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PREFACE

The National Center for Earthquake Engineering Research (NCEER) was established in 1986 to
develop and disseminate new knowledge about earthquakes, earthquake-resistant design and
seismic hazard mitigation procedures to minimize loss of life and property. The emphasis of the
Center is on eastern and central United States structures, and lifelines throughout the country
that may be exposed to any level of earthquake hazard.

NCEER’s research is conducted under one of four Projects: the Building Project, the Nonstructural
Components Project, and the Lifelines Project, all three of which are principally supported by
the National Science Foundation, and the Highway Project which is primarily sponsored by the
Federal Highway Administration.

The research and implementation plan in years six through ten (1991-1996) for the Building,
Nonstructural Components, and Lifelines Projects comprises four interdependent elements, as
shown in the figure below. Element I, Basic Research, is carried out to support projects in the
Applied Research area. Element II, Applied Research, is the major focus of work for years six
through ten for these three projects. Demonstration Projects under Element III have been
planned to support the Applied Research projects and include individual case studies and
regional studies. Element IV, Implementation, will result from activity in the Applied Research
projects, and from Demonstration Projects.

ELEMENT I ELEMENT 1l ELEMENT Iil
BASIC RESEARCH APPLIED RESEARCH DEMONSTRATION PROJECTS
+ Seismic hazards and _ ¢ The Building Project Case Studies
ground motion "« Active and hybrid control
» The Nonstructural » Hospital and data processing
« Geotechnical Components Project facilities
engineering ¢ Short and medium span bridges
* The Lifelines Project C « Water supply systems in
* Structures and systems Memphis and San Francisco
s The Highway Project Regional Studies
« Risk and reliability _ * New York City
* Mississippi Valley
* Intelligent and protective : + San Francisco Bay Area
systems » City of Memphis and Shelby
County, Tennessee
» Socioeconomic issues J_L J—L
\Va \4
ELEMENT IV
IMPLEMENTATION

¢ Conferences/Workshops
Education/Training courses
Publications

Public Awareness




Research under the Highway Project develops retrofit and evaluation methodologies for
existing bridges and other highway structures (including tunnels, retaining structures, slopes,
culverts, and pavements), and develops improved seismic design criteria and procedures for
bridges and other highway structures. Specifically, tasks are being conducted to: (1) assess the
vulnerability of highway systems and structures; (2) develop concepts for retrofitting vulnerable
highway structures and components; (3) develop improved design and analysis methodologies
for bridges, tunnels, and retaining structures, with particular emphasis on soil-structure interac-
tion mechanisms and their influence on structural response; and (4) review and improve seismic
design and performance criteria for new highway systems and structures.

Highway Project research focuses on one of two distinct areas: the development of improved
design criteria and philosophies for new or future highway construction, and the development of
improved analysis and retrofitting methodologies for existing highway systems and structures.
The research discussed in this report is a result of work conducted under the new highway
construction project, and was performed within Task 112-D-5.3, “Detailing for Structural Movements
- Bridges and Retaining Walls™ of the project as shown in the flowchart.

The overall objective of this task is to develop recommended design details for bridges and earth
retaining systems that can accommodate movements associated with structural response during
earthquakes. This report provides a review of current practice for bridge restraining devices,
sacrificial elements, minimum support length requirements and the design of earth retaining systems
Jor seismic displacements. Passive energy dissipation devices and isolation bearings, which are now
being considered in the design of new bridges, are also described by type and potential application.
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ABSTRACT

This report describes detailing for structural movements for bridges and retaining walls for new
construction in the western and eastern U.S. Bridge retaining devices such as longitudinal joint
restrainers, vertical motion restrainers, shear keys, and integral superstructure to substructure
connections are described. Many of these details are traditional methods that have been used in
new bridge construction to limit displacements for seismic events. Sacrificial elements, which
include abutments and joints, are also described. These types of details have been used in new
seismic designs within the last two decades. An introduction to passive energy dissipating de-
vices and isolation bearing systems is provided as well as recommendations for detailing. Both
devices are relatively new as a method to limit displacements in bridges within the U.S. In fact,
isolation bearing systems have just emerged for new bridge construction within the last few
years. The minimum support length requirements are reviewed. The current practice for de-
signing earth retaining systems for seismic displacements is reviewed and some
recommendations for detailing are provided. The effects of substructure flexibility on the isola-
tion system is documented. An example study and comparison is given to illustrate the impact of
substructure flexibility.
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SECTION 1
INTRODUCTION

In the summer of 1993, the National Center for Earthquake Engineering Research initiated a re-
search program directed at developing improved seismic analysis and design procedures for
highway infrastructure. The research program is sponsored by the Federal Highway Admini-
stration of the U.S. Department of Transportation and consists of a series of special studies, each
focused on the seismic analysis or design of specific highway system components (e.g., bridges
or tunnels) and structural elements (e.g., foundations or substructures).

As a basis for developing improved bridge design standards, a task within this program was con-
ducted to identify and establish detailing for structural movements — bridges and retaining walls
in use throughout the U.S. The task was divided into two parts, one focused on collecting and
establishing details in the western U.S. conducted by Imbsen & Associates, Inc. (Task 112-
D5.3(a)) and the other concerned with eastern and central U.S. practice conducted by Modjeski
and Masters, Inc. (Task 112-D-5.3(b)). Many structural details have been developed in the west-
ern U.S., because of the larger magnitudes and recurrence rates of earthquakes in that region.
Once the states of the central and eastern U.S. began implementing seismic details into their
bridge components, it was only natural that tried and proven details already developed in the
western states would be adopted. In addition, many details for new bridges, such as passive en-
ergy dissipating devices and isolation bearing systems, are being introduced in designs today.
The report combines the effort from Task 112-D5.3 (2) and 112-D5.3 (b).

This report includes these topics: bridge restraining devices, sacrificial elements, passive energy
dissipating devices and isolation bearing systems, minimum support length requirements, earth
retaining systems, and the effects of column flexibility when using isolation. This report is a
summary compilation of existing details. It also includes energy dissipation devices and isola-
tion systems. Many states are using these new devices currently and modifying existing proven
details that orginated from the west coast. The equations in Appendix A are not meant to be a
substitutue for code requirements, rather they are presented on a selected basis to demonstrate
the general processes.






SECTION 2
BRIDGE RESTRAINING DEVICES

2.1 Longitudinal Joint Restrainers

AASHTO recommends to designing generous support lengths at joints or hinges in new bridges
as a first line of defense to prevent loss of support during a seismic event (AASHTO, 1991a).
This has been a design practice in the western U.S. since the 1971 San Fernando earthquake. In
addition, longitudinal restrainers have been incorporated in new bridge designs and retrofitting to
limit relative displacements at joints and hinges. Longitudinal joint restrainers have been used
extensively by the California Department of Transportation (Caltrans) since 1971, but their use
in the eastern and central United States is relatively recent.

Restrainer demand and stiffness can be determined from a response spectrum analysis of the
structure, but results from such an analysis may not be realistic because they result from elastic
column forces which will not develop. Restrainers are usually designed only for tensile capacity
and with joints that have a finite size gap; however, in an elastic analysis it is difficult to model
this condition. Simplified procedures for designing restrainers have been developed which take
into account joint behavior (FHWA, 1995).

In no case should the restrainer force capacity be less than the acceleration coefficient times the
weight of the lighter of two adjoining spans or parts of the structure (AASHTO, 1991). In no
case shall the restrainer force capacity be less than that required to resist an equivalent static load
of 0.35 times the dead load of the bridge (FHWA, 1987). When two bridge segments are tied
together, the New York Department of Transportation requires the minimum restrainer capacity
to be the maximum of the two capacities obtained by considering each section independently
(FHWA, 1987).

Connections of the restrainer to the superstructure and/or the substructure should be designed to
resist 125 percent of the ultimate restrainer capacity. Any existing bridge elements subject to
brittle failure should also be capable of resisting 125 percent of the ultimate restrainer capacity.
Because of eccentricities caused by variations in the restrainer forces, it is recommended that the
restrainer connections and existing bridge elements be capable of resisting variations in the re-
strainer forces of at least 10% of the nominal restrainer capacity.

Longitudinal restrainers should be oriented along the principle direction of expected movement.
If piers are rigid in the transverse direction of the bridge, the expected movement of the super-
structure will be along the longitudinal axis of the bridge. Restrainers should be placed to
oppose such movement (see Figure 2-1).

The recommended analysis for longitudinal restrainer design is the equivalent static analysis
method, developed at Caltrans (Caltrans, 1994a, b and FHWA, 1995). This method is currently
used by Caltrans and is briefly summarized as follows:

1. Verify seat width by comparing it to the maximum restrainer deflection and limit the dis-
placement to the bridge seat width.

2. Compute the longitudinal earthquake deflections on both sides of the superstructure joint
under consideration by simplified methods. For curved bridges, compute the joint open-
ing resulting from a lateral earthquake.



Compare the earthquake deflections to the allowable restrainer deflections.

Compute the number of restrainers required. ]

Check the deflections of the restrained system and revise the restrainer and/or column as-
sumptions if required. _

kW

New design procedures for hinge restrainer design for multiple frame bridges have been pro-
posed and compared to the current Caltrans’ procedure (Desroches, 1996). This procedure was
presented at the Caltrans’ seismic research workshop in July 1996. The Caltrans’ procedure has
generally worked well; however, recent studies have shown that the procedure may be conserva-
tive or unconservative when estimating the relative displacement of the hinge. The purpose of
the study was to develop a restrainer design procedure to better predict relative displacements
between adjacent frames and determine the number of restrainers required to limit hinge dis-
placement. A parameter study was performed to investigate the new procedure. Evaluation of
the proposed procedure by linear and nonlinear time history analysis showed its ability to limit
hinge displacement to a prescribed value. This procedure is under review by Caltrans.

Caltrans’ design procedures require that cable and rod restrainers and all their associated steel
hardware be galvanized (Caltrans, 1992). Caltrans has tested both 1'/," diameter bars and 3" di-
ameter cables to determine load versus elongation relationships. Graphs displaying the test re-
sults are shown in Figure 2-2 (FHWA, 1992). Many eastern states, such as New York, have a
stated preference for galvanized steel wire rope for restrainers.

Another advantage of using longitudinal restrainers, other than limiting relative displacements at
joints, is 1) their ability to transfer load through the hinge to other portions of the structure such
as adjacent columns and abutments and 2) cable and rod restrainers are economical because the
material is relatively inexpensive and they are relatively easy to install.

Some details of longitudinal restrainers are provided in Figures 2-3 to 2-5. The prestressed I-
girder detail for new bridges shown in Figure 2-3 could be adapted for steel bridges, which are
used frequently in eastern states. This detail is used in California and has been adopted in Penn-
sylvania. New box girder bridge designs in California use restrainers in combination with gener-
ous support widths at intermediate hinge span locations, see Figure 2-4. In addition, restrainers
have been incorporated in new bridge designs of prestressed I-girders as shown in Figure 2-5.
Caltrans has introduced a new detail on the end of swaged fittings on restrainers (see Figure 2-6).
Disc springs are recommended for installation load indicators (Sahs, 1995). After the 1994
Northridge earthquake, the inspection of hinge restrainers for damage was given a high priority.
Some observations were made that the amount of sag in the cables from Type 2 restrainers
shown in Figure 2-4 varied from bay to bay and bridge to bridge. Also, there was no way for in-
spection teams to determine if the cables yielded or were installed with incorrect slack. This new
detail is now recommended to eliminate these problems encountered in the field.

As an alternative to longitudinal restrainers, linkage slabs are being used as restraining devices.
The linkage slab is designed to transmit horizontal seismic forces, yet produces little joint
movement under live loading (FHWA, 1983). An example of a linkage slab is provided in Fig-
ure 2-7. :

For the design of new steel girder bridges in New York State, displacement limiting devices such
as restrainers are generally not used. Movement is accommodated by designing seat widths for
the expected seismic movement, and providing superstructure continuity over the support to
eliminate unseating. For transverse movement at the pier cap, adequate room is provided be-

tween the edge of the pier cap and the fascia girder bearing. Transverse shear keys are generally



not required unless there is a possibility of a girder falling off the cap for an existing bridge. For
new designs, elastomeric and pot bearings are considered. Pot bearings are used for long spans
where thermal movements would require excessively thick elastomeric pads (Malik, 1995).

Seismic retrofits in New York state attempt to eliminate joints where possible instead of using
restrainers to limit movement and prevent unseating. A standard design procedure converts sim-
ple span steel girders into a continuous superstructure. A 5 foot portion of the concrete deck on
each side of the pier joint is removed, the steel girders are joined by bolted splice plates, see Fig-
ure 2-8, and a continuous deck is repoured. The two rocker bearings that supported the steel
girders are replaced by one elastomeric bearing pad.

Unlike New York state, New Jersey still allows the use of steel rocker bearings as long as they
can handle or are modified to handle the seismic movement. Modifications to steel bearings may
include:

1. Increase size, number or embedment of anchor bolts,

2. Increase the outer diameter of the pin head,

3. Increase the width of the expansion rocker, and

4. Increase the top and bottom dimension of the pintle detail.

In lieu of restrainers, generous girder support lengths are provided for new design.

The state of Pennsylvania does not typically recommend cable restrainers, especially for retrofit-
ting bridges. Steel rockers and roller bearings are not permitted on new bridges and should be
replaced on rehabilitated projects. Providing superstructure continuity in new bridges, wherever
possible, is recommended to eliminate a series of simply supported structures (PennDOT, 1994).

2.2 Vertical Motion Restrainers

Experience from past earthquakes has shown that vertical movement can take place at the bear-
ings. This can lead to the displacement of bearings and a possible increase in the chance of a
loss of support failure (FHWA, 1987). Vertical motion restrainers are usually not economically
justified unless a bridge is classified in Seismic Performance Category D (SPC-D). Since accel-
erations in the eastern U.S. are usually lower, vertical motion restrainers are not typically needed
there.

AASHTO seismic design specifications require that hold-down devices be provided at all sup-
ports or hinges in continuous structures where the vertical seismic force due to the longitudinal
horizontal seismic load opposes and exceeds 50% of the dead load reaction.

If the vertical seismic force (Q) is less than 100% of the dead load reaction (DL), the minimum
net upward force for the hold-down device shall be 10% of the dead load downward force that
would be exerted if the span were simply supported.

