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CHAPTER 1

MOTIVATION AND OBJECTIVES

Urban traffic congestion worsens each year at an alarming rate. The U.S.
Federal Highway Administration forecasts that the severity of traffic congestion will
continue to increase at significant rates in all U.S. urban areas, unless specific
remediation efforts are undertaken [Kahn, 1992]. The costs of traffic congestion are
high. Besides creating the “2-hour” commute, traffic congestion seriously
compromises the safety of drivers and passengers on U.S. roadways. In 1995, an
estimated 15 million automobile accidents involved 26 million vehicles in the United
States. Over 6.6 million accidents were reported to police, and of these, 3.4 million
resulted in injuries to motorists, 428,000 of whom were incapacitated [U.S. DOT,
1997]. Over the past 30 years, the U.S. has lost more lives to car accidents than it has
lost in all of the wars it has ever fought [Coyner, 1997]. In economic terms, the costs
of motor vehicle accidents in 1994 funded through public revenues accounted for
$144 in taxes per household [Coyner, 1997]. Without intervention, we can only
expect these costs to increase as more and more motorists occupy our roadways.

Past efforts to relieve traffic congestion have often focused on the expansion
of roadway capacity. However, these efforts have their costs, too. Roadway
expansion results in considerable displacement and disturbance of residential and
public spaces. Furthermore, construction of new roadways requires public funds,
which are becoming increasingly scarce [Santiago, 1992]. Large roadway projects

are not only costly, but they often do not offer lasting solutions. For example, the



M25 roadway near London was constructed to relieve congestion within the city.
Today, it is, itself, the most congested roadway in all of Europe [Emmitt, 1993].

For these reasons, current U.S. transportation agencies are focusing on the
optimization of existing.infrastructures. Among the most promising solutions is the
implementation of advanced traffic management systems (ATMS). Advanced traffic
management systems are being designed to provide real-time management of traffic
flow [Sobbi, 1995]. More specifically, many ATMS use sophisticated surveillance
equipment, real-time, traffic-adaptive control systems, and operator support systems
(i.e., expert systems, simulation models, etc.) [Santiago, 1992] to monitor and control
access routes to roadways, detect and help facilitate the removal of accidents and
stalled vehicles, and re-route traffic in heavily congested areas.

Problems arising from the task of parking contribute considerably to the
overall traffic congestion problem [McShane and Meyer, 1982]. Advanced parking
management systems (APMS) link information gathered by traffic sensors at selected
parking lots to an ATMS where it is processed so that the information can be updated
and displayed back to drivers via a signboard, typically on a variable message sign.
Variable message signs (VMS) have been proposed as a means to provide drivers
with real-time information regarding parking availability in complex parking
situations (e.g., airports, sports complexes, shopping districts, convention centers,
etc.). The aim of these signs is to provide information to drivers regarding the
location and availability of parking spaces in various parking facilities in an attempt
to reduce the amount of search time necessary for a driver to find a parking space.
Better informed drivers can be expected to reach their destinations more quickly and

efficiently, thereby reducing traffic congestion.



The success of ATMS efforts will depend on an understanding of the ways in
which drivers respond when given information intended to reduce traffic congestion.
The data sources required to build accurate strategies of driver behavior do not yet
exist [Santiago, 1992]. The intelligent design of most APMS, in particular, will
require the answers to several questions. How do people decide where to park? Are
people interested in additional information? If so, what kind of information do
drivers need to assist them in selecting a parking lot? How will their decisions be
influenced (if at all) by the information provided? And finally, when given accurate
information, will drivers’ decisions be, in fact, optimal decisions?

Currently, it is not known how drivers decide where to park. It is clear,
however, that this choice is influenced by several factors. Drivers who have trouble
walking might be expected to choose the lot closest to the final destination, as will,
presumably, all drivers in bad weather. More athletic drivers may choose to
maximize the average walking time. Drivers who normally choose to minimize the
average transit time might, under a tight schedule, choose an alternative with less
variability. Drivers might decide in which lot to park based on the neighborhood
through which they would need to travel to get from the lot to their final destination
(basing their decision, say, on the safety of the area or on whether the walkways will
be crowded or relatively empty). Ultimately, it is necessary to determine the broad
range of criteria that influence parking decisions to evaluate the ways in which VMS
signs might affect traffic flow in complicated parking scenarios.

In addition to determining what criteria influence parking decisions, it is
necessary to determine how these decisions are made when parking lots vary on

known criteria. The objective of the research described herein is to increase our



knowledge of this decision making process. Having an understanding of how drivers

decide where to park will enable traffic engineers to anticipate and better manage
traffic congestion. Chapter 2 provides information on past studies conducted in the
area of parking decision behavior and motivation for the experiments conducted in
this thesis. Chapter 2 also includes an introduction to one framework for modeling
decision-making behavior under uncertainty, Expected Utility Theory (EUT), and
lists the decision strategies investigated in the first two experiments presented herein.
Chapter 3 describes the first experiment conducted in this study, which was a
pencil-and-paper survey designed to determine whether people employ one or a
combination of the three hypothetical decision strategies outlined in Chapter 2. The
relative importances of the 3 hypothesized strategies are evaluated. Chapter 4
describes the second experiment, which was identical to the first with the exception
that subjects’ decisions were made in the more realistic context of a driving simulator,
rather than on a written survey form. Experiments 1 and 2 are analyzed together, and
the results of this analysis motivate the consideration of an alternative decision
strategy, a Lexicographic (LEX) choice rule. Chapter 5 describes the third
experiment, a second simulator study designed to further investigate and compare the
efficacies of METT and LEX at correctly predicting driver behavior. Chapter 6
summarizes the results of the three experiments and sets forth the main conclusions of

this thesis.



CHAPTER 2
BACKGROUND

The following literature review begins with an article that proposes a

_general strategy for parking search behavior in crowded, urban areas. Next, articles
that investigate drivers’ parking behavior when provided with general parking

information are presented and discussed. Finally, an article that examines the effect

of an APMS, specifically, on driver decision behavior is reviewed.

Literature Review

The criteria which people use to decide where to park have not been fully
studied. Thompson and Richardson [1995] developed an analytical procedure for
modeling the parking search behavior of drivers. The strategy assumed that drivers
employ a sequential search strategy whereby individual car parks are examined and
evaluated one at a time until a choice is made. The essence of the strategy is the
assignment of a disutility value to each parking lot examined. In order to understand
the idea of a disutility it is necessary to introduce some theories of individual decision
making. Expected Utility Theory (EUT) is a theory of decision making under
uncertainty. The wutility of an outcome is defined as the benefit that an individual
attaches to the outcome. The utility function is defined as a mapping between the set
of outcomes and a measure of the benefit. Expected Utility Theory allows individuals
to have nonlinear utility functions for, say, money and hence have different
preferences among gambles with equal expected values. For example, we find that

the more money one has, the less he or she values each additional increment



[Coombs, Dawes, & Tversky, 1970]. The expected utility of a gamble, with outcomes

X1,...,Xn Obtained with probabilities py,...,p,, respectively, is

EU)=Y pu(x) 2.1

where u(x;) is the utility of the ith outcome.

The idea of a disutility is, therefore, a meaéure of the cost that an individual
attaches to the outcome. In Thompson and Richardson’s study, the disutility is a
function of the following costs incurred by choosing a particular lot: in-vehicle travel
time (driving to the car park plus finding a space within the park), egress time (time
to walk from the parking lot to the final destination), parking fee, expected fine, and
expected time spent queuing at the car park entrance. These disutilities were
converted into utilities using an additive inverse transformation. A search was
terminated when the expected utility of choosing the lot currently being inspected
E[U;] was higher than the expected utility of proceeding to the next parking option
E[Ui], j#k. For example, suppose parking lots A, B, and C have utilities E[Us]=3,
E[Ug]=5, and E[Uc]=4. Suppose further that a driver currently inspecting lot A
contemplates the benefit of staying in lot A versus continuing on to inspect lot B.
Given the current utilities of each lot, the expected gain in utility of proceeding to lot
B is E[Ug] - E[UA] = +2, a positive gain indicating that it is best to continue. On the
other hand, the expected gain in utility of proceeding to lot C from lot B is E[Ug] -
E[Uc] = -1, a negative value indicating that it is best to remain searching for a space

in lot B.



The strategy was used to simulate how parking choices might change in
response to policy changes (e.g., reducing the allowable parking duration of on-street
spaces and increasing the level of enforcement of parking fines.) For example,
reducing the allowable parking duration at particular on-street parking spaces resulted
in a significant reduction in the average time required to find a space accompanied by
an increase in the average egress time. That is, the effect of the parking duration
reduction on searching patterns was to encourage motorists to choose car parks in the
outer éreas, thereby trading off increased walking times for decreased searching
times.

Advanced Parking Management Systems have been used to influence
positively the parking search experiences of motorists by providing them with
information about which they would otherwise be uncertain. In fact, APMS
incorporating VMS are the second most widely used information system [Axhausen
and Polak, 1996]. Thus, it is surprising that the influence of these systems on drivers’
decisions is not more widely documented in the literature. Polak, Vytholkas, and
Chatfield [1991], and Khattak and Polak [1991] studied the impact of an experimental
parking information system on the behavior of drivers in Nottingham, UK. Parking
information was distributed using various media (e.g. radio broadcasts, newspaper
advertisements, and leaflets). Contact interviews were conducted and mail-back
questionnaires were distributed with the objective of investigating the level of
penetration of the information and its effect, if any, on driver behavior. Polak et al.
found that nearly half of the drivers who were aware of radio broadcasts regarding
parking availability actively listened to them. Furthermore, over 25% of the listening

drivers reported that their decisions with regard to parking type and location were



influenced by the broadcasts, both in the pre-trip and, to a lesser extent, the en-route
stages of their trips. Thus, it appears that drivers are generally receptive to parking
information provided. However, the fact that driver beha\}ior was influenced
primarily in the pre-trip stage led the authors to conclude that complimentary VMS
systems are needed.

Axhausen and Polak [1996] studied the effect of an APMS implemented in the
Frankfurt city center on the search times required for drivers to find parking. The
APMS employed VMS signs distributed about the city center as well as at the city
limits. Contact interviews were conducted both before and after the implementation
of the APMS. Each driver was asked to report his or her familiarity with the area and
the duration of his or her parking search, and to describe the search strategy
employed. The survey results indicated that, for drivers with all levels of local
familiarity, search times were on average significantly reduced after the
implementation of the APMS. However, drivers who reported that they were aware
of and used the VMS system had higher average search times than drivers who
reported that they were aware of the VMS system, but did not use it. Based on this
result, the authors inferred that drivers with a high level of familiarity of the area (and
thus lower search times both before and after implementation of the VMS) were less
likely to use the VMS than drivers with low to moderate levels of local familiarity.

This thesis differs from the previously published work in this area in a few
significant respects. The parking choice strategy proposed by Thompson and
Richardson (1996) incorporates in-vehicle travel time, egress time, car park search
time, parking fees, expected parking fines, and expected waiting times into the utility

function. In addition to those attributes, a number of general subjective parameters



(specified in the strategy as exogenous variables) and stochastic subjective parameters
were also included in the utility expression. Although the strategy is quite thorough
in that it considers nearly every possible consideration, it is unlikely that drivers are
able to consider all such attributes in the few moments they have to make a decision
whether or not to continue searching for parking. In other words, their strategy may
contain too many factors for one individual to realistically consider at one time. The
current thesis differs from the work of Thompson and Richardson in two ways. First,
we do not set out to create one strategy for the population at large, but rather to
investigate a number of very simple choice rules to determine whether different
people employ different strategies, a single person employs a combination of
strategies, or whether, perhaps, there does exist a single strategy to characterize
drivers’ parking behavior. Secondly, we assume that drivers do not (or cannot) make
use of extremely sophisticated choice rules in the short amount of time they have to
make a parking decision. Thus, we aim to develop a strategy for explaining drivers’
choices based on a minimal number of adjustable parameters.

The studies conducted by Polak ef al. (1991) investigated driver behavior
when pre-trip parking information was provided. However, predicting the effect of
informational systems on driver behavior will require examination of driver responses
to information provided at the decision point. The work in this thesis differs
significantly from the work of Polak, ef al. in that parking information in this work is
disseminated at the decision point. That is, parking information is presented in real-
time, and drivers must make their decisions in a matter of seconds.

