f Califo

ment

ARTICULATED
STENCILING ROBOT
(BASR)*

Volume I

Phillip W. Wong, P.E.
Professor Bahram Ravani
Richard Blank
Jeff Hemenway
Rlchard McGrew

c_ed ,Hl

]

v

REPRODUCED BY:
U s Departmem of cOmmerScew

Sprmgﬁeld, Virginia 22161

S Depurtmem of Mefhnmcul Aeroniautical & Materials Englheetlng B L
Division of .4ewTechnoIogy ond Materials Research ~ -~ S

University of California at Davis
California Department of Transportation

THE
BIG
ARTICULATED
STENCILING ROBOT
(BASR)*

Volume I

Phillip W. Wong, P.E.
Professor Bahram Ravani
Richard Blank
Jeff Hemenway
Richard McGrew
Ulrich Mueller
Dr. Walter Nederbragt
Robert Olshausen
Ken Sprott

AHMCT Research Report
UCD-ARR-98-01-15-01

Final Report of Contract
RTA-65X936

January 15, 1998

*This work was supported by the California Department of Transportation (Caltrans) Advanced
Highway and Maintenance and Construction Technology Program at UC-Davis and by the Federal
Highway Administration (FHWA).

Technical Documentation Page

FHWA/CA/NT-98/12
PB98-155955

4. Title and Subtitle 5. Report Date

The Big Articulated Stenciling Robot (BASR), 4 volumes January 15, 1998

6. Performing Organization Code

7. Author(s) 8. Performing Organization Report No.

Phillip W. Wong, Bahram Ravani, Richard Blank, Jeff Hemenway,
Richard McGrew, Ulrich Mueller, Walter Nederbragt, Robert
Olshausen, Kenneth Sprott

9. Performing Organization Name and Address 10. Work Unit No. (TRAIS)

AHMCT Research Center

UCD Dept of Mech & Aero Engineering 11. Contract or Grant

Davis, California 95616-5294 RTA-65X936

12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered
California Department of Transportation Final Report

P. O. Box 942873, MS 83 1995-1997

Sacramento, CA 94273-0001

14. Sponsoring Agency Code

15. Supplementary Notes

This study was conducted in cooperation with the U.S. Department of Transportation, Federal Highway
Administration, under the research project entitled "Development of a Robotic System for Stenciling of
General Roadway Markings”

16. Abstract

This report provides a description of the Big Articulated Stenciling Robot (BASR) that was developed at the
University of California at Davis under contract to the California Department of Transportation (Caltrans). This
system is designed to paint markings on the roadway pavement with a primary emphasis on increasing highway
worker safety by keeping personnel out of unprotected roadway areas. The system is completely integrated,
with all normal operations controlled from a single control panel. Overall system descriptions are given in this
report. Furthermore, detail design and operational descriptions are given. The report is contained in four (4)
volumes, with each volume providing complete details of specific aspects about BASR. Volume I contains
introductory material, theory of operation, system schematics, and source code listings. Volume II is a copy of
Robert Olshausen’s 1996 U.C. Davis Master’s Thesis, “Development of an Articulating Robotic Arm for Spray
Painting on Roadways”. Volume III is a copy of Richard A. McGrew’s 1996 U.C. Davis Master’s Thesis, “A
Robotic End-Effector for Roadway Stenciling”. Volume IV is a copy of Richard Blank’s 1996 U.C. Davis
Master’s Thesis, “Algorithms and Robotic Hardware Improvements for Painting of Roadway Markings”.

17. Key Words 18. Distribution Statement

Highway, Maintenance, Construction, Pavement, No restrictions. This document is available to the
Equipment, Robotics, Highway safety, Painting, public through the National Technical Information
New technology, Stenciling, Markings Service, Springfield, Virginia 22161.

20. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price
Unclassified Unclassified 614

Form DOT F 1700.7 (8-72) Reproduction of completed page authorized

ABSTRACT

This report provides a description of the Big Articulated Stenciling Robot (BASR) that was developed at
the University of California at Davis under contract to the California Department of Transportation
(Caltrans). This system is designed to paint markings on the roadway pavement with a primary emphasis
on increasing highway worker safety by keeping personnel out of unprotected roadway areas. The system
is completely integrated, with all normal operations controlled from a single control panel. Overall system
descriptions are given in this report. Furthermore, detail design and ‘operational descriptions are given.
The report is contained in four (4) volumes, with each volume providing complete details of specific
aspects about BASR. Volume I contains introductory material, theory of operation, system schematics, and
source code listings. Volume II is a copy of Robert H. Olshausen's 1996 U.C. Davis Master's Thesis, "
Development of an Articulating Robotic Arm for Spray Painting on Roadways" (report number UCD-
ARR-96-09-30-01). Volume III is a copy of Richard A. McGrew's 1996 U.C. Davis Master's Thesis, " A
Robotic End-Effector for Roadway Stenciling" (report number UCD-ARR-96-06-30-01). Volume IV is a
copy of Richard Blank's 1996 U.C. Davis Master's Thesis, " Algorithms and Robotic Hardware
Improvements for Painting of Roadway Markings" (report number UCD-ARR-97-06-15-01).

TABLE OF CONTENTS

PN 3 Lot O OO P OO i
TADIE Of CONLENLS ..cvveeeeieierierreeeiene et te e seerarerea e e st s st e et b e s b s saaesresb s srenr e nasne s renns ii
LSt OF FAZUIES «eoneenemteemeieeiecte ettt sttt r e s st a st e s e beses iii
L INEFOQUCHON .oveiiurerenreeieneie ettt e et et st e e s e s s s s ne s sat e shasssabssasesanessansenaasenserarenns 1
2. System Description
P2 R & 11 To! OO O OO OO 2
2.2 PaINt SUDSYSLEIIL ...ecvveevirueerreeniiiircrrirtetennreienniristes st ssaeress s st eb s s essss st s brosne s s snnsesbnanscanes 3
2.3 Reflective Bead SYSIEIML ...cc.eeureieririieeieerereeeeete sttt s a bt eae s 5
2.4 Main POWET UDIL ...veeeeieeeieieeie ettt ccs st satsestsns st e ot e s ae sane s snssanesanesoneess 6
2.5 The Manipulatorceccoviiiiiiiiiiiniiiicicnc it et s e s 7
2.6 The EN-EffECtOr ..oovevueiiiieeeeiniie sttt st sb s ssb st sre e 7
2.7 Supporting Subsystems
2.7.1 The Computer Control SUBSYSIEMc.ccoemicriiiiiiiiiiic e 7
2.7.2 Hydraulic Supply SUDSYSIEI ..c..cveemirriniiiiiiiiivictsccitc et e 9
2.7.3 EleCtrical SUDSYSIEI ...coouereereciiererreenrrrcne ettt st ss s sss s ere s sas e e 9
2.7.4 Pneumatic SUDSYSIEIMcccvviviieereeiirriceeee st st esss st b st sassrs s saneiens 10
2.7.5 Embedded SOftWATEccorireeuireeenceirer ettt s ene e 10
3. System Operation '
3.1 SYSLEIM SEATTUP .e.eeouriierreeencecrir ettt rer e a e esb et s st ses e s enseas st e e ebeeineseasens 11
3.2 NOTIMAl OPEIALIONS ...c.evereeereiircciiiiieciisiccertit st s s tes st s e et et srs b re s e b s e e essens 11
B3 CIEAN UD ittt e e e s e e 11
R @e] (o2 LT3 Y T O OO 11
Appendix A: Stabilizer Feet Data ..ot 12
Appendix B: Schematic of ESVCC B0ardocoeimioieiiiieeeeecceistit e 15
Appendix C: Joint SBC COMMANGSccccceciiiieieiiiiieri sttt ene e bens 17
Appendix D: Connector Pinout Tableccoceieiiiiieieeeeectee e 21
Appendix E: Source Code Listing for Transverse Joint SBCcccccvvivniiiniicininnnenccien 28
Appendix F: Source Code Listing for Rotation Joint SBCccccovviivniniiiinieccerceiene 50
Appendix G: Source Code Listing for Extension Joint SBCcc...ccoiiciviiiicnnicnciriiciiinn 73
Appendix H: Source Code Listing for End Effector SBCccoooviiiiiiiiiciccnecneeee 95
Appendix I: End Effector SBC Commandsccccrmiieiiirinmimnriciricieninecietc et 116
Appendix J: Hydraulic System SChematic.........ocvvmvmiviiininiieirerescte e 119

Appendix K: Research Paper on BASR Motion Planning Softwarecccocoevreniiininnn, 123

LIST OF FIGURES

Figure 1: Manipulator LayOutccoceviieiiriiiniie ettt rtee e s e e e ne et e e e ine s eree e 1
FIgure 2: TTUCK LaYOUL..ccc.eoiiiviiirteeccreeeccte st et eeeteeeee s teectre e e s srne s eeaaresensssseeensesennneesens 3
Figure 3: Paint System SChematiCcc.cccevrvenierieniieieiccierieecrise e sesre sttt ere et e 4
Figure 4: Paint Heating SYSIEIM.....ccvciiiiiiieiieerecieereee ettt et ie s eae et e e sras b 4
Figure 5: Temperature Control SChematiccccoeveereeineeeeiererrncieeeceeer e 5
Figure 6: Reflective Bead System Schematiccceeevireceeeieeseeineeceeeeeeete et 5
Figure 7: Main Power Unit LaYOULcco.ocovveiiiereiiiereeteie st eae st et ve e sre s 6
Figure 8: MPU Control PANe]ccccvevirieviiiieiiecieeiecce e et etveaer e cer e e eeeessesmenesnne e 7
Figure 9: A Hydraulic Actuator CITCUILc.evuerernerrreircrrrtrreerirneseeeeecasesseteeesee e seeanns 8
Figure 10: Control PENAANEc.cciviiiiiiireieeiieeieni ettt bt e v 8
Figure 11: Cable and Connector RoOUtingcccecveveveriesenvreeeesreeeenns ettt te e 9

Figure 12: Pneumatic SUBSYSIEIM ...cocvieeiieiiieeienienriirerie e esteese et een et eteseeene e anreneas 10

DISCLOSURE STATEMENT

Design information, processes and techniques discussed within this report may be patent pending. Do not
disclose to other agencies, persons, companies, Or entities.

The Contractor grants Caltrans and the FHWA a royalty-free, non-exclusive and irrevocable license to
reproduce, publish or otherwise use, and to authorize others to use, the work and information contained
herein for government purposes.

DISCLAIMER STATEMENT

The research report herein was performed as part of the Advanced Highway Maintenance and
Construction Technology Program (AHMCT), within the Department of Mechanical And Aeronautical
Engineering at the University of California, Davis and the Division of New Technology and Materials
Research at the California Department of Transportation. It is evolutionary and voluntary. It is a
cooperative venture of local, state and federal governments and universities.

The contents of this report reflect the views of the author(s) who is (are) responsible for the facts and the
accuracy of the data presented herein. The contents do not necessarily reflect the offical views or policies
of the STATE OF CALIFORNIA or the FEDERAL HIGHWAY ADMINISTRATION and the
UNIVERSITY OF CALIFORNIA. This report does not constitute a standard, specification, or regulation.

1. Introduction

Painting roadway markings on the road surface is a tedious and hazardous maintenance procedure. To
create the markings, a work crew first must section off 2 lane area and then layout a set of stencils
corresponding to the desired message. Once everything is in place, the crew uses a paint sprayer and coats
the road surface and stencils with paint. Where there are open spots in the stencil is where the paint is
deposited on the surface. After a suitable drying period, the stencils are removed and the lane reopened.
Each time this process is repeated, the crew is exposed to traffic hazards since the crew must leave the
safety of their vehicles and work on the open roadway.

At the University of California, Davis Advanced Highway Maintenance and Construction Technology
(AHMCT) Center, we have developed a very long reach pantograph-type robot manipulator to accomplish
the painting operations without the use of stencils. When the unit is fully extended, it has a reach of
almost 4.575 meters [15 feet). The base can rotate approximately 270 degrees. One of the unique features
of this design is that all of the joint actuators are located at the base of the manipulator. This co-location
leads to extremely high stiffness to weight ratios since the manipulator structure does not need to support
the weight of the actuators.

As shown in Figure 1, the robot manipulator has two degrees of freedom: R and 6. The movement in the
R direction is controlled by a linear hydraulic actuator, operating on the pivot of the pantograph. Motion
is amplified by the pantograph mechanism according to an 8.3:1 ratio. Thus, for each 2.54 centimeters [1
inch] the hydraulic actuator moves, the tool center point moves linearly 21.082 centimeters [8.3 inches].
Rotation of the manipulator is controlied by a hydraulic motor mounted in the base. Position of the
manipulator is determined by two optical encoders. One optical encoder is mounted on the output shaft of
the hydraulic motor that rotates the manipulator and the other encoder is mounted on the pivot of one of
the manipulator's link. Note that the extension length of the manipulator is indirectly sensed through the
rotation angle of the upper manipulator link.

Tool Center Point

» X, R

Figure 1: Manipulator Layout

In order to paint the roadway markings in a consistent fashion, the manipulator must move the tool center
point (to which is mounted the painting end-effector) from point-to-point locations in an accurate way, as
well as follow accurately a prescribed trajectory motion. The manipulator must follow a prescribed
trajectory in order to create acceptable letter profiles with an evenly coated painted surface. The following
sections describe the major components and subsystems necessary to accomplish the desired painting
operations.

2. System Description
The BASR is composed of six (6) major components operated in conjunction with five (5) supporting
subsystems. The six major components are:
1) the truck with its stabilizer feet,
2) the paint subsystem,
3) the reflective bead subsystem,
4) the main power unit,
5) the robot arm manipulator,
and 6) the manipulator end-effector
The five supporting subsystems are:
1) the hydraulic supply subsystem,
2) the electrical subsystem,
3) the pneumatic system,
4) the computer control system,
and 5) the embedded software.
Each component and subsystem are described in subsequent sections below.

2.1 Truck

The BASR support vehicle is a 1989 Ford F-350 9 ton flat bed truck modified by Lakeview Metal (Nice,
CA). The location of major components on the truck are identified in Figure 2. For added vehicle stability,
a set of stabilizer feet (Appendix A) at the front of the truck bed and a set of stabilizer feet (Appendix A)
at the back of the bed have been installed. These feet are under computer control during automatic
operations, but can be controlled manually (valves 2 through 4) from the hydraulic hand-valve stack
located in the utility box on the side of the truck. Major utilities, such are hydraulic, pneumatic and
electrical service, are distributed from the main power unit to the rest of the system through a trough
located in the middle of the truck bed.

i < Front stabilizer

Main power unit — s

Heat exchanger xS
e | Utility b

Coolant pump/ | «— Utility box

Reflective bead tank -

Paint pump

Utility trough

Electronics cabinet ——»

04_/ Paint heater

Ground power i ,—Rear stabilizer
connection -

\

Figure 2: Truck Layout

Robot manipulator \End-gffgctor

2.2 Paint Subsystem

The paint subsystem is composed of a paint pump and associated plumbing to transport the paint from the
paint supply bucket to the spray tip located at the end of the robot. The paint pump is a Graco Viscount I,
operating on a 103.35 bar [1500 psi] hydraulic supply with a 2:1 compression ratio, thus producing an
output pressure of 206.7 bar [3000 psi]. The paint system schematic is shown in Figure 3. The operation
of the paint pump is under automatic control of the computer. The controlling hydraulic solenoid valve is
located in the utility box. During cleaning and maintenance operations of the pump, the pump operation
can be controlled by hand-valve number 1 on the hand-valve stack located in the utility box.

flush water

! AN

Spray tip

Flush valve

o
\

A
(<— Hydraulic paint pump
Spray gun

iy : «—Paint supply

Figure 3: Paint System Schematic

In order to maintain optimal paint viscosity, the paint temperature is regulated by a paint heating system.
The heating system schematic is shown in Figure 4. This heating system obtains its heat from an engine
exhaust gas heat exchanger located in the main power unit. This heat exchanger operates by passing
diesel engine exhaust around a tube containing coolant from the paint bucket reservoir. The coolant is
circulated by an electrically driven water pump. A thermostat, which senses the coolant temperature,
controls whether the pump recirculates the coolant or redirects the coolant to the heat exchanger. The
temperature control schematic is shown in Figure 5. The coolant loop is sealed against outside

contamination. The heated paint bucket receptacle has enough capacity for two (2) 18.9 liter [five gallon]
containers.

vent

recirculation line

heat exchanger
water pump

/AN
N

4-way, 2 position
solenoid valve

paint heater
tank

Z X[

hot water line

Figure 4: Paint Heating System

pump switch

Py
@-

N.C. '
=N.O. water
pump

12v

thermostatic
battery; temp. switch

water
GND valve

Figure 5: Temperature Control Schematic

After the paint has passed through the paint pump, it is transported to the paint gun by a 7.625 meter [25
feet] high pressure flexible hose. The paint flow then enters a Binks electrically controlled paint gun. This
gun opens and closes under authority of an electrical signal from the computer. A Binks carbide spray tip
(P/N 1380) converts the paint flow into a rectangular spray pattern on the ground.

2.3 Reflective Bead System

In order to increase reflectivity of the painted pavement markings, reflective glass spheres are placed in
the pavement markings while it is still wet. These glass spheres are sprayed on using a pneumatically
controlled applicator. This applicator contains a valve and a spreader nozzle. The spheres are supplied
from a pressurized supply tank operating at 4.134 bar {60 PSI]. The operation of the applicator, as well as
the pressurization of the supply tank, are computer controlled. A schematic of the system is shown in

Figure 6.
—é— air supply
'\ pressure requlator
S~ bead supply tank
@
T \ bead hose
spreader tip

\epray gun

Figure 6: Reflective Bead System Schematic

2.4 Main Power Unit

The main power unit (MPU) provides electrical, pneumatic, and hydraulic power to the entire machine.
The MPU layout is shown in Figure 7. The primary motive power for the MPU is a Deutcsh 4 cylinder air-
cooled diesel engine. A maximum of 8000 watts, 220/120 volts is provided by a belt-driven alternator. A
single-cylinder belt-driven air compressor produces 6.89 bar [100 PSI]. Finally, attached to the crankshaft
of the engine are two (2) hydraulic pumps, both drawing hydraulic fluid from a common fluid reservoir.
The hydraulic pump nearest to the engine is a pressure-compensated variable-displacement pump
producing 37.9 liters [10 gallons] per minute (LPM) [(GPM)] at 206.7 bar [3000 PSI]. Pressure variations
are suppressed by a gas-charged fluid accumulator. This pump provide primary motive power to the
robotic manipulator and end-effector. The pump at the far-end is a constant displacement pump producing
37.9 LPM [10 GPM] at 103.35 bar [1500 PSI]. This pump provides motive power for the stabilizer feet
and paint pump. Fluid output from both pumps is controlled by a toggle switch located under the main
control panel for the MPU. Hydraulic fluid is filtered before it is returned to the reservoir.

// air compressor

alternator —____ |

engine battery —— | | | diesel engine

heat exchanger —_|

hydraulic oil tank ~_|

highj preseure pump —— — B P control panel

low pressure pump] P

] £

00 (] o]
low pressure svupply//Y

low pressure return High pressure toggle switch
high pressure supply

high pressure return
air outlet

Figure 7: Main Power Unit Layout

Located on the main control panel (Figure 8) are electrical service outlets. Two outlets of 20 amps service
and one outlet of 40 amps service are provided. Gauges to monitor MPU performance are located below
the electrical outlets. At the bottom of the control panel is located the engine starter key switch and the
engine pre-heat button. Both of these controls are used in starting the diesel engine.

240 v, 50A outlet

120 v, 30 A outlet AC volts gauge

120 v, 20 A outlets ~

oil temperature

hour meter

oil pressiire

engine heat charging amps
fuel level

engine preheat button rpme
battery

fuse S

ighition key

Figure 8: MPU Control Panel
2.5 The Manipulator

The manipulator is of a pantograph-style linkage type, custom built and designed at the University of
California at Davis. Further descriptions and design information can be found in Robert H. Olshausen's
1996 U.C. Davis Master's Thesis, "Development of an Articulating Robotic Arm for Spray Painting on
Roadways" (report number UCD-ARR-96-09-30-01). For convenience, a copy has been included as
Volume H of this report.

2.6 The End-Effector

The manipulator end-effector was custom built and designed at the University of California at Davis.
Further descriptions and design information can be found in Richard A. McGrew's 1996 U.C. Davis
Master's Thesis, "A Robotic End-Effector for Roadway Stenciling” (report number UCD-ARR-96-06-30-
01). For convenience, a copy has been included as Volume III of this report.

2.7 Supporting Subsystems

Five major subsystems are required to operate BASR. The five supporting subsystems are the hydraulic
supply subsystem, the electrical subsystem, the pneumatic subsystem, the computer control subsystem,
and the embedded software contained on each controller.

2.7.1 The Computer Control Subsystem
BASR is controlled by five (5) single board computers (SBC). Each SBC is manufactured by Z-
World, Inc. (Davis, CA). The embedded software on the SBCs is described in Section 2.7.5.
Four of the SBCs are Tiny Giants interfaced to a specially designed and manufactured
encoder/servo valve control card (ESVCC). These four SBCs are directly associated with a
hydraulic actuator. A schematic of the ESVCC is provided in Appendix B. The ESVCC is
composed of a HP2020 quadrature decoder chip, a AD667 digital-to-analog converter (D/A), and
associated logic control circuitry. The SBC receives position information from the quadrature
decoder chip, computes the necessary servo valve position using a predetermined control law, and
then outputs the necessary signal to the D/A chip. The output from the D/A chip then is
conditioned by the voltage-to-current converter, which directly positions the servo valve,

controlling the output of hydraulic flow to the actuator. Figure 9 is a schematic of the control
architecture of one of the hydraulic actuator circuits.

one joint of BASR \I

hydraulic power

/ enable circuit

encoder/servo
valve interface

voltage to
current —>
converter

hydraulic cylinder

]

electrical
conhnection
to servo valve

I
! T1
r é -4 2= [1 |
| I
' |
I I ! —']
1 -y L
! \ solenoid shutoff
1 valve
L _!T\hydraulic
- pump

Figure 9: A Hydraulic Actuator Circuit

The fifth SBC is contained in the hand-held pendant. This pendant has a keypad interface, as
well as a joystick and three (3) control knobs for positioning BASR. The keypad is used for
entering textual information, such as the desired lettering to create on the pavement. A LCD
screen displays status and informational messages to the operator.

cable connector
//LCD display screen

—
jm —g— power switch
@/Joy stick
Hand Held _—7||BEB B0000! | (o¢— position knobs
Control Unit i BHS8EH

:'\ keypad

Figure 10: Control Pendant

All SBC:s are linked together using RS-485 local area networking. Commands are passed through
the network interface and are composed of text strings. Each command string is composed of five

parts: a start character, an address, a command, the command option modifiers, and the end
character. Appendix C has a list of acceptable commands.

In order to route the electrical signals from the SBCs to different parts of BASR, various cable
interconnects are used. The cable connectors are keyed and different sizes and gender are used to
prevent accidental connections to the wrong cable plug. Figure 11 shows the location of all
connectors. A wiring diagram and pinout table is provided in Appendix D.

name function
|_— Utility box connector A | stabilizer control
&« connector B | transducer/communications

connector C | transducer/solenoid control

conrector D | stabilizer limit switches
connector H connector E | end effector accessories

*6-8-0 connector F | accessory control
connestor G \\\\ U 'Q\ connector G | pendant
Electronics Box — -9 ‘\ connector A connector H | main power
connector J2 > connector B connector JO tranglation control/sensor
connector J1 ——T connector C | connector J1| rotation control/sensor
connector JO \:$> connector D connector J2| extension control/sensor
Clee connector JB extension servo control
AAA [connector J4 extension sensor
527 eSS connector J5 trans./rot/ control/sensor
[\ connector E
connector A connector J
connector E sconnector J4
connector B connector J5
connector F
Arm turntable

Figure 11: Cable and Connector Routing

2.7.2 Hydraulic Supply Subsystem

Hydraulic power is supplied to BASR via two (2) engine driven hydraulic pumps routed through
two separate hydraulic systems. One pump provides 103.35 bar [1500 PSI] and the other provides
206.7 bar [3000 PSI]. The 206.7 bar {3000 PSI] system operates the actuators related to the
manipulator and end-effector. The 103.35 bar [1500 PSI] system operates the vehicle's stabilizer
feet and the paint pump. Manual operation is provided for the operation of all accessories on the
103.35 bar [1500 PSI] system. The operating hand-valves are located in the utility box on the
right side of the truck. Additionally, should it be desirable to use external hydraulic power,
ground-service quick-disconnect return and supply ports are provided. The ports are located on
the truck near the electronics cabinet. A pressure reducing valve is connected to the ground
service port to automatically provide 103.35 bar [1500 PSI] from the 206.7 bar [3000 PSI]
ground supply port. Various valves are provided through out the system in order to isolate
different hydraulic circuits. The hydraulic system schematic is provided in Appendix K.

2.7.3 Electrical Subsystem
An 8000 watt belt-driven alternator provides the main AC power to BASR. AC power is used to
power the paint heater coolant pump and the 12 volt power transformer for the SBCs.

2.7.4 Pneumatic Subsystem
Pneumatic power is supplied by a single-cylinder engine driven compressor. Maximum supply
pressure is 6.89 bar [100 psi]. Air pressure is supplied via a manifold to four (4) valves operating
the reflective bead pressurization system, the electronics vortex air conditioner, the end-effector
stowage system, and the end-effector stowage system lock-out. Figure 13 is a schematic of the
pneumatic system. ‘

pressure regulator

A
solenoid valve -«

air compressgor

bead pressurization

[Thy

vortex air conditioner

[Thy

\ air manifold

End-effector lock-out

End-effector stowage system

Figure 13: Pneumatic Subsystem

2.7.5 Embedded Software

Each of the SBCs contains embedded compiled program code written in the "C" programming
language. Although each of the four manipulator joint SBCs respond to the same commands, the
programming varies slightly to account for the kinematics of the mainpulator joint it is
controlling. Complete source code listings are provided in Appendices I through L. As of this
writing, a complete source code listing of the software for the pendant controller is not available.
Operation of the trajectory planner and control module is described in the research paper
provided in Appendix E.

Letter profiles for BASR are generated by the techniques discussed in the Master's Thesis of
Richard Blank "Algorithms and Robotic Hardware Improvements for Painting of Roadway
Markings" (report number UCD-ARR-97-06-15-01). A copy of the thesis has been included as
Volume IV of this report. Once the letter profiles have been generated off-line, the data is
encoded and programmed into the hand-held pendant control software. When the operator has
selected a certain letter, its coordinates are retrieved from the pendant's memory and downloaded
to the joint SBCs. These coordinates are then executed by the SBCs and move BASR accordingly.

3. System Operation

As of this writing, field testing has not been completed. As such, a complete description of field
operational procedures cannot be provided. However, a description of laboratory operational procedures
can be provided.

11

3.1 System Startup

BASR system startup consists of clearing the workspace of all obstacles and personnel. Then, all
restraining chains and harnesses are removed. Finally, the main power unit can be started. MPU starting
is accomplished by first depressing the engine preheat button, then turning the ignition key until the
engine cranks. Once the engine has started, the engine preheat button and key is released. While the
engine operation stabilizes and warms up, striping paint can be mixed and loaded into the paint bucket
receptacle. The high pressure enable toggle switch on the MPU is then moved to the "enable" position,
thus allowing the main hydraulic system to reach operating pressure. After allowing a few seconds for
pressure to build, the paint pump can then be primed. This is accomplished by inserting the pump siphon
hose into the paint bucket. The pump outlet valve is opened and the outlet hose placed in a suitable waste
receptacle. Hand valve #1 is then operated to allow the paint pump to prime. Once air-bubble-free paint
begins to flow from the outlet hose, the outlet valve can be shut off and the hydraulic hand-valve released
to stop pump operations. The spray gun is then opened, and the paint pump is cycled once again to fill the
paint hose. Once the paint hose is free of air, the spray gun and paint pump are deactivated. A spray tip is
then installed on the spray gun. "Calibration mode" is then selected on the control pendant. The
manipulator and end-effector then begin automatic check-up and calibration procedures. Once complete,
BASR is ready to be used.

3.2 Normal Operations

Once the truck is located at the proper work site, from the control pendant, the operator selects the menu
item to lower the stabilizer feet. By using the video screen to target the end-effector, the operator can
position BASR by using the manual control joystick and knobs. Properly positioned, the operator types in
the message on the control pendant to be painted on the ground. After presenting a confirmation
message, the controller then pressurizes the paint system, moves BASR, thus marking the pavement. The
operator then selects the "Stow" item from the control pendant. After BASR is stowed, the operator can
then drive away from the work site.

3.3 Clean Up

After all operations are complete for the day, BASR cleanup merely involves removing the spray tip and
cleaning off the paint deposits. The paint is replaced with water, and water is pumped through the system
to remove the paint. The high pressure hydraulic system enable switch is then moved to the "disable"
position. The controller power switch is then turned off, and all restraints and harnesses replaced. Finally,
the MPU is turned off.

4. Conclusions
Although field testing of BASR is not yet complete, from the results of laboratory testing, a reliable and
easy to use pavement marking system has been created. This system maximizes personnel safety, increases
efficiency, and improves quality. '

Appendix A

Stabilizer Feet Data

12

800 SH1

\ vE9L-¥89-916 Xv4d - 8802-€¢t-916 -+ ¥v956-189-916)
2 2660-65.56 VO ‘JAOHD 13
166 X0d "O'd
"ONI ‘SLONaO0Hd SH1
pajqwasse paddiys spun G
1sanbal uodn a|qejreae s|gpow 18YI0 ¥ Buigny ‘g’ pauoH 2
S48z asealb paleoo) Ajlenus)y g pJEpPUB}S SOABA MO0 i
90t 13A0ON ¢vyor 13AON
— *N4dY T Qe - wousdv 11} v__
TTTT TTHT] T [T oo
o i RN _mﬁ_ _w AR 1R B i ;i
S - _ H V2 BN /
w "4 L/ o % o Jav w “‘__/—
m o B ” Mm\ i ; _
14— : = NI
M .bb .U!Il.t& LA ¥Cuudv €b >
m ALITIEVLS JHOW HO4 HOVY3AY H3aIm S14ITIH NO GHVANVY.LS

TYNOUdO

Appendix B

Schematic of ESVCC Boafd

15

9927,
g eg un .
L6 mm 9z 9 At
OLAg ®eZ§ .
LAY A2y v/
—f2ley AL g]
0 L_leLab qi 2 -
~ VLOA Bl L g IV
oV
u\|\ SY
g
S
2v
-
o < —Tliv
HO « Ic. 12 1 - gy
qHO - - Sy
0202 8 Az up g8 Az ug L 11 8Ayugy vy
70 Shol L] 6 ez AL g 6ez AL 9 L | 6ev Ao . kel
B oA _loraz pLsh 0LG2 PLS ObAS ee G Lotk | | | [|]]]S
S on ;om LEou oLy LLou oLy LLes Azy lepooug
£Lsp ewm ZLoz oug 2l og oug cLfAg ezg
pe— mwwmnvo«ocm Erpe drerr SHoe are o o M:N o
31 Upss P yLOA 'L L H vLOA Bl vLOA ®L L |
LL€p €0y
glcp |ose %
6L P NP2 V.V
l_’ 0ZPA 0PI J — MM
A
||||/\/>\/|A.|.—__
e s
8¢Ct, /\/\/\/I
6 9A ung
obgh ALY |
LLvA 199 &
ziehagog
clehezDy
vLIA - D¢
GL0A @z
9LoA VI H
% o
N e
inQ 8¢ LY
£99QV 9¢ gv
YE €Y
SLOV LY bl [. 26 PV
9ipubd 2v €l 0E SV
ZLodd eval 8¢ 9V
9t 1ea SO Lt v GND
1 260 88A-
o | 12 ¥9Q 90A+ 8 4
8 Ag un /L g eg un /L L gegun/
225ad UlA L 6 e AL9 6 GE 929 6 98 429 81 5d
€2 980 10N 9 | | 0LGE Q2§ oLhe ezs oLAE egg 3t va
e aap el — LAy e2y LAy Az p LAy A2y 1 e
U gz gaa’ day zieyr Arg zier AL g ziey Alg gl ed
% ovaa e[| Pon oi§ B VLo st ¢ £
82 Liad >ON-$ vLOA EL L VLOA BL | 1 oA 16 au
.............. 62 UM
61 20l

Appendix C

Joint SBC Commands

17

18

Outgoing message format
| >|x|Command Dataf . |

> indicates command to follow
indicates end of message

Inbound message format
|>|return data]. |
—or-
OK

> indicates response to follow
indicates end of message

(x is unit number)

Qutgoing Reponse Comment
>XLy . >Lnnnn. Request analog input]
on channel y. Value
nnnn is returned.
>xH1. OK High voltage enable.
>XHO. OK High voltage disable.
>XVYYY - OK High voltage pattern
>XPAXXYY - OK Initialize ©PIO port
| A, mode xx, control
| word yy i
>XPBXXVY . OK Initialize PIO port
B, mode xx, control
: word vy i
>XDOAYYY . OK output value yyy om
PIO port A
>xXDOBYYY - OK output value yyy on
PIO port B
PxDIA. >DIAYVY - return value yyy from
‘ PI0 port A
>XDIB. >DIBYYY . return value yyy from
PIO port B
>XGPPYVVYY . OK Change p051tlonal
>GPPYYYY - proportional gainl
setting to yyyy. If
: vyvy = _—-1, repord
: ; current gain.
PxGPIyyyy. OK Change p051t10na1
i >GPIVYYY - integral gain setting
? | to yyyy.- If yyyy =
? : -1, report currenu
; e — gain.

19

>XGPDYYYY -

OK
>GPDYYVY .

iChange positionall
derivative gain
lsetting to yyyy. If
vvyy = __ -1, report
current gain.

i
PXGVPYYVYY .

CK
>GVPYYYY .

IChange velocity
proportional gain
setting to yyyy. If
vyvvy = __-1, report]
lcurrent gain.

OK
>GVIyYYY .

Change velocity
integral gain setting
to yYyy. I1If yYyy =
-1, report current
gain.

>XGVDYyVyVY.

OK
>GVDyyyy .

Change velocity
derivative gain
setting to yyyy. If
Yyyvy = __-1, report
icurrent gain.

<p.

>XELYYYVYYVYZ2ZZZZZZZPP

OK

!

Load encoder
position yyyyyyy'
velocity zzzzzzz, pio
mode jejo)el an@
autoincrement point
list. Move will our
on X command.

>XESYvyvyvY-

i
\
i
|
H
!
|

>ESXXXXXXXZZZZZZZ .
>ESWWWWWW .

If yyyyvyyvy = -1,
report currenﬁ
position xxxxxxx and
elocity zzzzzzz. Iq
= -2,

report control law
actuation wwwwww. !

beRxxxxyyyyyyyzzzzz

Zzppp.

OK

Modify data point at
xxxx with new encoder
position YYYYYYY..
velocity zzzzzzz, piq

mode pprp.

>X.

Execute loaded moves.

>XS.

OK

Emergency shutdown.

>xIVVvy.

OK

i>xR.

>RYVY.

Change timinq
interval. if yyy = 0-
1, report timind
interval.

Report softwara
revision level.

>XMVYYYYY -

OK

Max velocity beforq
auto shutdown. }

SXMLYYYYY -

OK

Max extension limit
before shutdown.

ﬁxMSy.

OK

Gain scaling.