If the vertical seismic force (Q) due to the longitudinal horizontal seismic load opposes and ex-
ceeds 100% of the dead load reaction (DL), the net upwards force for the hold-down device shall
be 1.2(Q-DL), but it shall not be less than that specified in the previous paragraph (for Q < 100%
DL) (AASHTO, 1991a).

Caltrans’ design specification requires hold-down devices to be provided at all supports and in-
termediate hinges where the vertical seismic force opposes and exceeds 50% of the dead load



reaction. In this case, the minimum seismic design force of the hold-down device shall be the
greater of:

(@) 10% of the dead load reaction or
(b) 1.2 times the net uplift force (Caltrans, 1994c¢).

Vertical restrainer material is inexpensive, but they are usually difficult to install in box girder
hinge seats congested with reinforcement. Therefore, it is not recommended to specify vertical
ties as a standard if they are not required. Some example details of vertical restrainers are pro-
vided in Figures 2-4 to 2-5. Future vertical response studies may result in design specifications
which could revise vertical restrainer policies.

2.3 Shear Keys

Current AASHTO specifications imply that shear keys transmit the entire force across a joint.
This philosophy will result in the direct transfer of the full seismic force from the superstructure
to the substructure, requiring substructure elements such as piles be designed to withstand the
full seismic force. AASHTO design procedures (AASHTO, 1991a) require that shear keys be
designed with a Response Modification Factor of R=0.80, or a magnification of 1.25 times the
seismic loading. Such magnification is necessary due to the brittle failure nature of the shear key
and the redistribution of forces to connections as plastic hinges form in columns.

Current Caltrans procedures deviate from this policy at abutments to protect subsurface structural
members. Abutment shear keys are designed transversely to withstand the ultimate shear capac-
ity of one wingwall plus 75% of the ultimate shear capacity of the piles. This philosophy will
limit the force transmitted through the shear key, thus reducing the likelihood of damage to the
piles. Likewise, the backwall key is designed to fuse at a force which is expected to prevent
damage below the seat. (Caltrans, 1994b).

Proper design of a reinforced concrete shear key should recognize the deep beam or simple truss
action of these short shear span members (Harper, 1994). There are two basic failure modes as
shown in Figure 2-9, that must be addressed in design: 1.) a direct shear failure at the horizontal
interface between the key and the abutment seat and 2.) separation between the key and the
abutment stem. In the second mode of failure, the failure plane can be anywhere between verti-
cal to approximately 45 degrees below the horizontal plane. This was the most common type of
key failures seen in the 1994 Northridge earthquake.

In summary:
Force Concept (AASHTO design philosophy)

Key transmits total seismic force.
® Requires adjacent component match.

Fuse Concept (Caltrans’ abutment design philosophy)

¢ Key transmits service loads.
* Key fails before adjacent component match.



Some example details of shear keys from California are provided in Figures 2-10 to 2-12. The
state of Massachusetts recently updated some standard details that control seismic movements
for precast box beam superstructures (Massachusetts, 1994). Abutment curtain walls are de-
signed as seismic shear keys. Continuity is achieved over the support through a superstructure
closure pour that “keys” into the pier. Prestress strands from the butted box beams anchor into
the closure segment. The details are shown in Figure 2-13. Some shear key details used by Penn
DOT are shown in Figures 2-14 and 2-15. A unique shear key design in combination with an
elastomeric bearing which has been implemented on a seismic retrofit in Michigan is shown in
Figure 2-16. This concept could be extended to new bridge designs. The State of New York
places lateral restraining angles on the elastomeric bearing in the transverse direction of the
bridge (see Figure 2-17) (Malik, 1995).

Gapped shear keys designed to engage after some relative displacement are commonly referred
to as “Stopper Blocks.” These blocks provide restraint against the unanticipated movement of
the superstructure relative to the substructure. They are common on bridges that use isolation
bearings which have large expected displacements (i.e., 12" or greater). The gap is an important
consideration in the design. As the gap becomes smaller, the stopper block will act as a shear
key which transmits the total force to the substructure. Their use in isolation bearings are treated
as a backup system in the event that the bearing fails. Gaps should be greater than the antici-
pated isolation displacement (at least 25% greater) to ensure that the bearing will function prop-
erly. An example of a stopper block, as shown in Figure 2-18, is being used on the Benicia-
Martinez Bridge in California. This is intended as a backup system in the transverse direction of
the bridge.

The Japanese have investigated stopper blocks that minimize impact to the substructure (Ozaki,
1992). A shock absorber type device made up of anchor bars and vertically placed elastomeric
bearing pads enclosed in a steel shell provided some flexibility of restraint. The theory is to sup- -
ply a device that prevents unseating yet if engaged will not transmit the full seismic shear to the
substructure.

2.4 Integral Superstructure to Substructure Connections to Limit Seismic Displacements

The majority of bridges outside the western region of the United States use precast concrete or
steel girders positioned on bent caps. The superstructure to substructure connection consists of
some bearing type that would be modeled as a “pin” connection in a computer analysis. If a
plastic hinge formed at the column base, instability would result. If a “fixed” type of connection
could be detailed at the superstructure to substructure interface, seismic displacements would be
greatly reduced.

Precast concrete bridges of this type have been routinely constructed in the southeastern United
States for reasons other than seismic. A research project currently underway at the University of
California, San Diego is exploring the seismic benefits of an integral bent cap connection.
Transverse post-tensioning across the bent cap provides a “clamping” force to the girders,
thereby reducing the need for joint shear reinforcement and distributing the column plastic mo-
ment to all the girders.

Steel girder bridges have also been built with integral bent caps. Transverse post-tensioning
across the bent cap is similar to the precast girder detail, see Figure 2-19. The seismic benefit is
a “fixed” top and “fixed” bottom column connection which forces the column to rotate in double
curvature for lateral displacement. This makes the column four times stiffer than a “pin” con-
nection at the column top with corresponding reductions in displacement.
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Note: Linkage slab designed to transmit horizontal seismic
forces, but superstructure acts simply supported under live load.

FIGURE 2-7: Reinforced Concrete Linkage Slab at Pier
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FIGURE 2-13: Abutment Curtain Walls Designed for Seismic Forces; (a) Overview
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SECTION 3
SACRIFICIAL ELEMENTS

3.1 Abutments

Caltrans’ design philosophy takes advantage of the energy dissipating capabilities of the short
height and high cantilever seat type abutments. The longitudinal earthquake force required to
mobilize the backfill for the full height of the abutment is generally much larger than a practical
size backwall can be designed to resist. Therefore, the backwall is designed to fail before forces
can be transmitted to the substructure portion of the abutment (Caltrans, 1994b). Adjacent bents
are required to take additional load due to the reduction in abutment stiffness.

A disadvantage resulting from the failure of an abutment backwall due to a major seismic event
would be closing the bridge to traffic while repairs are completed. On the positive side, little or
no damage is expected during smaller seismic events, and smaller, less expensive expansion joint
assemblies can be used. '

Some example details of seat type abutment details are provided in Figures 3-1 and 3-2.

An alternative to the typical Caltrans seat type abutment backwall are knock-off devices which
utilize a preformed joint located at the top of the abutment backwall. The main advantage of
having the joint near the top of the superstructure, as opposed to the bottom of the soffit, is any
damage that may occur during a seismic event is readily detectable and repairable, thus reducing
the amount of time the bridge is closed to traffic. On the negative side, the damage will occur
during smaller moderate seismic events, or large, expensive expansion joint assemblies must be
used. More movement usually results in greater column ductilities and damage, or the installa-
tion of expensive slide bearings at bents. Some example details of knock-off devices are pro-
vided in Figures 3-3 and 3-4.

3.2 Joints

An alternative to preventing abutment backwall damage in bridges is to provide a sacrificial joint
element. Seismically isolated bridges require large movements that alter the structural period,
thereby reducing demands on the substructure. Design of deck expansion joints to accommodate
these movements, especially in high seismic zones, is difficult at best. One problem in designing
deck joints for seismic movements is providing for motion in the transverse direction of the
bridge. Most expansion joint systems, such as traditional modular assemblies or finger joints are
manufactured for longitudinal movement only. Any transverse movement, usually required
when seismic isolation bearings are used, will most likely result in joint assembly failure.

A bridge constructed Walnut Creek, California, in 1991 required an expansion joint as the super-
structure changed from a continuous built up plate girder to a concrete box girder (see Figure 3-
5). To facilitate the 9" longitudinal seismic movement, concrete breakaway detail with a 9" void
covered by steel plate formed a unique joint assembly. A modular unit was installed to handle
the 4" movement rating due to thermal loading in conjunction with this voided area that would
allow free movement of the isolated steel structure.

The Golden Gate Bridge retrofit project is incorporating large sacrificial joints to accommodate
both longitudinal and transverse displacements at the abutments of the North Viaduct, a steel
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deck truss structure. In addition, the Benicia-Martinez retrofit project has a similar detail at the
abutments of the north and south approaches, which are simply supported steel I-girder spans.
For this design, shear keys are used to prevent movement in the transverse direction. The seis-
mic performance goal for both projects was to prevent collapse and provide serviceability after a
major seismic event. Following a major event, it is likely that the bridge will have to be closed
for a short time to allow repairs to the joint element. Although these details are being used to ret-
rofit bridges, they could be extended to new bridge designs. These retrofits utilize isolation
bearings between the substructure and superstructure. In order to accommodate the large longi-
tudinal movements expected (+12 to 15 inches), a sacrificial joint is used at the abutments. A
sample detail of those joints is shown in Figures 3-6 and 3-7. An alternative detail using a
swivel joint, which is intended to remain serviceable after an earthquake, was also investigated
as an alternative for the North Viaduct. This joint was designed for both longitudinal and trans-
verse displacements. See Figure 3-8 for an example of a swivel joint developed by the D. S.
Brown Company.

The Japanese have designed joints for both longitudinal and transverse movement (Kemishima,
1992).  An expansion joint developed for a three-span 106 m bridge used a traditional finger
joint for longitudinal movement (see Figure 3-9). The joint was supported by two steel “I”
beams placed perpendicular to the bridge centerline. Between the two steel beams was a guide
block to prevent uplift and any longitudinal movement of the joint due to live load impact. Tef-
lon sheets were placed over the support beams to provide a “sliding” surface. The joint
performed well in laboratory tests, but concerns were raised over noise due to live load impact
and development of adequate drainage equipment.

Several bridges were reconstructed after the Northridge earthquake in 1994. Two such bridges
were the North and South Connector Ramps at the 14/5 Interchange (Roberts, 1995). The new
North Connector Ramp is 1532' long with columns ranging from 25" to 75' in length so it was not
possible to eliminate all the deck hinge and expansion joints. However, a new detail was devel-
oped for these hinges which is shown in Figure 3-10. The hinge joint is centered between two
columns approximately 40' apart and the two deck elements cantilever from the adjacent bents.
Since neither side supports the other, there is no risk of a deck collapse, even in a major seismic
event with large ground movement. The joint may separate, but a steel plate can be placed over
that joint and the bridge can remain in service during repair. This detail has been utilized exten-
sively in this interchange on three of the longest connector ramps.

An additional feature of the improved bridge design is shown in Figure 3-11. That is for the
abutments at the ends of the 1500 long Northbound Route 14 ramp that was constructed without
an intermediate deck joint. The large displacements are handled at the abutment by isolating the
superstructure and supporting the end span on 6' diameter pile shaft, placed adjacent and in front
of the abutment. This detail allows for both transverse and longitudinal displacements up to 4' at
the abutments. It is expected that the deck joint expansion material will be damaged when such
large movements occur. The resulting damage will probably cause closure of the bridge until a
temporary plate can be installed over the gap. This type of damage repair can be completed
within hours of the event. Traffic will remain in service while the permanent repairs are being
completed.
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FIGURE 3-10: Hinge Detail on North Connector

FIGURE 3-11: Abutment Detail for Large Displacement
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SECTION 4 .
PASSIVE ENERGY DISSIPATING DEVICES AND ISOLATION BEARING SYSTEMS

Several energy dissipating devices and isolation bearing systems have emerged in the last two
decades. They are capable of reducing the movement and the responses of bridges during earth-
quakes by adding damping and limiting the structure force below damage level. These devices
can be classified by their mechanics and their way of dissipating energy such as yielding steel
dampers, lead-extrusion dampers, friction dampers, hydraulic dampers, viscoelastic dampers, and
isolation bearing systems. Traditionally, two philosophies have been used in the past to seismi-
cally design a bridge: strength or ductility. The incorporation of energy dissipating devices is
relatively new to bridge construction. Background information will be presented first in Section
4.1 and their application to bridges will be discussed in Section 4.2.

4.1 Classification
4.1.1 Yielding Steel Devices

Yield steel devices improve the behavior of the bridge by increasing it’s stiffness, strength and
damping. The energy is dissipated mainly through the yielding of the mild-steel which can be
designed to yield at a predetermined force level. By forcing these devices to yield the forces
going into the structure can be limited below the damage level; therefore, reducing excessive
ductility demand in the structure. Several yielding steel devices are shown in Figure 4-1 and
their possible uses in bridges are listed in Table 4-1.
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TABLE 4-1: Application of Yielding Steel Devices in New Bridges

Application in Bridges

Yielding
Steel
Devices

Shear Panel
Damper

Span
Hinge

Superstructure
-Substructure
Connection

Column

Tower-Deck
Connection*

Superstructure
-Abutment
Connection

Steel Truss
Diagonals

X

Added
Damping
and Stiffness
(ADAS)

X

X

Steel Ring
Damper

Tapered
Steel Ring
Damper (T-
SRD)

Bell Damper

e kg

o b

Tapered
Column (T-
CD)

> >4

o ke

Honeycomb

Flexural
Beam

> P4

Torsional
Beam

Multi-
Directional
Crescent
Moon-
Shaped
Damper

Italian W-
Shaped
Damper

Italian E-
Shaped

Damper

*Suspension, Cable-Stay Bridges
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" FIGURE 4-1: Yielding Steel Devices; (a) SPD, ADAS, SRD, T-SRD, Bell, T-CD, and
Honey Comb (Dorka)
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FIGURE 4-1: Yielding Steel Devices; (c) Multi-directional crescent moon-shaped steel
damper (Courtesy of ALGA) (Priestley, 1996)
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4.1.2 Lead-Extrusion Dampers

The concept of the lead-extrusion dampers are very similar to hydraulic dampers in functionality
(see Figure 4-2). The lead goes into a liquid state under high temperature and pressure and flows
through orifices (Priestley, 1996). At the end of an earthquake event the lead recrystalizes, and
returns to the original state. Their behavior is velocity and temperature dependent; therefore,
their yield level may not be well defined which is a disadvantage when used as a structural fuse

(Dorka). Lead extrusion devices are shown in Fi

listed in Table 4-2.

gure 4-2 and their possible use in bridges are

TABLE 4-2: Application of Lead Extrusion Devices in New Bridges

Lead Span | Superstructure | Column| Tower-Deck | Superstructure | Steel Iruss
Extrusion | Hinge | -Substructure Connection* -Abutment Diagonals
Devices Connection Connection
——_ |
Lead Extru- X X X X ‘X
sion

*Suspension, Cable-Stay Bridges
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FIGURE 4-2: Lead Extrusion Devices
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4.1.3 Friction Dampers

Friction dampers have long been used as energy dissipation devices for thermal loading of
bridges and to reduce the response of buildings and bridges under wind vibration loading. Re-
cently, many friction dampers have been proposed for seismic loading to dissipate energy and
control the amount of force going into the structure as shown in Figure 4-3. Most of the friction
dampers possess a perfect elasto-plastic force-displacement hystetric loop (Aiken, 1990). The
force level can easily be adjusted even after a damper has been installed. Their behavior is not
affected by frequency or cyclic loading. The coefficient of friction and the sliding interface ma-
terial are susceptible to environmental influence and aging (Dorka). Table 4-3 lists several fric-
tion dampers and possible uses in bridges.