The work in this thesis will also build on the work of Axhausen and Polak

(1995). Axhausen and Polak sought to determine the effect of the existence of a



VMS system on driver behavior. However, the study did not attempt to explore how
particular information contained in the signs affected drivers’ decision behavior. For
example, questions like, “How many people will drive to a lot reported on a VMS to
have, say, two available spaces?” were not asked. In this way, the current thesis
differs from the work of Axhausen and Polak, since this thesis seeks to determine the
influence of particular pieces of information presented by the VMS on drivers’

decision behavior.

Introduction to Expected Utility Theory

A brief introduction of Expected Utility Theory (EUT) was given in the last
section. A more formal introduction is presented here and its applicability to this
thesis is described. To predict the decisions that drivers make, it is important to
understand the rules that drivers might use to choose one parking lot over another.
Expected Utility Theory provides one framework for explaining how drivers might
decide where to park. Expected Utility Theory deals with the issue of 'risky decision
making. Risky decisions are made whenever a person is uncertain about the future
state of the world [Coombs, Dawes, & Tversky, 1970]. Although variable message
signs provide drivers with up-to-the-minute information on parking availability,
drivers are still forced to make decisions with less than complete knowledge. For
instance, drivers do not know whether a lot will fill between the time they see a sign
indicating the availability of parking spaces in a particular lot and the time they
actually reach the lot.

Expected Utility Theory assumes that individuals (in this case, drivers)
estimate the likelihood of certain future events based on prior experience, beliefs,

and/or information provided, and then use those likelihoods to determine the net
10



worth of a particular decision. It is assumed that an individual’s beliefs about the
likelihood of an event can be expressed by some probability function (either objective
or éubjective). An individual would then consider the aggregate benefit of a
particular choice by computing a sum of values characterizing the desirabilities of the
various possible outcomes weighted by the probabilities of occurrence of those
events. Thus, EUT assumes that individuals make choices that maximize the
expected utility of an outcome. An equivalent assumption is that individuals make
choices so as to minimize the expected disutility of an outcome. Once again, for the
purpose of this thesis, the uncertain event is whether or not a parking lot will fill in
the time during which the driver is in transit between the VMS and the parking lot.
Thus, a general expression for the expected disutility associated with choosing

parking lot i, having k open spaces, when the destination is j can be written:

E[DU// (O1=1F,, _full (OIDU,, full @ D1+ [P/id[ (0] [DUfuII ()] (2.2)

That is, the expected disutility is equal to the sum of the disutilities associated with lot
i when it is both full and not full upon arrival, weighted by the probability of each

event.

Decision Making Strategies

In the first two experiments described in this thesis, EUT was used to
investigate drivers’ decision-making behavior when provided with real-time parking
information. Experiment 1 was a pencil-and-paper parking decision survey. The
responses to that survey were compared with the results from a second study

(Experiment 2) evaluating decision-making in a driving simulator. The objective of

11



these studies was to determine which of the following decision strategies might

characterize the actual decisions of the subjects:

1.) Parking areas are chosen so as to minimize the total expected travel time to
one’s final destination (METT);

2.) Parking areas are chosen such that the distance one walks from the parking lot
to the final destination is minimized (MWD); or

3.) Parking areas are chosen based on the maximum parking availability (MPA),
i.e., the lot with the greatest number of available parking spaces is chosen.
The above choice rules result from the utilization of EUT, each with the
application of a particular set of simplifying assumptions. The sections that follow
state the assumptions and define the disutility functions associated with each decision

rule.

METT Strategy

An METT strategy assumes that individuals derive disutility from the driving,
walking and queuing times associated with a particular lot choice. With this

assumption, Equation 2.2 may be written as,

E[DU ()] = By (DU () + DU, )]+ Py (OIDU (1)) + DU, ) + DU(2,)]

where #4¢; is the time it takes to drive from the VMS to parking lot i, £, is the time it
takes to walk from parking lot i to destination j, and ¢, is the queuing time required if
a parking lot is full when a driver arrives. Pgu(k) is the subjective probabil&&t)hat a
lot currently containing k open spaces is full when the driver actually arrives. Since
the sum of the probabilities is one, Equation 2.3 may be simplified,

E[DU, (k)] = DU(t,,)) + DU(t, ) + Poy(K)DU(2,)

12

(2.3)



It is further assumed that each disutility is the same linear function of the time

required to perform the corresponding task,
DU(t,))=a+bt; y=d(@),wi)q (2.5)

That is, people derive equal disutility from a drive, walk, or wait of the same

duration. With this assumption, it can be shown that Equation 2.4 is minimized when

the total expected travel time,

E[Ty(k)] =Ly Tl T thfuIl(k) (2.6)

w(ij
is minimized.

The above set of assumptions leads to an METT choice rule, in which it is
hypothesized that drivers make parking decisions by attempting to minimize the total
expected travel time from the VMS to the final destination. Drivers attempting to
minimize their total expected travel time would need to assign an actual probability to
the event that a parking lot is full when he or she arrives. A possible expression for

this probability might be the following linear probability function,

P = =2 2.7)

where 7 is the total number of spaces in the lot and £ is the number of open spaces in

the lot as stated in the VMS.

13



MWD Strategy

An alternative assumption to the one presented above is that the disutilities
drivers derive from driving and queuing are negligible compared to the disutility

derived from walking. If this is the case, then, Equation 2.3 can be simplified to,

E[DU(/ (k)] = Rmr _ full (k)[DUwa[k ] + P_/i(l[ (k)[DUwulk ] (28)
or,

E[DU,(k)] = DU, (2.9)

If it is assumed that the disutility of a walk is a function only of the distance walked,
and that the disutility of a walk increases with increasing duration, then Equation 2.9
is minimized when the walking time distance is minimized. This set of assumptions
leads to the MWD choice rule, where it is hypothesized that drivers make parking

decisions by attempting to minimize the walking distance.

MPA Strategy

Finally, we might assume that the total disutility is dominated by the queuing
task, and that the driving and walking tasks are negligible in terms of disutility.

Under this assumption, Equation 2.3 is simplified to,

E[DU, (O] = B, 4 (k)O0) + Py ()[DU, (2.10)

queue ]

or,

E[DUI/(k)] = ‘Pfull[DUqueue] (21 1)

14



Equation 2.11 is minimized when P 1s minimized. Thus, this assumption leads to
the MPA choice rule, where it is hypothesized that drivers make parking decisions by

attempting to minimize the probability of arriving at a lot and finding it full.

15



CHAPTER 3
EXPERIMENT 1 (SURVEY)

Participants

Fifteen graduate students (12 male and 3 female) were surveyed in the pencil-
and-paper survey conducted at the University of Massachusetts at Amherst. The ages

of the subjects ranged from 21 to 35 years of age, with an average age of 25.4 years.

Stimulus Material

Subjects were presented with 36 different parking scenarios that were
arranged in random order (Appendix A). Each of the parking scenarios consisted of a
VMS, a destination building and four parking lots labeled Lot A, Lot B, Lot C, and
Lot D (see Figure I). Beneath each parking lot was indicated the number of open
spaces (out of 100) in the lot. The word “closed” was typed beneath the lots that were
not available for parking (Figure I). The parking availability information and the
final destination location were the only parameters that varied from scenario to
scenario. Note that the “A” presented next to the building graphic in Figure I

indicates that the final destination in this scenario is nearest to Lot A.

Experimental Design

Of the 36 parking scenarios, 12 had only two lots available for parking, 12 had
only three lots available for parking, and 12 had all four lots available for parking.
These scenarios are referred to as 2-lot, 3-lot, and 4-lot scenarios, respectively. The

following guidelines were used to counterbalance all of the 2-lot scenarios:
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1) The number of scenarios in which the lot nearest the VMS resulted in the
minimum expected travel time was equal to the number of scenarios in which
the lot furthest from the VMS resulted in the minimum expected travel time.

2) The number of scenarios in which the final destination was nearest the VMS

was equal to the number of scenarios in which the final destination was furthest
from the VMS.

3) The number of scenarios in which the lot nearest the VMS had the greatest
number of open spaces was equal to the number of scenarios in which the lot
furthest from the VMS had the greatest number of open spaces.

The counterbalancing for the 3-lot scenarios was very similar. However, in
the 3-lot scenarios, there was an equal number of scenarios in which the expected
travel time was minimized in the lots nearest and furthest from the VMS, as well as
the lot in between these two. Finally, the 4-lot scenarios were constructed such that
the number of scenarios resulting in the minimum expected travel time (METT) was
equal among all of the four lots (e.g., there were 3 scenarios in which Lot A resulted
in the METT, 3 for which Lot B resulted in the METT, etc.).

Once the final set of parking lot scenarios was created, the order in which the
scenarios were presented to the subjects was counterbalanced. The first 18 scenarios
consisted of six 2-lot, six 3-lot, and six 4-lot scenarios, as did the second 18. Within
each set of 18, the order in which the 2-, 3-, and 4-lot scenarios were presented was
randomized. This randomization established the final parking scenario ordering,
labeled as Figures 1 through 36 in Appendix A. Subjects in the survey received
packets very similar to Appendix A. However, the six pages were randomized such

that not all of the subjects were presented the stimuli in the same order.
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Procedure

Subjects were asked to review each scenario by considering the location of the
destination building relative to the parking lots, and then to select the parking lot they
would choose based on the parking availability information provided. A brief
summary of the scope of the project and the task the subjects were to perform was
given both verbally and in the survey document itself (dppendix B). The survey
instructions provided subjects with enough information to estimate their total driving,
walking, and queuing times. For instance, subjects were told to assume that it would
take them 1 minute to drive and 3 minutes to walk each segment of the roadway
system. Referring to Figure I, we see that if a subject decided to park in Lot C, it
would take the subject 4 minutes to drive to Lot C (4 segments at 1 min/segment) and
9 minutes to walk from Lot C to the destination (3 segments at 3 min/segment). That
is, tyc) = 4 minutes and t,,c4) = 9 minutes. Subjects were also informed that they
could expect to wait 5 minutes for an open space if their chosen lot was full when

they arrived (e.g., tg = 5 min).

The raw data collected on each subject for each scenario in the survey is
attached as a table in Appendix C. In the table, the leftmost column contains figure
numbers for the various scenarios presented in Appendix A. Each of the other
columns contains the letters of the lots chosen by one subject for each of the
scenarios. These results are summarized in the form of bar graphs in Appendix D,
which indicate the number of subjects who chosé each particular lot in each scenario,

and the predicted METT, MWD, and MPA lots for the scenario.
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Subjects’ choices differed for 69.4% of the scenarios in the survey. That is,
all subjects chose the same parking lot in 11 out of the 36 scenarios. The graphs
shown in Figure 2 display the percentages of subjects’ decisions that were consistent
with each of the three decision criteria tested (i.e. METT, MWD, and MPA). In some
of the parking scenarios, choice of a particular lot was consistent with more than one
of the decision criteria. This coincidence of choice rules occurred particularly
frequently between MWD and METT lots. Because a section of road may be driven
much more quickly than it can be walked, the destination lot tends to coincide with
the METT lot, except in cases where the destination lot is very nearly full, such that
there is a high probability that choice of the destination lot will result in waiting for
an open space. For this reason, two graphs are displayed, one entitled “All
Scenarios,” which gives the results for all 36 scenarios, and another entitled “Unlike
Scenarios,” which consists of only those parking scenarios in which lots conforming
with METT, MWD, and MPA were all different. Figure 2 indicates that subjects
made choices consistent with METT most often, and that subjects rarely chose
parking lots based purely on it having the maximum number of open spaces (MPA).
The MWD choice rule also appears to be important to subjects, but a full analysis is
postponed until data from a more realistic setting (i.e., a driving simulator) is

presented.

Discussion
In the survey study, subjects were presented with stimuli and made decisions
in a relatively low-stress, distraction-free environment (i.e., a classroom). However,

it is likely that subjects’ decision behavior is influenced not only by the options

19



available, but also by the cognitive load under which the decision is made. For this
reason, it is useful to test driver responses using a driving simulator. Previous studies
have shown that individuals often perform quite differently on simple paper and
pencil tasks than they do on identical driving simulator tasks [Szymkowiak, 1997].
One of the greatest benefits of driving simulators is that they closely mimic the
cognitive load present in an actual driving situation. In a simulator, as in a real car,
drivers must maneuver the vehicle to keep it on the road, watch out for traffic,
navigate roadways, scan for information, and make decisions. Furthermore, the
dynamic nature of the driving simulator may create a greater sense of urgency for
subjects when making decisions. In haste, subjects might adopt a different, more

simple decision strategy than they would in a paper and pencil task.
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CHAPTER 4
EXPERIMENT 2 (FIRST SIMULATOR STUDY)

Participants

Experiment 2 utilized a driving simulator. Here, 15 subjects (8 male and 7 female)
sat in a driving simulator located in the Human Performance Laboratory at the
University of Massachusetts at Amherst (Figure 3). The ages of the subjects ranged

from 20 to 32 years of age, with an average age of 25.3 years.

