PB98-119142 Information is our business.

MODELLING AND VERIFICATON OF ADVANCED
VEHICLE CONTROL SYSTEMS USING TIMING
BASED COMPUTING TECHNIQUES

9 JAN 98

.

'
i
s'f‘“y
N

U.S. DEPARTMENT OF COMMERCE
National Technical Information Service







DA R

PB98-119142

Final Research Report

Project Number: MITRS8-3

Project Title: Modelling and Verification of Advanced Vehicle Control
Systems Using Timing-Based Computing Techniques

Principal Investigator: Nancy Lynch

Sponsor: US Department of Transportation University Transportation
Centers Program '

REPRODUCED BY: NTIS
U.S. Department of Commerce
ional hnical ion Service

T
Springfield, Virginia 22181




DISCLAIMER

This document is disseminated under the sponsorship of the Department of Transportation, Uni-
versity Transportation Centers or University Research Institutes Program, in the interest of infor-
mation exchange. The U. S. Government assumes no liability for the contents or use thereof.



Exhibit C
1. Repori No.

Technical Report Documentation Page
<. Government Accession No. 3. Hecipient's Catalog No.

4M§32T?§ﬁ% and Verification of Advanced Vehicle | HerPortlate

Control Systems Using Timing-Based Computing 1/9/98
Techni ques . 6. Pertorming Organization Code

7. Authons) 8. Performing Organization Report No.
Nancy Lynch

3. Per lormmg Urgamzaﬂon Name and Kaaross

Massachusetts Institute of Technology

11. Contract or Grant No.

DTRS95~-G~-0001
T2 Sponsoring Agency Name and Address T3.Type of Report and Period Covered
New England (Region One) UTC Final Year 8 Project
Magsachusetts Institute

of Technology 9/1/95-2/28/98
77 Massachusetts Avenue, Room 1-235
Cambridge, MA 02139

T3 Sponacnng Agency Cods

15. Supplementary Notes

Supported by a grant from the US Department of

Transportation University Transportation Centers Program
16, Abstract |7

Please see attached.

17 Rey Words o
Please see attached.

3. Distributlon Statement

. Securily Classil. {of this repoi 20. Security Classit. [of This page, 21.No. of Pages 2Z. Price
: 20 60K .

Form DOT F 1700.7 Reproduction of form and completed page is authorized



Keywords

automated transportation systems, distributed computing, safety, hybrid I/O automata, parallel compo-
sition, invariant, levels of abstraction, simulation relation, personal rapid transit, deceleration maneuver,
acceleration maneuver, vehicle protection system, automated highways, platoon, aircraft collision avoidance

Abstract

We have been working on hybrid system modelling, with automated transportation systems as our target
application. We have developed a hybrid automaton model that we call the hybrid I/O automaton (HIOA)
model [1], and have developed decomposition and proof methods for this model. HIOAs allows description
of both discrete and continuous system components — using discrete mathematics notation for the discrete
parts and continuous mathematics notation for the continuous parts of the system. The proof methods
for HIOAs are based on techniques used previously for distributed computer systems: parallel composition,
invariant assertions, and levels of abstraction.

Our notion of composition is based on sharing actions or sharing values of certain variables. Our invariants
and simulation relations may involve real-world quantities like position, velocity, etc., in addition to the usual
discrete quantities. We have designed our model and methods to incorporate control theory techniques as
parts of proofs of invariants and simulation relations. The model clearly separates the use of control theory
and computer science reasoning methods, while allowing them to be used in combination.

We have applied our model and methods to many automated transportation system settings, including
controlled deceleration and acceleration maneuvers, platoon maneuvers (as in the California PATH project),
vehicle protection systems (Raytheon), and aircraft collision avoidance (TCAS, CTAS). In each case, we
have modelled both the discrete and continuous system components, at least at a high level of abstraction.
We have obtained results giving proofs of safety properties. These results are typically conditional results,
saying things like: “under certain assumptions about the behavior of the vehicles, safety is guaranteed”.

[1] Nancy Lynch, Roberto Segala, Frits Vaandrager, and H. B. Weinberg. Hybrid I/O automata. In R. Alur,
T. Henzinger, and E. Sontag, editors, Hybrid Systems III: Verification and Control (DIMACS/SYCON
Workshop on Verification and Control of Hybrid Systems, New Brunswick, New Jersey, October 1995),
volume 1066 of Lecture Notes in Computer Science, pages 496-510. Springer-Verlag, 1996.



Original Goal Statement

The goals of this project were (a) to develop a suitable formal framework for reasoning
about advanced vehicle control systems such as those arising in the Raytheon Personal
Rapid Transit project and the California PATH automated highway project, and (b) to use
this framework to obtain useful results about several typical transportation scenarios. We
planned to do this using powerful techniques arising in computer science, in particular, in
the study of timing-based distributed computer systems.

The framework was to be built upon a particular (non-finite-state) timed automaton model
that we had already developed, and that has been used successfully for modelling and verify-
ing timing-based computer communication systems. The framework was to permit descrip-
tion of both real world components and computer components of advanced vehicle control
systems. It was to support modular description and reasoning, using a variety of verification
and analysis tools. The scenarios we planned to consider involve, among other things, at-
taining and maintaining safe speeds and inter-vehicle distances, implementing typical vehicle
maneuvers, tracking specified vehicle trajectories, and protecting against catastrophes. The
results we sought about the scenarios included proofs of safety and performance properties.

This work was intended to provide designers of advanced vehicle control systems with a
framework they could use for describing, verifying and analyzing their designs. It was also
intended to provide a thorough understanding of the chosen scenarios and how they fit into
a complete transportation system design.

We planned to begin by working with transportation specialists Prof. Shankar Sastry at
the University of California at Berkeley, and Roy Johnson and Steve Spielman at Raytheon
Company, to identify typical transportation problems. For example, we planned to consider:
1. Problems of slowing down a vehicle sufficiently so that it attains a safe speed before
reaching a particular segment of the roadway.

Problems of accommodating lane changes.

Problems of merging and splitting roadways.

Problems of joining and splitting “platoons” of vehicles.

Problems of tracking a specified vehicle trajectory.

Problems of resolving conflicts among several different planned vehicle maneuvers.
Problems of protecting against catastrophes (e.g., crashes), even in the presence of a wide
range of unpredictable/faulty behavior on the part of the system and the environment.

8. Problems of “handing off” control of vehicles from one computer to a nearby computer,
in a distributed computer system.

9. Problems of routing traffic for maximum system throughput.
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Our background for carrying out this research is as follows. For the past 16 years, Prof.
Lynch’s Theory of Distributed Systems (TDS) group at M.I.T. has been one of the leading
research groups working on distributed and real time systems and algorithms. Typical
problems we have studied include problems of communication, resource allocation, consensus,
process control, concurrency control, and synchronization. Our work fits roughly into three
categories: (a) formal modelling and verification methods, (b) algorithms and impossibility
results, and (c) applications.



I. Background

The high-level goal of our project was to produce some new and better tools for establishing
safety and performance properties — especially safety properties — for automated transporta-
tion systems. Some examples of systems to which these tools were intended to apply are
platoons of cars on highways (as occurring, for example, in the California PATH project
[18], automated transit systems (as in Raytheon’s Personal Rapid Transit project), and
aircraft collision avoidance systems (for example, the TCAS collision-avoidance system [4].
Traditional approaches to establishing safety and performance properties involve setting up
a computer model, simulating a large number of scenarios, and determining if the system
seems to behave properly in those scenarios. But there is a problem with this approach: The
fact that the system behaves right in the chosen scenarios does not imply that it will always
behave right; it is not possible to simulate all possible scenarios.

To address this problem, we are using techniques that have recently become very important
in computer science, in particular, in the area of distributed computing. Distributed com-
puting systems are collections of interacting components, for example, active entities called
“processes”, communication channels, and various kinds of memory modules. As normally
considered in computer science, distributed systems maintain discrete data and act in dis-
crete steps. Unlike automated transportation systems, they exhibit no interesting continuous
behavior (except for the passage of time).

Like automated transportation systems, distributed computing systems can be quite com-
plicated to understand. For example, they contain many interacting components, all going
at their own speeds, some of the components may fail, and no component “knows” precisely
what the rest of the system is doing.

Nevertheless, it is important to verify correctness properties of such systems, in particular, to
verify what is known in computer science as safety properties. Safety properties in computer
science are very similar to safety properties in transportation systems — they say that some
undesirable event does not occur. For example, typical safety properties for a distributed
system say that a communication protocol does not deliver the wrong data, or reorder the
messages, or deliver the same messages twice, and that a shared memory does not get
corrupted. Other examples of safety properties are performance properties, for examplie.
bounds on message delivery time.

As for transportation systems, it is not obvious how one can verify safety properties fir
distributed computing systems. Again, it is possible to simulate the system, but simulat::
alone does not test exhaustively for correctness.

The computer science methods that have arisen to cope with this problem involve modelliry
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Figure 1: Structure of Alternating Bit Protocol.

the systems carefully, using automaton (state machine) models based on discrete mathe-
matics. (These state machines are not the same as the finite-state automata used elsewhere
in computer science ~ in particular, they can be infinite-state.) Automaton models for a
distributed system are used as the basis for formal, mathematical reasoning about the sys-
tem’s behavior. Theorems can be proved, asserting that the modelled system’s behavior
satisfies certain conditions. These are statements about what the system will do in all cir-
cumstances, not in just a chosen few as in a simulation. Since there can be infinitely many
different possible executions, this yields a qualitative improvement in information.

Among the leading formal models for distributed systems are two that were developed in
our research group: I/O automata [14, 15] and timed I/O automata [13, 16]

The key ideas that make this approach work are three methods of imposing structure on
complex distributed systems: parallel composition, invariant assertions, and levels of ab-
straction. Parallel composition allows a system to be described formally in pieces, with
a formally-defined parallel composition operator describing how they are combined. The
standard composition operators are substitutive, which means it possible to understand the
behavior of a system without looking inside components to see how they are implemented.
Parallel composition allows formal reasoning about the system in pieces.

For example, Figure 1 depicts the component structure of the well-known Alternating Bit
Protocol. The figure shows two communicating processes and two one-way channels con-
necting them. The Alternating Bit Protocol is designed to achieve reliable communication
over an unreliable channel. It is possible to understand something about how the protocol
works by understanding the behavior of the individual pieces. (E.g., the low-level channels
do not reorder messages, though they may lose or duplicate them.)

Invariants are properties that are true of all reachable systems states. Key safety properties
for distributed systems are usually formulated as invariants. Also, important facts about
the behavior of a distributed system that help to guarantee that the safety properties are
true are usually described as invariants. Invariants have the nice property that they can be
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proved using mathematical induction on the length of a system execution.

For example, in the Alternating Bit Protocol, the protocol sends messages repeatedly, tagged
with 0 or 1, alternating for successive messages. This introduces the possibility of ambiguity,
because the same tag is used for many messages. An important invariant for this system is
that the 0 tags all occur consecutively in the channels, and likewise for the 1 tags; the Os
and 1s are not interleaved in a complicated way. This allows the protocol to sort out the
messages correctly.

Levels of abstraction involve considering a high-level view of a complex system, which is
somehow easier to understand than the complete, detailed system. The detailed system is
related formally to the high-level view, using a relationship known as a simulation relation.
As for invariants, simulation relations can be formally proved to hold using mathematical
induction. Using levels of abstraction, a system can be developed in many layers, introducing
more and more detail, more optimizations, etc.; this discipline of system development is
known in computer science as “successive refinement”.

For example, the Alternating Bit Protocol can be viewed as an implementation of a single
abstract queue (sequence) of high-level messages. Or, it can be viewed as an implementation
of a similar protocol that uses successively increasing (unbounded) sequence numbers, which
in turn implements a queue.

These methods have worked extremely well for distributed systems. The state of the art
in distributed computing is that it is now possible to model very complicated distributed
systems/algorithms using state machines decomposed using parallel composition and levels of
abstraction, and to prove safety properties using invariants and simulation relations. These
methods have been widely applied in areas such as communication, distributed databases,
and fault-tolerant computing. Lynch’s book [9], for example, describes these methods and
some of their applications.

During approximately the past four years, these computer science ideas have been pushed into
a new research area that is known among computer scientists as hybrid systems. A hybrid
system is a system consisting of a combination of discrete components (e.g., computers,
protocols) and continuous components (e.g., planes, trains, and automobiles; machines in
factories, nuclear reactors). Such systems are becoming more and more common, as more and
smarter computer automation is being introduced into many physical applications. Safety
properties, in the sense that transportation people mean by safety, are often important for
such systems.

Various hybrid automaton models have arisen, allowing modelling of both discrete and con-
tinuous components. A variety of proof techniques have begun to be developed, some along
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the lines discussed above — composition, invariants, abstraction; others arising from control
theory, and others employing exhaustive-searching techniques. These techniques have begun
to be applied to some examples, mostly toy examples.

II. Our Project

For about the past four years, members of our group have been working on hybrid system
modelling, with automated transportation systems as our target application. We have de-
veloped a hybrid automaton model that we call the hybrid I/O automaton (HIOA) model
(12], and have developed decomposition and proof methods for this model. HIOAs allows
description of both discrete and continuous system components — using discrete mathemat-
ics notation for the discrete parts and continuous mathematics notation for the continuous
parts of the system. The proof methods for HIOAs are based on those described above
for distributed computer systems: parallel composition, invariant assertions, and levels of
abstraction.

Our notion of composition is based on sharing actions or sharing values of certain variables.
Our invariants and simulation relations may involve real-world quantities like position, ve-
locity, etc., in addition to the usual discrete quantities. We have designed our model and
methods to incorporate control theory techniques as parts of proofs of invariants and simu-
lation relations. The model clearly separates the use of control theory and computer science
reasoning methods, while allowing them to be used in combination.

We have applied our model and methods to many automated transportation system set-
tings, including controlled deceleration and acceleration maneuvers, platoon maneuvers (as
in the California PATH project), vehicle protection systems (Raytheon), and aircraft collision
avoidance (TCAS, CTAS). In each case, we have modelled both the discrete and continuous
system components, at least at a high level of abstraction. We have obtained results giving
proofs of safety properties. These results are typically conditional results, saying things like:
“under certain assumptions about the behavior of the vehicles, safety is guaranteed”.

IT1. Deceleration and Acceleration Maneuvers

Our first project involved analyzing some toy examples involving deceleration and accelera-
tion of vehicles on tracks [19, 20, 10].

A. Deceleration Maneuvers

We first considered the simple problem of ensuring that the speed of a vehicle on a straight
track is in a given range, [Vyin, Uma:| of speeds, when the vehicle reaches a particular track
position z [19, 20]. We assume that the vehicle starts at position 0, with velocity v,, which
is greater than the maximum target velocity v,.,.. In the setup we consider, a controller for
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sample (x, v)

ifrr——,

brake (a)

Figure 2: Interaction between vehicle and controller.

the vehicle is able to issue a brake(a) command, a < 0, which causes the vehicle to decelerate
at an unknown, possibly-varying rate in [a — €, a]. We assume that the controller learns the
position z and velocity ¢ of the vehicle every d time units. See Figure

reffg: vehicle-controller Certain restrictions on the constants are needed in order for the
problem to be solvable.

‘There are many possible controller strategies. For example, one of those we model is as
follows: The controller initially sets the acceleration to aim to reach v,,, exactly when
z = zy. However, the vehicle might actually decelerate faster. Rather than changing the
acceleration repeatedly, the controller leaves the acceleration alone until such time as the
velocity actually becomes less than v,,,.. Thereafter, at each sample point, the controller
resets the acceleration to aim so that £ = v,,,, at the next sample point. This is a somewhat
arbitrary choice of strategy, though the decision not to change the acceleration too frequently
was based on discussions with Raytheon developers.

For this simple strategy, we proved that the require range is in fact reached. The proof splits
up into two arguments, one to show the upper bound v,,,, and one for the lower bound v.....
The key to each proof turns out to be an invariant assertion. We show these below, in order
to illustrate how the proof method works. First, for the upper bound, we use:

Invariant 1: In all reachable states,
2 2

if z < x5 then z; — z > ===,

Invariant 1 says that, at any point during the execution, there is always enough remaining
distance to reach v,,,;, even if the deceleration is the slowest possible. The acc here denotes
the latest acceleration set by the controller - the actual acceleration £ may be smaller.

Formally, an invariant like this one is a property of system states that is claimed to be true in
all reachable states of the system. Typically, invariants are proved by induction on the length
of an execution. Here, since the system is a hybrid system, an execution consists of both
discrete and continuous steps. However, we are still able to prove the result by inductiorn.



in this case on the total number of steps, both continuous and discrete. Basically, we show
that discrete steps and continuous steps (trajectories) both preserve the invariant. For this,
we use a combination of continuous and discrete arguments, where the discrete arguments
use algebraic and logical deduction, and the continuous arguments use simple calculations
involving derivatives. A general theorem about the HIOA model shows how the two kinds of
arguments can be pasted together cleanly, to give a correctness result for the entire system.

Second, for the lower bound, we use:
Invariant 2: In all reachable states, > v,,;,.

Invariant 2 must be strengthened in order for us to prove it by induction. In particular, in
turns out that we have to say something about what is guaranteed between sample points:

Invariant 3: In all reachable states,
& + (acc — €)(next-sample — now) > vpin.

Invariant 3 says that, at all times, even between sample points, the velocity is such that it
is guaranteed to stay above v, until next sample point. More precisely, it says that if the
current velocity is modified by allowing the strongest deceleration (that is, the minimum
acceleration) consistent with the currently-set acceleration acc (namely, acc — €), until the
next sample point, then the result will still be at least v,,;p.

Although this last statement sounds as if it is talking about future behavior, in fact every
quantity mentioned in Invariant 3 is part of the actual state of the automaton model. For
example, the “time of the next sample point” is modelled by a state variable next-sample .

For intuition, consider two special cases: If nert-sample = now, it means that we are at
the end of a sample interval, about to sample again. In this case, the inequality reduces to
T 2 Umin, as needed. At the other extreme, if next-sample = now + d, it means that we
are at the beginning of a sample interval, having just set the acceleration. In this case, the
inequality reduces to: & + (acc — €)d > v,,;,. The extra term of (acc —€)d is the leeway that
we require in order to ensure that the velocity doesn’t degrade too badly during the sample
interval. Again, we prove this by induction.

We treated several variants of the deceleration problem. In addition to composition te
describe the combination of vehicle and controller, and invariants, some of the variants used
levels of abstraction. This was used for replacing high-level descriptions. of controllers by
more detailed implementations.

B. Acceleration Maneuver

In order to explore the use of levels-of-abstraction methods in hybrid systems, we carried ou*
a three-level analysis of a toy vehicle acceleration maneuver [10]. The goal of the maneuver
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is to cause a vehicle, starting at velocity 0 at time 0, to attain a velocity of b (or as close to
b as possible) at a later time a. The vehicle is assumed to provide accurate sampled data
every d time units. The vehicle is assumed to be capable of receiving control signals, one
immediately after each vehicle data output. Each control signal can set an “acceleration
variable”, acc, to an arbitrary real number. However, the actual acceleration exhibited by
the vehicle need not be exactly equal to acc - instead, we assume that it is defined by an
integrable function whose values are always in the range [acc — €, acc]. We can think of this
uncertainty as representing, say, uncertainty in the performance of the vehicle’s propulsion
system.

The vehicle interacts with a controller, presumably a computer. In our work, we describe
a particular controller and analyze the behavior of the combination of the vehicle and con-
troller. One conclusion we draw is that the velocity of the vehicle at time a is in the range
[b—ed, b]. That is, the uncertainty in setting acc combines multiplicatively with the sampling
period to yield the uncertainty in the final velocity of the vehicle. More strongly, we obtain
a range for the velocity of the vehicle at each time in the interval [0, a].

We prove this fact using invariants and levels of abstraction (in particular, simulation meth-
ods), based on hybrid I/O automata [12]. Many of the pieces of the proofs use standard
continuous methods, such as solving algebraic and differential equations. The entire proof
represents a smooth combination of discrete and continuous methods.

The point of this exercise is to demonstrate some simple uses of levels of abstraction in rea-
soning about hybrid control problems. We use levels of abstraction here for two purposes:
(a) to express the relationship between a derivative-based description of a system and an ex-
plicit description, and (b) to express the relationship between a system in which corrections
are made at discrete sampling points and a system in which corrections are made continu-
ously. The uncertainty in the acceleration is treated at all three levels of our example, and
is integrated throughout the presentation.

We do not contribute anything new in the way of techniques for continuous mathematics;
for example, we use standard methods of solving differential equations. Our contributions
lie, rather, in the smooth combination of discrete and continuous methods within a single
mathematical framework, and in the application of standard methods of discrete analysis
(in particular, invariants and levels of abstraction) to hybrid systems. Our methods are
particularly good at handling uncertainties and other forms of system nondeterminism.

IV. Platoon Safety

In [3, 1, 8], we have proved safety properties for a collection of maneuvers for platoons of
vehicles on automated highways, as used, for example, in the California PATH project [18
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In the PATH design, platoons of cars travel on a public highway, under automated control.
Within a platoon, cars can be a mere 2 meters apart. They can travel at about 30 meters/sec.

Platoons join and split apart based on destinations and desire to need to utilize the highway
“bandwidth”.

The basic problem is to ensure that the relative velocity of any collision is at most v, a
constant that is approximately 3 meters/sec. There are two good situations: First, if two
vehicles are very close together, as they would normally be when they are travelling as part
of the same platoon, then if the first one brakes, the cars collide quickly, before the relative
velocity has a chance to grow too large. Second, if two vehicles are far apart, then the second
has time to slow down or stop if the first one brakes.

Questions arise in intermediate situations, which occur, for example, during a platoon joining
maneuver. Also, the two good cases described above make the most sense for the first collision
- if there is a chain reaction, it is not so clear when these good cases apply.

We first analyzed the relative velocity of the first collision only [3, 1]. For this case, we
proved an invariant guaranteeing safety:

Invariant: Either £; + vaw > T2
2

. 2 2 -
T1°+4v -
or Ty — xp > ———dlew—2-

Here, a is the greatest possible deceleration (the largest negative acceleration). This invariant
says that either the relative velocities are already close enough, or the distance between the
vehicles is great enough to allow the second to slow down sufficiently.

Again, we proved this using induction. We also showed that this condition is optimal — if
it is not satisfied, then the cars may crash with higher velocity. (In fact, they will crash, if
the first car brakes as strongly as possible.) This optimality condition is also proved using
induction.

We then considered the case of multiple collisions (possibly chain reactions)[8]. This case
is complicated, and we still have only partial results. We considered emergency braking
maneuvers within a single platoon, where cars have possible-different braking strengths. For
simplicity, we assume that each car brakes at its own constant rate. Also, for simplicity,
we assume that cars all have equal masses, and that the coeflicient of restitution is 1 (i.e.,
totally elastic collisions). Even with these simplifying assumptions, we have not yet obtained
a complete solution — some complicated situations arise.

Even for the case of 2 cars only, repeated collisions are possible: Suppose that car 1 has a
stronger brake than car 2 but car 2 starts with a higher velocity. Then the cars can collide
and exchange velocities (this happens because they have the same masses and the restitution
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is 1), making 1 faster. But this is just temporary - sc'>on7 I’s stronger brake slows it down
sufficiently so car 2 is again faster, and they collide again. This can happen repeatedly.

We were able to obtain close bounds on the ranges of the parameters (for initial positions
and velocities and the braking strengths) that ensure that all collisions are safe (relative.
velocity < vgi,). The sufficient condition for safety looks like:

Either M and (21 — 22)? — 2(a;1 — a2)(z1 — z3) < 02

allow
2 ap; 2 _ 2
or ~ M and ;" — 22,° + 2a3(21 — 22) < V{4,

Here, M expresses that the next collision occurs while the cars are both mox}ing. We have
also proved that this is essentially optimal.

For more than 2 cars, we have only partial results. Using a simulation, we have produced
some very complex bad examples involving 3 vehicles. For more than about 4 cars, we have
a partial negative result, showing that, for the simple case above (constant braking, elastic
collisions), there are some platoons of that size, with normal parameter values, that are
unsafe. This does not mean that large platoons could not be safe; however, it says that such
safety would have to depend on something we do not model, e.g., bumpers that crush, or a
smart non-constant braking strategy, or some restrictions on the braking capabilities within
a platoon.

V. Vehicle Protection Systems

We also modelled vehicle protection systems of the sort used in the Raytheon Personal Rapid
Transit (PRT) system [21, 5, 6].

The Raytheon system involves vehicles on a system of tracks, with Y-shaped merges and
diverges. Vehicles travel at about 30 mph, with inter-vehicle distances supposedly large
enough to prevent collisions, even in the face of “brick-wall” stopping of any of the vehicles.
The problem is to ensure various safety conditions, including absence of collisions, safe
merges, and prevention of overspeed.

The Raytheon solution, borrowed from mechanical protection systems for trains, uses a
Vehicle Protection System (VPS), separate from the main control system. In this system,
various protectors monitor the vehicles, looking for dangerous situations (e.g., near-collisions,
near-overspeed). If such a situation arises, the protector causes the brakes of at least one
of the involved vehicles to be applied, in time to prevent the safety violation. This strategy
works to ensure safety even if the main control system is faulty.

We developed a general model for vehicle protection systems, and defined and proved general
conditions under which they work correctly. This includes consideration of multiple protec-
tors, some of which depend on the results of the others. We proved composition theorems
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describing why the combination works correctly. Figure 3 illustrates a physical system with
multiple protectors.

Figure 3: Plant and multiple protectors.

We applied this model and its theorems to prove correctness for a Raytheon-style system,
with protectors for overspeed, and for collision on straight tracks and on merge. These
protectors are highly interdependent, so we needed to use our composition results. This work
made heavy use of composition and used some invariants. It also used levels of abstraction in
an interesting way — to relate a vehicle protector implementation to an “abstract protector”
in the general model.

VI. Aircraft Collision Avoidance

In [7] we have modelled, and have begun analyzing, the TCAS aircraft collision-avoidance
system (TCAS II-7) [4].

The purpose of TCAS is to detect close encounters between aircraft in flight, and help
in resolving them safely. Each plane carries its own TCAS system, which detects other
planes when they arrive within a distance of approximately 12 miles. The TCAS system
provides climb/descend advisories to the pilot. The advisories provided to the pilots of
different aircraft must be “compatible”. For example, for two aircraft, the advisories must
break symmetry, in the sense that one plane should be advised to climb and the other to
descend. TCAS uses sensor data providing altitude and range information to help decide
which should do which. It also uses mode-S numbers of transponders as unique identifiers,
for priority, in order to break symmetry. TCAS also attempts to avoid altitude crossings, and
to minimize “reversals” (whereby TCAS changes an advisory already given). In particular,
for two aircraft, TCAS II-7 allows a single reversal of direction, by the higher priority plane,
if it sees that the physical parameters have changed.
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Figure 4: Structure of the TCAS system model.

The TCAS system is quite complex, and is highly safety-critical. Some kind of formal
verification is obviously highly desirable.

We have defined automaton models for all the TCAS system components [7]. Some of these
models are very abstract; for example, the pilot is just modelled in terms of his response time
delay, and the threat detection subsystem is just modelled in terms of guaranteed detection
within a certain range. Others of these models are quite detailed, in particular, the resolution
advisory generator. The structure of the system is depicted in Figure 4.

We have begun using the model to prove theorems about the behavior of TCAS in flight. For
example, we are working on a proof of a conjecture, which we can paraphrase as: Suppose
that two planes are both TCAS-equipped, and velocities and accelerations are in normal
bounds, and no equipment fails, and pilots follow advisories within at most a short delay.
Then TCAS guarantees that the planes remain safely separated (in all situations, not just
some chosen for simulation). Moreover, in this execution, no reversals occur.

After completing this proof, we will analyze other cases. For example, we will examine the
case where pilots delay longer than in the “good” case above, in following their advisories,
but they still follow the advisories correctly within the longer delay. We are also interested
in cases where a pilot does not follow the advisory but just keeps going in the direction he
was following originally. Other interesting cases involve some equipment failure, or more
than two planes. The model provides a formal basis for analyzing these cases as well. It
provides the ability to make (and prove) definitive conditional claims about what happens
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when parameters are in various ranges.