20

>XESXXXX . >ESYYYYYYYZ222222ppp [Show position
i (vyvyvyyyy) ., velocity
(zzzzzzZz) and pio
mode (ppp) for point
XXXX .
>XERXXXXYYVYYYYZ222Z [OK Replace position xxxx
ZZpPpPp - with position
1 YVVVVyy, velocity
zzzzzzz and pio mode
J PP . :
SXELYYYYYYYZZZZZZzZpp [OK Load position
o- VYVYYYYY, velocity
3 zzzzzzz, pPio mode ppp
| and auto-increment|
! oint list. j
>xEC. OK Clear point counter.

Appendix D

Connector Pinout Table

21

22

Location pin color function Connects to: pin color function
Moving carriage connector A orange cable 0 servo +current Servo valve B,D orange +current
B blue cable 0 servo -current A, C blue -current
c gray cable 0 encoder A channel Encoder
D purple cable 0 encoder B channel (1200 pulses/rev)
H yellow cable 0 encoder Z channel
F green N/C
J red cable 0 encoder +power
G black cable 0 encoder -power
E white N/C
Q brown N/C
Zz orange cable 1 servo +current Servo valve B,D orange +current
Y biue cable 1 servo -current A, C Dlue -current
X gray cable 1 encoder A channel Encoder
w purple cable 1 encoder B channe! (88000 pulsesirev)
R yellow cable 1 encoder Z channel
S green cable 1 encoder case gnd
T red cable 1 encoder +power
U black cable 1 encoder -power
v white N/C
K brown N/C
Cable 0 board end L orange servo +current
M blue servo -current
P gray encoder A channel
N purple encoder B channel
D yellow encoder Z channel
E green N/C
F red encoder +power
G black encoder -power
H white N/C
J brown N/C
Cable 1 board end L orange servo +cument
M blue servo -current
P gray encoder A channel
N purple encoder B channel
D yellow encoder Z channel
E green N/C
F red encoder +power
G black encoder -power
H white N/C
J brown N/C
Cable 2 board end L orange servo +current Servo valve B,D red +current
M blue servo ~current A,C black -current
P gray encoder A channel Encoder

Pendant connector

End effector connector

{board end)

T O - 0o a0 o N X T < CH v DD U222 XN CTOTMOO T >

« I o mmoZ

- T 3 J X =

w

x>

purple
yellow
green
red
black
white
brown

encoder B channel
encoder Z channel
N/C

encoder +power
encoder -power
N/C

N/C

CT014

CT114

CT214

Cr314

CT +pwr 1
CT414

CT514

CT614

CT714

CT +pwr2

GND

K

CT relay power
spare

spare

spare

+RS485 Chan. 0
-R8485 Chan. 0

+R8485 Chan. 1 (spare)
-RS485 Chan. 1 (spare)

+pwWr
GND {shield)

piob 1 (note: no piob 0!)

piob 2
piob 3
piob 4
piob 5
piob 6
piob 7
high voltage out 1
high voitage out 2
high voltage out 3
high voltage out 4
high voltage out 5
high voltage out 6
high voltage out 7
high voltage out 8

+485
-485
spare

(88000 pulses/rev)

end effector

+485
-485
spare

23

Connector A
(utility box end)

Connector A
(computer box end)

Connector B
(utility box end)

Connector C
{utility box end)

RN &« X O m m O

T Z 2 r R~ TG M Mmoo W >

U Z Er X T OoOmMmMmoOOw >

T oo N mooO @ @™ >

x>

intr

- pwr
+pwr
spare
spare
spare
spare

ground

spare

front right foot up
front right foot down
front left foot up
front teft foot down
rear right foot up
rear right foot down
rear left foot up
rear left foot down
paint pump +

high pressure +
spare

spare

ground

spare

front right foot up
front right foot down
front left foot up
front left foot down
rear right foot up
rear right foot down
rear left foot up
rear left foot down
paint pump +

high pressure +
spare

spare

low pressure transducer +
low pressure transducer -
high pressure transducer +
high pressure transducer -
15-485 +

1s-485 -

spare

shield

high pressure transducer +
high pressure transducer -

relay #5 NC terminal
relay #5 NO terminal
relay #2 NC terminal
relay #2 NO terminal
relay #3 NC terminal
relay #3 NO terminal
relay #4 NC terminal
relay #4 NO terminal
relay #5 NO terminal
relay #4 NO terminal

R« IXIT O T moO

614

314

44

514

intr

- pwr
+ pwr
spare
spare
spare
spare

24

Connector D
{utility box end)

Connector B
{computer box end)

Connector E
(computer box end)

Connector F
(computer box end)

I o mmoo

I O Mmoo o0 W >

T Z 2T X &« I OMmMmmoOO @ >» I o nmooOoO @ >

I o mMmm o O @ >»

high pressure solenoid +
high pressure solenoid -

shield

front right foot in
front right foot out
front left foot in
front left foot out
rear right foot in
rear right foot out
rear left foot in
rear left foot out

low pressure transducer +
low pressure transducer -
high pressure transducer +
high pressure transducer -
15-485 +

rs-485 -

spare

shield

efe retract power +

efe retract power -

e/e brake power +

e/e brake power -

hyd extend valve power +
hyd extend valve power -
efe gun power +

efe gun power -

bead gun +

bead gun -

spare

spare

shield

no connection

refrigeration power +
bead pressure power +
strobe power +

spare

spare

spare

spare

ground

connector A #c
f.r. limit switch
connector A #E
f.L. limit switch
connector A #g
r.r. limit switch
connector A #J
r.l. limit switch

25

26

27

Appendix E

Source Code Listing for
Transverse Joint SBC

28

#use rtk.lib

/r

This program would run on the Little Giant, the Tiny Giant and the CPLC.

If port O is also used as the Dynamic C programming port, you have to
load the serial interrupt routine during run time by doing the following:

(1) comment out:
#INT_VEC SERO_VEC Dz0_circ_int in z0232.lib
(2) in the code, dectare:
extem void Dz0_circ_int();
(3) load the routine with:
reload_vec(14,Dz0_circ_int);

*/

/* #include <stdio.h> */
#define ON 1

#define OFF 0

#define FWD 1
#define REV 0

#define FALSE 0
#define TRUE 1

#define VERSION 4
#define SUBVERSION 01

#define CSAMPLE 900 /* clock periods: 512HZ */
#define CTIME 0.001953 /* clock time */

#define D2AOFFSET 2047
#define ACTSCALE 1

/* int taskO(), task1(), task2(), backgnd();
int ("Ftask])()={task0, task1, task2, backgnd}; */

int task1(), task2(), backgnd();
int (*Ftask[])() = {task1, task2, backgnd};

/!

#define NTASKS 4
#define TASKO 0
#define TASK1 1
#idefine TASK22 */

#define NTASKS 3
#define TASK1 0
#define TASK2 1

#define TASKSTORE_SIZE 500
void (*TaskDispatchTable[30])();
typedef union bytemode

{

int word;
struct ByteStruct

char Isb;
char msb;
} byte;
} BYTEMODE;

struct PointListPoint

long ListPosition;
long ListVelocity;
- int TimeSlices;
char PIOmode;

3

29

struct PiOstruct

{
char PIOAmode;
char PIOBmode;

5

struct PointListPoint PointList[1001];
shared struct PlOstruct PlOstatus;

struct PositionData

int time[3];

long position; /" variables for data logging */
long velocity;

int point;

I

struct PositionData data(410];

float VeloCorrFact[] =

{0.960719, 0.958142, 0.955486, 0.952749, 0.949934,
0.947038, 0.944064, 0.941011, 0.937879, 0.934669,
0.931381, 0.928015, 0.924572, 0.921051, 0.917453,
0.913779, 0.910029, 0.906202, 0.9023 , 0.898322,
0.89427 , 0.890142, 0.885941, 0.881665, 0.877316,
0.872893, 0.868397, 0.863829, 0.859189, 0.854477,
0.849694, 0.84484 , 0.839915, 0.83492 , 0.829855,
0.824721, 0.819518, 0.814247, 0.808907, 0.8035 ,
0.798026, 0.792486, 0.786879, 0.7812086, 0.775468,
0.769665, 0.763798, 0.757868, 0.751874, 0.745817,
0.739698, 0.733517, 0.727275, 0.720972, 0.714609,
0.708186, 0.701704, 0.695163, 0.688564, 0.681908,
0.675195, 0.668426, 0.6616 , 0.65472 , 0.647784,
0.640795, 0.633752, 0.626656, 0.619508, 0.612308,
0.605057, 0.597755, 0.590404, 0.583003, 0.575553,
0.568056, 0.560511, 0.552919, 0.545281, 0.537597,
0.529869, 0.522096, 0.51428 , 0.50642 , 0.498519,
0.490575, 0.482591, 0.474566, 0.466502, 0.458399,
0.450258, 0.442079, 0.433863, 0.42561 , 0.417323,
0.409 , 0.400643, 0.392253, 0.38383 , 0.375375,
0.366889, 0.358372, 0.349825, 0.341248, 0.332644,
0.324011, 0.315352, 0.306666, 0.297954, 0.289218,
0.280457, 0.271673, 0.262867, 0.254038, 0.245188,
0.236318, 0.227428, 0.218519, 0.209591, 0.200646};

int datapointer, takedata;

int PointNumber, ExePointNumber; /* place in point list */
shared long gActPosition, gActVelocity; /* actual position and velocity */

shared long PseudoVelo; /" IPC variable b/w pos and velo loop */
shared BYTEMODE Actuation; /* system actuation */

float kpp, kpi, kpd; /" system position gains 1 unit, [in .01 units */

int kvp, kvi, kvd; /* system velocity gains 0.0001 units */

float kff; /" system feed forward gain 0.01 units */

int BeginMove; /* change to TRUE to begin motion */

int NewMove;

int UseVelocityControl; /* bypasses position controller */
int Acceleration;

BYTEMODE ServoNull;

shared long MaxVelo, MaxLimits, AbsLimits;
shared int ActScale;

int Control, Shutdown, Reset1, Reset2;

int UnitNumber, DumpSerial;

char InString[255], OutString[255);

char PowerFail[] = "|Power fail0*;

char SoftReset[] = "ISoft resef\0*;

char tbuf{384], rbuf[384];

30

int Analoginput (char *, char *);

int HighVoltage (char *, char *);

int ChangeHighVoltage (char *, char *);
int InitP1O (char *, char *);

int OutinPIO (char *, char *);

int SetGetGain (char *, char);

int ControlLaw (char *, char *);

int DtoAOut (char *, char *);

int PosLoad (char *, char *);

int ExecuteMove (char *, char *);

int Diagnostic (char *, char *);

int ShutDown (char *, char *);

int RevisionLevel (char *, char *);

int MaxLimit (char *, char *);

void FatalErrorHandler (unsigned, unsigned);
float p2sin{float);

float p2cos(float);

void NotUsed(void);

/* extern void Dz0_circ_int(); */

/* 0x10 stores network node number, 0x12 stores null.isb, 0x13 stores
null.msb */

root main ()
intindex;
if (wderror())

{
Shutdown = TRUE;
Control = OFF;
outport (0x81, ServoNull.byte.lsb);
outport (0x82, ServoNull.byte.msb);
op_kill_z1();
op_init_z1 (19200/1200, InString, UnitNumber);
while (1) '

hitwd();
if (check_opto_command() == 1)
replyOpto22 (SoftReset, strlen (SoftReset), 0);

}
_GLOBAL_INIT();

ERROR_EXIT = FatalEmrorHandler;
BeginMove = FALSE;
UseVelocityControl = OFF;
Control = DumpSerial = OFF;
Shutdown = takedata = OFF;
NewMove = FALSE;
Reset1 = Reset2 = ON;;
ExePointNumber = PointNumber = 0;
datapointer = 0;
gActVelocity = gActPosition = OL;
kpp = kpi = kpd = kff = 0;
kvp=kvi=kvd=0;
MaxLimits = AbsLimits = 88000L;
Acceleration = 5000;
MaxVelo = OL;
ActScale = ACTSCALE;
Actuation.word=0; /* zerot */
PlOstatus.PIOAmode = 0x1;
PlOstatus.PIOBmode = (char) 0;

~. UnitNumber = ee_rd(0x10);
ServoNullbyte.lsb ='ee_rd(0x12);
ServoNull.byte.msb = ee_rd(0x13);

31

inport (0x82); /* clear the encoder */

outport (0x81, ServoNull.byte.Isb); /* zero the d-to-a board */
outport (0x82, ServoNull.byte.msb);

outport (PIOCA, 0xff); /* pioa command */
outport (PIOCA, 0x00); /* set all bits for output */
outport (0x41, (char)0x7); [* disable interrupts */
outport (PIODA, PIOstatus.PIOAmode); /* pioa data */
outport (PIOCB, Oxcf); /* piob command */
outport (PIOCB, 0x00); * set all bits for input */

outport (PIOCB, PIOB_VEC);

outport (PIOCB, 0x17);

outport (PIOCB, Oxfe);

outport (0x43, 0x7); /* disable interrupts */

/* outport (PIODB, PiOstatus.PIOBmode); */ /* piob data */
outport (PIOCB, 0x7);

/*.

reload_vec (14, Dz0_circ_int);

Dinit_zO0(rbuf, tbuf, 384, 384, 4, 9600/1200, 0, 0);
*/

op_init_z1 (19200/1200, InString, UnitNumber);

for (index = 0; index < 26; index++)
(TaskDispatchTable[index]) = NotUsed;

TaskDispatchTable['L''A’] = Analoginput;
TaskDispatchTable['H'-'A'] = HighVoltage;
TaskDispatchTable['V'-'A’] = ChangeHighVoltage;
TaskDispatchTable['P-'Al = InitPIO;
TaskDispatchTable['D'-'A"] = OutinPIO;
TaskDispatchTable['G™-'A"] = SetGetGain;
TaskDispatchTable['C'-'A") = ControlLaw;
TaskDispatchTable['A-'A'] = DioAQOut;
TaskDispatchTable['E'-'A") = PosLoad;
TaskDispatchTable['X'-'A'] = ExecuteMove;
TaskDispatchTable['''A"] = Diagnostic;
TaskDispatchTable['M'-'A"] = MaxLimit;
TaskDispatchTable['S'-'A"T = ShutDown;
TaskDispatchTable['R-'A"] = RevisionLevel;

DI ();

init_kemel ();

run_every (TASK2, 100);

run_gvery (TASK1, 8); /" was 23 44.92 */ /* was 45 -or- 87.9 ms */
/" run_every (TASKO, 5); */ /*11.72*/ /* was 12 -or- 23.4 ms */
init_timer0 (900); /* 512 hz clock, 0.001953 seconds */

EL ();

backgnd (};

void NotUsed(void)
{

retumn;

}
nodebug backgnd ()
{
while (1)
{

if (Shutdown)
{
op_kill_z1();
op_init_z1 (19200/1200, InString, UnitNumber);
outport (0x81, ServoNull.byte.Isb);
outport (0x82, ServoNull.byte.msb);

while (1)
{
if (check_opto_command() == 1)
replyOpto22 (PowerFail, strlen (PowerFail), 0);
hitwd();
}
}

if (check_opto_command() == 1)
{
strepy (OutString, "OK\0");

InString[InString[1]] = \0";
if (isalpha (InString[4]))

(*TaskDispatchTable[toupper(InString[4]) - ‘A7)
(InString+2, OutString);

/*
if (DumpSerial)

{
Dwrite_z0(InString+1, InString[0] - 2);
Dwrite_z0(OutString, strien (OutString));

}
*f

replyOpto22 (OutString, strlen (OutString), 0);
}

}
while (1);

MaxLimit (char *In, char *Out)

{
char chvalue[8);
long value;

switch (toupper(*(In+3)))

case 'V /* >1MV98765. */ /* velocity limits */
stmepy (chvalue, (In+4), 5);
chvalue[5] = \0';
MaxVelo = atol (chvalue);
sprintf (Out, "OK");
break;
case 'L /*>1ML12345. "/ /* Extension limits */
stmcpy (chvalue, (in+4), 5);
chvaluel5] = \0%
MaxLimits = atol (chvalue);
AbsLimits = MaxLimits + 200L;
sprintf (Out, "OK");
break;
case 'S /*>1MS2.*/ f* Actuator scaling */
stmepy (chvalue, (In+4), 1);
chvalue[1] =0
ActScale = atoi (chvalue);
sprintf (Out, "OK");
break;
case 'N': /- >1MN2047. */ /* set null point to 2047 */
stmepy (chvalue, (In+4), 4);
chvalue[4] = 0",
ServoNull.word = atoi(chvalue);
if (ServoNull.word == -1)

ServoNull.byte.lsb = ee_rd (0x12);
ServoNull.byte.msb = ee_rd (0x13);

33

}

sprintf (Out, ">MN%4d.\0", ServoNull.word);
}

else
{
ee_wr (0x12, ServoNull.byte.Isb);
ee_wr (0x13, ServoNull.byte.msb);
sprintf (Out, "Servo null: %x %x", ee_rd (0x12), ee_rd(0x13));
outport (0x81, ServoNull.byte.Isb); :
outport (0x82, ServoNull.byte.msby);
break;

case 'U: /" >1MU2. */ /* set unit numberto 2 */
stmcpy (chvalue, (In+4), 1);
chvalue[1] = "0}
ee_wr (0x10, atoi (chvalue));
sprintf (Out, ">1MU%1d.\0", ee_rd (0x10));
break;

}

nodebug PosLoad (char *In, char *Out)

if (*(In+3) == 'RY)
{

char chvalue[8];
char **pchvalue;
long value;
int value1;

if (*(In+3) == 'S)
{

stmepy (chvalue, (In+4), 4);
chvalue[4] = "0}
value1 = atoi (chvalue);

if (value1 ==-1) /*>1ES__-1.*/

sprintf (Out, ">ES%5!d%>5!d.", gActPosition, gActVelocity);
retumn;

}
if (valuet == -2) /* >1ES__-2.*/
{

else

sprintf (Out, ">ES%51d%5d.", gActPosition, Actuation.word);
retum;
)
else
if (value1 >= 0) && (value1 < PointNumber))
{

sprintf (Out, ">ES%5Id%51d%3d.",
PointList[value1].ListPosition,
PointList{value1].ListVelocity,
PointList[value1].PIOmode);
retumn;

}
sprintf (Out, IES ERROR");
retum;

}

/* replace pt 0000 */

I" >1ER0000123456987654000. pos=123456,velo=987654,pio=000 */
stmepy (chvalue, (In+4), 4);

chvalue[4] = "\0%

value1 = atoi {chvalue);

stmepy (chvalue, (In+8), 6);
chvalue[6] = "0
value = atol {chvalue);

if ((value > MaxLimits))

34

PointListlvalue1].ListPosition = MaxLimits;
else
PaintList[value1].ListPosition = value;

stmepy (chvalue, (In+14), 6);
chvalue[6] = \0';
value = atol(chvalue);

if ((value > MaxVelo) && (MaxVelo != OL))
PointList[value1].ListVelocity = MaxVelo;

else
if (value == 0)
PointListlvalue1].ListVelocity = 200;
else

PointList[value1].ListVelocity = value;

stmcpy (chvalue, (In+20), 3);

chvalue[3] = 0;

PointList{value1].PIOmode = atoi (chvalue);
sprintf (Out, "OK");

retum;

}

if (*(In+3) =='L")
{ /* >1EL12345987600. pos=12345,velo=9876,pio=00, in hex */
stmcepy (chvalue, (In+4), 5);
chvalue[5}= 0%
value = atol (chvalue);

if ((value > MaxLimits))
PointList{PointNumber].ListPosition = MaxLimits;

else .

PointList{PointNumber].ListPosition = value;

stmcepy (chvalue, (In+9), 4);
chvalue[4] = "0
value = atol(chvalue);

if ((value == 0) && (UseVelocityControl == OFF))
PointList[PointNumber].ListVelocity = 200;
else
PointList{PointNumber].ListVelocity = value;

stmepy (chvalue, (in+13), 2);
chvalue[2] = 0;
PointList{PointNumber].PIOmode = (int)striol (chvalue, pchvalue, 16);

if (PointList[PointNumber].ListVelocity != 0}
{
if (PointNumber == 0)

PointList{PointNumber].TimeSlices =
(PointList[PointNumber].ListPosition - gActPosition) * 64.0
/ PointList{PointNumber].ListVelocity;

}

else
PointList{PointNumber].TimeSlices =
(PointList{PointNumber].ListPosition-

PointList[PointNumber-1].ListPosition) * 64.0
/ PointList[PointNumber].ListVelocity;

else

PointList[PointNumber].TimeSlices = 0;

}

PointNumber++;

sprintf (Out, "OK");
retum;

}
if (*(In+3) == 'C))

PointNumber = 0;
ExePointNumber = 0;
datapointer = 0;
takedata = OFF;
sprintf (Out, "OK");
retum;

}
if (*(In+3) == V') P >1EVL. Y/
{

sprintf (Out, "OK");
if (*(in+4) =="1")
{

UseVelocityContro! = ON;
/* outport (PIOCB, 0x87); */ /* enable interrupt driven */

}

else
{
UseVelocityControl = OFF,;
Resett = TRUE;
/* outport (PIOCB, 0x7); *//* disable interrupt driven */
retum;

}
}

ExecuteMove (char "In, char *Out)

datapointer = 0;
takedata = ON;

/t
PlOstatus.PIOAmode =
(PointList[ExePointNumber).PIOmode & Oxfe); *//* lower status flag */
/* outport (PIODA, PIOstatus.PIOAmode); */

/t
if (PointList[0].ListVelocity != 0)
PointList[0]. TimeSiices =
({long)((float)(PointList{0].ListPosition - gActPos) /
((float)PointList{0].ListVelocity * 0.044919)));
NOTE: This is what i wanted, but a compiler error forced me into the below.

Vi
if (PointList{0].ListVelocity 1= 0)
{

PointList[0]. TimeSlices =
(PointList[0].ListPosition - gActPosition) * 64.0
/ PointListf0].ListVelocity;
}

ExePointNumber = 0;
BeginMove = TRUE;
NewMove = TRUE;

}

/* #INT_VEC PIOB_VEC intrExecuteMove */

/* interrupt reti int intrExecuteMove () */
Y

[+ takedata = ON; */

/* datapointer=0; */

PlOstatus.PIOAmode = */
(PointList[ExePointNumber].PIOmode & 0xfe); */
outport (PIODA, PiOstatus.PIOAmode); */

ExePointNumber = 0; */

BeginMove = TRUE; */

UseVelocityControt = OFF; */
1

FTTIFEIYT O TRZYY

Diagnostic (char *In, char *Out)

{

static int indexer;
#GLOBAL_INIT

indexer = 0;

}

switch (*(In+3))
{
case ‘0"
indexer = 0;
if (BeginMove == FALSE)
sprintf (Out, ">%4d.\0", datapointer);
else
sprintf (Out, * -1\0");
break;
case '1"
if (BeginMove == FALSE)

{
sprintf (Out, ">%u,%d,%Id, %Id \0",
datafindexer].time[0], data[indexer].point,

datafindexer].position, datafindexer].velocity);

indexer++;
}
break;
case 2"
if (DumpSerial == TRUE)
DumpSerial = FALSE;

else
DumpSerial = TRUE;
break;
case ‘3"
sprintf (Out, ">%d\0”, PointNumber);
break;

}
}

ShutDown (char *In, char *Out)
{
BYTEMODE index;

DIg;

inport (0x82); /* clear the encoder */

outport (0x81, ServoNull.byte.Isb); I* zero the d-to-a board */
outport (0x82, ServoNull.byte.msb);

outport (0x41, (char)0xf); /* pioa command */
outport (0x41, (char)Ox0); /* set all bits for output */
outport (0x41, (char)0x7); /* disable interrupts */
outport (0x40, (char)0x0); /* pioa data */

outport (0x43, (char)0xf); /* piob command */
outport (0x43, (char)0x0); /* set all bits for output */;
outport (0x43, (char)0x7); /* disable interrupts */
outport (0x42, (char)0x0); /* piob data */

Shutdown = ON;

UseVelocityControl = OFF;

sprintf (Out, *OK");

37

RevisionLevel (char *In, char *Out)
{
BYTEMODE index;

Control = OFF;

Shutdown = OFF;

BeginMove = FALSE;

NewMove = FALSE;

UseVelocityContro! = OFF;

Reset1 = Reset2 = ON;

gActVelocity = OL;

gActPosition = OL,;

kpp = kpi = kpd = kff = 0;

kvp = kvi = kvd = 0;

PointNumber = ExePointNumber = 0;

Actuation.word = 0;

outport (0x81, ServoNull.byte.Isb);

outport (0x82, ServoNull.byte.msb);

inport (0x82);

sprintf (Out, “>unit:%d Rev beta %d.%d.*, UnitNumber, VERSION, SUBVERSION);
}

Analoginput (char *In, char *Out) /* >1L0. channel 0 */

{
sprintf (Out, ">L%4d.", ad_rd8(atoi(in+3)));

HighVoltage (char *In, char *Out) /* >1H1. on, >1HO. off */
{

if (*(In+3) == '1")
{
hv_enby();
sprintf (Out, "OK");

else

{
hv_dis();
sprintf (Out, "OK");
}
}

ChangeHighVoitage (char *In, char *Out} /*>1V123. port pattern 123 */
char chvalue[4];

strepy (chvalue, (In+3), 3);
chvalue[3] = 0;

hv_wr(atoi(chvalue));
sprintf (Out, "OK");
}

InitPIO (char *In, char *Out) /* >1PA0103. mode 01, contro! 03, on PIO A*/

char InChar[3;
char mode, control;

stmepy (InChar, (in+4), 2);
InChar{2] = 0;
mode = atoi (InChar);

stmepy (InChar, {In+6), 2);
control = atoi (InChar);

switch (*(In+3))
{
case 'A"

outport (PIOCA, ((mode << 6) & 0xf0) | Ox0f);
outport (PIOCA, (char)control);

38

sprintf (Out, "OK");
break;
case 'B:
outport (PIOCB, ((mode << 6) & 0xf0) | 0x0f);
outport (PIOCB, (char)control);
sprintf (Out, "OK");
break;
}
}

OutinPIO (char *In, char *Out) /* >1DOB000. Output on PIO B value 000,
>1DIA. Input on PIO A returns 145 */

char chvalue[4];
int value;

chvalue[3] = 0;
switch (*(In+3))
{

case 'O
if ("(In+4) =="'A")
{

stmcpy (chvalue, (In+5), 3);
value = atoi(chvalue);
PlOstatus.PIOAmode = (char)value | (PIOstatus.PIOAmode & 0x3);
outport (PIODA, PlOstatus.PIOAmode); .
sprintf (Out, "OK");

}

else

if (*(In+4) == 'B")

{

stmcepy (chvalue, (In+5), 3);
value = atoi (chvalue);
PlOstatus.PIOBmode = (char)value;
outport (PIODB, (char)value);
sprintf (Out, "OK");
}
break;
case 'I"
if (*(In+4) =="A’)
{

value = inport (PIODA);
sprintf (Out, ">DIA%3d.", value);
}
else
if (*(In+4) =='B’)
{
value = inport (PIODB);
sprintf (Out, ">DIB%3d.", value);
}
break;
}
}

SetGetGain (char *In, char *out) /* >1GPP1234., Pos. Proportional to 1234
* -1"to report */
{

int value;
char chvalue(5];

stmcpy (chvalue, (In+5), 4);
chvalue[4] = "0

value = atoi {chvalue);
switch (*(In+3))
{

case 'V":
switch (*(In+4))

{
case 'F"
if (valug ==-1)

{
sprintf (out, ">GVF%4d.", (int)kff*100);
retum;

}

{
Reset! = Reset2 = ON;
kff = (float)value/100.0;
sprintf (out, "OK");
}
break;
case 'P"
if (value ==-1)

else

sprintf (out, ">GVP%4d.", kvp);
retum;

}

else

{
Reset1 = Reset2 = ON;
kvp = value;
sprintf (out, "OK");
}
break;
case I
if (value == -1)

sprinif (out, ">GVI1%4d.", kvi);
retum;

}

else

Resetl = Reset2 = ON;
kvi = value;
sprintf (out, "OK");
}
break;
case 'D"
if (value ==-1)

sprintf (out, ">GVD%44d.", kvd);
retum;

else

Reset1 = Reset2 = ON;
kvd = value;
sprintf (out, "OK");

switch (*(In+4))
{

case 'P"
if (value == -1)

sprintf (out, ">GPP%4d.", (int)kpp);
return;

}

else

Reset! = Reset2 = ON;
kpp = (float)value;
sprintf (out, "OK");

}
break;
case I
if (value == -1)

{
sprintf (out, *>GP1%4d.", (int)kpi);
retum;

}

else

Reset1 = Reset2 = ON;
kpi = (float)value; /* WAS 10000 */
sprintf (out, "OK");
}
break;
case 'D"
if (value == -1)

{
sprintf (out, ">GPD%44d.", (int)kpd);
retum;

}

else

{
Resett = Reset2 = ON;
kpd = (float)value;
sprintf (out, "OK");

}

break;
}
}
}

ControlLaw (char *In, char *out) /*>1C1. on, >1C0. off */
{
if (*(In+3) =='0")
{

BeginMove = OFF;
NewMove = FALSE;
Control = OFF;
takedata = OFF;
UseVelocityControl = OFF;
outport (0x81, ServoNull.byte.Isb);
outport (0x82, ServoNull.byte.msb);
sprintf (out, "OK");

}

else
if ("(In+3) =="'1")

Control = ON;
Reset1 = Resef2 = ON;
sprintf (out, "OK");
}
}

DtoAOut (char *In, char *out) /* >1A4321. 4321 on DtoA */

char chvalue[5};
BYTEMODE value;

Control = OFF;

stmcpy (chvalue, (In+3), 4);
chvalue[4] = \0%

value.word = atoi (chvalue);
outport (0x81, value.byte.Isb);
outport (0x82, value.byte.msb);
sprintf (out, “"OK");

41

/t
Paosition loopt
This task generates the actuation using PID.

communicates with the velocity loop thru the shared variable PseudoVelo

nodebug task1()
{

static long ActPos, ActVelocity; .
static float DeltaPEr0, DeltaPEmn1, DeltaPEn2;
static float ipActuation;

static long DesVelo;

static int TimePeriods;

static float DesPos;

static float DesPosIncrement;
static int LastPoint;

static long dResult, NewPos;

static BYTEMODE RealActuation;
static unsigned result, result0;
static float dAbsPos(5];

static long OldgActPosition;

static int index, RollOver;

static unsigned int lo0, lo1, hi0, hit;

#GLOBAL_INIT
{

ActPos = DesPos = ActVelocity = OL;
DeltaPEm0 = DeltaPEm1 = DeltaPEn2 = 0;
DesVelo =0L;

ipActuation = 0;

TimePeriods = 0;

DesPosincrement = 0;

LastPoint = FALSE;

RollOver = 0;

result=0;

gActPosition = 0;

dAbsPos[0] = dAbsPos[1] = dAbsPos[2] = dAbsPos[3] = OL;
index=0;

}

OldgActPosition = gActPosition;
I* result = ((inport (0x80) << 8) & 0xff00) | inport (0x81); */

do

DIy,

100 = inport (0x81);

hi0 = inport (0x80); /* stabilize results */
lo1 = inport (0x81);

hi1 = inport (0x80);

El);

}
while (100 = l01) Il (hi0 != hi1));
result = ((hi1 << 8) & 0xf00) | I01;

dResult= (long)((long)result - (fong)resuit0);

if (dResult > 32000)
RollOver--;
else
if (-32000 > dResult)
RollOver++;

result0 = result;
gActPosition = (long)result + (long)(RollOver * (long)65536);

*/

42

dAbsPos[1] = dAbsPos[0];
dAbsPos[0] = gActPosition - OldgActPosition;
gActVelocity = (long)((dAbsPos[0] + dAbsPos[1]) * 32.0);

if (gActPosition > AbsLimits)

outport (0x81, ServoNull.byte.Isb);
outport (0x82, ServoNull.byte. msb);
Control = OFF;

}
if (Control == OFF)

PseudoVelo = 0;
ipActuation = 0;
retum;

}

ActPos = gActPosition; /* transfer to local variables */
ActVelocity = gActVelocity;

if (Reset1)

{
DeltaPErr2 = DeltaPErr1 = DeltaPEnQ = 0;
ipActuation = 0;
DesPos = ActPos;
NewPos = ActPos;
DesVelo = 0;
DesPosIncrement = 0;
TimePeriods = 0;
BeginMove = NewMove = FALSE;
UseVelocityControl = OFF;
Resetl = OFF;

}
if (BeginMove == TRUE)

{
LastPoint = FALSE;
if (NewMove == TRUE) /* allows for interrupted move */

NewMove = FALSE;

TimePeriods = 0;

if (UseVelocityControl == ON)
DesVelo = PointList[0].ListVelocity;

}
if (((TimePeriods--} <= 1} && (UseVelocityControl == OFF))
{
if (ExePointNumber >= PointNumber)

ExePointNumber = PointNumber;

NewPos = PointList{ExePointNumber-1].ListPosition;
DesVelo = 0;

DesPosincrement = 0;

BeginMove = FALSE;

else
if (PointList{ExePointNumber].TimeSlices != 0)

NewPos = PointList{ExePointNumber].ListPosition;
DesPos = ActPos;
DesVelo = PointList{ExePointNumber].ListVelocity;
TimePeriods = (int)PointList{ExePointNumber].TimeSlices;

if (TimePeriods < 0)
{
TimePeriods = -TimePeriods;
DesVelo = -DesVelo;

43

DesPos = ActPos;

}

else

DesPoslncrement = 0;
DesPos = PointList[ExePointNumber].ListPosition;
DesVelo = 0;

}

ExePointNumber++;
if (ExePointNumber == PointNumber) LastPoint = TRUE;

if (Tlme}Periods >0)
{ DesPos += (float)(NewPos - ActPos) / (TimePeriods);
if ((Las{Point == TRUE) && (TimePeriods < 5)) DesVelo = 0;
else

DesPosincrement = 0;
DesPos = NewPos;

}

DeltaPEm2 = DeltaPErr1; /* generate time history - 2 steps back */
DeltaPEm1 = DeitaPErT0;
DeltaPEr0 = DesPos - ActPos;

ipActuation +=
({((Roat)kpp * (DeltaPEmMO0 - DeltaPErr1)) +
((float)kpi * {DeltaPErr0)) +
((float)kpd * (DeltaPErD - (DeltaPErmr1+DeltaPErr1) + DeltaPEr2)) +
(kff * (DesVelo - ActVelocity)));

if (UseVelocityControl == ON)
PseudoVelo = DesVelo;
else

PseudoVelo = ipActuation;

if (PseudoVelo > (long)65504)
PseudoVelo = 65504;
else
if (PseudoVelo < -65504)
PseudoVelo = -65504;

RealActuation.word = (int)(PseudoVelo >> 5);
Actuation.word = RealActuation.word;

RealActuation.word += D2AOFFSET;
DI);
k_lock();
outport (0x81, (char)(RealActuation.byte.Isb));
outport (0x82, (char)(RealActuation.byte. msb));
k_unlock();
El();
}
}

/-

This task takes sensor data.