Equipment
The driving simulator (Illusion Technologies) consists of a 1995 Saturn SL1,

controlled by an Onyx Reality Engine 2 and an Indy computer (both of Silicon
Graphics, Inc., Mountain View, CA). The visual database used to represent the
driving course was created using Designer’s Workbench® software developed by
Coryphaeus of Los Gatos, CA. Drivers maneuver the simulator car through a virtual
world that is presented on screen a few feet in front of the car by a Sony MultiScan

Projector (model VPH-1272Q).

Stimulus Material

The stimulus provided in the simulator study was similar in content to that
which was provided in the survey study, although quite different in terms of format.
In the simulator study, the number of open spaces available (out of 100) in each of the
four parking lots was displayed on a VMS. Closed lots displayed a red “XX” where
the number of open spaces would have been to signify that the lot was not available

for parking. Figure 4 is a snapshot of the graphic database used in this simulation
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which provides a sample VMS. Each of the scenarios in the simulation began with a
driver positioned behind a stop sign. A brown and white signboard which provided
information about the final destination for each scenario was located just beyond the
stop sign; the sign identified to which of the four parking lots the destination was
nearest. A second snapshot of the graphic database displaying (from the subject’s
perspective) the first image presented to the subjects can be found in Figure 5.

Finally, Figure 6 provides an overview of the roadway used in the simulation.

Experimental Design

The same set of 36 parking scenarios was used in this experiment as were
used in Experiment 1. The 36 parking scenarios were presented to the participants in
3 sets of 12 trials. The trial order was fixed for each set of 12, although the order in
which the sets were presented to each particpant was chosen to ensure that every
permutation of the 3 sets (i.e., 1-2-3, 1-3-2, 2-3-1, etc.) was used a nearly equal

number of times.

Procedure
The subjects’ task in the simulator study was essentially the same as in the
survey, although slightly more complicated given the driving task. Each set of 12
trials began with the subject’s car sitting at a stop sign. A lead car was in front of the
simulator car in every scenario (Figure 5). Subjects were instructed not to attempt to
pass the lead car at any time during the simulation. The lead car traveled at
approximately 32 km/h (20 mph) past the VMS, beyond which it accelerated to 1.5

times the speed of the simulator car. The purpose of the lead car was both to ensure
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that subjects drove slowly enough past the VMS to read the information on the
parking availability of the various lots, and to provide drivers with the sense that there
were other cars on the road with them. Subjects were informed that they could stop
and back-up the car if they wanted to re-read the VMS for any reason. As with the
survey, subjects were provided a brief summary of the scope of the project and an
instruction sheet (dppendix E). The instructions provided subjects with the same
driving, walking, and queuing times that were given in the pencil-and paper survey.
Subjects were given time to familiarize themselves with the driving simulator in a
practice session, and were instructed to drive as they would normally. In the practice
session, subjects drove the simulator through one complete scenario and were
encouraged to practice maneuvering the steering wheel and stopping operations to get
a sense of the simulator’s manageability. The practice sessions lasted between 5 and

10 minutes, depending on subjects’ confidence levels.

The raw data collected on each subject for each scenario in the simulator
study is attached as Appendix F. Bar graph summaries similar to the ones generated
in the pencil-and-paper survey are also available in Appendix G. Graphs that display
the percentages of decisions consistent with each of the three decision criteria tested
are presented in Figure 7. Finally, Figure 8 presents the resulting percentages of
decisions consistent with each choice rule in the survey and the simulator side-by-
side.

Subjects’ choices differed for 25.0% of the scenarios in the driving simulator.

That is, all subjects chose the same lot in 27 out of the 36 scenarios in the simulator
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study. Again, the data indicates that drivers rarely used the MPA method of deciding

where to park. Furthermore, when the METT lots and the destination lots were not
the same, subjects made choices consistent with METT more often than with MWD.
Thus, METT appears to be the best way of predicting where drivers will choose to

park.

Discussion
Although subjects favored lots resulting in METT, the high proportion of
choices not consistent with METT (37.1% and 43.8% for the survey and simulator,
respectively) suggested that the assumed probability function, Py (k), used in the
initial analysis to compute E[7}(k)] could be improved to better reflect drivers’
perceived probability of finding the lot full upon arrival. Recall that the expected
travel times were computed assuming the linear probability function,

Poy(k) = (”;") (@.1)

A more realistic probability function might be one in which subjects perceive
nearly a 100% likelihood of arriving at a lot and finding it full until there is some
criterion number of open spaces in the parking lot. Above this criterion number, the
perceived likelihood may rapidly decrease to nearly zero. There may be another
criterion number of spaces (less than 100) at or above which subjects may perceive a
nearly 0% likelihood of finding a lot full upon arrival. The following is a graph of an

ogival power function which reflects such a perceived probability relationship.
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Power functions have been quite effective in psychophysics in mapping
physical and psychological dimensions (Kling & Riggs, 1971, and Falmagne 1986).
The expected travel times, E[T;(k)], for the lots were recalculated using the following

power function for the perceived probability of arriving at a lot and finding it full:

1@ -t (4.2)
Pf'l// (k) - ) |i(ﬂ)k—a + ('B)—(k—a) }

Manipulation of the parameter o in the above function adjusts the inflexion point in
the ogival function. Manipulation of the parameter B adjusts the steepness of the
descent of the function to the x-axis.

Values for the parameters o and p were initially chosen based on an
preliminary analysis of data taken from the simulator study. The eleven scenarios for
which application of the METT and MWD decision rules resulted in different lot
choices were examined. The objective was to identify the minimum number of
spaces in the destination lot above which a “typical” subject might be expected to
park in that lot. For each subject, the number of open spaces in the destination lot

was recorded for two cases. The first case was the case in which the destination lot
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was chosen. The second case was that in which a lot other than the destination lot

was chosen. Thus, two lists of values were produced for each subject. The minimum
value in the first list for a given subject represented the minimum number of open
spaces in the destination lot which was deemed acceptable by the subject. The
maximum value in the second list represented the maximum number of open spaces
in the destination lot which was considered unacceptable by the subject. The

subject’s criterion number of open spaces was computed as the mean of these two
values and corresponds closely to a. For example, Table 4.1 shows how the criterion

number of open spaces was determined for subject #1.

Table 4.1. Criterion number analysis for subject #1

No. Open Spaces in
Destination Lot

Case 1: Dest. Lot Chosen g1 = {41, 12,20} Min {g,} =12
Case 2: Dest. Lot Nof Chosen | ¢, ={1,2,8,3,1,6,5,5} Max {€;} = 8

Thus, the criterion range for subject #1 is 8-12, and the estimated criterion number of
open spaces for subject #1 is a; = 10 spaces. The parameter o used to construct the
estimated subjective probability function, Py,(k) is an average of the computed values
{o,00,03,...,005}. The parameter § was selected such that the rapidly decreasing
region of the ogival function spanned the values between the minimum lower bound
and the maximum upper bound of the criterion ranges for all 15 subjects. Application
of the above described analysis to the simulator study data resulted in selection of the

parameter values o« =8 and § = 1.6.
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To verify the above parameterization, a computer algorithm was developed to
determine the values of a and B which maximize the agreement between subjects’
responses and the hypothesis of an METT choice rule. The FORTAN program
PARK (Appendix H) steps at user-defined intervals through every possible set {o.,3}
bounded by user-defined minimum and maximum o and f values. For each set {o.,p}
the program computes the expected travel time E[T;(k)] for each lot i in each
scenario, using Equations 2.6 and 4.2. The program then determines the proportion
of subjects choosing the lot having the minimum expected travel time in each
scenario. The proportions of subjects making choices consistent with the METT
strategy for all {OL,B} combinations are compared, and the sets {a,B} that result in the

maximum agreement are stored in a file.

This program was run on the Experiment 2 data using the parameters given in
Table 4.2. Several sets {a,p} yield the maximum agreement with the Experiment 2
data of 93.5%. Among these sets {o.,B} is the set {8,1.6}, determined above using an
intuitive analysis of the Experiment 2 data. Since this set {a,p} was determined to be
optimal using both the computer algorithm and an intuitive analysis, this
parameterization was used in the power probability function 4.2 for analysis of the

Experiment 2 results.

Table 4.2. Parameters used for optimal {a,p} in Experiment 2

Minimum Value Maximum Value Step Size
o 0.1 30 0.1
B 0.1 6 0.05
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The effect of this probability function was to change the locations of some of
the METT lots, such that the METT and destination lots became coincident in 11
scenarios for which they had previously been different using the linear Pru(k)
function. Figure 9 displays the new percentages of decisions consistent with each
decision rule. Note that now there are no “Unlike Scenarios,” since there no longer
exist scenarios for which application of all 3 choice rules result in different lot
choices.

Over 90% of the subjects tested in the driving simulator made choices
consistent with minimizing their expected travel time, when the expected travel time,
E;[T(k)], was calculated using the ogival probability function. Thus, the METT
choice rule with a probability function of this form might be a satisfactory method for
predicting driver behavior.

Note that, regardless of the probability function used, the percentage of
decisions consistent with the MWD choice rule was greater in the simulator study
than in the survey. A major difference between the driving simulator and survey tests
was that subjects in the simulator had less time to make a decision. Subjects in the
simulator were told that they could back-up to re-read the VMS if they so desired;
however, none of the subjects chose to do so. Instead, subjects made quick decisions.
One explanation for the increase in the percentage of decisions consistent with the
MWD strategy in the simulator is that subjects were adopting a strategy for scanning
the VMS such that they searched first for the information which interested them the
most (e.g., the lot nearest the destination). If the destination lot had a number of open
spaces above the subject’s criterion number of open spaces and the subject hadn’t

time to analyze the remainder of the information, the subject may have simply
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decided on the destination lot. If the destination lot did not have a subject’s criterion
number of open spaces, the subject may have then searched for information regarding

the lots adjacent to the destination lot.
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CHAPTER 5

EXPERIMENT 3 (SECOND SIMULATOR STUDY)

Introduction and Motivation

In Experiments 1 and 2 presented above, subjects made decisions that were
consistent with minimizing their total expected travel time most often. However, a
large proportion of drivers chose to minimize their walking distance even when the
destination lots did not minimize their total expected travel times. To account for this
within the METT strategy, the probability function in the computation of the expected
travel time was modified in an attempt to better represent subjects’ subjective
probability of finding a lot full upon arrival. While the predictive power of the
METT strategy was, indeed, improved with the use of a new ogival probability
function, the proportion of decisions consistent with minimizing the walking distance
was still high. Thus, it is not clear which of the two decision rules subjects use.

In an effort to better explain the data, an evaluation of the decision-making
process as a whole was considered. Built into the METT strategy is the assumption
that subjects consider all of their options before making a decision. We hypothesize
that subjects, perhaps, prioritize their decision criteria, thereby considering options
sequentially. Having prioritized their criteria, drivers may make their decisions by
evaluating lots one at a time, starting first with the lot that satisfies their highest
ranked criterion. This idea of rank ordering decision attributes is a lexicographic
(LEX) choice rule [Tversky, 1969]. Simon [1955] and Marschak [1968] show that
decision making is influenced by considerations of cognitive effort. Hogarth [1990]
explains how different decision strategies require different amounts of computational
effort. According to Hogarth, decision problems consist of three basic components:
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the alternatives available to the decision maker, events or contingencies that relate
actions to outcomes as well as their associated probabilities, and the values associated
with the outcomes. He states that, in general, decision tasks become more difficult
with more alternatives, multiple contingencies and multiple conflicting dimensions of
value. Use of a LEX choice rule involves consideration of fewer alternatives and
fewer contingencies than use of an METT choice rule.

The fact that the computation of the expected travel time requires a driver to
process all relevant problem information before making a decision makes it more
computationally intensive for a driver than the lexicographic strategy, in which
choices are based on the most important attributes while other information is (at least
temporarily) ignored. Thus, the LEX strategy allows a driver to make decisions with
less cognitive effort. It seems reasonable that a diminution in the difficulty of a
decision task would allow drivers to make decisions more quickly, an element crucial
to a driver who feels an intrinsic need to maintain traffic flow. This might explain
why subjects in the survey chose to minimize their expected travel time more often
than subjects in the simulator who, given the driving task, felt a greater time
constraint (none of the subjects stopped to review the VMS signboard even though
they were informed that they could do so).