TABLE 4-3: Application of Friction Devices in New Bridges

Friction
Devices

Energy Dis-
sipation Re-
straint
(EDR)

Span
Hinge

X

Superstructure
-Substructure
Connection

X

Column

Tower-Deck
Connection*

X

Superstructure
-Abutment
- Connection

X

Steel Truss
Diagonals

X

Sumitomo
Friction
Damper

Displace-
ment
Control De-
vice (DCD)

Pall Friction
Device

Slotted
Bolted Con-
nection
(SBC)

*Suspension, Cable-Stay Bridges
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4.1.4 Hydraulic Dampers

Hydraulic dampers (fluid viscous dampers) have been used for many years in the automobile,
military and aerospace industry to minimize vibration shock. The Italians have extended their
use to energy dissipation and as shock transmitters in the past two decades for highway bridges.
Recently, in the United States, a few bridges and buildings have been seismically retrofitted us-
ing fluid viscous dampers. Their damping force is velocity dependent; however, it is out-of-

phase with the displacement which is a very desirable feature for passive damping,

and relatively

insensitive to temperature change. Some hydraulic dampers are shown in Figure 4-4 and their

possible uses in bridges are listed below in Table 4-4.

TABLE 4-4: Application of Hydraulic Devices in New Bridges

Hydraulic | Span [ Superstructure | Column|] Tower-Deck Superstructure | Steel Truss
Devices Hinge | -Substructure Connection* -Abutment Diagonals
Connection Connection

Taylor De- X X X i X X
vices ‘
FIP Devices X X X X X
Enidine De- X X X X X
vices
Lisega De- X X X X X
vices

*Suspension, Cable-Stay Bridges

62




¢ 5.50007-39%9 6 26.50 MAX. 8 23.25 MAX. 8 12.50 MAX.

SPHERICAL BEARING
BORE, 2 PLACES.

15.00£.12 +/— .25 INCH ADJUSTMENT 10.00+.38

(IN .083 INCH INCREMENT) »2 PLACES.

(88.00)

(168.00 COMPRESSED LG.)
(196.00 MID—STROKE LG.)

(224.00 EXTENDED LG.)

(a) Taylor device

T LW L A __ I ekl
Xan arcanmtiie p 8 43 a0 " IRL n-.m-—-..-.s-\

-_
an 200-s00s 40000

o5
LX)

(b) FIP device

FIGURE 4-4: Fluid Viscous Dampers
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4.1.5 Viscoelastic Dampers

Viscoelastic dampers have been developed by the 3M Company and were used in several tall
buildings for wind control vibration applications. The viscoelastic dampers are composed of two
bonded viscoelastic layers (acrylic polymers) as shown in Figure 4-5. Recently, their-use has
been extended to resist earthquake loadings (Yakota, 1992). The viscoelastic damper material
properties, such as shear loss modulus and shear storage modulus, are frequency and temperature
dependent (Mahmoodi, 1969). Their possible application in new bridges is shown in Table 4-5.

TABLE 4-5: Application of Viscoelastic Devices in New Bridges

[ Viscoelastic | Span | Superstructure | Column| Tower-Deck | Superstructure | Steel Truss
Devices Hinge | -Substructure Connection* -Abutment Diagonals
Connection Connection

*Suspension, Cable-Stay Bridges

FIGURE 4-5: Viscoelastic Damper (Aiken, 1990)
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4.1.6 Isolation Bearing System

Seismic isolation systems can be categorized into two categories, either elastomeric or sliding
bearings. Elastomeric and sliding bearings are two ways of introducing flexibility into a bridge.
They lengthen the period of the structure, therefore, reducing the amount of force transmitted to
the substructure and increase the bearing relative displacement. Reduction of bearing displace-
ment can be accomplished by using high damping rubber or by use of additional energy dissi-
pating devices like yield steel dampers, lead extrusion dampers, friction dampers, hydraulic
dampers, and lead plugs in the elastomeric bearing (Buckle, 1990). In the last two decades,
many isolation bearing systems have been adopted all over the world as a seismic isolation sys-
tem in bridges and buildings. Some of the isolation bearing systems are shown in Figure 4-6 and
their possible uses in bridges are listed below in Table 4-6. The effect of the substructure flexi-
bility was investigated in details as shown in Appendix A. The effect of the substructure flexi-
bility on the isolation system response is almost negligible in the case of a stiff substructure.
However, in the case of a flexible substructure, the bearing displacement can increase substan-
tially and one should incorporate it in the determination of the isolation system response.

TABLE 4-6: Application of Isolation Bearing Devices in New Bridges

Isolation
Bearing
Devices

Lead Rubber

Span
Hinge

Superstructure
-Substructure
Connection

X

Column

Tower-Deck
Connection*

X

Superstructure
~Abutment
Connection

X

Steel Truss
Diagonals

————e——

Bearing
(LRB)

High X X X
Damping
Rubber
Bearing
(HDB)

Friction X X X
Pendulum
Sliding
Bearing
(FPS)

PTFE Flat X X X
Sliding Disc
Bearing

Resthient X X X
Frictional
Base Isola-

tion (RFBI)

Elastomeric X X X
Bearing and ‘
Sliding Plate

*Suspension, Cable-Stay Bridges
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FIGURE 4-6: Isolation Bearing Systems (Priestley, 1996)
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68



op Connecting Plate

Rudber Plug

0 T

/Jw.oao_o.. .190&& .‘o_ N
MO ARG
AN

—
\
\
\

)

R

!

S

A
/ooo//
..,& o.w.

\ S

Bottom
Connecting Plate

Centrai Steel Rod

Tetlon Layers

Rubdbber Plug

Siiding Plates

Audber Core

FRICTION PLANE

——CONCRETE PEDESTAL

X \—-chnou PL ATES

BASE SLAB

(e) The R-FBI bearing

REINFORCED
NEOPRENE PAD

ing and friction plates

bear

1C

() Elastomer

Systems (cont.)

Isolation Bearing

FIGURE 4-6

69



4.2 Application to Bridges

Many passive energy dissipating devices have been used successfully to retrofit bridges; how-
ever, their use can be extended to new bridge construction. In Figures 4-7 to 4-11, their applica-
tion to new bridge design is shown schematically in structural form diagrams. Traditionally, two
philosophies have been used in the past to seismically design a bridge: strength or ductility. The
incorporation of energy dissipating devices is relatively new to bridge construction. Their use in
new bridges may be beneficial depending on the seismic performance goal, the bridge type and
configuration. The intent of this section is to provide some ideas for bridge designs where en-
ergy dissipating devices could be used.

Several energy dissipating devices are currently being used in New Zealand which are sacrificial
or utilize sacrificial components as follows:

1. A torsional beam energy dissipator is present on the South Rangitikei Rail Bridge in New
Zealand. The twin concrete columns are designed to "step" by alternatively lifting off their
elastomeric bearing supports during transverse seismic shaking. Lift-off induces torsional
action in the two torsional beam dissipators at the base of each column. A vertical shear key
member is provided at the base of each column with a stop to limit the extent of vertical
stepping in case of a major seismic event (EERI, 1990). Some example details of the tor-
sional beam energy dissipator are provided in Figure 4-12.

2. A flexural beam energy dissipator is composed of a set of cast steel loading arms and a mild
steel circular beam. Loads are applied to the ends of the loading arms, which induce alter-
nating tensile and compressive loads on the device. These loads induce bending stresses in
the circular beam as the beam is forced to deform. Six of these devices were placed in the
Cromwell Bridge in New Zealand. The devices were connected to a fixed abutment to dissi-
pate any energy that might result from the longitudinal movement caused by large earth-
quakes. Analytical studies indicated that the advantage of incorporating the devices was a re-
duction in superstructure displacement (similar to the longitudinal joint restrainer previously
discussed), which resulted in both a cost savings for the abutment Joint details and a greater
degree of protection against yielding in the piers (FHWA, 1983). An example detail of a
flexural beam energy dissipator is provided in Figure 4-13.

3. The Bannockburn Bridge, a 148 meter long four span steel truss bridge (see Figure 4-14) on
tall reinforced concrete piers, was completed in 1989 and spans a lake created by a power
development project. The bridge was built before the lake was filled. The bases of the piers
are now submerged and are therefore inaccessible for convenient repair. The seismic design
approach adopted therefore was that the piers should remain elastic under the design earth-
quake conditions. Preliminary analysis demonstrated the need for slab piers to provide ade-
quate transverse stiffness and for energy dissipators to be incorporated at the abutments to
provide longitudinal stiffness and damping. Lead-rubber bearings are located at the piers and
footing. Lead extrusion devices were adopted for use at the abutments. The adopted energy
dissipating devices provide yield forces, represented as a percentage of the superstructure
weight, of 20% longitudinally and 10% transversely. The maximum design displacements at
the abutment deck joints and across the bearings are less than 100 mm. With the avoidance of
yielding of the pier stems, limited ductility design procedures were adopted for the pier stem
reinforcement (EERI, 1990).

4. Similar lead extrusion devices have also been used in two bridges (see Figure 4-15) crossing
a motorway in Wellington. Both of these bridges are on a steep grade and are supported on
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sliding bearings while being restrained longitudinally by the lead extrusion dissipators. In
these bridges, the dissipators must resist not only significant traction and braking forces from
vehicles, but must also provide longitudinal seismic restraint with a limited force applying to
the abutment (EERI, 1990).

Energy dissipation devices are being used in the U.S. to retrofit some large span bridges. The
Marquan Bridge in Portland, Oregon incorporated shock transmission devices at the joints of a
drop in span adjacent Pier 3 and Pier 4 (see Figures 4-16 and 4-17). The Golden Gate Bridge
proposed retrofit is utilizing a damper system between the tower and deck connection at the
North (Marin) Tower and Pylon N1 (see Figures 4-18 to 4-20). Both systems are used to limit
impacting to structural components. A fluid viscous damper system was proposed for the Martin
Luther King Bridge (Route 1-70) in St. Louis, Missouri. The existing bridge is a multi-girder
steel viaduct on steel rocker bearings. The design alternative proposed to incorporate fluid vis-
cous dampers with new elastomeric bearings. The purpose of the retrofit was to reduce the seis-
mic forces to the two column bents. An example detail for this proposed retrofit is shown in
Figures 4-21 and 4-22. -

Several new bridge designs in the U.S., which include the states of Illinois, California, Oregon,
New Hampshire, Kentucky, and Missouri, have incorporated lead core rubber bearings for seis-
mic isolation (Mayes, 1995) as follows:

1. The Sexton Creek Bridge is located in Alexander County in southern Illinois, in the New
Madrid fault zone. It is the first new bridge in North America to be isolated. The 3-span con-
tinuous bridge with spans of 120'-154'-120" and 5 lines of slightly curved, steel girders is
supported on lead-rubber isolation bearings. For seismic loads, the acceleration coefficient,
A, was 0.20 and the soil profile was Type III. One goal of the design was to reduce the seis-
mic forces by a factor of 3, the other was to evaluate the range of possible lateral load distri-
butions by using bearings of a constant height, but varying the distribution of the lead core
for the purpose of minimizing lateral forces on the piers.

2. Olympic Boulevard Separation is part of the reconstruction of Route 24/I-680 Interchange in
Walnut Creek, east of Oakland, California. This 700 ft.-long, 4-span continuous, curved,
composite-steel plate-girder bridge is Caltrans' first new bridge to be seismically isolated. It
was built as part of a temporary flyover to handle southbound traffic on I-680 until late in the
project schedule, when the superstructure and its isolation bearings will be moved over to its
final, permanent alignment. Caltrans chose isolation design to ensure serviceability and avoid
the cost of repair after a 0.6g seismic event, and to simplify removal and reuse of the compo-
nents in the permanent structure. The design reduced the seismic forces by a factor of 6.5.
Compared to conventional design, this reduced the cost of the piled foundations by 38%.

3. McLoughlin Boulevard was seismically upgraded as part of reconstruction of the Tacoma
Street Interchange southeast of Portland, Oregon. This upgrade required the replacement of
an existing ramp with a new, 1005-ft.-long, 8-span structure which curves through an 80 de-
gree change in direction. For aesthetic and maintenance reasons, Oregon DOT's Bridge Sec-
tion selected a conventional, continuous, post-tensioned concrete box girder with integral
cross beams and monolithically connected columns supported on piled footings. The con-
ventional design for a 0.3g event resulted in large and expensive footings, which would have
encroached on the root system of adjacent redwood trees. By incorporating isolation design,
the period of the structure was lengthened from 0.33 sec. to 2.1 sec., producing a force re-
duction sufficient to cut the footing size in half and reduce the number of piles by 30%.
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4. The Squamscott River Bridge is a river crossing located in Rockingham County in the south-
east corner of New Hampshire. The seismic requirement for the area is Category B, based on
an acceleration coefficient of 0.15. The subsurface conditions very closely match those of
AASHTO Soil Profile Type III. The bridge, spanning the Squamscott River and adjoining
wetlands, is a 52 ft.-8 in. wide, 874 ft.-long, 6-span, continuous steel plate-girder structure
with a composite concrete deck slab. It was originally designed in the traditional manner,
utilizing steel rocker bearings, with the center pier (Pier 3) fixed and expansion joints at each
abutment. This required Pier 3 to resist all the longitudinal lateral loads, while both abut-
ments and the five piers resisted the transverse lateral loads. As a result of this lateral load
distribution and the poor foundation material, the original Pier 3 design resulted in a heavily
reinforced, oversize footing (54'x43'x8') with 76 H12x53 piles and a heavily reinforced 6 ft.-
thick solid-concrete shaft. The revised design resulted in Pier 3 having a 48'x15'x4' footing
with thirty H12x53 piles and a 4 ft.-thick, solid-concrete shaft similar to Piers 4 and 5.