*/

nodebug task2()

static int index;

#GLOBAL_INIT
{
index = 0;

}

if (Shutdown == TRUE) retum;
hitwd();

if (takedata == ON)
if (datapointer == 0) index = 0;

gettimer (data[datapointer].time);
data[datapointer].position = gActPosition;
data[datapointer].velocity = gActVelocity;
data[datapointer].point = ExePointNumber;

if (BeginMove = FALSE)

{
if (index > 5)
takedata = OFF;
else
index++;
}

if (datapointer++ > 395) takedata = OFF;
}

if (PlOstatus.PIOAmode & 0x2) == 0x0)
PlOstatus.PIOAmode |= 0x2;

else
PlOstatus.PIOAmode &= 0xfd;

outport (PIODA, PIOstatus.PIOAmode);

Y

Velocity loop!

This task generates the velocity actuation and also takes the sensor
data from the encoder.

uses the shared variables PseudoVelo for input,
and gActPosition, gActVelocity for output.

*/

nodebug task0()
{

static long pVelo, dResult;

static long DeltaVEr0, DeltaVEm1, DeltaVEn2;
static BYTEMODE RealActuation;

static long vActuation;

static unsigned int result0;

static int result;

static float dAbsPos[5];

static long OldgActPosition;

static int index, RollOver;

static unsigned int 100, lo1, hi0, hi1;

#GLOBAL_INIT

{
RollOver = 0;
result = result0 = 0;
gActPosition = 0;
dAbsPos[0] = dAbsPos[1] = dAbsPos[2] = dAbsPos[3] = OL;
DeltaVEr0 = DeltaVErr1 = DeltaVEm2 = 0OL;
index = 0;

45

}

OldgActPosition = gActPosition;
/" result = ((inport (0x80) << 8) & 0xff00) | inport (0x81); */

do

Di();

100 = inport (0x81);

hi0 = inport (0x80); /* stabilize results */
lo1 = inport (0x81);

hi1 = inport (0x80);

El();

while (100 != 101) Il (hi0 I= hi1));
result = ((hi1 << 8) & 0xff00) | lo1;

gActPosition = 5588.0 * p2sin (16.1125 + (0.00409091 ~ (float)result));

dAbsPos[1] = dAbsPos[0};
dAbsPos[0] = gActPosition - OldgActPosition;
gActVelocity = (long)((dAbsPos[0] + dAbsPos[1]) * 42.6667);

pVelo = PseudoVelo; /* transfer variables to local storage */
if (Reset2)

{
DeitaVErn?2 = DeltaVErr1 = DeltaVErn0 = OL;
vActuation = OL;
Reset2 = OFF;

}

if (gActPosition > AbsLimits)

outport (0x81, ServoNull.byte.lsb);
outport (0x82, ServoNull.byte.msb);
Control = OFF;

}

if (Control == OFF)

vActuation = 0;
retum;

}

DeltaVEmm2 = DeltaVErri1; */
DeltaVErr1 = DeltaVEnoO; */
DeltaVErr0 = pVelo - gActVelocity; */

vActuation += (long) */
({({((long)kvp*(long)(DeltaVErr0-DeltaVEm1)) + */
((long)kvi*(long)(DeltaVEr0)) + */
((long)kvd*(long)(DeltaVERO - (DeltaVErrt + DeltaVErr1) + */
DeltaVEm2)))); */

if (vActuation > (long)268304384) */
vActuation = 268304384; */
else */
if (vActuation < -268304384) */
vActuation = -268304384; */

FOTETIIYY O OYIFIEIYY O Oy i Yy

RealActuation.word = ((int)(vActuation >> 17)); */

if (pVelo > (long)2096128)
pVelo = 2096128;
else
if (pVelo < -2096128)
pVelo =-2096128;

46

RealActuation.word = (int)(pVelo >> 10);
Actuation.word = RealActuation.word;

RealActuation.word += D2AOFFSET;

Di();

k_lock();

outpont (0x81, (char)(RealActuation.byte.lsb));
outport (0x82, (char)(RealActuation.byte.msby});
k_untock();

El()

#JUMP_VEC NM!I_VEC NML_int
interrupt retn NMI_int()

{
Shutdown = TRUE;
Control = OFF;
outport (0x81, ServoNull.byte.Isb);
outport (0x82, ServoNull.byte.msb);
while (1)

{
hitwd();
if (Ipowerlo()) retum;

}

void FatalErrorHandler (unsigned code, unsigned address)

outport (0x81, ServoNull.byte.Isb);

outport (0x82, ServoNull.byte.msb);
Shutdown = TRUE;

Control = OFF;

while (1); /* stall until reset by watch dog */

float p2cos (float x)

{
return (p2sin (90.0 - x));
}

/Q
PROCEDURE: p2sin

PARAMETERS: float Y
RETURNS: float

METHOD: computes sin(Y) by:
sin (y + dy) = (sin y){(cos dy) + ([(cos x)/57.2958])(dy)
where Y =y + dy, y =int(Y), dy = frac(Y), and
the parameters are found from a lookup table. result is good
to about 5 places.

VARIABLES:
sinx are the values of sin{y) where y varies between 0->90
cosdx are the values of cos(dy) where dy varies between
0->1in 0.01 increments
cosxd are the values of [(cos y)/57.2958] where y varies
between 0->90
ALL fractional values have been shifted by multiplying by

65535 to obtain integers.
"/

nodebug fioat p2sin (float y)

{

static unsigned int sinx[} =

47

{0x0000,0x0478,0x08EF,0x0D66,0x11DB,

0x1650,0x1AC2,0x1F33,0x23A1,0x280C,

0x2C74,0x30D9,0x3539,0x3996,0x3DEE,

0x4242,0x4690,0x4AD9,0x4F 1B,0x5358,

0X578E,0x5BBE, 0x5FE6,0x6407,0x681F,

0x6C30,0x7039,0x7438,0x782F 0x7C1C,

0x8000,0x83D9,0x87A8,0x8B6D,0x8F27,

0x92D5,0x9679,0x9A10,0x9D9B, 0xA11B,
OxA48D,0xA7F3,0xAB4B,0XAES7,0xB1D4,
0xB504,0xB826,0xBB39,0xBE3E, 0xC134,
0xC41B,0xC6F2,0xCIBA,0xCC73,0xCF 1B,
0xD1B3,0xD43B,0xD6B2,0xD919,0xDB6E
0xDDB3,0xDFES,0xE208,0xE418,0xE616,
O0XE803,0xE9DD,0xEBAS,0xEDS5B,0xEEFE
OXFO8F,0xF20D,0xF377,0xF4CF,0xF614

OXF746,0xF864,0xF96F,0xFAG7,0xFB4B,

0XFC1B,0xFCD8,0xFD81,0xFE17,0xFES,
OXFF06,0xFF5F,0xFFAS, 0xFFD7,0xFFF5,
OXFFFF;

static unsigned int cosdx{] =

{OxFFFF,0xFFFF,0xFFFF ,0XFFFF,0xFFFF,
OxFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,
OxFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,
OxFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,
OxFFFF,0xFFFF,0xFFFF,0xFFFE,OxFFFE,
OxFFFE,0xFFFE,OxFFFE,0xFFFE,0xFFFE,
OXFFFE,OXFFFE,0xFFFE,0xFFFE,0xFFFE,
OxFFFE,0xFFFE,0xFFFE,0xFFFE,0xFFFD,
OxFFFD,0xFFFD,0xFFFD,0xFFFD,0xFFFD,
OxFFFD,0xFFFD,0xFFFD,0xFFFD,0xFFFD,
OxFFFD,0xFFFC,0xFFFC,0xFFFC,0xFFFC,
OxFFFC,0xFFFC,0xFFFC,0xFFFC,0xFFFC,
OxFFFB,0xFFFB,0xFFFB,0xFFFB,0xFFFB,
OxFFFB,0xFFFB,0xFFFB,0xFFFA,0xFFFA,
OxFFFA,O0xFFFA,OXFFFA,0xFFFA,0XFEFA,
OxFFF9,0xFFF9,0xFFF9,0xFFF9,0xFFF9,
OxFFF9,0xFFF8,0xFFF8,0xFFF8,0xFFF8,
OxFFF8,0xFFF8,0xFFF7,0xFFF7,0xFFF7,
OXFFF7,0xFFF7,0xFFF7,0xFFF6,0xFFF6,
OxFFF6,0xFFF6,0xFFF6,0xFFF5,0xFFFS,
OxFFF5});

static unsigned int cosxd[] =

{0x478,0x478,0x477,0x476,0x475,0x473,0x472,
0x46F,0x46D,0x46A,0x466,0x463,0x45F,0x45A,
0x456,0x451,0x44B,0x446,0x440,0x439,0x433,
0x42C,0x425,0x41D,0x415,0x40D,0x404,0x3FB,
0x3F2,0x3E8,0x3DF,0x3D4,0x3CA ,0x3BF,0x3B4,
0x3A9,0x39D,0x391,0x385,0x379,0x36C,0x35F,
0x352,0x345,0x337,0x329,0x31B,0x30C,0x2FD,
O0x2EE,0x2DF,0x2D0,0x2C0,0x2B0,0x2A0,0x230,
0x280,0x26F,0x25E,0x24D,0x23C,0x22B,0x219,
0x207,0x1F5,0x1E3,0x1D1,0x1BF,0x1AC,0x19A,
0x187,0x174,0x161,0x14E,0x13B,0x128,0x115,
0x101,0x0EE,0x0DA,0x0C7,0x0B3,0x09F,0x08B,
0x078,0x064,0x050,0x03C,0x028,0x014,0x000};

static float fremainder, x;
static unsigned int whole;

X=VY;
if (x < 0)

{

do

{
X=X+ 360;

while (x < 0);

48

}

if (x <= 90.0)

whole = (inf)x;
fremainder = (x - whole);

return ((float)((((unsigned long)sinx[whole] *
(unsigned)cosdx|(int)(fremainder * 100.0)]) +
((unsigned long)cosxd[whole] *
(unsigned)(fremainder * 65535)))
* 2.328377E-10));
}
else
if (x <= 180)

{
x=180.0-x;
whole = (int)x;
fremainder = (x - whole);

retumn ((float)((((unsigned iong)sinx{whole] *
(unsigned long)cosdx|(int)(fremainder * 100.0)]) +
{(unsigned long)cosxd[whole] *
(unsigned long)({fremainder * 65535)))
* 2.328377E-10));
}
else
if (x <= 270)

{
X =x-180.0;
whole = (in)x;
fremainder = (x - whole);

retumn ((float)({((unsigned long)sinx[whole] *

(unsigned long)cosdx|(int)(fremainder * 100.0)]) +
((unsigned long)cosxd[whole] *

(unsigned long)(fremainder * 65535)))

* (-2.328377E-10)));
}
else
if (x <= 360)

{
x=360.0-x;
whole = (int)x;
fremainder = (x - whole);

retumn ((float)((((unsigned long)sinx[whole] *
(unsigned long)cosdx|(int)(fremainder * 100.0)]) +
((unsigned long)cosxdiwhole] *
(unsigned long){fremainder * 65535)))
¥ (-2.328377E-10)));

return (-2);

49

Appendix F

Source Code Listing for
Rotation Joint SBC

50

#use rik.lib

’
This program would run on the Little Giant, the Tiny Giant and the CPLC.
If port 0 is also used as the Dynamic C programming port, you have to
load the serial interrupt routine during run time by doing the following:

(1) comment out:
#INT_VEC SERO_VEC Dz0_circ_int in 20232.lib
(2) in the code, declare:
extern void Dz0_circ_int();
(3) load the routine with:
reload_vec(14,Dz0_circ_int);

For use on unit 3, rotation joint

Changes:
5/15/97 v5.01 Changed PIOmode to single char only.
7/15/97 v6.00 changed to burst serial reception. 8 at a time!

#define SIMULATION 0

#define ON 1
#define OFF O
#define FWD 1
#define REV 0
#define FALSE O
#define TRUE 1

#define VERSION 6
#define SUBVERSION 00

#define CSAMPLE 800 /* clock periods: 512HZ */
#qeﬁne CTIME 0.001953 /* clock time */

#define D2AOFFSET 2047
#define ACTSCALE 1

/* int task0(), task1(), task2(), backgnd();
int (*Ftask(])()={taskO, task1, task2, backgnd}; */

int task1(), task2(), backgnd();
int (*Ftask[)() = {task1, task2, backgnd};

/‘

#define NTASKS 4
#define TASKO 0
#define TASK1 1
#define TASK2 2 */

#define NTASKS 3

#define TASK1 0

#define TASK2 1

#define TASKSTORE_SIZE 500
void (*TaskDispatchTable[30])();
typedef union bytemode

int word;
struct ByteStruct

char Isb;
char msb;

} byte;
} BYTEMODE;

struct PointListPoint

{
int toY, toX;
int Velocity;
int TimeSlices;
char PIOmode;

h
struct PiOstruct

char PIOAmode;
char PIOBmode;
7

struct PointListPoint PointList{1001];
shared struct PlOstruct PiOstatus;

struct PositionData

int time[3];

long position; /* variables for data logging */
long velocity;

int point;

L
struct PositionData data[410];
int datapointer, takedata;

int PointNumber, ExePointNumber; /* place in point list */
shared long gActPosition, gActVelocity; /* actual position and velocity */

shared long PseudoVelo; /" \PC variable b/w pos and velo loop */
shared BYTEMODE Actuation; /* system actuation */

float kpp, kpi, kpd; /* system position gains 1 unit, 1 in .01 units */

int kvp, kvi, kvd; /" system velocity gains 0.0001 units */

float kif; /* system feed forward gain 0.01 units */

int BeginMove; /* change to TRUE to begin motion */

int NewMove;

int UseVelocityControl; /* bypasses position controlier */
int Acceleration;
int BegTime[3], EndTime[3};

BYTEMODE ServoNull;

shared long MaxVelo, MaxLimits, AbsLimits;
shared int ActScale;

int Control, Shutdown, Reset1, Reset2;

int UnitNumber, DumpSerial;

char InString[255], OutString[255};

char PowerFail[] = "IPower fail\0*;

char SoftReset]} = "ISoft resef\0”;

char tbuf[384], rbuf{384];

int Analoglnput (char *, char *);
int HighVoltage (char *, char *);
int ChangeHighVoltage (char *, char *);
int InitPIO (char *, char *});

int OutinPIO (char *, char *);

int SetGetGain (char *, char*);
int ControlLaw (char *, char *);
int DtoAOut (char *, char *);

int PosLoad (char *, char *);

int ExecuteMove (char *, char *);
int Diagnostic (char *, char *);

int ShutDown (char *, char *);

int RevisionlLevel (char *, char *);
int MaxLimit (char *, char *);

52

void FatalErrorHandler (unsigned, unsigned);
float p2sin(float);

float p2cos(float);

void NotUsed(void);

long plant (int, int);

* extern void Dz0_circ_int(); */

/* 0x10 stores network node number, 0x12 stores null.Isb, 0x13 stores
null.msb */

root main ()
intindex;
if (wderror())

{
Shutdown = TRUE;
Control = OFF;
outport (0x81, ServoNull.byte.Isb);
outport (0x82, ServoNull.byte.msb);
op_kill_z1();
op_init_z1 (19200/1200, InString, UnitNumber);
while (1)
{

hitwd();
if (check_opto_command() == 1)
replyOpto22 (SoftReset, strien (SoftReset), 0);
}
}

_GLOBAL_INIT();

ERROR_EXIT = FatalErrorHandier;
BeginMove = FALSE;
UseVelocityControl = OFF;
Control = DumpSerial = OFF;
Shutdown = takedata = OFF;
NewMove = FALSE;

Reset1 = Reset2 = ON;
ExePointNumber = PointNumber = 0;
datapointer = 0;

gActVelocity = gActPosition = OL;
kpp = kpi = kpd = kff = 0;
kvp=kvi=kvd = 0;

MaxLimits = AbsLimits = 88000L;
Acceleration = 5000;

MaxVelo = OL;

ActScale = ACTSCALE;
Actuation.word =0; /* zero!*/
PlOstatus.PIOAmode = 0x1;
PlOstatus.PIOBmode = (char) 0;
UnitNumber = ee_rd(0x10);
ServoNull.byte.lsb = ee_rd(0x12);
ServoNull.byte.msb = ee_rd(0x13);

#if (SIMULATION == 0)

inport (0x82); * clear the encoder */
#else

plant (2,0);
#endif

outport (0x81, ServoNull.byte.lsb); 7 zero the d-to-a board */
outport (0x82, ServoNull.byte.msb); :

outport (PIOCA, 0xff); [* pioa command */
outport (PIOCA, 0x00); /* set all bits for output */
outport (0x41, (char)0x7); [/ disable interrupts */

outport (PIODA, PlOstatus.PIOAmode); /* pioa data */

53

outport (PIOCB, 0xcf); /* piob command */
outport (PIOCB, 0x00); /* set all bits for input */
outport (PIOCB, PIOB_VEC);

outport (PIOCB, 0x17);

outport (PIOCB, Oxfe);

outport (0x43, 0x7); /* disable interrupts */

/* outport (PIODB, PlOstatus.PIOBmode); */ /* piob data */
outport (PIOCB, 0x7);

/ﬁ

reload_vec (14, Dz0_circ_int);

Dinit_z0(rbuf, tbuf, 384, 384, 4, 9600/1200, 0, 0);
*/

op_init_z1 (19200/1200, InString, UnitNumber);

for (index = 0; index < 26; index++)
(TaskDispatchTable[index]) = NotUsed;

TaskDispatchTable['L'-'A"] = Analoginput;
TaskDispatchTable['H'-'A] = HighVoltage;
TaskDispatchTable['V'~'A"] = ChangeHighVoltage;
TaskDispatchTable['P'-'A"] = InitPIO;
TaskDispatchTable['D'-'A"] = OutinPIO;
TaskDispatchTable['G'-'A’] = SetGetGain;
TaskDispatchTable['C'-'A'l = ControlLaw;
TaskDispatchTable['A'-'A"] = DioAOut;
TaskDispatchTable['E'-'A"] = PosLoad;
TaskDispatchTable[X'<A’] = ExecuteMove;
TaskDispatchTable['I'-'A"] = Diagnostic;
TaskDispatchTable['M'-'A"] = MaxLimit;
TaskDispatchTable['S-'A] = ShutDown;
TaskDispatchTable['R-'A"] = Revisionlevel;

DI ();

init_kernel (};

run_every (TASK2, 100);
#if (SIMULATION == 0)

run_every (TASK1, 8);
#endif

init_timer0 (900);

El ()

backgnd ();

void NotUsed(void)
{

retumn;

}
nodebug backgnd ()
{

while (1)

{

#if (SIMULATION == 1)
task1();

#endif

if (Shutdown)
{
op_kill_z1();
op_init_z1 (19200/1200, InString, UnitNumber);
outport (0x81, ServoNull.byte.Isb);
outport (0x82, ServoNull.byte.msb);

while (1)
{

if (check_opto_command() == 1)

replyOpto22 (PowerFail, strlen (PowerfFail), 0);
hitwd();
}
}

if (check_opto_command() == 1)
{
strepy (OutString, *IOK\0");

InString{InString[1]} = "\0';
if (isalpha (InString[4]))

{
(*TaskDispatchTable[toupper(InString[4]) - ‘A"})
(InString+2, OutString);

/*
if (DumpSerial)

Dwrite_z0(InString+1, InString[0] - 2);
Dwrite_z0(OutString, strien (OutString));

}
*/

replyOpto22 (OutString, strien (QutString), 0);
}

}
while (1);

MaxLimit (char *In, char *Out)

char chvalue(8];
long value;

switch (toupper(*(In+3)))

case 'V /" >1MV98765. */ /* velocity limits */
stmcepy (chvalue, (In+4), 5);
chvalue[5] = \0;)
MaxVelo = atol (chvalue);
sprintf (Out, "OK");
break;
case 'L /*>1ML12345. */ /* Extension limits */
stmcpy (chvalue, (In+4), 5);
chvalue[5] = 0"
MaxLimits = atol (chvalue);
AbsLimits = MaxLimits + 200L;
sprintf (Out, "OK");
break;
case 'S /*>1MS2.*/ /* Actuator scaling */
stmcpy (chvalue, (In+4), 1);
chvalue[1] = "0} :
ActScale = atoi (chvalue);
sprintf (Out, *OK");
break;
case ‘N /" >1MN2047. */ /* set null point to 2047 */
stmepy (chvalue, (In+4), 4);
chvalue[4] =0,
ServoNull.word = atoi(chvalue);
if (ServoNull.word == -1)

{
ServoNull.byte.lsb = ee_rd (0x12);
ServoNull.byte.msb = ee_rd (0x13);
sprintf (Out, *>MN%4d.\0", ServoNull.word);
}

{

else

55

ee_wr (0x12, ServoNull.byte.Isb);
ee_wr (0x13, ServoNull.byte.msb);
sprintf (Out, “Servo null: %x %x", ee_rd (0x12), ee_rd(0x13));
outport (0x81, ServoNull.byte.Isb);
outport (0x82, ServoNull.byte.msb);
}
break;
case 'U: /*>1MU2. "/ /* set unit numberto 2%/

stmepy (chvalue, (In+4), 1);

chvalue[1] =0

ee_wr (0x10, atoi (chvalue));

sprintf (Out, *>1MU%1d.\0", ee_rd (0x10});

break;

}
}

Posload (char *In, char *Out)

char chvalue[8];

char **pchvalue;

long value;

int value1, index, index2, offset;
float CycTime;

float TempFloat1, TempFloat2;

if (*(In+3) =="'S')
{
stmepy (chvalue, (In+4), 4);
chvalue[4] ="\0";
value1 = atoi (chvalue);
if (value1 ==-1) /" >1ES__-1.*/

sprintf (Out, ">ES%5Id%5ld.", gActPosition, gActVelocity);
retum;

}
if (value1l ==-2) /*>1ES__-2.*/
{

else

sprintf (Out, ">ES%5ld%5d.", gActPosition, Actuation.word);
retum,
}
else
if ((value1 >= 0) && (value1 < PointNumber))

sprintf (Out, ">ES%5d%5d%4d%4d%1d.",
PointListjvalue1].toX,
PointlList{value1}.toY,
PointList{value1].Velocity,
PointList{value1].TimeSlices,
PointList[value1].PIOmode);
retumn;

}
sprintf (Out, "IES ERROR");
retum;

}

if (*(In+3) == R’}
/* replace pt 0000 */
/" >1ER0000123456987654000. pos=123456,velo=987654,pio=000 */
sprintf (Out, "OK");
retum;

}
if (*(In+3) == ')

{ /* >1EL1234512345987600. pos=12345,velo=9876,pio=00, in hex */

stnepy (chvalue, (In+4), 1);
chvalue[1]= "0
index = atoi (chvalue);

56

for (index2 = 0; index2 < index;)

offset =index2 * 15;

stmcpy (chvalue, in+(offset+5), 5);
chvalue[5] = 0

value = atoi (chvalue);

if ((value > MaxLimits))
PointList[PointNumber+index2].toX = MaxLimits;
else
PointList[PointNumber+index2].toX = (int)value;

stmepy (chvalue, In + (offset+10), 5);
chvalue[5] = "0
value = atoi (chvalue);
if (value > MaxLimits)
PointList{PointNumber+index2].toY = MaxLimits;
else
PointList{PointNumber+index2].toY = (int)value;

stmepy (chvalue, In + (offset + 15), 4);
chvalue[4] = "0
value = atoi(chvalue);

if ((value == 0) && (UseVelocityControl == OFF))
PointList{PointNumber+index2].Velocity = 200;

else
PointList{PointNumber+index2].Velocity = (intjvalue;

PointList[PointNumber+index2).PIOmode = atoi (In+(offset+18));
if (PointList[PointNumber+index2].Velocity != 0)
if (PointNumber == 0)

PointList{PointNumber].TimeSlices = 0;
}

else

{

#if (SIMULATION == 1)
printf ("Posl.oad Velocity: %d\n",
PointList{PointNumber].Velocity);
#endif
TempFloat1 = (float)(PointList[PointNumber+index2].toY -
PointList[PointNumber-1+index2].toY);
TempFloat2 = (float)(PointList[PointNumber+index2].toX -
PointList{PointNumber-1+index2].toX);
CycTime =
sqrt((TempFloat1 * TempFloat1)+(TempFloat2 * TempFloat2))
/ (float)PointList{PointNumber+index2]. Velocity;
PointList{PointNumber+index2).TimeSlices = CycTime * 64;

#if (SIMULATION == 1)
printf (*TimeSlices %d\n", PointList{PointNumber]. TimeSlices);
#endif

}
else
PointList{PointNumber+index2]. TimeSlices = 0;
index2++;
PointNumber += index2;

sprintf (Out, "OK");
retum;

57

}
if (*(In+3) == 'C))
{

PointNumber = 0;
ExePointNumber = 0;
datapointer = 0;
takedata = OFF;
sprintf (Out, "OK");
retum;

}
if (*(In+3) =="V') F>1EVIL Y

sprintf (Out, "OK");
if (*(In+4) =="'1")

{
UseVelocityControt = ON;
/* outport (PIOCB, 0x87); */ /* enable interrupt driven */

}
else
{
UseVelocityControl = OFF,
Reset1 = TRUE;
/* outport (PIOCB, 0x7); */ /* disable interrupt driven */
retum;
}

}
ExecuteMove (char *In, char *Out)

datapointer = 0;
takedata = ON;
ExePointNumber = 1;
BeginMove = TRUE;
NewMove = TRUE;

}

/* #INT_VEC PIOB_VEC intrExecuteMove */

/* interrupt reti int intrExecuteMove () ¥/
Y

takedata = ON; */

datapointer = 0; */

PiOstatus.PIOAmode = */
(PointList{[ExePointNumber].PlOmode & Oxfe); */
outport (PIODA, PlOstatus.PIOAmode); */

ExePointNumber = 0; */
BeginMove = TRUE; */
UseVelocityControl = OFF; */
ry

FIFOFRY Oy

Diagnostic (char *In, char *Out)
static int indexer;
#GLOBAL_INIT

indexer = 0;

)
switch (*(In+3))
case '0"

indexer = 0;
if (BeginMove == FALSE)

58

sprintf (Out, ">%4d.\0", datapointer);
else
sprintf (Out, * -1\0");
break;
case '1"
if (BeginMove == FALSE}

{
sprintf (Out, ">%u,%d,%ld,%Id.\0",
datafindexer].time[0], datafindexer].point,
datafindexer].position, datafindexer].velocity);
indexer++;
}
break;
case 2"
if (DumpSerial == TRUE)
DumpSerial = FALSE;

else
DumpSerial = TRUE;
break;
case ‘3"
sprintf (Out, ">%d\0", PointNumber);
break;

}
}

ShutDown (char *in, char *Out)
{
BYTEMODE index;

#if (SIMULATION == 1)
plant (2,0);
#endif

DI);
inport (0x82); /* clear the encoder */
outport (0x81, ServoNull.byte.Isb); /* zero the d-to-a board */
outport (0x82, ServoNull.byte.msb);
outport (0x41, (char)0xf); /* pioa command */
outport (0x41, (char)0x0); /* set all bits for output */
outpont (0x41, (char)0x7); /* disable interrupts */
outport (0x40, {(char)0x0); /* pioa data */
outport (0x43, (char)0xf); /* piob command */
outport (0x43, (char)0x0); /* set all bits for output */;
outport (0x43, (char)0x7); /* disable interrupts */
outport (0x42, (char)0x0); /* piob data */
Shutdown = ON;
UseVelocityControl = OFF;
sprintf (Out, "OK");

}

RevisionLevel (char *in, char *Out)
BYTEMODE index;

Control = OFF;

Shutdown = OFF;

BeginMove = FALSE;

NewMove = FALSE;
UseVelocityControl = OFF;

Reset! = Reset2 = ON;
gActVelocity = OL;

gActPosition = OL;

kpp = kpi = kpd = kff = 0;

kvp =kvi=kvd =0;

PointNumber = ExePointNumber = 0;
Actuation.word = 0;

outport (0x81, ServoNull.byte.lsb);
outport (0x82, ServoNull.byte.msb);
inport (0x82);

59

sprintf (Out, ">unit:%d Rev beta %d.%d.", UnitNumber, VERSION, SUBVERSION);
#f (SIMULATION == 1)

plant (2,0);
#endif
}

Analoglinput (char *In, char *Out) /* >1L0. channel 0 */

sprintf (Out, *>L%4d.", ad_rd8(atoi(In+3))});
}

HighVoltage (char *In, char *Out) /* >1H1. on, >1HO. off */

if (*(In+3) =="1")
{
hv_enb();
sprintf (Out, "OK");
}

else

{
hv_dis();
sprintf (Out, "OK");
}
}

ChangeHighVoltage (char *In, char *Out) /*>1V123. port pattern 123 */
char chvalue[4];

stmepy (chvalue, (In+3), 3);
chvalue[3] = 0;

hv_wr(atoi(chvalue));
sprintf (Out, "OK*);

InitPiO (char *In, char *Out) /* >1PA0103. mode 01, control 03, on PIO A */

{
char InChar{3};
char mode, control;

stmcpy (InChar, (In+4), 2);
InChar{2) = 0;
mode = atoi (InChar);

stmcepy (InChar, (in+6), 2);
controf = atoi (InChar);

switch (*(In+3))
{

case 'A"
outport (PIOCA, ((mode << 6) & 0x{0) | OxOf);
outport (PIOCA, (char)control);
sprintf (Out, "OK");
break;

case 'B"
outport (PIOCB, ((mode << 6) & 0x{0) | Ox0f);
outport (PIOCB, (char)control);
sprintf (Out, "OK");
break;

}
}

OutinPIO (char *In, char *Out) /* >1DOB000. Output on PIO B value 000,
>1DIA. Input on PIO A retumns 145 */

char chvalue[4];
int value;

60

61

chvalue[3] = 0;
switch (*(In+3))
{

case 'O"
if (*(In+4) =="A")
{
stmcepy (chvalue, (In+5), 3);
value = atoi(chvalue);
PlOstatus.PIOAmode = (char)value | (PIOstatus.PIOAmode & 0x3);
outport (PIODA, PlOstatus.PIOAmode);
sprintf (Out, "OK");
}
else
if (*(In+4) =="B")
{

stmepy (chvalue, (In+5), 3);

value = atoi (chvalue);
PlOstatus.PIOBmode = (char)value;
outport (PIODB, (char)value);
sprintf (Out, "OK");

}
break;
case 'l
if ("(In+4) =="A")
{

value = inport (PIODA);
sprintf (Out, “>DIA%3d.", value);
}
else
if (*(In+4) =='B')
{
value = inport (PIODB});
sprintf (Out, ">DIB%3d.", value);
}

break;

}
}

SetGetGain (char *In, char *out) /* >1GPP1234., Pos. Proportional to 1234
" -1" o report */
{
int value;
char chvalue[5];

strnepy (chvalue, (In+5), 4);
chvaluefd] = \0%

value = atoi (chvalue);
switch (*(in+3))
{

case 'V
switch (*(In+4))
{

case ‘F:
if (value == -1)

sprintf (out, *>GVF%4d.", (int)kff*100);
retum;

}

else

Reset1 = Reset2 = ON;;
kit = (float)value/100.0;
sprintf (out, "OK");

}

break;
case 'P"
if (value == -1) '

{
sprintf (out, *>GVP%4d.", kvp);
retumn;

}

else

{
Reset1 = Reset2 = ON;
kvp = value;
sprintf (out, "OK");

break;
case 'l'
if (value == -1)

{
sprintf (out, *>GV1%4d.", kvi);
retum;

}

else

{
Reseti = Reset2 = ON;
kvi = value;
sprintf (out, "OK");

break;
case 'D":
if (value == -1)

sprintf (out, ">GVD%44d.", kvd);

retum;
}
else
{
Reset1 = Reset2 = ON;
kvd = value;
sprintf (out, "OK");
break;
break;

case 'P":
switch (*(In+4))
{

case 'P"
if (value ==-1)

sprintf (out, ">GPP%4d.", (int)kpp);
retumn;

}

else

{
Reset1 = Reset2 = ON;
kpp = (float)value/10.0;
sprintf (out, "OK");
}
break;
case'l"
if (value == -1)

{
sprintf (out, ">GP1%44d.", (int)kpi);
retum;

}

else

Reset1 = Reset2 = ON;
kpi = (fioat)value/10.0; /* WAS 10000 */
sprintf (out, "OK");

break;
case 'D";

62

if (value == -1)

sprintf (out, ">GPD%44d.", (int)kpd);

retum;
}
else
{
Reset1 = Reset2 = ON;
kpd = (float)value/10.0;
sprintf (out, "OK");
break;

}
}

Controll.aw (char *In, char *out) /* >1C1. on, >1C0. off */
{
if (*(In+3) == '0")
{

BeginMove = OFF;

NewMove = FALSE;

Control = OFF;

{akedata = OFF;
UseVelocityControl = OFF;

outport (0x81, ServoNull.byte.Isb);
outport (0x82, ServoNull.byte.msb);
sprintf (out, "OK");

else
if (*(In+3) =="1")

Control = ON;
Resett = Reset2 = ON;
sprintf (out, "OK");
}
DtoAOut (char *in, char *out) /* >1A4321. 4321 on DioA */

char chvalue[5];
BYTEMODE value;

Control = OFF;

strncpy (chvalue, (In+3), 4);
chvalue[4] = \0;

value.word = atoi (chvalue);
outport (0x81, value.byte.Isb);
outport (0x82, value.byte.msb);
sprintf (out, "OK");

’

Position loop!
This task generates the actuation using PID.
communicates with the velocity loop thru the shared variable PseudoVelo

*/

nodebug task1()

static long ActPos, ActVelocity;

static float DeltaPErr0, DeltaPEm1, DeltaPErm2;
static float ipActuation;

static long DesVelo;

63

static int TimePeriods;

static float DesPos;

static int LastPoint;

static fong dResult, NewPos, EndPos;
static BYTEMODE RealActuation;

static unsigned resuit, result0;

static float dAbsPos[5];

static long OldgActPosition;

static int index, RollOver;

static unsigned int 100, lo1, hi0, hit;

static float yPosincrement, xPosincrement;
static float yPosBegin, xPosBegin, PrevNewPos;

#GLOBAL_INIT

ActPos = ActVelocity = OL;

DesPos = EndPos = 0;

DeltaPEr0 = DeltaPErr1 = DeltaPEm2 = 0;
DesVelo = OL;

ipActuation = 0;

TimePeriods = 0;

LastPoint = FALSE;

RoliOver = 0;

result = resultd = 0;

gActPosition = 0;

dAbsPos[0] = dAbsPos[1] = dAbsPos[2] = dAbsPos[3] = OL;
index = 0;

}
OldgActPosition = gActPosition;

#if (SIMULATION == 0)
do

{
DI(y;
100 = inport (0x81);
hi0 = inport (0x80); /* stabilize results */
lo1 = inport (0x81);
hi1 = inport (0x80);
ElQ; :

}
while ((100 = lo1) Il (hi0 != hit));
result = ((hi1 << 8) & 0xff00) | lo1;
#else
result = plant (1, 0);
#endif

dResult = (long)((fong)result - (Jong)resutio);

if (dResult > 32000)
RoliOver-—-;
else
if (-32000 > dResult)
RollOver++;

resulto = result;
gActPosition = (long)result + (long)(RoliOver * (long)65536);

dAbsPos[1] = dAbsPos[0];
dAbsPos[0] = gActPosition - OldgActPosition;
gActVelocity = (fong)((dAbsPos[0] + dAbsPos[1]) * 32.0);

if (gActPosition > AbsLimits)
{

outport (0x81, ServoNull.byte.Isb);
outport (0x82, ServoNull.byte.msb);
Control = OFF;

}

if (Control == OFF)

PseudoVelo = 0;
ipActuation = 0;
retum;

}

ActPos = gActPosition; /* transfer to local variables */
ActVelocity = gActVelocity;

if (Reset1)

DeltaPEr2 = DeltaPErr1 = DeltaPEr0 = 0;
ipActuation = 0;

DesPos = ActPos;

NewPos = ActPos;

EndPos = ActPos;

DesVelo =0;

TimePeriods = 0;

BeginMove = NewMove = FALSE;
UseVelocityControl = OFF;
Reset1 = OFF;

TimePeriods = 0;

}

#if (SIMULATION == 1)
gettimer (BegTime);
#endif

if (BeginMove == TRUE)
{
LastPoint = FALSE;
if (NewMove == TRUE) /* allows for interrupted move */

NewMove = FALSE;

TimePeriods = 0;

if (UseVelocityControl == ON)
DesVelo = PointL.ist[0].Velocity;

}
if ({((TimePeriods--) <= 1) && (UseVelocityControl == OFF))
{
if (ExePointNumber >= PointNumber)

ExePointNumber = PointNumber;
yPosBegin = PointList[ExePointNumber-1}.toY;
xPosBegin = PointList{ExePointNumber-1].toX;
EndPos = atan2 (PointList{ExePointNumber-1].toY,
PointList{ExePointNumber-1].toX) * 14005.6;
DesVelo = 0;
yPoslncrement = 0;
xPoslIncrement = 0;
BeginMove = FALSE;
}

else
if (PointList{ExePointNumber].TimeSlices != 0)

TimePeriods = (in)PointList{ExePointNumber]. TimeSlices;
yPosincrement = (PointList[ExePointNumber].toY -
PointList{ExePointNumber-1]).toY) /
(float) TimePeriods;
xPosIncrement = (PointList{ExePointNumber].toX -
PointList{ExePointNumber-1].toX)
/ (float) TimePeriods;
yPosBegin = PointList{ExePointNumber-1].toY;
xPosBegin = PointList{ExePointNumber-1}.toX;
DesPos = ActPos;

else

65

TimePeriods = 0;

yPosBegin = PointList{ExePointNumberl.toY;
xPosBegin = PoiniList{ExePointNumber].toX;
yPosincrement = xPosincrement = 0;
DesPos = ActPos;

DesVelo = 0;

}

}
hv_wr (PointList{ExePointNumber].PiOmode);
ExePointNumber++;
if (ExePointNumber == PointNumber) LastPoint = TRUE;
}

yPosBegin += yPosIncrement;

xPosBegin += xPosincrement;

PrevNewPos = DesPos;

DesPos = atan2 (yPosBegin, xPosBegin) * 14005.6;
DesVelo = (DesPos - PrevNewPos) * 64;

if ((LastPoint == TRUE) && (TimePeriods < 5)) DesVelo = 0;

else

yPosincrement = xPosincrement = 0;
DesPos = EndPos;

}

#if (SIMULATION == 1)
[+ printf (“time: %d Despos: %fin", TimePeriods, DesPos); */
#endif

DeltaPErn2 = DeltaPErr1; /* generate time history - 2 steps back */
DeltaPErr1 = DeltaPEr0;
DeltaPErr0 = DesPos - ActPos;

ipActuation +=
(((float)kpp * (DeltaPErr0 - DeltaPErr1)) +
((float)kpi * (DeltaPErr0)) +
((foat)kpd * (DeltaPErr0 - (DeltaPErr1+DeltaPErr1) + DeltaPEn?2)) +
(kff * (DesVelo - ActVelocity)));

#f (SIMULATION == 1)
gettimer(EndTime);
#endif

if (UseVelocityControl == ON})
PseudoVelo = DesVelo;
else

PseudoVelo = ipActuation;

if (PseudoVelo > (long)65504)
PseudoVelo = 65504;
else
if (PseudoVelo < -65504)
PseudoVelo = -65504;

RealActuation.word = (int)(PseudoVelo >> 5);
Actuation.word = RealActuation.word;

RealActuation.word += D2AOFFSET;
#if (SIMULATION == 0)
Di();
k_tock();
outport (0x81, (char)(RealActuation.byte.Isb));
outport (0x82, (char)(RealActuation.byte.msby));
k_untock();
EI);

#else
plant (0, RealActuation.word);
printf ("D,V,AA: %f %ld %ld %d %ld\n*, DesPos, DesVelo, gActPosition,
RealActuation.word, PseudoVelo);
#endif
}
}

P

This task takes sensor data.

nodebug task2()
static int index;

#GLOBAL_INIT
{
index = 0;

}

if (Shutdown == TRUE) retumn;
hitwd();

if (takedata == ON)
if (datapointer == 0) index = 0;

gettimer (data[datapointer].time);
data[datapointer].position = gActPosition;
datafdatapointer].velocity = gActVelocity;
data[datapointer].point = ExePointNumber;

if (BeginMove == FALSE)

if (index > 5)
takedata = OFF;
else
index++;

}

if (datapointer++ > 395) takedata = OFF;
}

if (PIOstatus.PIOAmode & 0x2) == 0x0)
PlOstatus.PIOAmode |= 0x2;

else
PlOstatus.PIOAmode &= Oxfd;

outport (PIODA, PiOstatus.PIOAmode);

/Q
Velocity loop!

