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PREFACE

This research project was funded by the Kansas Department
of Transportation K-TRAN research program. The Kansas
Transportation Research and New-Developments (K-TRAN) Research
Program is an ongoing, cooperative and comprehensive research
program addressing transportation needs of the State of Kansas
utilizing academic and research resources from the Kansas
Department of Transportation, Kansas State University and the
University of Kansas. The projects included in the research
program are jointly developed by transportation professionals
in KDOT and the universities.

NOTICE

The authors and the State of Kansas do not endorse
products or manufacturers. Trade and manufacturers names
appear herein solely because they are considered essential to
the object of this report.

This information is available in alternative accessible
formats. To obtain an alternative format, contact the KXansas
Department of Transportation, Office of Public Information,
7th Floor, Docking State Office Building, Topeka, Kansas,
66612-1568 or phone (913)296-3585 (Voice) (TDD).

DISCLAIMER

The contents of this report reflect the views of the
authors who are responsible for the facts and accuracy of the
data presented herein. The contents do not necessarily
reflect the views or the policies of the State of Kansas.
This report does not constitute a standard, specification or
regulation.
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EXECUTIVE SUMMARY

The Kansas Department of Transportation (KDOT) has built a number of pavements
using crumb-rubber modified (CRM) asphalt concrete mixtures in Kansas. However, little
is known about the material properties of CRM mixes, e.g., the structural layer coefficient,
which is one of the important design inputs in the AASHTO design method for designing
the new asphalt pavements and asphalt overlays on existing pavements. In absence of
any guidelines as to the actual layer coefficient values for the CRM mix, KDOT had to rely
on experience and judgement on this issue. However, engineering judgements indicate
that the layer coefficients can be determined by analyzing pavement surface deflections
from Falling Weight Deflectometer (FWD) tests. Based on this idea, the present study, a
cooperative effort between the Kansas Department of Transportation and Kansas State
University, was initiated in 1995 to quantify the layer coefficient values for the CRM mix.

Several test sections of recently built crumb-rubber modified pavement on three
routes, I-135, US-56 and K-32, were selected for this research project. 1-135 is a newly
built asphalt pavement incorporating CRM mix and the other two are gap-graded CRM
overlays. FWD deflection data were collected at 15 meter intervals on each test section
in the month of July in 1995. The first sensor of the FWD was located at the center of the
loading plate with six others at a uniform radial distance of 306 mm apart. Three drops of
FWD load were used for target loadings of 31, 40 and 67 KN. Tests were done on the
outer wheel path of the travel lane. Cores were retrieved at 33 m intervals on each section
to get the layer thickness and to test for resilient modulus in the laboratory. The pavement
surface temperatures during test time at each test location were also recorded.

Two independent methods, AASHTO method and Equal Mechanistic Approach,
were followed in the layer coefficient computation process. In each approach, the
backcalculated resilient moduli values for the different layers within the pavement structure
were used. Backcalculation was done independently using two software programs:
MODULUS and BKCHEVM. Manual approach using ELSYM5 was also used in
backcalculation. Backcalculated resilient moduli for the asphalt layers were corrected to
standard 20 ° C following the methodology outlined in the 1993 AASHTO guide. The
computed layer coefficient values for CRM mixes were found consistently lower than the
conventional asphalt concrete. Large variabilities in computed layer coefficients for the
overlay sections were also observed.

The asphalt cores were tested at the KDOT Materials Laboratory to determine
resilient moduli values following ASTM D4123 test procedures. Poor correlation was
found between laboratory and backcalculated layer moduli values.

Good correlation was found between backcalculated resilient moduli and structural
layer coefficients computed by the Equal Mechanistic Approach. A regression equation
relating backcalculated layer moduli to the structural layer coefficient has been developed.
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CHAPTER 1

INTRODUCTION

Introduction

It is well known that among the different cost elements of the highway system,
pavement structure happens to be the single most costly element. The various inputs of
the pavement design are, therefore, subject to frequent changes and improvements over
the years. Some of these changes are reflected in the AASHTO Guide. One such
important improvement is the computation of structural layer coefficient. Both 1986 and
1993 AASHTO Guide acknowledge that structural layer coefficients can be determined
from the moduli of materials.

Structural layer coefficients (a;) are required for standard flexible pavement
structural design. A value for this coefficient is assigned to each layer of material in the
pavement structure in order to convert actual layer thicknesses into structural number
(SN). This layer coefficient expresses the empirical relationship between SN and
thickness and is a measure of the relative ability of the material to function as a structural
component of the pavement. The following general equation for structural number reflects
the relative impact of the layer coefficients (a)) and thickness (D)):

n
SN = Z1 aiDi
1=

The 1986 AASHTO Guide and 1993 AASHTO Guide provide graphs and nomographs to
estimate layer coefficients for different layer materials (1,2).