We have also carried out a preliminary analysis of the Center TRACON Automation System
(CTAS) [2, 17].

VII. Conclusions and Recommendations

We have adapted some very powerful techniques that have been developed in computer
science for modelling and reasoning about complex systems — automaton modelling, parallel
composition, invariant assertions, and levels of abstraction (simulation relations) — to the
area of hybrid systems, in particular, to automated transportation systems. This work has
yielded good models, at various levels of abstraction, and many informative and interesting
safety results.

We believe that this project has been extremely successful in contributing new and usable
methods for increasing safety assurance for automated transportation systems. We would
like to see these methods moved toward practice in transportation system validation. We
are happy to do whatever we can to make the methods more usable, and to publicize them
widely.

In the future, we plan to complete an analysis of the multiple-collision case for platoons. We
also plan to complete a fairly elaborate project on proving properties of TCAS, in order to
produce a convincing example to demonstrate the power of our methods to air-traffic control
system designers (and validators). We will also complete a definitive paper on the underlying
HIOA model and its proof methods. Finally, we will work on the development of computer
tools to assist in the application of our model and methods to automated transportation
systems and other safety-critical hybrid systems.

See URL http://theory.lcs.mit.edu/tds/trans.html for more information about our project.
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Correctness of Vehicle Control Systems — A Case Study

H. B. Weinberg and Nancy Lynch

Laboratory for Computer Science
Cambridge, MA 02139, USA

Abstract

Several example vehicle deceleration maneuvers arising
in automated transportation systems are specified, and their
correctness verified, using the hybrid I/O automaton model
of Lynch, Segala, Vaandrager and Weinberg [16]. All sys-
tem components are formalized using hybrid I/O automata,
and their combination described using automaton composi-
tion. The proofs use invariant assertions, simulation map-
pings, and differential calculus.

Introduction

A hybrid system is one in which digital and analog com-
ponents interact. Typical examples of hybrid systems are
real-time process-control systems such as automated facto-
ries or automated transportation systems, in which the dig-
ital components monitor and control continuous physical
processes in the analog components. The computer science
community has developed formal models and methods for
reasoning about digital systems, while the control theory
community has done the same for analog systems. How-
ever, systems that combine both types of activity appear to
require new methods. The development and application of
such methods is an active area of current research.

One formal tool that has recently been developed is the
hybrid /O automaton (HIOA) model [16]. In this case
study, we show how the HIOA model can be used to spec-
ify and verify part of an automated transportation system —
a vehicle deceleration maneuver. The methods we use in-
clude computer-science-based techniques such as automa-
ton composition, invariant assertions, and simulation map-
pings, as well as simple continuous analysis. The purpose of
the case study is to investigate the applicability of the HIOA
model and various computer-science-based techniques to
automated transportation systems in particular, and to hy-
brid systems in general. We are especially concerned that
the methods allow faithful representation of hybrid systems
(including all components), and clear and scalable proofs of

significant properties of these systems.

The hybrid I/O automaton model is an extension of the
timed I/O automaton model of {17, 4], inspired by the phase
transition system model of [19] and the similar hybrid sys-
tem model of [1]. A HIOA is a (possibly) infinite state la-
belled transition system. The states of a HIOA are the valu-
ations of a set of variables. Certain states are distinguished
as start states. The transitions (steps) of a HIOA are of two
types: discrete and continuous. The discrete transitions are
labelled with actions. Both the variables and the actions are
partitioned into three categories: input, output,and internal.
A hybrid execution of a HIOA is a sequence of transitions
that describes a possible behavior of the system over time.
A hybrid trace is the externally visible part of an execution
(i.e., the non-internal part).

We say that one HIOA implements a second HIOA if
the set of traces of the first is a subset of that of the sec-
ond. This captures the notion that the implementation HIOA
has no external behavior that is not allowed by the specifi-
cation HIOA. When two HIOAs are composed in parallel,
they synchronize on shared input/output actions and shared
input/output variables. Under certain easily checked con-
ditions, the parallel composition of two HIOAs is itself a
HIOA. An important property of HIOAs is substitutivity: in
a system composed of HIOAs, replacing components by im-
plementations of those components yields an implementa-
tion of the entire system.

As has been the case in previous work with timed I/O au-
tomata, most of the proofs in this HIOA-based case study
use invariant assertions and simulation mappings. An in-
variant assertion is a predicate on states that is true in ev-
ery reachable state. Invariant assertions are usually proved
by induction on the length of an execution. A simulation is
a mapping between states of two HIOAs that can be used
to show that one HIOA implements another. The proof that
a given mapping is a simulation is also an induction on the
length of an execution of the implementation; the inductive
step matches individual transitions in the implementation
with corresponding transitions or sequences of transitions in
the specification: Even timing properties can be proved us-



ing these techniques: the key idea is to build timing infor-
mation into the state where it can be tested by assertions.

Our methods have several benefits. First, the HIOA
model and its composition operation permit complete repre-
sentation of hybrid systems, including all components, con-
tinuous and discrete, and the interactions among them. Sec-
ond, the inductive structure and stylized nature of the proofs
make them easy to write, check, and understand. In previous
work, such proofs have even been checked using automated
theorem proving techniques. Third, the implementation re-
lation allows the description of a system at different levels of
abstraction. Assertions proved for high level models extend
to the lower level models via the simulation mappings. This
hierarchy helps manage the complexity of the overall system
description, and it helps simplify the proofs because asser-
tions are usually easier to prove on the more abstract mod-
els. Fourth and finally, the methods are not completely au-
tomatic. They require the user to supply invariants and sim-
ulations, which express key insights about the system and
serve as useful documentation.

Typical examples of automated transportation systems
include the Raytheon Personal Rapid Transit System and the
California PATH project [6, 5, 13]. In these hybrid systems,
a number of computer-controlled vehicles share a network
of tracks or highways. The digital part of the system is the
computer vehicle controller and the analog part of the sys-
tem consists of the vehicle, its engine, the guideway, and
so forth. In [6], the control of the transportation system is
described hierarchically — the higher levels coordinate and
determine strategy while the lowest level performs specific
maneuvers.

Our case study focuses on a single maneuver: the task
of decelerating a vehicle to a target speed within a given
distance. Such a maneuver is invoked, for example, when
a vehicle is approaching a region whose maximum allow-
able velocity is lower than the vehicle’s current velocity.
We model a vehicle and its controller as two communicat-
ing HIOAs. We consider four different sets of assumptions
about the communication between vehicle and controller,
based on whether or not there is feedback from the vehi-
cle to the controller and whether or not there is communica-
tion delay from the controller to the vehicle. For each case,
we give a formal specification of what it means for a con-
troller to correctly implement the deceleration maneuver, we
give an example implementation of such a controller, and we
verify that the implementation is correct. All of our proofs
use invariant assertions, including assertions involving tim-
ing properties, and some also use simulation mappings. Dis-
crete and continuous methods are combined smoothly, and
uncertainty is integrated throughout the presentation.

Our contributions are (a) The complete modelling and

proof of the four maneuvers. (b) Many intermediate formal
concepts and lemmas that can be reused in formal reasoning

about other automated transit systems. (c) A demonstration
of the effectiveness of our computer-science-based methods
for reasoning about hybrid systems.

This case study is part of a larger project on modelling,
verifying, and analyzing problems arising in automated tran-
sit systems. A survey of the early results of that project
appears in [14]. A preliminary study of the Generalized
Railroad Crossing problem appears in [7, 8]; this uses only
the timed I/O automaton model, not the HIOA model. In
[151, levels of abstraction are used to relate continuous and
discrete control of a vehicle maneuver, as well as to re-
late derivative-based and function-based system descrip-
tions. Safety assurance systems for automated transit are ex-
amined in [27]. Current work involves modelling the “pla-
toon join” maneuver from the PATH project [3], as well as
continuing the project on safety assurance systems.

The development of models and verification methods for
timing-based systems is an active research area within com-
puter science. The timed I/O automaton model is similar, for
example, to models of Alur and Dill {2], of Lamport [10] and
of Henzinger, Manna and Pnueli [9]. In contrast to those for-
malisms, the development and use of the timed I/O automa-
ton model has focused on compositional properties [24], im-
plementation relations [17, 23], and semi-automated proof
checking [12], with less emphasis on syntactic forms, tem-
poral logics, and fully automatic analysis. Just as timed /O
automata have been extended to hybrid I/O automata to treat
hybrid systems, so have other real-time models. For exam-
ple, the timed transition system model of [9] is extended to
the phase transition system model in [19]. Phase transition
systems are analogous to hybrid I/O automata: their tran-
sitions correspond to our discrete steps and their activities
correspond to our trajectories. However, phase transition
systems lack good support for composition and abstraction.
The hybrid system model of [1] is similar to the phase tran-
sition system model except that it includes synchronization
labels that correspond to our actions. This allows a notion of
parallel composition. The hybrid system model differs from
our HIOA model because it has no input/output distinction
on either labels (actions) or variables.

The methods of invariant assertions and simulation map-
pings are widely used in computer science. An overview of
these methods, for untimed and timed systems, appears in
{18, 17].

Another project involving formal modelling of train con-
trol systems, using computer science techniques, was car-
ried out by Schneider and co-workers [20]. Their empha-
sis was on the use of an extension of Dijkstra’s weakest-
precondition calculus to derive correct solutions. Other case
studies in modelling hybrid systems include two analyses of
steam boiler controllers — one using timed I/O automaton
methods [11] and another using the automated proof checker
PVS [25] — and a project using a variety of techniques to




model and verify controllers for aircraft landing gear [22].
This latter reference also includes examples from automated
transportation.

The full version of this work appears in [26].

2 Hybrid /O Automaton Model

The hybrid /O automaton model [16] is based on the
timed I/O automaton model of [17, 4], but it represents con-
tinuous behavior more explicitly. We give a brief summary
here, and refer the reader to [16] for the details.

A state of a HIOA is defined to be a valuation of a set
of variables. A trajectory w is a function that maps a left-
closed interval I of the reals, with left endpoint equal to 0,
to states; a trajectory represents the continuous evolution of
the state over an interval of time. A trajectory with domain
[0, 0] is called a point trajectory. Various operations are de-
fined on trajectories, including restriction to a subset of the
domain ([), projection on a subset of the state variables ),
and concatenation.

A hybrid /O automaton (HIOA) A =
(U, X,Y,Tin, £int £out @, D, W) consists of:

e Three disjointsets U, X and Y of variables, called in-
put, internal and output variables, respectively. Vari-
ablesin E 2 U UY are called external, and variables
in L £ X UY are called locally controlled. We write

V2UUL.

e Three disjoint sets $¢", X"t £U of input, internal
and output actions, respectively. We assume that yin
contains a special element ¢, the environment action,
which represents the occurrence of a discrete transition
outside the system that is unobservable, except (possi-
bly) through its effect on the input variables. Actions
in Te¥t 2 %7 U TU¢ are called external, and actions
in $fec £ Tintyxovt are called locally controlled. We

write © £ Xin U Xiec,

e A nonempty set © of start states, a subset of the set of
states. This set must be closed under change of values
for input variables.

o A set D of discrete transitions, i.e., (state, action, state)
triples. This set must satisfy three axioms, saying that
input actions are always enabled, that the environment
action e only affects inputs, and that any input variable
may change when any discrete action occurs. We use
52+ s as shorthand for (s, a,s’) € D.

o A set W of trajectories over the variables of A. This set
must satisfy three axioms, asserting existence of point
trajectories for all states, and closure of the set of tra-
jectories under subinterval and limit.

When discussing several HIOAs, we often subscript the
names of the various components with the name of the
HIOA.

We now define executions for HIOAs. A hybrid execu-
tion fragment of A is a finite or infinite alternating sequence
of trajectories and actions, @ = woa;wiaW2 " -, ending
with a trajectory if « is a finite sequence, and with discrete
steps connecting consecutive pairs of trajectories, labelled
by the intervening actions. An execution fragment records
all the discrete changes that occur in an evolution of a sys-
tem, plus the “continuous” state changes that take place in
between. A hybrid execution is an execution fragment in
which the first state is a start state. A state of A is defined
to be reachable if it is the last state of some finite hybrid ex-
ecution of A.

The visible behavior of a HIOA is described in terms of
its “hybrid traces”. The hybrid trace of a hybrid execution is
obtained by projecting the trajectories on the external vari-
ables, replacing all the internal actions that cause changes in
the external state by a special placeholder 7, and removing
all the internal actions that cause no such changes. (In this
last case, the surrounding trajectories are concatenated.)

HIOAs A and B are comparable if they have the same ex-
ternal actions and external variables. If A and B are compa-
rable then we say that A < B provided that the set of hybrid
traces of A is a subset of that of B. In this case, we say that
A implements B.

We next define simulation mappings for HIOAs; these
are used to describe systems using different levels of ab-
straction. Let A and B be comparable HIOAs. A simulation
from A to B is a relation R from states of A to states of B
satisfying:

1. If s4 € Oy then there exists spg € ©Op such that
SA RSB.

2. Ifsqy—%4 s/,54 Rsp,and both s 4 and sp are reach-
able, then B has a finite execution fragment starting
with sp, having the same trace as the given step, and
ending with a state s with s’y R s5.

3. If wy is a trajectory of A from s to s, 54 Rsp,and
both s 4 and sp are reachable, then B has a finite exe-
cution fragment starting with s g, having the same trace
as w, and ending with a state s with s’y R sp.

The importance of simulations is given by the following
theorem.

Theorem 2.1 If A and B are comparable HIOAs and there
is a simulation from A to B, then A < B.

Finally, we define composition and hiding operations for
HIOAs. We say that HIOAs A and B are compatible if they
have no output actions or output variables in common, and



if no internal variable of either is a variable of the other. If
A and B are compatible then their composition is defined to
be the tuple (U, X, Y, £i, £int £ovt ©, D, W) given by

o U= (UsUUg)— (YaUYs), X = Xa U Xp, and
Y =Y, UYs.

o T = (SR ULY) - (ZFUSEY), T = D] U
Tt and T = TG U TH

o O isthe set of states s such that s[V4 € ©4 As[Vp €
Op.

e D is the set of triples (s,a,s’) such that
s[Va 71(»‘2 s[Va A s[Vs ’EL‘B s'[Ve. (Here,
m4(a) is defined to be a if a is an action of A and e
otherwise; analogously for B. [ denotes restriction to
a subset of the variables.)

o Wistheset of trajectories w suchthat w | V4 € Wa A
w | Vg € Wg. (Here, | denotes projection on a subset
of the variables.)

The parallel composition of A and B is itself a HIOA. The
following theorem says that a component can be replaced by
an implementation in a composition.

Theorem 2.2 Suppose A1, Ay and B are HIOAs with A, <
A», and each of Ay and As is compatible with B. Then
Ai1]|B £ A45]|B.

Two hiding operations can be defined on any HIOA, one
that hides a designated subset of the output actions and one
for a designated subset of the output variables. The hiding
operators also interact properly with the implementation re-
lation.

3 Case 1: No Delay or Feedback

In the deceleration problem we consider a computer-
controlled train moving along a track. The task of the train’s
controller is to slow the train within a given distance. In this
section we consider a very simple model of the train and the
controller. The train has two modes, braking and not brak-
ing. The controller can effect an instant change in the mode
of the train (relaxed in Sections 4 and 6). The controller re-
ceives no information from the train (relaxed in Sections 5
and 6). The braking strength of the train varies nondetermin-
istically within known bounds. We model both the train and
the controller as hybrid I/O automata.

In the following subsections we describe the parameters
of the specification, give a hybrid I/O automaton model for
the train, define correctness of a controller for this train, give
an example correct controller, and prove that it is correct.

Parameters All the parameters are constants denoted by
¢ with some dots above it and a subscript. Dots above the
constant identify the type of the constant: position (no dots),
velocity (one dot), or acceleration (two dots). These dots are
justa syntactic device — they do not represent differentiation.
The subscript identifies the particular constant. Initial val-
ues of the train’s position, velocity and acceleration are c;,
¢s, and ¢;. The goal of the deceleration maneuver is to slow
the train to a velocity in the interval [¢minf, ¢maxf] at position
ct. When the train is not braking its acceleration is exactly 0.
When the train is braking, its acceleration varies nondeter-
ministically between [¢min, ¢max], both negative. The range
is intended to model inherent uncertainty in brake perfor-
mance. We impose the following constraints on the param-
eters:

1. ¢ < ¢
2. és>c.maxfz éminf>0
3.6=0
4. érmnSémax<0
&2 —é2
5. Cf—CSZ-"‘z“gm:j'

6. fmpi=fs < fop=6s
Cmax — Cmin

The first three constraints just say that the initial position is
before the final position, that the initial velocity is higher
than the target velocities which are positive, and that the ini-
tial acceleration is 0. Since braking is stronger when accel-
eration is more negative, notice in the fourth constraint that
Cmin 18 the strongest braking strength, and ¢max the weakest.
The fifth constraint ensures that with the weakest possible
braking there is still enough distance to reach the highest al-
lowable speed by position ¢¢. The right hand side of this
equation uses a familiar equation for “change in distance for
change in velocity” from constant acceleration Newtonian
physics. To understand the sixth constraint consider that
since the controller receives no sensory information from
the train, it must decide a priori how long to brake. The
sixth constraint ensures that the least amount of time the
controller must brake is less than the greatest amount of time
that it can brake.

The TRAIN Automaton We model the train as the HIOA
TRAIN represented in Table 1. The train’s physical state is
modelled using three variables: z, &, and Z. As before, the
dots are a syntactic device; the fact there there is a differ-
ential relationship between the evolution of these variables
is a consequence of the definition of the trajectory set for
TRAIN. The train accepts commands to turn the brake on
or off through discrete actions brakeOn and brakeOf£.




It stores the state of the brake in variable 5. While brak-
ing, the train applies an acceleration that is nondeterministi-
cally chosen at every point but is constrained to be an inte-
grable function with range in the interval [Cmin, Cmax].- While
not braking, the train has acceleration exactly 0. The vari-
able now represents the current time; when using assertions
to reason about the timing behavior of systems, it is conve-
nient to have an explicit state variable that records the cur-
rent time. At this point in [26], we prove various fundamen-

Actions:

Input: brakeOn and brakeOf £
Vars:

Output:  « € R, initially z = ¢

= € R, initially £ = &

# € R, initially Z = &

b, a boolean, initially false

now € R2, initially 0
Discrete Transitions:

brakeOn:
Eff: b:= true
Z:€ [.C'miny .C.max]
brakeOf f:
Eff: b:= false
£:=0
Trajectories:

if w(0).b = true then

w.& is an integrable function

with range [Emin, Gmax]

elsew.Z=20
for all ¢ € I the following hold:

w(t).b = w(0).b
w(t).now = w(0).now + t
w(t).z = w(0).z + fot w(s).Z ds
w(t).c = w(0).z + [; w(s).f ds

Table 1. The TRAIN automaton.

tal facts about the mechanics of the train. Most of these facts
relate the initial state and final states of a trajectory. Here,
we give two examples of such lemmas. The first bounds
change in velocity and position by change in time. The sec-
ond bounds change in position by change in velocity. (Nota-
tion: If s and s’ are states and z is a variable, we often write
z for s.z and 2’ for s’.z when s and s’ are understood.)

Lemma 3.1 Let w be a trajectory of TRAIN whose initial
and final states are s and §', respectively, and let A =
now — now. Ifb = true then:

I 24 CminA <2' < T+ EmaxA
2 24 3A + LémnA? < 7' < T+ A + JEmuA’

Lemma 3.2 Letw, s, s', and A be as in the previous lemma.
If b = true then:
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R
2Cmin - - 2€max )

The train considered here is simple; in a treatment of a
system with more complex dynamics, the lemmas of this
section would be replaced by more complex lemmas of the
same general form. Such lemmas would be derived using
methods of continuous mathematics appropriate for the ap-
plication. ‘

Definition of Controller Correctness We define a brake-
controller to be a HIOA with no external variables, no in-
put actions, and output actions brakeOn and brakeOff.
A correct brake-controller is one that when composed with
TRAIN, yields a HIOA whose hybrid traces satisfy:

Safety In all reachable states: If z = ¢¢ then épint < 2 <
émaxe. (That is, if the train ever reaches position ¢¢ then
the speed is in the desired range.)

Timeliness There exists ¢ € R2% such that: Any execution
containing a state with now = t also contains a state in
which z = ¢r. (That is, the train must reach ¢¢ within
time t.)

The following lemma says that the safety and timeliness
properties are preserved by the implementation relation; in
other words, an implementation of a correct brake-controller
is itself a correct brake-controller.

Lemma3.3 If Ay < A, and Az is a correct brake-
controller, then A, is a correct brake-controller.

Proof: Follows from Theorem 2.2 and the definition of cor-
rectness. [ |

Example Controller: ONE-SHOT There is a broad spec-
trum of correct controllers one could consider, from fully
deterministic to highly nondeterministic, and involving
any number of applications of the brake. In this section
we consider a correct brake-controller called ONE-SHOT.
ONE-SHOT applies the brake exactly once, i.e., it per-
forms exactly one brakeOn action followed by exactly one
brakeOf £ action. Except for this restriction, ONE-SHOT is
highly nondeterministic: it exhibits all the correct braking
strategies that involve exactly one application of the brake.

‘We chose ONE-SHOT as an example because (a) it is sim-
ple, (b) its behavior is interesting enough to require some in-
teresting proof techniques, and (c) it can be used to help ver-
ify correctness of the more complicated controller given in
Section 4, using a simulation proof and Lemma 3.3.

We define some more constants:

12 12
A 1 (cr-—c -————cma"f_cs)
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Cs 2Cmax
émaxf - és
B =———
Cmax
éminf - és
C =—
Cmin



A represents the longest amount of time a correct controller
can wait before applying the brake. B and C are lower and
upper bounds, respectively, on the amount of time a cor-
rect controller should apply the brake if it only brakes once.
These constants are derived using methods of continuous
analysis. The formal description of ONE-SHOT appears in
Table 2. (Notation: Each “task” is a set of actions that comes
equipped with lower and upper bound values on the time re-
quired for some action of the task to occur, if any actions of
the task are enabled.)

Actions:
Output:
Vars:
Internal: phase € {idle,braking, done},
initially idle
Discrete Transitions:
brakeOn:
Pre: phase = idle
Eff: phase := braking
brakeOff:
Pre: phase = braking
Eff: phase := done
Tasks: ON = {brakeOn} : [0, 4]
OFF = {brakeoff} : [B,C]

brakeOn and brakeOf £

Table 2. The ONE-SHOT automaton

An execution of ONE-SHOT consists of three phases:
idle, braking, and done. ONE-SHOT waits between 0
and A time units (1d1e phase), then applies the brake for
at least B and at most C time units (braking phase), and
then disengages the brake (done phase). The ON task gov-
erns the transitions from idle to braking and the OFF
task governs the transitions from braking to done.

The notation used above is based on [21]. In order to
convert this description to a HIOA, the time constraints for
the tasks must be built into the automaton’s states, transi-
tions and trajectories. We do this by incorporating dead-
line variables last(ON), first(OF F) and last(OF F') into
the state, and manipulating them so that the brakeOn and
brakeOf £ actions occur at allowed times. That is, initially
last(ON) = A. When brakeOn occurs, first(OF F)
and last(OF F) are set to times B and C in the future, re-
spectively. ONE-SHOT does not allow time to pass beyond
any last deadline currently in force, and does not allow a
brakeOf £ action to occur if its first deadline has not yet
been reached. The trajectories are simple — there is no in-
teresting continuous behavior in the controller, so time just
passes without changing anything else.

The entire system is modelled formally as the composi-
tion of the two HIOAs, TRAIN and ONE-SHOT, which we
call ONE-SHOT-SYS.

Correctness of ONE-SHOT At this point in [26], we prove
the correctness of the ONE-SHOT controller. In the pro-

cess of doing this, we prove a variety of properties about
ONE-SHOT-SYS, almost all of which take the form of invari-
ant assertions. Some of these assertions involve the dead-
line variables last(ON), first(OF F') and last(OF F), i.e.,
they encode claims about timing behavior. These proofs
demonstrate the clarity, simplicity and power of the asser-
tional proof style.

Here, we restrict ourselves to two key lemmas that illus-
trate our use of invariant assertions and deadline variables.
The first lemma is used in the proof of the safety property,
which says that the following is an invariant of the system:

T = ¢t => Crminf < T < Cmaxf-

In particular, we focus on the right hand side of the inequal-
ity, £ < ¢maxt. In order to prove this invariant, we prove a
stronger invariant:
.9 g
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This invariant says that before reaching the final position
there must be enough distance left to brake, even at the
weakest braking. It has as a special case the upper bound
needed in the safety property (note that ¢yax is negative).
In [26], we demonstrate this invariant for each phase sep-
arately and combine the results into a global invariant. Here
we present only the result for the braking phase:

Lemma 3.4 In all reachable states of ONE-SHOT-SYS, if
a2
phase = braking then ¢t — x > “5==-

Proof: By induction on the length (number of discrete steps
and trajectories) in an execution. The inductive steps break
down into separate cases for discrete steps and trajectories.
The interesting cases are the ON steps and those trajectories
in which phase = braking. The ON case follows from
the invariant for the idle phase. In the trajectory case, we
substitute from Lemma 3.2 into the inductive hypothesis and
simplify:
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The second lemma is used in the proof of the timeliness
property. It says that the brake must be disengaged before
the velocity has a chance to drop below émpinf, even assuming
the strongest deceleration. Symmetrically, the brake cannot
be disengaged until after the velocity is guaranteed to reach
émaxf, €ven assuming the weakest deceleration. Note the
use of the deadline variables first(OF F) and last(OF F) in
these assertions. For example, the expression last(OF F') —
now indicates the greatest amount of time the controller can
continue braking.




Lemma 3.5 In all reachable states of ONE-SHOT-SYS, if
phase = braking the following hold:

1. last(OFF) — now < ‘a=2%
Cmin
2. first(OFF) — now > Emg:;‘—”

Proof: By induction. |

Theorem 3.6 ONE-SHOT is a correct brake-controller.

This simple example already illustrates several aspects
of our model and methods: It shows how vehicles and con-
trollers can be modelled using HIOAs and composition, and
in particular, how deadline variables can be used to express
timing restrictions. It shows some typical correctness con-
ditions, expressed in terms of the real-world component of
the system. It shows how invariants can provide the keys
to proofs. Invariants can involve real-valued quantities rep-
resenting real-world behavior, thus allowing facts about ve-
locities, etc., to be proved using induction; invariants can
also involve deadline variables, thus allowing time bounds
to be proved by induction.

This proof combines discrete and continuous reasoning
within a rigorous framework that helps to ensure that the

" combination is well-defined and the reasoning sound. The

proofs of invariants break down into separate cases involv-
ing discrete and continuous reasoning. The example also il-
lustrates careful handling of uncertainty. Finally, the argu-
ments are general — they handle all cases, and are not based
on identifying the apparent worst cases.

4 Case 2: Delay and No Feedback

In this section we extend the model of the train by nonde-
terministically delaying the braking commands. Rather than
modify the train automaton itself, we introduce a new au-
tomaton called BUFFER that serves as a buffer between the
train and a controller. Figure 1 illustrates the components
and their communication.

In the following sections we present BUFFER, modify the
controller correctness criteria to account for the BUFFER,
give an example controller called DEL-ONE-SHOT, and
prove that it is correct. The proof uses a simulation map-
ping to show that the composition of DEL-ONE-SHOT
and BUFFER implements ONE-SHOT; the correctness
of DEL-ONE-SHOT then follows from Theorem 3.6 and
Lemma 3.3.

The BUFFER Automaton The buffer stores a single com-
mand from the controller. It forwards it to the train after
some delay. For each command, the delay is nondetermin-
istically chosen from the interval [§~, §+] (where 0 < 6~ <
61).

Actions:
Inputs:  bufBrakeOn and bufBrakeOff
Outputs: brakeOn and brakeOff

Vars:
Internal: request € {on, off,none},

initially none
violation, boolean, initially false
Discrete Transitions:
bufBrakeOn:
Eff: Cases of request,
on : no effect
off : violation := true
none : request := on
bufBrakeOff:
Eff: Cases of request,
on : violation := true
off : no effect
none: request:= of £
brakeOn:
Pre: request = on
Eff: request := none
brakeOff:
Pre: request = of £
Eff: request := none
Tasks:
BUFF = {brakeOn, brakeOff} : [§7,67F]

Table 3. The BUFFER automaton.

