chosen to examine the
validity of the developed networks. Although the selection of the sets in each sub-database was
random, caution was practiced not to include in the testing or validation sets data sets irrelevant
to the training domain. This was performed to prevent the developed networks from extrapolating
beyond the domain on which they were trained.

In designing a BPNN, determination of the size of the hidden layer(s) constitutes a crucial
step in network development. Unlike the input and output layers, the size of the hidden layer in
terms of the number of hidden nodes it contains can not be known a priori. The backpropagation
algorithm (Basheer and Najjar 1994; Najjar et al. 1996; Najjar and Basheer (1996), Najjar and
Basheer 1997 (a,b), and Basheer and Najjar 1996) is encoded in a Fortran program with the ability
to perform adaptive learning while building up the network architecture one hidden node at a time.
Similarly, the number of epochs (iteration cycles) for one representative architecture (i.e.
assuming a certain number of hidden nodes) is also determined during this adaptive learning
process. The network adds one hidden node to the hidden layer or terminate iteration within
certain architecture when the average prediction error obtained using the testing sets exceeds a

14



prespecified minimum. Hence, in the designed adaptive learning backpropagation model, both the
optimal architecture and optimal number of iteration cycles are determined in parallel. Once these
are identified, the developed network is further examined for prediction of the validations sets.

In this study, three different types of BPNNs were developed in attempt to obtain the
network(s) that generalize better. The three networks were varied in the size and type of their
output layér. However, all networks attempted were fixed in the size of their input layer which
included 5 input parameters; namely, FT, ABS, GSSD, GDRY, and ACIDR. For network 1, the
output layer is designed to include both outputs; viz. DF and EXP. Conversely, networks 2 and
3 were designed to include one single output; namely DF and EXP, respectively.

Two schemes of examining the accuracy of prediction of the networks were adopted. In
the first scheme, accuracy based on error incorporated in prediction of validation and testing sets
is calculated. In the other scheme, which may be more useful for design purposes, agreement
between the predicted output (EXP or DF) and the corresponding experimental values is examined
based on whether the pair of data (i.e. predicted and experimental) meet the specifications of
whether the aggregate passes or fails to qualify as a durable aggregate. To explain this further,
consider the case where the NN-predicted DF and the experimental DF constitute the pair of data
(98, 92). In this arbitrary example, the neural network model states that the aggregate qualifies
as good aggregate according to the adopted specifications whereas the experimental results
disqualifies this aggregate. Hence, the model is assigned "failure" for accurately predicting this
particular case. On the other hand, if a pair of data for DF is represented as (85, 81) then the
model is assigned "successful" to predict this case since both prediction and experimental values
disqualify this aggregate as durable for construction. Similarly, a pair of data (98, 95) denotes a
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"successful" model prediction due to the model's capability to qualify the aggregate as good as the
experimental investigation does. For further illustration of the accuracy scheme based on
classification, Fig. 4.2 shows agreement between prediction (using one DF-NN model) and
experimental values of DF. With the DF=95 as the threshold between durable and non-durable
concrete, Fig. 4.2 summarizes the various regions with the model capability to perform
classification.

It is clear that the first scheme of examining the accuracy of prediction based on the error
in the output does not imply any provision for specifications. Hence, it may practically be assumed
that the second scheme of testing the accuracy of model prediction can be quite advantageous in
the light of specifications regarding the issue of whether to use or not to use a certain aggregate
for constructing concrete structural elements. In the following sections, the three BPNNs are

presented and comparisons regarding accuracy of prediction are also addressed.

4.3. MODEL ANALYSIS
4.3.1. DF-EXP Neural Network

In this network, both DF and EXP are included in the output layer. The input layer
contains the 5 input parameters mentioned earlier. Using the designed adaptive learning BPNN,
the performance of the current network was found to be optimum at one hidden node and 400
iteration cycles (epochs) with a momentum coefficient of 0.95 and a learning rate of 0.45. Hence,
the neural network is denoted by 5-1-2 to refer to the number of nodes in each layer. The error
at the outputs is determined as the Mean of the Absolute value of the Relative Error (MARE)
between predicted and actual values for all data sets used in testing the accuracy. Table 4.1
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summarizes the errors achieved using the 5-1-2 NN for predicting the data sets in training data,
testing data, validation data, and all data combined. Using all data combined, DF was predicted
with an average error of 5.78%, while EXP was predicted with a much less accuracy at a MARE
of 298%. It is apparent that high values of MARE observed in EXP can be attributed to Actual
values being close to 0.

Using the second scheme of examining the accuracy of prediction (i.e. in light of
specifications), Table 4.2 summarizes the percentage of times the model was capable to accurately
predict the DF and EXP. As can be seen from Table 4.2, the DF-EXP model was more accurate
in predicting DF at high values and EXP at low values. On the average, the model was able to
reflect (classify correctly) the experimental data at a rate=38% for DF and at 74.5% for EXP.
Because DF and EXP have to meet specifications in order for a certain aggregate to qualify as
durable material for construction, both DF and EXP were simultaneously considered to compute
the overall accuracy of the DF-EXP neural model. The model was found to be able to accurately
classify aggregates in only 24.8% of the instances.