5. The US-51 Bridge over Minor Slough in Kentucky is the first prestressed concrete I-girder
structure in North America to be isolated. It is situated in Ballard County on the Wickliffe-
Cairo Road adjacent to the Mississippi River, well within the New Madrid fault zone. The
design acceleration coefficient was 0.25 and the soil condition was AASHTO Type II. The
structure is 47 ft.-wide and 371 ft.-long, and crosses Minor Slough at a 45 degree skew.
There are three 121 ft. simple spans with six lines of girders. Continuity was effected by
casting the pier diaphragms monolithically with the deck slab. The piers are 4-column bents
on piled footings, and the abutments are pile-supported end bents. The overall seismic load
on the bridge was reduced by a factor of 3.5. The resulting lateral forces on the substructures
were then redistributed to favor the piers. This was accomplished by eliminating the lead
cores from the pier isolators and increasing the size of the lead cores in the abutment isola-
tors.

6. A segment of the Metrolink Light Rail System in Missouri includes seven bridges in the sec-
tion of the new, double-track, light-rail line from Taylor Avenue to the St. Louis Interna-
tional Airport. Each superstructure is a concrete or steel box girder supporting a single track
on a concrete-ballasted deck. Haunched and constant-depth, simple and continuous spans are
used, some tangent, some curved. Seat or wall-type abutments are used, some founded on
piling. The piers, some founded on piling, are 2-column bents with the columns closely
spaced at the base, curving upward and outward to connect at the ends of the bent cap which
supports the superstructures for both tracks. The project site lies within the influence of the
New Madrid Fault, and the seismic criteria are AASHTO Category B with an acceleration
coefficient of 0.1 and Soil Type I. While seismic protection to keep the operation functional
after a seismic event was a major consideration, the main motivation for pursuing isolation
design was to distribute lateral forces evenly among all the substructures in any given struc-
ture, instead of resisting them at one fixed pier. The high longitudinal forces - up to 18% of
dead load - were the chief concern. Large lead cores were required to provide the necessary
high, initial stiffness to resist these forces at each support. In some instances, the required
lead core diameter would exceed availability. In these cases, clusters of smaller bearings with
smaller lead cores were installed . The number of bearings per cluster varied from two to
eight, depending on longitudinal force requirements. A nominal seismic force reduction was
also achieved.
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FIGURE 4-12: Torsional Beam Energy Dissipator (cont.)
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FIGURE 4-14: Bannockburn Bridge — General View and Detail of 150 kN Lead
Extrusion Dissipator at Abutment (4 per Abutment)
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FIGURE 4-15: Bolton Street and Aurora Terrace Bridges, Wellington
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SECTION 5
MINIMUM SUPPORT LENGTH REQUIREMENTS

5.1 Longitudinal Direction

The minimum support length in the longitudinal direction should be equal to the maximum unre-
duced earthquake displacement from a dynamic analysis or the nominal seat width N:

where

N = (8 + 0.02L + 0.08H) (inches)

as defined in the AASHTO Seismic Code (AASHTO, 1996b) for Categories A and B, and
N = (12 + 0.03L + 0.12H) (inches)

as defined in the AASHTO Seismic Code for Categories C and D. Caltrans, as well as
AASHTO, has suggested the formula should be modified to account for the skew effect with the
factor (1+S%8000), where S is the angle of the skew in degrees. L is the length in feet of the
bridge deck from the abutment to the adjacent expansion joint and H is the average height in feet
of columns or piers. Several states are adopting this formula in their seismic design procedures.

5.2 Transverse Direction

There is currently no definition in the design code for the minimum support length which should
be provided in the transverse direction. Adequate support length is usually provided by extend-
ing the bent cap or shear keys are provided to limit displacements when conventional type bear-
ings are used. However, in the case of isolated bridges a gapped shear key (stopper blocks) is
used in the transverse direction. They are treated as a back-up system if the bearing fails or dis-
places more than the ultimate bearing displacement capacity. See Section 2.3 for further infor-
mation.
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SECTION 6
EARTH RETAINING SYSTEMS

The design of earth retaining structures for seismic load is a subject on which there are few
guidelines. In fact, most highway departments in the central and eastern United States do not de-
sign retaining walls for seismic loads. Instead they assume, based on previous performance, that
static design is adequate. Many feel that the factor of safety provided in the design of walls for
static pressures may be adequate to prevent damage or detrimental movements during many
earthquakes. Thus, where backfill and foundation soils remain stable, it is only in areas where
very strong ground motions might be expected, for walls with sloping backfills or heavy sur-
charge pressures and for structures which are very sensitive to wall movements, that special
seismic design provisions for lateral pressure effects may be necessary (Seed & Whitman, 1970).

Even the most detailed seismic design codes, such as the recommendations from the French As-
sociation for Seismic Engineering published in 1990, contain only a few rather simplistic rules
for the design of retaining walls for seismic loading.

These assumptions appear to be adequate in the case of reinforced earth type structures on the
basis of performance. Post earthquake condition inspections of reinforced earth structures fol-
lowing the 1976 Friuli, Italy earthquake (6.4 Richter magnitude, four walls — no damage), the
1983 Akita, Japan earthquake (7.7 Richter magnitude, 20 reinforced earth structures — no dam-
age) and the 1994 Northridge, California earthquake (6.7 Richter magnitude, 21 walls and two
abutments - superficial damage to one wall) revealed little difference in the performance char-
acteristics between walls and/or abutments designed for special seismic provisions and those that
were not.

Contacts with DOT’s in the central and eastern United States reveal that those states that are de-
signing retaining structures for seismic loading are using the pseudo-static Mononabe-Okabe
method as outlined in the AASHTO Standard Specifications for Highway Bridges (AASHTO,
1991).

Structural damage to earth retaining structures from past earthquakes has been primarily limited
to those walls that were an integral part of the bridge substructure or in close proximity to the
bridge. These components were designed to dissipate energy and act as fuses to protect other
non-ductile elements. In contrast free standing earth retaining structures have performed very
well, suffering only cosmetic damage. The ability of earth retaining structures to act as flexible
elements during earthquakes is the key in limiting structural damage. Providing details that al-
low free unrestricted movement of the structure will minimize repairs.

The earth retaining structures to be discussed will be classified, based on AASHTO Bridge De-
sign Specifications, into four basic groups:

1. Conventional Walls

2. Anchored Walls

3. Mechanically Stabilized Earth Walls
4. Prefabricated Modular Walls
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6.1 Conventional Walls

Conventional walls include gravity walls, semi-gravity walls, cantilevered walls, counterfort
walls, and buttressed walls. These walls move in phase with the surrounding ground during
earthquakes until some critical lateral force occurs resulting in permanent displacement. These
displacements can accumulate during the event resulting in an overall permanent displacement.

Earth retaining structures such as bridge wingwalls suffered extensive damage in previous earth-
quakes. The 1971 San Fernando earthquake caused simple span propped wingwalls to com-
pletely separate from their abutments. This allowed backfill material to escape resulting in ex-
cessive settlement of the bridge approach. The 1994 Northridge Earthquake caused widespread
spalling and cracking to horizontally cantilevered bridge wingwalls. Freestanding cantilever
walls performed well except for one instance where the wall translated out 2 inches. It was ap-
parent that the footing embedment did not satisfy minimum design requirements and, therefore,
there was a deficiency in passive soil resistance. Another problem associated with the seismic
performance of conventional walls is the settlement of material behind the wall. While undesir-
able, it is primarily caused by the densification of the backfill and, in some cases, the foundation
material coupled with small outward movements of the wall.

Currently Caltrans provides standard design drawings for cantilever retaining walls up to 36 feet.
The conservative Working Stress Method of design is used with no provision for seismic load-
ing. The wall design has not been updated partly due to the wall’s acceptable earthquake per-
formance. As Caltrans transitions to Load and Resistance Design (LRFD), the design will be
updated and seismic forces included. Seismic design is required for walls that support vehicular
barrier railing or soundwalls. External stability is checked using the Working Stress Design
method while internal stability under seismic loading is checked by the Load Factor Design
method. The active earth pressure coefficient (Kae) due to earthquake is determined using the
Mononobe-Okabe analysis method. The plastic moment capacity of the stem is taken as a factor
of 1.3 times the nominal moment capacity. This moment is used to determine the plastic shear at
the base of the stem and is checked against the available stem shear capacity. This same shear is
also applied directly above the footing along with the stem, barrier, footing, and earth dead load
to determine if the resultant force assures overall stability.

Research conducted at the University of California, Irvine, (Haroun, 1994) on structural pier
walls may explain the good behavior of the cantilever retaining wall. Physical testing of scaled
pier walls showed excellent results in ductility and drift capacity. The slender nature of a pier
wall (height to width ratio) resulted in a primarily flexural response when loaded in the weak di-
rection. The geometry of the reinforcement, with two parallel rows at the front and back face of
the wall strained all the bars equally. This resulted in a long plastic hinge length that allowed
large transverse displacements with little structural degradation. The cantilever retaining wall is
also a slender structural element with similar reinforcement geometry, and its behavior should be
very close to the pier walls.

Minor detailing modifications to these walls could substantially reduce the cosmetic damage suf-
fered in past earthquakes. Caltrans Standard Plan B3-8, July 1992, shows a 1/2" expansion joint
between adjoining wall segments. Widening this joint to 3/4" would reduce the spalling that oc-
curs from the walls banging into each other (see Figure 6-1). The waterstop located at this joint
could also be improved to permit greater movements.
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An aesthetic detail modification such as a horizontal offset could be added to retaining walls that
connect to bridge abutment wingwalls or return walls to limit the visual effect of the permanent
offsets and deformations that accompany large earthquakes (see Figure 6-2).

—p —3/4"

7 . Retaining Wall

Horizontal
Offset _>‘

FIGURE 6-1: Plan of Wall with Expansion FIGURE 6-2: Plan of Abutment with
Joint Horizontal Offset

6-2 Anchored Walls

Anchored walls include active anchors such as prestressed tiebacks or passive anchors such as
soil nails. There has been minimal reports of damage from past earthquakes to anchored walls.

The main concern during earthquakes with actively anchored walls is structural damage to the
anchorage which could lead to failure. Current Caltrans specifications for prestressed tieback
anchors requires wedge lockoff at 150% of the design load to fully seat the strand wedges. The
8" to 12" cast-in-place concrete wall poured over the anchorage area prevents the wedges from
unseating during large earthquakes. If no concrete wall is to be placed over the anchorage, a re-
tainer plate can be used to prevent wedge unseating. This retainer plate is routinely used in
bridge seismic retrofits that require tensile resistance in column footings that resist overturning
from seismic loading. Bolts hold the retainer in place and are torqued to a force greater than the
unseating force (see Figure 6-3).

For tieback design loads, the Mononobe-Okabe analysis method is used to determine the earth-
quake active pressure coefficient. Caltrans typically designs stand-alone tiedback walls for static
earth pressures and, where warranted, checks global stability considering horizontal seismic ac-
celeration. One construction step that should be considered is to seat the permanent strand
wedges at the level of test load specified.

Soil nail walls have been an economical alternative to active tieback anchors. Many soil nail
walls were in close proximity to severe shaking during the Loma Prieta earthquake with no visi-
ble damage. The walls had flexible thin facings (4" thick) that appeared to articulate with the
earthquake ground motion. For corrosion protection, Caltrans has increased the thickness of the
walls to 12" which may cause problems as flexibility is sacrificed. The current cast-in-place wall
facing is designed to resist the yield strength of the soil nail in punching shear.
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bolt

-4—— retainer plate

4—— anchor head

FIGURE 6-3: Retainer Plate for Strand Wedges
6.3 Mechanically Stabilized Embankment (MSE) Walls

This soil retaining system uses either strip or grid-type metallic tensile reinforcement in the soil
mass connected to a modular precast concrete facing. These walls have performed well in past
carthquakes as they articulate with the movement of the soil. Damage has been limited to super-
ficial spalls and cracks to the precast concrete facing. One MSE wall during the Northridge
Earthquake suffered moderate damage at the bottom of the wall which was restricted from lateral
movement and rotation by the abutting concrete pavement. There has been no evidence of pull-
out or yielding of the embedded tensile reinforcement.

Research conducted at the University of California, Davis, concluded that MSE walls are a vi-
able alternative to conventional walls in seismic environments.(Romstad, 1992) These results
were based on comprehensive centrifuge modeling of both the MSE wall and the concrete canti-
lever retaining wall. It was found that the MSE wall was much more sensitive to the backfill
material type than the concrete cantilever. The acceleration force for soundwalls mounted on top
of a cantilever wall is twice the acceleration force for the soundwalls mounted on top of MSE
wall; however, the permanent displacement for the soundwalls mounted on MSE wall is two to
four times that of soundwalls mounted on a cantilever wall. Soundwalls mounted on top of the
MSE wall were supplemented by a pile anchor system.

The flexibility of the MSE wall system in an earthquake may produce densification of the rein-
forced soil mass and the underlying foundation material. Caltrans requires that piling support a
bridge abutment that uses MSE walls to retain earth.

For face panels that are located in close proximity of an abutment footing in an area of signifi-
cant seismic activity, special precautions and design considerations need to be taken.
Displacement of an abutment relative to face panels can induce high force resisting demands of
the connection of the soil reinforcement to the panel. Failure of these connections could result in
a hazard of a falling face panel.