The BUFFER automaton appears in Table 3. The variable
request stores a command while it is being buffered. The
history variable violation records when a new command ar-
rives from the controller before the previous one has exited
the buffer; this is considered to be an error condition.

Definition of Controller Correctness, Revisited We
modify the definition of a correct controller to account for

- the buffer. We define a buffered-brake-controller to be a

HIOA with no external variables, no input actions, and
output actions bufBrakeOn and bufBrakeOff. A cor-
rect buffered-brake-controller is one that, when composed
with BUFFER, with the bufBrakeOn and bufBrakeOf £
actions hidden, yields a correct brake-controller, as defined
in Section 3.

Parameters, Revisited Not only do we need to place re-
strictions on the value of the new parameters (6~, §1), but
we also need to revise the constraints among the original
parameters. Now the controller is subject to more uncer-
tainty and therefore cannot achieve conformance to as tight
a target velocity range. The further constraints on the pa-
rameters can be viewed as forcing the target velocity range,
[éminf, Cmaxf] to be wider and hence the controller’s task eas-
ier. These are the additional constraints:

1.0< 6 <6t

2. és > Cmaxf + 6max6+
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Figure 1. Overview of Delay Deceleration Model
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The first constraint ensures that the delay interval is well-
defined. The next two are necessary to ensure that the buffer
does not overflow. The last constraint replaces constraint 6
in Section 3; the new version accounts not only for the non-
determinism of the braking strength but also for that of the
buffer. The other five original constraints remain as well but
are not shown here. Note that these constraints in this sec-
tion are more restrictive than the constraints from Section 3.

Example Controller: DEL-ONE-SHOT Here we give
an example of a valid buffered-brake-controller called
DEL-ONE-SHOT. This automaton is identical to ONE-SHOT
of Section 3 except in the names of its actions and the
duration of its phases. The output actions brakeOn
and brakeOff are replaced by bufBrakeOn and
bufBrakeOQff. The time bounds A, B, C are replaced by
A’, B, C'. These new bounds are:

A" =max(0, A - §T)
B'=B+6t -4
C'=C -6t +6

We define DEL-ONE-SHOT-AND-BUF to be the com-
position of DEL-ONE-SHOT and BUFFER, with the
bufBrakeOn and bufBrakeOff actions hidden,
and define DEL-ONE-SHOT-SYS to be the composition of
TRAIN and DEL-ONE-SHOT-AND-BUF.

Correctness of DEL-ONE-SHOT In [26] we give a com-
plete proof of correctness of the DEL-ONE-SHOT controller.
The proof is based on a simulation mapping from this case
to the unbuffered case of Section 3 — specifically, from
DEL-ONE-SHOT-AND-BUF to ONE-SHOT. The safety and
timeliness properties of the unbuffered case carry over to the
buffered case via the simulation.

Since the safety and timeliness properties mention
only variables in TRAIN, it may seem surprising that
the simulation mapping excludes TRAIN. The simu-
lation mapping implies that the external behavior of

DEL-ONE-SHOT-AND-BUF is a subset of the external
behavior of ONE-SHOT. Since this external behavior is
all the input that TRAIN receives, TRAIN’s behavior in the
buffered case is a subset of its behavior in the unbuffered
case. Therefore, the safety and timeliness properties, which
involve only variables of TRAIN, carry over from the
unbuffered case to the buffered case.

We present the simulation relation R from
DEL-ONE-SHOT-AND-BUF to ONE-SHOT. The key in-
sight is that since external behavior must be preserved, the
timing of the external actions, brakeOn and brakeOf£,
must coincide in the two systems. Let s denote a state in
the implementation (DEL-ONE-SHOT-AND-BUF), and u
denote a state in the specification (ONE-SHOT); the states
are related via R when the following two conditions hold:

1. u.now = s.now

2. By cases of s.phase:
(a) idle, thenu.phase = idle
(b) braking, by cases of s.request:

i. on, then u.phase = idle
ii. none, then u.phase = braking and
w.first(OFF) < s first(OFF) + 6~ and
u.last(OFF) > s.last(OFF) + 6t
(c) done, by cases of s.request:

i. off,then u.phase = braking and
u.first(OFF) < s.first(BUFF) and
u.last{OFF) > s.last(BUFF)

ii. none, then u.phase = done

Roughly speaking, the simulation maps the phases
of the implementation DEL-ONE-SHOT-AND-BUF
to the phases of ONE-SHOT. The idle phase of
DEL-ONE-SHOT-AND-BUF, plus the portion of the
braking phase in which the on request is in the buffer,
together map to the id1le phase of ONE-SHOT. The rest of
the braking phase of DEL-ONE-SHOT-AND-BUF, after
the brakeOn action, plus the portion of the done phase
in which the o £ £ request is in the buffer, together map to
the braking phase of ONE-SHOT. The rest of the done
phase of DEL-ONE-SHOT-AND-BUF, after the brakeOf£f
action, maps to the done phase of ONE-SHOT. Note that a
key part of the simulation mapping is a set of inequalities
involving the deadlines in the two automata.

Lemmad4.1 Relation R is a simulation from
DEL-ONE-SHOT-AND-BUF {0 ONE-SHOT.




Proof: We show the three conditions in the definition of a
simulation. As for the proofs of invariants, this breaks down
into separate cases for discrete steps and trajectories. (Note
that this proof depends on the stronger parameter constraints
of this section.) [ |

Theorem 4.2 DEL-ONE-SHOT is a correct buffered-brake-
controller.

Proof: By Lemma 4.1 and Theorem 2.1,
DEL-ONE-SHOT-AND-BUF < ONE-SHOT. By Lemma 33
and Theorem 3.6 DEL-ONE-SHOT-AND-BUF is a correct
brake-controller. This implies that DEL-ONE-SHOT is
a correct buffered-brake-controller. (Again, this proof
depends on the stronger parameter constraints.)

This example demonstrates the use of simulation map-
pings to prove implementation relationships, including
implementation relationships involving timing properties.
Again, discrete and continuous reasoning are combined.

5 Case 3: Feedback and No Delay

In this section we (briefly) describe a more complex

- model of the deceleration problem in which the train pro-

vides the controller with sensor feedback at regular inter-
vals, allowing the controller to adjust its proposed accelera-
tion. Figure 2 illustrates the components and their commu-
nication.

Our new version of the train automaton, SENSOR-TRAIN,
reports its acceleration, velocity and position in a status
message every & time units. (In order to express this in
terms of an HIOA, we add a last(STATUS) deadline com-
ponent and manage it appropriately.) SENSOR-TRAIN has an
accel(a) inputaction for each real number a, which causes
the actual acceleration to be set to anything in the interval
[@ — Zerr, a]. The proposed acceleration a is remembered in
a variable acc.

We model a controller ZIG-ZAG that performs an
accel output immediately after receiving each status
input. It initially requests an acceleration a such that, if
SENSOR-TRAIN followed a exactly, it would reach velocity
exactly ¢maxf When z = c¢¢. Since the train might actually
decelerate faster than a, ZIG-ZAG might observe at any
sample point that the train is going slower than expected.
In this case, ZIG-ZAG does not change a until the velocity
actually becomes < Cmaxf- Thereafter, at each sample point,
ZIG-ZAG requests an acceleration that aims to reach Cmaxf
at exactly the following sample point.

We prove the same two properties for this case as we did
for the no-feedback case, but for tighter bounds on the fi-
nal velocity. The argument again uses invariants. For exam-
ple, part of our a.rgument involves showing that in all reach-
able states, £ > émint. NOW to prove this by induction, we

need auxiliary statements about what is true between sample
points, for example:

Lemma 5.1 In all reachable states between sample points,
& + (acc — Genr)(last(STATUS) — now) > Cminf.

That is, if the current velocity is modified by allowing the
minimum acceleration consistent with the current acc, until
the next sample point, then the result will still be > Cpint-
Note the use of the last(STATUS) deadline to express the
time until the next sample point. This lemma is proved by
induction.

This example illustrates how our methods can be used
to handle more complicated examples, including periodic
sampling and control. It shows how to reason about peri-
odic sampling using intermediate invariants involving the
last(STATUS) deadline: The controller issues control re-
quests to the system at sample times, but can “lose control”
of the system’s behavior between sample points; the invari-
ants are used to bound how badly the system’s performance
can degrade between sample points.

6 Case 4: Delay and Feedback

This case is more complicated in its details, but does not
require any new ideas not present in the previous three cases.
We omit the details here.

7 Conclusion

We have demonstrated how hybrid /O automata and
their associated proof techniques can be applied to a non-
trivial hybrid system case study. These techniques include
HIOA composition, invariants, and simulations, combined
with the usual techniques of continuous analysis. The case
study proves safety and timeliness properties for four decel-
eration controllers under different communication models.

We model all system components, both continuous and
discrete, and the interactions among them. Deadline vari-
ables are used to express timing restrictions. Correctness
conditions are formulated in terms of the real-world compo-
nents of the systems.

The correctness proofs are based predominantly on
invariant assertions, including assertions involving real-
valued quantities representing real-world behavior, and as-
sertions involving deadline variables representing timing re-
strictions. The systems are described at different levels of
abstraction, with simulation mappings used to connect the
levels. Deadline variables are used to reason about periodic
sampling. The proofs combine discrete and continuous rea-
soning within a single framework. Uncertainty is handled
carefully throughout. The proofs cover all cases, not just the
apparent worst cases. The proofs are clear and scale well
from the simplest case to the feedback with delay case.
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Figure 2. Overview of Feedback Deceleration Model

Our work does not supplant the usual methods of contin-
uous mathematics, but rather incorporates them. We do not
provide any new methods for deriving controllers, but rather
a framework for understanding their requirements and for
verifying that proposed controllers work correctly.

It remains to apply these techniques to additional case
studies in automated transportation, especially those with
complex discrete activity. We are currently modelling multi-
vehicle maneuvers arising in the California PATH project
[6, 5, 13]. We are also extending the preliminary treatment
of safety systems in [27] to handle additional safety checks.
The relfated discipline of air traffic control should also pro-
vide some interesting case studies.

It also remains to integrate into our framework the tech-
niques of relevant disciplines such as control theory. For ex-
ample, it would be useful to have a catalog of results from
control theory that are especially useful for reasoning about
transportation systems using HIOAs. Another direction is to
develop computer tools to support the representation, spec-
ification and verification of such systems using HIOAs. All
of this work should lead toward a long-term goal of devel-
oping industrial strength formal tools to help in the design
of real transportation systems.
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Abstract. A system consisting of two platoons of vehicles on a sin-
gle track, plus controllers that operate the vehicles, plus communication
channels, is modeled formally, using the hybrid input/output automaton
model of Lynch, Segala, Vaandrager and Weinberg [7]. A key safety re-
quirement of such a system is formulated, namely, that the two platoons
never collide at a relative velocity greater than a given bound veiiow.
Conditions on the controller of the second platoon are given, designed
to ensure the safety requirement regardless of the behavior of the first
platoon. The fact that these conditions suffice to ensure safety is proved.
It is also proved that these conditions are “optimal”, in that any con-
troller that does not satisfy them can cause the safety requirement to
be violated. The model includes handling of communication delays and
uncertainty. The proofs use composition, invariants, levels of abstraction,
together with methods of mathematical analysis.

This case study is derived from the California PATH intelligent highway
project, in particular, from the treatment of the platoon join maneuver
in [3].

1 Introduction

Increasing highway congestion has spurred recent interest in the design of intel-
ligent highway systems, in which cars operate under partial or total computer
control. An important new effort in this area is the California PATH project (see,
for example, [9]), which has developed a design for automating the operation of
cars in several lanes of selected California highways. In this design, cars become
organized into platoons consisting of a leader car and several following cars; the
followers do not operate independently, but follow the control instructions of the
leader.

An important maneuver for the proposed PATH system is the platoon join
maneuver, in which two or more adjacent platoons combine to form a single
platoon. The design of such a maneuver is described and analyzed in [3]. This
maneuver involves both discrete and continuous behavior: discrete behavior ap-
pears in the form of synchronization and agreement among the controllers about
the join process, plus communication among the various system components,
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whereas continuous behavior appears in the motion of the cars. The combina-
tion forms a hybrid system of considerable complexity.

A key issue for the platoon join maneuver is its safety, represented by the
requirement that cars never collide at too great a relative speed. In [3], a proof
of such a safety property is outlined, for the specific platoon join maneuver given
in that paper. The key to the proof turns out to be that the given maneuver
always ensures that either (a) the platoons are sufficiently far apart that the
second platoon can slow down sufficiently before hitting the first platoon, or (b)
the relative speeds of the two platoons are already close enough.

Although the outline [3] gives the key ideas, from our point of view, it is
incomplete as a safety verification. It does not include a complete model of all
system components — in particular, the discrete components are not modeled. It
does not seem to cover all cases that could arise: for instance, only some types
of communication delay are handled, and uncertainties in the values of some
parameters are not considered. The analysis contains informal “jumps” in which
certain types of behavior are claimed to be the “worst possible”, and then only
these cases are analyzed carefully; however, it is not made clear how one can
be sure that the claimed worst cases are in fact the worst. Another problem is
that the analysis is presented for just the single maneuver, and is intertwined
with the proofs of other properties for that maneuver (successful join, optimality
of join time). However, it seems that the analysis should be decomposable, for
example, proving the safety requirement in a way that allows the proof to apply
to other maneuvers besides just the platoon join.

In previcus work [7], Lynch, Segala, Vaandrager and Weinberg have devel-
oped a formal model, the hybrid input/output automaton model, for hybrid
systems, together with associated proof techniques. These techniques include
methods based on automaton composition, on invariant assertions, on levels
of abstraction, and on mathematical analysis for reasoning about continuous
behavior. They have developed methods of incorporating standard methods of
analysis into automaton-based proofs. So far, these methods have been used to
model and verify a variety of simple real-time systems, including several very
simple maneuvers arising in automated transportation systems ([11], [10], [6]).

In this case study, we apply the hybrid I/O automaton model and its associ-
ated proof methods to the task of describing and verifying safety for the PATH
platoon join maneuver. This is a more complex example than those previously
considered using hybrid I/O automata. We aim for an accurate, complete model
of the system, plus proofs that cover all cases and accommodate all realistic
variations, including delays and uncertainties. Our safety proofs should apply
as generally as possible, for instance, to other maneuvers besides platoon join.
Our model should also be usable for proving other properties, such as successful
join and optimality. The system and its proofs should admit decomposition into
separate parts, as far as possible, and should be easy to extend.

In the work we have completed so far, we have made certain simplifications.

Namely, we consider the case of two platoons only (as in' [3]), and we consider
uncertainties in only some of the parameter values. Moreover, we pretend that
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the controllers control the cars’ acceleration rather than their jerk (derivative of
the acceleration). We intend to remove these restrictions in later work, and are
designing our models and proofs to make such extensions easy.

For this simplified setting, we have succeeded in modeling the complete sys-
tem, which consists of two platoons of cars on a single track, plus controllers that
operate the cars, plus communication channels. We have formulated the safety
requirement, namely, that the two platoons never collide at a relative velocity
greater than a given bound v,y We have given conditions on the controller
of the second platoon, designed to ensure the safety requirement regardless of
the behavior of the first platoon, and we have proved that these conditions suf-
fice to ensure safety. Our proofs cover all cases, and are sufficiently general to
apply to other maneuvers besides platoon join. The proofs use discrete systems
techniques, such as composition, invariants, and levels of abstraction. Addition-
ally, the methods of mathematical analysis developed for proving invariance of
state-space sets in [2] are used for reasoning about the continuous parts of the
system.

In addition to proving safety, we also give results showing that the given
conditions on the controllers are “optimal”, in the sense that any controller
that does not satisfy them can cause the safety requirement to be violated. The
optimality results are proved using the same techniques (in particular, invariants
and composition) that are used for the safety proof. Again, the optimality results
apply to other maneuvers besides platoon join.

An alternative approach to proving safety for the platoon join maneuver,
based on game theory, is presented in [5], [4]. There has been a large amount
of prior work on modelling and verification of hybrid systems, as represented,
for example, in the six previous workshops on hybrid systems. Nearly all of this
work differs from ours in using either control theory methods, or else algorith-
mic techniques (e.g., decision procedures based on finite-state analysis). Other
formal models for hybrid systems appear in [8], [1]; these differ from ours pri-
marily in placing less emphasis on issues of external behavior, composition and
abstraction.

We consider the research contributions of this paper to be: (a) The model and
proof of safety for the platoon join (and other maneuvers). (b) The optimality
result and its proof. (c) A demonstration of the power of hybrid I/O automata
and its associated proof methods for reasoning about interesting hybrid systems.
(d) A demonstration of the use of abstraction levels as a means of handling
complexity.

2 HIOA Model

The Hybrid I/O Automata model presented in [7] is capable of describing both
continuous and discrete behavior. The model allows communication among com-
ponents using both shared variables and shared actions. Several HIOA techniques
make them particularly useful in modeling and reasoning about hybrid systems.
These include composition, which allows to form complex automata from simple



building blocks; implementation relations, which make it easy to use levels of ab-
straction when modeling complex systems; invariant assertions, which describe
the non changing properties of the system.

A state of a HIOA is defined to be a valuation of a set of variables. A trajectory
w is a function that maps a left-closed interval I of the reals, with left endpoint
equal to 0, to states; a trajectory represents the continuous evolution of the state
over an interval of time. An HIOA A consists of:

— Three disjoint sets of input, output and internal variables. Input and output
variables together are called ezternal variables.

— Three disjoint sets of input, output and internal actions.

— A nonempty set of start states.

A set of discrete transition, i.e. (state, action, state) triples.

A set of trajectories over the variables of A.

|

We now define executions of HIOAs. A hybrid execution fragment of A is a
finite or infinite alternating sequence of trajectories and actions, ending with a
trajectory if it is finite. An execution fragment records all the discrete changes
that occur in an evolution of a system, plus the continuous state changes that
occur in between. Hybrid execution fragments are called admissible if they are
infinite. A hybrid ezecution is an execution fragment in which the first state is a
start state. A state of A is defined to be reachable if it is the last state of some
finite hybrid execution of A. A hybrid trace of a hybrid execution records only
the changes to the external variables. Hybrid traces of an HIOA A (hybrid trace
that arise from all the finite and admissible hybrid executions of A) describe its
visible behavior.

HIOA A implements HIOA B if every behavior of A is allowed by B. A is
typically more deterministic than B in both the discrete and the continuous
level. Formally, if A implements B, then 1) A and B are comparable HIOA,
meaning that they have the same external actions and external variables; 2) all
the hybrid traces of A are included in those of B. To prove the second part, we
need to show that there exists a simulation relation from A to B. A simulation
relation from A to B is a relation R from states of A to states of B satisfiying:

— If s4 1s a start state of A, then there exists sg, sq Rsp, such that sg is a
start state of B. ‘

— If a is an action of A, (sa,a,s)) is a discrete transition of 4, sy Rsg, and
both s4 and sp are reachable, then B has a finite execution fragment starting
with spg, having the same trace as the given step, and ending with a state
s'g with s, Rs’s.

~ If wy is a trajectory of A from s4 to s/, saRsp, and both s4 and sg are
reachable, then B has a finite execution fragment starting with sg, having
the same trace w, and ending with a state sj with s/, Rss.

Another technique for reducing complexity is HIOA composition. HIOAs A
and B .can be composed if they have no output actions or output variables in
common, and if no internal variable of either is a variable of the other. The



composed HIOA C’s input variables/actions are the union of A and B’s input
variables/actions minus the union of A and B’s output variables/actions; all the
other components (output and internal variables/actions, start states, discrete
actions, trajectories) are the unions of the corresponding components of 4 and
B. The crucial result is that the composition operator respects the implemen-
tation relation: if A; implements A, then A; composed with B implements As
composed with B. Finally, invariant assertions state system properties that are
true in any reachable state of the system.

3 System Model

We consider two platoons of vehicles, moving along a single track. While the be-
havior of the leading platoon is arbitrary, the second platoon’s controller must
make sure that no “bad” collisions occur. “Bad” collisions are collision at a high
relative speed. This is called the Safety requirement for the second controller.
This Safety requirement is general for all platoon maneuvers, and is indepen-
dent of the particular algorithm used. We devise the most nondeterministic safe
controller, so that later we can use this controller as a correctness check: a con-
troller implementing any platoon maneuver must implement our safe controller
in order to be correct. This should be very useful in formally proving correctness
of complicated algorithms.

3.1 Controlled-Platoons

We compose our system of a piece modeling the real world (the physical
platoons) and two pieces modeling the controllers of each platoon (which are
described in the next subsection). Each piece is modeled by a hybrid automaton.
The real world piece is called Controlled-Platoons, shown in Figure 1. It consists
of two platoons, named 1 and 2, where platoon 1 precedes platoon 2 on a single
track. Positions on the track are labeled with nonnegative reals, starting with 0
as a designated beginning point. We pretend for simplicity here that the platoons
have size 0. In the full version of the paper this restriction is relaxed. Note that
the velocities of the platoons are always nonnegative — the vehicles will never go
backwards, and the platoons are not allowed to bypass each other. ,

Only single collisions are modeled here. A special collided variable keeps
track of the first occurrence of a collision. Before a collision, the platoons obey
their respective controllers by setting the given acceleration. After a collision
occurs, the platoons are uncoupled from the controllers and their velocities are
set arbitrarily.

We use the constants vgow € RZ to represent the largest allowable velocity
when a collision occurs, and amin € R2° to represent the absolute value of the
maximum emergency deceleration. The platoons’ position, velocity, and accel-
eration data is modeled by z;, &;, and Z;, respectively. The dots are used as a
syntactic device only. The differential relationships between these variables is a
consequence of the trajectory definitions; however, this differential relationship



Actions:
Internal: collide
Variables:
Input: £ €R, i € {1,2}, initially arbitrary
Output: z; € R2°, i € {1,2}, initially arbitrary
5, €R2? 5 ¢ {1,2}; initially z2 = 0 and z; is arbitrary
collided, Boolean, initially false
now, initially 0
Discrete Transitions:
collide
Pre: T = T3
collided = false
Effect: £; := arbitrary value, : € {1,2}
collided = true
Trajectories:
an I-trajectory w is included among the set of nontrivial trajectories exactly if
collided is unchanged in w
for all ¢ € I the following hold:
if collided = false in w then
w(t).4i = w(0).4i + [, wlu).4idu, i € {1,2}.
w(t).now = w(0).now + ¢
w(t).z2 < w(t).zy
w(t).zg = w(O).z.‘ + j;)tw(u).z'.-dq
if w(t).z1 = w(t).z2 and t is not the right endpoint of I then
collided = true.

Fig.1. The Controlled- Platoons Hybrid I/O Automaton

is partly lost after a collision occurs. The acceleration data is received from the
controllers which are defined below. This will be used in our statement of the cor-
rectness property, below — we only want to assert what happens the first time a
collision occurs. The second conditions on the trajectories of Controlled-Platoons
guarantees that the platoon only executes the controller’s decisions until the first
collision occurs.

3.2 Controllers

Controller; is described in Figure 2. It is an arbitrary hybrid automaton
with the given interface, restricted only by physical limitations. Note that the
controller does not have any actions. The last restriction on continuous trajec-
tories, for example, guarantees that the controller does not make the platoon to
have negative velocity. The internal velocity and position variables (&;,¢; and
Tiny1) are used to keep track of the platoon’s own data. This data is obtained by
integrating their acceleration settings. Since there are no delays or uncertainties,
these variables should correspond exactly to the actual position and velocity of
the platoon.

The Controller; hybrid automaton is the same as Controller;, except that



Variables:
Input: <z, € R2°
z, € R2°
Output: z3
Internal: Zin:1 € R2°, initially £ine = £
Tiner € R2%, initially Zinn = 21
Trajectories:
an I-trajectory w is included among the set of nontrivial trajectories exactly if
#1 is an integrable function
for all ¢t € I, at w(?)
Zine = w(0).Ziner + [ w(u).£1du
Tint1 = w(0).Tines + [, ‘w().Fincrdu
T 2 —Qmin

Fig. 2. Controller; Hybrid I/O Automaton

it inputs z; and £, and outputs z,.

Compose Controlled-Platoons, Controller; and Controller, using hybrid 1/0
automata composition rules to obtain an automaton that models our platoon
system with each platoon having its own controller.

3.3 Safety Condition

We place a safety condition on states of Controlled-Platoons. The safety con-
dition guarantees that if the platoons ever collide, then the first time they do
so, their relative velocity is no more than vg,jy. We formulate this condition
formally as an invariant assertion:

Safety : If 1 = x4 and collided = false, then 75 < 1 + valt0w.

We define a new automaton, Safe-Platoons, to serve as a correctness specifi-
cation. Safe-Platoons is exactly the same as Conirolled-Platoons except that all
the states are restricted to satisfy the safety condition.

We are supposed to design Controllery so that when it is composed in this way
with arbitrary Controller;, the resulting system satisfies the safety condition.
Then we can say that it implements the Safe- Platoons automaton, using a notion
of implements based on preserving hybrid traces. Here, the hybrid trace includes
the output variables, which are the positions, velocities and accelerations of both
platoons plus the collided flag. That is enough to ensure that the Safety condition
of the spec carries over to the implementation.

4 The Ideal Case

4.1 The Model

We start with a treatment of the safety property in the ideal setting. This allows
us to prove some important properties of the simpler model first, and then extend



them to the more complicated models via simulation mappings. By ideal setting
we mean that there are no delays and/or uncertainties in either the sensor’s data
or the controller’s directives. In the next few sections we will make the model
more realistic by relaxing these restrictions. Also, in this abstract, we make the
simplifying assumption that the platoons have size 0. In the full paper we show
how to relax this restriction easily.

We define and prove correctness of a specific Controllers, called Csy, which
implements our safety condition, in Figure 3. This controller is very nondeter-
ministic.

Definition:
. 2 PR} 2
I —(z -— . .
safe-measure = max(z; — Tinsy — inta) ga:..)i,. (atten)” 7+ vypton — Zint2)
Variables:
Input: £; € R2°
1 € RZO

Output: £, initially if safe-measure < 0, then £, = 0
Internal: £;n;2 € RZ°, initially Zine = 2
zin.lv.‘2 € RZO’ lmtla.lly Tint2 = T2
Trajectories:
an I-trajectory w is included among the set of nontrivial trajectories exactly if
w is a trajectory of Controller;
if collided = false in w(0) then Vt € I
if safe-measure < 0 then 2 = —amnmin

Fig.3. C; Hybrid I/O Automaton

C: ensures that if the position and velocity parameters are on the boundary
defined by safe-measure, then platoon 2 is guaranteed to be decelerating as fast
as possible. This is guaranteed by the second condition on the trajectories of Cs.

4.2 Correctness of C,

We will now prove correctness of our controller. This means that any controller
that implements C3, will be correct (safe).
We define a predicate S on states of Platoons, as follows:

Predicate S: If collided = false then safe-measure > 0, where

(iint2)2 - (17.1)2 - (Ua”ow)2

2amin

safe-measure = max(z;—Tini2— y 1+ Vallow—Eint2)

This says (from the definition of safe-measure, see Figure 3) that if the pla-
toons have not collided yet, then either (a) the distance between the two platoons
is great enough to allow platoon 2 to slow down sufficiently before hitting pla-
toon 1, even if platoon 1 decelerates at its fastest possible rate, or (b) the relative
velocities of the two platoons are already close enough.



We define a new automaton C-Platoons, which is exactly like Controlled-
Platoons, with the additional restriction that in all the initial states safe-measure
> 0 (thus all the initially states satisfy Predicate S, since initially collided =
false). The system Implemented-Platoons that we are considering is the composi-
tion of C-Platoons, an arbitrary Controllery, and Cs. C is designed to guarantee
explicitly that if S is ever violated, or even if it in danger of being violated (be-
cause equality holds), platoon 2 is decelerating as fast as possible. We claim that
this strategy is sufficient to guarantee that S is always true:

Lemmal. S is true in every reachable state of the Implemented-Platoons.
As a simple consequence of Lemma 1, we obtain the safety condition:

Lemma?2. In any reachable state of Implemented-Platoons, if z; = z2 and
collided = false, then 3 < Z1 + Valtow.