For a driver to decide in which lot to park, he or she must consider three
aspects: the driving task, the walking task, and the possible chore of waiting for an
available space if a lot is full upon arrival. Given the high proportion of decisions
consistent with minimizing one’s walking distance in the preliminary studies, we
hypothesize that the walking task is of the greatest concern. Thus, we assume that

subjects first consider the lot nearest their destination, and contemplate other lots only
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if they decide that the destination lot is undesirable for some reason (in this case, has
unacceptable parking availability).

Another important difference between METT and LEX is that in the METT
strategy, subjects must estimate the total expected travel time for each of the four lots
to identify the lot which minimizes their total expected travel time. The LEX
strategy, on the other hand, considers only one value at a time, the number of open
spaces in the lot nearest the destination. Here, we assume that subjects have some a
priori criterion number of open spaces. This criterion number would be based on
several considerations of the driving task at hand (e.g., traffic density, weather, one’s
personal schedule, etc.), and its value might vary slightly from driver to driver. Thus,
a decision could be based on a single value (or, more generally, a random variable),
rather than a computation that includes a complicated subjective probability function.
Factors such as traffic density and weather could then later be manipulated to identify
drivers’ criterion number of open spaces under several different situations. The
contributions of these factors would be much more difficult to incorporate into a

probability function.

Objective

In an effort to test the new lexicographic hypothesis, a third experiment was
conductéd. The objective of this experiment was twofold. First, an attempt was
made to identify more precisely the criterion number of open spaces subjects use
when deciding where to park. Second, an attempt was made to determine whether the
LEX strategy better predicts the choices drivers make when deciding where to park

than the METT strategy. To carry out this plan, it was critical to design scenarios
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such that lot choices consistent with the LEX and METT choice strategies could be

distinguished, regardless of the parameter values.

Participants

Twenty students (11 male and 9 female) from the University of Massachusetts
at Amherst were again tested utilizing the driving simulator. The ages of the subjects

ranged from 19 to 33 years of age, with an average age of 23 years.

Stimulus Material

Experiment 3 utilized the same driving simulation used in Experiment 2, with
modifications made only to the parking availability displayed in the VMS and the
final destination. Thirty-six new parking scenarios were designed to achieve the
above goals (see Table 5.1). Of these 36 scenarios, 10 were created to identify
subjects’ criterion number of open spaces, 21 were designed to compare the METT
and LEX strategies, and the remaining 5 were designed to provide subjects with
scenarios that resulted in a relatively obvious choice. These latter 5 scenarios
(Appendix I) were included so that the subjects were not required to make “difficult”
choices 100% of the time. Presenting subjects with a few scenarios that resulted in
obvious choices also allowed for an analysis of the rationality of the decision-makers
tested. |

To identify the criterion number of open spaces, x, that subjects use to decide
where to park, the parking availability in each of 10 destination lots was increased by
one from 3 to 12 open spaces while keeping the availability in all lots immediately
adjacent to the destination lot constant (4ppendix J). Here, only the middle two lots

(i.e., Lots “B” and “C”) were used as destination lots. This was done so that all of the
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destination lots would have two adjacent lots (Lots A & C or Lots B & D). The
parking availabilities in lots adjacent to the destination lot were kept constant to
isolate the effect of parking availability in the destination lot from that of
availabilities in adjacent lots. In other words, if the number of open spaces in the
adjacent lots were to vary, it would not be clear whether a subject was basing his or
her decision purely on the availability in the destination lot or on some change in the
availabilities in the adjacent lots.

Twenty-one of the 36 scenarios were created to compare the METT and LEX
strategies. Of these 21 scenarios, 6 (Appendix K) were created such that the
destination lot contained fewer than the criterion number of open spaces (identified in
Experiment 2), but still resulted in the minimum expected travel time as calculated
using Equations 2.6 and 4.2, and the parameterization {o, B} = {8, 1.6}. Subjects
employing an METT method of decision-making were expected to choose the
destination lot, while those employing a LEX choice rule were expected to choose
one of the other three lots since the availability in the destination lot was
“unacceptable.”

Although the parameterization {o,p}={8,1.6} was used to calculate E[T;(k)]
in the LVM scenarios, the scenarios were designed such that any {c,8} combination
would result in the lots characterizing an METT choice rule being different from the
lots characterizing a LEX choice rule. However, if the criterion number of open
spaces that a LEX user establishes to determine whether or not to park in the
destination lot is less than or equal to 3 open spaces, then the lot choice characterizing
the two decision rules could coincide. For example, consider the first scenario

shown in Appendix K. The most extreme situation exists when the {a,3}

L]
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parameterization leads to P(2)=1 and P(50)=0 resulting in total expected travel
times of E[T22(2)]=11 and E[T42(50)]=14 for Lot B and Lot D, respectively. Since
E[T22(2)] < E[T42(50)] in this most extreme situation, it is clear that any other {o,p}
combination resulting in Ps(2)<1 and Pz,(50)>0, will still result in METT users
choosing Lot B and LEX users choosing Lot D, provided the LEX user establishes a
criterion number greater than 2 open spaces. Performing the same type of analysis
on the other 5 LVM scenarios, also results in the lot choices characterizing the METT
and LEX rules being distinct.

To counterbalance the LVM scenarios, another 6 scenarios (Appendix L) were
created identical to the LVM scenarios except that the parking availability in the
destination lots was increased to 15 open spaces, a number above the criterion
number instead of below the criterion number. Here, we expected subjects employing
the LEX choice rule to choose the destination lot regardless of the availabilities in the
other parking lots since the destination lot contained what we believed to be greater
than most subjects’ criterion number of open spaces.

Finally, 9 scenarios were created to test the validity of both the METT and
LEX strategies. In these scenarios, the parking availability in the destination lots
contained greater than the criterion number of open spaces and also resulted in the

| minimum expected travel time. Thus, drivers using either METT or LEX choice
rules would be expected to park in the destination lot in each of these scenarios. The
parking availability in the destination lots of these scenarios contained either 13 or 14
open spaces while the parking availability in the lots upstream and adjacent to the
destination lot were incremented by approximately 10 from 17 to 96 open spaces

(Appendix M). Choosing an adjacent lot would indicate that drivers’ decision criteria
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are more complex then either the LEX or METT strategies. That is, the influence of
parking availability in adjacent lots may be more important than predicted by either
of these strategies. Care was taken to keep the expected travel time in the destination
lot at least 2 minutes less than that of the adjacent lots. Here, we assume that a 2-
minute difference in expected travel time is detectable by subjects. Also, the varying
adjacent lots were kept nearer the VMS than the destination lots; otherwise, choice of
an adjacent lot would result in the subject having to drive and walk further than they

would if he or she had just chosen the destination lot.

Experimental Design

Experiment 3 utilized the same graphic database used in Experiment 2, with
changes made only to the number of open spaces provided in the VMS and to the
final destination information. Thus, subjects encountered the 36 scenarios in 3 sets of
12, Appendices I through M present the 5 different types of strategies used to direct
the development of the 36 scenarios for Experiment 3. The strategies used are

outlined in Table 5.1.

Table 5.1. Strategies used in Experiment 3

Appendix Scenario Type Abbreviation | No. of Scenarios Scenario Purpose
in Block
Provides some easy,
| Naive Scenarios NS 5 obvious choices.
Criterion Identify subjects’
J Scenarios CS 10 criterion number of
open spaces.
K LEX vs. METT LVM 6 Compares the LEX and
METT paradigms
Checks subjects
L Counterbalance CB 6 consistency using the
to LVM LEX and/or METT
choice rules
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Appendix Scenario Type Abbreviation | No. of Scenarios Scenario Purpose

in Block
Checks whether
M Alternative Lot ALS 9 availability in
Scenarios alternative lots

influence subjects’
choice rule

The scenarios were arranged such that each set of 12 trials contained a nearly equal
number of scenarios consistent with each scenario type. Table 5.2 indicates the
number of scenarios of each scenario type contained in each of the 3 sets of 12

scenarios:

Table 5.2. Counterbalancing for Experiment 3

Number of Scenarios in each Set Consistent with Types
Set NS CS LVM CB ALS
1 2 3 2 2 3
2 1 4 2 2 3
3 2 3 2 2 3

Finally, the scenarios were randomized within each set of 12 to establish the final

ordering of the scenarios for Experiment 3.

Procedure

The subjects’ task was identical to that of the subjects in Experiment 2. That
is, subjects were instructed to review the information contained in each VMS and to
maneuver the car to the lot of their choice. Subjects were provided with a brief

description of the project and written instructions that explained in detail the task they

were to perform (see Appendix N).
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Results

The raw data collected on each subject for each scenario in Experiment 3 is
attached as a table in Appendix O. The format of the table is identical to the format
used in Appendices C and F. Bar graph summaries, which indicate the number of
subjects choosing each particular lot for the NM, CS, LVM, CB, and ALS strategies
are presented in Appendix P. Finally, Figure 10 presents the percentage of decisions
consistent with the METT and LEX choice rules in the LVM scenarios.

The data were compared with the predictions of the METT and LEX strategies
as described below. It was found that neither choice rule completely described all of
the subjects’ decisions in all of the scenarios. However, most participants made
decisions consistent with one or the other of the two choice rules, while few subjects
employed a combination of the two. Thus, most participants could be placed in one
of two categories: “METT users” or “LEX users.” By dividing the data into these
two subsets, optimal parameter values for each of the decision strategies were

obtained.

Discussion

Analysis of the Experiment 3 data was performed in the following
progression. First, the data were analyzed using the PARK algorithm to determine
the optimal parameters {a,B} for the METT strategy. Second, analyses were
performed to determine to what extent participants employed a LEX strategy. To do
this it was necessary to obtain the criterion number of open spaces employed by
subjects to choose one lot over another. Chi-squared analysis of the data collected
from the CS scenarios was conducted, and the criterion number was established using

a chi-squared minimization technique (described below). Once this criterion number

38



was established, a second chi-squared analysis was performed to determine whether
the LEX choice strategy accurately described all of the data in Experiment 3. Since it
was found that neither decision strategy completely described all of the data, an
analysis of data from the LVM scenarios was undertaken to determine whether
participants chose alternately one, then the other strategy or, instead, some
participants predominately chose one strategy while others predominately employed
the other. It was found that participants employed predominately a single strategy.
Finally, with participant data categorized into two subsets (METT users and LEX
users), the parameters of both decision rules were optimized using either PARK or a
chi-squared minimization technique.

Program PARK was used to determine an optimal {a,p} parameterization for
the power probability function used in the METT strategy to predict subjects’
perceived probability of finding a lot full upon arrival. The parameters used to fit the
Experiment 3 data are given in Table 5.3. A maximum agreement between prediction
and experiment of 64.3% was found with {o,p} = {8,1.5}. The degree of agreement
is substantially lower than that obtained in Experiment 2. This decrease in percent
agreement is expected since the parking scenarios in Experiment 3 were intentionally
designed to provide subjects with difficult choices. It is unlikely that drivers will be

faced with such “difficult” decisions in practice.

Table 5.3. Parameters used for optimal {o.,} in Experiment 3

Minimum Value Maximum Value Step Size
a 0.1 30 0.1
B 0.1 6 0.05
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To evaluate the efficacy of the LEX strategy for describing the Experiment 3

data, chi-squared analyses were performed. The null hypothesis tested was the
hypothesis that subjects employ a LEX choice rule, where the criterion number of
open spaces, X, is a normally distributed random variable with mean u and standard

deviation ¢. In performing the chi-squared analyses, destination lot parking
availabilities, x4, were binned such that the predicted frequencies of acceptance and
rejection, foreq accept AN fored rejecr, Were greater than or equal to five participants. The
number of degrees of freedom, df, for a given analysis was then computed as the
number of bins less two, the number of parameters.