Although the elastic (resilient) modulus has been adopted as the standard material
quality measure, it is still necessary to identify (corresponding) layer coefficients because
of their treatment in the structural number design approach (2). Though there are
correlations available to determine the modulus from tests, such as, R-value, the
procedure recommended is direct measurement using AASHTO Method T 274 (subbase
and unbound granular materials) and ASTM D 4123 for asphalt concrete and other
stabilized materials (2). Research and field studies indicate that many factors influence
the layer coefficients, thus the agency's experience must be included in implementing the
results from the procedures presented. The layer coefficient may vary with thickness,
underlying support, position in the pavement structure, etc. (2). For example, a granular
material with a certain modulus will get a lower layer coefficient if used as a base course
material than if used as a subbase. If an asphalt concrete and a bituminous- treated base
have the same modulus, the asphalt concrete will get a considerably higher layer
coefficient than the bituminous-treated base. The layer coefficients for cement-treated
base layers appear to be very low when compared to other materials (3).



One reason for the peculiarities could be that the layer coefficient not only reflects
the stress distributing ability of the material but also to some extent, is a measure of the
strength of the material. The position of the material in the structure and the mode of
distress may, therefore, influence the relation between layer coefficient and elastic
modulus (3).

The AASHTO Guide admits that laboratory resilient modulus values can be
obtained that are significantly different from what may exist for an in-situ condition. For
example, the presence of a very stiff unbound layer over a low stiffness layer may result
in decompaction and a corresponding reduction of stiffness. Previous research shows that
the discrepancy between laboratory and in-situ moduli values can be very prominent for
conventional asphalt mixes (4). At the same time, laboratory resilient moduli determined
from small CRM samples show lower values than conventional asphalt mixes (5). This will
result in lower layer coefficient values for CRM mixes. In this study, layer coefficients for
CRM mixes were developed from the backcalculated moduli values from the Falling
Weight Deflectometer (FWD) test results on in-situ pavements.

Report Organization

This report is divided into five chapters. Chapter 1 is the introduction to the
problem. Chapter 2 describes the literature review on this problem and the methodologies
followed in the analysis process. Chapter 3 provides information on site selection and
data collection. Chapter 4 presents the analysis and the results of the study. Finally,
Chapter 5 includes the conclusions and recommendations based on this study.



CHAPTER 2
LITERATURE REVIEW AND ANALYSIS METHODOLOGY

Literature Review

Currently, there is no standard method for the determination of layer coefficients.
As mentioned earlier, the AASHTO guide (2) recommends the use of resilient modulus of
the material in question to establish the required coefficient. Several methods have been
used by different investigators to determine layer coefficients for certain paving materials.
Another parameter, the layer thickness equivalency, has been used by several
investigators mainly for the purpose of evaluating the support capacity of a given material
as compared to a standard or commonly used material (6, 7). This factor, however, is not
usually used for design purposes. The layer thickness equivalency is determined as the
thickness of the material in question required to replace 25.4 mm (1 inch) of the standard
material.

Most of the methods used to evaluate either the layer coefficient or the layer
thickness equivalency are based on the evaluation of limiting criteria at some points in the
pavement structure (8). Three mechanistic responses to loads are generally considered
in structural pavement analyses:

a) surface deflection,
b) maximum tensile strain at the bottom of the surface layer, and
c) vertical compressive strain (or deformation) on top of the subgrade.

The following is a brief summary of some of the evaluation methods reported in the
literature.

AASHTO PERFORMANCE METHOD: Kutz and Larson (9) used this method to determine
the structural coefficients of two stabilized base course materials which were included in
the test track located at the Pennsylvania Transportation Research facility. The
investigators used the following design equation, developed at the AASHO Road Test as
the basis for their analysis.

Gi= B(logW, -logp) (2.1)

G,= a function of the ratio of loss in serviceability at time t to the potential loss
taken at a point p,= 1.5

B= afunction of design and load variables that influence the shape of p versus
W serviceability curve

p = a function of design and load variables that denotes the expected number

3



of axle applications to ap, = 1.5
W, = axle load applications at the end of time t
p=  present serviceability index
p,= serviceability at end of time t.

A statistical model similar to that utilized at the AASHO Road Test was selected to
study the changes in B and p across levels of surface and base layer thicknesses for data
collected at the test track. Terms related to the subbase were not included in the model
since all test sections had a constant subbase thickness. The results of the statistical
analysis were compared to the structural number equation and new layer coefficients were
determined.

LIMITING CRITERIA APPROACH: Wang et al. (10) used this method to determine the
structural coefficients of two base courses constructed on the test track of the
Pennsylvania Transportation Research facility. The same method has also been used by
Hicks et al. (6).

Wang et al. (10) related rutting data collected from the test track to the compressive
strain on top of the subgrade. The equivalent 18-kip axle load (EAL,s) required to produce
25 mm rutting for each section was compared to the maximum compressive strain on top
of the subgrade. The strain associated with one million EAL,; was estimated and used as
the limiting compressive strain in the determination of the structural layer coefficients of
the two materials. A similar analysis was utilized for the criteria of surface deflection and
tensile stain at the bottom of the surface layer. Both of these criteria were evaluated when
significant surface cracking appeared.

The base layer thickness required to satisfy each limiting criteria was computed at
different levels of surface and subbase layer thicknesses. The final base thickness was
required to satisfy all three criteria simultaneously. The selected thickness was then

plugged into the structural number equation and the corresponding layer coefficient was
calculated.