Now we use Lemma 2 to prove that the system is in fact safe, i.e., that it
implements Safe- Platoons. We prove this using a simulation relation f. This
simulation is trivial - the identity on all state components of Safe-Platoons
(velocities, positions, and the collided flag). '

Lemma3. f is a forward simulation from the composed system Implemented-
Platoons to Safe-Platoons.

Proof: By induction on the number of steps in the hybrid execution. Lemma
2 deals with trajectories; the proofs for the start states and discrete steps are
relatively simple.

Theorem4. The Implemented-Platoons system implements Safe-Platoons, in
the sense that for every hybrid ezecution a of Implemented-Platoons, there is
a hybrid ezecution o of Safe-Platoons that has the same hybrid trace — here,
means same positions, velocity and collided flag values.

Proof. Implemented-Platoons and Safe-Platoons are comparable and by Lemma
3, there is a simulation relation f from Implemented-Platoons to Safe-Platoons.
Therefore, this composed system implements Safe- Platoons.

4.3 Optimality

We will now prove optimality of safe-measure using the analysis theorem about
non-increasing functions. Informally, we want to prove that any Controller; that
does not implements C; is unsafe. The formal definition of this optimality prop-
erty appears in Theorem 7. Combined with the correctness result of the previous
subsection, this will allows to decide whether any given controller is safe, since
it is safe if and only if it implements Cs.



Define Controllery to be bad (and call it Bad-Controllery), if there exists
some Controller;, such that in any admissible hybrid execution a of an au-
tomaton composed of Controlled-Platoons, Controllery and Controllery, s € a,
which does not satisfy Predicate S.

Define Bad-Controllery, given Bad-Controllery, so that in the system com-
posed of Bad-Controller,, Bad-Controller, and Controlled-Platoons (the system
called Bad-Platoons), for any admissible hybrid execution 3, the following hold:

— 3s € B, s does not satisfy Predicate S;
— strictly after the occurrence of s, Z; = —anm;n.

The first lemma shows that once Predicate S is violated, it will remain vio-
lated, given some ”"bad” Controller;. Formally,

Lemma5. If a given Controllery is bad, then in any Bad- Platoons system with
this Controllery, Predicate S is violated in all the states € B that occur strictly
after s, in which collided = false. (Bad-Platoons, 3, s are as defined above.)

The next lemma shows that if Predicate S is violated in some state, then
safety will also be violated eventually. Formally,

Lemma6. If a given Controllery is bad, then in any Bad-Platoons system with
this Controllery, in any admissible ezecution v, s’ € v, which does not satisfy
safety ).

Theorem 7. For any Bad-Controllery, there always exists such Controller; (Ci,
which is not necessarily the same as C ), that a Bad-Platoons system composed
with these controllers has in its hybrid trace a state s', in which safety is violated.

The last theorem shows that our controller is optimal, i.e., any Controller,
that does not implement it, might lead to an unsafe state, given some “bad”
Controller;.

5 Delayed Response

Now we consider the case where there is a delay between the receipt of informa-
tion by the controller for platoon 2 and its resulting action. There appear to be
two distinct types of delay to consider — the inbound and the outbound delay;
we model them separately. The inbound delay is due to delays in communicating
sensor information to the controllers. The outbound delay comes from the fact
the controller’s decision are implemented by the platoons after some delay.

We use levels of abstractions to deal with the complexity of the delayed case.
The use of simulation relations enables us to build correctness and optimality
proofs based on the previous ideal case results. This makes all the proofs signif-
icantly easier.



5.1 The System with Inbound and Outbound Delays

We model both the inbound and the outbound delays by special delay buffers.
To obtain the delayed system, we then compose our new controller with the
delay buffers. First, we introduce the inbound delay buffer B; (lag time in com-
municating sensor information) in Figure 4.

Variables:
Input: z; € R2° z; € R2°
Output: z;; € R2%, z;; € R2°
Internal: saved - maps from an interval (0, d;) to (z1, z1)
Trajectories:
an I-trajectory w is included among the set of nontrivial trajectories exactly if
for all t € I, t > 0 the following hold:
w(?)-(Be1, 701) = {w(O)‘saved('t) ift < d‘.
(w(t —di).71,w(t — di).z1) otherwise
vt' € (0,d;),

w(t).saved(t') = {

Fig.4. B; Hybrid I/O Automaton

w(0).saved(t' —t) ift >t
(w(t = t').2;,w(t —t').z1) otherwise

B; acts in such a way that the output variables have exactly the values of the
input variables, exactly time d; earlier, where d; is the maximum “information
delay” — the longest time that it can take for a controller to receive the velocity
and position sensor data. This delay buffer actually implements the more realistic
version, in which the length of the delay varies nondeterministically within known
bounds. Initially, the buffer (saved) is “prefed” with information that could have
happened in that initial time period (so that the last position and velocity values
in the buffer match up the initial position and velocity values of the platoons).
Setting the maximum deceleration for that “imaginary” time period lets the
controller be the most flexible (and thus optimal, as will be proven later), in the
initial d; time period.

Formally, the initial value of the saved variable is determined as follows.
For any start state s of the system, construct a trajectory w of length d; of
Controlled-Platoons so that w(0).21 = s.2, + diamin, w(0).21 = s.z; + s.21d; +
Qm';i‘i, and V¢t € (0,d;), w(t).; = —amin. The second platoon’s state com-
ponents can be arbitrary, as long as no collisions occur. Now, ¥t € (0,d;), let
saved(t) = w(t).(£1,z1).

Next, we add an outbound delay buffer B, (lag time in communicating control
information). An outbound delay buffer B,, is almost like the inbound buffer B;,
but with input variable #,2, and output variable #;. The saved variable is the
same as in B;, except that it now “saves” I,, and the length of the interval is d,,
where d, € R2? is the maximum “action delay” - the longest time that it can take



for a platoon to react to the controllers directives. Again, the delay time-length
is exact. Initially, Vt € (0,d,), saved(t) = —amin - This makes the platoons safe
in the initial d, time interval even if the first platoon starts decelerating.

Definition:
safe-measure; = max(zi + it — imznﬁ — Tnew2 —
L — amintl — Tnew2 + 'Uallow),
where t' = min(d; + do, a—I'J—)
Variables: -
Input: #;; € RZ°
zi1 € R2°
Output: £, initially if safe-measure < 0, then 72 =0
Internal: internal variables of Controllery (Zine2 and Zinez)
a2 - maps from an interval (0,d,) to Zo2,
initially, Vt € (0,d,), a2(t) = —@min, otherwise — arbitrary
Tnew2, Lnew2 - the position and velocity of the second platoon
after time d, passes, provided collided still equals false

.2 : 2
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Trajectories:
an I-trajectory w is included among the set of nontrivial trajectories exactly if
w is a trajectory of Controller;
if collided = false in w(0) then for all t € I, ¢ > 0:
if safe-measure; < 0 then

L2 = —@min

vt' € (0,d,),
w(t).ax(t) = {w(o)‘“i(‘i‘ B>
w(t—t).Ze otherwise
W(t)-Enews = w(t).Einer + [, w(t).az(u)du
w(t).Znews = w(t).zinez + [, ([ “w(t).a2(w')du’ + w(t).3inez)du
Fig.5. D, Hybrid I/O Automaton

Finally, we modify the controller so that it handles the delays correctly. The
controller Dy (see Figure 5) implements Controllers. It is similar to Cs in that
it also tries to keep the second platoon within the bounds set by safe-measure,
which is safe-measure redefined for the delayed case. The new controller gets
its inputs from the inbound delay buffer B; and its output variable goes into
the outbound delay buffer B,. Additional internal variables (z,ew2 and Zpew2)
are added to store the “future” position and velocity data, as calculated from
the acceleration settings. A buffer for storing acceleration settings that the con-
troller has output, but that has not been executed yet (a3) is used for this pur-
pose. Also, safe-measure, is defined instead of safe-measure; the only changes
from safe-measure are that the 1st platoon’s parameters are exchanged by their
“worst-case” values after d; + d, time units pass; and the 2nd platoon’s param-
eters are exchanged by their projected values after d, time units pass.



5.2 Correctness of D,

We will now compose B;, Dy, B, using the hybrid 1/O automata composi-
tion rules to obtain the delayed controller, which we call Buffered-Controller.
A straightforward simulation relation shows that this composed system imple-
ments C5. This simulation relation f is the identity on all the external state
components of Cy. The use of simulation relations will allows us to prove cor-
rectness of our more complicated delayed controller relatively easily, since we
have already proven correctness in the simple (ideal) case.

First we prove that if the old safe-measure (the one used in the ideal case) is
non-positive in some state of a trajectory of Buffered-Controller, then the new
controller D, (the one that has both the inbound and the outbound delays),
will also output maximum deceleration, just as the old (ideal) controller would.
Formally,

Lemma8. If collided = false in w(0) of a trajectory w of Buffered-Controller,
then Wt € I, such that w(t).safe-measure <0, £3 = —amin.

Lemma9. f (an identity relation on all the external components of Cy) is a
forward simulation from the composed system Buffered-Controller to Cs.

Proof. By induction on the number of steps in the hybrid execution. Start states
and discrete steps are proven trivially; Lemma 8 is used to prove the simulation
relation on continuous trajectories.

This lemma proves that Buffered-Controller implements C3, since the two
automata are comparable and there is a simulation relation from the first one to
the second one. Therefore, we are now able to prove correctness of our delayed
controller:

Theorem 10. The doubly-delayed hybrid automaton composed of C-Platoons,
Buffered-Controller implements Safe-Platoons.

Proof. We have proved that the system Buffered-Controller implements C3 in
Lemma 9. But by Theorem 4, Cy composed with C-Platoons (the Implemented-
Platoons system) implements Safe-Platoons. Thus, the doubly-delayed hybrid
automaton composed of C-Platoons, and Buffered-Controller also implements
Safe-Platoons by the hybrid I/O automata composition rules!

5.3 Optimality

We will now prove optimality of Ds. Again, we will be basing our proofs on
the optimality property of the controller Ca, which was proven in section 4.3.
We want to prove that any controller with both inbound and outbound delays
that does not implement controller Dj, is unsafe given some “bad” controller
C. However, knowing that C5 is optimal makes the proof much easier: we only
need to show that a controller that would let safe-measure; get negative, will



eventually lead to a state in which safe-measure itself is negative. Then we can
use optimality of C to show that any such controller would not be correct.

Define Buffered-Controller; to be bad (Bad-Buffered-Controllery), if there
exists some Controller; (Cy41), such that in any admissible hybrid execution
a of an automaton composed of Controlled-Platoons, Cy; and Bad-Buffered-
Controllers, Is4 € «, which does not satisfy Predicate Sy.

Lemma1l. Any Bad-Buffered-Controller, implements Bad-Controllers.

Since we have just shown that the delayed automaton implements the non-
delayed one, we can use the optimality property of the ideal case controller, to
prove the optimality of the delayed controller easily:

Theorem 12. Given any Bad-Buffered-Controllers, we can always construct
Controller; (Cg1) such that a system composed of Controlled-Platoons and these
controllers has in any admissible hybrid execution a state s', in which safety is
violated.

Proof. Take any Bad-Buffered-Controllers. By Lemma 11, it implements Bad-
Controllery. Then by Theorem 7, there exists such Controller; (Cf), that a
system composed of Controlled-Platoons, C{ and this Bad-Buffered-Controllery
has in its hybrid trace a state s’ that violates safety.

Therefore, the delayed Controllers is also optimal.

6 Uncertainty

Our model] already includes both the inbound and the outbound delays in sending
and receiving information between the controller and Controlled- Platoons. Now
we will introduce an extra complexity which will make the model even more re-
alistic: the uncertainty in information that the controller receives. This inbound
uncertainty arises from inexact sensors that communicate the position and ve-
locity data to the controllers. We will use similar methods to the ones used in the
delay case. A special “uncertainty buffer” automaton will be defined, similar to
the previous delay buffers. Then, the uncertainty will be implemented by adding
this new automaton to the model and modifying the controller slightly. We will
then prove correctness using the simulation relation to the delayed case which
we have already worked out. This use of levels of abstraction makes the proofs
for the complicated case, which involves both the delays and the uncertainties,
relatively easy to both write and understand.

6.1 The System

We implement the delayed controller Dy with a composition of two hybrid
autornata: another controller /5, and an inbound uncertainty buffer U;. We call



Variables:
Input: i1, za1
Output: Ziu1, Tiwa
Trajectories:
an [-trajectory w is included among the set of nontrivial trajectories exactly if
for all ¢ € I, t > 0 the following hold:
Tiul € [Ti1 — 6,201 + 6]
Tiw1 € [zix — 6,201 + 8]
Fig.6. U; Hybrid I/O Automaton

this composed system Uncertain-Coniroller. The uncertainty buffer U; nonde-
terministically garbles the position and velocity data within the given bounds
(see Figure 6). The bounds are predefined constants § € R2° — the maximum
absolute value of uncertainty in position sensor data, and § € R2% — the maxi-
mum absolute value of uncertainty in velocity sensor data. The controller U is
the same as Dy except that it now takes its inputs from the inbound uncertainty
buffer U; and that safe-measure, (see below) is defined to account for the un-
certainties. Same as in the delay case, the only changes from safe-measure; are
that the first platoon’s data is adjusted to the “worst case” behavior of the first
platoon.

‘ . 12
safe-measure, = max((2iy; — 6) + (Ziu1 — 6)t" — a"‘% — Tpew
. . . 2
_ (xnew2)2 - ((fciul - 6) - amint”) - (vallow )2

¥

2amin

(i:iul - 6) - amint” — Lpews + 'UaIIow)y

where t” = min(d; + d £m-‘d‘—‘i)

% Gmin

6.2 Correctness of U,

A straightforward simulation relation shows that the Uncertain-Coniroller sys-
tem implements D5. This simulation relation f is the identity on all state com-
ponents of Dj;. '

First we show that if the old safe-measure (the one used in the delayed case)
is non-positive in some state of a trajectory of Uncertain-Controller, then the
new controller (the one that has an inbound uncertainty), will also output max-
imum deceleration, same as the old (delayed only) controller would. Formally,

Lemma13. Let w be an I-trajectory of Uncertain-Controller. If collided =
false in w(0), then ¥t € I, such that safe-measurey; < 0, £o3 = —@min and
safe-measure, < 0.

Then we are able to prove that f is the simulation relation from the composed
system Uncertain-Controller to Ds.



Theorem 14. f (an identity relation on all the external state components of
Dy ) is a forward simulation from the Uncertain-Controller system to Ds.

We have already proven correctness of the delayed controller Dy, and we have
also shown that Uncertain-Controller implements D,; thus, our new uncertain
system is also correct in a sense that it implements our correctness specification,
Safe-Platoons.

7 Conclusion

The system consisting of two platoons moving on a single track has been modeled
using hybrid I/O automata, including all the components (physical platoons,
controllers, delay and uncertainty buffers), and the interactions between them.
Safety conditions were formulated using invariant assertions. Correctness and
optimality of controllers were proved using composition, simulation mappings
and invariants, and the methods of mathematical analysis. Complexity (delays
and uncertainty) was introduced gradually, using the levels of abstraction, which
significantly simplified the proofs.

The case study describes formally a general controller that would guarantee
the safety requirement regardless of the behavior of the leading platoon. Such
a controller can be later reused to prove correctness of complicated maneuvers,
such as merging and splitting, where the setup is similar.

In future work, we will extend the model to handle outbound uncertainty;
use jerk instead of acceleration; motion in 2D planes. Also, we will consider cases
with several platoons operating independently. Additional properties of the join
maneuver, such as successful join, time optimality, and passenger comfort, will
be studied; other maneuvers arising in this setting will be investigated using the
same models.
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Abstract. This paper investigates how formal techniques can be used
for the analysis and verification of hybrid systems [1,5,7,16] — systems
involving both discrete and continuous behavior. The motivation behind
such research lies in the inherent similarity of the hierarchical and decen-
tralized control strategies of hybrid systems and the communication and
operation protocols used for distributed systems in computer science.
This paper focuses on the use of hybrid I/O automata [11,12] to model,
analyze, and verify safety-critical hybrid systems that use emergency
control subsystems to prevent the violation of their safety requirements.
The paper is split into two parts. First, we develop an abstract model of
a protector — an emergency control component that guarantees that the
physical plant at hand adheres to a particular safety requirement. The
abstract protector model specialized to a particular physical plant and a
particular safety requirement constitutes the specification of a protector
that enforces the particular safety property for the particular physical
plant. The correctness proof of the abstract protector model leads to
simple correctness proofs of the implementations of particular protec-
tors. In addition, the composition of independent protectors, and even
dependent protectors under mild conditions, guarantees the conjunction
of the safety properties guaranteed by the individual protectors being
composed. Second, as a case study, we specialize the aforementioned ab-
stract protector model to simplified versions of the personal rapid transit
system (PRT 2000™*) under development at Raytheon Corporation and
verify the correctness of overspeed and collision avoidance protectors.
Such correctness proofs are repeated for track topologies ranging from a
single track to a directed graph of tracks involving Y-shaped merges and
diverges.
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1 Introduction

The recent trend of system integration and automation has encouraged the study
of hybrid systems — systems that combine continuous and discrete behavior. Al-
though the individual problems of continuous and discrete behavior have been
extensively analyzed by control theory and formal analysis, respectively, their
combination has recently been aggressively studied. In particular, the automa-
tion in various safety-critical systems, such as automated transportation systems,
has indicated the need for formal approaches to system analysis, design, and veri-
fication. Automated highway systems [2,8], personal rapid transit systems [6,17],
and air traffic control systems [9,15] have served as benchmark problems for the
development of techniques to analyze, design, and verify hybrid systems.

Many of the safety-critical systems in use today abide by the engineering
paradigm of using an emergency control, or protection, subsystem to prevent
the violation of the system’s safety requirements. In this paper we present a
formal framework for the analysis of systems that adhere to this engineering
paradigm. The framework is used to prove the correctness of such protection
subsystems in an effort to provide indisputable system safety guarantees. The
formal approach to the analysis of such systems has several advantages. Formal
analysis yields a precise specification of the system and its safety requirements,
provides insight as to the location of possible design errors, and minimizes the
duplication of verification effort when such errors are corrected. The technique
of system validation through exhaustive testing lacks the insightful feedback and
requires full-fledged regression testing when design errors are detected.

In this paper, we use hybrid I/0 automata [11,12] — an extension of timed
I/0 automata [4,14] — to define an abstract model of a protector — a subsystem
that guarantees that the physical plant adheres to a particular safety require-
ment. The abstract protector model is parameterized in terms of the physical
plant, the safety requirement, and several other quantities. The instantiation of
the abstract protector, obtained by specifying the abstract protector’s param-
eters, constitutes the specification of a protector that guarantees a particular
safety property for a particular physical plant model. The proof of correctness
of the abstract protector model minimizes the effort in verifying the correct
operation of a particular protector implementation. In fact, such correctness
proofs get reduced to simple simulations from the protector implementations to
the particular instantiation of the abstract protector model. As a case study,
we apply the formal framework developed towards the verification of overspeed
and collision protection subsystems for simplified models of the personal rapid
transit system (PRT 2000™) under development at Raytheon Corporation. The
case studies presented in this paper extend the work of Weinberg, Lynch, and
Delisle {17] by introducing a powerful formal framework that allows more com-
plete system models to be used. The actual PRT 2000™ system is comprised
of 4-passenger vehicles that travel on an elevated guideway of tracks involving
Y-shaped merges and diverges and provide point-to-point passenger transporta-
tion. In this treatment, we verify the correct operation of overspeed and collision
avoidance protectors for track topologies ranging from a single track to a directed



graph of tracks involving Y-shaped merges and diverges. A detailed treatment
of the work presented in this paper can be found in Ref. 6.

2 Hybrid I/O Automata

A hybrid I/O automaton A is a (possibly) infinite state model of a system involv-
ing both discrete and continuous behavior. The automaton A = (U, X,Y, X",
yint yout @ D, W) consists of three disjoint sets U, X, and Y of variables (in-
put, internal, and output variables, respectively), three disjoint sets 5", Lt
and X°% of actions (input, internal, and output actions, respectively), a non-
empty set @ of initial states, a set D of discrete transitions and a set W of
trajectories over V, where £ = X" U X"ty 2% and V = UU X UY. The
initial states, the discrete transitions, and the trajectories of any HIOA A must
however satisfy several technical conditions which are omitted here. For a de-
tailed presentation of the HIOA model, the reader is referred to Refs. 11 and
12.

Variables in the set V' are typed; that is, each variable v € V ranges over
the set of values type(v). A valuation of V, also referred to as a state of A, is
a function that associates to each variable v of V a value in type(v). The set of
all valuations of V, or equivalently the set of all states of A, is denoted by V,
or equivalently states(A). Letting v € V and S, C type(v), we use the notation
v :€ S, to denote the assignment of an arbitrary element of the set S, to the
variable v. Similarly, letting S,, C V, we use the notation V :€ Sy, to denote
the assignment of an element of the set type(v) to the variable v, for each v in
V, such that the resulting valuation of V is an arbitrary element of the set Sy, .
Letting s be a state of A, i.e., s € V, and V' C V, we define the restriction
of s to V/, denoted by s[V’, to be the valuation s’ of the variables of V' in
s. Letting X C V, we say that X is V'-determinable if for all z € X and
s € V, such that z[V' = s[V’, it is the case that s € X. The continuous time
evolution of the valuations of the variables in V is described by a trajectory w
over V; that is, a function T; — V, where T} is a left-closed interval of R2°
with left endpoint equal to 0. The limit time of w, denoted by w.ltime, is defined
to be the supremum of the domain of w, dom(w). We define the first state of a
trajectory w, denoted by w.fstate, to be the state w(0). Moreover, if the domain
of a trajectory w is right-closed, then we define the last state of w, denoted by
w.lstate, to be the state w(w.ltime).

A hybrid ezecution fragment « of A is a finite or infinite alternating sequence
wea wyGws - - -, where w; € W, a; € X, and if w; is not the last trajectory of
o then w; is right-closed and the discrete transition (w;.lstate, a;y1, Wiy . fstate)
is in D, or equivalently w;.lstate &, wiyy.fstate. If wo.fstate € @ then a is
a hybrid ezecution of A. If R C states(. ) and s,s' € R, then s’ is R-reachable
from s provxded that there is a hybrid execution fragment of A that starts in s,
ends in ', and all of whose states are in the set R.

A superdense time in an execution fragment a of A is a pair (¢,t), where
't < w;.ltime. We totally order superdense times in the execution fragment o



lexicographically. An occurrence of a state s in an execution fragment o of A
is a triple (4,¢,s) such that (7,t) is a superdense time in o and s = w;(t). State
occurrences in a are ordered according to their superdense times. If S is a set
of states of A and a is an execution fragment of A, then past(S, @) is the set of
state occurrences (¢,t, s) in a such that either s € S or there is a previous state
occurrence (¢',t',s') in a with s’ € S.

Two HIOA A; and A, are compatible if X;NV; = Y;NY; = ZiMnE; = Zovn
Zout =@, for i, € {1,2},i # j. If A; and A, are compatible then their compo-
sition Ay x A is defined to be the tuple A = (U, X, Y, Z", Xint, gout @ D, W)
given by U = (hUl)—(1UYs), X = X1 UX,, ¥V =Y UY,, 0 =
(Zin UE;"’) - (Zimt Uzgut), Jrint — Zf"t U E%nt, Jout — Zf"t Uzgut’ e = {s €
V | s[Vi € 01 A s[V3 € O;} and sets of discrete transitions D and trajecto-
ries W each of whose elements projects to discrete transitions and trajectories,
respectively, of A; and A,.

Two HIOA A; and A; are comparable if they have the same external interface,
ie, Uy = U, Y7 = Ya, Zi" = Xi*, and D% = X¢%. If A; and Ay are
comparable, then A; < A is defined to denote that the hybrid traces of A;
are included in those of Aj; that is, A; < Ay £ h-traces(A;) C h-traces(Az). If
A; < A, then we say that A; implements A,.

3 ‘Protected Plant Systems

A protected plant system is modeled abstractly as a physical plant interacting
with a protection system. The protection system is modeled as the composition
of a set of protectors each of which is supposed to enforce a particular safety
requirement of the physical plant. Our model is abstract in the sense that it does
not specify any of the details or safety requirements of the physical plant.

The physical plant and each of the protectors are modeled as HIOA. The
physical plant PP is an automaton that is assumed to be interacting with the
protectors through the set J of communication channels, which are referred to
as ports. The input action set T, the output action set X%, and the input
variable set Upp are partitioned into subsets & };"Pj, 2%, and Upp,, respectively,
one for each port j. We use the letter p to denote a state of PP and P to denote
a set of states of PP. A protector A for the physical plant PP and the port set
K C Jis an automaton that is compatible with PP and whose output actions are
exactly the input actions of PP on ports in K, whose output variables are exactly
the input variables of PP on ports in K, and all of whose input actions and input
variables are outputs of PP. It can easily be shown that the composition of two
distinct protectors is itself a protector.

Letting S, R, and G be particular sets of states of PP, a protector automa-
ton A for PP and ports K guarantees G in PP from S given R provided that
every finite execution of the composition PP x A starting in a state in S that
only involves states in R ends in a state in G regardless of the inputs that ar-
rive at PP on ports other that those in K. Two protectors are dependent, if the



correct operation of one relies on the correct operation of the other, and inde-
pendent, otherwise. The following theorems express the substitutivity condition
— the condition under which the implementation of a protector is correct with
respect to its specification — and the compositional conditions — conditions
under which the composition of independent or dependent protectors guaran-
tees the conjunction of the safety properties guaranteed by the protectors being
composed.

Theorem 1 (Substitutivity). Let A; and Az be two protector automata for
the same port set K of a physical plant automaton PP, and suppose that A; <
As. If A; guarantees G in PP from S given R, then A, guarantees G in PP from
S given R. '

Theorem 2 (Independent Protector Composition). Suppose that A;, As,
..., Ag are protector automata for a physical plant automaton PP, with respec-
tive port sets K1, K,... , Ky, where K;NKy =0, foralli, i € {1,... ,k},i #1'.
Suppose that each of the protectors A;, for alli € {1,... ,k}, guarantees G; from
S; given R;. If the protectors Ay, Aa, ... , A are compatible, then their composi-
tion []; ¢ (1 &} Aj; is a protector for PP that guarantees [); {,.. ky Gi from

Nie {1,... .k} Si given ;¢ {1,k Bi-

Theorem 3 (Dependent Protector Composition). Suppose that A, As,
..., Ay are protector automata for a physical plant automaton PP, with respec-
tive port sets Ky, Ko,... , Ky, where K,NKy =0, for alli,7' € {1,... ,k},i #17.
Suppose that each of the protector automata A;, for alli € {1,... ,k}, guarantees

Gi from S; given Ri() (ﬂ ¥ € {1, k)i Gi’)

Assume that o is any finite execution of the system PP x [], (L. k} A;
starting from a state in (), ¢, . 4y Si and all of whose states are in the set
Nie (1,... k} Bi- Then, one of the following holds:

1. Every state in o isin ()¢ (1, 43 Gi-
2. The finite execution o can be written as a; ~ ag, where
(a) all state occurrences in a, except possibly the last, are in the set of states
nie {1,...,k} Gi,
(b) if the last state occurrence in a; is in G;, for some i € {1,...,k}, then
there ezists i’ € {1,... ,k},i # i, such that the last state occurrence in
a; is in Gy, and
(c) all state occurrences in as, except possibly the first, are in the set of
states (), c past(G;, a), for some I C{1,...,k}, where |I| > 2.

In loose terms, Theorem 3 states that the composition of dependent protectors
guarantees the conjunction of the safety properties guaranteed by the protectors
. being composed provided a single action or trajectory of the composed system
can cause the violation of at most one of the safety properties guaranteed by the
protectors being composed.