Initially, the chi-squared analysis was performed on data from the CS
scenarios only. The results of the analysis are presented in Table 5.4. In the table, x,
represents the number of open spaces in the destination lot, foss accepr and fobs reject are
the observed frequencies of acceptance and rejection of destination lots having x,
open spaces, and foreq accepr A fored reject are the predicted frequencies of acceptance
and rejection. The predicted frequencies were computed using the cumulative
distribution function for a normally distributed random variable with mean p and
standard deviation 6. The chi-squared analysis was initially performed using a “best
guess” of {0} = {8.25,3.79}. The chi-squared value was then minimized by
iteratively adjusting p1 and o using a Generalized Reduced Gradient (GRG2)
nonlinear optimization algorithm available in Microsoft Excel. The minimum chi-
squared value of 6.58 (df = 7-2 = 5) was obtained with {u,c} = {8.77,4.75}. Based
on this chi-squared analysis, the null hypothesis cannot be rejected at the 10%
significance level. Thus, driver behavior in the CS scenarios might be characterized

by a LEX choice rule with a mean criterion number of open spaces of 8.77.
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Table 5.4. Chi-squared analysis of CS data for Experiment 3

Xd fobs,accept f})red,accept fobs,reject F, pred,reject (XZ)[
3-5 10 9.692 50 50.308 0.0117
6 5 5.606 15 14.394 0.0911

7 10 7.103 10 12.897 1.8325
8 8 8.721 12 11.279 0.1056
9 6 10.394 14 9.606 3.8676
10 12 12.050 8 7.950 0.0005
11-12 31 28.658 9 11.342 0.6749
()i 6.584

A similar chi-squared analysis was next performed on data from all scenarios

in Experiment 3. The results of this analysis are displayed in Table 5.5. The

minimum chi-squared value of 50.1 (df = 9) was obtained with {p,c} = {7.40,8.28}.

Based on this analysis, the null hypothesis can be rejected at the 10% significance

level. The poor chi-squared value and the large variance of X, clearly indicate that a

simple LEX choice rule does not adequately characterize all subjects.

Table 5.5. Chi-squared analysis for all scenarios in Experiment 3

Xd _ﬁ)bs,accept fpred,accept f obs,reject fbred,reject (XZ)[
1-2 35 24.233 65 75.767 6.3142
3-4 12 18.724 48 41.276 3.5101
5 7 7.722 13 12.278 0.1099
6 5 8.660 15 11.340 2.7275
7 10 9.617 10 10.383 0.0294
8 8 10.580 12 9.421 1.3352
9 6 11.534 14 8.466 6.2721
10 12 12.466 8 7.534 0.0463
11 14 13.364 6 6.636 0.0913
12 17 14.216 3 5.784 1.8858
13 65 75.061 35 24.939 5.4069
14 66 62.985 14 17.015 0.6785
>14 219 198.479 1 21.521 21.6889
S )i 0.1
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To determine whether subjects’ choices might be described by a combination
of METT and LEX choice rules, an analysis of data from the LVM scenarios was
undertaken. In the six LVM scenarios, the destination lot contained what we believed
to be less than the criterion number of open spaces (e.g., 1, 2, or 3), but still resulted
in the minimum expected travel time. Thus, drivers employing an METT choice rule
were expected to choose the destination lot, while drivers employing a LEX choice
rule were expected to choose one of the other lots. The results for the LVM scenarios
are tabulated in Table 5.6. The table shows that 36.67% of subjects’ choices were
consistent with an METT rule and that 63.33% were consistent with a LEX rule.
Additionally, 75% of the participants employed one of the two possible choice rules
at least 5 out of 6 times. Thus, it is clear that most subjects employ primarily a single
decision rule; little evidence exists to support the hypothesis that single subjects

employ a combination of the two strategies.

Table 5.6. Results from LVM scenarios of Experiment 3

Subjects METT Lot | LEX Lot Individual Individual
Frequency | Frequency % METT % LEX
Pilot 1 0 6 0 100
Pilot 2 6 0 100 0
Pilot 3 5 1 83.33 16.67
Subject 1 0 6 0 100
Subject 2 0 6 0 100
Subject 3 0 6 0 100
Subject 4 5 1 83.33 16.67
Subject 5 1 5 16.67 83.33
Subject 6 0 6 0 100
Subject 7 5 2 66.67 33.33
Subject 8 2 4 33.33 66.67
Subject 9 5 1 83.33 16.67
Subject 10 0 6 0 100
Subject 11 3 3 50 50
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Subjects METT Lot LEX Lot Individual Individual
Frequency | Frequency % METT % LEX
Subject 12 1 5 16.67 83.33
Subject 13 3 3 50 50
Subject 14 2 4 33.33 66.67
Subject 15 0 6 0 100
Subject 16 1 5 16.67 83.33
Subject 17 6 0 100 0
Total 44 76
% Agreement 36.67% 63.33%

Given that subjects are divided in terms of their primary decision strategies,
the subjects in Experiment 3 were categorized as either METT or LEX users. Having
divided the subjects in Experiment 3 into two subsets, the data from all of the
scenarios were then re-analyzed to obtain new optimal values for the parameters of
the two decision rules. Thus, the optimal parameters {a*,3*} for the METT strategy
were re-determined using the PARK program with the data collected from subjects
identified as METT users. Similarly, the parameters {p*,c*} for the LEX strategy
were re-determined by computing the optimal chi-squared value using the data
collected from subjects identified as LEX users.

The chi-squared analysis was performed this time using data collected from
the subset of subjects who employed a LEX choice rule at least 83% of the time in the
LVM scenarios (Table 5.7). The minimum chi-squared value of 8.45 (df = 7) was
obtained with {j1,c} = {8.68,4.19}. Based on this analysis, the null hypothesis cannot
be rejected at the 10% significance level. Furthermore, by examining the ratio of the
error sum of squares to the total sum of squares (Equation 5.1) it was determined that

the LEX strategy with the above parameterization explains 97.5% of the variance.
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where,

ExplainedVariance =1 - [

36

2

#subjects
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(5.1)

(5.2)

Thus, the decisions of the subset of subjects identified as LEX users in the analysis of

3

the LVM data might be accurately characterized by a LEX choice rule with a mean

criterion number of open spaces of 8.68. Moreover, the parameters p and ¢ are in

reasonable agreement with those determined in the chi-squared analysis for all

subjects in the CS scenarios.

Table 5.7. Chi-squared analysis for subjects identified as LEX users

Xd ﬁbs,accept fi)red, accept f;)bs,reject ﬁreireject uz)i
1-2 2 2.323 48 47.677 0.0471
3-4 1 3.065 29 26.935 1.5499
5-6 6 4.506 14 15.494 0.6396
7-8 10 7.794 10 12.206 1.0231
9-10 10 11.540 10 8.460 0.4859
11-12 17 14.962 3 5.038 1.1017
13 41 42.444 9 7.556 0.3252
14 34 35.922 6 4.078 1.0088
>14 109 106.064 1 3.936 2.2712
Tl 8.4526

The program PARK was used to determine optimal parameters {o*,*} for

the METT strategy using the data collected from the subset of subjects who employed

an METT choice rule at least 83% of the time in the LVM scenarios. The minimum,
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maximum, and step size values for the parameters o and 3 used to fit this data (i.e.,
Clmins Olmax> lsteps €1C.) are identical to those given in Table 5.4 (above). A maximum

agreement between prediction and experiment of 80.1% was found with {a,p} =
{8.1,1.2}. If we increase the subject pool to include subjects who employed METT
at least 67% of the time, the maximum agreement is 79.2% with {o,p} = {8,1.1}.
Finally, if the data analysis includes subjects employing METT at least 33% of the
time a maximum agreement of 78.6% is found with {o,8} = {8.1,1.3}. Recall that
when we include all subjects in the analysis (i.e., LEX users as well as METT users)
the maximum agreement drops to 64.3%. Thus, when we include these last few LEX
users, we strongly limit the ability of the METT strategy to describe the data.

Finally, analysis of the data collected from the ALS scenarios must be
mentioned. Recall that in these 9 scenarios the parking availability in the destination
lots alternated between 13 and 14 while the parking availability in the lots upstream
and adjacent to the destination lots were increased by approximately 10 from 17 in
the first scenario to 96 in the ninth scenario. The objective of these ALS scenarios
was to determine whether participants were influenced not only by the parking
availability in the destination lots, but also by the availability in lots adjacent to the
destination lot. Results from these scenarios indicated that 6 of the 20 participants
were influenced by the increasing availability in the upstream adjacent lots. Although
this indicates that the decision strategy employed by drivers is likely to be more
complicated than either the METT or LEX strategies predict, it has been shown that
the METT and LEX predictions provide powerful approximations of the actual

decision behavior of the participants tested.
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CHAPTER 6
CONCLUSION

Enhancing our understanding of the criteria drivers use when making parking
decisions is essential to the successful implementation of APMS. We began this
study by performing a pencil-and-paper survey (Experiment 1) to determine which of
three hypothetical decision rules most accurately describes drivers’ choices when
deciding where to park. The first decision rule investigated assumed that drivers
might chose parking lots that contained the greatest number of open spaces. This
strategy was referred to as the MPA (maximize parking availability) decision
strategy. The second decision rule assumed that drivers might chose lots in such a
way as to minimize the walking distance from the parking lot to the final destination.
This decision rule was called the MWD (minimize walking distance) decision
strategy. The final strategy assumed that drivers might choose lots that minimize the
total expected travel time (denoted METT) from the VMS to the final destination.
These choice rules result from the utilization of Expected Utility Theory (see Chapter
2). Results from Experiment 1 suggested that when subjects were given as much time
as they desired and could concentrate on only the decision task at hand, they made
choices consistent with the METT strategy most often (63%). The MWD and MPA
strategies were chosen less often (31% and 7%, respectively).

The same decision strategies were then tested in a more realistic setting.
Experiment 2 evaluated the aforementioned decision rules using a driving simulator
in which participants maneuvered an actual car through a virtual world. Results from
Experiment 2, showed trends similar to those found in Experiment 1, with drivers

choosing lots consistent with the METT strategy most frequently (56%), the MWD
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strategy less often (40%), and the MPA strategy least often (3%). All of the above
results with respect to the METT choice rule assumed that drivers used a linear
probability function (Equation 2.7) to compute the probability that a given lot would
be full upon arrival.

Although particilﬁants clearly favored the METT choice strategy, the high
proportion of decisions not consistent with METT suggested that the linear
probability function assumed might be improved to better reflect drivers’ perceived
probability of arriving at a lot and finding it full. Thus, different forms of the
subjective probability function were then investigated. We found that using instead
an ogival power function with optimal parameters (determined using a computer
algorithm) the proportion of subjects’ responses consistent with the METT choice
rule in Experiment 2 could be increased to 94 percent. Thus, the METT choice rule
employing a power probability function in the computation of the expected travel
time appeared to be a satisfactory tool for describing driver behavior in the simulated
parking situation.

By utilizing survey questions and a driving simulation, we were able to
investigate both the static and dynamic preferences of drivers. While the results
from Experiments 1 and 2 clearly demonstrated a preference among participants in
terms of choice rule (i.e., METT), we found that, regardless of the probability
function used; the percentage of decisions consistent with the MWD choice rule were
greater in Experiment 2 (the simulator) than in Experiment 1 (the survey). Thus,
subjects’ dynamic responses seem to differ on average from their static responses.
Research into the literature revealed that individual decision making is influenced by

considerations of cognitive effort. Use of EUT to identify alternatives that minimize
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ones expected travel time involves a great deal of computational effort since one must
first estimate the expected travel times associated with each lot choice before
identifying the alternative with the minimum travel time. It is likely, then, that the
increased cognitive load associated with the simulated driving task, which encourages
subjects to make decisions in real-time, caused some subjects to adopt a simpler
decision strategy. To account for this, we hypothesized that drivers might employ a
lexicographic (LEX) choice rule in which decision attributes are prioritized so that
only a subset of options that satisfy ones highest ranked criterion are considered while
other information can be ignored. Thus, a LEX choice rule describes a decision
strategy that is both simple and efficient. A third experiment was then conducted to
compare the efficacy of the METT strategy with that of the LEX strategy.

Experiment 3 was designed to test the LEX strategy and determine whether or
not it could describe drivers’ decisions more accurately than the METT strategy. The
LEX strategy assumed that drivers first consider parking in the lot nearest the final
destination, and that the acceptance of this “destination” lot is dependent upon ones
criterion number of open spaces. Thus, if the destination lot contains a number of
open spaces avove ones criterion number, say, X., then we assume that LEX users
drive directly to this lot without ever even considering other options. Results of
Experiment 3 established that X could be described as a normally distributed random
variable with mean p = 8.68 and standard deviation o =4.17.

An additional goal of Experiment 3 was to determine whether subjects employ
one or a combination of decision strategies when deciding where to park. Scenarios
were designed such that the lot choices characterizing METT users were different

from the lot choices characterizing LEX users in a given scenario, regardless of the
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parameterizations in each strategy. Analysis of the data from those scenarios
revealed that participants primarily employ a single strategy and rarely use a
combination of strategies. This information allowed the partitioning of subject data
into one of two categories, METT users and LEX users.