AASHTO FACTORIAL DESIGN APPROACH: Little and Epps (11) utilized this method
during the evaluation of certain structural characteristics of recycled pavement materials
and later in the evaluation of foamed-asphalt aggregate mixtures (7). The authors
computed the maximum vertical subgrade deformation (W) for the pavement sections
included in Loop 4 of the AASHO Road Test. A stress-sensitive layered elastic computer
program was utilized to model the pavement sections. The elastic properties of the
AASHO material were used as inputs. The subgrade deformation was related to the
number of EAL,, applications required to bring the pavement to a terminal serviceability
index of 2.5. The following correlation was established.

EAL18(2.5) = 0098 e-3.39 InWs (22)



The elastic properties of the recycled asphalt concrete were substituted for the
AASHO material properties, and changes in the pavement responses were evaluated. The
new subgrade deformations were inserted in the above equation to compute the EAL,g, 5,
for the recycled pavement. The calculated allowable load applications were, in turn, used
to estimate the required structural number (SN) from the AASHTO design equation. The
structural layer coefficient (a;) was finally calculated using the SN equation, where a, is
the only unknown parameter.

AASHTO DESIGN NOMOGRAPH APPROACH: Hicks et al. (12) used this method to
compute layer equivalencies for open-graded emulsion mixtures. The researchers based
their analysis on determining the EAL,, already carried by the pavement. The surface
layer coefficient was backcalculated using the AASHTO interim design guide for a terminal
serviceability of 2.0, a knowledge of the surface layer thickness, traffic (EAL,s), regional
factor, and soil support of the base. The weighted structural number was obtained from
the design nomograph and divided by the surface thickness to determine the required
layer coefficient.

EQUAL MECHANISTIC RESPONSE APPROACH: Several investigators have used this
procedure to determine layer equivalencies (Z) or structural layer coefficients (13) for
different materials. Little et al. (7) used this method to compare the structural ability of
foamed asphalt-aggregate mixture to an asphalt-treated base. The compressive strain on
top of the subgrade was selected as the mechanistic response to be used in the
comparison. ldentical pavement structures, except for the layer in question, were analyzed
using a layered elastic computer program. The thickness required to obtain an equal
response for the two structures were calculated. The ratio of the thickness of the layer
studied to that of the standard material is defined as the layer thickness equivalency of the
material.

Majidzadeh and Elmitiny (13) used a similar approach to study the structural ability
of open-graded asphalt stabilized base. The maximum compressive vertical deformation
on top of the subgrade was used as the critical pavement response. The structural layer
coefficient of the open-graded base was then calculated by multiplying the inverse of the
layer equivalency factor by the layer coefficient of the reference material.

Methodology used in the Current Study

In this study, the AASHTO Design Method and the Equal Mechanistic Approach
were followed to determine the structural layer coefficients for the CRM mix. In both
approaches, backcalculated layer moduli values were used to determine the layer
coefficient values. A brief description of the backcalculation process followed by these
two methods is outlined below.



Backcalculation of Layer Moduli

Pavement response models, such as, elastic layer theory, can estimate pavement
deflections as a function of the load condition, pavement cross section and material
properties. However, the analysis of NDT data requires the estimation of material
properties from measured deflections. No direct analytical solution exists for determining
material properties from measured response. The lack of a direct solution method has
forced the development of iterative techniques for altering the pavement properties, and
comparing the computed and measured response. This general process has been termed
"backcalculation" in the technical literature. Several authors have developed
backcalculation schemes, varying in the method used to alter the moduli between
iterations ‘and the closure criteria (3). Two backcalculation programs were used:
MODULUS and BKCHEVM.

MODULUS

In MODULUS, a linear elastic program generates a data base of deflection basins
corresponding to different modulus ratios of the layers, and a pattern search technique is
used to fit measured and calculated deflections by minimizing the objective function:

€ =3 [(w" - w) / (W) | 23

In equation (2.3), €? is the squared error, w™ is the measured deflection, w’° is the
calculated deflection and n is the number of sensors (usually 7). The search routine finds
the optimum set of modulus ratios, or in other words, a set of backcalculated layer moduli,
so that a minimum € value is obtained.

BKCHEVM

BKCHEVM is a minor modification of CHEVDEF done at Arizona State University. It also
uses a layered elastic analysis program for response calculation and a search algorithm
to minimize an objective function as shown in Equation (2.3).

AASHTO Design Guide Method

As mentioned earlier, AASHTO provides the following general equation for
structural number reflecting the relative impact of the layer coefficients (a;) and thickness

(Dy:

SN= E aiDi (2'4)



The layer co-efficient values for the different layers except layers with the asphalt-rubber
materials were determined using the following equations given by Ullidz (3) :

Asphalt concrete :
a, = 0.40*log(E/(3000 MPa)) + 0.44, 0.20<a, <044 (2.5)

Granular Subbase:
a, = 0.23*log(E/(160 MPa)) + 0.15, 0.06< a; < 0.20 (2.6)

Bituminous-treated Base:
a, = 0.30*log(E/(3000 MPa)) + 0.33, 0.10< a, < 0.30 (2.7)

Cement -Treated Base:
a, = 0.52*log(E/(3000 MPa)) + 0.08, 0.10<a, < 0.28 (2.8)

Broken (and seated) Portland Cement Concrete:
a, = 0.27*log(E/(3000 MPa)) + 0.35, 0.10<a, < 0.44 (2.9)