4 An Abstract Protector

The abstract protector automaton is parameterized in terms of the automaton
PP, the subsets R, G, and S of the states of PP, the port index j, and the positive
real-valued sampling period d. The PP automaton represents the physical plant
being modeled. The set R, also referred to as the set of reliance, is the set of states
to which we restrict the states of the PP automaton while considering a particular
protector. This set is usually comprised of states satisfying a particular property
of the physical plant that is required by the protector under consideration. The
set G, also referred to as the set of guarantee, is the set of states to which the
protector is designed to constrain the PP automaton. The set S is a set of states
from which the protector under consideration is said to guarantee G given R;
that is, given that the states of the PP automaton are restricted to the set R,
the protector guarantees that every finite execution starting from an initial state
in S ends in a state in G. The port index j and the sampling period d denote the
port and the sampling period with which the abstract protector interacts with
the PP automaton. Thus, an instantiation of the abstract protector automaton
Abs(PP,S,R,G, j,d) is obtained by specifying the parameters PP, etc.

To begin, we define several functions and sets that are useful in the definition
of the abstract protector Abs(PP, S, R,G,j,d). Although, formal definitions of
these functions and sets are presented in Table.1, their informal interpretations
follow. First, we define a function, futurepp R,j» that yields the set of states of
PP that are R-reachable from the given subset of R within an amount of time
in the given subset of R2, under the constraint that no input actions arrive on
port j of the PP automaton. We define a function, no-op pp,R,j» Which yields, for
a given state in R, the set of input actions on port j of the PP automaton that
do not affect the state of the PP automaton, provided they are executed prior to
either time-passage, or other input actions on port j. For any state p in R, the
input actions in the set no-oppp g ;(p) are referred to as no-op input actions on
port j of PP for the state p. We define a set, very-safepp p g ;, which is comprised
of the states of PP that satisfy R and from which all R-reachable states of PP
with no input actions on port j are in G. The set very-safepp, R,G,j may be
interpreted as the set consisting of the states from which the PP automaton is
bound to remain within the set G provided that it remains within the set R and
the protector on port j does not retract or issue additional protective actions.
We define a set, safepp g ¢ j, which is comprised of the states of PP that satisfy
R and from which the protector on port j has a “winning protective strategy”;
that is, for any state p in safepp R,G,; there exists an input action on port j
of the PP automaton whose immediate execution — its execution prior to any
time-passage with the possibility that its execution follows an arbitrary number
of discrete actions other than input actions on port j — guarantees that all
subsequent R-reachable states of PP with no input actions on port j are in G;
that is, the state following the execution of the particular input action of PP
on port j is in the set very-safepp p ;- We overload the notation safepp g g ;
by defining a function, safepp g ¢ ;, Which yields the states of PP that satisfy R
and for which the immediate execution of the given input action on port 7 — its



Table 1 Terminology for the abstract protector Abs(PP, S, R, G, j,d).

futurepp g ; : P(R) x P(R2°) — P(R), defined by:
p € futurepp p (P, T), where PC Rand T C R2%, if and only if p is R-reachable
from some p' € P via a finite execution fragment a of PP with no input actions
on port j and with a.ltime € T
no-oppp p; i R~ ’P(E}’};J.), defined by:
T € n0-0ppp p ;(p) if and only if 7 is an input action on port j of PP such that for
;.}} p',p};" € R satisfying p’ € futurepp  ;(p,0) and p' 5, p”, it is the case that
very-safepp p g,; C R, defined by:
p € very-safepp p g ; if and only if futurepp g ;(p, R2%) C G.
safepp p.g.; C R, defined by:
P € safepp p g,; if and only if both of the following hold:

1. futurepp p ;(p,0) C G.

2. There exists an input action m on port j, such that for every p’,p” € R
satisfying p' € futurepp p ;(p,0) and p' %, p”, it is the case that p” €
very-safepp p g, ;-

safepp p.G.; : 2}:’};). — P(R), defined by:
P € safepp g g,;(m) if and only if both of the following hold:

1. futurepp p ;(p,0) C G. '

2. For every p',p” € R such that p’ € futurepp  ;(p,0) and p’ -, p”, it is the
case that p” € very-safepp p ¢ ;-

delay-safepp p g ; RZ% — P(R), defined by:
p € delay-safepp g ¢ ;(t) if and only if both of the following hold:

1. futurepp g ;(p,[0,t]) C G.

2. futurepp g ;(p,t) C sefepp p c ;-

execution prior to any time-passage with the possibility that its execution follows
an arbitrary number of discrete actions other than input actions on port j —
guarantees that all subsequent R-reachable states of PP with no input actions
on port j are in Gj that is, the state following the execution of the given input
action on port j is in the set very-safepp g ;- Finally, we define a function,
delay-safepp g  ;, Which yields the set of states of PP that satisfy R and for
which all states R-reachable within the given amount of time and with no input
actions on port j are in G, and all states R-reachable in exactly the given amount
of time and with no input actions on port j are in sefepp g ¢ ;-

We proceed by stating the various assumptions made about the physical
plant PP and the abstract protector Abs(PP, S, R, G, j,d). We assume that the
PP automaton has no input variables on port j, for all j € J; that is, the
protectors control the state of the physical plant only through input actions.
A consequence of this assumption is that the environment action of the PP
automaton is stuttering. Moreover, we assume that the PP automaton has no
output actions on port 7, for all'j € J. The physical plant is modeled as a passive
system in the sense that the protectors observe the state of the plant only through
output variables. We assume that there exist no-op input actions on port j for



Fig. 1 Sensor; automaton definition.

Actions: Input: e, the environment action
Output: snapshot(y);, for each valuation y of Yrp
Variables: Input: u € type(u), for all u € Ypp,

initially u € type(u), for each u € Ypp
Internal: now; € R2° initially 0

. nest-snap; € R2°, initially 0
Discrete Transitions:

e snapshot(y);
Eff: Ypp:€ Ypp Pre: nez:‘t-snapj = now;
y is current valuation of Ypp
Eff: Yep :€ Ypp
nezt-snap; = now; +d
Trajectories:
for all u € Ypp
u assumes arbitrary values in type(u) throughout w
nezt-snap; is constant throughout w
forallt € T
w(t).now; = w(0).now; + 1t
w(t).now; < w(t).nest-snap;

every state of the PP automaton in the set R. We assume that membership of a
state of the PP automaton in the set safepp p g ; is determinable from the output
variables of the PP automaton, i.e., the set safepp p g ; is Ypp-determinable.
Moreover, we assume that for any state in the set safepp p ¢ ;, an appropriate
action to guarantee safety can be determined from the output variables of the
PP automaton, i.e., the variables in Ypp. For any valuation y of the output
variables Ypp of the PP automaton, we use the notation y € safepp p g ; t0
denote the existence of a state p € safepp g g ; such that p[Ypp = y. We assume
that the state information provided by the output variables of the PP automaton
is sufficient to determine membership of any state of the PP automaton in the
sets R and G, i.e., the sets R and G are Ypp-determinable. Moreover, we assume
that the set of start states S is a subset of the set safepp g ;-

The protector is defined as the composition of a sensor automaton (Figure 1)
and a discrete controller automaton (Figure 2). Both the sensor and the discrete
controller are described abstractly in terms of PP, S, R, G, j, and d and are
respectively denoted Sensor{PP,S,R,G,j,d) and DC(PP,S,R,G,j,d). At in-
tervals of d time units, the sensor automaton samples the output variables of
the PP automaton. The discrete controller automaton is rather nondeterminis-
tic. Based on the output state information of the PP automaton sampled by the
sensor automaton, the discrete controller automaton issues protective actions so
as to guarantee that (i) the PP automaton remains within the set G up to the
next sampling point, and (ii) the state of the PP automaton at the next sam-
pling point is in the set safepp g ¢ ;- The nondeterminism in the description of
the DC; automaton allows the freedom to choose any response that satisfies the
given conditions — however, in a discrete controller automaton implementation,



Fig. 2 DC; automaton definition.

Actions: Input: e, the environment action (stuttering)
snapshot(y);, for each valuation y of Ypp
Output: m, for all m € Xpp,

Variables: Internal: send; € E}Q"p}. U {null}, initially null
Discrete Transitions:
e snapshot(y);
Eff: None Eff: if y € safepp p g ; then
send; :€ {¢ € Zpp,
™ "V¥p,p',p" € R such that
Pre: send; == p[Yep=y,p € futurePP’R'j (p,0),
Eff: send; := null and p' %, p",

it is the case that
p"' € delay-safepp g g, ; (d)}
else
send; :€ Z;',"Pj
Trajectories:
w.send; = null

a response that least restricts the future states of the physical plant automaton
PP would be preferred because it would represent a weaker protective action.

Theorem 4. Abs(PP,S,R,G,j,d) guarantees G in PP from S given R.

The correctness proof of a particular protector implementation involves defin-
ing the particular protector’s specification as the instantiation of the abstract
protector for particular definitions of PP, efc. and showing that the particular
protector implementation is correct with respect to the particular instantiation
of the abstract protector. The first step simply involves specifying the parame-
ters PP, etc. The second step is simplified by choosing the protector implemen-
tation to be the composition of the sensor automaton Sensor(PP,S,R,G,j,d)
and a discrete automaton that is chosen so as to guarantee the effect clause of
the snapshot(y); action in DC(PP, S, R, G, j,d). Thus, the correctness proof of
the implementation is reduced to a simulation from the implementation of the
discrete controller automaton to its specification.

5 Modeling the PRT 2000™

In this section, we present a model for a simplified version of the PRT 2000™
whose track topology involves a single track. The model, VEHICLES, which is
presented in Figure 3, is a HIOA that conforms to the restrictions and assump-
tions made about the PP automaton in Sections 3 and 4. It involves n vehicles
of identical dimensions and acceleration/deceleration capabilities traveling on
a single track. Its state variables include the position z;, the velocity &;, and
the acceleration #; of each vehicle i in the set of vehicles I and several other
variables that record whether each vehicle has collided into each other vehicle



(collided(i,i'), for 3’ € I,i’ # i), whether each vehicle is braking (brake(s), for
i € I), and whether each protector j in the set of protectors J is requesting
each particular vehicle to brake (brake-reg(i,j), for ¢+ € I and j € J). Several
properties of the physical plant are enforced by restricting the states of the VE-
HICLES automaton to the set VALID (Appendix A). In particular, we assume
that the vehicles occupy non-overlapping sections of the track, the vehicles are
only allowed to move forward on the track, the non-malfunctioning vehicle accel-
eration/deceleration capabilities to be within the interval [émin, émaz], and the
non-malfunctioning braking deceleration to be given by épreke, if the vehicle is
moving forward, and 0, otherwise.

The formal definitions of the derived variables and sets of the VEHICLES au-
tomaton are shown in Appendix A. For brevity, we only give informal definitions
of the key derived variables. Each of the variables E;, for ¢ € I, denotes the ez-
tent of the vehicle ¢; that is, the section of the track occupied by the vehicle 3.
It is defined as the section of track ranging from the position of the rear of the
vehicle 7 to the point on the track that is a distance of ¢j., downstream of the
rear of the vehicle ¢ — a distance that specifies the minimum allowable separa-
tion between vehicles, i.e., E; = [r;,Z; + Clen], for ¢ € I. Each of the variables
O;, for i € I, denotes the section of the track that the vehicle 7 owns; that is, the
range extending from the current position of the rear of the vehicle i to the point
on the track that the vehicle can reach even if it is braked immediately. Each
of the variables C;(t), for i € I and t € R2%, denotes the section of the track
that the vehicle i claims within ¢t time units; that is, the range extending from
the current position of the rear of the vehicle ¢ to the point on the track that
the vehicle ¢ can reach if it is braked after ¢ time units and assuming worst-case
vehicle behavior up to the point in time when it is braked. Moreover, each of the
variables collided(x,1,*), for ¢ € I, denotes whether the vehicle 7 has ever been
involved in a collision. Some auxiliary sets for the vehicles automaton that will
be used in the following sections are defined in Appendix B.

The input actions of the VEHICLES automaton are the environment action e
and the actions brake(i); and unbrake(i);, for i € I and j € J. Since the VEHI-
CLES automaton has no input variables, the environment action e is stuttering.
Each of the actions brake(i); and unbrake(:);, for i € I and j € J, correspond
to actions performed by the protector j instructing the vehicle i to apply or re-
lease its “emergency” brake, respectively. Each brick-wall(z) action, for i € I,
models the instantaneous stopping of the vehicle ¢ — as if it hit a brick wall.
Thereafter however, the vehicle 7 is allowed to reinitiate forward motion. Each
colliding-pair(s,:’) action, for ¢,i’ € I,i # 7', records the fact that the vehi-
cle ¢ has collided into the vehicle i’. Since the trailing vehicle is the only vehicle
that can prevent the collision through braking, a collision is recorded only by
the trailing vehicle as if the trailing vehicle were the only vehicle liable for the
.particular collision. Each collision-effects(i) action, for ¢ € I, models the
adverse effects of a collision involving the vehicle ¢ and may be executed, even
repeatedly, at any instant of time following the first collision involving the vehi-
cle i. Thus, the malfunctioning apparatus of any vehicle i, for ¢ € I, is modeled



Fig. 3 The VEHICLES automaton.

Actions:
Input:

e, the environment action (stuttering)

brake(i);, forallieI,j€J
unbrake(:);, forallie I,j € J

Internal:
colliding-pair(i,i'),
for all 4, € I,i' # 1
collision-effects(i), for all i € I
brick-wall(:), forallie I

Discrete Transitions:

e
Eff: None

brake(i);
Eff: brake-req(i, j) := True
if ~brake(i) then
brake(i) := True
if £; =0 then %; :=0
else Zi := Cirake
unbrake(i);
Eff: brake-req(i,j) := False
if brake(t)
A(~ Vi e g brake-req(i, k))
then
brake(i) := False
-'.i'i HS [émin,émaz]

Trajectories:

Variables

Internal:
Z; € R, for all 7 € I, initially Z; € R
brake(i) € Bool,
for all 7 € I, initially False
brake-req(t, j) € Bool,
forallieI,jeJ,
initially False
Output:
z; € R, for all 7 € I, initially z; € R
z; € R, for all 4 € I, initially #; € R
collided(i,3') € Bool,
for all 1,7’ € I,4' #1,
initially False
subject to VALID

colliding-pair(i,s’)
Pre: —collided(i, i)
/\(E.' NE; # 0)
A{z; < min(E; N Ey))
Eff: collided(i,i') := True

collision-effects (i)
Pre: collided(*, 1, *)

Eff: #; :€ R2°
#;:€R
brick-wall(s)
Pre: True
Eff: £;:=0
if brake(?) then
Z;:=0
else

Z; € [0, Emaz]

for all 1,i' € I,i# i, collided(i, ') is constant throughout w
for all i € I and j € J, brake(i) and brake-req(i, j) are constant throughout w

for all 4,7’ € I,i # ¢
the function w.#; is integrable
forallte T,

w(t).z; = w(0).z; + f; w(s).%; ds
w(t).z; = w(0).z; + f(: w(s).z; ds

if ~w.collided(i, )
Alw(t).E; Nw(t).Ey # 0)

Alw(t).z; < min(w(t).E; Nw(t).Ey))

then
t = w.ltime
subject to VALID




by succeeding each of the discrete actions with a collision-effects() action
for the malfunctioning vehicle.

- The trajectories of the VEHICLES automaton model the continuous evolution
of the state of the VEHICLES automaton. If during a trajectory a vehicle i collides
into a vehicle 4’ for the first time, the trajectory is stopped so that the collision
can be recorded.

6 Example Overspeed and Collision Avoidance Protectors

6.1 Example 1: Overspeed Protection System

In this section, we present a protector, called 0S-PROT, that prevents the ve-
hicles of the VEHICLES automaton from exceeding a prespecified global speed
limit épa., provided that they do not collide among themselves. The protec-
tor 0S-PROT is defined to be the composition of n separate copies of another
protector called 0S-PROT-SOLO;, one copy for each vehicle i € I. Each of the
0S-PROT-SOLO; protectors, for ¢ € I, guarantees that the vehicle i, does not ex-
ceed the speed limit ¢n44, provided that no collisions among any of the vehicles
occur. The braking strategy of the 0S-PROT-SOLO; protector is to instruct the
vehicle ¢ to brake if it is capable of exceeding the speed limit é,,,; within the
time until the next sampling point.

Let PP; be the VEHICLES automaton of Figure 3, the port j; and the sam-
pling period d; be the port and sampling period with which the protector
0S-PROT-SOLO; communicates with the VEHICLES automaton, the set R; be the
set of states in which none of the vehicles have ever collided, i.e., B; = Proicollided
(Appendix B), the set G; be the set of states in which the vehicle i is at or below
the speed limit, i.e., G; = VALID — P,yergpecd(iy (Appendix B), and the set S; be
the set safepp, g, g, ;;- We define the 0S-PROT-SOLO; automaton to be the com-
position of Sensor{(PP;, S;, R;,G}, i, d;) and the discrete controller automaton
of Appendix C.

Lemma 1. The protector 0S-PROT-SOLO; guarantees G; in VEHICLES starting
from S; given R;.

Corollary 1. The protector 0S-PROT = [1; ¢ ; OS-PROT-SOLO; for the VEHI-
CLES automaton guarantees (), ;G in VEHICLES starting from (), c ; Si given

Pnot-collided~

Corollary 1 follows directly from Lemma 1 and Theorem 2.

6.2 Example 2: Collision Avoidance on a Single Track

In this section, we present a protector, called CL-PROT, that prevents the vehicles
of the VEHICLES automaton from colliding among themselves, provided that they
are all abiding by the speed limit ¢,,,,. The protector CL-PROT is defined to be
the composition of n separate copies of another protector called CL-PROT-SOLO;,



one copy for each vehicle ¢ € I. Each of the 0S-PROT-S0LO; protectors, for ¢ € I,
guarantees that the vehicle i does not collide into any of the vehicles it trails,
provided that all the vehicles in the VEHICLES automaton are abiding by the
speed limit and that all other vehicles i’ € I,i' # i, do not collide into any of
the vehicles they respectively trail. The braking strategy of the CL-PROT-SOLO;
protector is to instruct the vehicle ¢ to brake if it has a d; time unit claim overlap
with any of the vehicles it trails. The rationale behind this braking strategy is
that a collision between two vehicles in the VEHICLES automaton can only be
prevented by instructing the trailing vehicle to brake.

Let PP; be the VEHICLES automaton of Figure 3, the port j; and the sam-
pling period d; be the port and sampling period with which the protector
CL-PROT-SOLO; communicates with the VEHICLES automaton, and the set G;
be the set of states in which the vehicle ¢ has not collided into any of the other
vehicles, i.e., G = VALID — P_oyiigeqsy (Appendix B). Moreover, let the set R;
be the set of states in which all of the vehicles are abiding by the speed limit
and in which each of the other vehicles has never collided into any other vehicle,

i.., Ri = Ppot-overspeed| (ﬂ ¢ € Litsti Gi:) (Appendix B), and the set S; be the
set safepp, g, G, j;- We define the CL-PROT-SOLO; automaton to be the compo-
sition of Sensor(PP;, S;, R;,Gi,ji,d;) and the discrete controller automaton of
Appendix D.

Lemma 2. The protector CL-PROT-SOLO; guarantees (G; in VEHICLES starting
from S; given R;. '

Lemma 3. The protector CL-PROT = []; . ; CL-PROT-SOLO; for the VEHICLES
automaton guarantees [);c;G; in VEHICLES starting from (\;c;Si given

Pnot-averspeed-

Lemma 3 is shown by combining Lemma 2 and Theorem 3 and realizing that
the second condition of Theorem 3 does not hold.

6.3 Example 3: Collision Avoidance on Merging Tracks

In this section, we present a protector, called MERGE-PROT, that guarantees
that none of the n vehicles that are traveling on a track involving a Y-shaped
merge collide, provided that they are all abiding by the speed limit épqe. The
MERGE-PROT protector is defined as the composition of n(n—1)/2 separate copies
of another protector called MERGE-PROT-PAIR (; i1}, one copy for each unordered
pair of vehicles {4,4'}, where,i’ € I,4 # ¢'. Each of these MERGE-PROT-PAIR(; i1}
protectors, for 4,4’ € I,i # i', guarantees that the vehicles ¢ and ¢’ do not collide
into each other, provided that all the vehicles are abiding by the speed limit and
the vehicles of all other vehicle pairs do not collide between themselves.

We augment the VEHICLES automaton to involve a track topology consisting
of a Y-shaped merge. This is done by replacing the position component of a ve-
hicle’s state with a location component — a component that specifies the track
on which the vehicle is traveling and the vehicle’s position with respect to the



merge point — and update the definitions of the discrete steps and the trajecto-
ries of the VEHICLES automaton to handle the location variables. Furthermore,
we replace the brake and unbrake input actions of the VEHICLES automaton
with protect input actions which allow single protectors to instruct sets of ve-
hicles to apply their “emergency” brakes. Finally, we augment the definitions
of the discrete actions pertaining to vehicle collisions such that the blame for a
particular collision is assigned to either only the trailing vehicle, if one vehicle
collides into the other vehicle from behind, or both vehicles, if the vehicles collide
sideways while merging. The resulting physical plant automaton is henceforth
referred to as MERGE-VEHICLES (Appendix E).

Let PPy;yy be the MERGE-VEHICLES automaton. Let the port J{i,iry and
the sampling period dy; #} be the port and sampling period with which the
protector MERGE-PROT-PAIR(; ;»} communicates with the MERGE-VEHICLES au-
tomaton. Let G; i} be the set of states in which the vehicles ¢ and ¢’ have not
collided into each other, i.e., G{; 7y = VALID — P ouiged(i,iry — Peottided(ir iy (AD-
pendix B). Let Ry; #y be the set of states of the MERGE-VEHICLES automaton
in which all the vehicles are abiding by the speed limit and in which the vehi-
cles of all other vehicle pairs have not collided into each other, i.e., Ry =

Pnot-overspeedn (n P e L i {1, YA} G{,‘H,i/"}) (Appendlx B) Fma.lly,
let Sg; ) be the set safepp{‘ oy Ry Gairydgity We define the protector
MERGE-PROT-PAIR{; i1} to be the composition of Sensor(PPy; iy, S(i iy, Riirys
Giiry,Jgi,iry» dysiry) and the discrete controller automaton of Appendix G.

The braking strategy of the MERGE-PROT-PAIR(; i} protector is as follows.
The protector is allowed to brake the vehicles ¢ and i’ only if the sections of
the track they claim in time d; ;) overlap. Given that the vehicles ¢ and 4’
are indeed involved in such a claim overlap, there are two possible scenarios
depending on whether the locations of the vehicles 1 and i’ are comparable, or
not. If their locations are comparable, then the vehicle 7 is instructed to brake
if it trails the vehicle i’; otherwise, the vehicle ¢’ is instructed to brake. On the
other hand, if the vehicle locations are not comparable, the vehicle i is instructed
to brake either if only the vehicle i’ owns the merge point, or if both or neither
vehicles own the merge point and the vehicle 7 is traveling on the left branch
of the merge; otherwise, the vehicle ¢’ is instructed to brake. In the latter case,
we choose to brake the vehicle traveling on the left branch for no particular
reason. In fact, it is plausible to brake either or both of the vehicles involved in
the claim overlap.

Lemma 4. The protector MERGE-PROT-PAIR(; ) guarantees that the MERGE-
VEHICLES automaton remains within G(; vy starting from Sg; } given Ry; i3

Lemma 5. The protector MERGE-PROT = [], ;s ¢ 1 ;.y MERGE-PROT-PAIR(; ;1}
for the MERGE-VEHICLES automaton guarantees ﬂ1 i e 1ize Gli,iry n MERGE-
VEHICLES starting from (; y ¢ 1 ip00 S{iir} given Pm,t_m,e,s,,eed

Lemma 5 is shown by combining Lemma 4 and Theorem 3 and realizing that
the second condition of Theorem 3 does not hold.



6.4 Example 4: Collision Avoidance on a General Graph of Tracks

In this section, we present a protector, called GRAPH-PROT, that guarantees
that none of the n vehicles traveling on a directed graph of tracks comprised
of Y-shaped merges and diverges collide, provided that they are all abiding by
the speed limit é,4z. As in Section 6.3, the GRAPH-PROT protector is defined
as the composition of n(n — 1)/2 separate copies of another protector called
GRAPH-PROT-PAIR(; y1}, one copy for each unordered pair of vehicles {i,i'},
where i,i’' € I,i # '. Each of the GRAPH-PROT-PAIR; ;1) protectors, for 4,7’ €
I,i # ', guarantees that the vehicles ¢ and i’ do not collide into each other,
provided that all the vehicles are abiding by the speed limit and the vehicles of
all other vehicle pairs do not collide between themselves.

We augment the MERGE-VEHICLES automaton to involve a general track
topology consisting of a directed graph G of Y-shaped merges and diverges.
All the edges of the graph G are assumed to be of sufficient length to rule out
collisions among vehicles that are neither on identical, nor on contiguous edges
and all cycles of the graph G are assumed to have at least three edges. Moreover,
in order to brake the topological symmetry in merge situations, we associate with
each edge of the track topology a unique and totally ordered priority index. The
resulting physical plant automaton is henceforth referred to as GRAPH-VEHICLES
(Appendix H).

Letting PP{,',,'/}, S{i,i’}1 R{i,i’}a G{iy,‘l}, j{i,i’}a‘ and d{,;’ii} be as defined in Sec-
tion 6.3, we define the GRAPH-PROT-PAIR(; #} automaton to be the composition
of Sensor(PPy; i1y, S(iir}, Risiry, Gi.ir}» Ji,iry» d(i,iy) and the discrete controller
automaton of Appendix J.

The braking strategy of the GRAPH-PROT-PAIR(; i1} protector is as follows.
The protector is allowed to brake the vehicles ¢ and 7' only if the sections of
the track they claim in dy; »} time units overlap. Given that the vehicles ¢ and
i’ are indeed involved in such a claim overlap, there are two possible scenarios
depending on whether the vehicles ¢ and i’ are traveling in succession, or on
adjacent tracks. If the vehicles are traveling in succession, then the vehicle ¢ is
instructed to brake if it trails the vehicle i'; otherwise, the vehicle ¢’ is instructed
to brake. On the other hand, if the vehicles 7 and i’ are traveling on adjacent
edges, the vehicle i is instructed to brake either if only the vehicle i owns the
merge point, or if both or neither vehicles own the merge point and the vehicle ¢/
is traveling on the edge of greater priority; otherwise, the vehicle i’ is instructed
to brake.

Lemma 6. The protector GRAPH-PROT-PAIR(; y} guarantees that the GRAPH-
VEHICLES automnaton remains within G,y starting from Sy; 1y given Ry; i1y.

Lemma 7. The protector GRAPH-PROT = [[;; ¢ 1 ;i GRAPH-PROT-PAIR(; i1}
for the GRAPH-VEHICLES automaton guarantees (), ;i ¢ 1 jz¢ Giry in GRAPH-
. VEHICLES starting from (), ;s Iiza S(iiy 9en Prot.overspeed-

Lemma 7 is shown by combining Lemma 6 and Theorem 3 and realizing that
the second condition of Theorem 3 does not hold.



6.5 Composing the Overspeed and Collision Protectors

In the previous sections, we presented example protectors whose correct oper-
ation required that the physical plant automaton at hand satisfied particular
properties. For example, in the case of the VEHICLES automaton of Section 5,
the overspeed protector 0s-PROT of Section 6.1 assumes that none of the vehicles
collide among themselves and the collision protector CL-PROT of Section 6.2 as-
sumes that none of the vehicles exceed the speed limit. Using Theorem 3 it can be
shown that the composition 0S-PROT X CL-PROT is a protector for the VEHICLES
automaton that guarantees that the vehicles in the VEHICLES automaton nei-
ther exceed the speed limit, nor collide among themselves. In fact, realizing that
the 0S-PROT protector extends, virtually unchanged, to the MERGE-VEHICLES
and GRAPH-VEHICLES automata, such composition results extend to the MERGE-
VEHICLES and GRAPH-VEHICLES automata by composing the 0S-PROT protector
with the MERGE-PROT and GRAPH-PROT protectors, respectively.