With this distinction made, each subset of data could be used to optimize the
parameters involved with each strategy. Analysis of the data for subjects identified as
LEX users yielded optimal mean and standard ‘deviation values for X, of {u*,o*} =
{8.68, 4.17}, resulting in an explained variance of 97.5%. Use of PARK with data
from subjects identified as METT users resulted in a maximum agreement of 80.1%
with parameter values {o*,p*} = {8.1,1.2}. It must be noted that not all of the data in
Experiment 3 could be explained. Two subjects employed an METT choice rule 33%
of the time and a LEX choice rule 67% of the time in the LVM scenarios, and two
others employed each choice rule half of the time. Thus, we were not able to classify
the decisions made by all of the participants.

The goal of this thesis was to develop simple strategies that characterize the
majority of decisions made by drivers in a parking task. Two such decision rules
have been identified. The first, a choice rule based on Expected Utility Theory
successfully described 94% of the decisions made in Experiment 2, a simulated
driving task. Experiment 3 was a second simulated driving task designed to further
test the METT strategy by presenting participants with more challenging decision
choices. In this experiment, it was found that approximately two-thirds of the
participants utilized the second, less computationally intensive, lexicographic choice
rule. The remaining one third of the participants in Experiment 3 utilized the METT

choice rule. Thus, two very promising decision strategies involving a minimum
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number of parameters have been identified that can be used to predict driver decision
behavior in parking situations.

Throughout this research many simplifying assumptions were necessary to
formulate the two simple decision strategies. For example, both the METT and LEX
strategies assume that parking availability is the primary factor affecting parking
decision behavior. However, it is reasonable to assume that other factors such as
weather conditions, traffic density, and time of day will also heavily influence
individual decision behavior. Additionally, all of the participants tested in this thesis
were students, either graduate or undergraduate, from the university. It is difficult to
say whether or not the decision strategies would be employed to the same extent
and/or with the same optimal parameterization when applied to a broader range of the
population. Future research should focus on two primary areas. First, it will be
necessary to test the two decision strategies on different demographic populations.
These populations should include older adults, parents toting children, professionals,
groups with varying levels of physical capacity, etc. As with the younger adults, both
sets of parking scenarios should be presented to the above groups. Once the
percentage of employment of the METT and LEX strategies is identified and optimal
parameters established for the general population, other factors such as weather,

traffic density and time of day should be systematically examined.
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Figure 2 (a). Survey Results Using All Parking Scenarios
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Figure 2 (b). Survey Results using Scenarios with Distinct Choice Rules
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Figure 3. University of Massachusetts Driving Simulator
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Figure 4. VMS used in Simulator Study
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Figure 5. First Image Seen by Subjects in Driving Simulator Study
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Figure 6. Roadway structure used in Simulation Study
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APPENDIX A

PARKING SCENARIOS FOR EXPERIMENTS 1 & 2
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Human Performance Laboratory
University of Massachusetts, Amherst

ADVANCED PARKING MANAGEMENT SYSTEMS
Parking Decision Survey

Project Description

Advanced Parking Management Systems (APMS) are being designed as part of the
Intelligent Transportation Systems effort. APMS utilize variable message signboards
(VMS) that give drivers up-to-the-minute information on the availability of parking at
various alternative parking lots. The initial goal of this project is to identify which
parking destination a driver will choose when given information on the number of
available parking spaces at different parking lots.

Instructions

The following figures show 36 different parking scenarios. In each scenario, you must
choose which parking lot you would park in based on the information given on the VMS
signboard. Each scenario contains 4 parking lots (A, B, C, D), each having 100 spaces.
Your starting position will always be at the VMS signboard. The position of your
destination is indicated on the figure. Your destination may be at any of the 4 nodes on
the example figure below. For example, if a “B” is displayed next to the building, then
your destination is at the node indicated by the arrow (see figure).

DESTINATION B

LotA LotB LotC LotD

32 28 closed 65
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The VMS signboard displays the number of parking spaces currently empty in each of the
4 lots. On the figure, the number of empty spaces in each lot is displayed below the
corresponding lot. You do not know, however, how many cars may currently be ahead of

you, but not yet in a parking space.

You have the following additional information. Each link in the road system takes 1
minute to drive and 3 minutes to walk. Thus, in the above example, if you decided to
park in lot “A,” it would take you 2 minutes to drive to the lot (2 links) and 6 minutes to
walk to your destination (2 links). If a lot is full upon arrival, assume that you will wait 3
minutes for an available space. If alotis ’closed,” you may not park in it.

Given the above information, please review each of the following figures, and circle the
parking lot that you would park in.
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No. MWD No. METT No. MPA

Subject2  Subject3  Subject4  Subject5  Subject6  Subject7  Subject8  Subject 9 Subject 10 Subject 11 Subject 12 Subject 13 Subject 14 Subject 15

Subject 1

14

14
10

15

15
14

10
15

15

15

13
11
15
15
13
12

15
15
13
12
15
13
14

c
D
o}
D

Fig 14

13
14

Fig 15

D
A

Fig 16

Fig 17

13
12
13
15
15
15
12
14
15
13
15
13
13
15

13

Fig 18

B

Fig 19

13
15

Fig 20

15
15
15

A
B8
B8

Fig 21

Fig 22

15

Fig 23

Fig 24

14

14

B
C
D

Fig 25

Fig 26

13
15

Fig 27

15

D
A

Fig 28

Fig 29

13
15

Fig 30

Fig 31

Fig 32

15

b

Fig 33

12

12
15
15

Fig 34

15
15

B
C

Fig 35

15

Fig 36

175
32.22%

458
84.63%

363
67.22%

18
28
14

26
28

25
27

21

25
28

24
28
10

30
23

13
24
19

15 30 24 23 17
24 30 28 25

23

22
28
12

1

#METT
# MWD

# MPA
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22

10

16

11

18
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# other

#METT 7
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Form 1: Description of Experiment

Participant,

Thank you for agreeing to participate in the following study. We estimate that this
experiment should require no more than an hour of your time. You will be paid $10 per
hour for your participation. If at any time during this experiment you do not wish to
continue, you may terminate your session by simply notifying the facilitator. You will be
paid for your time even if you do not complete the entire session.

Project Description

Advanced Parking Management Systems (APMS) are being designed as part of the
Intelligent Transportation Systems effort. APMS utilize variable message signboards
(VMS) that give drivers up-to-the-minute information on the availability of parking at
various alternative parking lots. The initial goal of this study is to identify which parking
destinations a driver will choose when given information on the number of available
parking spaces at different parking lots. Once the criteria which people use to decide
where to park are known. the ways in which VMS signs might effect traffic flow in
complicated parking scenarios can be fully evaluated.

Instructions

WHAT YOU WILL SEE

This study investigates drivers’ choices of where to park using a driving simulator. You
will be seated in a car, and in front of the car you will see a screen. The first image that
will be presented on the screen is a scene of a road. The roadway will look similar to
roadways that you drive on every day. The car will initially be stopped at a stop sign.
You will see other vehicles on the road with you, however, you will only have control
over your own vehicle. Additionally, you will see a sign which gives your destination.
Your destination can be one of four buildings, labeled, simply A, B, C, or D. An aerial
view is presented in Figure 1.

Destination B

ws] :

LotA| { LotB LotC LotD

Figure 1
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So, for example, the sign might read * Destination B,” which would mean that your
destination is nearest Lot B (displayed as a dot in Figure 1). The same holds for other
destinations (i.e. Building A is nearest Lot A, Building C is nearest Lot C, and so on).

Once you proceed past the stop sign you will see the VMS signboard. The VMS displays
the number of open spaces (out of 100) available in each of the four (Figure 2).

Lot A 78 | 4

LotB 12 | 4

LotC XX | 4

LotD 49 f
Figure 2

For example, in Lot B of Figure 2 there are 12 open spaces. The lot has a total of 100
spaces. Thus, 88 of the spaces are already taken. In some scenarios, certain lots may be
closed. Closed lots will have a red “XX” to signify that you may not park in that
particular lot. For example, in Lot C of Figure 2, there is a red “XX.” You may not park
in that lot.

Once you travel past the VMS sign, you will find that the road continues for several miles
(again, see the aerial view in figure 1). Note that traveling from left (the VMS sign) to
right, you can exit the main road at any one of four lots. These lots will be signed, Lot A,
Lot B, Lot C, and Lot D. When you turn onto a road marked with a lot, you will come to
a stop sign. This second stop sign is located next to the lot in which you would normally
park. However, in the interest of saving time, after breaking at the second stop sign you
should continue driving forward. The roadway will combine with the original stretch of
road, and another stop sign will appear. This final stop sign signifies the beginning of the
next scenario.

WHAT YOU WILL DO

After reading the destination sign you should repeat it several times to yourself, and then
say aloud to the facilitator, “ My destination is Building X,” where X is either A, B, C, or
D. Proceed past the first stop sign towards the VMS. You must scan the VMS and
determine the parking lot in which you would like to park. In addition to the number of
open spaces in each lot, you should also consider the following information (refer to
Figure 1). Assume that each link in the road system takes 1 minute to drive and 3
minutes to walk. Thus, in Figure 1, if you decided to park in Lot A, it would take you
two minutes to drive to the lot (2 links) and 6 minutes to walk to your destination (2
links). If alot is full upon arrival, assume that you will wait 5 minutes for an available
space.
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The VMS signboards should be readable as you drive past them, however, you may stop
and back up the car to re-read the VMS if you have trouble making out the information.
You should then proceed to the parking lot of you choice.

After parking in the lot of your choice for the first scenario, you should continue past the
stop sign. Continue driving forward until the road leads you back onto the original
stretch of road, and to the next stop sign. This stop sign represents the beginning of the
second scenario. The process will continue until all 36 different parking scenarios are
completed.

Throughout this experiment you should drive as you would normally drive. Itis

important that you drive as “naturally” as possible. If you have any questions, please ask
the facilitator before beginning the experiment. Thanks again for you participation!
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NAME : PARK

AUTHOR: Amy Holton

DATE: 2/1998

DESCRIPTION: Program PARK reads data concerning parking availability
in each of 4 lots (A-D) in a set of parking scenarios. The program
then reads data concerning subjects’ parking decisions in each ¢ the
scenarios. It is assumed that subjects make parking choices by

attempting to minimize their perceived total expected travel time.
It is further assumed that a subject's total expected travel time,

E(T), 1s given by,

E(T) =t +t + P (k,a,b)*t
d W full q

where t 1is the driving time, t 1is the walking time, t 1is the

d w g
queueing time if the lot is full upon arrival, and P (k,a,b) is
full
the perceived probability that the lot will be full upon arrival.
P is given by,
full
/  k-a -(k-a) \
1 11 b - b [
P {(k,a,b) = - - - | —=--—————m——mm—— I
full 2 2 k-a - (k-a) |
\ b + b /

where k is the number of open spaces in the lot, and a and b are
adjustable parameters.

The PURPOSE of the program is to determine the set of parameters
{a,b} which best describes the subjects' choices, given the above
assumptions. The program does this by stepping at user-defined
intervals through every possible {a,b} combination bounded by user-
defined maximum and minimum a and b values. For each {a,b}
combination, the program computes using the above formulas the lot in
each scenario having the minimum E(T), and calculates the percentage
of subjects who chose minimum E(T) lots.

INPUT: Program PARK reads data from 3 input files, entitled
"filename base.par", "filename base.fig", and
"filename base.pix”.

The FILENAME BASE.PAR file contains 3 rows of data, the first of
which contains two numbers and the 2nd and 3rd of which contain
three numbers each, with no punctuation:

*

*

QOO0 00000000000a000000000000000000000000000a00NAaa0n

Number of figures Number of subjects
Minimum a Maximum a Step value for a
Minimum b Maximum b Step value for b
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The FILENAME BASE.FIG file contains 2 header lines (which are
ignored) followed by one row of numbers for each parking scenario.
The rows of numbers are arranged in 7 columns. The first 2 columns
contain code numbers which are ignored by the program. The next 4
columns contain the number of open spaces in lots A-D, respectively.
The last column contains a number between 1 and 4 identifying the
destination lot (A=1, B=2, C=3, D=4). The numbers are not separated
by any punctuation.