This task generates the velocity actuation and also takes the sensor
data from the encoder.

uses the shared variables PseudoVelo for input,
and gActPosition, gActVelocity for output.

nodebug task0()
{

static long pVelo, dResult;
static long DeltaVEr0, DeltaVEm1, DeltaVEm2;
static BYTEMODE RealActuation;

static long vActuation;

static unsigned int result0, result;
static float dAbsPos[5];

static long OldgActPosition;

static int index, RollOver;

static unsigned int 100, lo1, hi0, hit;

#GLOBAL_INIT
RoliOver = 0;

result = resultd = 0;
gActPaosition = 0;

dAbsPos[0] = dAbsPos[1] = dAbsPos[2] = dAbsPos[3] = OL;

DeltaVEr0 = DeltaVErr1 = DeltaVEr2 = OL;
index=0;

}
OldgActPosition = gActPosition;

do

Di();

100 = inport (0x81);

hi0 = inport (0x80); /* stabilize results */
lot = inport (0x81);

hi1 = inport (0x80);

El);

}
while (100 != fo1) Il (hi0 != hi1));
result = ((hit << 8) & Oxff00) I lo1;

dResult = (long)((long)result - (long)result0);

if (dResult > 32000)
RollOver--;
else
if (-32000 > dResult)
RollOver++;

resultO = resuit;
gActPosition = (long)result + (fong)(RollOver * (long)65536);

dAbsPos[1] = dAbsPos|[0];
dAbsPos[0] = gActPosition - OldgActPosition;
gActVelocity = (fong)((dAbsPos[0] + dAbsPos[1)) * 42.6667);

pVelo = PseudoVelo; /* transfer variables to local storage */
if (Reset2)

DeltaVErr2 = DeltaVEm1 = DeltaVEmr0 = OL;

vActuation = OL;

Reset2 = OFF;
}

if (gActPosition > AbsLimits)

{
outport (0x81, ServoNull.byte Isb);
outport (0x82, ServoNull.byte.msb);
Contro! = OFF;

}
if (Control == OFF)

vActuation = 0;
retum;

}
/* DeltaVEm2 = DeltaVEr1; */

68

DeltaVEm1 = DeltaVEm0; */
DeltaVErr0 = pVelo - gActVelocity; */

vActuation += (long) */
({({{long)kvp*(long)(DeltaVErr0-DeltaVErr1)) + */
((long)kvi*(long)(DeltaVErT0)) + */
((long)kvd*(fong)(DeltaVEr0 - (DeltaVEm1 + DeltaVErr1) + */
DeltaVErr2)))); */

if (vActuation > (long)268304384) */
vActuation = 268304384; */

else */

* if (vActuation < -268304384) */

vActuation = -268304384; */

FIFFYOFEIIYY Oy

i 2

RealActuation.word = ((int)(vActuation >> 17)); */

if (pVelo > (long)2096128)
pVelo = 2096128;
else
if (pVelo < -2096128)
pVelo = -2096128,;

RealActuation.word = (int)(pVelo >> 10);
Actuation.word = RealActuation.word;

RealActuation.word += D2AOFFSET;
DI{);
k_lock();
outport (0x81, (char)(RealActuation.byte.Isb));
outport (0x82, (char)(RealActuation.byte.msb));
k_unlock();
El);
}

#JUMP_VEC NMI_VEC NMI_int
interrupt retn NMI_int()

{
Shutdown = TRUE;
Control = OFF;
outport (0x81, ServoNull.byte.lsb);
outport (0x82, ServoNull.byte.msby);
while (1)

{
hitwd();
if (!powerlo()) retum;

}
void FatalErrorHandler (unsigned code, unsigned address)
{

outport (0x81, ServoNull.byte.lsb);

outport (0x82, ServoNull.byte.msb);

Shutdown = TRUE;

Control = OFF;
while (1); /* stall until reset by watch dog */

}

float p2cos (float x)

return (p2sin (90.0 - x));

™

PROCEDURE: p2sin

PARAMETERS: float Y

69

RETURNS: float

METHOD: computes sin(Y) by:
sin (y + dy) = (sin y){(cos dy) + ([(cos x)/57.2958])(dy)
where Y =y + dy, y = int(Y), dy = frac(Y), and
the parameters are found from a fookup table. result is good
to about 5 places.

VARIABLES:

sinx are the values of sin(y) where y varies between 0->90

cosdx are the values of cos{dy) where dy varies between
0->1in 0.01 increments

cosxd are the values of {(cos y)/57.2958] where y varies
between 0->90

ALL fractional values have been shifted by multiplying by
65535 to obtain integers.

nodebug float p2sin (float y)
{

static unsigned int sinx{] =
{0x0000,0x0478,0x08EF,0x0D66,0x11DB,
0x1650,0x1AC2,0x1F33,0x23A1,0x280C,
0x2C74,0x3009,0x3539,0x3996,0x3DEE,
0x4242,0x4690,0x4AD9,0x4F1B,0x5358,
0x578E,0x5BBE,0x5FE6,0x6407,0x681F,
0x6C30,0x7039,0x7438,0x782F,0x7C1C,
0x8000,0x83D9,0x87A8,0x8B6D,0x8F27,
0x92D5,0x9679,0x9A10,0x9D9B,0xA11B,
0xA48D,0xA7F3,0xAB4B,0xAES7,0xB1D4,
0xB504,0xB826,0xBB39,0xBE3E,0xC134,
0xC41B,0xC6F2,0xC9BA,0xCC73,0xCF 1B,
0xD1B3,0xD43B,0xD682,0xD919,0xDB6E,
0xDDB3,0xDFES6,0xE208,0xE418,0XxE616,
0xE803,0xE9DD,0xEBAS5,0xEDSB,0XEEFE,
OxFO8F,0xF20D,0xF377,0xF4CF,0xF614,
0xF746,0xF864,0xFI6F ,0xFAG7,0xFB4B,
OxFC1B,0xFCD8,0xFD81,0xFE17,0xFE9SS,
0xFF06,0xFF5F,0xFFAS,0xFFD7,0xFFF5,
OxFFFF};

static unsigned int cosdx{] =
{OxFFFF,OXFFFF,0xFFFF,0xFFFF,0xFFFF,
OxFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,
OxFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,
OxFFFF,0XFFFF,0xFFFF,0xFFFF,0xFFFF,
OxFFFF,0xFFFF,0xFFFF,0xFFFE,OxFFFE,
OxFFFE,0xFFFE,0xFFFE,0xFFFE,0xFFFE,
OxFFFE,0xFFFE,0xFFFE,OxFFFE,0xFFFE,
OXFFFE,0xFFFE,0xFFFE,0xFFFE,0xFFFD,
OxFFFD,0xFFFD,0xFFFD,0xFFFD,0xFFFD,
OxFFFD,0xFFFD,0xFFFD,0xFFFD,0xFFFD,
OxFFFD,0xFFFC,0xFFFC,0xFFFC,0xFFFC,
OxFFFC,0xFFFC,0xFFFC,0xFFFC,0xFFFC,
OxFFFB,0xFFFB,0xFFFB,0xFFFB,0XFFFB,
OxFFFB,0xFFFB,0xFFFB,0xFFFA,0xFFFA,
OxFFFA,0xFFFA,0XFFFA,0XFFFA,0xFFFA,
OxFFF9,0xFFF9,0xFFF9,0xFFF9,0xFFF9,
OxFFF9,0xFFF8,0xFFF8,0xFFF8,0xFFF8,
OxFFF8,0xFFF8,0xFFF7,0xFFF7,0xFFF7,
OxFFF7,0xFFF7,0xFFF7,0xFFF6,0xFFF6,
OxFFF6,0xFFF6,0xFFF6,0xFFF5,0xFFF5,
OXFFF5});

static unsigned int cosxd[] =
{0x478,0x478,0x477,0x476,0x475,0x473,0x472,
Ox46F,0x46D,0x46A,0x466,0x463,0x45F,0x45A,

71

0x456,0x451,0x44B,0x446,0x440,0x439,0x433,
0x42C,0x425,0x41D,0x415,0x40D,0x404,0x3FB,
0x3F2,0x3E8,0x3DF,0x3D4,0x3CA,0x3BF,0x3B4,
0x3A9,0x39D,0x391,0x385,0x379,0x36C,0x35F,
0x352,0x345,0x337,0x329,0x31B,0x30C,0x2FD,
0x2EE,0x2DF,0x2D0,0x2C0,0x2B0,0x2A0,0x290,
0x280,0x26F,0x25E,0x24D,0x23C,0x228,0x219,
0x207,0x1F5,0x1E3,0x1D1,0x1BF,0x1AC,0x 19A,
0x187,0x174,0x161,0x14E,0x13B,0x128,0x115,
0x101,0x0EE,0x0DA,0x0C7,0x0B3,0x09F,0x08B,
0x078,0x064,0x050,0x03C,0x028,0x014,0x000};

static float fremainder, x;
static unsigned int whole;

X=Yy,;
if (x < 0)
{

do

{
X =X+ 360;

while (x < 0);

}

if (x <= 90.0)

whole = (int)x;
fremainder = (x - whole);

retumn ((float)((((unsigned long)sinx[whole] *
{unsigned)cosdx[(int)(fremainder * 100.0)]) +
((unsigned long)cosxd[whole] *
{unsigned)(fremainder * 65535)))
* 2.328377E-10));
}
else
if (x <= 180)

{
x =180.0 - x;
whole = (int)x;
fremainder = (x - whole);

retum ((float)((((unsigned long)sinx{whole] *
(unsigned long)cosdx{(int)(fremainder * 100.0)]) +
((unsigned long)cosxdwhole] *
(unsigned long)(fremainder * 65535)))
* 2.328377E-10));
}
else
if (x <= 270)

{
x=X-180.0;
whole = (inf)x;
fremainder = (x - whole);

retum ((float)((({unsigned long)sinx[whole] *
{unsigned long)cosdx](int)(fremainder * 100.0)]) +
((unsigned long)cosxd[whole] *
(unsigned long)(fremainder * 65535)))
* (-2.328377E-10)));
}
else
if (x <= 360)

{
x=360.0-x;
whole = (int)x;
fremainder = (x - whole);

retumn ((float)((((unsigned long)sinx[whole] *
(unsigned long)cosdx{(int)(fremainder * 100.0}]) +
((unsigned long)cosxd{whole] *
(unsigned long)(fremainder * 65535)))
* (-2.328377E-10)));

}
retum (-2);

}
#if (SIMULATION == 1)
#define FLOWGAIN 0.1

long plant (int service, int input)

static float position;
#GLOBAL_INIT

position = 0.0;

}

if (service == 1)
return {(long)position);
else
if (service == 2)
{
position = 0.0;
return ({long)position);

}
position += ((float)(input - 2047) * FLOWGAIN);

#endif

72

Appendix G

Source Code Listing for
Extension Joint SBC

73

#use rtk.lib
/* this program to be used on EXTENSION joint only! */

/'

This program would run on the Little Giant, the Tiny Giant and the CPLC.

If port 0 is also used as the Dynamic C programming port, you have to
load the serial interrupt routine during run time by doing the following:

(1) comment out:
#INT_VEC SERO_VEC Dz0_circ_int in z0232.lib
(2) in the code, declare:
extem void Dz0_circ_int();
(3) load the routine with:
reload_vec(14,Dz0_circ_int);

For unit 4, translation joint only!

CHANGES:
5/15/97 v5.11 changed PIOmode to single char only. 1 tums on gun,
0 turns it off again

7/15/97 v6.10 changed to burst point loading technique. loads 8 at a time.

#define SIMULATION 0

#define ON 1
#define OFF 0
#define FWD 1
#define REV 0
#define FALSE 0
#define TRUE 1

#define VERSION 6
#define SUBVERSION 10

#define CSAMPLE 800 /* clock periods: 512HZ */
#define CTIME 0.001953 /* clock time */

#define D2AOFFSET 2047
#define ACTSCALE 1

char HVreg{8];

#define HVO HVregl0]

#define HV1 HVreg[1]

#define HV2 HVreg[2]

#define HV3 HVreg[3]

#define HV4 HVreg|[4]

#define HVS HVreg[5)

#define HV6 HVreg{6] /* hydraulic shutoff solenoid */
#define HV7 HVreg[7] /* paint gun solenoid */

int tasko(), task1(), task2(), backgnd();
int (*Ftask[])()={task0, task1, task2, backgnd};

#define NTASKS 4

#define TASKO 0

#define TASK1 1

#define TASK2 2

#define TASKSTORE_SIZE 500
void (*TaskDispatchTable[30])();

typedef union bytemode

74

{
int word;
struct ByteStruct

char isb;
charmsb;
} byte;
} BYTEMODE;

struct PointListPoint

int toY, toX;
int Velocity;
int TimeSlices;
char PIOmode;
I3

struct P1Ostruct

{
char PIOAmode;
char PIOBmode;

k

struct PointListPoint PointList[1001];
shared struct PlOstruct PlOstatus;

struct PositionData

int time[3];

long position; /* variables for data logging */
long velocity;

int point;

I
struct PositionData dataf410];
int datapointer, takedata;

int PointNumber, ExePointNumber; /* place in point list */
shared long gActPosition, gActVelocity; /* actual position and velocity */

shared long PseudoVelo; /* IPC variable b/w pos and velo loop */
shared BYTEMODE Actuation; /" system actuation */

fioat kpp, kpi, kpd; /* system position gains 1 unit, | in .01 units */

int kvp, kvi, kvd, I* system velocity gains 0.0001 units */

float kif; /* system feed forward gain 0.01 units */

int BeginMove; /* change to TRUE to begin motion */

int NewMove;

int UseVelocityControl; /* bypasses position controller */
int Acceleration;
int BegTime[3], EndTime[3];

BYTEMODE ServoNuli;

shared long MaxVelo, MaxLimits, AbsLimits;
shared int ActScale;

int Control, Shutdown, Reset1, Reset2;

int UnitNumber, DumpSerial;

char InString[255], OutString[255];

char PowerFail[] = "!Power faiN0*;

char SoftReset(] = "!Soft resef\0";

char tbuf{384], rbuf[384];

int Analoglnput (char *, char *);

int HighVoltage (char *, char *);

int ChangeHighVoltage (char *, char *);
int InitPiO (char *, char *);

int OutinPIO (char *, char *);

int SetGetGain (char *, char*);

int ControlLaw (char *, char *);

int DtoAOut (char *, char *);

75

int PosLoad (char *, char *);

int ExecuteMove (char *, char *);
int Diagnostic (char *, char *);

int ShutDown (char *, char *);

int RevisionLevel (char *, char *);
int MaxLimit (char *, char);

void FatalErrorHandler (unsigned, unsigned);
float p2sin{float);

float p2cos(fioat);

void NotUsed(void);

long plant (int, int);

/* extern void Dz0_circ_int(); */

/* 0x10 stores network node number, 0x12 stores null.Isb, 0x13 stores
null.msb */

root main ()
intindex;
if (wderror(}))

{
Shutdown = TRUE;
Control = OFF;
outport (0x81, ServoNull.byte.Isb);
outport (0x82, ServoNull.byte.msb};
op_kill_z1();
op_init_z1 (19200/1200, InString, UnitNumber);
while (1)
{

hitwd();
if {check_opto_command() == 1)
replyOpto22 (SoftReset, strlen (SoftReset), 0);
}
}

_GLOBAL_INIT();

ERROR_EXIT = FatalErrorHandler,
BeginMove = FALSE;
UseVelocityControl = OFF;

Control = DumpSerial = OFF;
Shutdown = takedata = OFF;
HVO=HV1=HV2=HV3=HV4=HV5=HV6 =HV7 =0;
NewMove = FALSE,

Reset1 = Reset2 = ON;
ExePointNumber = PointNumber = 0;
datapointer = 0;

gActVelocity = gActPosition = OL;
kpp = kpi = kpd = kif = 0;
kvp=kvi=kvd = 0;

MaxLimits = AbsLimits = 88000L;
Acceleration = 5000;

MaxVelo =0L;

ActScale = ACTSCALE;
Actuation.word = 0; /* zero! */
PlOstatus.PIOAmode = Ox1;
PlOstatus.PIOBmode = (char) 0;
UnitNumber = ee_rd(0x10);
ServoNull.byte.Isb = ee_rd(0x12);
ServoNull.byte.msb = ee_rd(0x13);

#if (SIMULATION == 0)

inport (0x82); /* clear the encoder */
#else

plant (2,0);
#endif

76

outport (0x81, ServoNull.byte.Isb); /* zero the d-to-a board */
outport (0x82, ServoNull.byte.msb);

outport (PIOCA, 0xff); /* pioa command */
outport (PIOCA, 0x00); /* set all bits for output */
outport (0x41, (char)0x7); /* disable interrupts */
outport (PIODA, PlOstatus.PIOAmode); /* pioa data */
outport (PIOCB, Oxcf); /* piob command */
outport (PIOCB, 0x00); /* set all bits for input */

outport (PIOCB, PIOB_VEC);

outport (PIOCB, 0x17);

outport (PIOCB, Oxfe);

outport (0x43, 0x7); /* disable interrupts */

/* outport (PIODB, PlOstatus.PIOBmode); */ /* piob data */
outport (PIOCB, 0x7);

/1'

reload_vec (14, Dz0_circ_int);

Dinit_z0({rbuf, tbuf, 384, 384, 4, 9600/1200, 0, 0);
*/

op_init_z1 (19200/1200, InString, UnitNumber);

for (index = 0; index < 26; index++)
(TaskDispatchTablefindex]) = NotUsed;

TaskDispatchTable['L'-'A’l = Analoginput;
TaskDispatchTable['H'-'A'] = HighVoltage;
TaskDispatchTable['V'-'A'l = ChangeHighVoltage;
TaskDispatchTable['P'-'A"] = InitPIO;
TaskDispatchTable['D'~'A'l = OutinPIO;
TaskDispatchTable['G™-'A = SetGetGain;
TaskDispatchTable['C'-'A’} = ControlLaw;
TaskDispatchTable['A-'A"] = DtoAOut;
TaskDispatchTable['E'-'A"l = PosLoad;
TaskDispatchTable['X'-'A"l = ExecuteMove;
TaskDispatchTable['I''A'} = Diagnostic;
TaskDispatchTable['M-'A"] = MaxLimit;
TaskDispatchTable['S'-'A"] = ShutDown;
TaskDispatchTable['R"-'A"] = RevisionLevel;

Dt ()

init_kemel ();

run_every (TASK2, 100);
#f (SIMULATION == 0)

run_every (TASK1, 8);

run_every (TASKO, 20);
#endif

init_timer0 (900);

El(;

backgnd ();

void NotUsed(void)
{

retum;

}

backgnd ()

while (1)
{

#if (SIMULATION == 1)
task1();

#endif

if (Shutdown)
{

77

op_kill_z1(); .

op_init_z1 (19200/1200, InString, UnitNumber);
outport (0x81, ServoNull.byte.Isb);

outport (0x82, ServoNull.byte.msb);

hv_wr (0);

hv_dis();

while (1)
{

if (check_opto_command() == 1)
replyOpto22 (PowerFail, strlen (PowerFail), 0);
hitwd();
}
}

if (check_opto_command() == 1)

{
/* strepy (OutString, "IOK\0"); */
OutString[0] ="'
OutString[1] = 'O
OutStringf2] = 'K’;
QutString{3]} = 0;

InString[InString[1]] = \0';
r if (isalpha (InString[4])) */
{

I* (*TaskDispatchTable[toupper(InString[4]) - ‘A7) */
(*TaskDispatchTable[InString[4] - 'A)
(InString+2, OutString);
}
/ﬁ
if (DumpSerial)

Dwrite_20(inString+1, inString{0] - 2);
Dwrite_z0(OutString, stden (OutString));

}
*/

replyOpto22 (OutString, strlen (OutString), 0);
}

}
while (1);
}

MaxLimit (char *In, char *Out)

{
char chvalue[8];
long value;

switch (toupper(*(In+3)))
{

case 'V': /* >1MV98765. */ /* velocity limits */
stmcpy (chvalue, (In+4), 5);
chvaluel5] = "0
MaxVelo = atol (chvalue);
sprintf (Out, "OK");
break;
case'L: /*>1ML12345. */ /* Extension limits */
stmcpy (chvalue, (In+4), 5);
chvalue[5] = "\0%
MaxLimits = atol (chvalue);
AbsLimits = MaxLimits + 200L;
sprintf (Out, "OK");
break;
case 'S /*>1MS2.*/ * Actuator scaling */
stmcpy (chvalue, (in+4), 1);
chvalue[1] = 0}

78

ActScale = atoi (chvalue);
sprintf (Out, "OK");
break;
case ‘N /* >1MN2047. */ /* set null point to 2047 */
stmcepy (chvalue, (in+4), 4);
chvaluef4] = \0';
ServoNull.word = atoi(chvalue);
if (ServoNull.word == -1)

{
ServoNull.byte.Isb = ee_rd (0x12);
ServoNull.byte.msb = ee_rd (0x13);
sprintf (Out, ">MN%4d.\0", ServoNull.word);
}

else

{
ee_wr (0x12, ServoNull.byte.Isb);
ee_wr (0x13, ServoNull.byte.msb);
sprintf (Out, "Servo null: %x %x", ee_rd (0x12), ee_rd(0x13)});
outport (0x81, ServoNull.byte.Isb);
outport (0x82, ServoNull.byte.msb);

break;
case 'U: /*>1MU2.*/ /* set unit numberto 2 */
stmcepy (chvalue, (In+4), 1);
chvalue[1] =0%
ee_wr (0x10, atoi (chvalue));
sprintf (Out, *>1MU%1d.\0", ee_rd (0x10));
break;
}
}

PosLoad (char *In, char *Out)

char chvaluel8];

char **pchvalue;

long value;

int value1, index, index2, offset;
float CycTime;

float TempFloatt, TempFloat2;

if (*(In+3) =='S")
{
stmepy (chvalue, (in+4), 4);
chvalue[4] = 0%
valuet = atoi (chvalue);
if (value1 ==-1) /*>1ES_-1.%/

{
sprintf (Out, ">ES%51d%51d.", gActPosition, gActVelocity);
retum;

}
if (valuel == -2) /*>1ES__-2.%/

else

{
sprintf (Out, ">ES%5Id%5d.", gActPosition, Actuation.word);
retum;
}
else
if (value1 >= 0) &% (value1 < PointNumber))

{

sprintf (Out, *>ES%5d%5d%4d%4d%1d.",
PointList[value1].toX,
PointList[valuet].toY,
PointList{value1].Velocity,
PointList[value1].TimeSlices,
PointList{value1].PIOmode);

retum;

}
sprintf (Out, "ES ERROR");

79

retum;

}

if (*(In+3) == "R
/* replace pt 0000 */
I* >1ER0000123456987654000. pos=123456,velo=987654,pio=000 */
sprintf (Out, "OK");

retum;
}
if (*(In+3) == ")
{ /" >1EL123451234598760. pos=12345,velo=9876,pio=0 */

stmepy (chvalue, (In+4), 1);
chvalue[1}= 0%
index = atoi (chvalue);

for (index2 = 0; index2 < index;)

{
offset = index2 * 15;
stmcpy (chvalue, In + (offset+5), 5);
chvalue[5] = "\0';
value = atoi (chvalue);

if ((value > MaxLimits))
PointList{PointNumber+index2].toX = MaxLimits;
else
PointList[PointNumber+index2].toX = (int)value;

stmcpy (chvalue, In +(offset+10), 5);
chvalue[5] = \0";
value = atoi (chvalue);

if (value > MaxLimits))
PointList{PointNumber+index2].toY = MaxLimits;
else
PointList[PointNumber+index2].toY = (int)value;

stmepy (chvalue, In + (offset+15), 4);
chvalue[4] = "0,
value = atoi(chvalue);

if ((value == 0) && (UseVelocityControl == OFF))
PointList{PointNumber+index2].Velocity = 200;

else
PointList{PointNumber+index2].Velocity = {int)value;

PointList[PointNumber+index2].PIOmode = atoi {(In + (offset+19)));
if (PointList{PointNumber+index2].Velocity != 0)
if (PointNumber == 0)

PointList{[PointNumber].TimeSlices = 0;
}

else

{

#if (SIMULATION == 1)
printf ("PosLoad Velocity: %d\n*,
PointList[PointNumber].Velocity);
#endif
TempFloat1 = (float)(PointList{PointNumber+index2].toY -
PointList{PointNumber-1+index2].toY);
TempFloat2 = (float)(PointList{PointNumber+index2].toX -
PointList{PointNumber-1+index2].toX);
CycTime = ’
sqrt{(TempFloat1*TempFloat1) + (TempFloat2*TempFioat2))
/ (float)PointList{PointNumber+index2].Velocity;
PointList{PointNumber+index2). TimeSlices = CycTime * 64;

80

#if (SIMULATION == 1)
printf ("TimeSlices %d\n*, PointList[PointNumber].TimeSlices);

}
}

else

#endif

PointList[PointNumber+index2].TimeSlices = 0;
}

index2++;

}

PointNumber += index2;
sprintf (Out, "OK");
retum;

}
if ("(In+3) == 'C')

PointNumber = 0;
ExePointNumber = 1;
datapointer = 0;
takedata = OFF;
sprintf (Out, "OK");
retum;

}
if ((In+3) =="'V") P >1EV1. Y/
{

sprintf (Out, "OK");
if ("(In+4) =="'1")

UseVelocityControl = ON;
/" outport (PIOCB, 0x87); */ /* enable interrupt driven */

}
else
{
UseVelocityControl = OFF;
Reset1 = TRUE;
/* outport (PIOCB, 0x7); *//* disable interrupt driven */
}
retum;
}
}
ExecuteMove {(char *in, char *Out)
{
datapointer = 0;
takedata = ON;

ExePointNumber = 1;
BeginMove = TRUE;
NewMove = TRUE;

}

Diagnostic (char *In, char *Out)
static int indexer;

#GLOBAL_INIT
{

indexer = 0;

}
switch (*(In+3))
{
case '0":

indexer = 0;
if (BeginMove == FALSE)

sprintf (Out, ">%4d.\0", datapointer);
else
sprintf (Out, * -1\0");
break;
case '1"
if (BeginMove == FALSE)

{
sprintf (Out, ">%u,%d,%Id,%Id.\0",
data[indexer].time[0], data[indexer].point,
datafindexer].position, datafindexer].velocity);
indexer++;
}
break;
case '2"
if (DumpSerial == TRUE)
DumpSerial = FALSE;

else
DumpSerial = TRUE;
break;
case ‘3"
sprintf (Out, “>%d\0", PointNumber);
break;

}
}

ShutDown (char *In, char *Out)
{
BYTEMODE index;

#if (SIMULATION == 1)
plant (2,0);
#endif

hv_wr (0);
hv_dis();
DI();
inport (0x82); /* clear the encoder */
outport (0x81, ServoNull.byte.Isb); /* zero the d-to-a board */
outport (0x82, ServoNull.byte.msb);
outport (0x41, (char)Oxf); /* pioa command */
outport (Ox41, (char)0x0); /* set all bits for output */
outport (0x41, (char)0x7); /* disable interrupts */
outport (0x40, (char)0x0); /* pioa data */
outport (0x43, (char)0xf); /* piob command */
outport (0x43, (char)0x0); 7/ set all bits for output */;
outport (0x43, (char)0x7); /* disable interrupts */
outport (0x42, (char)0x0); /* piob data */
Shutdown = ON;
UseVelocityControl = OFF;
sprintf (Out, "OK");

}

RevisionLevel (char *In, char *Out)

BYTEMODE index;

Control = OFF;

Shutdown = OFF;
BeginMove = FALSE;
NewMove = FALSE;
UseVelocityControl = OFF;
Reset1 = Reset2 = ON;
gActVelocity = OL;
gActPosition = OL;

kpp = kpi =kpd = kff = 0,
kvp =kvi=kvd = 0;
PointNumber = ExePointNumber = O;
Actuation.word = 0;

82

outport (0x81, ServoNull.byte.lsb);

outport (0x82, ServoNull.byte.msb);

inport (0x82);

sprintf (Out, ">unit:%d Rev beta %d.%d.", UnitNumber, VERSION, SUBVERSION);
#if (SIMULATION == 1)

plant (2,0);
#endif
}

Analoginput (char *In, char *Out) /* >1L0. channel 0 */
{

sprintf (Out, ">L%4d.", ad_rd8(atoi(In+3)));
}

nodebug HighVoltage (char *In, char *Out) /*>1H1. on, >1HO0. off */
if (*(In+3) =="1)
{

hv_enb();

/* sprintf (Out, "OK"); */
/* strepy (Out, “OK\O"); */
tou,t = IOI;

*(Out + 1) =K
*(Out +2)=0;
}

else

{
hv_dis();
/* sprintf (Out, *OK"); */
/* strcpy (Out, "OK\0"); */
*Out="'0);
*(Out+1) = 'K}
*(Out+2) = 0;
}
}

nodebug ChangeHighVoltage (char *In, char *Out) /* >1V123. port pattem 123 */

char chvaluef4];
char value;

/* strncpy (chvalue, (In+3), 3);
chvalue[3} = 0;

value = atoi(chvalue); */

value = atoi (In+3);

HVreg[0] = value & 0x1;
HVreg[1} = (value >> 1) & Ox1;
HVreg(2] = (value >> 2) & Ox1;
HVreg[3] = (value >> 3) & Ox1;
HVreg[4] = (value >> 4) & 0x1;
HVreg[5] = (value >> 5) & Ox1;
HVreg[6] = (value >> 6) & 0x1;
HVreg[7] = (value >> 7) & 0x1;

/* sprintf (Out, "OK"); */
/* strepy (Out, "OK\O"); */
*QOut ='0

*(Out+1) ='K";

*(Out+2) = 0;

}

InitPIO (char *In, char *Out) /* >1PA0103. mode 01, control 03, on PIO A */

{
char InChar{3];
char mode, control;

strncpy (InChar, (In+4), 2);
InChar{2] = 0;

83

mode = atoi (InChar);

stmcpy (InChar, (In+6), 2);
control = atoi (InChar);

switch (*(In+3))
{

case ‘A"
outport (PIOCA, ((mode << 6) & 0xf0} | 0x0f);
outport (PIOCA, (char)control);
sprintf (Out, "OK*);
break;

case ‘B
outport (PIOCB, ((mode << 6) & 0xf0) | 0x0f);
outport (PIOCB, (char)control);
sprintf (Out, “"OK*);
break;