7 Conclusions

In this paper, we demonstrate how formal analysis techniques using the hybrid
I/0 automaton model can be applied to the specification and verification of hy-
brid systems whose structure adheres to the protection subsystem paradigm. We
propose a parameterized abstract protector model which allows simple specifi-
cation of an abstract protector for any hybrid system of this form. Such spec-
ification is obtained by defining the physical system, the start states, the sets
of guarantee and reliance, and the port and sampling period with which the
protector communicates with the physical plant. The proof of correctness of the
abstract model leads to simple correctness proofs of the protector implemen-
tations for particular instantiations of the abstract model. Finally, the compo-
sition of independent, and even dependent protectors under mild conditions,
guarantees the conjunction of the safety properties guaranteed by the individual
protectors. The examples presented in this paper show that the proposed for-
mal framework provides a precise and succinct protector specification, involves
simple and straight forward proof methodology, and scales to complex hybrid
systems through abstraction and modular decomposition.
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A Derived Variables and Sets of the VEHICLES Automaton

E; € P(R), defined by
E; = [zi,Ti + Clen]
collided(s, *) € Bool, for i € I, defined by
collided(i,x) = \/  collided(i, ')
e Litei
collided(*, 1) € Bool, for ¢ € I, defined by
collided(x,i) = \/  collided(i,i)
i€ Lil#i
collided(*, 1, %) € Bool, for i € I, defined by
collided(x, 1, %) = collided(*,1) V collided(z, *)
VALID C states(VEHICLES), defined by

VALID ={p € states(VEHICLES) |
1. 4,4 € I,i# i such that the set p.E;Np.Ey is a positive length
closed interval of R.
2. pzi >0, foralliel
3. If —p.collided(x, i, *) then p.Z; € [Emin,Emaz), for all i € I.
4. If —p.collided(x, i, *) A p.brake(?) then if p.z; = 0 then p.&; =0
else p.Zi = Cprake, for alli € I. }

stop-dist; € RZ?, for all i € I, defined by

&

top-dist, = —
stop-ast; 28rake

maz-range;(t) € R2%, for all ¢ € I and t € R2°, defined by
TiAt + 2emaz AL + émaz(t — AL),
) P if #; < émaz, and

where At = min (t, —'%‘:";—L)
Ei AL + Lorake AL? + émasz(t — At),

where At = min (t, M)
Chrake

maz-range;(t) =

otherwise.

maz-vel;(t) € RZ°, for all i € I and t € R2°, defined by

min(émazyi‘i + témaz) if T; S émat: and

maz-veli(t) = {

max(¢maz, &i + téorake) Otherwise.
O; CR, for all ¢ € I, defined by

O; = [zi, i + stop-dist; + Cien]
Ci(t) CR, for all i € T and t € R2°, defined by

Ci(t) = [zi, «: + maz-range;(t) — maz-vel (t)2/(2Csrake) + Clen



B Auxiliary Sets for the VEHICLES Automaton

Poverspeed(i) c VALID, forie I, defined by
Paverspeed(i) = {P € VALID I p.’E; > émaz}
Poyerspeea © VALID, defined by

Pcverspc:d = U Poverspeed(i)
i€l

Prot-overspeed & VALID, defined by
Poteoverspeed = VALID — Poyergpeed
P.oitigeaci,iry © VALID, for i,i' € 1,1 # ¢, defined by
P.oiged(i iy = {p € VALID | p.collided(,i') = True}
P_ottigeaiy © VALID, defined by

P ottidedtiy = U P ottideagi,it)

e L
Pcolls‘ded g VALID, deﬁned by
Peotiigeqd = U Pottided(iy = U P ottided(i, ity
i€l i,i € Ligi!

Poot.cottidea © VALID, defined by
Protcottided = VALID — Peoltiged
disjoint-extents(i,i') C VALID, for i,i' € I,i # i, defined by
disjoint-eztents(i,i') = {p € VALID | p.E; N p.Ey = B}
Pg C VALID, defined by

Pg = n disjoint-eztents(i, i)
14" € I i

disjoint-owned-tracks(i,i’) C VALID, for i,i’ € I,i # i, defined by
disjoint-owned-tracks(i,i') = {p € VALID | p.O; N p.Oy = 0}
Po C VALID, defined by

Py = ﬂ disjoint-owned-tracks(i, i)
1,4 € i

disjoint-claimed-tracks(i, i ,t) C VALID, for i, € I,i # 14, and t € RZ°, defined by
disjoint-claimed-tracks(i, i’ ,t) = {p € VALID | p.Ci(¢) N p.Cy (t) = 0}
Poy C VALID, for t € R2%, defined by

Poy = m disjoint-claimed-tracks(i, i, t)
iif € 1,
Pg,; C VALID, defined by

Pp,; = {p € VALID | p.brake-req(i, j) = True}



C Discrete Controller Automaton for the Protector
0S-PROT-SOLO;

Actions: Input: e, the environment action (stuttering)
snapshot(y);, for each valuation y of Yveucres
Output: brake(s);
unbrake(i);
Variables: Internal: send; € {brake,unbrake, null}, initially null
Discrete Transitions:
e brake(i);
Eff: None Pre: send; = brake
Eff: send; := null
snapshot(y),
Eff: if (y.2i € émaz — d€maz) then unbrake(i);
send; := unbrake Pre: send; = unbrake
else Eff: send; := null
send; := brake
Trajectories:

w.send; = null

D Discrete Controller Automaton for the Protector
CL-PROT-SOLO;

Actions: Input: e, the environment action (stuttering)
snapshot(y);, for each valuation y of Yvemcres
Output: brake(s);
unbrake(:);
Variables: Internal: send; € {brake, unbrake, null}, initially null
Discrete Transitions:
e brake(i);
Eff: None Pre: send; = brake
Eff: send; := null
snapshot(y);
Eff: if 3¢ € I,i' # i such that unbrake(i);
y € disjoint-claimed-tracks(i, 7, d) Pre: send; = unbrake
Ay.z; < y.zy) Eff: send; := null
then
send; := brake
else

send; := unbrake

Trajectories:
w.send; = null




E The MERGE-VEHICLES Automaton

Actions: Variables
Input: Internal:
e, the environment action (stutter- Z;€R,foralliel,
ing) initially #; € R

protect(C);, for all C € P(I),j € J brake(i) € Bool, for all ¢ € I,
initially False
brake-req(i, j) € Bool,
foralliel,jed,
initially False

Internal: Output:
colliding-pair(i,i’), l; € L, for all : € I, initially I; € L
forall¢,4' € I,i' #1 z; €ER, foralli €I,
collision-effects(i), for allz € I initially £; € R
brick-wall(i), foralli e I collided(i,i') € Bool,

for all i,4' € I,i' #1,
initially False
subject to VALID

Discrete Transitions:
e colliding-pair(s, i)
Eff: None Pre: —collided(i, ')
AENE; #0)
A(l; < min(E; N Eyr))

protect(C); . Eff: collided(i,i') := True
Eff: forallieC if (I;.b # 1;:.b)

SN T L
brake-req(z_,j) := True A(li.b # out) A (I;1.b # out)
if —brake(i) then then

.bque(z) = True collided(i', i) := True
if £; = 0 then
Z:=0 collision-effects(i)
elss, ) Pre: collided(#,1, +)
%= Corake Eff: z;:€ R2°
foralieI-C £ :€R

brake-req(s, j) == False
if brake(z) _ )
A(= Vi e s brake-req(i, k)) brick-wall(i)

then Pre: True
brake(i) := False Eff: £;:=0
£; :€ [Emin, Emaz] if brake(i) then
;=0
else

i :€ [0, 6muz]



Trajectories:
for all 4,7’ € I,i # i, collided(i,i') is constant throughout w
for all i € I and j € J, brake(i) and brake-req(3, j) are constant throughout w
forall ¢,7' € I,i #7¢
the function w.%; is integrable
forallt € T}
w(t).: = w(0).z; + f§ w(s).: ds
w(t)li.z = w(0).li.x + f§ w(s).2: ds
if ~w.collided(3, i)
Aw(t).E; Nw(t).Ey # 0)
Aw(t).l; < min(w(t).E; Nw(t).Ey))
then
t = w.ltime
subject to VALID

F Auxiliary Sets for the MERGE-VEHICLES Automaton

comparable(i,i') C VALID, for i,i' € I,i # i, defined by
comparable(i,i') = {p € VALID | (p.l;.b = p.ly.b) V (p.l;.b = out)
V (p.l; .b = out)}
incomparable(i,i') C VALID, for i,7’ € I,i # 7', defined by
incomparable(i,i') = VALID — comparable(i,i')
yield-comparable(i,i') C comparable(i,i'), for i,i € I,i # i, defined by
yield-comparable(i,i') = {p € comparable(i,i') | p.li < p.ly}

yield-incomparable(i,i') C incomparable(i,i'), for i,i’ € I,i # ¢, defined by
yield-incomparable(i,i') = {p € incomparable(i,i’) |
({out,0) & p.O; A {out,0) € p.Oy)
V ({out,0) € p.O; A {out,0) € p.Oy
Aplib = left)
V ({out,0) & p.0;i A (out,0) € p.Oy
Aplib = left)}
yield(i,i') € VALID, for i,i' € I,i # i, defined by

yield(i,i') = yield-comparable(i,i’) U yield-incomparable(i, ')



G Discrete Controller Automaton for the Protector
MERGE-PROT-PAIR; i1}

Actions: Input: e, the environment action (stuttering)
snapshot(y);, for each valuation y of Yuerce-venicies
Output: protect(C);, for C € P({i,i'})

Variables: Internal: send; € P({i,7'}) U null, initially null
Discrete Transitions:
e protect(C);
Eff: None Pre: send; =C

Eff: send; := null
snapshot(y);

Eff: ify¢ diajoint-claimed-tmcks(i,‘i', d) then
if y € yield(i,i') then

send; := {i}
else
send; := {i'}
else
send; =

Trajectories:
w.send; = null




H The GRAPH-VEHICLES Automaton

Actions: Variables
Input: Internal:
e, the environment action (stutter- Z; € R, for all ¢ € I, initially #; € R
ing) brake(i) € Bool, for all ¢ € I,

protect(C);, for all C € P(I),j € J initially False

brake-req(i, j) € Bool,

Internal:
colliding-pair(s, i),
for all 4,1’ € I,i' #1
collision-effects(i), foralli e
brick-wall(s), foralli e I
reset-location(i), for alli € I

Discrete Transitions:
e
Eff: None

protect(C);
Eff: forallieC
brake-req(i, j) := True
if —brake(i) then
brake(z) := True

if #; = 0 then
;=0
else
Zi = Corake
forallieI-C

brake-req(i, j) := False
if brake(z)

A(— Vi ¢ 7 brake-req(i, k))
then

brake(i) := False

Z; € [E'minyémaz]

reset-location(i)
Pre: li.x = length(l;.e)
Eff: li.e:€ out(li.e)
l,-.a: =0

forallie I, jeJ,
initially False

Output:
lie L, for all i € I, initially [; € L
Z; € R, for all ¢ € I, initially z; € R
collided(i, ') € Bool,

for all 1,4’ € I,7' #1,
initially False

subject to VALID

colliding-pair(i,i’)
Pre: —collided(s, ')

ANE;NE; #0)
A(li <min(E; N Ey))
collided(,1') := True
if (I;.e # 1y .€)

A(l,-.e.vﬁ,m, = l,-:.e.vﬁ,,,,l)
then

collided(?', i) := True

Eff:

collision-effects(i)
Pre: collided(*,1, *)
Eff: #;:€ R2°
Z;:€R

brick-wall(z)
Pre: True
Eff: z;:=0
if brake(?) then
;=0
else
;€ [O, émaz]



Trajectories:
for all 4,4 € I,i # 4, collided(i,1') is constant throughout w
for all i € I and j € J, brake(i) and brake-req(s, j) are constant throughout w
for all 1,3’ € I,7# 4
the function w.Z; is integrable
forallt e T}
w(t).&; = w(0).2; + fot w(s).%; ds
w(t).li.z = w(0).l;.x + fot w(s).z; ds
if ~w.collided(s,1’)
ANw().B; Nw(t).Ey #0)
Aw(t).l; < min(w(t).E; Nw(t).Ey))
then
t = w.ltime
if w(t).li.x = length(w(t).l;.€) then
t = w.ltime
subject to VALID

I Auxiliary Sets for the GRAPH-VEHICLES Automaton

successie(i,i') C VALID, for i,i' € I,i # 1, defined by
successive(i,i') = {p € VALID | (p.l;.e = ply.e)V (p.li.e Vfinat = p.liyr .€.Vinit)
V (p.lir.e.Vina = pli.evinit)}
adjacent(z,1') C VALID, for i,i' € I,i # ¢, defined by
adjacent(i,i’) = {p € VALID | (p.li.e # p.lys.e) A (p.li.€.Vfinat = plir €. Vfnal) }

yield-successive(s,i') C VALID, for i,7 € I,i # ¢, defined by

yield-successive(i,i') = {p € successive(i,i') | p.li < p.ly}

yield-adjacent(i,i') C VALID, for i,i € I,i # i, defined by
yield-adjacent(,i') = {p € adjacent(i,i') |
((p.li.e, length(p.l;.€)) & p.O;
A (pliy e, length(p.l;y e)) € p.Oy)
V ((p.li.e, length(p.l;.€)) € p.O;
A (p.lis e, length(p.ly.€)} € p.Oy
A priority(p.li.e) < priority(p.ly .e))
V ((p.li.e, length(p.l;.e)) & p.O;
A (ply.e, length(pl;.e)) € p.0Oy
A priority(p.l,.e) < priority(p.ly.€))}
yield(i,7') C VALID, for i,i' € I,i # i, defined by
yield(i,i') = yield-successive(i, ') U yield-adjacent(i, i)



J Discrete controller automaton for the protector
GRAPH-PROT-PAIR; i1}

Actions: Input:
Output:
Variables: Internal:

Discrete Transitions:

e, the environment action (stuttering)
snapshot(y);, for each valuation y of Yoraru-vemores
protect(C);, for C € P({i,i'})

send; € P({4,1'}) U null, initially null

protect(C);
Pre: send; = C
Eff: send; := null

Eff: if y € disjoint-claimed-tracks(i, i, d) then
if y € yield(i,i’) then

e
Effl: None
snapshot(y);
send; = {i}
else
send; = {i'}
else
send; ;=
Trajectories:

w.send; = null
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A Three-Level Analysis of a Simple Acceleration Maneuver, with
Uncertainties
(preliminary version)*

Nancy Lynch
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1 Introduction

In this note, we give a three-level analysis of a toy vehicle acceleration maneuver. The goal of
the maneuver is to cause a vehicle, starting at velocity 0 at time 0, to attain a velocity of b (or
as close to b as possible) at a later time a. The vehicle is assumed to provide accurate sampled
data every d time units. The vehicle is assumed to be capable of receiving control signals, one
immediately after each vehicle data output. Each control signal can set an “acceleration variable”,
ace, to an arbitrary real number. However, the actual acceleration exhibited by the vehicle need
not be exactly equal to acc — instead, we assume that it is defined by an integrable function whose
values are always in the range [acc — €, acc].! We can think of this uncertainty as representing, say,
uncertainty in the performance of the vehicle’s propulsion system.

The vehicle interacts with a controller, presumably a computer. In this note, we describe a
particular controller and analyze the behavior of the combination of the vehicle and controller.
One conclusion we draw is that the velocity of the vehicle at time a is in the range [b— ed, b]. That
is, the uncertainty in setting acc combines multiplicatively with the sampling period to yield the
uncertainty in the final velocity of the vehicle. More strongly, we obtain a range for the velocity of
the vehicle at each time in the interval [0, a}.

We prove this fact using invariants and levels of abstraction (in particular, simulation methods),
based on a new hybrid I/O automaton model of Lynch, Segala, Vaandrager and Weinberg [1].
Invariants and levels of abstraction are standard methods used in computer science for reasoning
about discrete systems. Many of the pieces of the proofs use standard continuous methods, such
as solving algebraic and differential equations. The entire proof represents a smooth combination
of discrete and continuous methods.

The point of this exercise is to demonstrate some simple uses of levels of abstraction in reasoning
about hybrid control problems. We use levels of abstraction here for two purposes: (a) to express
the relationship between a derivative-based description of a system and an explicit description, and
(b) to express the relationship between a system in which corrections are made at discrete sampling

*This work was supported by ARPA contracts N00014-92-J-4033 and F19628-95-C-0118, AFOSR-ONR contract
F49620-94-1-0199, NSF grant 9225124-CCR and DOT contract DTRS95G-0001.
1We could also have included some uncertainty in the upper bound, but that would not add any interesting features

to the example.



points and a system in which corrections are made continuously. The uncertainty in the acceleration
is treated at all three levels of our example, and is integrated throughout the presentation.

We do not contribute anything new in the way of techniques for continuous mathematics;
for example, we use standard methods of solving differential equations. Our contributions lie,
rather, in the smooth combination of discrete and continuous methods within a single mathematical
framework, and in the application of standard methods of discrete analysis (in particular, invariants
and levels of abstraction) to hybrid systems. Our methods are particularly good at handling
uncertainties and other forms of system nondeterminism.

2 Hybrid Input/Output Automata

We use the Lynch-Segala-Vaandrager-Weinberg hybrid input/output automaton (HIOA) model [1],
and refer the reader to [1] for the details. We give a rough summary here.

A hybrid I/0 automaton (HIOA) is a state machine having a (not necessarily finite) set of states
with a subset distinguished as the start states, a set of discrete actions partitioned into input, output
and internal actions, and a set of variables, similarly partitioned into input, output and internal
variables. The states are simply combinations of values for the variables. An HIOA also has a set
of discrete steps, which are state transitions labelled by discrete actions, plus a set of trajectories,
which are mappings from a left-closed interval of R2? with left endpoint 0 to states. A trajectory
shows how the state evolves during an interval of time. An HIOA must satisfy a collection of
axioms describing restrictions on the behavior of input actions and variables, closure properties of
trajectories, etc.

The operation of an HIOA is described by hybrid ezecution fragments, each of which is a finite
or infinite alternating sequence, @ = wym w;Tw, - - -, of trajectories and discrete actions, where
successive states match up properly. A hybrid ezecution is a hybrid execution fragment that begins
with a start state. A state is defined to be reachable if it is the final state of some finite hybrid
execution.

The externally-visible behavior of an HIOA is defined using the notion of a hybrid trace. The
hybrid trace of any hybrid execution fragment « is obtained from o by projecting all trajectories
onto external (input and output) variables, removing all internal actions, concatenating all consec-
utive trajectories for which states match up properly, and inserting a special placeholder symbol 7
between consecutive trajectories for which states do not match up.

The levels of abstraction that we referred to in the introduction are captured by means of
mappings called simulations. A simulation from HIOA A to HIOA B with the same external
actions and the same external variables is a relation R from states(A) to states(B) satisfying the
following conditions:

1. For every start state of A, there is an R-related start state of B.

2. For every discrete step (s4,7,s),) of A with s, a reachable state, and every reachable state
sp of B that is R-related to s4, there is a finite hybrid execution fragment of B that starts
with sp, ends with some sy that is R-related to s’,, and has the same hybrid trace as the
given step.

3. For every right-closed trajectory w, of A starting with a reachable state, and every reachable
state sg that is R-related to the first state of w,, there is a finite hybrid execution fragment
of B that starts with s, ends with some s, that is R-related to the last state of w4, and has
the same hybrid trace as wy.




The important fact about a simulation is:

Theorem 2.1 If there is a simulation from A to B, and if oy is any hybrid ezecution of A, then
there is a hybrid ezecution ap of B having the same hybrid trace. '

There is a notion of composition of HIOA’s, based on identifying actions with the same name
and variables with the same name in different automata. There are also hiding operations on
HIOA’s, which simply reclassify some output actions or output variables as internal. All definitions

and results are given in [1].

3 Mathematical Preliminaries

3.1 Assumptions About the Constants

In the informal description in the introduction, we mentioned several constants: a, b, d and €. All
are assumed to be positive real-valued. We assume only that d divides evenly into a.

3.2 Some Useful Functions

3.2.1 Function f

The following function f : [0,a] — R will be used in the analysis:
() = {% + e(a — t)log(ext) if t €[0,a),
, b ift=a.

In particular, f(0) = 0 and f(a) = b. Function f is continuous over [0, a], since lim,_., f(t) = f(a).
Function f satisfies:
a—t b= f(1)

)—€

a a—1

(2) = 2 — elog( —
a
for all t € (0,a). Moreover, f has a right derivative of % — ¢ at 0, while at a, f’s left derivative is
undefined. (It approaches +00.)
Function f describes the behavior of a continuous process that starts at time 0 at value 0,
always “tries to” set its derivative so as to point to the graph point (a,b), but consistently “misses
low” by exactly e. That is, f is a solution to the differential equation

b— f(?)

a-—t

ft)y=

k)

where ¢ € [0,a), with the boundary condition f(0) = 0. Function f is depicted in Figure 1.

3.2.2 Function g
We also define the function g : [0,a] — [0, 5], by

bt
t)= —.
9(t) = —
Then ¢(0) = 0 and g(a) = b, and g is continuous over [0, a]. Function g satisfies:
. b b—g(t)
ty=— = ———=
9ty = =——,



(a, b)

(0,0)

Figure 1: Functions f and g.

for all ¢ € (0,a). Moreover, g has a right derivative of % at 0 and a left derivative, also of % at a.
Function g is a solution to the differential equation

o = =9,

a—t

where t € [0,a), with the boundary condition g(0) = 0. Function g is also depicted in Figure 1.

3.2.3 Function f; _
The following function f; : [0,a] — R is like f, but it uses the goal of (a,b— ed) instead of (a, b).

£i() = {K—Lb-;d’ +e(a—t)log(2t) ift €[0,a),
b—ed ift=a.

In particular, f,(0) = 0 and fi(a) = b — ed. Function f; is continuous over [0,a]. Function f;

satisfies: b od ; b—ed - i)
. —€ a— —ed— fi
t) = —— — ¢l —_ —— 7
fult)y = 2=~ elog(tt) - e = T
for all ¢ € (0,a). Moreover, f; has a right derivative of b‘a‘d — € at 0, while at a, f,’s left derivative

is undefined. (It approaches +00.) Function f; is a solution to the differential equation

f(t) = M_f’

a—1

where t € [0,a), with the boundary condition f(0) = 0. The function f; is depicted in Figure 2.

3.2.4 Function h
Finally, we consider the function A : [0,a] — [0,b — €a], where

h(t) = %t- — et.




(a, b)

(a, b—¢ d)

(0,0)

Figure 2: Function f;.

In particular, A(0) = 0 and h(a) = b — ea. Also,

for all t € (0,a), and the half derivatives at the endpoints are also equal to % — ¢. Function h
satisfies: b bt
h(t) < b=h(t) _ €

a—t1

for all ¢ € {0, a).

4 High Level Specification V

We begin with a high-level system specification. This will not be our final version of the high-
level specification — this preliminary version includes only the effects of the uncertainty in the
acceleration, but not the effects of sampling delays. We add those later, in V1, in Section 6.1.

4.1 Overview

Our highest-level system description consists of constraints on the vehicle velocity, embodied in an
HIOA V. V simply constrains the vehicle velocity v to be anywhere within a given region bounded
by the continuous functions f and g. This region is represented by the area under the line and over
the curve in Figure 1 above. Note that this region is determined by the parameters a, b and €; in
particular, it depends on the uncertainty of acceleration.

We imagine that this region delineates the “acceptable” vehicle velocities at various times.
These limitations on velocities might be used to prove some properties of a system containing the
vehicle. This description places no limitations on, say, vehicle acceleration; for example, it permits
the vehicle to accelerate arbitrarily quickly, as long as the velocity remains within the given region.?

20f course, in a practical context, there might also be limitations on acceleration, imposed, for example, by
passenger comfort requirements or physical laws. In such a case, the high-level specification would be different from
what we give here, including restrictions on acceleration as well as velocity. :



We think that it is reasonable to use such region descriptions to express system requirements.
It might not matter how a system ensures that the controlled entity remains within the required
region — just the region restriction itself might be enough to ensure that the system behaves as
required. For example, an air traffic control system might operate by allocating regions in space-
time to airplanes. As long as the allocated regions are disjoint, planes can fly without danger of
collision. It should not matter how the system ensures that the planes remain within their regions.

In Section 5, we will give a lower-level description of the system, in terms of ¥, the derivative
of the velocity. We think of the derivative-based description as a way of implementing the region
description.

4.2 Formal Description

We define a single HIOA V. Automaton V has no discrete actions (except for a dummy environment
action e required as a technicality by the formal model). It has the following variables:

Input: Internal:
none none
Output:

now € [0, al, initially 0
v € R, initially 0

The only discrete steps are dummy e-steps that cause no state change. The trajectories of V
are all the mappings w from left-closed subintervals I of [0, a] to states of V such that:

1. For all t € I, the following conditions hold in state w(t).

(a) now = w(0).now + 1.
(b) v € [f(now), g(now)].

Condition (a) says that the value of now just increases along with the real time — the difference
is that ¢ is a relative time measure, which starts at 0 in each trajectory, while now is an absolute
time measure, which starts at 0 at the beginning of an entire hybrid execution. Condition (b)
describes the envelope for v. The now component allows us to express the second condition just in
terms of the automaton state, a useful style for invariant and simulation proofs.

We do not require any other assumptions. For instance, continuity of v is not required at
this level, although it will be guaranteed by any real implementation. Our assumption is that the
continuity condition for v will not affect uses of this specification, but is only relevant in reasoning
about implementations.

Note that our description at this level does not involve any controller. At the highest level,
it is probably appropriate to consider just the behavior of the controlled system, regarding the
controller as a part of the implementation.

In general, we follow the philosophy of using the maximum possible nondeterminism in our spec-
ifications — in particular, we do not include assumptions such as continuity, bounds on acceleration,
etc., until we need them in the proof of some result.

We give a trivial invariant of V:

Lemma 4.1 In every reachable state of V, the following is true.

1. v € [f(now), g(now)].

Proof: The proof (as usual for invariants of HIOA’s) is by induction on the length, that is, the
number of trajectories and discrete steps, in a finite hybrid execution that leads to the state in
question. Here (as usual for such proofs), we must show three things: that the property is true




in every initial state, that it is preserved by every discrete step, and that it is preserved by every
right-closed trajectory. (Note that we need only consider right-closed trajectories, and that we need
only show that the property holds in the last state of the trajectory, given that it holds in the first
state. We do not need to show anything about the intermediate states in the trajectory.)

In this case, all of these are easy to see. In the unique start state of V, we have v = 0, now = 0,
and f(0) = g(0) = 0, so that v € [0,0], which is what is needed. The only discrete steps are the
dummy e-steps, which obviously preserve this property. And trajectories are defined explicitly so
as to preserve this property. |

Note that Lemma 4.1 implies that, in every reachable state of V in which now = a, it must be
that v = b.

5 Derivative Automaton D

In Section 4, we gave a high-level specification HIOA V, describing a region that contains the
allowed values of the velocity v at all times. Now we give a lower-level description in terms of
constraints on the derivative of the velocity, o; this description is given as another HIOA D. Again,
there is no controller.

After defining D, we prove some basic properties of its behavior, and then show that D imple-
ments V, in the sense of hybrid trace inclusion. Finally, we give an example to show how similar
results could be proved for cases where the differential equations do not have known solutions.

5.1 Formal Description

HIOA D includes a variable ace, which is assumed to always “point to” to the goal point (a,b).
For this section, we include no uncertainty in the value of acc — we assume that it is set completely
accurately. However, there is uncertainty in the actual acceleration v — we assume that the value
of # is in the interval [acc — €, acc]. The actual velocity v is derived from the actual acceleration v
using integration.

Formally, HIOA D has a single discrete action (besides the dummy environment action e) — an
internal reset action that simple resets ¥ arbitrarily, as long as it preserves the required relationship
between v and acc.

The discrete actions of D are:

Input: Internal:
none reset
Output:
none

D has the following variables:

Input: Internal:
none acc € R, initially g
Output: 9 € R, initially any value in [% —¢, g

now € [0, a), initially 0
v € R, initially 0

The e steps cause no state change, while the non-e discrete steps are all of the form:



reset
Precondition:
true

Effect:

9 := any value in [acc — ¢, acc]

The trajectories of D are all the mappings w from left-closed subintervals I of [0, a] to states of
D such that:

1. ¥ is an integrable function in w.?