4.3.2. DF Neural Network

In this network, the durability factor, DF, is used as the single output. Similar procedure
of developing the DF-EXP-network was adopted to develop this particular model. Upon training
on networks with variable architecture, the network with three hidden nodes was found to produce
the optimal solution. Hence, this neural network is denoted as 5-3-1. The relative errors computed
for the various databases are summarized in Table 4.1. As can be seen from Table 4.1, less errors
are observed (compare to DF-EXP-network) when the DF was the single output of the model. This
might be due to the potential deviation of the weight vector in the error hyperspace from the point

17



of global minimum when DF is accompanied with another output (i.e. EXP) which might have
contained large errors.

Using the other scheme of ex)aluating the performance of the network, the present network
was found to provide two features better than the DF-EXP network. Firstly, the DF network was
able to produce a wider resolution for DF at lower values. That is, the DF-EXP-network was only
able to map the data in the region between 90 to 96.7 whereas the DF-network produced wider
mapping that encloses data ranging from 82 to 100. Secondly, errors associated with qualification
or disqualification (classification capability) of the aggregates are reduced using the DF-network
as opposed to the errors of the DF-EXP-network. Table 4.2 summarizes the rates of success for
predicting DF for different ranges of DF. Using all data combined, the overall success rate of the
DF-network model in performing accurate classification of the aggregates is estimated as 63.1%
(compare to 38% using the DF-EXP-network). Therefore, the DF-network will be adopted herein
as the final network for predicting the DF of aggregates.

4.3.3. EXP Neural Network

This network is designed particularly for prediction of percent expansion, EXP, from the
5 input parameters. Using the adaptive learning backpropagation network, the optimum network
was found at 3 hidden nodes. Table 4.1 presents the errors of prediction of the various sub-
databases. Using the second scheme of assessing the prediction accuracy, Table 4.2 presents the
success rate of prediction of EXP. The overall success rate was calculated as 75.8%, slightly
better than that of the DF-EXP-network. Therefore, the developed single output DF-network was

adopted to predict EXP values.
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Fig. 4.1 Schematic of three-layers backpropagation neural networks.
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Table 4.1 :

Errors associated with prediction of DF and EXP using the various developed

neural network models.

Network DATA No. Sets MARE(%) MARE(%)
(DF) (EXP)
DF/EXP-Net Training 548 5.75 81.60
(5-1-2) Testing 119 5.35 11110
Validation 83 6.31 299.00
All Data 750 5.78 298.00
DF-Net Training 548 5.00
(5-3-1) Testing 119 4.58
Validation 83 6.42
All Data 750 5.09
EXP-Net Training 548 83.20
(5-3-1) Testing 119 114.10
Validation 83 34.10
All Data 750 55.00

MARE(%) : Mean of Absolute Value of Relative Error (%)
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CHAPTER 5
PREDICTION RELIABILITY

5.1. RELIABILITY BASED ON PHASE 1

Based on the results and analysis of the three networks developed in Chapter 4, the DF-
network and EXP-network will be used to predict, respectively, the DF and EXP of concrete
specimens in order to assess the durability of a given aggregate based on some known physical
properties of the aggregate. The scheme of evaluating the accuracy of prediction based on
specification (i.e. accuracy of classification) can be used to associate the computed values of DF
and EXP with reliability factors. In other words, this scheme is manipulated to furnish some
information regarding the reliability (probability) that the aggregate under consideration will meet
the durability specification(s) based on neural network-predicted values of DF and/or EXP.

Table 5.1 presents the reliability associated with stating that the aggregate is durable and
recommended for use in construction. For instance, if the predicted value of DF lies within the
95-97 range, then the reliability (probability) of aggregate being durable can be as high as 86%.
Additionally, a predicted value of DF in the range 90-95 constitutes only 51% confidence that the
aggregate will be durable. Moreover, Table 5.1 shows the reliability factor for all ranges
encountered in prediction of EXP. As can be seen from Table 5.1, an aggregate with a predicted
EXP value of 0.016 represents a durable aggregate (in terms of EXP) with 94% reliability.

Since both DE and EXP are commonly used as indicators of durable aggregate, reliability
of prediction based on these two parameters combined is more reflective than the independent

reliability of prediction of DF and EXP. The reliability of prediction via the durability neural
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model (composed of DF-NN and EXP-NN) was determined by observing the simultaneous
accurate classification of both DF and EXP. Hence, reliability is dependent on the quality of
prediction of both DF and EXP. A thorough inspection of the predicted data eventually yielded
the prediction reliability matrix shown in Table 5.2. To illustrate use of Table 5.2, consider the
case where a specific aggregate is estimated using the neural models to yield DF=96.0 and
EXP=0.0150. Table 5.2 implies that the given aggregate is believed to be durable (or is
recommended for construction) with 87% confidence. It is obvious from Table 5.2 that the
reliability (probability) of aggregate being durable decreases with decreasing DF and increasing
EXP. The procedure for using the developed ANNs for determining reliability is schematically
presented in Fig. 5.1. First, the user calculates DF and EXP separately from DF-NN and EXP-
NN, respectively using the basic properties of the aggregate. Then, the calculated values are used
to enter the DF/EXP reliability matrix which determines the probability of given aggregate to meet

specifications.