For each section under study, the backcalculated layer moduli can be used to find
the layer coefficient values for all layers except for the asphalt-rubber surface and base
layers (on a composite basis ). The effective structural number (SN,4) can be computed
from the following equation given in the AASHTO Design Guide (1):

SNeff = 0.0045 * D* Ep1/3 (2.10)

where: D = total thickness of all pavement layers above subgrade (inch)
E, = effective modulus of the pavement layers above subgrade (psi)

In equation (2.10), E, is determined using backcalculated subgrade modulus (M, ) value.
The AASHTO algorithm for determining M, suggests that M, be calculated from a single
deflection measurement at a distance sufficiently large enough so that the point falls
outside the stress bulb at the subgrade-pavement interface and the measured deflection
is solely due to the subgrade deformation. The following equation is used to calculate the
M, value :

0.24P
[y
ar dyr (2.11)
where
M, = backcalculated subgrade resilient modulus
P = applied load

d, = deflection at a distance r from the center of the load
r = distance from the center of the load

7



To use a particular sensor deflection for estimating the subgrade resilient modulus, the
sensor location must be far eriough so that it corresponds to the deflection of the subgrade
only, but also be close enough so that it is not too small to be measured accurately.
AASHTO further suggests that the minimum distance be determined by the radius of the
stress bulb (a,) at the subgrade-pavement interface. This is accomplished by choosing the
3rd or 4th sensor arbitrarily and checking whether it falls outside a radial distance of 0.7a,
from the center of the load or not. The calculated M, value, in turn, is used to calculate
E/M, Since the actual layer thicknesses and the structural layer coefficients of other layer
materials are known, the layer coefficient for the CRM asphalt mix can be calculated using
equation (2.4) and using the structural number value found in equation (2.10).

Equal Mechanistic Response Approach (EMA)

In this approach, the vertical compressive strain on top of the subgrade of a control
section (conventional material) can be compared to the same response for the CRM
sections for which the layer coefficient is unknown. In this approach, identical pavement
structures except for the layer in question are analyzed using a layered elastic computer
program, ELSYM5. The thicknesses required to obtain equal vertical compressive strain
on top of the subgrade for the two pavement structures are calculated. The ratio of the
thickness of the layer studied to that of the standard (conventional) material is defined as
the layer thickness equivalency of the material for each section. The structural layer
coefficient of any section is then calculated by multiplying the inverse of the layer

equivalency factor by the layer coefficient for the standard material (conventional asphalt
concrete).



CHAPTER 3
SITE SELECTION AND DATA COLLECTION
Site Selection

Several test sections of recently built crumb-rubber modified pavements on three
routes of the Kansas Department of Transportation (KDOT), 1-135, K-32 and US-56, were
selected in this study. Among these, I-135 has four different structural sections as
tabulated in Table 3.1. Section Nos. 1, 2 and 3 have CRM as surface (ARS) and base
(ARB) courses, while the fourth, denoted as control section, has conventional asphalt mix
for both layers. The ARS mix is a gap-graded mix with slightly higher asphalt-rubber
binder content than ARB, which is a dense-graded mix. All sections on I-135, except
Section No. 1, were built on rubblized, jointed, reinforced concrete pavement (JRCP).
Section No. 1 is a reconstructed section with a lime-treated subbase. The sections on K-32
and US-56 have CRM overlays over conventional asphalt mix bases. The subbase on US-
56 consists of jointed reinforced concrete pavement built in 1948. In this study, it was
considered as a broken and seated JRCP. Table 3.1 provides a summary of the cross-
sectional features of the test sections.

Data Collection

Deflection data were collected at twenty one locations at 15 meter intervals on each
test section on 1-135 with a Dynatest 8000 FWD during June and July of 1995,
approximately one year after construction. The sections were in excellent condition and
the CRM mixes in these pavements were adequately compacted. On US-56, an urban
arterial, and on K-32, a two-lane two-way highway, tests were conducted at eleven points
at 15 meter intervals. The first sensor was located at the center of the loading plate with
six others at a uniform radial distance of 306 mm apart. Three drops of FWD load were
used for target loadings of 31, 40 and 67 kN. Tests were done on the outer wheel path of
the travel lane. The test temperature varied from 25 to 44 °C. Cores were retrieved at 33
meter intervals on each section to get the layer thicknesses and to test in the laboratory.

Laboratory resilient modulus tests were conducted on randomly selected 64 mm
thick core samples from each test section following ASTM D 4123 test procedure. The
samples were representatives of ARS-ARB, ARB and existing asphalt mix layers. Tests
were conducted at 20° C using a pulse load of 0.1 sec duration and 0.9 sec period.
Indirect tensile loads applied varied from 580 N to 5560 N to obtain measurable deflections
in the range of 100 to 200 pm.
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Falling Weight Deflectometer (FWD)