A recommended detail modification would be to provide a clearance between the wall and any
element that may restrict movement, such as roadway pavement or concrete slope paving (see

Figure 6-4).
6.4 Prefabricated Modular Walls

Prefabricated modular walls have not had significant damage in past earthquakes, but their in-
ability to tolerate large differential displacements is of concern. Caltrans standard details for
Crib walls use interlocking Header and Stretcher precast beams and are not detailed for ductility.

96



Damage in past earthquakes included densification and lateral spreading of the wall. The inter-
locking precast concrete elements tended to clamp down on one another resulting in cracking.

The height of these walls should be limited in high seismic zones and alternative retaining

structures considered for tall walls. The precast elements should be ductility detailed in the area
where the header and stretcher interlock.

confine

=

L

FIGURE 6-4: Elevation — Crib Wall Header
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APPENDIX A

EFFECT OF SUBSTRUCTURE FLEXIBILITY ON THE
ISOLATION SYSTEM RESPONSE :

The AASHTO Guide Specifications for Seismic Isolation Design — Draft Report (AASHTO,
1996a) suggested that the substructure flexibility should be included in the calculation of the ef-
fective isolation stiffness as shown in Figure A-1 and Figure A-2. The effect of the stiffness
(flexibility) of the substructure in the isolation system will lengthen the effective period of the
isolation system, which leads to an increase in the displacement of the isolation bearing system.
However, if the flexibility of the substructure is not considered the isolation bearings system dis-
placement may be underestimated. In order to account for the substructure flexibility, two cases
will be studied and compared.

A.1 Combined System (Isolation System on a Flexible Substructure)

In order to study this case, the following assumptions will be made:

e The substructure force-displacement behavior is linear (Kf,“b = K;“b) as shown in Fig-
ure A-2a.

e The substructure mass is neglected.

e The isolation system force-displacement behavior is bilinear as shown in Figure A-2b.

The initial stiffness of the combined system (K ) (substructure and isolation system) as shown
in Figure A.2c is

1 1
= +—— (two springs in series Al
K Kf.“"K’u’( pring ) (A.1)
which can be written also as
Ksub . Kis
c - u ll A,2
"KM +KP “-2)
and the post-elastic stiffness of the combined system (K3) is
sub is
K; = %i- (A.3)
K" +Kj
define
sub sub
K~ _K (A4)

o = —t-=—4-
K; | &



and

is
—_ Ku

B==

(A5)

where the superscripts are defined as “sub = substructure” and “is = isolation”. Substituting
Equations A.4 and A.5 into Equations A.2 and A.3, we obtain,

o B _.
Kl =——K" A6
and
a .
K = ——K* A7
¢ 1+ ¢ (A7)

The effective stiffness of the combined system as shown in Figure A.2c (K:ﬁ) is equal to the
maximum bearing force, (F,,,), divided by the maximum isolation displacement, d,,

F

Koo =3 (A8)
where
Fx =K; d, +K(d, - d,) (A9)
let
=Y (A.10)
dY

Substitute Equations A.6, A.7 and A.10 into Equation A.9, F___becomes

Fm=[ b 1, o [”'1)]1(1; d, (A.11)

o+B8pu l+al p
and Equation A.8 becomes
B 0B 1, o [p-l (A.12)
Ki a+B8p a+l1{ u
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A.2 Non-Combined System (Isolation System on a Rigid Substructure) -

If the effect of substructure flexibility is not considered, then the effective stiffness will be

&:E.*.k_l

o (A.13)
Ke p n
To quantify the effect of substructure flexibility on the Isolation Effective Period
let
TS, = 21 | (A.14)
Keff
TS =27 l\g (A.15)
Kcﬁ'

Substituting Equations A.12 and A.13 into Equations A.14 and A.15 and taking the ratio of

the two, we obtain,
Lo K _ B+(-1) (A.16)
Teff Keff GB o

—_—t (-1
oa+B 1+a(u )

Equation A.16 represents the ratio by how much the period of the combined system has been
lengthened by including the effect of the substructure flexibility. Different combinations of

o and B have been used in Equation A.16 to see the effect of the substructure flexibility on
the isolation system as shown in Table A-1 and Figure A-3.

A.3 Verification Problem (Example)

In order to verify the effect of substructure flexibility on the isolation system response and vali-
date our assumptions used in deriving Equation A.16, a verification problem is presented. A
fully base-isolated bridge shown in Figure A-4, which is located in Benicia, California, will be
used in the study. This toll bridge is being retrofitted to a maximum credible earthquake. Al-
though this is for a retrofitted structure its application for substructure flexibility can be extended
to new bridge designs. The superstructure of the multi-span bridge is composed of six steel gird-
ers seated on six isolation bearings per bent as shown in Figure A-5. It is assumed stiff in the
longitudinal and transverse directions compared with the stiffness of the isolation bearings and
substructure (bents). The substructure is composed of two-column bents founded on piles. The
bent’s rigidity varies from very stiff (i.e., Pier 16) to very flexible (i.e., Pier 13). Three different
bents, Pier 16, Pier 14 and Pier 13, were used in this study, with the same section properties, but
with different column heights as shown in Table A-2. Each pier (bent) is modeled as a simpli-
fied model in the transverse direction with a superstructure tributary weight equal to 650 kips per
bearing. The bent is modeled as a linear beam element and the isolation bearings as bilinear
spring elements with the properties summarized in Table A-2. A time history analysis was con-



ducted using a site specific time history acceleration input as shown in Figure A-6. The maxi-
mum displacement responses are summarized in Table A-3 for the three bents. The time history
displacement is plotted in Figure A-7 to Figure A-9. As we can see from Table A-3, the effect of
the substructure on the isolation response is minimum for the case of Pier 16 (stiff pier); how-
ever, it is substantial in the case of Pier 13 (flexible) where the bearing displacement increased

21.3
by about 1.5 times (—= = 1.5).
y ( 14.2 )

In order to verify the validity of Equation A-16, the effective stiffnesses and their associated pe-
riods of the isolation system for the three bents were determined (see Table A-4) using the
maximum relative bearing displacement obtained from the time history analysis as shown in Ta-
ble A-3. By comparing them to the effective isolation periods calculated based on Equation A-
16 as shown in Table A-5. Equation A.16 predicted quite well the period lengthening of the
isolation system due to the substructure flexibility.

A.4 Conclusion

The effect of the substructure flexibility was investigated and the following conclusions can be
derived. _

The effect of the substructure is almost negligible for the case of the stiff substructure on the
isolation system responses. However, in the case of a tall column bent the effect of the sub-
structure flexibility can be substantial and one should incorporate it in the determination of the
isolation system responses.

The derived Equation A.16 gives a good indication by how much the effective isolation period
can be lengthened due to the flexibility of the substructure.



TABLE A-1 Effect of Substructure Flexibility on the Isolation System

d, K K& B K ' T
(Eqn. 10) (Eqn. 4) (Eqn. 5) (Eqn. 4)/(Eqn. 5) (Eqn. 16)

1 - 1 1 1 1.4142
2 3 1 3 1.1547
5 10 1 10 1.0488
10 50 1 50 1.0100
20 80 1 80 1.0062
30 100 1 100 1.0050
1 20 20 1 1.4142
2 60 20 3 1.1462
5 200 20 10 1.0406
10 1000 20 50 1.0070
20 1600 20 80 1.0033
30 2000 20 100 1.0022
T 100 100 1 1.4142
2 300 100 3 1.1528
5 1000 100 10 1.0468
10 5000 100 50 1.0091
20 8000 100 80 1.0052
30 10000 100 100 1.0039

*T 1solation (flexible substructure)/T (isolation rigid substructure)

TABLE A-2 Simplified Model Properties

Column Bent Cap Single Bearing Property
Properties Properties
Bent | Col. A 1=0.5L, A Ig Ku Kd Fy Dy
Hfti'tg)ht (ftr2) | Etr4) | (ftr2) | (ft*4) | (K/in) | (K/in) | (Kip) (in)
16 33 64.5 179.2 110 916 72.6 7.1 43 0.59
14 61.5 64.5 179.2 110 916 72.6 7.1 43 0.59
13 123 64.5 179.2 110 916 72.6 7.1 43 0.59
TABLE A-3 Simplified Model Time History Results
Maximum Displacement
Bent Col. Bent | Deck | Bearing Comments
Height (ft) | (in) (in) (in)
16 33 0.7 14.3 14.2 Rigid Substructure
14 61.5 2.5 16.3 16.9
13 123 16.2 25.5 21.3 Flexible Substructure




TABLE A-4 Simplified Model Natural Period

SDOF Natural Period (sec) Simplified Model,
Natural Period .
(sec)
Bent Col. Bent Alone | Deck on Isolation | Bent | Deck on Teff/Teff *
Height (ft) | (w/out deck) | (rigid substructure) | Mode | Isolation Model
Mode
16 33 0.2 2.63 0.21 263 1.00
14 61.5 0.48 2.63 0.46 2.79 1.06
13 123 1.49 2.63 1.14 3.61 1.37
*T isolation (flexible substructure)/T isolation (rigid substructure)
TABLE A-5 Effect of Substructure Flexibility (Eqn. 16)
Bent Col. Alpha | Beta Max. Disp. Max. Bear. Teft/Teff *
Height (ft) | (Eqn. | (Eqn. | (time history) Ductility (Eqn. 16)
4) 5) (Eqn. 10)
16 33 90 10.25 14.2 24 1.00
14 61.5 19 10.25 16.9 29 1.06
13 123 2.9 10.25 21.3 40 1.27
*T isolation (flexible substructure)/T isolation (rigid substructure)
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145239, A04, MF-A01).

"Modeling of R/C Building Structures With Flexible Floor Diaphragms (IDARC2)," by A.M. Reinhorn, SX.
Kunnath and N. Panahshahi, 9/7/88, (PB89-207153, A07, MF-A01).

"Solution of the Dam-Reservoir Interaction Problem Using 2 Combination of FEM, BEM with Particular
Integrals, Modal Analysis, and Substructuring,” by C-S. Tsai, G.C. Lee and R.L. Ketter, 12/31/88, (PB89-
207146, A04, MF-A01).

"Optimal Placement of Actuators for Structural Control,” by F.Y. Cheng and C.P. Pantelides, 8/15/88,
(PB89-162846, A05, MF-A01).
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NCEER-89-0001

NCEER-89-0002

NCEER-89-0003

NCEER-89-0004

NCEER-89-0005

NCEER-89-0006

NCEER-89-0007

"Teflon Bearings in Aseismic Base Isolation: Experimental Studies and Mathematical Modeling,” by A.
Mokha, M.C. Constantinou and A.M. Reinhorn, 12/5/88, (PB89-218457, A10, MF-A01). This report is
available only through NTIS (see address given above).

"Seismic Behavior of Flat Slab High-Rise Buildings in the New York City Area," by P. Weidlinger and M.
Ettouney, 10/15/88, (PB90-145681, A04, MF-A01).

"Evaluation of the Earthquake Resistance of Existing Buildings in New York City," by P. Weidlinger and M.
Ettouney, 10/15/88, to be published.

"Small-Scale Modeling Techniques for Reinforced Concrete Structures Subjected to Seismic Loads,” by W.
Kim, A. El-Attar and R.N. White, 11/22/88, (PB89-189625, A0S, MF-A01).

"Modeling Strong Ground Motion from Multiple Event Earthquakes," by G.W. Ellis and A.S. Cakmak,
10/15/88, (PB89-174445, A03, MF-A01).

"Nonstationary Models of Seismic Ground Acceleration," by M. Grigoriu, S.E. Ruiz and E. Rosenblueth,
7/15/88, (PB89-189617, A04, MF-A01).

"SARCF User's Guide: Seismic Analysis of Reinforced Concrete Frames," by Y.S. Chung, C. Meyer and M.
Shinozuka, 11/9/88, (PB89-174452, A08, MF-A01).

"First Expert Panel Meeting on Disaster Research and Planning," edited by J. Pantelic and J. Stoyle, 9/15/88,
(PB89-174460, A05, MF-A01). This report is only available through NTIS (see address given above).

"Preliminary Studies of the Effect of Degrading Infill Walls on the Nonlinear Seismic Response of Steel
Frames," by C.Z. Chrysostomou, P. Gergely and J.F. Abel, 12/19/88, (PB89-208383, A05, MF-A01).

"Reinforced Concrete Frame Component Testing Facility - Design, Construction, Instrumentation and
Operation," by S.P. Pessiki, C. Conley, T. Bond, P. Gergely and R.N. White, 12/16/88, (PB89-174478, A04,
MF-A01).

"Effects of Protective Cushion and Soil Compliancy on the Response of Equipment Within a Seismically
Excited Building," by J.A. HoLung, 2/16/89, (PB89-207179, A04, MF-AQ1).

"Statistical Evaluation of Response Modification Factors for Reinforced Concrete Structures,” by H.H-M.
Hwang and J-W. Jaw, 2/17/89, (PB89-207187, A05, MF-A01).

"Hysteretic Columns Under Random Excitation," by G-Q. Cai and Y.K. Lin, 1/9/89, (PB89-196513, A03,
MF-A01).

"Experimental Study of "Elephant Foot Bulge' Instability of Thin-Walled Metal Tanks," by Z-H. Jia and R.L.
Ketter, 2/22/89, (PB89-207195, A03, MF-A01).

"Experiment on Performance of Buried Pipelines Across San Andreas Fault," by J. Isenberg, E. Richardson
and T.D. O'Rourke, 3/10/89, (PB89-218440, A04, MF-A01). This report is available only through NTIS (see
address given above).

"A Knowledge-Based Approach to Structural Design of Earthquake-Resistant Buildings," by M. Subramani,
P. Gergely, C.H. Conley, J.F. Abel and A.H. Zaghw, 1/15/89, (PB89-218465, A06, MF-A01).

"Liquefaction Hazards and Their Effects on Buried Pipelines," by T.D. O'Rourke and P.A. Lane, 2/1/89,
(PB89-218481, A0S, MF-A0Q1). ]
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NCEER-89-0018

NCEER-89-0019

NCEER-89-0020
NCEER-89-0021

NCEER-89-0022

NCEER-89-0023

NCEER-89-0024

"Fundamentals of System Identification in Structural Dynamics," by H. Imai, C-B. Yun, O. Maruyama and
M. Shinozuka, 1/26/89, (PB89-207211, A04, MF-A01).

"Effects of the 1985 Michoacan Earthquake on Water Systems and Other Buried Lifelines in Mexico," by
A.G. Ayala and M.J. O'Rourke, 3/8/89, (PB89-207229, A06, MF-AO1).