H
}

OutinPIO (char *In, char *Out) /* >1DOB000. Output on PIO B value 000,
>1DIA. Input on PIO A retumns 145/

char chvaluef4];
int value;

chvalue[3]} = 0;
switch (*(In+3))
{

case 'O
if (*(In+4) =="A")
{

stmepy (chvalue, (In+5), 3);
value = atoi(chvalue);
PlOstatus.PIOAmode = (char)value | (PIOstatus.PIOAmode & 0x3);
outport (PIODA, PiOstatus.PIOAmode);
sprintf (Out, "OK");

}

else

if (*(In+4) =='B")

{

stmcpy (chvalue, (In+5), 3);

value = atoi (chvalue);
PlOstatus.PIOBmode = (char)value;
outport (PIODB, (char)value);
sprintf (Out, "OK");

break;
case 'l
if (*(In+4) =="A")
{
value = inport (PIODA);
sprintf (Out, ">DIA%3d.", value);
}
else
if (*(In+4) =='B")
{
value = inport (PIODBY),
sprintf (Out, ">DiB%3d.", value);
break;

}
)

SetGetGain (char *In, char *out) /* >1GPP1234., Pos. Proportional to 1234
* -1"to report */
{

int value;
char chvalue[5};

strnepy (chvalue, (In+5), 4);
chvalue[4] = \0";

value = atoi (chvalue);
switch (*(In+3)}
{

case 'V":
switch (*(In+4))
{
case 'F":
if (value == -1)
{
sprintf (out, *>GVF%44d.", (int)kff*100);
retumn;

}

else

Resett = Reset2 = ON;
kif = (floatyvalue/100.0;
sprintf (out, “OK");

break;
case 'P"
if (value == -1)

sprintf (out, ">GVP%44d.", kvp);
retum;

}

else

Reset1 = Reset2 = ON;
kvp = value;
sprintf (out, "OK");
}
break;
case 'l
if (value ==-1)

{
sprintf {(out, ">GVI%4d.", kvi);
retum;

}

else

Reset1 = Reset2 = ON;
kvi = value;
sprintf (out, "OK*);

break;
case 'D"
if (value == -1)
{
sprintf (out, ">GVD%4d.", kvd);
retum;

else

Reset1 = Reset2 = ON;
kvd = value;
sprintf (out, "OK");
}
break;
}
break;
case 'P"
switch (*(In+4}))
{

case 'P"

85

if (value == -1)

{
sprintf (out, ">GPP%4d.*, (int)kpp);
retum;

}

else

{
Reset1 = Reset2 = ON;
kpp = (float)value;
sprintf (out, "OK");
}
break;
case 'l"
if (value == -1)

{
sprintf (out, *>GP1%4d.", (int)kpi);
retum;

}

else

Reset1 = Reset2 = ON;
kpi = (float)value; /* WAS 10000 */
sprintf (out, "OK");
}
break;
case ‘D"
if (value ==-1)

{
sprintf (out, *>GPD%44d.", (int)kpd);
return;

}

else

Reset1 = Reset2 = ON;
kpd = (float)value;
sprintf (out, "OK");

}

break;
}
}
}

nodebug ControlLaw (char *In, char *out) /*>1C1. on, >1C0. off */
{
if (*(In+3) == '0')

HV6 = 0;
hv_dis {);
BeginMove = OFF;
NewMove = FALSE;
Control = OFF;
takedata = OFF;
UseVelocityContro! = OFF;
outport (0x81, ServoNull.byte.Isb);
outport (0x82, ServoNull.byte.msb);
/ sprintf (out, "OK"); */
/* strepy (out, "*OK\O"); */
*out="0"
*(out+1) = 'K";
*(out+2) = 0;
}
else
if (*(In+3) =="1")
{
hv_enb ();
HVE = 1;
Control = ON;
Reset1 = Reset2 = ON;
r sprintf (out, "OK"); */

86

/* strepy (out, *OK\0?); */
*out = 'O
*(out+1) ="K
*lout+2) = 0;
}
}

DtoAOut (char *In, char *out) /* >1A4321. 4321 on DtoA */

char chvalue[5);
BYTEMODE value;

Control = OFF;

strnepy (chvalue, (In+3), 4);
chvalue[4] =0,

vaiue.word = atoi (chvalue);
outport (0x81, value.byte.isb);
outport (0x82, value.byte.msb);
sprintf (out, "OK");

/t

Position loop!
This task generates the actuation using PID.
communicates with the velocity loop thru the shared variable PseudoVelo

*/

nodebug task1()
{

static long ActPos, ActVelocity;

static float DeltaPEr0, DeltaPErmr1, DeltaPEmn?2;
static fioat ipActuation;

static long DesVelo;

static int TimePeriods;

static float DesPos;

static int LastPoint;

static long dResult, NewPos, EndPos;

static BY TEMODE RealActuation;

static int result;

static float dAbsPos[5];

static long OldgActPosition;

static int index, RollOver,;

static unsigned int lo0, lo1, hi0, hi1;

static float yPosincrement, xPosincrement;
static float yPosBegin, xPosBegin, PrevNewPos;

#GLOBAL_INIT
{

ActPos = ActVelocity = OL;

DesPos = EndPos = 0;

DeltaPErr0 = DeftaPEmr1 = DeltaPEm2 = 0;
DesVelo = 0L;

ipActuation = 0;

TimePeriods = 0;

LastPoint = FALSE;

RollOver = 0;

result = 0;

gActPosition = 0;

dAbsPos[0] = dAbsPos[1] = dAbsPos[2] = dAbsPos[3] = OL;
index =0;

}

OldgActPosition = gActPosition;

87

#if (SIMULATION == 0)
do

{
DIy
lo0 = inport (0x81);
hi0 = inport (0x80); /* stabilize results */
lo1 = inport (0x81);
hi1 = inport (0x80);
El();

while ({100 !=lo1) i (hi0 != hit));
result = ((hi1 << 8) & 0xff00) ! lo1;
#else
result = plant (1, 0);
#endif

gActPosition = 5588.0 * p2sin (16.1125 + (0.00409091 * (float)result));
dAbsPos[1] = dAbsPos[0];

dAbsPos[0} = gActPosition - OldgActPosition;

gActVelocity = (long)((dAbsPos[0] + dAbsPos[1]) * 32.0);

if (gActPosition > AbsLimits)

outport (0x81, ServoNull.byte.lsb);
outport (0x82, ServoNull.byte.msb);
Control = OFF;

}

if (Control == OFF)

PseudoVelo = 0;
ipActuation = 0;
retum;

}

ActPos = gActPosition; /* transfer to local variables */
ActVelocity = gActVelocity;

if (Reset1)
{

DeltaPErr2 = DeltaPErr1 = DeltaPErr0 = 0;
ipActuation = 0;

DesPos = ActPos;

NewPos = ActPos;

EndPos = ActPos;

DesVelo = 0;

TimePeriods = 0;

BeginMove = NewMove = FALSE;
UseVelocityControl = OFF;

Reset1 = OFF;

ExePointNumber = PointNumber = 0;

}

#if (SIMULATION == 1)
gettimer (BegTime);
#endif

if (BeginMove == TRUE)

{
LastPoint = FALSE;
if (NewMove == TRUE) /* allows for interrupted move */

NewMove = FALSE;

TimePeriods = 0;

if (UseVelocityControl == ON)
DesVelo = PointList{0].Velocity;

}
if ((TimePeriods--) <= 1) && (UseVelocityControl == OFF))
{

88

if (ExePointNumber >= PointNumber)

ExePointNumber = PointNumber;
yPosBegin = PointList{ExePointNumber-1}.toY;
xPosBegin = PointList{ExePointNumber-1].toX;

EndPos = sqrt ((yPosBegin * yPosBegin) +
(xPosBegin * xPosBegin));
DesVelo = 0;
yPoslincrement = 0;
xPoslIncrement = 0;
BeginMove = FALSE;
}

else
if (PointList[ExePointNumber].TimeSlices != 0)

TimePeriods = (int)PointList{ExePointNumber].TimeSlices;
yPosincrement = (PointList{ExePointNumber].toY -
PointList{ExePointNumber-1].toY) /
(fioat) TimePeriods;

xPoslncrement = (PointList{ExePointNumber].toX -
PointList{ExePointNumber-1}.toX)
/ (float)TimePeriods;
yPosBegin = PointList{ExePointNumber-1].toY;
xPosBegin = PointList{ExePointNumber-1].toX;
DesPos = ActPos;
}

{
TimePeriods = 0;
yPosBegin = PointLis{{ExePointNumber].toY;
xPosBegin = PointList{ExePointNumber].toX;
yPosincrement = xPosincrement = 0;
DesPos = ActPos;
DesVelo = 0;

}

}
HV7 = (PointList{ExePointNumber].PIOmode);
ExePointNumber++;
if (ExePointNumber == PointNumber) LastPoint = TRUE;
}

yPosBegin += yPosincrement;

xPosBegin += xPasincrement;

PrevNewPos = DesPos;

DesPos = sqrt ((xPosBegin * xPosBegin) + (yPosBegin * yPosBegin));
DesVelo = (DesPos - PrevNewPos) * 64;

if ((LastPoint == TRUE) && (TimePeriods < 5)) DesVelo = 0;

else

else
{
yPosincrement = xPosincrement = 0;
DesPos = EndPos;

}

#f (SIMULATION == 1)
[+ printf ("time: %d Despos: %fin", TimePeriods, DesPos); */
#endif

DeltaPEn?2 = DeltaPErm1; /* generate time history - 2 steps back */
DeltaPEnr1 = DeltaPEn0;
DeltaPErr0 = DesPos - ActPos;

ipActuation +=
(((float)kpp * (DeltaPEr0 - DeltaPErr1)) +
((float)kpi * (DeltaPEr0)) +
((Roat)kpd * (DeltaPErr0 - (DeltaPErr1+DeltaPErr1) + DeltaPEm2)) +

89

(kff * (DesVelo - ActVelocity)));

#f (SIMULATION == 1)
gettimer(EndTime);
#endif

if (UseVelocityControl == ON)
PseudoVelo = DesVelo;
else

PseudoVelo = ipActuation;

if (PseudoVelo > (long)65504)
PseudoVelo = 65504;
else
if (PseudoVelo < -65504)
PseudoVelo = -65504;

RealActuation.word = (int)(PseudoVelo >> 5);
Actuation.word = RealActuation.word;
RealActuation.word += D2AOFFSET;

#if (SIMULATION == 0)
DI(;
k_lock();
outport (0x81, (char)(RealActuation.byte.lsb));
outport (0x82, (char)(RealActuation.byte.msb));
k_unlock();
El(;
#else
plant (0, RealActuation.word);
printf ("D,V,A,A: %f %Id %Id %d %d %d\n", DesPos, DesVelo, gActPosition,
RealActuation.word, EndTime[0], BegTime[0]);
#endif

}
}

/Q
This task takes sensor data.

*/

nodebug task2()
static int index;

#GLOBAL_INIT
{

index=0;

}

if (Shutdown == TRUE) retum;
hitwd();

if (takedata == ON)
it
if (datapointer == 0) index=0;
gettimer (data[datapointer].time);
data[datapointer].position = gActPosition;
data[datapointer].velocity = gActVelocity;
data[datapointer].point = ExePointNumber;
if (BeginMove == FALSE)
{
if (index > 5)

takedata = OFF;
else

90

index++;

}
if (datapointer++ > 395) takedata = OFF;

if ((PlOstatus.PiOAmode & 0x2) == 0x0)
PlOstatus.PIOAmode I= 0x2;

else
PlOstatus.PIOAmode &= Oxfd;

outport (PIODA, PlOstatus.PIOAmode);

I

*/

nodebug task0()
{

char OldValue, NewValue;
#GLOBAL_INIT

{
OldValue = 0;
NewValue = 0;

}

NewValue = HVreg[0] | (HVreg[1] << 1) | (HVreg[2] << 2) |
(HVreg[3] << 3) | (HVreg[4] << 4) | {HVreg[5] << 5) |
(HVreg[6] << 6) | (HVreg[7] << 7);

if (OldValue != NewValue)

hv_wr (NewValue);
OldValue = NewValue;
}
}

#JUMP_VEC NMI_VEC NMI_int
interrupt reth NMI_int()

Shutdown = TRUE;

Control = OFF;

outport (0x81, ServoNull.byte.Isb);
outport (0x82, ServoNull.byte.msb);
hv_dis();

while (1)

{
hitwd();
if (\powerlo()) retum;

}

void FatalErrorHandler (unsigned code, unsigned address)

{

outport (0x81, ServoNull.byte.lsb);

outport (0x82, ServoNull.byte.msb);

Shutdown = TRUE;

Control = OFF;

hv_dis();

while (1); /* stall until reset by watch dog */
}

float p2cos (float x)

return (p2sin (90.0 - x));

91

/.

PROCEDURE: p2sin
PARAMETERS: float Y
RETURNS: float

METHOD: computes sin(Y) by:
sin (y + dy) = (sin y)(cos dy) + ([(cos x)/57.2958])(dy)
where Y =y + dy, y =int(Y), dy = frac(Y), and
the parameters are found from a lookup table. resultis good
to about 5 places.

VARIABLES:

sinx are the values of sin(y) where y varies between 0->90

cosdx are the values of cos(dy) where dy varies between
0->1in 0.01 increments

cosxd are the values of [(cos y)/57.2958] where y varies
between 0->90

ALL fractional values have been shifted by multiplying by
65535 to obtain integers.

*/

nodebug fioat p2sin (float y)
{

static unsigned int sinx[] =
{0x0000,0x0478,0x08EF,0x0D66,0x11DB,
0x1650,0x1AC2,0x1F33,0x23A1,0x280C,
0x2C74,0x30D9,0x3539,0x3996,0x3DEE,
0x4242,0x4690,0x4AD9,0x4F 1B,0x5358,
0x578E,0x5BBE,0x5FE6,0x6407,0x681F,
0x6C30,0x7039,0x7438,0x782F,0x7C1C,
0x8000,0x83D8,0x87A8,0x8B6D,0x8F27,
0x92D5,0x9679,0x9A10,0x9D9B,0xA11B,
0xA48D,0xA7F3,0xAB4B,0xAE97,0xB1D4,
0xB504,0xB826,0xBB39,0xBE3E,0xC134,
0xC41B,0xC6F2,0xC9BA,0xCC73,0xCF 18,
0xD1B3,0xD43B,0xD6B2,0xD919,0xDB6E,
0xDDB3,0xDFE6,0xE208,0xE418,0xE616,
0xE803,0xESDD,0xEBAS5,0xEDSB,0XEEFE,
0xFO8F,0xF20D,0xF377,0xF4CF,0xF614,
0xF746,0xF864,0xF96F,0xFA67,0xFB4B,
0xFC1B,0xFCD8,0xFD81,0xFE 17,0xFE98,
OxFF08,0xFF5F,0xFFAS,0xFFD7 ,0xFFF5,
OxFFFF});

static unsigned int cosdx[] =

{OxFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,
OxFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,
OxFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,
OxFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,
OxFFFF,0xFFFF,0xFFFF,0xFFFE,0xFFFE,
OxFFFE,0xFFFE,0xFFFE,OxFFFE,OXFFFE,
OxFFFE,0xFFFE,0xFFFE,0xFFFE,OXFFFE,
OxFFFE,0xFFFE,0xFFFE,0xFFFE,0xFFFD,
OxFFFD,0xFFFD,0xFFFD,0xFFFD,0xFFFD,
OxFFFD,0xFFFD,0xFFFD,0xFFFD,0xFFFD,
O0xFFFD,0xFFFC,0xFFFC,0xFFFC,0xFFFC,
0xFFFC,0xFFFC,0xFFFC,0xFFFC,0xFFFC,
OxFFFB,0xFFFB,0xFFFB,0xFFFB,0xFFFB,
OxFFFB,0xFFFB,0xFFFB,0xFFFA,0xFFFA,
OxFFFA,0xFFFA,0xFFFA,0xFFFA,0xFFFA,
OxFFF9,0xFFF9,0xFFF9,0xFFF9,0xFFF9,
OxFFF9,0xFFF8,0xFFF8,0xFFF8,0xFFF8,
OxFFF8,0xFFF8,0xFFF7,0xFFF7,0xFFF7,
OxFFF7,0xFFF7,0xFFF7,0xFFF6,0xFFF6,
OxFFF6,0xFFF6,0xFFF6,0xFFF5,0xFFFS,

92

OxFFF5);

static unsigned int cosxd[] =

{0x478,0x478,0x477,0x476,0x475,0x473,0x472,
0x46F,0x46D,0x46A,0x466,0x463,0x45F,0x45A,
0x456,0x451,0x44B,0x446,0x440,0x439,0x433,
0x42C,0x425,0x41D,0x415,0x40D,0x404,0x3FB,
0x3F2,0x3E8,0x3DF,0x3D4,0x3CA,0x3BF,0x3B4,
0x3A8,0x39D,0x391,0x385,0x379,0x36C,0x35F,
0x352,0x345,0x337,0x329,0x31B,0x30C,0x2F D,
Ox2EE,0x2DF,0x2D0,0x2C0,0x2B0,0x2A0,0x290,
0x280,0x26F,0x25E,0x24D,0x23C,0x22B,0x219,
0x207,0x1F5,0x1E3,0x1D1,0x1BF,0x1AC,0x19A,
0x187,0x174,0x161,0x14E,0x13B,0x128,0x115,
0x101,0x0EE,0x0DA,0x0C7,0x0B3,0x09F,0x08B,
0x078,0x064,0x050,0x03C,0x028,0x014,0x000};

static float fremainder, x;
static unsigned int whole;

X=y;
if (x < 0)

do
{

X = X + 360;

while (x < 0);

}

if (x <= 90.0)
{

whole = (int)x;
fremainder = (x - whole);

retumn ((float)((((unsigned long)sinx[whole] *
(unsigned)cosdx[(int)(fremainder * 100.0))) +
{(unsigned long)cosxd[whole] *
(unsigned)(fremainder * 65535)))
* 2.328377E-10));
}
else
if (x <= 180)

x=180.0-x;
whole = (inf)x;
fremainder = (x - whole);

retum ((float){({(unsigned long)sinx[whole] *

{unsigned long)cosdx{(int)(fremainder * 100.0)]) +
((unsigned long)cosxdwhole] *

(unsigned long)(fremainder * 65535)))

* 2.328377E-10));
}
else
if (x <= 270)

X=x-180.0;
whole = (int)x;
fremainder = (x - whole);

retum ((float){(((unsigned long)sinx{whole] *
(unsigned long)cosdx[(int)(fremainder * 100.0)]) +
((unsigned long)cosxdwhole] *
(unsigned long)(fremainder * 65535)))
* (-2.328377E-10)));

else

93

if (x <= 360)

{
x=360.0-x;
whole = (in)x;
fremainder = (x - whole);

retumn ((float)((((unsigned long)sinx[whole] *
(unsigned long)cosdx[(int)(fremainder * 100.0)]) +
((unsigned long)cosxdjwhole] *
(unsigned long)(fremainder * 65535)))
* (-2.328377E-10)));
}
return (-2);

}
#if (SIMULATION == 1)

#define FLOWGAIN 0.1
long plant (int service, int input)

{

static float position;

if (service == 1)
return ((long)position);
else
if (service == 2)
{
position = 0.0;
retumn,

}
position += ((float)(input - 2047) * FLOWGAIN);

#endif

94

Appendix H

Source Code Listing for
End Effector SBC

95

#include <stdio.h>

#define KEYPAD_SIZE 24
#define LK_LINES 4
#define LK_COLS 20
#define LK_BLINK 1
#define ON 1

#define OFF 0

#define FWD 1

#define REV 0

#define FALSE 0

#define TRUE 1

#define VERSION 2
#define SUBVERSION 7

#define CSAMPLE 900 /* clock peridds: 512HZ*/
#define CTIME 0.001953 /* clock time */

#define D2AOFFSET 2072
#define DEADBAND 300
#define ACTSCALE 1

/*** defines for RS232 communication ***/
#define IBAUD 1200 /* baud rate
without modem => 19200,9600, 4800, etc */
#define TBUFSIZE 384 1/ size of transmit buffer
#define RBUFSIZE 384 // size of receive buffer
#define CR "x0d'

int task0(), task1(}, task2(), backgnd();
/ int (*Ftask{4])()={taskO, task1, task2, backgnd}; */
int (*Ftask{2])()={task2, backgnd};

/ﬁ

#define NTASKS 4
#define TASKO 0
#define TASK1 1
#define TASK2 2

*/
#define NTASKS 2
#define TASK2 0

typedef union bytemode
{
int word;
struct ByteStruct

char isb;
char msb;
} byte;
} BYTEMODE;

/*** Structures ***/
struct CmmndFormat

char *Cmmnd; /* command string - pad with 0 for fill-in-the-blanks */
char ComLength; /* transmission length in bytes */

char RespLength;/* command response length */

char VarCommand;/* reserved for future use. Leave 0 */

b
struct CmmndFormét InitCmmnds]] = {

{",1,0,0}, /* 0: send two carriage retums to */
{~,1,0,0}, /* 1: autobaud the SR233 */

96

{"W00",4,0,0}, /* 2: send two carriage retums to */
{"W00",4,0,0}, /* 3: autobaud both motor controllers */
{*WO000 0AO0H",10,0,0}, /* 4: set up handshaking */

{*"W00/B 0",8,0,0}, /* 5: initialize motor drivers */

{*"W00/B 2*,7,0,0}, /* 6: set encoder initial value */

{*wooB 3°,8,0,0}, /* 7: HLLOHI,LO == 10, where bit 2 is */
{"W00/B 4",8,0,0}, /* 8: the low bit and bit 5 is the high bit */
{"Wo0B 5°,8,0,0}, /* 9: possible values are 0 to 15. */
{"woo/B 1°,8,0,0}, /* 10: latch encoder value */

{"WO00B 1%,7,0,0}, il h

{*wooB 2",7,0,0}, /" 12: reset all user bits high before move */
{"Wo0B 3",7,0,0}, /*13: %

{*Woo0B 4",7,0,0}, M4

{"WOQOB 5%,7,0,0}}; 715

struct PointListPoint

long ListPosition;
long ListVelocity;
char PIOmode;

float ListpGainScale;
float ListiGainScale;
k

struct PIOstruct

char PIOAmode;
char PIOBmode;

b

struct PointListPoint PointList][100], MotPointLis{{100];
shared struct PlOstruct PlOstatus;
struct CmmndFomat MotHomList[100};

long data[500}{2];

int datapointer, takedata;

int PointNumber, ExePointNumber;

shared int timeBeg[3], timeEnd[3];

shared long AbsPos;

shared long Velocity, PseudoVelo;

shared int VelocityControl;

int UseVelocityControf;

int kpp, kpi, kpd;

int kvp, kvi, kvd;

shared float pGainScale, iGainScale;
shared BYTEMODE Actuation, dActuation;
shared long MaxVelo, MaxLimits, AbsLimits;
shared int ActScale;

int Control, Shutdown, Reset1, Reset2;

int UnitNumber;

char [nString[255), OutString[255];

int BeginMove;

/* Global Variables for RS232 Communication ***/

char Out232{100], In232[100};

shared int ReadDelay;

char tbuf[TBUFSIZE}, // transmit buffer

char rbuffRBUFSIZE]; // receive buffer

char buffRBUFSIZE + 1}; // dummy buffer for receiving a complete command
char HomingCommands([50][15];// storage for homing commands

int Analoginput (char *, char *);

int HighVoltage (char *, char *);

int ChangeHighVoltage (char *, char *);
int InitP1O (char *, char *);

int OutinPIO (char *, char *);

int SetGetGain (char *, char®);

int ControlLaw (char *, char *);

int DtoAOut (char *, char *);

int PosLoad (char *, char *);

int ExecuteMove (char *, char *);
int TimingChange (char *, char *);
int ShutDown (char *, char *);

int RevisionLevel (char *, char *);
int MaxLimit (char *, char *);

int FlipRelay8 (char *, char *);

/*** Function Prototypes for RS232 Communication ***/
int init_232();

int TumMotor (char *, char *);

int ClearBuf(char *, int);

int Serial232Service(char *, int, int);

int EncoderService();

unsigned int CombineBits(char *, char *, char *, char *);

root main ()
{
_GLOBAL_INIT();

BeginMove = FALSE;

Control = OFF;

Shutdown = OFF;

takedata = OFF;

VelocityControl = OFF,
UseVelocityControl = OFF;
Reset1 = Reset2 = ON;
ExePointNumber = 0;

Velocity = AbsPos = OL;

kpp = kpi = kpd = 0;
kvp=kvi=kvd =0;

MaxLimits = AbsLimits = MaxVelo = OL;
ActScale = ACTSCALE;
Actuationword =0; /" zero!*/
dActuation.word = 0;

pGainScale = iGainScale = 1.0;
PlOstatus.PIOAmode = 0x1;
PlOstatus.PIOBmode = (char) 0;
UnitNumber = ee_rd(0x10);

inport (0x82); /* clear the encoder */
outport (0x81, Oxff); /* zero the d-to-a board */
outport (0x82, 0x07);

outport (PIOCA, 0xff); /* pioa command */
outport (PIOCA, 0x00); /* set all bits for output */

/* outport (0x41, (char)0x7); */ /* disable interrupts */
outport (PIODA, PlOstatus.PIOAmode); /* pioa data */

/* outport (PIOCB, Oxcf); */ I* piob command */

/* outport (PIOCB, 0x00); */ I setall bits for input */;
/* outport (PIOCB, PIOB_VEC), */

/* outport (PIOCB, 0x17); */

/* outport (PIOCB, 0xfe); *

/* outport (0x43, 0x7); */ /* disable interrupts */
I* outport (PIODB, PlOstatus.PIOBmode); */ /* piob data */
/* outport (PIOCB, 0x7); */

op_init_z1 (19200/1200, InString, UnitNumber);

Reset_PBus(); /* Initialize Relay8 board */
Stall(5000); /* 350 ms wait required after reset */
_GLOBAL_INIT();

DI (;
init_kernel ();
run_every (TASK2, 100);
/* run_every (TASK1, 23); */ /* 44.92 */ /* was 45 -or- 87.9 ms */
/* run_every (TASKO, 6); *//* 11.72*/ /* was 12 -or- 23.4ms */
init_timer0 (300); /* 512 hz clock, 0.001953 seconds */

El(;
backgnd ();
}

indirect backgnd ()
while (1)
if (check_opto_command() == 1)

{
InString[inString[1]] = \0’;
switch (toupper(inString[4]))

case 'L /" analog input requested */
Analoginput (InString+2, OutString);
break;

case 'H: /* high voltage enable/disable */
HighVoltage (InString+2, OutString);
break;

case 'V': /* high voltage change */
ChangeHighVoltage (InString+2, OutString);
break;

case 'P: /* Initiatize PIO */
InitPIO (InString+2, OutString);
break;

case 'D': /* Output/Input on PIO */
OutinPlO (InString+2, OutString);
break;

case ‘G /* Change gains */
SetGetGain (InString+2, OutString);
break;

case 'C: /* Control law */
ControlLaw (InString+2, OutString);
break;

case 'A": /" DioA output */
DtoAOut (InString+2, OutString);
break;

case 'E": /* position foad */
PosLoad (InString+2, OutString);
break;

case X" /* execute move */
ExecuteMove (InString+2, OutString);
break;

case t: /* change timing interval */
TimingChange (InString+2, OutString);
break;

case 'M: /* Maximum limits */
MaxLimit (InString+2, OutString);
break;

case 'S /* Emergency shutdown */
ShutDown (InString+2, OutString);
break;

case '‘R': /" Software revision leve! */
RevisionLevel (InString+2, OutString);
break;

case 'F: /" Fliprelay 8*/
FlipRelay8 (InString+2, OutString);
break;

case T /* Tum motor */
TumMotor (inString+2, OutString);

} .
replyOpto22 (OutString, strien (OutString), 0);
if (Shutdown) break;

)

}
while (1);

99

MaxLimit (char *In, char *Out)

}

char chvalue[8];
long value;

switch (*(In+3))
{

case 'V [>1MV98765. */ /* velocity fimits */
strnepy (chvalue, (In+4), 5);
chvaluef5] = "0
MaxVelo = atol (chvalue);
sprintf (Out, "OK");
break;
case 'L /*>1ML12345. "/ /* Extension fimits */
strnepy (chvalue, (In+4), 5);
chvalue[5) = \0";
MaxLimits = atol (chvalue);
AbsLimits = MaxLimits + 200L;
sprintf (Out, "OK");
break;
case'S: /*>1MS2.*/ /* Actuator scaling */
stmcpy (chvalue, (In+4), 1);
chvaluef1] = "0}
ActScale = atoi (chvalue);
sprintf (Out, "OK");
break;

}

PosLoad (char *In, char *Out)

char chvalue[8];
long value;
int valuet;

switch (*(In+3))

case 'S
stmcpy (chvalue, (In+4), 7);
chvalue[7] = \0"
valuet = atoi (chvalue);

if (value1 == -1) /*>1ES -1.%/

{
sprintf (Out, *>ES%7Id%7Id.", AbsPos, Velocity);
retum;

}

else

if (valuet ==-2) *>1ES -2.%/

{
[+ sprintf (Out, ">ES%6d.", Actuation.word); */
sprintf (Out, ">ES%6d.", timeEnd[0] - timeBeg[0]);
retum;

}

else

if (value1 >= 0)

{
sprintf (Out, ">ES%71d%71d%3d.",
PointList{value1].ListPosition,
PointList{value1].ListVelocity,
PointList{value1].PIOmode);
retum;

}
sprintf (Out, "OK");
retum;

break; /* replace pt 0000 */
case 'R': /* >1ER000012345679876543000. pos=1234567,velo=9876543,pio=0 */

stmcpy (chvalue, (In+4), 4);

100

chvalue[4] = "\0";
valuel = atoi (chvalue);

stmcpy (chvalue, (In+8), 7);
chvaluef7] = \0;
value = atol (chvalue);

if ((value > MaxLimits) && (MaxLimits != OL))
PointList[value1].ListPosition = MaxLimits,
else
PointList[value1].ListPosition = value;

stmcpy (chvalue, (In+15), 7);
chvalue[7] = "0}
value = atol(chvalue);

if ((value > MaxVelo) && (MaxVelo !=0L))
PointList[value1].ListVelocity = MaxVelo;
else
PointList[value1].ListVelocity = value;

if (PointList[value1].ListVelocity != OL)
if (PointList{value1].ListVelocity < 20000L)
{

PointList{value1].ListpGainScale = 1.8;
PointList[value1].ListiGainScale = 0.2;
}
" else
if (PointList[value1].ListVelocity < 80000L)
{

PointList{value1].ListpGainScale = 1.4;
PointListjvatue1].ListiGainScale = 0.5;
}

else

{
PointListivalue1].ListpGainScale = 1.0;
PointList{value1].ListiGainScale = 1.0;
}
}

else

PointListivalue1].ListpGainScale = 1.0;
PointList{value].ListiGainScale = 1.0;
}

strnepy (chvalue, (In+22), 3);

chvalue[3] = 0;

PointList{value1].PIOmode = atoi (chvalue);
sprintf (Out, "OK*);

break;

case'L': /*>1EL12345679876543000. pos=1234567,velo=9876543,pio=0 */

stmepy (chvalue, (In+4), 7);
chvalue[7] ="\0%
value = ato! (chvalue);

if ((value > MaxLimits) && (MaxLimits != OL))

else
PointList[PointNumber].ListPosition = value;

stmcpy (chvalue, (In+11), 7);
chvalue[7] = "\0';
value = atol({chvalue);

it ((value > MaxVelo) && (MaxVelo != 0L}))

PointList{PointNumber].ListVelocity = MaxVelo;

eise
PointList[PointNumber].ListVelocity = value;

PointList{PointNumber].ListPosition = MaxLimits;

101

if (PointList{PointNumber].ListVelocity != OL)
{
if (PointList{PointNumber].ListVelocity < 20000L)

PointList[PointNumber].ListpGainScale = 1.8;
PointList[PointNumber].ListiGainScale = 0.2;

}

else

if (PointList{PointNumber].ListVelocity < 80000L)

PointList[PointNumber].ListpGainScale = 1.4;
PointList[PointNumber].ListiGainScale = 0.5;
}

else

{
PointList[PointNumber].ListpGainScale = 1.0;
PointList[PointNumber].ListiGainScale = 1.0;
}
}

else

{
PointList[PointNumber].ListpGainScale = 1.0;
PointList{PointNumber].ListiGainScale = 1.0;

}

stmepy (chvalue, (In+18), 3);
chvalue[3] = 0;
PointList[PointNumber].PIOmode = atoi (chvalue);
sprintf (Out, "OK™);
PointNumber++;
break;

case 'C"
PointNumber = 0;
ExePointNumber = 0;
datapointer = 0;
sprintf (Out, *"OK");
break;

case 'V " >1EV1.Y
sprintf (Out, "OK");
if ("(In+4) =="1")
{

/" UseVelocityControl = ON; */
outport (PIOCB, 0x87); /* enable interrupt driven */

}

else

{
7 UseVelocityControl = OFF; */
outport (PIOCB, 0x7); /* disable interrupt driven */

break;

1
}

ExecuteMove (char *In, char *Out)

{
takedata = ON;
PlOstatus.PIOAmode =
(PointList[ExePointNumber].PIOmode & Oxfe); /* lower status flag */
outport (PIODA, PiOstatus.PIOAmode);

ExePointNumber = 0;
BeginMove = TRUE;
}

#INT_VEC PIOB_VEC intrExecuteMove

interrupt reti int intrExecuteMove ()

{

102

103

takedata = ON;

PlOstatus.PIOAmode =
(PointListiExePointNumber].PIOmode & Oxfe); /* lower status flag */
outport (PIODA, PlOstatus.PIOAmode),

ExePointNumber = 0;
BeginMove = TRUE;

TimingChange (char *In, char *Out)
{int index;
for (index=0; index < datapointer; index++)
r { printf ("n%d,%Id,%Id", index, datalindex][0], datafindex][1]); */

}
sprintf (Out, "OK");
}

ShutDown (char *In, char *Out)
{
BYTEMODE index;

index.word = D2AOFFSET;

inport (0x82); /* clear the encoder */

outport (0x81, index.byte.lIsb); /* zero the d-to-a board */
outport (0x82, index.byte.msb);

outport (0x41, (char)Oxf); /* pioa command */
outport (0x41, (char)0x0); /* set all bits for output */
outport (0x41, (char)0x7); /* disable interrupts */
outport (0x40, (char)Ox0); /* pioa data */

outport (0x43, (char)Oxf); /* piob command */
outport (0x43, (char)0x0); /* set all bits for output */;
outport (0x43, (char)0x7); /* disable interrupts */
outport (0x42, (char)0x0); /* piob data */

Shutdown = ON;

sprintf (Out, "OK");

RevisionLevel (char *In, char *Out)
{
BYTEMODE index;

Control = OFF;

Shutdown = OFF;

Reset1 = Reset2 = ON;

Velocity = AbsPos = 0L;

kpp = kpi =kpd = 0;

kvp=kvi=kvd = 0;

PointNumber = ExePointNumber = 0;

Actuation.word = 0;

index.word = D2AOFFSET;

outport (0x81, index.byte.lsb);

outport (0x82, index.byte.msb);

inport (0x82);

sprintf (Out, ">unit:%d Rev beta %d.%d.", UnitNumber, VERSION, SUBVERSION);
}

Analoginput (char *In, char *Out) /* >1L0. channel 0 */

{
sprintf (Out, ">L%44d.", ad_rd8(atoi(In+3)});
}

HighVoltage (char *In, char *Out) /*>1H1. on, >1H0. off */

if (*(In+3) == 1)

104

{
hv_enb(};
sprintf (Out, "OK™");

else
{
hv_dis();
sprintf (Out, "OK");
}
}

ChangeHighVoltage (char *In, char *Out) /*>1V123. port pattemn 123 */
char chvalue[4];

stmcpy (chvalue, (In+3), 3);
chvalue[3] = 0;

hv_wr(atoi(chvalue));
sprintf (Out, "OK");
}

InitP1O (char *In, char *Out) /* >1PA0103. mode 01, control 03, on PIO A */

{
char InChar[3};
char mode, control;

strncpy (InChar, (In+4), 2);
InChar{2] = 0;
mode = atoi (InChar);

stmepy (InChar, (In+6), 2);
control = atoi (InChar);

switch (*(In+3))
{

case ‘A"
outport (PIOCA, ((mode << 6) & 0xf0) | 0x0f);
outport (PIOCA, (char)control);
sprintf (Out, "OK");
break;

case 'B:
outport (PIOCB, ((mode << 6) & 0xf0) | 0x0f);
outport (PIOCB, (char)control);
sprintf (Out, "OK");
break;

}
)

OutinPIO (char *In, char *Out} /* >1DOB000. Output on PIO B value 000,
>1DIA. Input on PIO A retums 145 */

char chvalue[4];
int value;

chvalue[3] = 0;
switch (*(in+3))
{

case 'O"
if (*(In+4) == 'A)

stmcpy (chvalue, (In+5), 3);
value = atoi(chvalue);
PiOstatus.PIOAmode = (char)value | (PIOstatus.PIOAmode & 0x3);
outport (PIODA, PlOstatus.PIOAmode);
sprintf (Out, "OK™);

else
if (*(In+4) == 'B)

105

stmcpy (chvalue, (In+5), 3);
value = atoi (chvalue);

PlOstatus.PIOBmode = (char)value;
outport (PIODB, (charjvalue);
sprintf (Out, "OK"); .

break;
case'l"
if (*(In+4) =="A")
{

value = inport (PIODA);
sprintf (Out, ">DIA%3d.", value);
}

else
if (*(in+4) =='B")

value = inport (PIODB);
sprintf (Out, ">DIB%3d.", value);

break;

}
}

SetGetGain (char *In, char *out) /* >1GPP1234., Pos. Proportional to 1234
* -1" to report */

{
int value;
char chvalue[5];

stmepy (chvalue, (In+5), 4);
chvalue[4] = "\0%

value = atoi (chvalue),
switch (*(In+3))
{

case 'V
switch (*(In+4))
{

case 'P":
if (value == -1)
{
sprintf (out, ">GVP%4d.", kvp);
return;
}
else

{
Reset1 = Reset2 = ON;

kvp = value;
sprintf (out, "OK", kvp);
}
break;
case 'I"
if (value == -1)
{
sprintf (out, ">GVI%4d.", kvi);
retum;
else

{
Reset! = Reset2 = ON;
kvi = value;
sprintf (out, "OK");
}
break;
case 'D":
if (value =-1)

{

106

sprintf (out, ">GVD%4d.", kvd);
retum;

}

else

Reset1 = Reset2 = ON;
kvd = value;
sprintf (out, "OK");

break;

break;
case 'P":
switch (*(In+4))
{

case 'P":
if (value == -1)

{
sprintf (out, ">GPP%4d.", kpp);
retum;

}

else

{
Reset1 = Reset2 = ON;
kpp = value;
sprintf {out, "OK", kpp);

break;
case 'l"
if (value == -1)

{
sprintf (out, *>GP1%4d.", kpi);
retum;

}

else

{
Reset1 = Reset2 = ON;
kpi = value;
sprintf {out, “OK", kpi);

break;
case ‘D"
if (value = -1)

{
sprintf (out, ">GPD%4d.", kpd);
retum;

}

else
Reset1 = Reset2 = ON;
kpd = value;
sprintf (out, "OK", kpd);

break;

}
}
}

ControlLaw (char *In, char *out) /* >1C1. on, >1C0. off */
{
if (*(In+3) =='0")
{

Control = OFF;
sprintf (out, "OK");

else
if (*(In+3) =="'1")

{
Contro! = ON;

107

Reset1 = Reset2 = ON;
sprintf (out, "OK");

}
DtoAOut (char *In, char *out) /* >1A4321. 4321 on DtoA */

char chvalue[5};
BYTEMODE value;

Control = OFF;

stmepy (chvalue, (In+3), 4);
chvaluef4] = "\0%

value.word = atoi (chvalue);
outport (0x81, value.byte.lsb);
outport (0x82, value.byte.msb);
sprintf (out, "OK");

FlipRelay8 (char *in, char *Out) /* >1F51., relay 5, status 1*/
{ /* 1=0ON, 0=0OFF */

int board;

board=7;

* check to see if relay board is alive */
if(Poll_PBus_Node(Relay_Board_Addr(board))) sprintf(Out, “OK");
else

{
sprintf(Out, "Error*);
retum;

}

/* Set or clear relay */
Set_PBus_Relay(board,*(In+3),*(In+4));
}

/‘
This task generates the actuation using PID.