The FILENAME BASE.PIX file contains 2 header lines (which are
ignored) followed by one row of numbers for each parking scenario.
The rows of numbers are arranged in s+2 columns, where s is the
number of subjects. The first 2 columns contain code numbers which
are ignored by the program. Each of the remaining s columns contains
a number between 1 and 4 indicating the lot chosen by a particular
subject in the given scenario (A=1, B=2, C=3, D=4). The numbers are
not separated by any punctuation.

OUTPUT: Program park writes 12 output files, entitled
"filename base.tot", "filename base.log", and "filename base.abN",
where N ranges from 1 to 10.

The FILENAME BASE.TOT file contains, for each scenario, the number of
subjects choosing each of lots A-D. An asterisk appears next to the
number in the column of the destination lot.

The FILENAME BASE.LOG file contains, for each {a,b} combination
tested, the total percentage of subjects' choices consistent with
minimizing E(T). At the end of the file is a table of ten {a,b}

Q

combinations with the highest % agreement.

Each of the FILENAME BASE.ABN files contains, for each parking
scenario, the calculated expected travel times E(T) for each lot
A-D for the Nth best {a,b} combination. For example,

"filename base.ab2" contains the calculated E(T)'s for the {a,b}
combination having the 2nd highest % agreement with subjects'
choices. For each parking scenario, an asterisk appears in the
column of the destination lot. For each scenario, the percentage of
subjects choosing the minimum E(T) lot appears in the last column.

A value of 999.99 for any E(T) indicates that the lot was CLOSED.

OO000000000000000000000000000000000000000O0

**************************************************************************
program PARK
implicit none

C Constant Declarations

integer k fmax ! Maximum number of figures
parameter (k fmax = 36)
integer k_smax ! Maximum number of subjects
parameter (k smax = 15)

C Local Declarations
integer n_open(k fmax,5) ! Number of open spaces in each lot
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integer choice(k fmax,k smax)
integer n_chosen?k_fmax,4)
real*8 ET_tab(k_fmax,S,lO)
real*8 temp tab(k fmax,5)
real*8 ab tab(10, 3)
integer n_figs
integer n_subj
integer numl, num?2
real*8 a_min
real*8 a_max
real*8 a_step
real*8 a
real*8 b min
real*8 b max
real*8 b step
real*8 b
real*8 E T min
integer n hits
integer tot_hits
{a, b}
real*8 per hits

integer i, j, m, n
character*1l MWD tic(k fmax,5)
character*30 basename
character*40 filename

C Function Declarations

real*8 ET

C Main Program

-last column is MWD lot (1-4)
Lots chosen by subjects
Number of times each lot was chosen
Ouput tables for 10 sets {a,b}
Temporary table containing all
for a given set {a,b}
10 best a, b, total %
Number of figures
Number of subjects
Ignored integers in 1lst 2 columns of
input files
Minimum value of alpha parameter
Maximum value of alpha parameter
Step value for alpha parameter
Current value of alpha
Minimum value of beta parameter
Maximum value of beta parameter
Step value for beta parameter
Current value of beta
Current minimum expected travel time
for a scenario
Number of subjects choosing current METT
Total no. choosing METT for a given

E(T)'s

agreements

Total % choosing METT for a given {a,b}
Counter variables

Tic asterisk for destination lot

Base file name

File name

E(T) function

C
C Get base file name from user and convert to expected file names.
C
write (*,*)
write (*,*) 'Enter filename base (\'?\' for help):'
read (*,'(a30)') basename
write (*,*)
if ((basename.EQ."?").OR. (basename.EQ."help")) then
call Help
goto 350
endif
C
C Open all of the files.
C
write (*,*) 'Reading input files...'
filename = basename (:index (basename,' ') - 1) // '.par'

open (unit=1l, file=filename, status='old', err=10)

97



filerame = bassname (:index(basename,' ') - 1) // '.fig!
open (unit=2, Zile=filename, status='old', err=10)
filename = basename (:index (basename, ' ') - 1) // 'Lpix!
open (unit=3, Zile=filename, Status='old', err=10)
filename = bassname(:index(basename,' ') - 1) // '.tot'
open (unit=4, Zile=filename, status="unknown', err=10)
filename = baszname (:index (basename,' ') - 1) // '.abl!'
open {(unit=7, Zile=filename, status="unknown', err=10)
filerame = bas=name (:index (basename, ' 'Yy = 1) // '.ab2!
oper (unit=8, Zile=filename, status="unknown', err=10)
filename = bassname (:index(basename,' ') - 1) // '.ab3"
open (unit=9, Zile=filename, status="unknown', err=10)
filename = basename (:index (basename, ' ') - 1) // '.ab4’
open . (unit=10, file=filename, status='unknown', err=10)
filename = basename (:index (basename,' ') - 1) // '.ab5"
open (unit=11, file=filename, status="unknown', err=10)
filename = basename (:index(basename,' ') - 1) // '.abé’
open (unit=12, file=filename, status="unknown', err=10)
filename = basename (:index (basename, ' ') - 1) // '.ab7"'
open (unit=13, file=filename, status="unknown', err=10)
filename = basename (:index (basename, ' ') - 1) // '.ab8'
open (unit=14, file=filename, status="unknown', err=10)
filename = basename (:index (basename, ' ') - 1) // '.ab9!
open {(unit=15, file=filename, status="'unknown', err=10)
filename = basename (:index (basename, ' 'y = 1) // '.ablO!
open (unit=16, file=filename, status="'unknown', err=10)
filename = basename (:index (basename, ' 'y = 1) // '.log!
open (unit=17, file=filename, status="unknown', err=10)
goto 20

C
C Write error message if an error occurs while opening a file.
cC

10 write (*,*) 'ERROR: Error opening file ' // filename
write (*,*)
goto 350

20 continue

C

C Read fitting parameters from "filename base.par" file (file 1).
C

read (1,*,end=30,err=30) n figs, n_subj

read (1,*,end=30,err=30) a_min, a max, a_step
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60
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read (1,*,end=30,err=30) b_min, b _max, b_step

Read scenario information from "filename base.fig" file (file 2).
Read experimental data Zrom "filename base.pix" file (file 3).

do i=1,2 ! Read 2 header lines at beginning of each file
read (2,*,end=32,err=32)
read (3,*,end=34,err=34)

enddo

do i=1l,n figs

read (2,*,end=32,err=32) numl, num2, (n _open(i,j), j=1,5)
read (3,*,end=34,2rr=34) numl, num2, (choice(i,j), J=1,n sub:
enddo
write (*,*) 'Done.'
write (*,*)
goto 60

Write error message if an error occurs while reading an input file.

filename = basename (:index (basename,’' ') - 1) // '.par'
goto 50

filename = basename (:index (basename,' ') - 1) //
goto 50

filename = basename (:index (basename,' ') - 1) // '.pix’
write (*,*) 'ERROR: Error reading file ' // filename
write (*,*)

goto 350

continue

.fig'

Perform the calculations...

write (*,*) 'Performing calculations...

Initialize 5th column of MWD tic table to all blanks.

do i=1,n_figs
MWD tic(i,5) = ' "
enddo

Compute number of subjects who chose each lot in each scenario.
Store totals in a table called n_chosen.

Do the following loop once for each lot in every figure:
do i=1,n figs
do j=1,4

n chosen(i,j) is the number of times lot j in figure i was chosen by
subjects. Initially, set it to zero.

n chosen(i,j) =0
If the current lot is the destination lot, then assign a tic mark
to it. Otherwise, assign a blank.

if (j.EQ.n open(i,5)) then

MWD tic(i,j) = '*'
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else
MWD tic(i,j) = ' '
endif
C Do the following loop once for each subject:
do m=1,n_ subj
C 1If the subject chose lot j in figure i, add one to the number of
C times lot j in figure i was chosen.

if (choice({i,m).EQ.7) n chosen(i,j) = n _chosen(i,j) + 1
enddo
enddo
enddo
write (17,*) 'Alpha Beta % Agreement'’

write (17,%*) '-—==—= ———— '

C START MAIN LOOP.

C Start a and b at their minimum values (a_min and b _min).
a = a min
write (*,*) 'Alpha = ',a
b = Db min

C Create a table (ab_tab) which will contain the 10 best {a,b} combinations,
C each with its % agreement. TInitially, fill the table with zeros.
do i=1,10
do j=1,3
ab _tab(i,j) = 0.0
enddo
enddo

The variable "tot hits" will contain the total number of subject
decisions consistent for METT for the current fa,b} set. Initially,
set it to zero.

[ONeNe!

80 tot hits = 0
C Do the following loop once for each figure:
do i=1,n figs

In a temporary table (temp tab), store in the lst column of the ith

row (where i is the figure #) the E(T) for lot 1 (A}Y. E(T) is computed by
passing to function E_T the lot we're interested in (1), the destination
lot for figure i, the number of open spaces in lot A for figure i, and the
current values of alpha and beta.

[eNoNeNONe!

temp tab(i,1l) = E_T(l,n~open(i,5),n_open(i,l),a,b)

C In a variable E T min, store the E(T) for figure i, lot A. So far, this
C is the minimum E(T) for figure i.

E T min = temp tab(i,1)

C 1In a variable n_hits, store the number of subjects choosing lot A for
C figure i.
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n_hits = n chosen(i, 1)
C Do the following loop once for each of lots B-D [2-4):
do j=2,4

C Store in the jth column of the ith row of the termporary table (temp :zD)
the calculated E(T) for figure i, lot J.

@]

temp tab(i,j) = E T(j,n open(i,5),n oper{i,j),a,b)
Is this E(T) less than the current minimum E(T) ZIor figure 1? IZ sz,
replace the value in E T min with this (lower) value. Also, store I-
n _hits the number of subjects choosing this lot Zor figure i. But wiz:t
if this E(T) is EQUAL to the current minimum E(T:? Then, add tc the
current value of n hits the number of subjects choosing this lot. =
this E(T) is greater than the current E T min, dec nothing.

OO0

if (temp tab(i,j).LT.E T min) then
n _hits = n chosen(i, j)
E T min = temp tab(i,])
else if (temp tab(i,j).EQ.E T min) then
n _hits = n _hits + n chosen(i,Jj)
endif
enddo

After computing the E(T) for each lot in figure i, determining the 1lcz(s)
with the lowest E(T), and calculating the number of subjects choosinz the
minimum E(T) lot(s), store in the 5th column of the temporary table zze

% agreement for figure i for the current {a,b} combination.

O NONONe!

temp tab(i,5) = 100.0 * float(n_hits) / float(n_subj)

C Add the total number of hits for figure i to the total number of hits
C for all figures.

tot hits = tot hits + n_hits
enddo

After computing the number of hits for each of the figures using the
current {a,b} combination, compute the total % agreement for all
figures combined. Write the results for this {a,b} set to the

"filename base.log" file (file 17).

[oHeoNONe!

per hits = 100.0 * float(tot hits) / float(n figs * n_subj)
write (17,90) a, b, per_ hits
90 format (£6.2,2x,£6.3,6x,£6.2)

C 1If the % agreement for the current {a,b} combination (per hits) is

C among the top ten percentage agreements so far, the current a, b, and

C percentage agreement are stored in a table of the top ten {a,b} sets
(ab_tab).

C In addition, the current temporary table of E(T) values (temp tab) is

C stored in a stack of ten such tables (ET tab) corresponding to the best {a,b}

C combinations. We need to compare per hits to all of the % agreements
C currently in the ab_ tab table. ’
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C Do the following loop once for each {a,b} set currently in.the ab_ tab
C table:

do i=1,10
C Is per_hits greater than or equal to the % agreement of the ith {a,b}
C set currently in the ab tab table? If so, shift all of the {a,b}
C combinations in the ab_tab table down one row and put the current {a,b}
C combination above them. This keeps the table in orded from best to
C worst {a,b} set.

if (per_hits.GE.ab tab(i,3)) then
C Shift worse {a,b} sets down to make a space for the new one...
do j=10,i+1,-1

do m=1,3
ab_tab({j,m) = ab tab(j-1,m)
enddo
enddo
C Put the new a, b, and % agreement in the newly opened row of the table...
ab tab(i,1l) = a
ab tab(i,2) = b
ab_tab(i,3) = per hits
C 1If we have inserted a new {a,b} set in the ab_tab table, then we also
C insert the temporary table of E(T) values (temp_tab) in the corresponding
C position in the stack of "top ten" E(T) tables (ET_tab). All E(T)
C tables corresponding to worse {a,b} sets must similarly be shifted down
C top keep the stack in order from best {a,b} set to worst {a,b} set.
C Shift E(T) tables corresponding to worse {a,b} sets down...

do j=10,i+1,-1
do m=1,n figs
do n=1,5
ET_tab(m,n,j) = ET tab(m,n,j-1)
enddo
enddo
enddo
C Insert the new E(T) table in the newly opened space in the stack...
do j=1,n figs
do m=1,5
ET tab(j,m,1i) = temp tab(j,m)
enddo
enddo

C If we have just inserted the current {a,b} into the "top ten" table,
C then we don't need to continue comparing it to {a,b}'s in the table, so
C we can go to line 100 and escape the loop. Otherwise, we need to
C continue checking the current per_hits against all 10 % agreement values
C in the top ten table.
goto 100
endif

enddo
100 continue

C Advance to the next {a,b} combination by stepping beta up a step. 1If beta
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C
C

120

PHONONe!