2. For all ¢ € I, the following conditions hold in state w(t).

(a)} now = w(0).now +t.

(b) If now # a then acc = -2=2-. (Otherwise, acc is arbitrary).

{(c) If now # a then v € [acc — ¢, acc].

(d) v=w(0).v+ fot w(z).vde.
In D, acc points directly at the “goal” (a,b), but  reflects an uncertainty of €. The quantity v is
simply derived from v, using integration.
5.2 Some Properties of D

Lemma 5.1 Let w be any trajectory of D. Then v is a continuous function in w.*
There are some obvious invariants.

Lemma 5.2 In every reachable state of D, the following are true.

1. If now # a then acc = 4=

a—now "’

2. If now # a then v € [acc — €, acc].

Proof: These follow easily from the definition of D. |
The following invariant is a little less obvious, but is an easy consequence of Lemma 5.2. The

functions f and g used in this lemma are as defined in Section 3.2.

Lemma 5.3 In every reachable state of D in which now # a, the following are true.

1. =) 5 fnow) — b,

a—now

2, smowl=v > 4 _ g(now).

Proof:
1. By definition of f, we have that:

f(now) = 2= I(mow) _

a — now

3More precisely, this means that w(t).9 is an integrable function of ¢, where ¢ ranges over the interval I.
*This means continuous in the time argument of w.




. By Lemma 5.2, we have that:

. b—w
D> acc— €= —— — €.
a — now
Therefore,
. b— b— _
flnow) -5 < =AW B2V g v = f(now)
a — now a — now a — now
This is as needed.
2. By definition of g, we have that:
. b — g(now)
§now) = a—now
By Lemma 5.2, we have that:
h—
v < acc = 2-v
a — now
Therefore,
5~ §(now) < b—v b ~ g(now) _ g(now) — v
a — now a — now a — now
This is as needed.
[
Also, there are limitations on the rate of change of the velocity in D (for contrast, recall there
. were no such limitations in V).

Lemma 5.4 Let w be any (right-closed or right-open) trajectory of D whose now values do not
include a, and that starts from a reachable state of D. Then:

. ratio =£22%) is monotone nondecreasing in w.?
1. The rat: _a_—imz

2. The ratio 1%’%3;—“ is monotone nondecreasing in w.
This says that v cannot increase too slowly — its distance from f, weighted by the time remaining,

cannot decrease. Likewise, v cannot increase too fast - its distance from g, weighted by the time

remaining, cannot decrease.
Proof: In each case, it suffices to show that the first derivative of the ratio is always nonnegative.

1. The first derivative of the ratio is:

(a — now)(d — f(now)) — (v — f(now))(=1)

(a — now)?

(a = now)(s — f(now)) + (v = f(now))

(a — now)?

(Here we are using the fact that ¢ is the derivative of v — this is justified formally by the
integral definition of the variable v.)

. 5This means monotone nondecreasing in the time argument of w.



Since the denominator is always positive, it suffices to show that:

= (a — now)(9 — f(now)) + (v — f(now)) >0
in all states of w. This is equivalent to saying that:

v — f(now)

> f(now) -,
a — now

in all states of w. But this follows immediately from Lemma 5.3 (using the fact that w starts
in a reachable state of D, so all its states are reachable).
2. The derivative of the ratio is:

(a = now)(g(now) — §) = (g(now) — v)(~1)
(a — now)?

_ (a = now)(§(now) = §) + (g(nou) - v)
(a — now)? )

Since the denominator is always positive, it suffices to show that:
(a — now)(g(now) — ) + (g(now) —v) > 0
in all states of w. But this is equivalent to saying that:

g(now)—v _ . .
N s -
P — v — g(now)

in all states of w. This follows from Lemma 5.3.

5.3 D Implements V

The main result that we want to show about D is the following:

Theorem 5.5 If ap is a hybrid execution of D, then there is a hybrid execution oy of V' having
the same hybrid trace.

Note that the hybrid trace of each of V' and D includes just the now and v values. Theorem
5.5 implies that the changes in now and v that are exhibited by D are allowed, according to the
constraints expressed by V. The correspondence does not mention the implementation variables

acc and ©

We prove Theorem 5.5 using a simulation, as defined informally in Section 2. We define a
relation fsim from states of D to states of V as follows. If sp is a state of D and sy is a state of
V, then we say that (sp,sy) € fsim provided that the following hold.

1. sp.now = sy.now.

2. 8p.v = 8y.v.

We show:

Lemma 5.6 fsim is a simulation from D to V.

10



Proof: We show the three conditions in the definition of a simulation. The start condition is
straightforward: If sp is any start state of D and sy is the unique start state of V', then both states
have now = 0 and v = 0. It follows that (sp,sv) € fsim.

Next, we consider discrete steps. Suppose that (sp,m,sp) is any discrete step of D, and that
(sp,sv) € fsim. Then let the hybrid execution fragment corresponding to this step consist of the
trivial trajectory containing exactly one state and no steps. Then both the discrete step and the
corresponding fragment have the same hybrid trace, consisting of the values of now and v that
appear in sp. It suffices to show that (sp,sv) € fsim. But this is immediate, because 7 (a reset or

e action) does not modify either now or v.

Now we consider trajectories. Suppose that wp is an I-trajectory wp of D, where I is right-
closed, and suppose that the first state, sp, of wp is reachable in D. Suppose that sy is a reachable
state of V such that (sp,sv) € fsim. Then let the corresponding hybrid execution fragment of V
consists of a single trajectory wy, where wy(t).now = wp(t).now and wy(t).v = wp(t).v for all ¢
in the domain of I. It is obvious that the two trajectories have the same hybrid trace. The only
interesting thing to show is that wy is in fact a trajectory of V. By the definition of a trajectory
of V, what we must show is that

1. For all t € I, the following conditions hold in state w(?).

(a) now = w(0).now +t.
(b) v € [f(now), g(now)].

(We must verify these conditions throughout the trajectory, not just at the beginning and end.)
The first condition follows immediately from the same condition for wp and the definition of wy
in terms of wp. The second condition has two parts, a lower bound and an upper bound.

For the lower bound, since sy is a reachable state of V, Lemma 4.1 implies that, in sy, v >
f(now). By Lemma 5.4 and the definition of wy in terms of wp, we know that the ratio ";f—-J%”—’l
is monotone nondecreasing in wy, except possibly at the right endpoint of wy if now = a there.
It follows that v > f(now) throughout wy, except possibly at the right endpoint in case now = a
there. But since f(now) and v are continuous functions of the time argument of wy, this inequality
must hold at the right endpoint as well.

The upper bound argument is analogous. Since sy is reachable, Lemma 4.1 implies that, in
sy, v < g(now). By Lemma 5.4 and the definition of wy in terms of wp, we know that the ratio
g—(f_ﬁnﬂwu is monotone nondecreasing in wy, except possibly at the right endpoint of wy if now = a
there. It follows that v < g(now) throughout wy, exept possibly at the right endpoint in case
now = a there. But since g(now) and v are continuous functions of the time argument of wy, this

inequality must hold at the right endpoint as well. [
Proof: (of Theorem 5.5)

By Lemma 5.6 and Theorem 2.1. [ |

Note that the correspondence between D and V is only one-way. It says, roughly speaking, that
everything that D does is allowed by V. It does not say that D has to exhibit all the possibilities
that are allowed by V. For example, extremely fast increases in v that cannot be achieved by
accelerations in the allowed ranges, but that keep v within the allowed envelope, are permitted by
V, but do not actually occur in D. Also, note that D performs some activities — here, changes to
acc and ¥ - that are not explicitly represented in V.

Although Theorem 5.5 is very simple, it does demonstrate, at least in a small way, how one can
carry out a correctness proof using invariants and simulations, integrating discrete and continuous
reasoning, and coping with some uncertainty.

11



5.4 An Approximate Result

The lower bound function f is essentially defined as the solution of a differential equation that is
extracted from the definition of the trajectories of D. In this case, the differential equation is easy
to solve. But what if it were not so easy? In this case, the same methods could still be used, but
now the lower bound produced might be a loose bound rather than an exact bound.

For example, suppose that instead of trying to prove a lower bound of f, we only tried to prove
a lower bound of h, where A is the function defined in Section 3.2.4. Showing that h is a lower
bound essentially requires redefining V' to use h instead of f. Proving the simulation now rests on
the fact, stated in Section 3.2.4, that

h(t) < b-h(t) _ €
a—t

for all ¢ € [0,a). Using this fact, it is easy to obtain the analog to part 1 of Lemma 5.3 for h: that

in every reachable state of D,
v = h(now) > h(now) — 9.
a — now
This fact follows as in the proof of part 1 of Lemma 5.3 (but using the inequality above at one step
instead of an equality as before). Next, we can prove the analog to part 1 of Lemma 5.4 for h: that
the ratio ”;f—(,%l is monotone nondecreasing in w. This is what is needed to complete the analog

to the proof of Lemma 5.6.

6 Modifications to V and D to Incorporate Periodic Feedback

The discussions and results in Sections 4 and 5 have dealt with hypothetical systems with continuous
control. But recall from the introduction that in the actual implementation in which we are
interested, the sampling outputs and control signals are not continuous but periodic, at intervals
of d. Tt turns out that the abstract automata D and V do not quite provide accurate models of the
actual implementation. However, they can be modified easily so that they do.

We believe that providing accurate models for the handling of uncertainties is important. It is
not sufficient to give a careful analysis of a situation without uncertainty, then argue informally
about the variations in behavior that are introduced by uncertainties. Handling uncertainties
correctly requires considering them appropriately at all levels of abstraction.

6.1 Modified High Level Specification V;

First, we modify V only a tiny bit to get Vi, by changing the lower bound f to the function h
defined in Section 3.2.3. The upper bound g remains the same as before. (Of course, we could
have written the original V with parameters, so that the modifications in this section would just
amount to different parameter settings.)

This modification makes the region of allowable values for v bigger by making the lower bound
function smaller. The particular way that we make it smaller amount to simply replacing the “goal”
of (a,b) in V with the goal of (a,b — ed) in Vi, for the lower bound function only. Thus, the value
of v at time @ will be in the range [b — ed, b], instead of always being exactly b.

It was not obvious to us at first that the high-level effect of the sampling delays is just this
simple change of goal point; we discovered this only through detailed analysis of the behavior of
the discrete-sampling system. We do not expect to use any general rule for determining the high-
level effect of uncertainties; indeed, we expect that this will usually require some serious work,

12




using results of robust control theory. It is important that the high-level effect of uncertainties be
described completely accurately, though the bounds need not be as tight as possible.

6.2 Modified Derivative Automaton D,

Now we modify D to get D;, again by modifying the lower bound requirement. Here we do this
by introducing uncertainty into acc, allowing it to “point” anywhere from (a,b) (where it points
in D) to (a,b — ed). We still have the same uncertainty as before in ¥. Thus, D; expresses two
different types of uncertainty. We can think of the uncertainty in v as representing propulsion
system uncertainty and the uncertainty in acc as encompassing the sampling delays.

The modifications are as follows. The states and start states of D; are the same as those of D,
except for the following changes: The initial value of acc is any value in the interval [2=¢¢, 2] and
the initial value of @ is any value in the interval [acc — ¢, acc]. The reset action now changes slightly,
to allow changes in acc as well as 9. These changes keep acc and 9 within the desired ranges.

reset
Precondition:
true
Effect:
acc := any value ¢ [&=sd=r b=t
¥ := any value € [acc — ¢, acc]

The trajectories of D; are all the mappings w from left-closed subintervals I of [0, a] to states
of D, such that:

1. ¥ is an integrable function in w.
2. For all t € I, the following conditions hold in state w(t).
(a) now = w(0).now +1.

(b) If now # a then acc € [bmed—  _b=v ]
c

a—now > a—now

(d

If now 3 a then 9 € [acc — ¢, acc].

)
) v=w(0).v+ fotw(z).i;d:v.

(Again, we could have written the original D with parameters, so that the modifications in this
section would amount to different parameter setting.)

6.3 Modified Correctness Proof

Our claim now is that the arguments that worked to show that D implements V can be mod-
ified slightly (and systematically) to show that D; implements Vi. We give the modified result
statements.

Lemma 6.1 Let w be any trajectory of D,. Then v is a continuous function in w.
Lemma 6.2 In every reachable state of Dy, the following are true.
b—ed—v b—v
1. If now # a then acc € [B=20=0, —==2—].

2. If now # a then v € [acc — €, acc).

Lemma 6.3 In every reachable state of Dy in which now # a, the following are true.

13



1. =L 5 £ (now) — 4.

2. dnetl=r > 4 — j(now).
Proof: We only prove part 1; part 2 is unchanged from the corresponding proof for D. By
definition of f;, we have that:

fl(now) _ b—ed — fi(now) e

a — now

By Lemma 6.2, we have that:
b—ed—v

V2> acc— € 2> €.
a — now
Therefore,
fu(now) — & < b— ed — fi(now) _(ﬂ—_’l{_e)z v—fl(now).
a — now a — now a — now
This is as needed. u

Lemma 6.4 Let w be any trajectory of D, whose now values do not include a, and that starts
from a reachable state of D;. Then:

1. The ratio =8022%) 55 monotone nondecreasing in w.
a—now

2. The ratio % is monotone nondecreasing in w.

Now define the relation fsim, from states of D; to states of V; as follows. If sp, is a state of
D; and sy, is a state of V;, then we say that (sp,,sv,) € fsim, provided that the following hold.

1. 8p,.now = sy, .now.
2. 8p,.v =38y, .v.

This definition is essentially the same as that for fsim, from D to V.
Lemma 6.5 fsim, is a simulation from D, to V;.

Proof: Similar to the proof of Lemma 5.6. |

Theorem 6.6 If ap, is a hybrid ezecution of Dy, then there is a hybrid ezecution ay, of V having
the same hybrid trace.

Theorem 6.6 says that the changes in now and v that are exhibited by D, are allowed by V).

Note that the modifications we did to include this uncertainty are quite simple and systematic.
A good general strategy for constructing proofs for implementations involving uncertainty is to first
carry out the development without the uncertainty, then try to incorporate the uncertainty later,
by making simple modifications throughout.

7 The Implementation Impl

Now we are (finally) ready to describe the actual implementation in which we are interested. This
one consists of two components, a Vehicle and a Controller, interacting by discrete actions. Each
component is, formally, an HIOA, and the combination is a composition of HIOA’s, interacting via
discrete actions only, with the common actions hidden.

14




7.1 Vehicle

The Vehicle HIOA tepresents the motion of the vehicle, including its velocity and acceleration. It
reports the velocity (accurately, we assume) every d units of time, starting at time d. It is capable
of receiving control signals that set an acc variable, representing the desired acceleration. However,
the actual acceleration can be slightly less than this — within amount e.

The actions are:

Input: Internal:
accel(c), c €R none
Output:

sample(u), u €R

The variables are the same as those of D, with the addition of an internal “deadline variable”
last-sample. This deadline variable just keeps track of the next (absolute) time at which a sample
output is scheduled to occur. Also, the initialization of acc is more constrained than it is in Dy,
reflecting the assumption that the correct acceleration is in effect at the beginning. We can think
of the system as if we initialized it with an initial sample output and control signal.

Input: Internal:
none acc € R, initially s

Output: ? € R, initially any value in [% — ¢, %]
now € [0, a), initially 0 last-sample € RZ° initially d

v € R, initially 0

The non-e discrete steps are:

accel(c) sample(u)
Effect: Precondition:
acc:=¢c¢ now = last-sample
@ := any value € [acc — ¢, acc] =
Effect:

last-sample := now + d

Thus, an accel step just sets the acc control variable, and resets the actual acceleration o
accordingly. A sample step just announces the current velocity — the only information needed
by the controller component. It does so exactly at the time scheduled in last-sample. Then it
reschedules the sampling time to be exactly d in the future.

The trajectories of Vehicle are all the mappings w from left-closed subintervals I of [0,a] to
states of Vehicle such that:

1. acc and last-sample are unchanged in w.
2. 9 is an integrable function in w.

3. For all t € I, the following conditions hold in state w(t).

(a) now = w(0).now +1.
(b)

(c) ¥ € [acc — €, acc].

(d) v=w(0).v+ [, w(z).bde.

These trajectories are quite similar to those that are permitted in D;. The most important
difference is that acc is now not permitted to change during trajectories; instead, it changes only
as a result of discrete inputs (from the controller, presumably). However, 9 can change, as long
as it stays within the required bounds. There is also a condition that prevents time from passing
beyond the last-sample deadline. The following invariants are straightforward to prove.

now < last-sample.
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Lemma 7.1 In every reachable state of Vehicle, the following are true.
1. ¥ € [acc — €, acc).

2. last-sample € [now, now + dJ.

7.2  Controller

The Controller HIOA represents the controller that decides on the desirable acceleration, i.e., the
value that should be placed into Vehicle’s variable acc. It receives reports from the Vehicle of its
current velocity v, and uses each such report to calculate a desired new acceleration. It sends this,
before any further time passage, to the Vehicle in an accel action.

The external actions of the Controller form the “mirror image” of those of the Vehicle:

Input: Internal:
sample(u), u € R none
Output:

accel(c), c €R

The variables are:

Input: Internal:
none now € [0, a], initially 0
Output: sampled-vel € R, initially 0
none last-accel € R2° U {oc}, initially co

Here, sampled-vel is intended to hold the sampled velocity, when the Controller receives a report
about it. The last-accel variable is another deadline variable, intended to keep track of the next
scheduled (absolute) time for an accel signal. Initially (until the Controller receives some velocity
report), there is no scheduled signal, so last-accel = 0.

The non-e discrete steps are:

sample(u) accel(c)

Effect: Precondition:
sampled-vel := u last-accel = now
lagt-accel := now now # a

c= b—sampled-vel
a—now
Effect:

last-accel := oo

The sample action just records the reported velocity, and schedules an accel action to happen
before any further real time elapses. (We could alternatively have modelled a system in which there
is some bounded delay before the accel action occurs.) The accel action recalculates the desired
velocity, using the same formula as in D — pointing at the desired goal (a,b) — but this time, the
calculation is based on the sampled velocity instead of the actual velocity. After the accel action,

no further accel is scheduled, until a new sample occurs.

The trajectories of Controller are trivial — time just passes up to any time that does not exceed
any current deadline. There is no interesting continuous behavior to be modelled. That is, the
trajectories are all the mappings w from left-closed subintervals I of [0,a] to states of Controller
such that:

1. sampled-vel and last-accel are unchanged in w.
2. For all t € I, the following conditions hold in state w(t).

(a) now = w(0).now +t.

(b) now < last-accel.
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7.3 Impl

The complete implementation Impl is the composition of the two HIOA’s Vehicle and Controller,
identifying the sample and accel actions, and then hiding those actions (making them internal).

We close this section with some properties of Impl. The first lemma gives simple invariants
about last-accel. It says that last-accel is only used to schedule an event immediately, and that
when it is being used, the recorded and actual velocities are identical.

Lemma 7.2 In every reachable state of Impl, the following are true.
1. last-accel € {now, co}.

2. If last-accel = now then v = sampled-vel.

The next lemma is a key lemma for the simulation proof. It expresses bounds on the acc variable,
no matter where the reference point is in a sampling interval. The acc variable is set accurately
initially, and at each sampling time. But in between, the accuracy of the value of acc can degrade.
Lemma 7.3 gives appropriate guarantees at all times, even within the sampling intervals. Some
general statement of this sort is needed for the inductive proof of the simulation of D; by Impl.

In the statement of Lemma 7.3, the assumption that last-accel = oo is used to avoid the case
where the implementation automaton is in the middle of processing a new sampling output.

Lemma 7.3 In every reachable state of Impl, the following are true.

b—e(now+d—last-sample)—v
a—now :

1. If now # a and last-accel = oo then acc >

2. If now # a then acc < —2=*

a—now’

Notice that the lower bound expressed in case 1 varies during each sampling interval. At the
beginning of the interval, we have now + d = last-sample, so the bound simplifies to —2=%—. At the

a—~now’
other extreme, at the end of the interval, we have now = last-sample, and the bound simplifies to
b=cd=v The complete statement fills in guarantees for the intermediate points as well.

a—now

Proof:

1. The lower bound is proved by induction on the length of a hybrid execution, as usual. The
lower bound claim is true initially, since initially acc = %, now = 0, last-sample = d, and
v=0.

Now consider a discrete step starting from a reachable state. A sample step makes last-accel =
00, which makes the claim vacuously true. On the other hand, an accel step explicitly sets acc
to bmsampledvel “which is equal to ;—b—;”— by Lemma 7.2, which suffices to show the inequality.

a—now —now

(This uses the fact that last-sample < now + d, which follows from Lemma 7.1.)
Finally, consider a [0, ¢]-trajectory w whose first state is reachable. In w, acc is unchanged,
and © > acc — € everywhere, by Lemma 7.1. Therefore,
w(t).v — w(0).v
t

> acc — ¢,

that is,
w(t).v — w(0).v > (acc — €)t.
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We know by inductive hypothesis that

b — e(w(0).now + d — last-sample) — w(0).v
a — w(0).now '

acc >

In other words,

w(0).v > b — e(w(0).now + d — last-sample) — acc(a — w(0).now).
Adding, we get:

w(t).v > b — e(w(t).now + d — last-sample) — acc(a — w(t).now).
In other words,

b — e(w(t).now + d — last-sample) — w(t).v
a — w(t).now

acc >

This is what we needed to show.

. For the upper bound, the argument is similar. The upper bound claim is true initially, since
initially acc = 2, now = 0 and v = 0.

Now consider a discrete step starting from a reachable state. A sample step does not change
any of the quantities mentioned in the inequality, and so it preserves the inequality. On the
other hand, an accel step explicitly sets acc to b‘%"-fﬁud;m, which is equal to a:zw by Lemma
7.2, which suffices to show the inequality.

Finally, consider a [0, #]-trajectory w whose first state is reachable. In w, acc is unchanged,
and v < acc everywhere, by Lemma 7.1. Therefore,

w(t).v ; w(0).v < ace,

that is,
w(t).v — w(0).v < acc - t.

We know by inductive hypothesis that

b— w(0).v

< ———.
4= u- w(0).now

In other words,
w(0).v < b — acc(a — w(0).now).

Adding, we get:
w(t).v < b — ace(a — w(t).now).

In other words,
b— w(t).v

acc < ———————.
T a - w(t).now

This is what we needed to show.
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7.4 Impl Implements D,

We show that Impl implements D; (see Theorem 7.5 for the formal statement), using a simulation

from Impl to D;.
Define the relation fsim, from states of Impl to states of D; as follows. If sj,p is a state of

Impl and sp, is a state of Dy, then we say that (S1mpt» SD, ) € fsim, provided that:

1. Simpi.now = $p,.NowW.

2. 8mpl-¥ = 8D;.V.

3. 8impi.GCC = $p,.GCC.

4. Spmp1¥ = $p,.v.
That is, fsim, is the identity mapping on all the state components of D,. Note that all the state
components of D, are derived from the Vehicle state in Impl. This is because the abstract system
only mentions vehicle behavior, not controller behavior.

Lemma 7.4 fsim, is a simulation from Impl to D;.

Proof: For the start condition, note that any combination of initial values allowed for all the state
components in Impl is also allowed in D;. :

Next, consider a discrete step (Smpi, T, Spmp) Of Impl, where iy and sp, are reachable states
of Impl and D;, respectively, and (Smp1,8p,) € fsim,. There are two cases (again ignoring the

trivial e case):

1. 7 is a sample action.

Then we take the corresponding hybrid execution fragment to be trivial - just the trivial
trajectory containing the single state sp,. It is easy to see that the step and the trivial
trajectory have the same hybrid trace. Also, (s},,,8p,) € fsim,, since this step does not
change anything that affects any of the state components of D;.

2. ™ = accel(c).

Now we take the corresponding hybrid execution fragment of D, to consist of a single reset
step, (sp, , reset, s, ). The state s, is obtained from the state sp, by modifying the acc and
 components to their values in s},,;. The two steps have the same hybrid trace. Since m
does not modify now or v, it should be clear that (s,,,;,5p,) € fsim,. It remains to show
that (sp,, reset, sp, ) is in fact a step of D;.

The step of Impl causes acc to be set to b‘—s;":"%’i{, which is equal to af;';w by Lemma 7.2.
It also causes # to be set to something in the range [acc — ¢, acc]. These changes are permitted

in a reset step of D;.

Finally, we consider a [0,]-trajectory wmp whose first state is reachable. We allow this to
correspond to a trajectory wp, of Dy, defined by simply projecting the states of Impl on the state
components of D;. The correspondence between the trajectories is then immediate. It remains to

show that wp, is in fact a trajectory of D;. Specifically, we show:

1. ¥ is an integrable function in wp,.

This follows from the definition of a trajectory of Vehicle.

2. For all t € I, the following conditions hold in state w(t).
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(a) now = w(0).now + .
This follows from the definition of a trajectory of Vehicle.

(b) If now # a then acc € [b=td=y _b=v_]
The upper bound follows from Lemma 7.3, part 2. For the lower bound, Lemma 7.3,
part 1, implies that, throughout wyy,,; (except possibly at the right endpoint, if now = a

there), we have:

b — e(now + d — last-sample) — v
acc > ( T ple) .
a — now
(This uses the fact that last-accel = co throughout a trajectory; this is true because if
not, then last-accel must be equal to now at the beginning of the trajectory, which would
not permit time to pass.) Then the fact that last-sample > now, stated in Lemma 7.1,

yields the result.
(c) If now # a then o € [acc — €, acc].

This follows from the definition of a trajectory of Vehicle.
(d) v = w(0).v+ f; w(z).vdz.

This follows from the definition of a trajectory of Vehicle.

Now we can give the basic theorem relating Impl to D;:

Theorem 7.5 If apmp is a hybrid ezecution of Impl, then there is a hybrid ezecution ap, of D,
having the same hybrid trace.

Theorem 7.5 implies that the changes in now and v that are exhibited by Impl are allowed by
D;. The theorem does not mention the values of the other variables of D, acc and v, but of course
those correspond as well. We could have obtained this conclusion simply by regarding acc and v
as output variables instead of internal variables.

Proof: By Lemma 7.4 and Theorem 2.1. [ |

We can combine the results stated in Theorems 7.5 and 6.6 to obtain the following result, which
relates the implementation Impl to the high-level specification automaton V;. This is the main
result of the paper.

Theorem 7.6 If o,y is a hybrid execution of Impl, then there is a hybrid ezecution ay, of V,
having the same hybrid trace.

Theorem 7.6 implies that the changes in now and v that are exhibited by Impl are allowed by
Vi. ’
Proof: By Theorem 7.5 and Theorem 6.6. |

8 Discussion

We have described a simple vehicle deceleration maneuver as a composition Impl of hybrid I/0
automata. In this maneuver, deceleration is accomplished using a controller that receives accurate
velocity information at equally spaced times, and instantly responds with control signals containing
the desired acceleration. However, there is some uncertainty, in that the proposed acceleration
might not be exhibited exactly by the vehicle.
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We have also given a correctness specification for the range of allowed velocities at various times,
as another HIOA V. V, gives, in a simple closed form, an “envelope” that includes the allowed
velocities. The envelope is sufficiently large to encompass the effects of both the acceleration
uncertainty and the sampling delays. '

We have verified, using extensions of standard computer science techniques (methods for reason-
ing about discrete systems), that the implementation Impl meets the specification V;. In particular,
our proof uses invariants and levels of abstraction. Invariants involve real-world quantities such as
the velocity and acceleration, as well as state components of the controller. Our proof interposes
an additional level of abstraction between the implementation and the specification, in which the
system’s behavior is represented using differential equations; uncertainty is included at this level
also. Again, the representation is sufficient to encompass the effects of both acceleration uncer-
tainty and sampling delay. Ideas from differential equations and from discrete analysis fit clearly
into the appropriate places in the proof.

Our proof that Impl satisfies the specification V; is broken down into separate pieces, corre-
sponding to different facts to be shown and different types of mathematical tools. It combines
continuous and discrete reasoning cleanly, in a single framework. It gives a completely accurate
description of the system’s guarantees, including correct handling of the uncertainty and the effects
of sampling delays.