FWDs typically employ a mass (or two masses in some models) falling on to a
buffered circular load plate. These devices were primarily developed in Europe and have
since become popular in the United States. FWDs can transmit relatively heavy loads to
the pavements compared to the other deflection testing devices. Usually the load range
is 6,672 N to 155,687 N depending on the FWD model. Variations in the applied load
levels are achieved by varying the magnitude and number of the dropping mass and the
height of the drop. The FWD has a relatively small preload (3 to 14% of the maximum
load) compared to the maximum generated load. The maximum load is recorded by a load
cell in the load plate. The load pulse is characterized by approximately a half-sine-wave
form with pulse duration of about 30-40 ms and is known to simulate moving-wheel load
better than any other device. The peak vertical deflections are measured by velocity
transducers, commonly known as geophones, or, in some models, with seismometers at
the center of the loading plate and several locations away from the center of the load. The
distance between the sensors or the seismometers can be adjusted for special studies, but
they are normally spaced at intervals of 300 mm. The sensors are mounted on a bar which
is automatically lowered with the loading plate. Measured deflections can be plotted as
deflection basins.
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CHAPTER 4

BACKCALCULATION OF LAYER MODULI AND COMPUTATION OF STRUCTURAL
LAYER COEFFICIENT

PAVEMENT MODELING AND BACKCALCULATION OF LAYER MODULI

Three independent methods were used in the backcalculation process by modeling
the pavements as multi-layered elastic systems. The methods are: (a) manual- using the
ELSYM5 multi-layered elastic analysis program, (b) an automated backcalculation
program, MODULUS (7) and (c) another automated method, BKCHEVM, developed by the
Corps of Engineers and later slightly modified at Arizona State University (8). The
deflection basins corresponding to the target loading of 40 kN are used in this study.

In the back calculation process, very good convergence was obtained by assuming
bedrock at a depth of around 8.5 m from the surface for sections on 1-135. The presence
of bedrock at this site was also supported by the soil survey maps of the Soil Conservation
Service of USDA. Subgrade depth of 6.7 meter was assumed for all sections on I-135.
This value of bed rock depth was checked with those calculated by MODULUS for different
sections and the differences were found to be not significant. The depth of bedrock for K-
32 and US-56 were assumed to be 2.75 meter and 6.4 meter, respectively, and were
obtained by trial-and-error for good convergence and subsequent comparison with the
depth values calculated by MODULUS.

Since BKCHEVM cannot handle more than four layers (including the subgrade
layer), the surface and base layers of I-135 were considered on a composite basis while
running BKCHEVM, and thus identical results for layer moduli are shown for both layers
for BKCHEVM results. In general, consistent values were obtained using BKCHEVM
compared to the other two methods. The backcalculated layer moduli values for asphalt
concrete and CRM mix were then corrected to standard 68°C according to the AASHTO
guideline (1). However, corrected asphalt concrete or CRM moduli values greater than
13.8 GPa were discarded since 13.8 GPa (2 million psi) can be considered as the upper
limit for asphalt concrete modulus under normal weather condition prevailing in Kansas.

Due to the non-uniqueness nature of the backcalculation results, three independent
backcalculation approaches were followed in this study. The RMS (Root Mean Square)
values were calculated manually at each FWD point. For manual backcalculation, RMS
values of up to 4% were assumed satisfactory. The manual method did not show good
convergence for Section No. 1 and control section on I-135 and on K-32. Thus the results
were ignored and are not reported here. However, on K-32, higher root-mean-square
(RMS) error values were allowed (about 8%) for BKCHEVM and MODULUS compared to
only 4% for I-135 and US-56. On those routes, backcalculated layer moduli where RMS
values exceeded 4% were discarded. However, this happened only for a few deflection
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basins (one or two per test section) and may very well be because of FWD test loading
directly over a "rocking" section in the underlying rubblized JRCP layer. However, no
anomalies in the individual sensor deflection values were observed compared to other
deflection basins where very good convergence were obtained.

Backcalculated Layer Moduli for I-135

Table 4.1 tabulates the summary statistics of backcalculated layer moduli values of
the layers on different sections of I-135. The results, in general, show high variabilities
across a section as well as between the sections. The variabilities for rubblized subbase
layer of Section Nos 2, 3 and 4 were higher compared to the other layers. The variabilities
in the sizes of the rubblized pieces of the original concrete pavement might induce this type
of high variabilities. Very high values for the rubblized subbase on section 3 were
observed in all the three backcalculation approaches. However, no difference in the
construction procedure for that section was reported or found. In general, the moduli
values of ARS and ARB obtained from BKCHEVM and manual computation were found
to be in good agreement. The backcalculated subgrade moduli values were more or less
consistent in all three computation approaches. Figure 4.1, 4.2, 4.3 and 4.4 show the
backcalculated layer moduli values for ARS, ARB, rubblized subbase and subgrade,
respectively, obtained by different backcalculation methods for the sections on |-135.

Backcalculated Layer Moduli for US-56

Table 4.2 gives the summary statistics of backcalculated layer moduli values of the
different layers on US-56. Large coefficient of variation values were observed for the
backcalculated ARS moduli value of ARS layers in all three approaches. This observation
is due to the fact that backcalculation process does not give very good results for thin
overlays which is the case here where only 25 mm ARS overtops comparatively very thick
230 mm JRCP. Since the subbase is the original JRCP, very high moduli values were
observed as expected. Figure 4.5 shows the layer moduli of ARS, AC base and JRCP
layers on US-56.