200

C

is at its maximum, then reset it to its minimum and step alpha up a step.
If both alpha and beta are at their maximum values, then we're done!

if (b.LT.b max) then
b =Db + b step
goto 80
else
if (a.LT.a max) then
a =a + a step
write (*,*) 'Alpha = ',a
b = b min
goto 80
endif
endif
write (*,*) 'Done.'
write ({*,*)

Write the ten best {a,b}, along with % total hits
Write this table on the screen, and also at the end of the
"filename base.log" file (file #17)

write (17,%*)

write (*,*) 'The ten best {alpha,beta} combinations:’
write (17,*) 'The ten best {alpha,beta} combinations:'
write (*,*)

write (17,*)

write (*,*)} ' Alpha Beta % Agreement'

write (*,*) ' ——mmmmm—  mmm——em e '

write (17,*) ' Alpha Beta % Agreement'

write (17,*) ' —=—=———=  s=—————  ———mm—m !

do 1i=1,10

write (*,120) (ab_tab(i,j), j=1,3)
write (17,120) (ab tab(i,Jj), 3=1,3)
format (2x,f7.4,2x,£7.4,5%x,f6.2,'%"
enddo
write (*,*)

Write file "filename base.tot" containing table of lot choice
totals by figure. Place asterisks next to totals for MWD lots.

write (4,%*) ! No. of Subjects Choosing Lot'
write (4,*) 'Scenario A B C D'
write (4,*) '-—————-—-= = ————— ——== === ————-
do i=1,n figs
write (4,200) i, (n_chosen(i,j),MWD tic(i,J), j=1,4)
format (2x,i4,9x,14,al,3(2x,14,al))
enddo

C Write 10 files containing E(T) and % hits for best 10 {a,b} sets.

c

do i=1,10
j =1+6
write (j,*) 'Alpha = ',ab tab(i,1)

',ab _tab(i,2)

]

write (j,*) 'Beta
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write (j

*)
write (j, ) 'Scenario A B C
& ' s METT'
write (3, *) '==------ —-e—— . _____
& v 1]
do m=1,n figs
write (3j,250) m, (ET_tab(m,n,i),MWD_tic(m,n), n=1,5)
250 format(2x,i4,7x,f6.2,a1,3(2x,f6.2,al),4x,f6.2,'%',al)
enddo
write (j,*)
write ({(j,260) ab _tab(i, 3)
260 format (3lx,'TOTAL % AGREEMENT = ',f6.2,'%")
enddo
C
C Close all files and end program.
C
close (unit=1, status='keep')
close (unit=2, status='keep')
close (unit=3, status='keep')
close (unit=4, status="keep")
close (unit=7, status='keep')
close (unit= 8 status="'keep')
close (unit=9, status="keep')
close (unit=10, status='keep')
close (unit=11, status='keep')
close (unit=12, status="keep"')
close (unit=13, status="'keep')
close {unit=14, status='keep')
close (unit=15, status="'keep')
close (unit=16, status="'keep"')
close (unit=17, status="keep"')
350 end

FUNCTION E T

E(T) =t d+ t_w+ P_full*t g

The following values are passed to function E T from the main

Given these values, t_d and t_w are calculated as follows:

OOOOOOOOOOOOOOOOOOOOOO

td=
tw {d_lot - c lot|
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PURPOSE: Compute the expected travel time E(T) using the equation,

program:
c lot - the lot for which we are computing E(T)
d lot - the destination lot
k =~ the number of open spaces in the lot for which we
are computing E(T)
a - the alpha parameter
b -~ the beta parameter

**************************************************************************

******X—**************
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The function returns the expected travel time E(T) to the main
progran.

NOTE: If k=0, indicating that the lot is closed, the E(T) 1is
arbitrarily assigned a high value of 999.99.

* ok ok ok ¥

*

B I A R R R A E R R R RS R R R R R REE SRR R EEE RS SRR

real*8 function E T(c lot,d lot,k,a,b)
implicit none

Constant Declarations

real*8 t g ! Queueing time
parameter (t g = 5.0)

Local Declarations

Chosen lot
Destination lot

integer c¢ lot
integer d lot

]
!
integer k ! No. of open spaces
real*8 t d ! Driving time
real*8 t w ! Walking time
real*8 a ! Alpha parameter
real*8 b ! Beta parameter

Function Declarations

real*8 P full ! Probability function

Code

Compute t d and t w.
t d =1.0 + float(c_lot)
t w= 3.0+ 3.0*%abs(float(d_lot - c_lot))
If the lot isn't closed, compute E(T). If it is closed (k=0),
assign E(T) an arbitrary large value of 999.99.
if (k.GT.0) then
ET=¢td+ tw+ P _full(k,a,b)*t_g

else
E T = 999.99
endif
Return the value of E{(T) (or "E T") to the main program.
return
end

hhkhkhkhhkhhkhkdhkhdhbhhkhdrhrhkhkdhbkhhhhkbhhdrhhhdhhrhhhkhkhhhhhkhhbhbdhhkhhdhkdkdkkkhhkdhkdhhkddkdht

FUNCTION P full

PURPOSE: Compute the perceived probability that a lot will be full
upon arrival using the ogival power probability function.

The following values are passed to function P_full from function E T:

* Ok ok ok % b R

k i - number of open spaces in the lot

105



[PNONONONONONe)

[ONQ)]

OO NONONSNONY)

a
b

The function P_full returns to function E T the perceived probabilizty,

- alpha parameter
- beta parameter

P full, that the lot will be full upon arrival.

T

*

*

********************************************************************v*****

real*8 function P full{(k i,a,b)
implicit none

Local Declarations

Code

! No. of open spaces in lot
' Real value of k i

! Alpha parameter

! Beta parameter

Convert the integer number of spaces in the lot {k i) to a real

number (k)

for the purpose of the calculation to follow.

k = float(k i)

P _full
&

= 0.5 - 0.5*((b**(k-a) - b**(-(k-a))) /

(b**(k-a) + b**(-(k-a))))

Return the value of P _full to function E T.

return
end

********-k*****************************************************************

SUBROUTINE Help

PURPOSE:

*************************************************************************

Write some useful information on the screen for the user.

subroutine Help

write (*,*) 'Help...'

write (*,*)

write (*,*) 'This program determines the values of the alpha and'
write (*,*) 'beta parameters in the ogival probability function,’
write (*,*) 'such that the expected travel times computed’

write (*,*) 'result in maximal agreement with an experimental’
write (*,*) 'data set, under the assumption that subjects make'
write (*,*) 'parking decisions so as to minimize their total'
write (*,*) ‘'expected travel time.'

write (*,*)

write (*,*) 'Expected file names are:'

write (*,*) ' filename base.par - fitting parameters (INPUT)'
write (*,*) ' filename base.fig -~ # open spaces in lots, ',

& 'destination lots (INPUT)'

write (*,*) ' filename base.pix - lots chosen by subjects ',

& ' (INPUT)'

write (*,*) ! filename base.tot - lot choice totals (OUTPUT)'
write (*,*) ' filename base.abN ~ table of E(T) for the Nth ',
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& 'best {a,b} (OUTPUT)'

write (*,*) ' filename_base.log - % agreement for all {a,b} ',
& 'combinations (OUTPUT)'

write (*,*)

return
end
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APPENDIX I

NAIVE SCENARIOS FOR EXPERIMENT 3
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APPENDIX J

CRITERION SCENARIOS (CS) FOR EXPERIMENT 3
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APPENDIX K

LVM SCENARIOS FOR EXPERIMENT 3
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APPENDIX L

COUNTERBALANCING (CB) SCENARIOS FOR EXPERIMENT 3
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APPENDIX M

ALTERNATIVE LOT SCENARIOS (ALS) FOR EXPERIMENT 3
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APPENDIX N

INSTRUCTIONS FOR EXPERIMENT 3
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DESCRIPTION OF EXPERIMENT
Participant,

Thank you for agreeing to participate in the following study. We estimate that this
experiment should require no more than an hour of your time. You will be paid $10
for your participation. If at any time during this experiment you do not wish to
continue, you may terminate your session by simply notifying the facilitator.

Project Description

Advanced Parking Management Systems (APMS) are being designed as part of the
Intelligent Transportation Systems effort. APMS utilize variable message signs
(VMS) that give drivers up-to-the-minute information on the availability of parking at
various alternative parking lots. The goal of this study is to identify which parking
destination a driver will choose when given information on the number of available
parking spaces at four different parking lots. Once the criteria which people use to
decide where to park are known, the ways in which APMS might effect traffic flow in
complicated parking situations can be fully evaluated.

Instructions

This study investigates drivers’ choices of where to park using a driving simulator.
You will encounter a total of 36 different parking scenarios in the simulation, which
will be presented to you in 3 sets of 12 trials. A short break will be given at the end
of each set. Each of the parking scenarios will consist of a destination sign, a VMS,
and 4 parking lots labeled Lot A, Lot B, Lot C, and Lot D.  Your task is to indicate
for each scenario which parking lot you would choose to park in based on the
information provided in the VMS.

The simulation will begin with your vehicle positioned behind a stop sign. Two other
vehicles will be positioned in front of your car. At no time during the simulation
should you ever attempt to pass these vehicles. Just past the stop sign you will see a
brown a white sign indicating to which of the 4 parking lots your final destination is
nearest for the particular scenario. For example, “Destination B” implies that your
final destination is closest to parking Lot B. Once you proceed past the destination
sign you will see the VMS, which displays the number of open spaces (out of 100)
available in each of the 4 parking lots. Figure I displays a sample VMS. Notice that
in this case Lot B has 12 open spaces indicating that 88 of the spaces are already
taken. In some scenarios, certain lots may be closed. Closed lots display a red “XX”
where the number of open spaces would have been to signify that the lot is not
available for parking.
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Figure I: Sample VMS

Before proceeding past the stop sign you should read the destination sign and then say
aloud to the facilitator, “My destination is building X,” where X is either A, B, C or
D. You may then proceed toward the VMS at a rate of 15 mph. After reviewing the
information contained in the VMS you should indicate to the facilitator the parking
lot you would choose to park in, and then proceed to the next parking scenario. You
will not actually park in the parking lot you choose. You will simply state your
choice to the facilitator and continue to the next scenario. You may travel at a speed
of up to 25 mph when moving from the VMS to the stop sign in the next scenario.

In addition to the number of open spaces in each lot, you should also consider the
following information (refer to Figure 2). Assume that each segment of the road
system takes 1 minute to drive and 3 minutes to walk. Thus, in Figure 2, if you
decided to park in Lot C, it would take you 4 minutes to drive from the VMS to the
lot (4 segments @ 1 minute/segment), and 6 minutes to walk from the lot to your final
destination (2 segments @ 3 minutes/segment). If a lot is full upon arrival, assume
that you will wait 5 minutes for an available space.

Destination B

VMS

Lot A Lot B LotC LotD

Figure 2

Throughout this experiment you should drive as you would normally drive. Itis
important that you drive as “naturally” as possible. You will be given a practice
session for you to become familiar with maneuvering the simulator and with the
simulation itself. The facilitator will now go over these instructions with you
verbally. If you have any questions, please ask the facilitator before beginning the
experiment. Thanks again for your participation!
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RAW DATA FOR EXPERIMENT 3
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Figure
Number

ect8 Subject7 Subject8 Subject9 Subject 10 Subject 11 Subject 12 Subject 13 Subject 14 Subject 15 Subject 16 Subject 17

j

Subject1 Subject2 Subject3 Subject4 Subject5 Sub

Pilot 2 Pilot 3

Pilot 1

10
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15
18
17

18
19
20
21
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BAR GRAPH SUMMARIES FOR EXPERIMENT 3
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