*/

indirect task1()

static long ActPos, DesPos, DesVelo;

static int DeltaPEr0, DeltaPErr1, DeltaPErr2;
static long dpActuation, pActuation;

static long ipActuation;

static long DeltaPos;

static int Timelntervals;

static float initialDesVelo;

#GLOBAL_INIT

ActPos = DesPos = DesVelo = 0L;
DeltaPErr0 = DeltaPErr1 = DeltaPEn2 = 0;
dpActuation = pActuation = OL;
ipActuation = DeltaPos = OL;

}

gettimer (imeBeg);

if (BeginMove == TRUE)
{
BeginMove = FALSE;
DesPos = PointList{ExePointNumber].ListPosition;
initialDesVelo = PointList[ExePointNumber].ListVelocity;
pGainScale = PointList{ExePointNumber].ListpGainScale;
iGainScale = PointList{ExePointNumber].ListiGainScale;

if (UseVelocityControl}

if (ExePointNumber == PointNumber)
VelocityControl = OFF;

else
VelocityControl = ON;

if (ExePointNumber++ >= PointNumber) ExePointNumber = PointNumber;
DeltaPos = DesPos - ActPos;
Timelntervals = (int) ((labs(DeltaPos) * 22.2618) / initialDesVelo);

}

else

DeltaPos = DesPos - ActPos;

}
if (labs(DeltaPos) < 100)

PlOstatus.PIOAmode [= Ox1; /* signal that we are done */
outport (PIODA, PlOstatus.PIOAmode);
takedata=OFF;

}

if (Resett)

{
DeltaPEr2 = DeltaPErr1 = DeltaPEm0 = 0;
ipActuation = OL;
dpActuation = OL;
Reset1 = OFF;
}

if (Control)

{
DeltaPEr2 = DeltaPErr1; /* generate time history - 2 steps back */
DeltaPErn1 = DeltaPEn0;
DeltaPErr0 = DeltaPos;

dpActuation = (long)((((float)kpp*pGainScale)*
(float)(DeltaPErr0-DeltaPErr1)) +
(((float)kpi*iGainScale)*
(fioat)(DeltaPErrQ)) +
((float)kpd*(float)(DeltaPErr0 -
(DeltaPEm1+DeltaPErr1) +
DeltaPErr2)));
ipActuation += dpActuation;

if (VelocityControl)
if (Timelntervals == 0)

PseudoVelo = (long){(float)ipActuation * 0.001);
BeginMove = TRUE;
}

else

{
PseudoVelo = (long)((float)DeltaPos * Timelntervals * 22.2618);
Timelntervals-;

}
}

else
if (DesVelo != OL)

pActuation = (long)((float)ipActuation * 0.001);

if (pActuation > DesVelo)
pActuation = DesVelo;
else
if (pActuation < -(DesVelo))
pActuation = -DesVelo;

}

108

109

else
PseudoVelo = (long)((floatlipActuation * 0.001);

}

else

pActuation = 0;
ipActuation = dpActuation = 0;

}
gettimer (timeEnd);
}
’ ——
This task takes sensor data.
*/

indirect task2()
if (takedata)

{
data[datapointer][0] = AbsPos;
data[datapointer++][1] = Velocity;
if (datapointer > 1000) datapointer = 1000;

if ((PlOstatus.PIOAmode & 0x2) == 0x0)
PlOstatus.PIOAmode I= 0x2;

else
PlOstatus.PIOAmode &= Oxfd;

outport (PIODA, PlOstatus.PIOAmode);

indirect taskO()

static long DesPos, pVelo;

static long DeltaVErO0, DeltaVErr1, DeltaVEr2;
static BYTEMODE RealActuation;

static long dvActuation, vActuation;

static unsigned int result0;

static unsigned int result;

static long dAbsPos[4], OldAbsPos;

static int index, RollOver;

static long dResult;

#GLOBAL_INIT
{

RollOver = 0;
result=0;
result = 0;
AbsPos =0;
dAbsPos[0] = 0;
dAbsPos[1]=0;
dAbsPos{2] = 0;
dAbsPos[3] = 0;
DeltaVEm0 = 0;
DeltaVErm1 = 0;
DeltaVEm2 = 0;
index = 0;

}
I gettimer (timeBeg); */
OldAbsPos = AbsPos;
result = ((inport (0x80) << B) & 0x{f00) | inport (0x81);
dResutt = (long) ((long)result - (fong)result0);

if (dResult > 32000)
RollOver--;
else
if (-32000 > dResult)
RoliOver++;

110

result0 = result;
AbsPos = (long)result + (long){RollOver * 65535);

dAbsPos[index] = AbsPos - OldAbsPos;
if ((index++) > 2) index = 0;
Velocity = (long)((float)(dAbsPos[0] + dAbsPos[1] + dAbsPosl2]) * 42.67);

I if (labs(Velocity) > (MaxVelo + 500L)) Control = OFF; */
/* if (AbsPos > AbsLimits) Control = OFF; */

pVelo = PseudoVelo; /* transfer variables to local storage */
if (Reset2)

{
DeltaVEr2 = DeltaVErr1 = DeltaVEr0 = OL;
dvActuation = OL;
vActuation = OL;
Reset2 = OFF;
}

if (Control)

{
DeltaVEr2 = DeltaVErr1;
DeltaVErt1 = DeltaVEr0;

DeltaVEm0 = pVelo - Velocity;

dvActuation = (long){((kvp*(long)(DeltaVEmr0-DeitaVErri)) +
(kvi*(long){DeltaVErr0)) +
(kvd*(long)(DeltaVEm0 -

(DeltaVErr1 + DeltaVErr1) +
DeltaVEm2))));
vActuation += dvActuation;

RealActuation.word = ((int)((float)vActuation * 0.0001));
Actuation.word = RealActuation.word;
RealActuation.word += D2AOFFSET;

if (RealActuation.word > 4095)
RealActuation.word = 4095;
else
if (RealActuation.word < 0)
RealActuation.word = 0;

outport (0x81, (char)(RealActuation.byte.Isb));
outport (0x82, (char)(RealActuation.byte.msb));

else

{
dvActuation = vActuation = 0;

RealActuation.word = D2AOFFSET;

}
[+ gettimer (imeEnd); */
}

/*** Initialization Function ***/

int init_232()
{
inti;
int mode = 4; /" 1 stop bit*/
/* no parity */
/* 8 data bits */
/* even parity */

/* CTS/RTS disabled */

I set to 4 for CTS off */

reload_vec(14,Dz0_circ_int); /* installs interrupt vector at runtime */
Dreset_zOrbuf(); /* reset receive and transmit buffers */
Dreset_z0tbuf();
Dinit_z0(rbuf,tbuf, RBUFSIZE, TBUFSIZE,mode,|IBAUD/1200,0,0);

/* initialize the SMC */
for(i=0;i<=15;i++)

{
sprintf(Out232,"%s%c", InitCmmnds|[il.Cmmnd,CR);
Dwrite_z0(Out232,InitCmmnds[i]. ComLength);

}
ClearBuf(Out232,98);
ClearBuf(In232,98);
ReadDelay=IBAUD/2;
Ik_init_keypad();
Ik_setbeep(500);

}

int ClearBuf(char in[100], int cnt)
static int index,count;

count=atoi(cnt);
for(index=0;index<count;index++) in[index] = \0";

}

int Serial232Service(char *In, int ComLen, int RespLen)

int err, cnt1;
char cnt{5];

ClearBuf(InString,40);
if(ComLen) /* if writing */

if(Dwrite_20(In,ComLen)); /* check for serial error */
else retum 0; /* write not successful */
In[ComLen-1]="0";

InfComLen]="0";

}
if(RespLen) /* if reading */
{

if(ComLen) lk_tdelay(ReadDelay);
/* delay if just wrote to smc */

err=cnt1=0;

do /* look for string length longer than one. if looked more
than 20 times, exit. */

if(cnt1>=20) /* took too long to get a response */

I'lk_setbeep(1000);
Ik_printf(*Took too long\n");*/
retum O;

}
if(err=Dread_z0(In,CRY))

if(strlen(In)>1) err=1;
else /* only carriage retum in retum */

{
err=0;
/*k_setbeep(300);
Ik_printf("Only CR\n");*/

cntl++;

}
while(err == 0);

111

retum 1;

}

int EncoderService(char *Out, char motf])

unsigned int value;
inti;
char a{40],b{40],c[40],d[40];

#GLOBAL_INIT

{
ClearBuf(a,40);
ClearBuf(b,40);
ClearBuf(c,40);
ClearBuf(d,40);

}

sprintf(Out232,"W0%cY 200%c",mot,CR);
if(Serial232Service(Out232, 9,0));
else retun 0O;
sprintf(Out232,"W0%cX%c",mot,CRY);
if(Serial232Service(Out232, 5,0));
else retum O;
Ik_tdelay(ReadDelay);
sprintf(Out232,"");
if(Serial232Service(Out232, 0,8));
else retumn O;

Ik_printf("after first read\n®);
stmepy(a,(Out232+2),5);
if(Serial232Service(Out232, 0,8));
else retum O;

lk_printf("after second read\n");
strnepy(b,(Out232+2),5);
if(Seral232Service(Out232, 0,8));
else retum 0;

Ik_printf(*after third read\n*);
stmepy(c,(Out232+2),5);
if(Serial232Service(Out232, 0,8));
else retum 0;

Ik_printf(*after fourth read\n");
stmcpy(d,(Out232+2),5);
value=CombineBits(a,b,c,d);
sprintf(Out,"%u" value);
lk_printf("E=%u\n",value);

retun 1;

}

/*** CombineBits
This function uses the formula:

value=(x>>(p+1-n))&~(~0<<n). [t gets n bits from position
pofx. For example, if (x,p,n)=(x,5,4), value would retum

the four bits in positions 5,4,3,2. */

/

unsigned int CombineBits(char "a, char *b, char *c, char *d)

unsigned int value, value1, value2, value3, value4;

value1 = (unsigned)atoi(a);
value2 = (unsigned)atoi(b);
value3 = (unsigned)atoi(c);
value4 = (unsigned)atoi(d);

valuel = (value1 >> 2) & ~(~0 << 4);
value2 = (value2 >> 2) & ~(~0 << 4);
value3 = (value3 >> 2) & ~(~0 << 4);
valued = (valued >> 2) & ~(~0 << 4);
value2<<=4;

value3<<=8;

value4<<=12;

112

113

value=valuetlvalue2ivalue3ivalue4;
retum value;

}

TumMotor (char *in, char *Out)
V->1TOVF010.
Sets values F, R, or S on motor0
>1TOVP10000.
Sets P, A, or N on motor0, P = 10000
C->1TOCG.
Sends a command to motor0
G=Go
| = Initialize
L - >1TOLP11234987. Load Memory.
Motor 0, Pos #1 = 1234, Vel #1 = 987
>1TOLX 200.
Motor 0, Execute memory at loc 200
>1TOLH1R 100.
Motor 0, Homing Routine command #1, R 100
Q->1T0QP.
Queries for F,.R,S,EN*/

inti, j, value, ret, PointNum, length;
static int index;

long Ivalue;

char chvalue[10], mot, dir;

#GLOBAL_INIT
for(i=0;i<50;i++) for(j=0;j<15;j++) HomingCommandsli][j]="\0";

}

ClearBuf(Out232,30); /* place null chars in Out232 */
strepy (chvalue, In+3, 1);

chvalue[1]="\0";

value = atoi{chvalue);

if(value==0) mot = 'D’;

else if(value==1) mot = 'E";

else mot ="0';

switch (Inf4])
{

case 'V

if((In[5)=="F)I(In[5]=="R)(In[5]=="S"))

{ /" value changes of F,R,S */
stmcpy (chvalue, In+6, 3);
chvalue[3] = \0;
value = atoi (chvalue);
sprintf (Out232, *W0%c%c¢ %d%c",mot,In[5],value,CR);
Serial232Service (Out232, 9,0);

}
else if{(In[5]=="P")II{In[5]=="A")|{In[5)}=="N"))
{ * value changes of P,AN */
stmcpy (chvalue, In+6, 5);
chvalue[5] = \0";
ivalue = atol (chvalue);
sprintf (Out232, "W0%c%¢ %ld%c",mot,In[5},Ivalue,CR);
Serial232Service (Out232, 11,0);
}
break;
case ‘C" /* send a command to motor */
switch (In[5])
{

case 'G"
sprintf(Out232, *"W0%cG%c*,mot,CR);
Serial232Service(Out232, 5,0);
break;
case 'l
init_232(); /* RS232 initialization routine */

break;
case 'R"

if (dir == '+) dir="";

else dir="+";

}

sprintf(Out232, "W0%c¢%c%c",mot,dir,CR);
Serial232Service(Out232, 5,0);
break;

case 'L
switch (In[5])
{

case ‘X"
sprintf(Out232, "W0%cY 200%c",mot,CR);
Serial232Service(Out232, 9,0);
sprintf(Out232, "W0%cX%c",mot,CR);
Serial232Service(Out232, 5,0);
break;

case 'P"
sprintf(Out232, “W0%c0%c",mot,CRY);
Seriai232Service(Out232, 5,0);
sprintf(Out232, "W0%cQ%c",mot,CR);
Serial232Service(Out232, 5,0);
break;

case 'H"
stmepy (chvalue, In+6, 1);
chvalue[1]=\0";
PointNum = atoi(chvalue);
if(PointNum==0) /* dump point list o smc */

{
sprintf(Out232, "W0%cY 10%c",mot,CR);

}

Serial232Service(Out232, 8,0);
sprintf(Out232, "W0%cE%c",mot,CR);
Serial232Service(Out232, 5,0);
for(i=1;i<=index;i++)

{
ClearBuf(Out232,30); /* place null chars in Out232 */
sprintf(Out232, "W0%c%s\0%c",mot,

HomingCommands[(PointNum-1)*15],CR);

value=strlen(Out232);
length=strlen(HomingCommands[(PointNum-1)*15])+4;
Ik_printf(*%d,%d," length,value);
Serial232Service(Out232, length,0);

}

sprintf(Out232, "W0%c0%c",mot,CR);
Serial232Service(Out232, 5,0);
sprintf(Out232, "W0%cQ%c",mot,CRY);
Serial232Service(Out232, 5,0);

retum;

else

{
In[In[0]}="0";

}

Infstrlen(In)-1}=\0%;

strcpy (HomingCommands[(PointNum-1)*15), In+7);
Ik_printf("%s,",HomingCommands[(PointNum-1)*15]);
index=PointNum;

break;
case 'E":

sprintf(Out232, *W0%cY 200%c",mot,CR);

Serial232Service(Out232, 9,0);
sprintf(Out232, "W0%cE%c",mot,CR);
Senial232Service(Out232, 5,0);

break;

}

break;

case 'Q"
if((In[5}=="F")II{In[5]=="R)Il(In[5]=='S"))
{

114

115

sprintf(Out232, "W0%c? %c%c",mot,In[5],CRY);
Serial232Service(Out232, 7,7);
tk_printf("%s\n",0ut232);

if((In[5}=="P)li(In[5}=="N"))

{
sprintf(Out232, *W0%c? %c%c",mot,In[5],CR);
Serial232Service(Out232, 7,10);
Ik_printf("%s\n",0ut232);

if(In[5]=="E")

{
EncoderService(Out232,mot);
Ik_printf("E=%s\n",0ut232);

}

break;

}
strncpy(Out,Out232,40);

116

Appendix I

End Effector SBC Commands

117

The CY545 motion controller receives commands as a string of ASCII characters, of the form WOxy z,
where "x" denotes the motor to receive the commands ("E" sends the command to motor controlling yaw,
"D" sends the command to the motor controlling the pitch of the paint gun, and "0" sends the command to
both motors), "y" denotes the command to be sent (a list of available commands appears in the CY545
users manual, but the most frequently used commands are listed below), and "z" is a number of either 8
bits or 24 bits, depending on the command (not all commands require a number following them, thus a
value for "z" is not always used). For example, to move the paint gun motor to position 300 using
previously defined values for speed, acceleration, and initial speed, the full command would be WODP

300 (here "P" is the command used to send the motor to a specified position).

Commands sent to the motion controller may either be executed one at a time, or queued and written to
the controller's EEPROM. The sending of commands to the motion controller is handled by the slave
code. Each command issued by the slave code is of the form >1Twxyz, where "w" specifies the motor ("0"
denotes motor "E", "1" denotes motor "D", and "2" denotes both motors), "x" specifies the type of
command to be sent (the command types are as follows: "V" indicates a value to be sent (such as a change
in motor speed, or a command to send the motor to a specific location), "C" indicates a command (such as
the initialization routine, or a change in motor direction), "Q" queries the value of a defined parameter
(speed, acceleration, position, etc.), and "L" indicates a command involving the loading of points into the
EEPROM), "y" denotes the specific command to be sent (the commands are the same as those described
above), and "z" is a numerical value of either 8- or 24-bits.

To load points into the EEPROM for subsequent execution, it is first necessary to initialize the motors to
be used, with the command string >1TxCI, where "x" defines which motor is to be initialized. The values
for "x" are described above. After initialization, the motion controller must be prepared to queue
commands, i.e., it must be informed that the commands to followed are to be written to the EEPROM and
not to be executed immediately. This is accomplished by the command string >1TxLP. Next, the
commands to be queued are entered one at a time as detailed above. The commands may be parameter
changes, positions to be moved to, or queries for parameter values, etc. When the commands to be queued
have been entered, the controller must be informed that the queuing is complete. This is accomplished
with the command string >1TxLLX. After this command has been entered, the program will have been
successfully written to the system's EEPROM, starting at value 200 in memory by default. In order to
change the starting memory location, changes must be made to the slave code. To begin executing the
commands thus written, the command string >1TxLX must be sent. The queued commands will then run
in sequence until the end of the queue has been reached. At this point, the current memory location will be
the location of the final executed command.

Example: To write a program for motor 1 that will set the speed value to 25, the acceleration to 30, the
initial speed to 10, and then move the motor to position 1300, the following command strings would be
sent:

>1TICI (initializes motor 1)

>1TIiLP (begins queuing sequence)
>IT1VR25 (sets speed of motor 1 to 25)
>1TIVS30 (sets acceleration of motor 1 to 30)

>1T1VFI10 (sets initial speed of motor 1 to 10)
>I1T1VP1I300 (sends motor to position 1300)
>1TILX (ends queuing sequence)

To execute these commands, the following command string would be sent:

>1TILX

After the commands had executed, the current memory location would be equal to that of the command
>1T1VP1300.

119

Appendix J

Hydraulic System Schematic

120

Joonpsuel], dInssalg 1d
Iojeorpuy ainssalg id
SA[EA pIousjog AS
A[RA WINIDY Ad
xog Ayinn
¢ obey
Addng

wney h u

8INSSBId MO

JATeA Joje[nSoy QInssorg Add
SA[EA PUEH AH

SATEA H99UD AD

I01en)oy DV

:SUOTIBIARIQQY

(isd 00s1) dwing
8INSSBld MO

e

(isd 0o0g) dwng
ainssalg ybiH

™,

¢

/

N

I AYd

— P\
T\

Addng joqoy sup] wnjay

Z abed
K

(€ Jo | abed) onewaysg aynespAH

121

ujelq asen

uopejoy —JM_Il_I T.M
n BT
oo Xl | X

YAS

au wnjay
\3_/

Aiddng joqoy

J0Joajjepug 9AS

| abeyd

XE] ens

NS

J0jenjdy Jeaul

(€ Jo Z abed) opewayog oynespAH

122

juoi4 ybry

wog
Jojenpy

Jojen)

wog
Jopray

juoid yen

oeg 6y

9 AH

\{
L

2 AHd ﬁ

HAS
o [¢]
)
mw / v \mm
1As 9o} gAs @
a2
g 8
m&» et Va
L/ \ \
s
L 3un AH
A dwnd juied
| ebed s sl_m_ll

8insseld Mo

(¢ Jo ¢ abed) onewayog alnespAy

123

Appendix K

Research Paper on
BASR Motion Planning Software

Control Structure of the U.C. Davis Stenciling
Robot

B. Ravani and P.W. Wong
U.C. Davis, Davis, CA 95616

October 27, 1997

Abstract

At the University of California, Davis Advance Highway Maintenance and
Construction Technology (AHMCT) Center, in conjunction with the Cal-
ifornia Department of Transportation (Caltrans), we have developed a
very large pantograph-type robot. When a painting subsystem is mated
to the robot’s end-eflector mounting plate, the robot system will be used
to paint highway and roadway markings on the road surface. Each road-
way marking consists of a message of eight (8) foot high alphanumeric
characters, generally spanning the width (12 feet) of a traffic lane. This
paper discusses the control system structure of the UCD/AHMCT robot,
and introduces a unique way to decouple coupled kinematic motion in
order to allow for simplied implementation of the robot controller.

1 Introduction

Painting roadway markings on the road surface is a tedious and hazardous
maintenance procedure. To create the markings, a work crew first must section
off a lane area and then layout a set of stencils corresponding to the desired
message. Once everything is in place, the crew uses a paint sprayer and coats
the road surface and stencils with paint. Where there are open spots in the
stencil is where the paint is deposited on the surface. After a suitable drying
period, the stencils are removed and the lane reopened. Each time this process
is repeated, the crew is exposed to traffic hazards since the crew must leave the
safety of their vehicles and work on the open roadway.

At the University of California, Davis Advanced Highway Maintenance and
Construction Technology (AHMCT) Center, we have developed a very long
reach pantograph-type robot (Figure 1) to accomplish the painting operations.
When the unit is fully extended, it has a reach of almost 15 feet. The base can
rotate approximately 270 degrees. One of the unique features of this design is
that all the joint actuators are located at the base of the robot. This co-location

124

Figure 1: A Large Robot

leads to extremely high stiffness to weight ratios since the robot structure does
not need to support the weight of the actuators.

As shown in Figure 2, the robot has two degrees of freedom: R and 4. The
movement in the R direction is controlled by a linear hydraulic acutator, oper-
ating on the pivot of the pantograph. Motion is amplified by the pantograph
mechanism according to an 8.3:1 ratio. Thus, for each inch the hydraulic actua-
tor moves, the tool center point moves linearly 8.3 inches. Rotation of the robot
arm is controlled by a hydraulic motor mounted in the base. Position of the
arm is determined by two optical encoders mounted as shown in Figure 2. Note
that the extension length of the arm is indirectly sensed through the rotation
angle of the upper arm link.

In order to paint the roadway markings in a consistent fashion, the robot arm
must move the tool center point (to which is mounted the painting mechanism)
from point-to-point locations in an accurate way, as well as follow accurately a
prescribed trajectory motion. The arm must follow a prescribed trajectory in
order to create acceptable letter profiles with an evenly coated painted surface.
The trajectory path planning is done in a separate software module that is
discussed elsewhere.

125

126

Figure 2: Degrees of Freedom

2 Arm Hardware Description

2.1 Sensor Configuration

The location of the tool center point is determined by two (2) rotary optical en-
coders. Each encoder is a quadrature type encoder capable of resolving forward
and backward motion. The encoder resolution is 88,000 pulses per revolution
or approximately 0.0041 degrees. One encoder is mounted on the shaft of the
hydraulic motor and senses the rotation of the base of the arm. The other
encoder is mounted on one joint to the pantograph parallelogram mechanism
and senses the angle of the parallelogram. This angle is converted by software
into a linear distance for the arm extension. Joint velocity is also computed by
software using a finite difference approximation. Both encoders are interfaced
with a custom designed encoder board. On this encoder board is an HP2020
which maintains an absolute encoder pulse count, and thus relieves the need for
a computer or microcontroller to constantly monitor the encoders.

2.2 Kinematics

From Figure 3, the z,y coordinates of the tool center point is determined by
the following:

z = Rcos(8)
y = Rsin(0)

where R is the length of extension and 6 is the angle of rotation of the base of
the arm.

Since trajectory control is necessary to create a consistently coated painted
surface, accurate velocity control of motion is important. By taking time deriva-
tives of the equations for the location of the tool center point and rearranging,

we get the following:
z | _ | cosf ~Rsinb R (1)
y | | sinf Rcosf é

where the above 222 matrix is known as the Jacobian.

From the above equations, it can be seen that in order to move the tool
center point with a desired cartesian velocity (¢ and y), the configuration of all
the joints (¢ and R) must be known to compute the necessary joint velocities
(¢ and R) to accomplish the desired trajectory. In other words, the joints

are kinematically coupled together, since velocity profiles for individual joints
cannot be computed independently of the other joint configuration information.

127

128

Tool Center Point

Figure 3: Arm Coordinate System

Figure Not
Available.

o /

Figure 4: Hydraulic System Schematic

2.3 Inverse Kinematics

By using the kinematic eqauations presented in Section 2.2, the inverse kine-
matics for the UC Davis arm mechanism can be derived. Dividing the equation
for the y coordinate by the one for the # coordinate gives the following result:

% = tan(6) v (2)
> B:tan‘l(%). 3)

. From Figure 3, it can be seen that
R=/(z*+v7). 4)

2.4 Hydraulic Control

Each arm joint motion is accomplished by using hydraulic motive power (Figure
4). For arm rotation, motion is accomplished by a hydraulic motor. For the arm
extension, linear motion is created by using a hydraulic cylinder. The cylinder’s
motion is amplified by the pantograph mechanism. The hydraulic power to both
the cylinder and the motor is controlled by a flow rate control hydraulic servo
valve. By supplying electrical current to the servo valve, a directly proportional
flow rate of hydraulic fluid is supplied from the hydraulic pump to the actuator.
Electrical current to the servo valve is supplied from custom designed voltage-
to-current (V-to-C) converters. The input to the V-to-C converter is a voltage
signal from a computer controlled digital-to-analog (D-to-A) converter.

129

3 Arm Control System

The UC Davis arm control system is composed of a special microcontroller ar-
chitecture. Instead of a uniprocessor computer control system, each joint is
controlled by its own single-board microcontroller. Communiation and coordi-
nation between the joints is accomplished by low-cost and robust RS-485 serial
communication local area networking.

3.1 Controller Arrangement

The UC Davis control system is a distributed processor system. However, in-
stead of a dedicated joint processor residing in one main computer, each joint
is independently controlled by its own microcontroller and signal conditioning
board (Figure 5). Input/Output to the joint controllers is accomplished by a
RS-485 Local Area Network (LAN) (see Section 3.2) The microcontrollers are
from Z-World Engineering and are software programmable in the C language.
The main CPU is from the Zilog Z-80 family and runs at 9.216 Mhz. The control
software for each of the joints is contained on the microcontroller. Each of the
signal conditioning boards are UC Davis custom designed and contain on-board
a 12 bit digital-to-analog converter, an encoder control chip, and associated logic
interface chips. Thus, to control the motion of the arm’s tool center point, two
(2) microcontrollers are required, one for each of the joints. Additional units
are used to control the paint gun, as well as monitor the robot’s hydraulic and
electric subsystems. Furthermore, there is one microcontroller with a keypad
that is used for user interaction and information display. Together with the joint
controllers, a master/slave arrangement is formed. Commands are transferred
from the keypad unit (master) to each of the joints (slave), which then execute
the commands.

3.2 Networking

Master/slave controller communication is accomplished through the use of RS-
485 serial communications (Figure 5). This protocol uses a two-wire intercon-
nection scheme and has a maximum line length of approximately 5000 feet.
Commands are transferred throughout the network at 19,200 bits per second.
Full error correction and detection are provided on both the sending and the
receiving side.

3.3 Communication Protocols

All joint controllers receive operating parameters through the RS-485 LAN in-
terface. A command string of the form >2A1090. is sent through the network.
The “2” in the command string is the address of the controller to which the
command is directed. The letter “A” is the command to be executed, followed

130

131

BAlBA 4« 19poaus
AleA & 19poous

QOBHSIL| SAJEA w>:u\wm / .

OAIBS/IBPOdUD e
Hep Aejes Q0BUBIUI GAEA m>=u\vﬁ
18]|0AUO2010W ONIOS/IBPOOUD fpigy
I9JJONUOI0IONU
oAlBA - Japoous

nun jonuoo
PioH pueH

OAISS/18POJUB ONIBS/IBpOoUS fejos

\h.m__o::ouoée 18]|CAU020IO{W e|qen eoelau|
pJed |ojuos Jojow 1addals AIOMISN Sob-6H

80BL8IU| AlRA 90BLSJU| SAlBA oMIp_»|52 /

100

Control System Configurati

Figure 5

by “1090” which is the parameter for the “A” command. The “.” marks the
end of the command. Also appended automatically to the command string dur-
ing network transmission is Error Correction Code (ECC) which informs the
receiving controller of whether the command was corrupted in transit or not.
If the command is corrupt, a retransmission is requested automatically. After
the receiving controller has decoded and executed the command, it transmits
the appropriate response back to the commanding unit. The response string
generally looks like >OK. All operating parameters, from gain changes to relay
driver status, is changable and obtainable through the network interface.

3.4 Control Software

Traditional robot path and trajectory planning generally involves the use of co-
ordinate transformations and the Jacobian to transform Cartesian space coordi-
nates (Figure 6, graph 1) and velocities (Figure 6, graph 2) into joint coordinates
(Figure 6, graph 3) and velocities (Figure 6, section 4). The joint coordinates
and velocities are then fed into the robot’s joint controllers and executed.

However, due to the latencies involved in inter-joint communications over the
LAN, the traditional techniques cannot be used on the UC Davis system. The
reason is evident when the terms in the Jacobian are examined (Equation 1). In
order to compute the output joint velocities, § and R, from the input cartesian
velocities, & and g, both the § and R values of the current configuration must be
known in order to complete the calculation. The UC Davis Motion Planner uses
a different approach. Instead of using the inverse kinematics and the Jacobian
to compute the joint coordinates and velocities, respectively, the UCD joint soft-
ware first uses inverse kinematics to compute the joint coordinates, then derives
the necessary joint velocities by taking a backwards difference time derivative
of the joint coordinates. Schematically, in Figure 6, the UCD software starts at
graph 1, proceeds to graph 3 (by using inverse kinematics) and then arrives at
graph 4 (by using a backwards difference approximation) (Figure 7).

The control system software necessary to operate the arm consists of three
parts (Figure 8): the letter path generator, motion planner, and the control
law itself. Due to the distributed computing nature of the UC Davis controller
architecture, the different parts operate on different microcontrollers and coor-
dinate their activities through the network. In addition to the software that
directly controls the arm movement, fault tolerance and diagnostic software is
also present on each joint microcontroller.