Backcalculated Layer Moduli for K-32

The summary statistics for backcalculated layer moduli values for K-32 is shown in
Table 4.3. Since the surface layer is a thin overlay (25 mm), large variabilities in the
backcalculated moduli for ARS layer were observed. The layer moduli of ARS, AC base
on K-32 are shown in Figure 4.6.

13
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Backcalculated ARS Moduli on I-135
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Figure 4.1 Backcalculated Layer Moduli Values for ARS at Different Sections on 1-135

Backcalculated ARB Moduli on I-135
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Figure 4.2 Backcalculated Layer Moduli Values for ARB at Different Sections on I-135
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Backcalculated JRCP Moduli on I-135
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Figure 4.3 Backcalculated Layer Moduli Values for Rubblized JRCP at Different
Sections on 1-135 '
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Figure 4.4 Backcalculated Layer Moduli Values for Subgrade at Different Sections
on I-135
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TABLE 4.2 Backcalculated Layer Moduli Values for Different Layers on US 56

Statistics Backcalculated Layer Moduli (GPa)
ARS Asphalt Base Subbase
BKCHEVM Mean 3.51 3.51 6.09
' Std. Dev. 1.40 1.40 2.35
C.V.(%) 40 40 39
Range 1.78-6.29 1.78-6.29 1.31-10.27
n 11
MODULUS Mean 3.77 3.91 12.17
Std. Dev. 0.90 4.66 5.09
C.V.(%) 24 119 42
Range 2.61-5.19 1.48-16.25 2.94-18.78
n 11
‘Manual Mean 4.22 5.57 6.31
Std. Dev. 1.95 2.41 1.35
C.V.(%) 46 43 21
Range 2.21-7.38 2.14-7.87 3.44-8.27
n 11
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Backcalculated Moduli for different
Layers on US-56
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Figure 4.5 Backcalculated Layer Moduli Values for Different Layers on US-56
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TABLE 4.3 Backcalculated Layer Moduli Values for Different Layers on K-32

Statistics Backcalculated Layer Moduli (GPa)
ARS Asphalt Base Subbase
BKCHEVM Mean 1.61 5.01 0.09
Std. Dev 2.41 4.17 0.02
C.V.(%) 150 83 22
Range 0.26-7.85 0.93-13.52 0.06-0.12
n 10 10 10
MODULUS Mean 3.15 2.44 0.19
Std. Dev 2.63 0.85 0.22
C.V.(%) 84 35 115
Range 1.19-8.15 1.09-4.23 0.03-0.78
n 12 12 12
Backcalculated Moduli for different
Layers on K-32
6
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o 4
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= 3
5
o 2
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Figure 4.6 Backcalculated Layer Moduli Values for Different Layers on K-32
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ANALYSIS OF COMPUTED LAYER COEFFICIENT VALUES

Table 4.4 tabulates the summary statistics of the computed layer coefficient values
for 1-135 obtained in this study. The values fall around 0.3 and the coefficient of variation
values were not high. However, in general, higher variabilities were observed for the
AASHTO results compared to the EMA values. Detailed results at each deflection location
for all four sections on |-135 are shown in Tables 4.5, 4.6, 4.7 and 4.8, respectively. On
I-135, the average layer coefficient values for the CRM layers varied from 0.31 on Section
No. 1 to 0.39 on Section No. 3 for BKCHEVM-moduli values. The coefficients of variation
were 7 to 11%, much lower than the AASHTO-approach variabilities. Similar results were
obtained using the moduli backcalculated from the three methods used in the study. The
same is true for the results on US-56. The average layer coefficient for the CRM mixes
on US-56 are similar to those obtained on Section No. 1 of I-135. However, variabilities
in computed layer coefficients were higher on US-56 than on 1-135. Figures 4.7, 4.8 and
4.9 show the layer coefficient values obtained by both AASHTO and EMA approaches for
Section Nos. 1, 2 and 3 on |-135, respectively.

Table 4.9 and 4.11 tabulate the summary statistics of the layer coefficient values
for US-56 and K-32, respectively. For both routes, large variabilities in layer coefficient
values were observed. This is probably due to the variabilities in the backcalculated layer
moduli obtained for these routes. Like |-135, variabilities in the AASHTO results are
higher than those obtained in EMA. The layer coefficient values, in general, were found
to be lower compared to I-135. Again, the very thin overlays on these routes are probably
the reason for that since structural contribution of very thin ARS overlay is almost
negligible compared to thicker base and subbase. Detailed results for these routes at
each deflection location are presented in Tables 4.10 and 4.12, respectively. The layer
coefficient values for US-56 and K-32 obtained from different approaches are shown in
Figures 4.10 and 4.11, respectively.