"NCEER Bibliography of Earthquake Education Materials," by K.EK. Ross, Second Revision, 9/1/89,
(PB90-125352, A0S, MF-A01). This report is replaced by NCEER-92-0018.

"Inelastic Three-Dimensional Response Analysis of Reinforced Concrete Building Structures (IDARC-3D),
Part I - Modeling," by S.K. Kunnath and A.M. Reinhorn, 4/17/89, (PB90-114612, A07, MF-A0Q1).

"Recommended Modifications to ATC-14," by C.D. Poland and J.O. Malley, 4/12/89, (PB90-108648, A15,
MF-A01).

"Repair and Strengthening of Beam-to-Column Connections Subjected to Earthquake Loading,” by M.
Corazao and A.J. Durrani, 2/28/89, (PB90-109885, A06, MF-A01).

"Program EXKAL?2 for Identification of Structural Dynamic Systems," by O. Maruyama, C-B. Yun, M.
Hoshiya and M. Shinozuka, 5/19/89, (PB90-109877, A09, MF-A01).

"Response of Frames With Bolted Semi-Rigid Connections, Part I - Experimental Study and Analytical
Predictions," by P.J. DiCorso, A.M. Reinhorn, J.R. Dickerson, J.B. Radziminski and W.L. Harper, 6/1/89, to
be published.

"ARMA Monte Carlo Simulation in Probabilistic Structural Analysis," by P.D. Spanos and M.P. Mignolet,
7/10/89, (PB90-109893, A03, MF-A01).

"Preliminary Proceedings from the Conference on Disaster Preparedness - The Place of Earthquake
Education in Our Schools," Edited by K.E.K. Ross, 6/23/89, (PB90-108606, A03, MF-A01).

"Proceedings from the Conference on Disaster Preparedness - The Place of Earthquake Education in Our
Schools," Edited by K.E.K. Ross, 12/31/89, (PB90-207895, A012, MF-A02). This report is available only
through NTIS (see address given above).

"Multidimensional Models of Hysteretic Material Behavior for Vibration Analysis of Shape Memory Energy
Absorbing Devices, by E.J. Graesser and F.A. Cozzarelli, 6/7/89, (PB90-164146, A04, MF-A01).

"Nonlinear Dynamic Analysis of Three-Dimensional Base Isolated Structures (3D-BASIS)," by S.
Nagarajaiah, A.M. Reinhorn and M.C. Constantinou, 8/3/89, (PB90-161936, A06, MF-A01). This report
has been replaced by NCEER-93-0011.

"Structural Control Considering Time-Rate of Control Forces and Control Rate Constraints," by F.Y. Cheng
and C.P. Pantelides, 8/3/89, (PB90-120445, A04, MF-A01). :

"Subsurface Conditions of Memphis and Shelby County," by K.W. Ng, T-S. Chang and H-H.M. Hwang,
7/26/89, (PB90-120437, A03, MF-A01).

"Seismic Wave Propagation Effects on Straight Jointed Buried Pipelines,” by K. Elhmadi and M.J.
O'Rourke, 8/24/89, (PB90-162322, A10, MF-A02).

"Workshop on Serviceability Analysis of Water Delivery Systems," edited by M. Grigoriu, 3/6/89, (PB90-
127424, A03, MF-AO01).

"Shaking Table Study of a 1/5 Scale Steel Frame Composed of Tapered Members," by K.C. Chang, J.S.
Hwang and G.C. Lee, 9/18/89, (PB90-160169, A04, MF-A01).
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NCEER-89-0037
NCEER-89-0038
- NCEER-89-0039
NCEER-89-0040

NCEER-89-0041

NCEER-90-0001

"DYNAID: A Computer Program for Nonlinear Seismic Site Response Analysis - Technical
Documentation,”" by Jean H. Prevost, 9/14/89, (PB90-161944, A07, MF-A01). This report is available only
through NTIS (see address given above).

"1:4 Scale Model Studies of Active Tendon Systems and Active Mass Dampers for Aseismic Protection,” by
AM. Reinhorn, T.T. Soong, R.C. Lin, Y.P. Yang, Y. Fukao, H. Abe and M. Nakai, 9/15/89, (PB90-173246,
A10, MF-A02).

"Scattering of Waves by Inclusions in a Nonhomogeneous Elastic Half Space Solved by Boundary Element
Methods," by P.K. Hadley, A. Askar and A.S. Cakmak, 6/15/89, (PB90-145699, A07, MF-A01).

“Statistical Evaluation of Deflection Amplification Factors for Reinforced Concrete Structures,” by H.H.M.
Hwang, J-W. Jaw and A.L. Ch'ng, 8/31/89, (PB90-164633, A05, MF-A01).

"Bedrock Accelerations in Memphis Area Due to Large New Madrid Earthquakes," by H.-H.M. Hwang,
C.H.S. Chen and G. Yu, 11/7/89, (PB90-162330, A04, MF-A01).

"Seismic Behavior and Response Sensitivity of Secondary Structural Systems," by Y.Q. Chen and T.T.
Soong, 10/23/89, (PB90-164658, A08, MF-A01).

*Random Vibration and Reliability Analysis of Primary-Secondary Structural Systems,” by Y. Ibrahim, M.
Grigoriu and T.T. Soong, 11/10/89, (PB90-161951, A04, MF-A01).

"Proceedings from the Second U.S. - Japan Workshop on Liquefaction, Large Ground Deformation and
Their Effects on Lifelines, September 26-29, 1989," Edited by T.D. O'Rourke and M. Hamada, 12/1/89,
(PB90-209388, A22, MF-A03).

"Deterministic Model for Seismic Damage Evaluation of Reinforced Concrete Structures,” by J.M. Bracci,
A M. Reinhorn, J.B. Mander and S.K. Kunnath, 9/27/89, (PB91-108803, A06, MF-AO01).

"On the Relation Between Local and Global Damage Indices," by E. DiPasquale and A.S. Cakmak, 8/15/89,
(PB90-173865, A0S, MF-A01).

"Cyclic Undrained Behavior of Nonplastic and Low Plasticity Silts,” by A.J. Walker and HEE. Stewart,
7/26/89, (PB90-183518, A10, MF-A01).

"Liquefaction Potential of Surficial Deposits in the City of Buffalo, New York," by M. Budhu, R. Giese and
L. Baumgrass, 1/17/89, (PB90-208455, A04, MF-A01).

"A Deterministic Assessment of Effects of Ground Motion Incoherence,” by A.S. Veletsos and Y. Tang,
7/15/89, (PB90-164294, A03, MF-A01).

"Workshop on Ground Motion Parameters for Seismic Hazard Mapping," July 17-18, 1989, edited by R.V.
Whitman, 12/1/89, (PB90-173923, A04, MF-A01).

"Seismic Effects on Elevated Transit Lines of the New York City Transit Authority,” by C.J. Costantino,
C.A. Miller and E. Heymsfield, 12/26/89, (PB90-207887, A06, MF-A01).

“Centrifugal Modeling of Dynamic Soil-Structure Interaction,” by K. Weissman, Supervised by J.H. Prevost,

5/10/89, (PB90-207879, A07, MF-AO1).
"Linearized Identification of Buildings With Cores for Seismic Vulnerablhty Assessment," by I-K. Ho and
A.E. Aktan, 11/1/89, (PB90-251943, A07, MF-AOQ1).

"Geotechnical and Lifeline Aspects of the October 17, 1989 Loma Prieta Earthquake in San Francisco," by
T.D. O'Rourke, H.E. Stewart, F.T. Blackburn and T.S. Dickerman, 1/90, (PB90-208596, A05, MF-A01).
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"Nonnormal Secondary Response Due to Yielding in a Primary Structure,” by D.C.K. Chen and L.D. Lutes,
2/28/90, (PB90-251976, A07, MF-A01).

"Earthquake Education Materials for Grades K-12," by K.E.K. Ross, 4/16/90, (PB91-251984, A0S, MF-
AD5). This report has been replaced by NCEER-92-0018.

"Catalog of Strong Motion Stations in Eastern North America," by R.W. Busby, 4/3/90, (PB90-251984,
A05, MF-A01).

"NCEER Strong-Motion Data Base: A User Manual for the GeoBase Release (Version 1.0 for the Sun3),” by
P. Friberg and K. Jacob, 3/31/90 (PB90-258062, A04, MF-AQ1).

"Seismic Hazard Along a Crude Oil Pipeline in the Event of an 1811-1812 Type New Madrid Earthquake,"
by H.H.M. Hwang and C-H.S. Chen, 4/16/90, (PB90-258054, A04, MF-AO01).

"Site-Specific Response Spectra for Memphis Sheahan Pumping Station,” by H.HM. Hwang and C.S. Lee,
5/15/90, (PB91-108811, A0S, MF-A01).

"Pilot Study on Seismic Vulnerability of Crude Oil Transmission Systems," by T. Ariman, R. Dobry, M.
Grigoriu, F. Kozin, M. O'Rourke, T. O'Rourke and M. Shinozuka, 5/25/90, (PB91-108837, A06, MF-A01).

"A Program to Generate Site Dependent Time Histories: EQGEN," by G.W. Ellis, M. Srinivasan and A.S.
Cakmak, 1/30/90, (PB91-108829, A04, MF-A01).

"Active Isolation for Seismic Protection of Operating Rooms," by M.E. Talbott, Supervised by M.
Shinozuka, 6/8/9, (PB91-110205, A05, MF-A01). :

"Program LINEARID for Identification of Linear Structural Dynamic Systems," by C-B. Yun and M.
Shinozuka, 6/25/90, (PB91-110312, A08, MF-A01).

"Two-Dimensional Two-Phase Elasto-Plastic Seismic Response of Earth Dams," by AN. Yiagos,
Supervised by J.H. Prevost, 6/20/90, (PB91-110197, A13, MF-A02).

"Secondary Systems in Base-Isolated Structures: Experimental Investigation, Stochastic Response and
Stochastic Sensitivity," by G.D. Manolis, G. Juhn, M.C. Constantinou and A.M. Reinhorn, 7/1/90, (PB91-
110320, A08, MF-A01).

"Seismic Behavior of Lightly-Reinforced Concrete Column and Beam-Column Joint Details,” by S.P.
Pessiki, C.H. Conley, P. Gergely and R.N. White, 8/22/90, (PB91-108795, A1, MF-AQ2).

"Two Hybrid Control Systems for Building Structures Under Strong Earthquakes,” by J.N. Yang and A.
Danielians, 6/29/90, (PB91-125393, A04, MF-A01).

"Instantaneous Optimal Control with Acceleration and Velocity Feedback," by J.N. Yang and Z. Li, 6/29/90,
(PB91-125401, A03, MF-A01).

"Reconnaissance Report on the Northemn Iran Earthquake of June 21, 1990," by M. Mehrain, 10/4/90,
(PB91-125377, A03, MF-A01).

"Evaluation of Liquefaction Potential in Memphis and Shelby County," by T.S. Chang, P.S. Tang, C.S. Lee
and H. Hwang, 8/10/90, (PB91-125427, A09, MF-A01).

"Experimental and Analytical Study of a Combined Sliding Disc Bearing and Helical Steel Spring Isolation

System," by M.C. Constantinou, A.S. Mokha and A.M. Reinhorn, 10/4/90, (PB91-125385, A06, MF-A01).
This report is available only through NTIS (see address given above).
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"Experimental Study and Analytical Prediction of Earthquake Response of a Sliding Isolation System with a
Spherical Surface," by A.S. Mokha, M.C. Constantinou and A.M. Reinhorn, 10/11/90, (PB91-125419, A05,
MF-A01).

"Dynamic Interaction Factors for Floating Pile Groups,” by G. Gazetas, K. Fan, A. Kaynia and E. Kausel,
9/10/90, (PB91-170381, A05, MF-A01).

"Evaluation of Seismic Damage Indices for Reinforced Concrete Stfuctures," by S. Rodriguez-Gomez and
A.S. Cakmak, 9/30/90, PB91-171322, A06, MF-AO01).

"Study of Site Response at a Selected Memphis Site," by H. Desai, S. Ahmad, E.S. Gazetas and M.R. Oh,
10/11/90, (PB91-196857, A03, MF-A01).

"A User's Guide to Strongmo: Version 1.0 of NCEER's Strong-Motion Data Access Tool for PCs and
Terminals," by P.A. Friberg and C.A.T. Susch, 11/15/90, (PB91-171272, A(3, MF-A01).

"A Three-Dimensional Analytical Study of Spatial Variability of Seismic Ground Motions," by L-L. Hong
and A.H.-S. Ang, 10/30/90, (PB91-170399, A09, MF-AO01).

"MUMOID User's Guide - A Program for the Identification of Modal Parameters," by S. Rodriguez-Gomez
and E. DiPasquale, 9/30/90, (PB91-171298, A04, MF-AO01).

"SARCF-II User's Guide - Seismic Analysis of Reinforced Concrete Frames," by S. Rodriguez-Gomez, Y.S.
Chung and C. Meyer, 9/30/90, (PB91-171280, A05, MF-A01).

"Viscous Dampers: Testing, Modeling and Application in Vibration and Seismic Isolation,” by N. Makris
and M.C. Constantinou, 12/20/90 (PB91-190561, A06, MF-A01).

“Soil Effects on Earthquake Ground Motions in the Memphis Area,” by H. Hwang, C.S. Lee, K.W. Ng and
T.S. Chang, 8/2/90, (PB91-190751, A05, MF-A01).

"Proceedings from the Third Japan-U.S. Workshop on Earthquake Resistant Design of Lifeline Facilities and
Countermeasures for Soil Liquefaction, December 17-19, 1990," edited by T.D. O'Rourke and M. Hamada,
2/1/91, (PB91-179259, A99, MF-A04).

"Physical Space Solutions of Non-Proportionally Damped Systems,” by M. Tong, Z. Liang and G.C. Lee,
1/15/91, (PB91-179242, A04, MF-A0Q1). ‘

"Seismic Response of Single Piles and Pile Groups," by K. Fan and G. Gazetas, 1/10/91, (PB92-174994,
A04, MF-AQ1).

"Damping of Structures: Part 1 - Theory of Complex Damping," by Z. Liang and G. Lee, 10/10/91, (PB92-
197235, A12, MF-A03).