Note that some complications of continuous mathematics — definability of derivatives, proper
handling of infinities, etc. — arise at the intermediate level only, not at the top and bottom level.
The top level just gives an envelope demarcated by explicitly-defined continuous functions. The
bottom level gives a discrete algorithm. It is only the intermediate level of abstraction that uses
the differential representation, and at which the complications of infinities arise.

Of course, this example is very simplified. It remains to generalize it to cases that include more
uncertainty: the sampling times might be only approximately known, or velocity information might
be inexact or out-of-date, or the control signal might be sent only after some approximately known
delay. We have only considered uncertainty in the lower bound, but of course there could also be
uncertainty in the upper bound. None of these cases appears to introduce any ideas that are different
in principle, so we expect that the proofs we have given should extend to these cases. Another
extension is that the implementation might be subject to a limit on the achievable acceleration
(because of physical limitations or passenger comfort). It should be possible to use our techniques
to reason about this situation also.

It should also be possible to continue our example by refining further. A natural extension would
be to implement the discrete Controller using a more complicated algorithm, e.g., a distributed
algorithm with its own difficulties of communication, uncertainty, etc. Techniques of discrete rea-
soning (only) could be used to show the correspondence between the more detailed controller and
the more abstract controller of this paper. Then general composition theorems about HIOA’s could
be used to show that the combination of the new controller implementation and the given Vehicle
automaton still guarantee the proper behavior of the vehicle, as expressed by V.

Our general strategy can be described as: using levels of abstraction to represent the relationship
between a derivative and explicit form of a system representation, and also between a discrete and
a continuous form, while incorporating uncertainties accurately throughout. It remains to use the
same general strategy to model and verify other maneuvers, in particular, more complex ones.
These two splits seem likely to be useful in many other examples.

We could use more levels of abstraction to represent more levels of derivatives. For example, if
vehicle position at various times were the important consideration, then vehicle position only might
be constrained at the top level, with velocity at the next level, acceleration at another level below
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that, and jerk at a fourth level, below the acceleration level. The correspondence between each
successive pair of levels related by differentiation would just use standard methods of reasoning
about differential equations (for the continuous parts of the correspondence).

Finally, the sort of reasoning we are doing in this paper admits assistance by mechanical rea-
soning tools. These could be a combination of a theorem-prover, for carrying out the discrete
reasoning, and a tool for manipulating continuous function expressions, such as Mathematica. It
is necessary to integrate the two types of tools so that they can be used together, using a single
representation of the system.
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Abstract

TCAS is an on-board protocol for detecting conflicts
between aircraft and providing resolution advisories to
the pilots. Because of its safety-critical role the TCAS
software should ideally be “verified” before it can be
deployed. The verification task is challenging, due to
the complexity of the TCAS code and the hybrid nature
of the system. We show how the essence of this very
complicated problem can be captured by a relatively
simple hybrid model, amenable to formal analysis. We
then outline a methodology for establishing conditions
under which the advisories issued by TCAS are safe.

1 Introduction

The Traffic Alert and Collision Avoidance System
(TCAS) [1, 2} is an on-board aircraft conflict detection
and resolution algorithm. Its task is to monitor air traf-
fic in the vicinity of the aircraft and provide the pilot
with information about neighboring aircraft that may
pose a threat and advisories on how to resolve these
conflicts. TCAS is a complex, safety-critical system
that should be tested, or, even better, formally verified
before it can be deployed. The TCAS software was de-
veloped through a sequence of progressive refinements,
starting with abstract, high-level specifications that got
refined down to a Statechart description, pseudo-code
and finally regular computer code. Part of the verifi-
cation problem involves proving that each level in this
process implements the high-level specifications. Moti-
vated by this example (and other applications to soft-
ware development for large scale systems) techniques
have been developed [3] for systematically carrying out
this process. In addition, one also needs to investigate
the performance of the closed loop system formed when
the proposed algorithm is coupled with the aircraft dy-
namics. So far the primary verification technique used
in this context has been simulation [4]. Successful re-
sults in extensive simulations provide a certain level of
confidence in the algorithm. More importantly, unsuc-

1Research supported by ARPA under F19628-95-C-0118, by
AFOSR under F49620-97-1-0337, by UTC under DTRS95G-
0001-YRS and by PATH, under MOU-238.

cessful simulation runs point to situations where per-
formance is insufficient and often suggest modifications
to improve it.

We believe that formal methods may be useful in this
setting. The advantage of formal analysis over simula-
tion is that it provides absolute guarantees about the
system performance, under a set of assumptions. In ad-
dition, formal analysis may prove to be more efficient
in the long run, as the results may be modified to ac-
commodate changes in the algorithm; in comparison, a
large number of simulations may have to be reexamined
even for minor changes. So far the application of formal
methods to this problem has been limited, primarily
because of the complexity of the algorithm. Much of
this complexity, however, is due to considerations such
as human factors, which should be secondary to safety.
In this paper we show how one can extract a relatively
simple protocol, that encapsulates the essence of the
TCAS algorithm from the safety point of view. The
model we derive (outlined in Section 2) is amenable to
formal analysis. This is illustrated in Section 3, where
some preliminary analysis of the safety of the algorithm
is conducted. We hope that once the analysis for this
simple model is complete the complexity of the origi-
nal algorithm can be gradually reintroduced, allowing
us to prove more involved safety properties. )

The TCAS system is hybrid, involving both continuous
and discrete dynamics. The former arise from the air-
craft, the sensors and the pilot reaction and the latter
from the thresholds and discrete message passing used
by the TCAS algorithm!. Therefore any verification
effort will have to involve hybrid techniques. Our work
makes use of a combination of techniques from control
theory and distributed algorithms to tackle the verifi-
cation problem. The methodology presented here has
been successfully applied to other safety-critical trans-
portation systems, such as automated highways [6, 7,
personal rapid transit systems [8], train gate controllers

IThere are also important probabilistic effects, arising from
sensor noise, uncertainty in the pilot response etc. These effects
will be mostly suppressed in our work. For a discussion of prob-
abilistic analysis for this problem the reader is referred to [5].



[9, 10] and aircraft conflict resolution [11].

2 System Model

2.1 Overview of the TCAS System

In cases of potential conflict the TCAS system enters
one of two levels of alertness. In the lower level the
system issues a Traffic Advisory (TA), to inform the
pilot of a potential threat, without providing any sug-
gestions on how to resolve the situation. If the danger
of collision increases a Resolution Advisory (RA) is is-
sued, providing the pilot with a maneuver that is likely
to resolve the conflict. In this study we do not address
TA’s, because of the uncertainty in the pilot response
and the low level of hazard involved.

The RA’s issued by the TCAS II 6.04A version cur-
rently in use are restricted to the vertical plane. Ma-
neuvers involve either climbing or descending at one
of a finite number of fixed rates. If both aircraft are
TCAS equipped, the algorithm {1, 2] uses a symmetry-
breaking communication protocol to uniquely deter-
mine the maneuver that each aircraft should follow to
resolve the conflict. Once a decision is reached the
maneuver is presented to the pilots and is not altered
until the conflict is resolved. TCAS II 6.04A has been
extensively tested in simulation [4] and in practice.

A newer TCAS II version that is currently being tested
also allows for reversals. RA’s are still restricted to
the vertical plane, but TCAS may change the advisory
during a conflict. This feature was added primarily
because of nondeterminism in the pilot response. If
one (or both) of the pilots chooses not to follow the
advisory, the original RA may become unsafe. TCAS
detects this and changes the RA if necessary. Clearly,
this type of algorithm is in greater need of verification;
potential problems include live-lock and unnecessary
reversals.

Future TCAS versions (TCAS IV) will produce RAs
both in the horizontal and the vertical plane, while
still maintaining the possibility of reversals. Our ap-
proach may be even more useful in this case, to provide
design guidelines for TCAS versions that are still at a
conceptual stage.

2.2 Overview of the Modeling Formalism

Following [12], we view a hybrid automaton, A, as a
dynamical system that describes the evolution of a fi-
nite collection of variables, V4. Variables are typed;
for each v € V4 let type(v) denote the type of v. For
Z C Va, a valuation of Z is a function that to each
v € Z assigns a value in type(v). Let Z denote the set
of valuations of Z; we refer to s € V5 as the state of A.
In this paper we assume that the evolution of the vari-
ables is over the set of times T2% = {t € R|t > 0}. The
evolution of the variables involves both continuous and
discrete dynamics. Continuous dynamics are encoded
in terms of trajectories over V4, that is functions that
map intervals of time to V5. Discrete dynamics are

encoded by actions; upon the occurrence of an action
the state instantaneously “jumps” to a new value.

More formally, a hybrid automaton, A is a col-
lection, (Ua,Xa,Ya, S, 0 TUE Q4,Da, Wa), of
three disjoint sets U4, Xa, and Y, of variables (called
input, internal, and output variables, respectively)
three disjoint sets £, £ and £%*! of actions (called
input, internal, and output actions, respectively) a non-
empty set ©4 C Va of initial states, a set Dy C
Va x Za x Va of discrete transitions and a set Wy
of trajectories over V4, where V4 = U4 UX4UY, and
L4 = ZPUTPIUSYY. Some technical conditions need
to be imposed on the above sets to guarantee that the
definitions are consistent; see [12] for a discussion.

Let fstate(w) (Istate(w)) denote the initial (final) state
of a trajectory w € W, defined over a left (right)
closed interval. An ezecution, «, of A is an alter-
nating sequence o = wpawiaowy - -, With w; € Wy
defined over a left closed time interval, a; € 34,
fstate(wy) € ©O4, and if w; is not the last trajectory
in o then its domain is a right-closed interval and
(Istate(w;), ai+1, fstate(wiy1)) € Da. If  is a finite
sequence we assume it ends with a trajectory. An ex-
ecution is called finite if it is a finite sequence and the
domain of its final trajectory is right-closed. A state
s € V, is called reachable if it is the last state of a
finite execution.

Hybrid automata “interact” through shared variables
and shared actions. Consider two automata A and B
with XaNVe =XpnNVa=YgNYy = ( and Eigtﬂ
T4 =ZPNEp = TN EF = 0. Under some mild
technical assumptions, the composition, A x B, of A
and B can be defined as a new hybrid automaton with
Uaxp = (UaUUB)\ (YaUYB), Xaxs = XaUXB,
Yaxp = Ya UYp (similarly for XaxB). ©axB, Daxp
and Waxp are defined so that the executions of A x B
are executions of both A and B when restricted to the
corresponding variables and actions.

A derived variable of A is a function on V. Derived
variables are used to simplify the system description
and to facilitate the analysis. A property of A is a
boolean derived variable. A property is stable if, when-
ever it is true at some state, it is also true at all states
reachable from that state. A property is invariant if it
is true at all reachable states. Typically properties will
be shown to be stable or invariant by induction on the
length of the executions. It is easy to see that:

Lemma 1 If for all reachable states s, P is true at s
implies that P is true for all &' such that there ezists
a € T4 with(s,a,s') € Dy or there exists w € Wa with
right closed domain and fstate(w) = s and Istate(w) =
', then P is a stable property of A. If further P is true
at all s € O 4, then P is an invariant property of A.

In some places differential equations will be used to
simplify the description of the set Wy (or at least parts
of it). In this case, Wy is assumed to be populated by
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Figure 1: TCAS system components

all trajectories generated by the differential equation in
the usual way. To simplify the description of D4, we
will assign a precondition and an effect to each action.
The precondition is a predicate on Vo while the effect
is a predicate on V4 x V. The corresponding tran-
sition can take place only from states that satisfy the
precondition; moreover, the states before and after the
transition should satisfy the effect.

2.3 The TCAS Model

We model TCAS by a composition of components (Fig-
ure 1). For each component a model was extracted
from the TCAS documentation. The overall model is
closed, in the sense that input variables and actions of
one component are outputs of other components.

2.3.1 Aircraft Model: The system we con-
sider consists of N aircraft, labeled 1,...,N. Each
aircraft, ¢, is modeled by an HA, A;. We assume
T = )3"” £t = ( and hence D4, = @. Each air-
craft is 1dent1ﬁed by a unique Mode_S number, stored
in an output variable Mode.S; € N. Each aircraft
may or may not be equipped with an altitude report-
ing transponder; if it is, it may also be equipped with
TCAS. This hardware information is stored on an out-
put variable Equipment; € {None, Report, TCAS}.

The physical movement of the aircraft is summarized
by the trajectories of its posmon and velocity. Let
pi = (zi,ui,z) € R3 v = (vF,0f,vf) € R® and
a; = (a?,a!,af) € ]R3 be the position, velocity and
acceleration of the aircraft with respect to some fixed
reference frame on the ground. We assume that all
trajectories in Wa, satisfy the differential equation:

w)-lm] o
ui(t) | T [ @)

We assume that the aircraft acceleration is un-
der the direct control of the pilot and set Y4, =
{Mode_S;, Equipment;, p;,vi}, Ua, = {ai} and X4, =
@. The dynamics of equation (1) are very simple and
ignore important aircraft characteristics such as the de-

tails of the aerodynamic forces, high frequency modes,
the effect of structural controls and input constraints.

Equation (1) should be sufficient in our case, however,
as the maneuvers required by TCAS are rather mild.

2.3.2 Sensors: FEach aircraft is equipped with
sensors that return information about its state and the
state of neighboring aircraft. The sensor of aircraft ¢
is modeled by an HA, S; with Us, = {p;,v;}}_,. The
output variables of S; are estimates of the altitude,
hi € R*, and vertical rate, ki € R, for all aircraft and
the distance (range) R € IR+, and its rate R} € R
between aircraft ¢ and each neighboring aircraft j. We
set T = Pt =0
The information that the sensors provide about the air-
craft state is quantized spatially and sampled tempo-
rally. We assume that the output variables of the sensor
automaton fall within an interval centered at the “cor-
rect” values dictated by the actual state of the system.
Let na, nar, ngr and ngr denote the width of the in-
tervals for h’ h] R] and R’ respectively. The output
variables of the Sensors are updated every T, seconds,
upon the occurrence of an output action Sample;. An
internal variable 7T; € R keeps track of the time that
has elapsed since the last sample.

2.3.3 Conflict Detection: The role of the
conflict detection automaton, D;, is to determine
whether neighboring aircraft pose a threat. The input
variables of D; are the output variables of S;, as well as
boolean variables Threat] which indicate whether the
conflict resolution automaton is already aware of the
threat. We set £ = X' =0 and Xp, = Yp, = 0.

Aircraft j is declared a threat by aircraft ¢ upon the
occurrence of an output action Declarel and ceases to
be regarded as a threat upon the occurrence of an out-
put action Undeclare’ Two derived boolean variables,
Range_Test and Altztude Test, are used to determine
the preconditions of these actions. The Range_Test en-
codes the conditions that the range and range rate need
to satisfy for aircraft j to be declared a threat:

Range_Test = (RI > 10ft/s/\R1)V(Rf < 10ft/s A Ry)
where:
= (R} < DM) A (R R} < HI)
= (RI < 12nmi) A (_3;9_1\4_/5__ TR)

min{R},~10ft/s} —

The Altitude.Test is based on the predicted vertical
separation at 7 = |R:/ min{R},—10ft/s}|, the “time
of closest approach”.

Altitude_Test = |(hi — hl) — (hi = hi)r| < ZT
DM, H1, TR and ZT are TCAS parameters that depend

on the current altitude.

At this stage we assume that j is declared a threat
by ¢ as soon as it “passes” both range and altitude
tests. In practice a number of exceptions to this rule



are introduced in the TCAS implementation, mostly
to reduce the number of false alarms. Once declared
a threat, j continues to be considered a threat until it
fails the range test. At this point the action Undeclane‘7
takes place.

2.3.4 Conflict Resolution: Conflict resolu-
tion is modeled by an HA, R;, (Appendix A) with
Ur, = Y5, U {Mode_Sj,Equipmentj}jy:l. The output
variables of R; are Threat, and a resolution advisory for
the pilot, consisting of a Sense; € {Climb, Descend, L}
and a Strength; € { -2000, -1000, -500, 0, 1500, 2500 }
(in ft/min). The sense indicates whether i should try
to pass above (Climb) or below (Descend) the intruding
aircraft. Sense; = L (undefined) indicates that no ac-
tion is needed. Strength provides a bound on the verti-
cal speed to ensure sufficient vertical separation at time
r. R; maintains two internal variables, the boolean
Reversed; that keeps track of whether the sense selec-
tion has already been reversed during the current en-
counter and Intent_Sent] € {Climb, Descend, J_} that
keeps track of the last mtent message sent by ¢ to j.
Intent messages can be thought of as “commands” to
j as to which sense it should select?.

R; has no internal actions. Sense selection can hap-
pen when j is first declared a threat (upon the oc-
currence of input action Declare] ), whenever an intent
message is received from another TCAS equipped air-
craft (upon occurrence of input action Receive](dir)
with dir € {Climb, Descend}, and whenever new data
comes in from the sensors (upon occurrence of input
action Sample;). The advisory is removed whenever
the intruding aircraft ceases to be considered a threat
(upon occurrence of input action Undeclare’ ). i com-
municates its intent to j through an output action,
Send! (dir) with dir € {Climb, Descend}.

Sense selection is based on the predicted vertical sep-
aration at time 7. Consider first the case of a climb
advisory. To predict the vertical separation TCAS as-
sumes that the intruding aircraft will maintain its cur-
rent speed. If Ai > 1500, TCAS assumes that the pilot
will maintain the current climb rate. The vertical sep-
aration at time 7 is then given by:

A(Climb) = (b} = k) + (b — )r

If h < 1500 on the other hand, TCAS assumes that
the pilot will respond to the advisory after a delay d by
applying a constant vertical acceleration af = a until
hi = 1500ft/min. A similar expression produces the
value of Az(Climb) in this case. The climb separation
is adequate if Az(Climb) is above a threshold ALIM.
The predicted separation in case of a descent advisory,
Az(Descend), can be similarly calculated.

Aircraft i issues an advisory against aircraft j for the
first time when either the conflict detection automaton

2Tn the TCAS code a Climb intent is referred to as a “Do not
Descend” and a Descend intent as a “Do not Climb”.

declares it a threat or when j sends an intent mes-
sage (indicating that it has already issued an advisory
against ). In the former case, 7 (the first of the two to
detect the conflict) chooses an advisory sense based on
a derived variable Indep_Choice. If neither climb nor
descent provide adequate separation, the one that pro-
duces the largest separation is chosen3. If one produces
adequate separation but the other does not, the one
that does is chosen. If both produce adequate separa-
tion preference is given to the non-crossing advisory (a
climb if 7 is already higher and a descent if it is lower).
If j has already issued an advisory, the complemen-
tary sense (encoded by the received intent) is typically
chosen. The only exception is if ¢ has a lower Mode.S
number, the received intent is crossing (j is higher and
has requested i to Climb or it is lower and has requested
i to Descend) and i believes a non-crossing advisory is
possible.

The sense may be reversed later on if, for example, one
(or both) of the pilots thwarts the advisory. If j is
not TCAS equipped, 7 reverses its advisory whenever
it is predicted that the current advisory will not lead to
adequate separation, while the reversed advisory will.
The same is more or less true if j is TCAS equipped
but i has a lower Mode_S number?. The only differ-
ence is that in this case ¢ can only reverse once and
then only if the current advisory is crossing. The new
intent is communicated to j which is forced to change
its advisory accordingly.

The advisory strength is updated every time new data
becomes available. The choice of Strength; depends
on the predicted vertical separation at time 7. The
new strength is chosen according to a derived variable
Strength_Choice, which returns the smallest strength
that will provide separation at least ALIM at time 7.
For example, if Sense; = Climb, (ki — h") + (=500 —
h{)r > ALIM and (ki - h])+( 1000 — hJ)‘r < ALIM
then Strength_Choice = —500.

2.3.5 Communication Channel: Communi-
cation of intents is achieved through a communication
channel automaton, C;;. The automaton has an input
action Send{(dir), whose effect is to store the intent,
dir, together with a time stamp in an internal multiset.
The message is delivered (and removed from the multi
set) upon occurrence of the output action Recewe] (dir).
Delivery is guaranteed by at most d;; time units from
the time the message was sent.

2.3.6 Pilot: The pilot is modeled by an HA, F;,
with Up, = {Sense;, Strength;, hi} and Yp, = {a;}. The
pilot may choose not to follow a particular advisory or
to follow it after some delay. This information is stored

31t is assumed that conflict detection will take place early
enough so that this case will never have to be exercised. We only
include it here for completeness.

4The aircraft with the higher Mode_S number can not initiate
a reversal.




in the boolean variable Follow; and the real variable d;.
The pilot automaton has no input or output actions.
An internal action New_Advisory; takes place whenever
the advisory changes.

We assume that the pilot can apply a range of acceler-
ations in each of the three directions, a;(t) € [g;,@;] =
[a?,aF] x [a!,a¥] x [af, af]. We also assume that the pi-
lot tries to keep vf in [_4 ,%]. The width of the ranges
reflects considerations such as passenger comfort and
standard pilot practice. To ensure that all advisories
can be followed we assume that g¢; < —a < 0 < a < @,
[-2500, 2500] C [vf,7?] and v”(O) € [vf,77).

Whenever a new advisory comes in the pilot decides if
it will be followed and chooses a delay d; € [d;, d;]. We
assume that if the pilot chooses not to follow an advi-
sory (or when none is present) he/she arbitrarily sets
the vertical acceleration in the interval [g;,@;]. If the
pilot chooses to follow the advisory, he/she is assumed
to respond by at most d;, by applying a constant ver-
tical acceleration af = a until Strength; is reached; a
pilot is assumed to set ai = 0 if the current vertical
rate meets the advisory strength. One can show that:

Lemma 2 v} (t) € [vf — 248,77 + 24&] for allt 2 0.

3 Verification Example
To illustrate how safety properties of the TCAS algo-
rithm may be analyzed, consider a pair of well-behaved
aircraft, defined as a system that satisfies:

Assumption 1 N = 2, Equipment; = TCAS, af(t) =
a?(t) = 0 and Follow;(t) = True fort >0 andi=1,2.

Let Az = 21 — 9, Av, = v — v§, etc. Consider the
case where after a finite number of advisory changes,
the TCAS algorithm converges to a fixed pair of advi-
sories (Sensey, Strength) and (Sensey, Strengthy). As-
sume that the final advisories are “consistent”:

Assumption 2 There ezists do > 0 such that for
all t > d, and for i = 1,2, Sense;(t) are constant,
Sense;(t) # L and Sense;(t) # Senses(t).

Without loss of generality assume that Sense; =
Climb. Let Av? = Strength, + Strength, represent the
minimum difference in vertical speed dictated by the
advisory. One can show that:

Lemma 3 There ezists d > 0 such that for allt > d,
az(t) = 0 and Av,(t) > Av; — nar.

Let § = d — t and consider the derived variable:
Sszu = Az+4+ 5(2’{ —v; - nAR)

Ar+5Av.)Avs+{(Ay+6Avy)Av
~(Avg = nan)t )Av§+(Aug wity

AzAv.+AyAv
= - a_. ATAY+OYAVy
SAU? = Az (sz nAR) ’Jv; L

ift < d and t > d respectively.

Lemma 4 (Save > ALIM) is a stable property of a
pair of well behaved aircraft.

Proof (sketch): None of the quantities in the right
hand side of Sa,: are affected by any of the system
actions. Therefore, if (Says > ALIM) is true at the
pre-state of an action it is also true at its post-state.
Note that Says is continuous as a function of time and
SAvn = Av,—(vi-v4—nar)ift < dand SAUa = Av,—-

(Av? —nap) if t > d. In either case SA,, ) >0 (by
Lemmas 2 and 3 respectively). Therefore if (Save >
ALIM) is true at the first state of a trajectory, it will
also be true at the last state. .

The quantity Says is related to the safety of the sys-
tem. Consider the horizontal separation of the two air-

craft Ry = /Az?+ Ay?. Consider the time T' =

Ax(O)ﬁ:;igg(O)Auy and assume that T > d; this sim-

ply requires that the aircraft be far enough for the pilots
to implement the advisory before the point of closest

horizontal approach.

Theorem 1 If Spy2(0) > ALIM then the vertical sep-
aration at the point of closest horizontal approach will
be at least ALIM.

Proof (sketch): At time T, R, achieves its mini-
mum value. By Lemma 4, Sa,:(0) > ALIM im-
plies (Saye > ALIM) is an invariant property. At
time T, Az(T)Avy + Ay(T)Avy, = 0. Therefore,
Save (T) > ALIM implies Az(T) > ALIM, i.e. the
vertical separation when the horizontal separation be-
comes minimum being at least ALIM. n

4 Current & Future Research

Section 3 contains only a small part of the argument
needed to show safety even for this simplified system.
Assumption 2 clearly needs to be shown to be a prop-
erty of the algorithm. This will complete a safety theo-
rem for a pair of well-behaved aircraft. The proof then
needs to be extended by relaxing Assumption 1: we
need to investigate what happens if multiple aircraft
are present, if the pilots accelerate in the z and y di-
rections and if one of the pilots chooses not to follow
the advisory. The last extension should also provide
insight into the case of an unequipped threat. The
analysis is complicated further in this case as multiple
reversals are possible.

All proofs discussed so far will be based on the assump-
tion that the model of Section 2 adequately captures
the system. This model contains a number of simplifi-
cations, in the aircraft dynamics, the TCAS algorithm
and the pilot response. These simplifications can be
progressively removed. We hope that once a proof for
the above nominal case is available, it can be extended
to other cases, possibly using abstraction relations.
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A Conflict Resolution Automaton R;

Data Types:
Dir = {Climb, Descend}, Dir,. = DirU {1}
Strengths = {—-2000, —1000, —500, 0, 1500, 2500}
Aircraft = {1,..., N}, Others; = Aircraft \ {i}
Input Variables:
Mode_S; € N, j € Aircraft
Equipment; € {None, Report, TCAS}, j € Aircraft
hi € R* and hl € R for j € Aircraft
RI € R* and R! € R, for j € Others;
Internal Variables:
Reversed; € Bool, initially False
Intent_Sent, € Diry, j € Others;, initially L
Output Variables:
Sense; € Dir, , initially L
Threat! € Bool, j € Others;, initially False
Strength; € Stengths, initially 0
Derived Variables (see text):

Az(dir) € R and OK(dir) € Bool, dir € Dir
Indep_Choice € Dir
Strength_Choice € Strengths

Input Actions:
Declare, and Undeclare] for j € Others;
Receiveg(dir), j € Others;, dir € Dir
Sample; ,

Output Actions:
Send’(dir), j € Others;, dir € Dir

Discrete Transitions:
Declaref::
Effect: if - Threat then
Threai{ := True; Sense; = Indep_Choice
Undeclaref::
Effect: if Threatz: then
Threatg := False; Intent_Sentf: =1
Sense; := L1; Reversed; := False
Receivel (dir):
Effect: if (Mode.S; > Mode_S;) then Sense; := dir
if = Threat then
Threai'f := True
if (Mode-S; < Mode_S;) then
if (dir = Climb A b > b))
then Sense; := Climb
elseif (dir = Descend A ki < hf)
then Sense; := Descend

else Sense; = Indep_Choice
Sample;: .

Effect: if Threatf then
if Equipment; # TCAS A OK(Climb)
A—OK(Descend) then Sense; := Climb
if (Equipment; # TCAS A - OK(Climb)
AOK(Descend) then Sense; := Descend
if Equipment; = TCAS A Mode.S; < Mode_S;
A-Reversed) then
if Sense; = Descend A OK(Climb)
A-OK(Descend) A ki > hi then
Sense; := Climb; Reversed; := True
if Sense; = Climb A ~OK{(Climb)
AOK(Descend) A ki < hl) then
Sense; := Descend; Reversed := True
Strength, = Strength_Choice
Send! (dir):
Precondition:
(Sense; = Climb A Intent_Sent] # Descend
Adir := Descend)V
(Sense; = Descend A Intent_Sent] # Climb
Adir := Climb)
Effect: Intent_Sentz’: = dir

Trajectories:

Input variables follow arbitrary trajectories.

Internal and output variables remain constant. .
Trajectories stop as soon as the precondition of

Sendf(dir) becomes true.
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