For each of the three routes, correlation among the layer coefficient values obtained

were also investigated and the correlation coefficients are tabulated in Table 4.14. The
best correlation was obtained using the BKCHEVM-calculated moduli values.
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TABLE 4.4 Structural Layer Coefficient Values for CRM Asphalt Layers on I-135

Statistics Section 1 Section 2 Section 3

AASHTO EMA AASHTO EMA AASHTO EMA
BKCHEVM Mean 0.32 0.31 0.38 0.39 0.32 0.36
Std. Dev. 0.02 0.02 0.06 0.04 0.04 0.02

C.V.(%) 7 7 16 11 13 7

n 21 21 20 20 20 20
MODULUS Mean 0.32 0.31 0.31 0.35 0.28 0.39
Std. Dev. 0.02 0.02 0.05 0.03 0.04 0.06

C.V.(%) 8 8 16 8 15 16

n 21 20 20 20 20 20
Manual Mean - - 0.34 0.39 0.29 0.39
Std. Dev. - - 0.04 0.04 0.04 0.03

C.V.(%) - . 11 10 14 7

n - 20 20 20 20
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Layer Coefficients of CRM Mix for
Section 1 on 1-135
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Figure 4.7 Structural Layer Coefficient Values for Section 1 on I-135
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Figure 4.8 Structural Layer Coefficient Values for Section 2 on I-135
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Layer Coefficients of CRM Mix for
Section 3 on I-135
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TABLE 4.9 Structural Layer Coefficient Values for CRM Asphalt Layers on US-56

Method Statistics Layer Coefficient
AASHTO EMA
Manual Mean 0.20 0.34
Std. Dev. 0.13 .07
C.V.(%) 66 21
Range 0.06-0.47 0.24-0.42
n 11 11
BKCHEVM Mean 0.15 0.30
Std. Dev. 0.09 0.06
C.V.(%) 62 19
Range 0.01-0.24 0.22-0.39
n 11 11
MODULUS Mean 0.20 0.30
Std. Dev. 0.28 0.03
C.V.(%) 137 10
Range 0.04-0.52 0.26-0.34

n

11

11
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TABLE 4.11 Structural Layer Coefficient Values for CRM Asphalt Layers on K-32

Method Statistics Layer Coefficient
AASHTO EMA
BKCHEVM Mean 0.22 0.20
Std. Dev. 0.18 0.12
C.V.(%) 86 60
Range 0.05-0.59 0.11-0.46
| n 10 10
MODULUS Mea 025 0.28
Std. Dev. 0.17 0.09
C.V.(%) 70 32
Range 0.06-0.59 0.19-0.44
12 12
Layer Coefficients for K-32
0.3
t 0.25
Q0
9
§ 0.2
S 7 -
o
=)
- 0.15
0.1 = _ «
Manual BKCHEVM MODULUS

Backcalculation Approach

Figure 4.11 Structural Layer Coefficient Values for K-32
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Comparison of Backcalculated Moduli with Laboratory Tested Value

Resilient Modulus tests were conducted on randomly selected 64 mm thick core
samples from each test section following ASTM D 4123 test procedure. The samples were
representatives of ARS-ARB, ARB and existing asphalt mix layers. Tests were conducted
at 20° C using a pulse load of 0.1 sec duration and 0.9 sec rest period. Indirect tensile
loads applied varied from 580 N to 5,560 N to obtain measurable deflections in the range
of 100 pm to 200 um. Very high variabilities in the labortatory tested moduli values were
observed. This indicates the necessity of testing large number of samples in the laboratory
to have any definite conclusion about the lab result. Figures 4.12 and 4.13 illustrate the
comparisons of laboratory tested ARS-ARB and ARB moduli with backcalculated values
for 1-135 respectively. Figure 4.14 shows the comparison of laboratory tested ARS-AC
moduli with backcalculated values for US-56 and K-32.

Comparison of Backcalculated ARS-ARB
Moduli with Lab values on I-135

Section No.

! BKRCHEVMR] MODULUSEE Lab

I Manual

Figure 4.12 Comparison of Backcalculated ARS-ARB Moduli with Laboratory Tested
Values on I-135
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Comparison of Backcalculated ARB
Moduli with Lab values

Section No.

I Manual BKCHEVM ] MODULUS & Lab

Figure 4.13 Comparison of Backcalculated ARB Moduli with Laboratory Tested
Values on 1-135

Comparison of Backcalculated Moduli
with Lab values on US-56 and K-32

25
20
15

10

Moduli (GPa)

US-56 ' K-32
Route

BKCHEVM W MoDULUS [ES Lab

Il Manual

Figure 4.14 Comparison of Backcalculated ARS-AC Moduli with Laboratory Tested
Values on US-56 and K-32
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mix gets different coefficient values depending whether it is used in surface or base layers,
in order to compare the results of the study with those used by KDOT, weighted average
of the KDOT-layer coefficient values for the whole section were calculated and presented
in Table 4.13. The table also tabulates the average layer coefficient values obtained by
the AASHTO and EMA approaches. It appears that the layer coefficients for the CRM
overlays are lower than KDOT-designated values (on US-56 and K-32). Thus, the asphalt-
rubber surfaces (ARS), though may be used in the top-most layer, appears to have lower
layer coefficient values. As mentioned earlier, these layers showed lower backcalculated
moduli. Laboratory tests on 64 mm thick core samples with 25 to 37 mm of ARS layer
also showed lower moduli than the ARB mixes for most of the cases. Figures 4.12 and
4.13 show the comparison of the backcalculated layer moduli with the laboratory values
for ARS-ARB and ARB layers respectively on the four sections of I-135. Figure 4.14 shows
the comparison of the laboratory tested moduli with the backcalculated moduli values for
the ARS-AC layer on US-56 and K-32. August 4, 1997For the full-depth CRM pavements
on rubblized subbases, it is apparent that the design values are very close to the values
obtained in this study, indicating that asphalt-rubber coefficient values are very close to or
slightly higher than the conventional asphalt mix for new pavement structural design. The
apparent discrepancy for these two mixes happened because the CRM overlays on the
existing structural really represent inverted structures, i.e., they have a more rigid layer
somewhere in the structure below the surface layer. It is apparent that these rigid layers
have overwhelming effects on the structural performance of the CRM overlays. The
AASHTO structural number approach for design of overlays may not be applicable for such
a flexible layer with relatively lower modulus.