5.2. RELIABILITY BASED ON PHASE 2

In this phase, KDOT provided additional experimental data (called herein phase 2 data) for
predicting the durability and comparing with corresponding experimental values. Moreover, the
data was used to check the accuracy of the reliability matrix obtained in phase 1. The reliability
matrix should continuously be updated as new data become available. At a certain level of data
availability, the reliability matrix may not require any updating and the matrix is said to be
stabilized (i.e. converged).

In phase 2, the new data were obtained from two sources. The first database is called ledge
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data which contained a total of 120 data sets. Based on this database, the reliability matrix was
determined as shown in Table 5.3. Moreover, the second database contained 658 data sets (called
production data) showed a reliability matrix as presented in Table 5.4. The entire new data (i.e.
778 data sets) were added and new reliability matrix for this phase was produced. This matrix is
displayed in Table 5.5.

The new data was also used to update the reliability matrix obtained in phase 1 of the
validation (i.e. the original study). The combined database then included a total of 1528 data sets.
The resulting updated matrix from both phases is shown in Table 5.6. Comparison between the
updated reliability matrix (i.e. Table 5.6) and the original matrix based solely on phase 1 (i.e.
Table 5.2) indicates that only slight differences in the reliability factors in each of DF-EXP cells.
The observed stability in reliability factors demonstrates matrix convergence. Therefore, further
updating may be unnecessary. The distribution of data (by number of data sets and as percentage

from the entire database) within each range of DF and EXP is summarized in Table 5.7.

5.3. SOFTWARE DEVELOPMENT

The neural models developed in this research study were encoded into user-friendly
software program. The software asks the user to input the values of the five physical properties
of the aggregate. The software then responds by displaying the values of the DF and EXP of the
aggregate. Also, the software calculates and displays the reliability of the aggregate to meet the

KDOT specifications from the calculated DF and EXP.
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Table 5.1:  The reliability of aggregate to meet DF or EXP specifications (using phase 1 data).

(a) If DF is the only criterion
NN-Predicted DF Reliability (%)

97-100 AN
95-97 86
a0-95 51
85-90 42

<85 33

(b) If EXP is the only criterion
NN-Predicted EXP Reliability (%)

<0.0125 94
0.0125-0.0175 87
0.0175-0.0225 64
0.0225-0.0250 60
0.0250-0.0300 52
0.0300-0.0375 36

>0.0375 17
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CHAPTER 6
CONCLUSIONS AND RECOMMENDATION

In this report, indicators of aggregate durability and resistance to freezing and thawing is
modelled based on data pertaining to limited number of physical properties of the aggregate. These
indicators are the durability factor, DF and the percent expansion of the concrete beam, EXP
(ASTM C-666 Method B). The aggregate physical properties are the modified freeze-thaw
(soundness), absorption, specific gravity (saturated surface-dry and dry), and the total acid
insoluble residue. Backpropagation neural networks were developed which enable prediction of
the durability parameters, DF and EXP. The networks were designed to provide prediction of
these parameters in the light of their agreement with the available specifications for designating
aggregates as durable (i.e. DF not less than 95 and EXP not greater than 0.025%). Two networks,
one for each indicator, were found to be able to predict DF and EXP with a relatively good
accuracy. The DF-network were able to classify the data with an overall accuracy of 63 %, with
a much higher accuracy being observed at high values of DF. It was observed‘that DF predictions
in excess of 95 (i.e. durable aggregate) range in reliability between 86% to 91%. Similarly, the
developed EXP-network predicted the data with an overall accuracy of 76%. The two networks,
when combined, can be used to compute the reliability of a given aggregate as a durable aggregate.

Since both models (i.e. DF and EXP-NNs) were developed from an experimentally
obtained database, it is obvious that any data beyond the region of applicability can impart a
significant error in model prediction. The models developed are applicable to aggregates with

properties falling within the following ranges: FT (0.80-1.0), ABS (0.0-12.0), GDRY (1.50-3.00),
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GSSD (1.50-3.00), and ACIDR (0.0-40.0). These ranges, however, cover a wide spectrum of

aggregates commonly obtained from quarries.
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To obtain a copy of the aggregate

durability neural netwok-based software

CONTACT

Bureau of Materials and Research
Kansas Department of Transportation

Topeka, Kansas 66611

Phone (913) 296-7410
Fax (913) 296-2526
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