"3D-BASIS - Nonlinear Dynamic Analysis of Three Dimensional Base Isolated Structures: Part II," by S.
Nagarajaiah, A.M. Reinhorn and M.C. Constantinou, 2/28/91, (PB91-190553, A07, MF-A01). This report
has been replaced by NCEER-93-0011.

"A Multidimensional Hysteretic Model for Plasticity Deforming Metals in Energy Absorbing Devices,” by
E.J. Graesser and F.A. Cozzarelli, 4/9/91, (PB92-108364, A04, MF-A01).

"A Framework for Customizable Knowledge-Based Expert Systems with an Application to a KBES for

Evaluating the Seismic Resistance of Existing Buildings," by E.G. Ibarra-Anaya and S.J. Fenves, 4/9/91,
(PB91-210930, A08, MF-A01).
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NCEER-91-0025

NCEER-91-0026

"Nonlinear Analysis of Steel Frames with Semi-Rigid Connections Using the Capacity Spectrum Method,"
by G.G. Deierlein, S-H. Hsieh, Y-J. Shen and J.F. Abel, 7/2/91, (PB92-113828, A0S, MF-A01).

"Earthquake Education Materials for Grades K-12," by K.E.K. Ross, 4/30/91, (PB91-212142, A06, MF-
AO01). This report has been replaced by NCEER-92-0018.

"Phase Wave Velocities and Displacement Phase Differences in a Harmonically Oscillating Pile,” by N.
Makris and G. Gazetas, 7/8/91, (PB92-108356, A04, MF-A0Q1).

"Dynamic Characteristics of a Full-Size Five-Story Steel Structure and a 2/5 Scale Model," by K.C. Chang,
G.C. Yao, G.C. Lee, D.S. Hao and Y.C. Yeh," 7/2/91, (PB93-116648, A06, MF-A02).

"Seismic Response of a 2/5 Scale Steel Structure with Added Viscoelastic Dampers," by K.C. Chang, T.T.
Soong, S-T. Oh and M.L. Lai, 5/17/91, (PB92-110816, A05, MF-A01).

"Earthquake Response of Retaining Walls; Full-Scale Testing and Computational Modeling," by S.
Alampalli and A-W.M. Elgamal, 6/20/91, to be published.

"3D-BASIS-M: Nonlinear Dynamic Analysis of Muitiple Building Base Isolated Structures," by P.C.
Tsopelas, S. Nagarajaiah, M.C. Constantinou and A.M. Reinhorn, 5/28/91, (PB92-113885, A09, MF-AQ2).

"Evaluation of SEAOC Design Requirements for. Sliding Isolated Structures," by D. Theodossiou and M.C.
Constantinou, 6/10/91, (PB92-114602, A11, MF-A03).

"Closed-Loop Modal Testing of a 27-Story Reinforced Concrete Flat Plate-Core Building," by H.R.
Somaprasad, T. Toksoy, H. Yoshiyuki and A.E. Aktan, 7/15/91, (PB92-129980, A07, MF-AQ2).

"Shake Table Test of a 1/6 Scale Two-Story Lightly Reinforced Concrete Building," by A.G. El-Attar, RN.
White and P. Gergely, 2/28/91, (PB92-222447, A06, MF-A02).

"Shake Table Test of a 1/8 Scale Three-Story Lightly Reinforced Concrete Building," by A.G. El-Attar, R.N.
White and P. Gergely, 2/28/91, (PB93-116630, A08, MF-A02).

"Transfer Functions for Rigid Rectangular Foundations," by A.S. Veletsos, AM. Prasad and W.H. Wu,
7/31/91, to be published.

"Hybrid Control of Seismic-Excited Nonlinear and Inelastic Structural Systems,” by IN. Yang, Z. Liand A.
Danielians, 8/1/91, (PB92-143171, A06, MF-A02).

"The NCEER-91 Earthquake Catalog: Improved Intensity-Based Magnitudes and Recurrence Relations for
U.S. Earthquakes East of New Madrid," by L. Seeber and J.G. Armbruster, 8/28/91, (PB92-176742, A06,
MF-A02).

"Proceedings from the Implementation of Earthquake Planning and Education in Schools: The Need for
Change - The Roles of the Changemakers," by K.E.K. Ross and F. Winslow, 7/23/91, (PB92-129998, A12,
MF-A03).

"A Study of Reliability-Based Criteria for Seismic Design of Reinforced Concrete Frame Buildings," by
H.H.M. Hwang and H-M. Hsu, 8/10/91, (PB92-140235, A09, MF-A02).

"Experimental Verification of a Number of Structural System Identification Algorithms," by R.G. Ghanem,
H. Gavin and M. Shinozuka, 9/18/91, (PB92-176577, A18, MF-A04).

"Probabilistic Evaluation of Liquefaction Potential," by H.H.M. Hwang and C.S. Lee," 11/25/91, (PB92-
143429, A05, MF-AQ1).

"Instantaneous Optimal Control for Linear, Nonlinear and Hysteretic Structures - Stable Controllers,” by J.N.
Yang and Z. Li, 11/15/91, (PB92-163807, A04, MF-A01).
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"Experimental and Theoretical Study of a Sliding Isolation System for Bridges,” by M.C. Constantinou, A.
Kartoum, A.M. Reinhorn and P. Bradford, 11/15/91, (PB92-176973, A10, MF-A03).

"Case Studies of Liquefaction and Lifeline Performance During Past Earthquakes, Volume 1: Japanese Case
Studies," Edited by M. Hamada and T. O'Rourke, 2/17/92, (PB92-197243, A18, MF-A04).

"Case Studies of Liquefaction and Lifeline Performance During Past Earthquakes, Volume 2: United States
Case Studies," Edited by T. O'Rourke and M. Hamada, 2/17/92, (PB92-197250, A20, MF-A04).

"Issues in Earthquake Education," Edited by K. Ross, 2/3/92, (PB92-222389, A07, MF-A(2).

"Proceedings from the First U.S. - Japan Workshop on Earthquake Protective Systems for Bridges," Edited
by I.G. Buckle, 2/4/92, (PB94-142239, A99, MF-A06).

"Seismic Ground Motion from a Haskell-Type Source in a Multiple-Layered Half-Space,” A.P. Theoharis,
G. Deodatis and M. Shinozuka, 1/2/92, to be published.

"Proceedings from the Site Effects Workshop," Edited by R. Whitman, 2/29/92, (PB92-197201, A04, MF-
AO01).

"Engineering Evaluation of Permanent Ground Deformations Due to Seismically-Induced Liquefaction,” by
M.H. Baziar, R. Dobry and A-W.M. Elgamal, 3/24/92, (PB92-222421, A13, MF-A0Q3).

"A Procedure for the Seismic Evaluation of Buildings in the Central and Eastern United States," by C.D.
Poland and J.O. Malley, 4/2/92, (PB92-222439, A20, MF-A04).

"Experimental and Analytical Study of a Hybrid Isolation System Using Friction Controllable Sliding
Bearings," by M.Q. Feng, S. Fujii and M. Shinozuka, 5/15/92, (PB93-150282, A06, MF-A02).

"Seismic Resistance of Slab-Column Connections in Existing Non-Ductile Flat-Plate Buildings," by A.J.
Durrani and Y. Du, 5/18/92, (PB93-116812, A06, MF-A02).

"The Hysteretic and Dynamic Behavior of Brick Masonry Walls Upgraded by Ferrocement Coatings Under
Cyclic Loading and Strong Simulated Ground Motion," by H. Lee and S.P. Prawel, 5/11/92, to be published.

"Study of Wire Rope Systems for Seismic Protection of Equipment in Buildings," by G.F. Demetriades,
M.C. Constantinou and A.M. Reinhomn, 5/20/92, (PB93-116655, A08, MF-A02).

“Shape Memory Structural Dampers: Material Properties, Design and Seismic Testing," by P.R. Witting and
F.A. Cozzarelli, 5/26/92, (PB93-116663, A0S, MF-A01).

"Longitudinal Permanent Ground Deformation Effects on Buried Continuous Pipelines,” by M.J. O'Rourke,
and C. Nordberg, 6/15/92, (PB93-116671, A08, MF-A02).

"A Simulation Method for Stationary Gaussian Random Functions Based on the Sampling Theorem," by M.
Grigoriu and S. Balopoulou, 6/11/92, (PB93-127496, A0S, MF-A01).

"Gravity-Load-Designed Reinforced Concrete Buildings: Seismic Evaluation of Existing Construction and
Detailing Strategies for Improved Seismic Resistance,” by G.W. Hoffmann, S.K. Kunnath, A.M. Reinhorn
and J.B. Mander, 7/15/92, (PB94-142007, A08, MF-A02).

"Observations on Water System and Pipeline Performance in the Limén Area of Costa Rica Due to the April
22, 1991 Earthquake,” by M. O'Rourke and D. Ballantyne, 6/30/92, (PB93-126811, A06, MF-A02).

"Fourth Edition of Earthquake Education Materials for Grades K-12," Edited by K.EK. Ross, 8/10/92,
(PB93-114023, A07, MF-A02).
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"Proceedings from the Fourth Japan-U.S. Workshop on Earthquake Resistant Design of Lifeline Facilities
and Countermeasures for Soil Liquefaction," Edited by M. Hamada and T.D. O'Rourke, 8/12/92, (PB93-
163939, A99, MF-E11).

"Active Bracing System: A Full Scale Implementation of Active Control," by A.M. Reinhorn, T.T. Soong,
R.C.Lin, M.A. Riley, Y.P. Wang, S. Aizawa and M. Higashino, 8/14/92, (PB93-127512, A06, MF-A02).

"Empirical Analysis of Horizontal Ground Displacement Generated by Liquefaction-Induced Lateral
Spreads,” by S.F. Bartlett and T.L. Youd, 8/17/92, (PB93-188241, A06, MF-A02).

"IDARC Version 3.0: Inelastic Damage Analysis of Reinforced Concrete Structures," by S.K. Kunnath,
A.M. Reinhorn and R.F. Lobo, 8/31/92, (PB93-227502, A07, MF-A02).

"A Semi-Empirical Analysis of Strong-Motion Peaks in Terms of Seismic Source, Propagation Path and
Local Site Conditions, by M. Kamiyama, M.J. O'Rourke and R. Flores-Berrones, 9/9/92, (PB93-150266,
A08, MF-A02).

"Seismic Behavior of Reinforced Concrete Frame Structures with Nonductile Details, Part I: Summary of
Experimental Findings of Full Scale Beam-Column Joint Tests,” by A. Beres, R.N. White and P. Gergely,
9/30/92, (PB93-227783, A05, MF-A01).

"Experimental Results of Repaired and Retrofitted Beam-Column Joint Tests in Lightly Reinforced Concrete
Frame Buildings," by A. Beres, S. El-Borgi, R.N. White and P. Gergely, 10/29/92, (PB93-227791, A05, MF-
A01).

"A Generalization of Optimal Control Theory: Linear and Nonlinear Structures,” by IN. Yang, Z. Li and S.
Vongchavalitkul, 11/2/92, (PB93-188621, A0S, MF-A01).

"Seismic Resistance of Reinforced Concrete Frame Structures Designed Only for Gravity Loads: Part I -
Design and Properties of a One-Third Scale Model Structure,” by J.M. Bracci, A.M. Reinhorn and J.B.
Mander, 12/1/92, (PB94-104502, A08, MF-A02).

"Seismic Resistance of Reinforced Concrete Frame Structures Designed Only for Gravity Loads: Part II -
Experimental Performance of Subassemblages," by L.E. Aycardi, J.B. Mander and A.M. Reinhorn, 12/1/92,
(PB94-104510, A08, MF-A02).

"Seismic Resistance of Reinforced Concrete Frame Structures Designed Only for Gravity Loads: Part III -
Experimental Performance and Analytical Study of a Structural Model," by J.M. Bracci, A.M. Reinhomn and
J.B. Mander, 12/1/92, (PB93-227528, A09, MF-A01).

"Evaluation of Seismic Retrofit of Reinforced Concrete Frame Structures: Part I - Experimental Performance
of Retrofitted Subassemblages,” by D. Choudhuri, J.B. Mander and A.M. Reinhorn, 12/8/92, (PB93-198307,
A07, MF-A02).

"Evaluation of Seismic Retrofit of Reinforced Concrete Frame Structures: Part II - Experimental
Performance and Analytical Study of a Retrofitted Structural Model,” by J.M. Bracci, A.M. Reinhorn and
J.B. Mander, 12/8/92, (PB93-198315, A09, MF-A03).

"Experimental and Analytical Investigation of Seismic Response of Structures with Supplemental Fluid
Viscous Dampers,” by M.C. Constantinou and M.D. Symans, 12/21/92, (PB93-191435, A10, MF-A03).

"Reconnaissance Report on the Cairo, Egypt Earthquake of October 12, 1992," by M. Khater, 12/23/92,
(PB93-188621, A03, MF-AO01).

"Low-Level Dynamic Characteristics of Four Tall Flat-Plate Buildings in New York City,” by H. Gavin, S.
Yuan, J. Grossman, E. Pekelis and K. Jacob, 12/28/92, (PB93-188217, A07, MF-A02).
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"An Experimental Study on the Seismic Performance of Brick-Infilled Steel Frames With and Without
Retrofit," by J.B. Mander, B. Nair, K. Wojtkowski and J. Ma, 1/29/93, (PB93-227510, A07, MF-A02).

"Social Accounting for Disaster Preparedness and Recovery Planning,” by S. Cole, E. Pantoja and V. Razak,
2/22/93, (PB94-142114, A12, MF-A03).

"Assessment of 1991 NEHRP Provisions for Nonstructural Components and Recommended Revisions," by
T.T. Soong, G. Chen, Z. Wu, R-H. Zhang and M. Grigoriu, 3/1/93, (PB93-188639, A06, MF-A02).

"Evaluation of Static and Response Spectrum Analysis Procedures of SEAOC/UBC for Seismic Isolated
Structures,” by C.W. Winters and M.C. Constantinou, 3/23/93, (PB93-198299, A10, MF-A03).

"Earthquakes in the Northeast - Are We Ignoring the Hazard? A Workshop on Earthquake Science and
Safety for Educators," edited by K.E.K. Ross, 4/2/93, (PB94-103066, A09, MF-A02).

"Inelastic Response of Reinforced Concrete Structures with Viscoelastic Braces,” by R.F. Lobo, .M. Bracci,
K.L. Shen, A.M. Reinhorn and T.T. Soong, 4/5/93, (PB93-227486, A05, MF-A02).