3.4.1 Letter Path Generator (LPG)

The Letter Path Generator (LPG) is a software module that runs on the hand-
held interface unit. This software is responsible for interpreting user inputs and
generating the trajectory in cartesian space {z and y locations, as well as # and
¥) that the arm’s tool center point must move through in order to generate the

132

3
q 0 A
i 0 = f(xy)
Beg? R = g(xy) el End
2 3
3 2
4
End Begin .
X R
HERIH 3 0 N
. A BT
2, SN
X R

Figure 6: Cartesian to Joint Space Transformations

133

134

A
Begi 8 ="f(xy) Y
eg::w R=g(xy) P /4/ End
2 /__\A 3
3 gy
s | 1
End Begin > Backwards
- R difference
approximation
6 A
Begin *1\2\
_S\T End
R

Figure 7: UC Davis Cartesian to Joint Space Transformations

desired letter shape. Once all the trajectory points have been computed, the
z, y, £, and y values are uploaded through the network to each of the joint
microcontrollers.

3.4.2 Motion Planner

Once the joint microcontroller has received the trajectory points (Figure 9), the
Motion Planner software on the joint controller comes into use. First, the tra-
jectory planner calculates, based on the path length (s) between the trajectory
points and the requested velocity (V), the cycle time for the interval. Using the
cycle time for the interval, the motion interpolator then subdivides the path into
straight line segments that correspond to a distance As = V£0.015625. (Figure
10).

Since the control architecture does not allow inter-controller coummunica-
tions, individual joint microcontrollers do not have access to the other joints’
configuration information, such as position and velocity. Thus, in order to com-
plete the calculation of the inverse kinematics, the missing kinematic parameters
must be estimated. The kinematic parameter estimator (KPE) module is used
for this purpose. As the system runs, the KPE estimates the cartesian coordi-
nates of the tool centerpoint. In effect, the system is generating an idealized
trajectory profile for the tool centerpoint to follow. Once the estimated param-
eters are complete, the inverse kinematic transform (Section 2.3) equations are
used to compute the joint coordinates. Depending on the joint microcontroller,

135

Ajoojea
{enoe

uonisod
|enoe

e——

—! BAjEA OAIBS

lepeAuo) v/q

i

yied seye]

Figure 8: Control System Block Diagram

Begin

End

X

Figure 9: A Simple Two Point Path

A
Y
Begin

End

X

Figure 10: Path Subdivision by Motion Interpolator

either or R is utilized for control law input. In addition, f or R is computed
as described earlier, and also utilized for control law input.

3.4.3 PID Control Structure

The control law used on all joint microcontrollers is the standard “velocity-
form” of the descrete proportional-integral-derivative control law. However,
for enhanced transcient startup and shutdown performance, the control law is
modified by the addition of a velocity feedforward term. When high startup
speed is required by the motion planner, this velocity feedforward term gives
an additional actuator output boost to overcome the inertial and static friction
effects within the arm mechanism. Additionally, the motion planner is designed
so that near the end of the motion it inputs a large magnitude braking velocity

136

eA

/3/4/ End

/ 2
1
Begin

time

* End

.

time

Figure 11: Joint Motion Profile After Using Estimator and Inverse Kinematics

to the control law to aid in deceleration of the arm mechanism.

3.5 Fault tolerance

Safety of the workers is paramount during operation of the robot. In addition to
using engineering and design analysis to create a safe and reliable robot system
design, system safety during adverse and unanticipated conditions must also be
provided for. The UC Davis robot design incorporates four (4) different design
features in order to create a safe design. The four design features are: power
subsystem health monitoring, mechanical subsystem fault tolerance, electronic
subsystem fault tolerance, and software fault tolerance.

3.5.1 Power Subsystem Health Monitoring

The UC Davis robot design incorporates a dedicated microcontroller whose sole
purpose is to monitor the status of the power subsystem of the robot (Figure
-12). Inputs to the microcontroller include pressure readings of the high pressure
hydraulic system, the low pressure hydraulic system, differential hydraulic filter
pressure, and system pneumatic pressure. Additionally, temperature readings
of the engine coolant, paint heater and hydraulic oil tank are monitored by
the microcontroller. Paint fluid levels are also reported to the microcontroller.
If any parameter is out of specification, the microcontroller signals the hand-
held control pendant that a fault condition exists. Using the RS-485 local area
network, the hand controller then queries the power subsystem monitor for the
fault that was detected. If the fault is serious, the hand controller then will
initiate an auto-shutdown of the robot by broadcasting through the LAN that

137

138

fg.let{ level ta '
attery voltage .
engine oil pressure 1 Engine Subsystem
engine temperature |
air pressure E Prneumatic Subsystem
"""" hi pressure hydraulics |
lo pressure hydraulics ! Hydraulic Subsystem
hyd. oil temperature |
------------------- "
paint level i Painting Subsystem
paint heater temp. E alhting 4
S .'_'_'_'_"_'_'_‘_’_'.'_'.‘_"_'I
stabilizer position ! Stabilizer Subsystem
------------------ ' Security Subsystem

Figure 12: Health Monitoring -

all joint controllers begin automatic shutdown procedures. The joint controllers
will center the hydraulic servo valves, thereby stopping the flow of hydraulic oil
to the robot actuators. Then the hand controller will close the main hydraulic
supply valves. An informational message will flash on the display screen as to
what the error condition was and what actions were taken. If the fault is not
serious, but may indicate a future problem if preventive actions are not taken,
a warning message will be displayed on the hand controller as a reminder to the
operator that a condition exists that will provide degraded robot performance.

3.5.2 Mechanical Fault Tolerance

The UC Davis robot arm incorporates several mechanical design features to
allow for fault tolerance in the event of any unanticipated mechanical failure.
One of the major design rules is that all components be inactive or unpowered
in the quiescent state and that a constantly supplied actuation signal be nec-
essary to activitate the system. With the removal of the actuation signal, the -
system would revert back to its quiescent state. For example, although the arm
links weigh several hundred pounds, the entire pantograph mechanism is gravity
compensated with a counterbalance mechanism (Figure 13). With this counter-
balance system, the mechanism cannot extend or retract by itself in the event
that actuating force is lost due to a hydraulic hose rupture or other actuator
failure. As a further backup to the counterbalance (FIgure 14), the hydraulic
input to the actuator ports are closed automatically by a self-closing valve when
electric power is lost. Thus, the self-closing valve traps the hydraulic oil within
the actuator and locks its last position. Furthermore, the main hydraulic supply
line is controlled by a spring loaded normally closed control valve. Thus, with
no electric power applied to the valve, no hydraulic power is supplied to the

Spring
Counterbalance

Figure 13: Mechanical Counterbalancing

system. In the event of a power failure for whatever reason to the valve, the
hydraulic power will be shutoff automatically. Hydraulic relief valves are also
located throughout the system. Should any hydraulic component experience
any overpressure, rather than damage the component, the relief valves would
open and relieve the pressure.

3.5.3 Electronic Fault Tolerance

All of the microcontrollers of the UC Davis robot are equipped with electronic
fault tolerance features. The microcontroller power supplies have built in low
power and power fail detection circuitry. If input power reaches a certain thresh-
old, the detection circuitry notifies the microcontroller’s main CPU. Once noti-
tified, the CPU has approximately 100 microseconds of residual power. During
this time, the CPU executes a quick shutdown procedure to safe and secure
the robot. This procedure involves closing the main hydraulic supply valve and
centering the joint servo valves to stop the flow of hydraulic fluid to the actua-
tors. If enough power remains, the microcontroller CPU attempts to continue
to monitor the power supply to see if main power has returned to normal. If
main power does return, the network command interface will refuse to execute
any commands and return to the hand controller a message that a power failure
or transcient had occured. If main power does not return to normal by the time
the residual power has run out, when main power does eventually return, the
microcontroller will re-initialize itself and become ready to accept commands in
a normal fashion.

In addition to power supply monitoring, each microcontroller has indepen-
dent circuitry to monitor the main CPU performance. On-board each microcon-

139

140

hydraulic cylinder

hydraulic power

/ enable circuit

L

microcontroller]

"8y encoder/servo
drive valve interface

7\ [ER S
electrical connection d\soienoid shutoff

to servo valve valve

to
imeraey encoder 7 N IR U

1 !
11
1 1
- 22 ,TT>< i
\servo

valve

-~ - - -

1
1
1
1
4
|
! \ solenoid shutoff

1
! I valve
1

L

_! © hydraulic
pump

Figure 14: Hydraulic System Shutoff Valves

troller is a special “watch-dog” timer that must be reset every 2.6 milliseconds
by special CPU instructions. Should the CPU be incapicitated or disabled due
to memory faults, electrical interference, radiation, or other effects, the “watch-
dog” will time-out, causing the CPU to be reset. Once the system has been
reinitialized, it initiates an automatic shutdown of all hydraulic power. The
network command interface will refuse to execute any commands, and return to
the hand controller a message that a software induced reset had occured.

3.5.4 Software Fault Tolerance

The last feature for safe operation of the UC Davis robot incorporates software
fault tolerance in an effort to guard against human error in coding software. In-
cluded with the control software are special software routines called “exeception
handlers” that guard against unusual or abnormal software conditions. These
conditions include invalid parameters to function calls or random access mem-
ory corrupted by stray memory pointers, radiation, or electromagnetic effects.
Examples of invalid parameters to function calls are requesting the arc cosine
of a value greater than 1.0, or division by zero. These errors occur, however
infrequently, since in a real time system, it is impossible beforehand to analyse
completely all the operating conditions the software may encounter. Thus, when
any of the abnormal software conditions exist and the “exeception handler” is
called, the system shuts down the the hydraulic power, and automatically reini-
tializes the system. The network command interface will refuse to execute any
commands, and returns to the hand controller a message indicating a software
fault had occured.

4 Conclusions

Due to careful design considerations, the AHMCT center at UC Davis has cre-
ated a robust and low cost robotic stenciling system. In addition, highway
worker safety is greatly increased since the workers are no longer exposed to
hazardous situations on the open road.

141

University of California at Davis
California Department of Transportation

THE
BIG
ARTICULATED
STENCILING ROBOT
(BASR)*

Volume I

Phillip W. Wong, P.E.
Professor Bahram Ravani
Richard Blank
Jeff Hemenway
Richard McGrew
Ulrich Mueller
Dr. Walter Nederbragt
Robert Olshausen
Ken Sprott

AHMCT Research Report
UCD-ARR-98-01-15-01

Final Report of Contract
RTA-65X936

January 15, 1998

*This work was supported by the California Department of Transportation (Caltrans) Advanced
Highway and Maintenance and Construction Technology Program at UC-Davis and by the Federal
Highway Administration (FHWA).

DISCLOSURE STATEMENT

Design information, processes and techniques discussed within this report may be patent pending. Do not
disclose to other agencies, persons, companies, or entities.

The Contractor grants Caltrans and the FHWA a royalty-free, non-exclusive and irrevocable license to
reproduce, publish or otherwise use, and to authorize others to use, the work and information contained
herein for government purposes.

DISCLAIMER STATEMENT

The research report herein was performed as part of the Advanced Highway Maintenance and
Construction Technology Program (AHMCT), within the Department of Mechanical And Aeronautical
Engineering at the University of California, Davis and the Division of New Technology and Materials
Research at the California Department of Transportation. It is evolutionary and voluntary. It is a
cooperative venture of local, state and federal governments and universities.

The contents of this report reflect the views of the author(s) who is (are) responsible for the facts and the
accuracy of the data presented herein. The contents do not necessarily reflect the offical views or policies
of the STATE OF CALIFORNIA or the FEDERAL HIGHWAY ADMINISTRATION and the
UNIVERSITY OF CALIFORNIA. This report does not constitute a standard, specification, or regulation.

Development of an Articulating Robotic Arm for Spray Painting on Roadways
BY

ROBERT HENRY OLSHAUSEN
B. S. (California Polytechnic State University, San Luis Obispo) 1988

THESIS
Submitted in partial satisfaction of the requirements for the degree of
Master of Science
in
Engineering
in the
OFFICE OF GRADUATE STUDIES
of the
UNIVERSITY OF CALIFORNIA
DAVIS

Approved: E
ISO»\I\Y oLV 1 °‘-t

A:{J}ZQ. Velos S N
W,

va

Committee in Charge

1996

Acknowledgments

I would like to thank my thesis advisor Professor Bahram Ravani at the University
of California at Davis for giving me the opportunity to work on this project and
suggesting the topic of my thesis. His focused guidance and unending assistance were

invaluable.

I would like to give thanks to the fellow members of the BASR team, Waltar
Nederbragt, Richard McGrew, Phil Wong, Rich Blank, and Ken Sprott for their helpful
insights and sharing their great wealth of experience.

I would also like to thank Professor Steve Velinsky and Dr. James Schaaf for their
time and consideration. Without their assistance and helpful recommendations, none of
this would have been possible.

I especially want to thank Lisa for her ceaseless non-technical support and
offering of refuge from the day to day grind of thesis writing. [also thank my parents,

Robert and Elizabeth, for their concern and unending support throughout my life.

1

Table of Contents __

ACKNOWLEDGMENTS
LIST OF FIGURES
LIST OF TABLES
ABSTRACT OF THESIS
CHAPTER 1 INTRODUCTION
1.1 Literature Search
1.2 Current in Use Spray Painting Methods
1.3 Problem Description and ijectives
CHAPTER 2 SPECIFICATIONS OF THE BASR ARM
2.1 Functional Specifications
2.2 General Descriptions of the BASR
CHAPTER 3 MECHANISM RESEARCH AND PROPOSAL
3.1 Mechanism Research and Configuration Benefits
3.2 Configuration Proposal and Acceptance
CHAPTER 4 PROTOTYPE DESIGN AND ANALYSIS
4.1 Component Design and Analysis
4.2 Prototype Assembly
4.3 Prototype Testing and Results

4.4 Prototype Redesign

i

i

vil

viii

3

Ll

17
17
32
33

34

5. Conclusions and Recommendations
5.1 Conclusions

5.2 Recommendations

BIBLIOGRAPHY

APPENDIX A FORCE, MOMENT, AND STRESS CALCULATIONS

APPENDIX B DETAILED DRAWINGS

v

41

41

41

43

45

65

List of Figures
Figure 1.1 Big Articulating Stenciling Arm Design Flowchart
Figure 1.2 Example of an Aerial Premark
Figure 1.3 AHMCT’s Pre-Existing Stenciling Trailer
Figure 1.4 Example of Arrow Replacement Using Thermoplastic Material
Figure 2.1 Workspace Requirements
Figure 2.2 Figure of the Completed Stenciling Truck
Figure 3.1 Typical Gantry Frame Configuration
Figure 3.2 Typical Backhoe Configuration
Figure 3.3 Explanation of Simple Pantographic Motion
Figure 3.4 Workspace Coverage with a Pantograph Arm
Figure 4.1 General Arm Configuration with Joints Labeled
Figure 4.2 Robotic Reach With and Without Translating Base

Figure 4.3 Explanation of Extension and Retraction in Terms of X and 6

Figure 4.4 Explanation of Minimum and Maximum Arm Extension in Terms

of X and o
Figure 4.5 Typical Bearing Arrangement
Figure 4.6 View of the BASR Arm with the Parallel Linkage Attached
Figure 4.7 Universal End-Effector Mount
Figure 4.8 BASR Overall Height with the Arm Retracted
Figure 4.9 Side View of the Modified Parallel Linkage

Figure 4.10 Side View of Base, Joint H, and End-Effector

10

12

13

15

15

17

18

19

20

27

30

31

35

37

37

Figure 4.11 End-Effector Retraction Mechanism

Figure A.1 Link BC Free Body Diagram

Figure A.2 Link BC Free Body Diagram Showing Forces in Line with Link
Figure A.3 Link ABD Free Body Diagram

Figure A4 Link CE Free Body Diagram

Figure A.5 Link DEF Free Body Diagram

Figure A.6 Slider, Joint C Free Body Diagram

Figure A.7 End-Effector Free Body Diagram

Figure A.8 Determination of Link Velocity and Accelerations

Figure A.9 Determination of Column Loading Type

vi

39

45

47

48

49

50

51

52

56

List of Tables
Table 3.1 Advantages and Disadvantages of Each Arm Configuration
Table 4.1 Determination of Link ABD and DEF _Length and Bmax
Table 4.2 Forces in the Links and Joints When Arm is Extended Past 70°
Table 4.3 Determination of Link AB, BC, and DE Length
Table 4.4 Maximum Stresses in the Critical Links
Table 4.5 Results from the Arm Deflection Test
Table A.l Maximum Stresses in the Links
Table A.2 Link Forces and Stresses with Weef=0, Velocity=0, Acceleration=0
Table A.3 Link Forces and Stresses with Weef=200, Velocity=0, Acceleration=0
Table A.4 Link Forces and Stresses with Weef=200, VelocityzO‘, Acceleration=6
Table A.5 Link Forces and Stresses with Weef=200, Velocity=1, Acceleration=6
Table A.6 Link Forces and Stresses with Weef=200, Velocity=1, Acceleration=-6
Table A.7 Link Forces and Stresses with Weef=200, Velocity=-1, Acceleration=6

Table A.8 Link Forces and Stresses with Weef=200, Velocity=-1, Acceleration=-6

vii

16

21

22

24

25

33

55

58

59

60

61

62

63

64

Robert H. Olshausen
September 1996
Engineering
Development of an Articulating Robotic Arm for Spray Painting on Roadways
ABSTRACT
This thesis discusses the conceptual design of the Big Articulating Stenciling
Robot (BASR) Arm that is currently under development at the University of California,
Davis. This robotic arm is intended to be used to replace manual methods of spray
painting words and symbols on roadways. This will eliminate the hazards of exposing
maintenance workers to fast moving traffic and flying dcbris. Automation of this procéss
can vastly improve maintenance worker safety and reduce restriction of highway traffic.
This thesis deals with mechanical design ‘of BASR which is a long reach
articulated robotic arm. A novel linkage design using a pantograph mechanism is used in
the design of this arm to eliminate the need for carrying actuators at each joint of the

robot. The entire system is designed to operate from the back of a maintenance vehicle

and does not need any additional mechanisms for stowing or operating it.

Vil

CHAPTER 1 - INTRODUCTION

Highway maintenance operations are some of the most dangerous duties
performed to keep the highways safe and functional. Between the years 1972 and 1988,
in the state of California alone, there were 4800 highway workers seriously injured
enough to keep them out of work {1]. The risks are so great that between the years 1972
and 1991 there were 47 deaths of California highway maintenance workers. One such
death occurred on July 29, 1992, to a worker painting surveying markers on a section of
Highway 14 in Southern California. This was a manual job that requires a worker to exit
the vehicle and expose himself to traffic flow. In response to accidents like this, the
Advanced Highway Maintenance and Construction Technology (AHMCT) Center at UC
Davis has embarked on projects to automate highway maintenance tasks in order to
remove the worker from the pavement. This thesis presents a mechanical design that can
perform spray painting of words and symbols on the roadbed with the worker inside the
vehicle. Accordingly, the Big Articulating Stenciling Robot (BASR), designed and
developed as part of this thesis, will greatly reduce the risks to highway maintenance
workers.

This thesis presents the mechanical design and development of the robotic arm,
not the entire robot. To this end, parts of the robot not included will be mentioned for
clarity but not discussed in-depth.

The following document is broken up into five major sections plus appendices.
The first chapter will introduce the current methods for roadway stenciling that are

currently in use. Additionally, this chapter will detail the objectives of the thesis. The

(Problem DefiniticD o
: Determine
Specifications
Mechanism Research
and Proposal

etermination of Lin
Length and Spacing

Linkage Dynamic »
Analysis .
Component Design

G’ototype Asser@
Prototype Testing
and Results

|
Protoype Redesign

Figure 1.1 Big Articulating Stenciling Arm Design Flowchart

second chapter will cover the development of functional specifications and give a general
description of the BASR. Chapter three discusses the researching of different
configurations for the BASR arm and the acceptance of the final design. Chapter four
covers the detailed design, assembly, testing, and modification of the BASR arm. Finally,
the last chapter discusses conclusions and recommendations of the project. Figure 1.1

shows the ove‘rall design flow chart.

1.1 Literature Search

After a lengthy search, only two other stenciling robots were found to exist. One
was created here at the Advanced Highway Maintenance and Construction Technology
(AHMCT) Center and the other was created by the Pavement Marking Technologies.
They both use gantry type robots to move the end-effector through the painting path. The
configurations are discussed below.

The stenciling robot created by AHMCT was designed specifically for painting
the aerial surveying premarks [2]. The preniarks are 1.2 m x 1.2 m (4ft x 4ft) square and
all features of the mark are in a straight line. The premark has a black background with
white foreground. An example of a surveying premark is shown in Figure 1.2. This type
of mark is ideal for the gantry configuration due to the smaller mark which is much
narrower than the 2.4m (8.0 ft) vehicle width. The robot is housed inside a trailer along

with its support equipment. The Stenciling Trailer is shown in Figure 1.3.

Figure 1.2 Example of an Aerial Premark

Figure 1.3 AHMCT s pre-existing Stenciling Trailer

The stenciling robot developed by Pavement Marking Technologies is designed to
spray paint words and symbols on the roadbed. Horizontal positioning of the paint head
is controlled by the gantry. Elevation and orientation of the end effector are controlled by
a linear positioner and rotary positioner respectfully. All motivation power is electric.
The frame of the gantry extends outside of the workspace due to the use of a gantry type

robot [3].

1.2 Current In-Use Spray Painting Methods

Many different words and symbols are painted on the roadbed to warn or inform
drivers of upcoming events. These words and symbols have a limited life due to
vehicular traffic and weather and must be periodically replaced or painted over. To do
this, the maintenance worker lays down a stencil of the symbol on the roadbed, aligns 1t

with the existing deteriorated symbol, and then either sprays paint or lays a liquid

thermoplastic material over the stencil. The stencil.is then removed and the media is
allowed to dry. An example of replacement using thermoplastic is shown in Figure 1.4.
The area remains coned off until the media is dry enough to resist automobile trafﬁc..
This operation is currently performed by a 2 person crew in one to two vehiclés. One
vehicle must carry a wide variety and size of stencils in order to maintain the wide variety

and size of words and symbols on the highway.

Figure 1.4 Example of Arrow Replacement Using Thermoplastic Material
1.3 Problem Description and Objectives

The purpose of this project is to develop a rd_botic arm to aid in the automation of
highway maintenance, specifically the painting of words and symbols on the roadbed.
This arm will be designed around a set of specifications which will be defined in Chapter
2. The arm will be designed for static and dynamic loading with sufficient safety factors.
Concern will be placed on arm deflection but the arm will not be specifically designed for
deflection. Small amounts of deflections will be countered by the active height control

incorporated in the end-effector [4]. Numerous tasks performed on the roadway cover a

large workspace requiring a large robot to cover all portions of the workspace. A robotic

arm that can efficiently reach all portions of the workspace and retract into a manageable

size would greatly increase the efficiency of highway maintenance automation.

- CHAPTER 2 SPECIFICATIONS OF THE BASR-ARM ...
2.1 Functional Specifications

Specifications for the Big Articulating Stenciling Robot (BASR) Arm were
developed to ensure that the majority of words and symbols on the roadbed could be -
painted with the same or better quality than is currently obtained manually using stencils.
Specifications include workspace size, end-effector speed, end-effector maximum weight,
arm rigidity, arm stowed envelop, and simplified control laws.

To effectively cover all words and symbols painted on the roadway, the
workspace must be large enough so that a majority of words and symbols vare included
within that workspace. The majority of words and symbols can all be contained within a
3.7 m by 3.7 m (12 ft x 12 ft) workspace. Some symbols, such as the type I direction
arrow [5], are 8 m (24 ft) in length, but these marks are much less prevalent than the
marks less than 3.7 m (12 ft) in length. Marks larger 3.7 m (12 ft) can be painted with the
support truck moving after the first half of the mark has been painted. Figure 2.1 shows

the workspace requirements.

12f

Figure 2.1 Workspace Requirements

Painting of words and figures on the roadway is done by high pressure (20.6 MPa
or 3000 psi) paint spraying out of an airless nozzle. Tests show that the necessary spray
head velocity is approximately 0.3 m/sec (1 ft/sec) with an acceleration of 2 m/sec’ (6
ft/sec’) [6]. Therefore, the BASR Arm must be designed to meet these speeds and
accelerations from a structural standpoint.

The BASR Arm will be mounted on a support truck and that truck will need to
conform with maximum vehicle dimensions. According to the California vehicle codes,
standard vehicles must be no wider that 2.4 m (8 ft) and no higher than 4.3 m (14 ft) [5].
The arm can extend from the maximum dimensions when it is in use but must be within
these dimensions when stowed. It is desired, but not required that the arm not need any
spécial stowége and handling equipment. Stowing must be performed automatically

without the operator exiting the support vehicle.

yet been designed and a weight had not been determined. Therefore, it was estimated that

the end-effector would weigh 890 N (200 Ibf).

2.2 General Descriptions of the Big Articulated Stenciling Robot

In order to perform the desired spray painting tasks, the robot needs much more
than an arm. Much support equipment and structures must be developed and constructed.
The BASR is made up of a power unit which provides air, DC and AC voltage and
hydraulics for the robot and support systems. The paint i; provided by a hydraulically
powered positive displacement Binks paint pump. Only one color of paint will be needed
since all marks are only painted with one color. Reflective glass beads are provided to
the end-effector by placing them under a blanket of compressed air. The end-effector will
spray the paint and beads and is capable of three degrees of freedom [4]. The end-
effector also has the ability to for active height control. All of the support equipment is
mounted in the back of the support vehicle, a flat bed pickup truck. The arm can be
mounted on either the front or the back depending on the needs of the local maintenance
yard. The support vehicle has front and rear stabilizers to prevent the truck from moving
when the robotic arm is moving due to the flexibility in the vehicles suspension. Figure
2.2 shows a sketch of the completed stenciling truck. As discussed in the Introduction
(Chapter 1), this thesis presents the mechanical design and development of the robotic

arm, not the support equipment and support structures.

Equipment *
Module

Figure 2.2 Figure of the Completed Stenciling Truck

10

CHAPTER 3 MECHANISM RESEARCH AND PROPOSAL

3.1 Mechanism Research and Configuration Benefits

There were three different configurations considered for the BASR arm. Because
of the weight, workspace and speed requirements, gantry, backhoe, and the pantograph
types were considered. The following section discusses the each type of configuration
and goes over the disadvantages and advantages of each _cbnﬁguration. All of the
“advantages and disadvantages are summarized in Table 3.1 near the end of this chapter.
3.1.1 Gantry Configuration

This configuration would use two sets of powcred linear slides oriented
perpendicular to each other. Thé linear slides would make up a frame around the
workspace with the end-effector inside the frame. Figure 3.1 shows the typical gantry
configuration. The linear slides can be powered by electric or hydraulic motors. This
type of configurations provides for simple reverse kinematics and good position accuracy
[3]. Additionally, the end-effector would not need any mechanism to maintain a vertical

orientation. The downfall is that the gantry frame must extend outside the workspace,

making the frame greater than both the maximum vehicle width (2.4 m or 8 ft) and

maximum lane width (3.7m or 12 ft). During transportation, a complex folding
mechanism could be employed to reduce the gantry width less than the maximum vehicle
width but the gantry would still be wider than the lane width during the painting

operation. The large gantry size causes problems with transportation and stowage.

11

Figure 3.1 Typical Gantry Frame Configuration

3.1.2 Backhoe Configuration

The backhoe type mechanism is a familiar sight at many highway maintenance or
construction sights. The backhoe operates‘ in the radial coordinate system, thus making
the reverse kinematics more complicated than with the gantry configuration. Figure 3.2
shows the typical backhoe conﬁguration. Rotation is accomplished by a revolving base
which could be powered by al hydraulic rotary actuator. Displacement is accomplished by
a shoulder and a elbow joint. Rotation of tﬁese joints would provide for the radial
displacement and be accomplished by two'hydraulic linear cylinders or rotary hydraulic
actuators, one of which must be placed at the elbow joint. This arrangement does not
provide for straight line motion at the end-effector within the plane of the workspace.
Rotation of both shoulder and elbow joints must be closely coordinated through position

sensing and fine position control for straight line motion at the end-effector. This

coordination must be carried out by the controller which complicates the control scheme.

Additionally, this method requires an actuator at the end-effector to maintain proper end-
effector orientation with respect to the workplane. The backhoe does yield a proven

mechanical design that is popular in the manual control arena.

12

T Note: All 4CTURIOS Ate IIALOTY QCTURLCTS.
; Note: Bach link & foee in lenpth

Linear Slide.
Truck Movnt I'oine

Figure 3.2 Typical Backhoe Configuration

3.1.3 Pantograph Configuration.
Figure 3.3 shows a simple pantograph mechanism. Input motion is applied at
joint C and the output (end-effector, joint F) moves following the same path as the input

but this motion is scaled depending on the linkage configuration (see Section 4.1.1). If

the input is constrained to move in straight line motion, then the output must also move in
a straight line motion greatly simplifying the reverse kinematics of the robot [7]. A
pantograph robot would use radial coordinates. The workspace coverage is shown in
Figure 374. The base could be rotated by a hydraulic rotary éctuator similar to the
backhoe configuration. Unlike the backhoe configuration, the pantograph would only
need one hydraulic linear actuator which could be located at the base to reduce the
moment caused by its weight and reducing the radial inertia. Since the arm is
articulating, it can reach long distances and then fold up to a small package in its stowed
position, as shown in Figure 3.3. In order to give the straight line motion and constant
ratio of output to input, the pantograph mechaﬁism m}ist be made to close tolerances

which could increase productions costs.

14

\ /
/
AR ‘_ -\\\"\‘\-Z“ .
‘ < \ I~ F
Y & .
INFUT . (;' £ e TEyT

Figure 3.3 Explanation of Simple Pantographic Motion

—Fial EF

-~

T
i? H
i iU

Figure 3.4 Workspace Coverage with a Pantograph Arm

16

To summarize the advantages and disadvantages of each configurations, they are

listed in Table 3.1.

gy -Linecar motion
SN -Simple reverse kinematics
B -1ow height

-Frame is too large to fit in
traffic lane
-Requires complex stowage
mechanism

-Mechanically proven design
B -Drivers passing by on the road are
BB familiar with the backhoe shape

-Non-linear motion

-Difficult reverse kinematics
-Elbow actuator not at base
-Requires actuator to maintain
end-effector orientation

-Linear motion

-Simple reverse kinematics
-Stowes into small package

-All actuators located at base
-Simple mechanical linkage

¥ provides end-effector orientation

"-Not a normal structure

-Tall structure

Table 3.1 Advantages and Disadvantages of Each Arm Configuration

3.2 Configuration Proposal and Acceptance

On November 30, 1994, the different configurations were presented to the

California Department of Transportation (Caltrans).

The relative merits and

disadvantages of each configuration were discussed and it was decided -that the

pantograph configuration would be accepted [8].

CHAPTER 4 PROTOTYPE DESIGN AND ANALYSIS

4.1 Component Design and Analysis

Once the general configuration of the BASR arm was determined, detailed design

of the prototype could begin. The detailed design started with determination of the main

link lengths but the design was an iterative process (reference BASR Design Flowchart,
Figure 1.1). With a chosen link length, the resultant forces had to be calculated and then
checked to see if they were acceptable. If not, the lengths had to be changed.
Additionally, stresses in the links had to be checkéd when the component design was in
process. If the stresses were unacceptable, either the component or the li;xk length had to
be changed, adding another iteration to the design process. The following sections show

each step of this iterative process.

For reference, Figure 4.1 shows the general configuration of the arm with the

letter designations given to each joint.

— p e b . — END
N EFFECTOR

2 s
-~

\
AT —_—
o e T~

Figure 4.1 General Arm Configuration with Joints Labeled

17

4.1.1 Determination of Linkage Length and Spacing

In order for the BASR arm to reach all areas within the workspace, the arm
rotates and extends as discussed in Section 3.1.3. To further enlarge the workspace
without requiring a larger arm, the base of the arm can translate 61 cm (2 ft)
- perpendicular the support truck centerline. Figure 4.2 shows the increase in workspace
coverage with and without a translating base. The translating base also helps in stowage

of the arm. Stowage of the arm will be discussed in section 4.4.2.

LARGER Wik SPACE
MTRE COVERAGE NEAR BASE

— TRANILAT:HN BASE

[P

1Al - Ces sy
LY dm D57 51

__m_-
(R UEY)
iy
el

'
JRE——

In STATIONAR ;. 2ASE

!) S =T X o T .
/ ¥ o T 2 35 3
JESUSue 3D !
| S ——— 0

— IMALLIF WOFE LPACE
LESS TOWERALE NLAR BASE

Figure 4.2 Robotic Reach With and Without Translating Base

Determination of link length was an iterative process. The Arm is restricted from

retracting beyond a minimum angle. This restriction is caused by the interaction between

18

the links, joints, and hydraulic cylinder. Experiments with different configurations

showed that the Arm should retract no less than 15° from vertical. This angle is defined
as Opig. With Oy known, the minimum retracted distance can be determined depending

on the length of links ABD and DEF. This distance is defined as Xpin. From X, the

Arm must be able to extend out to the farthest corner of the workspace. This distance is

defined as Xpma. Figures 4.3 and 4.4 help define these terms.

Xmin-———1

Figure 4.3 Explanation of Extension and Retraction in Terms of X and 8

19

Figure 4.4 Explanation of Minimum and Maximum Arm Extension in Terms of X and Ol

Using these relationships, 8max can be determined for a given length of link ABD
and DEF. [terating through with different link lengths, 8m.x can be examined to
determine the acceptable values for 6y, and length of links ABD and DEF. This iterative
process is shown on Table 4.1. The term #NUM! in the Theta Max column means that
the Qalue can not be calculated. In this case, the arm can not reach all areas within the
workspace. The column Max Height is the vertical height of the robot arm in the

maximum retracted position (6=15°).

20

Theta Minimum (deg) 15.00 0.26 (rgds)
Workspace Width (feet) 12.00{ 144.00] (inches)|
Workspace Length (feet) 12.00 144.00] (inches)

Link Length (inches) |X min {X max Theta Max |Alpha Max |Max Height

101} 52.28 202.41| #NUM! 52.85 97.56
102| 52.80 202.89 84.03 52.58 98.52
103] 53.32 203.38 80.85{ = 52.31 99.49

104] 53.83 203.87 78.56 52.04 100.46
105/ 54.35] 204.35 76.68 51.77 101.42
106] 54.87 204.84 75.07 51.51 102.39
107] 55.39] 20533 73.63 51.25 103.35
108| 55.90 205.82 72.34 50.99 104.32
109] 56.42 206.30 71.15 50.73 105.29
110] 56.94 206.79 70.04 50.47 106.25
111] 57.46f 207.28 69.02 50.22 107.22

112| 57.98 207.77 68.05 49.96 108.18
113| 58.49 208.26 67.14 49.71 109.15
114} 59.01 208.74 66.28 49.46 110.12
115] 59.53 209.23 65.47 49.21 111.08
116/ 60.05 209.72 64.69 48.97 112.05
117{ 60.56 210.21 63.94 48.73 113.01
118| 61.08 210.70 63.23 48.48 113.98
119{ 61.60 211.19 62.54 48.24 114.95
120] 62.12 211.68 61.88 48.01 115.91
121] 62.63 21217 61.25 47.77 116.88

Table 4.1 Determination of Link ABD and DEF Length and ©mux

From this data it can be seen that the main links (link ABD and DEF) must be at
least 2.60 m (102 in) long in order to reach all areas within the workspace. However, at
that link length, the robot arm 1s nearly horizontal (Bmax 1s 84°, 6° from horizontal). This
is not acceptable because the forces in the links and joints would be far too great that
close to the horizontal. Table 4.2 shows the forces in the links, joints and hydraulic
actuator (Fy.) if the links are allowed to extend close to the horizontal. Notice the forces
at E, D and C at an angle of 85° (5° from horizontal). Appendix A explains the

symbology used in Table 4.2.