For full-depth/thicker CRM asphalt pavements, the asphalt-rubber base (ARB)
layers have larger influence than the thin (typically 25 to 37 mm) asphalt-rubber surface
(ARS) layer. The layer coefficient values for the CRM mixes largely represent the
contribution of this layer. The AASHTO structural number approach appears to be valid
for this type of structure thus requiring the structural number for the CRM asphalt
pavement
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135 | Section 1 CRM Mix 0.32 0.31 0.35
(composite)
Lime treated 0.09 - -
subbase
Section 2 CRM Mix 0.34 0.38 0.36
(composite)
Rubl. JRCP 0.20 - 0.18
Section 3 CRM Mix 0.30 0.38 0.35
(composite)
Rubl. JRCP 0.35 - 0.18
Section 4 Conventional 0.50 - 0.42
AC Mix
Rubl. JRCP 0.12 - 0.18
US -56 CRM Mix 0.18 0.30 0.42
(surface)
K-32 CRM Mix 0.24 0.24 0.42
(surface)

As shown in Table 4.13, the average layer coefficients values for the rubblized
JRCP layer obtained using the AASHTO equation varied from 0.20 for Section No. 2 to
0.35 for Section No. 3. The design value used by KDOT was 0.18 which is close to 0.20
obtained for Section No. 2. The control section rubblized layer coefficient value obtained
was 0.12. As expected, very high variabilities (up to 47%) in computed layer coefficients
were also observed. Since there is no apparent difference in rubblization techniques used
on these sections, the only plausible explanation is construction control and inherent
variabilities of reused in-situ materials. The AASHTO-suggested rubblized PCC layer
coefficient value varies from 0.14 to 0.30 (1). This study shows that the range should be
from 0.10 to 0.35. One way of taking this variability into account may be to increase the

overall standard deviation, S, used in the AASHTO design guide.
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Section 2 0.35 0.73 0.48

Section 3 0.73 0.74 0.42
K-32 - 0.91 -0.60
US-56 0.63 0.93 -0.99

Proposed Equation for Layer Coefficient for CRM Asphalt Mixes

In this study, a relationship between the structural layer coefficient values (a;) for
CRM mixes and moduli, similar to those established by AASHTO, has been developed.
Analysis results from both the AASHTO and the Equal Mechanistic Approach for all CRM
sections on 1-135, US-56 and K-32 were used in the analysis. Figure 4.15 and 4.16
illustrate graphically the relationships between a, and backcalculated modulus value.
Excellent coefficient of determination (R?) value (greater than 0.90) was obtained for the
EMA results. The equation derived from the EMA results is:

a;=0.315log (E) - 1.732
where, E is expressed in Pa.

The equation from the AASHTO results has a R? value of 0.387. The use of layer
coefficient values for base and subbase from Ullidz's equations which do not exactly
represent the materials in question might have resulted in large errors in the estimated
a,values for CRM asphalt mixes in the AASHTO approach. This is also supported by the
higher coefficient of variation and wider range for the coefficient values obtained in the
AASHTO approach compared to the equal mechanistic approach. However, it should be
noted that other than resilient modulus, a number of factors like layer thickness, material
type, layer location (base, subbase), traffic level, failure criterion, etc. are known to
influence the layer coefficient value.
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ai vs. E (R*"2 =0.912)

'© .315*log(E) - 1.732
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FIGURE 4.15 Structural Layer Coefficient of CRM Asphalt Mixtures from equation and
EMA approach
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FIGURE 4.16 Structural Layer Coefficient of CRM Asphalt Mixtures from equation and

AASHTO approach
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CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

1. The AASHTO approach of computing layer coefficients results in very high
variabilities for CRM asphalt mixes compared to the Equal Mechanistic Approach. The
latter method appeared to be suitable for future studies on evaluation of layer coefficients
of new materials.

2. For CRM asphalt mix overlays, the average surface layer coefficients from the
Equal Mechanistic Approach of analysis was found to vary between 0.11 to 0.46 with most
values falling around 0.30. This indicates a lower structural layer coefficient value for the
asphalt-rubber mix compared to the conventional asphalt concrete. For newly constructed
CRM asphalt pavements, the layer coefficients varied from 0.25 to 0.48, with the average
value around 0.35. These values are close to the AASHTO recommended coefficient
values for conventional asphalt concrete layers.

3. As expected, large variabilities in computed layer coefficients for rubblized JRCP
were observed. The layer coefficients for this layer typically varied from 0.10 to 0.35.

4. Poor correlation was found between backcalculated and laboratory layer moduli
values. Large variation in the laboratory determined resilient modulus values emphasizes
testing a large number of samples in the laboratory for such comparison.

5. Further study is recommended as to the proposed equation considering the
seasonal variation and other influencing parameters.
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