"Seismic Testing of Installation Methods for Computers and Data Processing Equipment,” by K. Kosar, T.T.
Soong, K.L. Shen, J.A. HoLung and Y K. Lin, 4/12/93, (PB93-198299, A07, MF-A02). ‘

"Retrofit of Reinforced Concrete Frames Using Added Dampers," by A. Reinhorn, M. Constantinou and C.
Li, to be published.

"Seismic Behavior and Design Guidelines for Steel Frame Structures with Added Viscoelastic Dampers," by
K.C. Chang, M.L. Lai, T.T. Soong, D.S. Hao and Y.C. Yeh, 5/1/93, (PB94-141959, A07, MF-A02).

"Seismic Performance of Shear-Critical Reinforced Concrete Bridge Piers,” by J.B. Mander, S.M. Waheed,
M.T.A. Chaudhary and S.S. Chen, 5/12/93, (PB93-227494, A08, MF-A0Q2). '

"3D-BASIS-TABS: Computer Program for Nonlinear Dynamic Analysis of Three Dimensional Base Isolated
Structures,” by S. Nagarajaiah, C. Li, A M. Reinhorn and M.C. Constantinou, 8/2/93, (PB94-141819, A09,
MF-A02).

"Effects of Hydrocarbon Spills from an Oil Pipeline Break on Ground Water," by O.J. Helweg and HH.M.
Hwang, 8/3/93, (PB94-141942, A06, MF-AQ2).

"Simplified Procedures for Seismic Design of Nonstructural Components and Assessment of Current Code
Provisions,” by M.P. Singh, L.E. Suarez, E.E. Matheu and G.O. Maldonado, 8/4/93, (PB94-141827, A09,
MF-A02).

"An Energy Approach to Seismic Analysis and Design of Secondary Systems," by G. Chen and T.T. Soong,
8/6/93, (PB94-142767, Al11, MF-A03).

"Proceedings from School Sites: Becoming Prepared for Earthquakes - Commemorating the Third
Anniversary of the Loma Prieta Earthquake," Edited by F.E. Winslow and K.E.K. Ross, 8/16/93, (PB9%4-
154275, A16, MF-A02).

"Reconnaissance Report of Damage to Historic Monuments in Cairo, Egypt Following the October 12, 1992
Dahshur Earthquake," by D. Sykora, D. Look, G. Croci, E. Karaesmen and E. Karaesmen, 8/19/93, (PB94-
142221, A08, MF-A02).

"The Island of Guam Earthquake of August 8, 1993," by S.W. Swan and S.K. Harris, 9/30/93, (PB94-
141843, A04, MF-A01).
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"Engineering Aspects of the October 12, 1992 Egyptian Earthquake," by A.W. Elgamal, M. Amer, K.
Adalier and A. Abul-Fadl, 10/7/93, (PB94-141983, A0S, MF-A01).

"Development of an Earthquake Motion Simulator and its Application in Dynamic Centrifuge Testing," by L
Krstelj, Supervised by J.H. Prevost, 10/23/93, (PB94-181773, A-10, MF-A03).

"NCEER-Taisei Corporation Research Program on Sliding Seismic Isolation Systems for Bridges:
Experimental and Analytical Study of a Friction Pendulum System (FPS),” by M.C. Constantinou, P.
Tsopelas, Y-S. Kim and S. Okamoto, 11/1/93, (PB94-142775, A08, MF-A02).

"Finite Element Modeling of Elastomeric Seismic Isolation Bearings,” by L.J. Billings, Supervised by R.
Shepherd, 11/8/93, to be published.

"Seismic Vulnerability of Equipment in Critical Facilities: Life-Safety and Operational Consequences," by
K. Porter, G.S. Johnson, M.M. Zadeh, C. Scawthorn and S. Eder, 11/24/93, (PB94-181765, A16, MF-A03).

"Hokkaido Nansei-oki, Japan Earthquake of July 12, 1993, by P.I. Yanev and C.R. Scawthorn, 12/23/93,
(PB94-181500, A07, MF-A01).

"An Evaluation of Seismic Serviceability of Water Supply Networks with Application to the San Francisco
Auxiliary Water Supply System," by I. Markov, Supervised by M. Grigoriu and T. O'Rourke, 1/21/94,
(PB94-204013, A07, MF-A02).

"NCEER-Taisei Corporation Research Program on Sliding Seismic Isolation Systems for Bridges:
Experimental and Analytical Study of Systems Consisting of Sliding Bearings, Rubber Restoring Force
Devices and Fluid Dampers,” Volumes I and I, by P. Tsopelas, S. Okamoto, M.C. Constantinou, D. Ozaki
and S. Fujii, 2/4/94, (PB94-181740, A09, MF-A02 and PB94-181757, A12, MF-A03).

"A Markov Model for Local and Global Damage Indices in Seismic Analysis," by S. Rahman and M.
Grigoriu, 2/18/94, (PB94-206000, A12, MF-A03).

"Proceedings from the NCEER Workshop on Seismic Response of Masonry Infills," edited by D.P. Abrams,
3/1/94, (PB94-180783, A07, MF-A02).

"The Northridge, California Earthquake of January 17, 1994: General Reconnaissance Report," edited by
J.D. Goltz, 3/11/94, (PB193943, A10, MF-A03).

"Seismic Energy Based Fatigue Damage Analysis of Bridge Columns: Part 1 - Evaluation of Seismic
Capacity," by G.A. Chang and J.B. Mander, 3/14/94, (PB94-219185, A11, MF-A03).

"Seismic Isolation of Multi-Story Frame Structures Using Spherical Sliding Isolation Systems," by T.M. Al-
Hussaini, V.A. Zayas and M.C. Constantinou, 3/17/94, (PB193745, A09, MF-A02).

"The Northridge, California Earthquake of January 17, 1994: Performance of Highway Bridges,” edited by
L.G. Buckle, 3/24/94, (PB94-193851, A06, MF-A02).

"Proceedings of the Third U.S.-Japan Workshop on Earthquake Protective Systems for Bridges," edited by
LG. Buckle and 1. Friedland, 3/31/94, (PB94-195815, A99, MF-A06).

"3D-BASIS-ME: Computer Program for Nonlinear Dynamic Analysis of Seismically Isolated Single and
Multiple Structures and Liquid Storage Tanks," by P.C. Tsopelas, M.C. Constantinou and A.M. Reinhorn,
4/12/94, (PB94-204922, A09, MF-A02).

"The Northridge, California Earthquake of January 17, 1994: Performance of Gas Transmission Pipelines,”
by T.D. O'Rourke and M.C. Palmer, 5/16/94, (PB94-204989, A05, MF-A01).
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"Feasibility Study of Replacement Procedures and Earthquake Performance Related to Gas Transmission
Pipelines," by T.D. O'Rourke and M.C. Palmer, 5/25/94, (PB94-206638, A09, MF-A02).

"Seismic Energy Based Fatigue Damage Analysis of Bridge Columns: Part IT - Evaluation of Seismic
Demand," by G.A. Chang and J.B. Mander, 6/1/94, (PB95-18106, A08, MF-A02).

"NCEER-Taisei Corporation Research Program on Sliding Seismic Isolation Systems for Bridges:
Experimental and Analytical Study of a System Consisting of Sliding Bearings and Fluid Restoring
Force/Damping Devices," by P. Tsopelas and M.C. Constantinou, 6/13/94, (PB94-219144, A10, MF-A(3).

"Generation of Hazard-Consistent Fragility Curves for Seismic Loss Estimation Studies," by H. Hwang and
J-R. Huo, 6/14/94, (PB95-181996, A09, MF-A02).

"Seismic Study of Building Frames with Added Energy-Absorbing Devices," by W.S. Pong, C.S. Tsai and
G.C. Lee, 6/20/94, (PB94-219136, A10, A03).

"Sliding Mode Control for Seismic-Excited Linear and Nonlinear Civil Engineering Structures,” by J. Yang,
J. Wu, A. Agrawal and Z. Li, 6/21/94, (PB95-138483, A06, MF-A02).

*3D-BASIS-TABS Version 2.0: Computer Program for Nonlinear Dynamic Analysis of Three Dimensional
Base Isolated Structures," by A.M. Reinhorn, S. Nagarajaiah, M.C. Constantinou, P. Tsopelas and R. Li,
6/22/94, (PB95-182176, A08, MF-A02).

"Proceedings of the International Workshop on Civil Infrastructure Systems: Application of Intelligent
Systems and Advanced Materials on Bridge Systems," Edited by G.C. Lee and K.C. Chang, 7/18/94, (PB95-
252474, A20, MF-A04).

*Study of Seismic Isolation Systems for Computer Floors," by V. Lambrou and M.C. Constantinou, 7/19/94,
(PB95-138533, A10, MF-A03).

"Proceedings of the U.S.-Italian Workshop on Guidelines for Seismic Evaluation and Rehabilitation of
Unreinforced Masonry Buildings," Edited by D.P. Abrams and G.M. Calvi, 7/20/94, (PB95-138749, A13,
MF-AQ3). :

*"NCEER-Taisei Corporation Research Program on Sliding Seismic Isolation Systems for Bridges:
Experimental and Analytical Study of a System Consisting of Lubricated PTFE Sliding Bearings and Mild
Steel Dampers,” by P. Tsopelas and M.C. Constantinou, 7/22/94, (PB95-182184, A08, MF-A02).

“Development of Reliability-Based Design Criteria for Buildings Under Seismic Load,” by Y.K. Wen, H.
Hwang and M. Shinozuka, 8/1/94, (PB95-211934, A08, MF-A02).

“Experimental Verification of Acceleration Feedback Control Strategies for an Active Tendon System,” by
S.J. Dyke, B.F. Spencer, Jr., P. Quast, M.K. Sain, D.C. Kaspari, Jr. and T.T. Soong, 8/29/94, (PB95-212320,
A05, MF-AO01).

“Seismic Retrofitting Manual for Highway Bridges,” Edited by 1.G. Buckle and LF. Friedland, published by
the Federal Highway Administration (PB95-212676, A15, MF-A03).

“Proceedings from the Fifth U.S.-Japan Workshop on Earthquake Resistant Design of Lifeline Facilities and
Countermeasures Against Soil Liquefaction,” Edited by T.D. O’Rourke and M. Hamada, 11/7/94, (PB95-
220802, A99, MF-E08).

“Experimental and Analytical Investigation of Seismic Retrofit of Structures with Supplemental Damping:
Part 1 - Fluid Viscous Damping Devices,” by A.M. Reinhorn, C. Li and M.C. Constantinou, 1/3/95, (PB95-
266599, A09, MF-A02).
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“Experimental and Analytical Study of Low-Cycle Fatigue Behavior of Semi-Rigid Top-And-Seat Angle
Connections,” by G. Pekcan, J.B. Mander and S.S. Chen, 1/5/95, (PB95-220042, A07, MF-A02).

“NCEER-ATC Joint Study on Fragility of Buildings,” by T. Anagnos, C. Rojahn and A.S. Kiremidjian,
1/20/95, (PB95-220026, A06, MF-A02).

“Nonlinear Control Algorithms for Peak Response Reduction,” by Z. Wu, T.T. Soong, V. Gattulli and R.C.
Lin, 2/16/95, (PB95-220349, A05, MF-A01).

“Pipeline Replacement Feasibility Study: A Methodology for Minimizing Seismic and Corrosion Risks to
Underground Natural Gas Pipelines,” by R.T. Eguchi, H.A. Seligson and D.G. Honegger, 3/2/95, (PB95-
252326, A06, MF-AQ2). :

“Evaluation of Seismic Performance of an 11-Story Frame Building During the 1994 Northridge
Earthquake,” by F. Naeim, R. DiSulio, K. Benuska, A. Reinhorn and C. Li, to be published.

“Prioritization of Bridges for Seismic Retrofitting,” by N. Baséz and A.S. Kiremidjian, 4/24/95, (PB95-
252300, A08, MF-A02). -

“Method for Developirig Motion Damage Relationships for Reinforced Concrete Frames,” by A. Singhal
and A.S. Kiremidjian, 5/11/95, (PB95-266607, A06, MF-A02).

“Experimental and Analytical Investigation of Seismic Retrofit of Structures with Supplemental Damping:
Part II - Friction Devices,” by C. Li and A.M. Reinhorn, 7/6/95, (PB96-128087, A11, MF-A03).

“Experimental Performance and Analytical Study of a Non-Ductile Reinforced Concrete Frame Structure
Retrofitted with Elastomeric Spring Dampers,” by G. Pekcan, J.B. Mander and S.S. Chen, 7/14/95, (PB96-
137161, A08, MF-A02).

“Development and Experimental Study of Semi-Active Fluid Damping Devices for Seismic Protection of

Structures,” by M.D. Symans and M.C. Constantinou, 8/3/95, (PB96-136940, A23, MF-A04).

“Real-Time Structural Parameter Modification (RSPM): Development of Innervated Structures,” by Z.
Liang, M. Tong and G.C. Lee, 4/11/95, (PB96-137153, A06, MF-A01).

“Experimental and Analytical Investigation of Seismic Retrofit of Structures with Supplemental Damping:
Part III - Viscous Damping Walls,” by A.M. Reinhorn and C. Li, 10/1/95, (PB96-176409, Al 1, MF-A03).

“Seismic Fragility Analysis of Equipment and Structures in a Memphis Electric Substation,” by J-R. Huo
and H.H.M. Hwang, (PB96-128087, A09, MF-A02), 8/10/95.

“The Hanshin-Awaji Earthquake of January 17, 1995: Performance of Lifelines,” Edited by M. Shinozuka,
11/3/95, (PB96-176383, A15, MF-A03).

“Highway Culvert Performance During Earthquakes,” by T.L. Youd and C.J. Beckman, available as
NCEER-96-0015.

“The Hanshin-Awaji Earthquake of January 17, 1995: Performance of Highway Bridges,” Edited by LG.
Buckle, 12/1/95, to be published.

“Modeling of Masonry Infill Panels for Structural Analysis,” by A.M. Reinhorn, A. Madan, R.E. Valles, Y.
Reichmann and J.B. Mander, 12/8/95.

“Optimal Polynomial Control for Linear and Nonlinear Structures,” by AK. Agrawal and JN. Yang,
12/11/95, (PB96-168737, A07, MF-A02).
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