21

FORCE CALCULATIONS AT EACH JOINT i
CONSTANTS: (feet) (slugs) ._l{pounds) -} ——— {slugs*ft"2)
Ra= 4.34|Mabd= 6.24]|Wabd= 201.26{labd= 78.64
Rb= 3.24|Mce= 2.37|Wce= 76.35|lce= 20.41
Re= 3.63| Mdef= 3.12|Wdef= 100.63}Idet= 39.32
Rd= 4.83|Mefi= 621{Welff= 200.00
Rd1= 4.34
Re= 4.43 VARIABLE: (f'sech2) (ft/sec)
Rel= 324 Aeft= 6.00| Veff= 0.00
Ri= 4.83
Riink= 9.17|
THETA |Fex Fey Fdx Fdy Fex Fcy Fbc Fax Fay Fact Fnormal
(deqg) {pounds) |(pounds) |(pounds) }{pounds) |(pounds) |(pounds) I(pounds) |(pounds) |(pounds) }(pounds) |(pounds)
15.00] 467.46] 1722.46] 41641 14231S| 47198 1798.06{ 443.34] -292.80] 1853.76] -357.24] 2226.29
20.00] s6786] 1535.33] 51680 1236.49] 572.38] 1610.65| 716.16] -263.00] 1912.69] -327.44] 2283.62
25.00 674.76] 1420.60 623.71] 112227 679.28] 1495.64 905.20] -232.29] 1946.80} -296.73] 2316.03]
30.00 790.64] 1342.01 739.59] 104423 795.17) 1416.73] 1061.04] -200.21] 1968.23] -264.65] 2335.62
3500(918.71] 1283.99] 867.66] 986.81 923.23] 1358.36{ 1207.46] -16623f 1982.10{ -230.67] 2347.45
40.00] 106331} 1238.73] 1012.26 94223} 1067.84] 1312.71] 1359.18] -129.74] 1990.86] -194.17{ 2353.91
45.00f 123059} . 1201.88] 1179.54 906.18] 1235.12] 1275.41| 1528.29 -90.02| 1995.70] -154.46] 2356.07|
50.00] 1429.62] 1170.80] 1378.57] 876.05| 1434.14] 1243.79| 1727.62 -46.28] 1997.10] -110.71] 2354.28
5500 1674.48] 1143.77] 1623.43] 850.18] 1679.01] 1216.10] 1973.80 227] 1994.96 -62.16] 234822
60.00] 1988.45{ 1119.60; 1937.41 827.51] 1992.98] 1191.07} 2291.51 55.96] 1988.61 -8.48| 2336.82
65.00] 2413.14] 1097.36] 2362.08] 807.30] 2417.66| 1167.66] 272129 113.11] 1976.37 48.67| 2317.73
70.00] 3030.96] 1076.23] 2979.91 789.15] 3035.48] 1144.84| 3336.31 164.06] 1954.58 99.63| 2285.92
75.00] 4032.09] 1055.23] 3981.04] 77299 4036.62f 1121.06| 4282.12 164.03] 1914.36 99.59| 2229.35
80.00] 5976.04] 1032.36| 5924.98 759.68] 5980.56f 1092.72| 5866.89, 138.36] 1828.72] 20280f 2111.50
85.00] 11530.65 999.23| 11479.60! 754.94] 11535.17] 1043.36] 8094.65] 3406.89] 1561.72] 3471.33] 1748.86

Table 4.2 Forces in the Links and Joints When Arm is Extended Past 70°

If the link lengths were 2.79 m (110 in) then the arm would only extend down to
70° from vertical which yields acceptable forces. Link ABD and DEF will be 2.79 m

(110 in) in length. It should be noted at this point that without the translating base the

main link lengths would have to be at least 3.05 m (120 in), a 10% increase in length.

The length of the shorter links, link AB, BC and DE can now be determined.
While the main links define the reach of the robot, the relationship between longer and
shorter links define the amplification factor (output/input) of the pantograph mechanism

[7]. When joint A is pinned and joint C (refer to Figure 4.1) is allowed to translate, joint

F will translate a distance according to the following linear relationship:

22

LENGTH AD

OUTPUT = INPUT——— """ or, =
- LENGTH AB ' M

OUTPUT _ LENGTH AD
INPUT ~ LENGTH AB’ Q)

AMPLIFICATION FACTOR =

It would be ideal to have a very high amplification factor. To accomplish this, the
short links (link AB, BC and DE) must be much shorter than main iink. Unfortunately
there is a limit to how small the short links r;lay be made. If the short links are made too
small, the spacing between the parallel links ABD and CE will be too small when fully
retracted and extended, causing interference between the links. Figure 4.3 shows the arm
fully retracted and it can be seen if the arm was retracted any further, that link ABD and
CE would interfere. The short links must be big enough to allow for spacing and provide
for an. adequate amplification. If the amplification factor is not high enough, a long
stroke hydraulic cylinder must be used to provide actuation over the required travel of

joint C. Table 4.3 shows the trade off parameters for the determination of the short link

length.

23

24

i

B3A3D

10.0 36.6 (14.4) ~ NO

39.9 (15.8)

7.33 49.9 (19.6) YES

Table 4.3 Determination of Link AB, BC, and DE Length

From the information provided from Table 4.2, it was determined that the correct
length for the small links (links AB, BC and DE) would be 33.53 cm (13.20 in) providing
for an amplification factor of 8.33.

4.1. 2 Linkage Dynamic Analysis

With the length of each link known and the specifications for workspace, end-
effector speed and accel.eration, and end-effector weight known, the forces in each link
can be found. To determine these forces, equilibripm equations were written for each
link resulting in twelve linear equations with twelve unknown variables. The equations
were solved for a given end-effector weight, acceleration and velocity while varying end-
effector position. The resultant forces in each link and joint were calculated along with

the maximum stresses in each link. The free body diagrams, equations and spread sheets

containing the data are shown in detail in Appendix A. It is easily seen that the maximum
forces are caused at the maximum extension of the arm, so all links must be designed

with these values as worst case. The maximum stress in each critical position are shown

in Table 4 4.

35.53 (5157) 70° (extended)

_ Vel=anything
8.082 (1173) 70° (extended) Accel= -2 (-6)

4 Vel=anything
5.953 (864) 70° (extended) Accel= 42 (+6)
Vel=anything
19.23 (2971) 70° (extended) Accel= +2 (+6)
Vel=anything

Table 4.4 Maximum Stresses in the Critical Links

4.1.3 Linkage Type and Configuration

The links must maintain the proper distance bety\;een the joints and limit
deflections due to bending stress. Méintaining proper spacing between joints ensures that
the arm will provide output motion that is linear with respect to the input. Additionally,
the proper distance will allow the linkage configuration to remain intact providing for
straight line motion of the end-effector. If the links are allowed to bend or deflect, the
ability of the linkage to provide straight line linear motion will be degraded.

Since link weight was needed to be kept to a minimum, rectangular extruded
aluminum tubes were used. These tubes are one third the weight of steel tubes, with
almost the same strength, 340 MPa (50 kpsi) vs. 275 Mpa (40 kpsi) [9]. The main links

were made up of 10cm x 15cm (4in x 6in) by 6.4mm (0.251n) thick stock.

25

In order to fasten the shafts or bearing cups—to-the tubes, solid aluminum inserts

were connected to each end of the links in the area of the joint. These inserts were
bonded to the tubes by the use of high strength adhesive made by 3M Corporation. The
adhesive was 1838-L B/A Scotch weld two-part epoxy with a 21 Mpa (3.0 kpsi) [10].
Using adhesive to attach the inserts into the tubes precludes the deformation and stresses
associated with welding. Additionally, the long set up time of the adhesivé (8-12 hours)
allows the inserts to be placed in position and then verified for correct position before the
adhesive has set.

Link CE was made up of smaller outside dimension tubing since it is the only
link, besides link BC, that is in pure compression. The main portion of the link is made
up of lOCm x 10cm (4in x 4in) by 6.4mm (0.25in) stock. Link CE also has side arms so
_ that it can mount at joints C and E. Link BC is the shortest link and was made up of solid
aluminum for ease of manufacturing.

4.1.4 Joint System

An important part of maintaining the robotic motion linear and repeatable is the
pinned joints. Each joint must héndle the loading due to the weight of the links and the
end-effector while still allowing the joint to rotate with 2 minimum amount of friction.
Also, the joint must be resistant to any displacement or deflection other than rotation it is
designed to allow. To meet these requirements, opposed angular contact roller bearings

where used [11]. Figure 4.5 shows a typical bearing arrangement.

26

&)

@

- .]
@)_1 SIDE viEW o~ 1. LINK TUSING
' / 2. SHAFT
' . BEARING CONE

“ / i, DOUBLE BEARING CUP
& PILLOW BLOCK
. SET SCREW

WASHEFR
FASTEINER

W~ NN 4 i 1

Figure 4.5 Typical Bearing Arrangement.

Angular contact roller bearings are able to take both radial and axial loading. In
this bearing arrangement, the majority of the loading will come from the pin loading,
acting on the bearing in a radial direction. This is consistent with angular contact roller
bearing design since angular contact roller bearings are designed to carry the majority of
loading in the radial direction[11]. Axial loading of the bearing will come from any side
loading and joint preloading. Side loading comes from rotary acceleration or deceleration
of the robotic arm, end-effector and payload. Joint preloading is necessary to ensure that
there is no play in the joints. Play would allow for displacement of the joirts in a
direction other than rotation, reducing the placement accuracy of the end-effector.

4.1.5 Linear Slide
Joint C must be constrained to translate in only one degree of freedom in order for

the end-effector to maintain its straight line motion. This constraint is obtained by

27

mounting the shaft at joint C on a carriage of a linear slide assembly. The linear slide

would have to be strong enough to withstand the vertical forcé created by the weight of
the linkage and payload at the end-effector. The force. was calculated to be 11,800 N
(2670 Ib). Various linear slides were investigated and a INA KUSE3SL linear slide was
found to meet these requirements.

Joint C must also provide for an attachment point for the end of the linear
hydraulic actuator. The actuator is attached to the pillow block through a pin and rod end
system at joint C and a trunion mount at joint A. This allows the cylinder to rotate and
align itself due to ahy shifting or bending in the support which isolates the cylinder from
~ any bending moment which would degrade the seals.

4.1.6 Parallel Mechanism

The use of the pantograph mechanism allows the extension acvtuator to be
mounted at the base saving weight hydraulic lines running out the arm all of the while
giving straight line linear motion at the end-effector. This is very advantageous but does
not guarantee proper orientation of the end-effector with respect to the road surface. In
order to maintain the proper orientation, a mechanical linkage or actuator could be used to
maintain the orientation.

If the end-effector was hard mounted directly to link DEF, its orientation with
respect to the road surface would change as link DEF rotates as it is extended or retracted.
One way to maintain the proper end-effector orientation is to mount an actuator between
link DEF and the end-effector mount. The actuator would be given a position command

based on the angular displacement of link ABD. This would require more weight at the

28

end of the arm and more electrical or hydraulic cables to be routed out to the actuator.
Additionally, any misalignmcnt caused by the actuator system would cause error in the
end-effector.

Another alternative is to use identical gears at joints A, C, and F. The gear at joint
A would be fixed to the base while the gears at joints C and F would be free to rotate with
respect to the links. If the gears are connected with chains, the gear at joint F would
maintain its orientation with respect to the gear at joint A and in doing so, maintain its
orientation with respect to the base. The gears aqd chains are heavy, adding foo much
weight to the arm. Some weight savings could be achieved by replacing the gears with
pulleys and chains with belts. This alternative would still weigh too much and be
susceptible to stretching. A better, lighter, and less complex systeﬁ was needed.

Further research discovered a reliable and simple system to maintain the end-
effector orientation. Based on the principle that ends of a parallelogram stay parallel due
to the opposite sides being equal length, a linkage mechanism could be mounted above
links ABD and DEF to maintain end-effector orientation. Light weight links made of
composite materials could be used to save weight and still provide the required strength.
No actuation would be necessary since the action of the arm would maintain the position.

Figure 4.6 shows the parallel linkage.

29

5
_ 7 .- :
¥ \\' K . . ./
A S 4
(@1 A®," (3
; o b d N

Figure 4.6 View of the BASR arm with the Parallel Linkage Attached

The paraliel links.were made from carbon graphite tubes with aluminum plugs
epoxied at both ends. The plugs were drilled and tapped to allow spherical rod ends to be
threaded into the plugs. This thread gives minor adjustments in length which is needed
when maintaining the links the same length. The shorter links of the parallel linkage
parallelogram, links AG, DH, and FI are made up of links 43.18 cm (17.00 in) long. Link
AG maintains .the orientation of the parallel mechanism and is hard mounted to the inside
base pillow blocks. Link DH is mounted tb the shaft at joint D but is free to rotate
independently of the shaft. This rotation is accomplished by mo.re spher'iéal rod end

bearings. The universal end-effector mount provides for the remaining side of the

30

parallel linkage parallelogram. These parallel links maintain the end-effector in the

correct orientation without any control scheme or actuation required.

4.1.7 Universal End-effector Mount

The end-effector is moﬁnted to the end of link DEF through the universal end-
effector mount. This mount is made up of 6.4 mm (0.25 in) aluminum plate which is
fastened to two sets of pillow blocks. The lower set houses the tapered roller bearings at
joint F and the upper set houses the pin for joint I. The plate also provides for spacing of
' the link FI in the parallel linkage. Four fasteners secure the end-effector to the universal
end-effector mount. Figure 4.7 shows the side and front views of the universal end-

effector mount.

RO SR

Figure 4.7 Universal End-Effector Mount

31

4.2 Prototype Assembly

The first major parts of the BASR arm to be assembled were the main links.
Before the links could be assembled, the bearing cups were pressed into the ABD inserts
at joint D. In paraliel with this, the aluminum tubes were accurately machined to length
in order to provide the correct spacing between joints. Once all of the aluminum tubes
were machined to length and the corresponding plugs were completed, tubes and plugs
were epoxied and clamped together to férm the main links. A jig was used to check and
maintain the correct distance between joints.

With the links assembled, the entire Arm could also be assembled. During the
first stage, links ABD and DEF were assembled horizontally. The left hand side link
ABD was first placed on the turntable bearing interface Iby securing the link to its pillow
blocks (Pillow Block, Joint A) and securing the pillow blocks to the interface. Joint D
shaft was fastened to link DEF and then attached to the left hand link ABD through the
bearings in Link ABD at joint D. The right hand link ABD was then attached at joints A
(by the pillow blocks), B (by the shaft at joint B), and D (by the shaft and bearings). The
link was not securely fastened yet because the shaft at joint B had to be slipped through
left and ﬁght link ABD and the bearings for link BC at joint B. Once the shaft was
| secured and the tapered roller bearings on link BC at joint B were properly preloaded by
shims, the remaining joints on link ABD could be secured.

Before anymore assembly could continue, joint D had to be raised so that the main
links were in the normal operating position and then held there until the remaining links

and joints were attached. With joint D raised such that link ABD was about 20° from

32

vertical, joint C and the linear slide could be assembled by slipping the shaft-at joint C
through the sliding carriage and tapered roller bearings on link BC at joint C. Link CE
was then assembled by placing the two side arms on either side of the sliding carriage at
joint C and tightening the bolts that secure the joint. The side arms at joint E are placed
on the shaft at joint E and then the joint was secured to link DEF. The end plates are
secured to the side arms and then the tube between the end plates was secufed to the
plates which completed link CE and the assembling of the BASR arm.
4.3 Prototype Testing and Results

Once the Arm was assembled, testing to ensure that it met the design requirements
could be conducted. At the time of writing this thesis, the Arm had not been actuated
under closed loop electronic control. Testing was accomplished using static and some
open loop (manual) control.
4.3.1 Arm Deflection Under Design Loading

Deflection of the Arm was tested by incrementally extending the Arm with and

without the end-effector payload. To measure deflection, a laser level was shined

horizontally from the base interface (joints A and C) onto the end-effector. ~Any
deflection in the Arm was measured by noting the displacement in the laser light beam.

The results from the testing are presented in Table 4.5.

33

0.16 (0.063)
0 (0) 0.48 (0.19)
0.078 (0.031) 0.40 (0.16)
0.16 (0.063) 0.64 (0.25)
0.32(0.13) | ~0.80(0.31)
0.48 (0.19) " 1.51(0.60)
0.56 (0.22) 1.91(0.75)

Table 4.5 Resuits from the Arm Deflection Test

| Although the maximum under load deflection was not specified at the conception of this
project, the actual deflections fall well within practical limits. The largest deflection
recorded was 1.91 cm (0.75 in) which is well within the end-effector’s active height

control ability.

4.4 Prototype Redesign

Through design, assembly and testing, it was noticed that portions of the design
could be modified to improve performance and safety. Some modifications would
require significant redesign of the existing prototype design and therefore will be
postponed until the second stage prototype is designed. The following modifications will

be implemented to the existing prototype to improve performance and safety.

34

4.4.1 Parallel Linkage Redesign R

Originally, the parallel links were placed above links ABD and DEF. This posed
a height restriction as the link DH was 43.18 cm (17.00 in) above joint D. See Figure 4.8
for an illustration of the overall height of BASR. If the parallel linkage could be placed
below the main links the §vera.ll height of BASR could be significantly reduced. It was

decided to move the parallel linkage mechanism below the main links.

Figure 4.8 BASR Overall Height with the Arm Retracted

Joint G was moved from above joint A to below Joint A. The parallel link GH is
mounted at joint G 22.84 cm (8.993 in) below joint A on the turntable bearing interface.
This is the maximum spacing between jdints A and G before the link GH will interfere
with the rotating base of the robot. Because of the smaller spacing between the main
links and the parallel links, larger tension and compressive forces will be seen in the links

therefore two sets of parallel links will be used, one on either side of the main links.

35

Link DH must be free to rotate around the center of joint D but be constrained

from moving in other directions. The shaft at joint D already had a 5/8-16 UNF tapped
hole at both ends. If the proper mechanism could be found to use this thread and allow
the one degree of freedom (rotation about the axis of joint D), the lower parallel linkage
design would be essentially complete. It was found that a cam follower would thread into
the threaded joint D and if link DH was bressed onto the bearing surface.of the cam
follower, the link would be properly constrained. This approach was used with a 1.59 cm
bolt passing through joint H and holding links GH and HI. There is no connection
between the left and right hand sides of joint H because this connectidn would interfere
with the main links when the arm was retracted towards the stowed position.

There was not much change made to joint I. The universal end-effector mount
was rotated so that it was hanging below joint F. The pillow block for joint I were move
so that they met the same spacing from joint F as joints A and G were spaced. Since
there were two parallel links HI now versus one on centerline, the length of the shaft at
joint G had to be lengthened to accommodate the width of the spacing between both
links. Figures 4.9 and 4.10 show the final configuration of the parallel linkage

mechanism.

36

37

Figure 4.10 Side View of Base, Joint H, and End-Effector Respectfully

An added advantage of placing the paréllel links below the main links is that the
universal end-effector mount is now mounted mostly below joint F. Rotating the mount
and mounting it below joint F lowers the center of the universal end-effector mount and
therefore also lowering the height above the pavement of the paint head. Additionally,

the universal end-effector mount does not have to be as long now that the parallel links

are only spaced 22.84 cm (8.993 in) apart. Shortening the mount from 55.9 cm (22.0 in)

to 27.9 cm (11.0 in) reduces its weight by 50 percent.

4.4.2 End-effector Retraction for Stowage Redesign

It was decided that the BASR arm have the ability to stow the ‘end-effector within
the bed of the support truck. 'As BASR is transported between work sites, it would be
safer to have the arm rotated around and over the bed of the truck so that it is completely
within the confines of the truck bed and that the paint head is rotated to horizontal so that
it is not in danger of striking objects on the roadway. Different schemes were

investigated for merit. The optimum retraction scheme is shown in Figure 4.11.

38

Figure 4.11 End-effector Retraction Mechanism

The end-effector is retracted by changing the length of parallel links HI. In the
normal working (non-retracted) position, link HI is thé original 27.94 m (110 in) length.
To rotate and retract the end-effector, link HI shortens 33 cm (13 in). When the end-
effector is needed in its working position, the link extends to its original length. This
extension and retraction is accomplished by an air cylinders imbedded in the end of the
two link HI's. When the cylinder is retracted, the link is short and whe;n the cylinder
extends to full stroke, the link expands to its full 27.94 m (110 in) length. The air
cylinders are actuated by 1.03 MPa (150 psi) air which was already available to the end-

effector. The status of the end-effector rotation is sensed by hall effect switches mounted

39

on each pneumatic cylinder. When the end-effector is retracted over the truck bed, air to
the air cylinders is vented allowing the end-effector to rest in restraints provided in the

truck bed.

40

5 CONCLUSIONS
-S.1 | Conclusions

This thesis discusses the multiple developmental stages involved in the
mechanical design of the Big Articulating Stenciling Robot (BASR) Arm. Current
methods and mechanisms used to paint words and symbols on the roadway are presented
to establish the direction that was taken towards the generation of overall conceptual
designs. The previous chapters include general descriptions of the individual systems that
constitute the BASR as well as more detailed descriptions of the BASR Arm. The
generation of multiple arm concepts and the impartial trade-off process provide a logical
means of selecting the most effective design while identifying the strengths and
weaknesses of each design. The development of the Arm as presented in Chapter 4 and
Appendix A is also presented to show the step by step process used to design the accepted

concept.

5.2 Recommendations

-During initial prototype testing, it was determined that the overall arm height
above the roadbed while retracted was too tall and should be reduced. Contributing to the
overall height was the parallel linkage mechanism. If the mechanism height could be
reduced, the overall performance of the arm would be greatly improved. Modifications to
the linkage were undertaken and the initial modifications are discussed in Section 4.4.1.

Further modifications could improve the parallel linkage even further. Experimentation

41

with othér mechanisms and geometry may yield a parallel linkage extends along link DEF
only, eliminating the linkages along link ABD.

Approximately 30 - 40% of the stress in the links and shafts is due to the weight
of the links and joint materials. To réduce this contribution to the overall stress, the Arm
wasl made from heat treated aluminum. Although aluminum is lighter than steel, it is not
as stiff as steel, lowering the natural frequency of the structure. Alternative materials to
aluminum should be investigated to further reduce the weight of the structure while

increasing natural frequency of the structure. An alternative material to aluminum is

carbon fiber composites.

42

43

BIBLIOGRAPHY

[1] Sacramento Bee, Highway Workers Bill Gains, Capitol News, February 12, 1990.

[2] Sprott, K. S., Wong, P. W., Nederbragt, W., Olshausen, R., and Ravani, B., A
Description of the Photogrammetery Target Project Premark Painting System, UCD- -

ARR-94-09-09-01, UC Davis, CA., 1994.

[3] Long, Elan, Gantry Robots, International Encyclopedia of Robotics: Applications and

Automation, Volume 1, 579-587, 1988.

{4] McGrew, Richard A., A Robotic End-Effector for Roadway Stenciling, Masters

Thesis, UC Davis, CA., 1996.

[S] Caltrans, Standard Plans, California Department of Transportation, Sacramento, CA,

1988.

[6] Kochiekali, H., Ravani, B., A Feature Based Path Planning System for Robotic
Stenciling of Roadway Markings, ASCE Conference on Robotics for Challenging

Environments, Albuquerque, NM, 1994, pp. 52-60.

(71 Yang, D.H.C., Lin, Y. Y.. Pantograph Mechanism as a Non-Traditional

Manipulator Structure, Mechanism and Machine Theory, 20(2), 115-122 (1985).

(8] Sprott, K. S., Nederbragt W., Olshausen, R., W., Wong, P. W_, and Ravani, B.,

General Stenciling Project Preliminary Concepts and Proposals, UCD, November, 1994.

[9] Shigley, J. E., Mitchell, L. D., Mechanical Engineering Design, Fourth Edition,

McGraw-Hill, NY, 1983.

[10] 3M, Designer’s Reference Guide to User-Friendly Adhesives for Product Design

and Assembly, 3M Industrial Tape and Specialties Division, St. Paul, MN., 1993.

[11] Timken, Bearing Selection Handbook Revised - 1986. Timken Company

Engineering Services, Canton, OH., 1984.

APPENDIX A ...
FORCE, MOMENT, AND STRESS CALCULATIONS

C s am——————— B
o — Y
& — &
l 1L —— 5 :
. =
M
N i
N =

Figure A.1 Link BC Free Body Diagram

FORCE IN LINK BC
Assume that link BC is massless (less than 101bf)

Y F=M, A=(0)A=0

:ZF=O, 50,
(1
—>ZFX=O .
Fox —Fex =0 = Fy =Fg (2)
+T). F, =0

—Fp+Fey =0 = Fp =F,

Force acts along the link axis and the force is just Fg. at angle © as shown

in Figure A.2.

45

46

_ APPENDIX A
FORCE, MOMENT, AND STRESS CALCULATIONS

Figure A.2 Link BC Free Body Diagram Showing Forces in Line with Link

STRESS IN LINK BC

Since the link is just in compression without any bending moment, determine
Just compresive stress due to Fy..
FBC
ABC

Oy = Where A . = Cross sectional area of link BC 3)

NOTE |: Cross sectional area of the link is defined as the minimum cross section
area minus material removed for the shaft or bearing at that joint.

NOTE 2: In this link, buckling is ignored due to its short length (low L/ k).

APPENDIX A
FORCE, MOMENT, AND STRESS CALCULATIONS

H——
Fa
T .. PV
<
RArY -
= - A
T |
- - W R
‘ Fac
“a [’ ~
Uik ABD

Figure A.3 Link ABD Free Body Diagram
FORCE AND MOMENT IN LINK ABD

5YF, =Ma,
Fox = Facsin(®) + Fyy = MABD(AABD)X

+TYF =MA,
—F,y + Fpe cos(©) + Fppy = M 5, (App)y

:‘_“ Z Mg = Iwoé
—F Ry = Fiy Ry + FocRyc0s(20-90)+ Fpy Ry — Fpy Ry = [0

STRESS IN LINK ABD Find the stress in link at joint B (tensile). Joint B has the

max stress due to max bending moment and minimum cross sectional area.

M. = Fpocos(20-90)R R,

B

Where R,, =R, —Ryand R, =R, + R,

RUNK

F, = Fp, sin(©) + F,, cos(O)

Where AABD = .Cross sectional area of link ABD

(without hole for joint)

4)

(5)

(6)

(7

(&)

(9

47

APPENDIX A o
FORCE, MOMENT, AND STRESS CALCULATIONS

v - -
—o AT \i
RV l -
- -
~ - e

D ¢

Figure A.4 Link CE Free Body Diagram
FORCE AN MOMENT IN LINK CE
5 F, =MA,
Fox =Fge = M (A)

+T) F, = MA,
Foy —Fgy =W = MCE(ACE)_\'

¥ Z M =1 csé

~FoRey + FyRy — Fex Rpy + Foy Ry, = 160
STRESS IN LINK CE (Compression)

Assume that F, is in line with link axis

F CE
ACE

O = Where A, = Cross sectional area of link CE

Buckling for this link is evaluated near the end of this section.

(10)

(1D

(12)

(13)

APPENDIX A
FORCE, MOMENT, AND STRESS-€AEEUEATIONS e

Fo = .« D
F, € Por Q
— . N
) ' \Ph . ne
LS N
c h ~
Y- ~. -—
, & = o).
~ =
o R,
| \\(,\/\
Woer ~ \
\J‘—Fn(\®
OpN L [
I RINI
FFY

Figure A.5 Link DEF Free Body Diagram

FORCE AND MOMENT IN LINK DEF

_)zFx =MA, .

~Fpy + Fo = Fey = M pee (Aper) x (14)
+T Y F, = M4,

—Fpy+ Foy —Fry =Wpge = Mg (Apgr)y (15)

iZMCG =150

FoxRpwy + FpyRp1x — FexRew = FerRenx — M ger Aper Ry = Weer Rex = [DEFé (16)

STRESS IN LINK DEF
Maximum stress occurs at joint E (tensile) due to max bending moment and force

at minimum cross section.

M = R (Fg sin(@) + Figy cos(@)) + R Wyer sin(@) Where Ry, = Ry + Re) (17)

(18)

F E(TENSION)

=W, cos(®) — Fpy sin(@) + F, cos(O)

G _ MECCE FE(TENSION)
E(TENSILE) — +

(19)

Where A e = Cross sectional area of link DEF
ICE ADEF

APPENDIX A __
FORCE, MOMENT, AND STRESS CALCULATIONS

., A,

1

e

SLIUER, JOINT C

Figure A.6 Slider, Joint C Free Body Diagram

JOINT C SLIDER

Assume that the mass of the Slider is zero and no friction in the linear slide.
Additionally, assume that the Slider is constrained to move in X direction
only (A, =0).

D F=MA=(0)A=0
=>ZF=O so,

33 F, =0
Foesin(@)-Fo —F, =0

+TYF, =0
—Fgocos(@)-F,, +F, =0

&

(20)

21

50

APPENDIX A
FORCE, MOMENT, AND STRESS CALCULATIONS
\/

Fr Y

END-
EFFECTOR

—— T

v
!

;

@——»@i?' — 3
L

FI L —EFFECTCFR

Figure A.7 End-Effector Free Body Diagram

END - EFFECTOR
Assume that the end - effector moves in X direction only due to the input (Slider)

constrained to move in X direction.
ZF)’ =M e (A)y = Mg (0)=0
= D F, =0

—')ZFX =M ger (Ager) x» DUt (Aggp)y = Ager
Feg = M ppp Agge (22)

+TYF, =0
Foy ~Weee =0 = F, =W, (23)

51

APPENDIX A
FORCE, MOMENT, AND STRESS CALCULATIONS

ér— ». Determination of angular velocity
: 1
/// v Vox =OR e 05(O) and Vi ==V,

e
{ ™ A -
| - = Verr = 26R ,, c0s(B)
l >§R . Ve
o O @
[.
£ Q2 = Veer
hd 4R}, cos*(©)
Ao Determination of angular acceleration
_ AN, Apy =OR y c0S(B)-O’R . sin(B)
Le P 1
' AN Q/ _,,// and Apy = 2 Agers
| } R = Agy = 2OR 4y coS(0)~ O’ R, sin(©))
g P e s Agr Vi, tan(©)
5 o O @ 4R%,, cos?(0)
: Determination of link ABD accelerations
!iAgo!, ‘_/0\
| T3 . = l RA
. Apply = 2R Ay =02367 A,
\ i = aar - LINK
| 7 (Agp)y =—R,(Osin(0) + O cos(O))
e w
. /3' Determination of link CE accelerations
CeEen ! 132 - .
' \ Ax)y = m A + R (Ocos(©) - % sin(Q))
. AT e (Ae)y =—R.(Bsin(0) + ©? cos(©))
A
D — :_fogAz:r
o Determination of link DEF accelerations
/ N (Roes) Ry + Ry V
A ' (Apee)x = (T)AEEF =0737Ag,
. A UNK
- -

(Aper)y =R, (éSin(e) +©? cos(©))

Figure A.8 Determination of Link Velocity and Accelerations

(24)

(25)

(26)

(27)

(28)

(29)

(30)

€29

(32)

52

APPENDIX A
FORCE, MOMENT, AND STRESS CALCULATIONS
The previous free body diagrams give us twelve equations and twelve unknowns.
The values for link length, link weight, position, velocity and acceleration are known or
spgciﬁed. To detemljhe the unknowns, solve individual equations for one unknown and
substitute into other equations. This reduces equation (16) to one unknown, Force at E in

the Y direction. Equation (33) shows the relation.

B+7334(A)
= e
& = 16.13sin(O) e 33)
A= [MEEFAEEF + MDEF(ADEF)X]RDIY + [Wssr +Woer + MDEF(ADEF)Y]RDIX + (34)
M err Ager Rey +Wegr Ry + 15, ©
“And .
B=[C£é+MCE(ACE)XRCY_[MCE(ACE)Y+WCE]RCX : (35)
Substituting the value for F, found with equation (33) into a simpiiﬁed equation (16)
yields the following equation.
A
Foy =————-F,t 36)
& = lcos@) e © (
Substituting £, and F, into equations (14) and (15) respectfully yields the
following two equations.
Fox = Fex =M per Ager — Mpee (Apge) (37)
Foy = Fey =Wege —Woge — My (Aper)y . (38)

Substituting F, and F,, into equations (10) and (11) respectfully yields the

following two equations.

Foy = Fex + Mg (Age)x . (39)
Foy = Foy + Mo (Ag)y + W (40)

54

APPENDIXA
FORCE, MOMENT, AND STRESS CALCULATIONS

To solve for F,., solve equations (4) and (5) for F,, and F .y fespectfully and then
substitute into equation (6) and solve the resultant equation for F,..

. C+[~F,y cos(®) + F,, sin(®)|R,,
¢ " 2R, [cos(©)sin(©)] + R, cos(20—90)

C= I.woé'*' R, {[MABD (Aup);v - Fpx]COS(G) + ["MABD (Ausp)y + For] Si"(@)} (42)

€re (41)

Substituting F,. into equations (4) and (5) yields the following two equations

which give the last two unknowns.

Fox =M 55 (Augp) x + Fycsin(©) - Fpy (43)
Foy =M 55 (Augp)y + Fyccos(©) + Fyy (44)

55

APPENDIX A
FORCE, MOMENT, AND STRESS CALLCULATIONS

RESULTS:

5157 psi 70° (extended) Accel= -6 ft/sec/sec
Vel=anything
1173 psi 70° (extended) Accel= -6ft/sec/sec
Vel=anything
864 psi 70° (extended) Accel= +6 ft/sec/sec
Vel=anything
2971 psi 70° (extended) Accel= +6 ft/sec/sec
Vel=anything

Table A.1 Maximum Stresses in the Links

The maximum stress in each critical location are shown in Table A.1 below.

APPENDIX A
FORCE, MOMENT, AND STRESS CALCULATIONS

DETERMINATION OF CRITICAL LOADING FOR LINK CE

Since link CE is in compression without any external loads or bending moments,

buckling of the column is a concern that needs to be addressed. Determination of the -

critical loading is shown below. The calculations are taken from Mechanical Engineering
Design (8]. It must be determined if the column is a short or a long column and use the

appropriate equations to determine the critical load. The figure below shows the regions.

Unit load, P/A

A
]

\D

i
(/k},
Slenderness ratio, I/k

Figure A.9 Determination of Column Loading Type

J. B. Johnson formula: Euler Formula:

P, S, Y[1 YLY P, Cn’E

A (Zn CE \k A (LIk) (44) and (45)
Where:

P, = Critical Loading
A = Cross Sectional Area of Link CE
S, = Yield Strength
C = Distance from Neutral Axis to Outside of CE
E = Modulus of Elasticity
L = Length of the Column (Length of CE) = R
AE AE (46)

k = Spring Constant of the Column = —=—
L R,

56

APPENDIX A

FORCE, MOMENT, AND STRESS CALCULATIONS "~

Assume that the link is the static case so that transverse (small) load causing

bending due to inertia loads can