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Executive Summary

This report presents the results of a study performed at the Department of Civil and
Environmental Engineering and Geodetic Science with application to ODOT’s Aerial Engineering
tasks. Specifically, the study was concerned with the integration of the Global Positioning System
(GPS) and an inertial navigation system (INS) for precise, continuous positioning of ODOT’s
aerial photogrammetric airplane. The study was based on testing a medium-to-high accuracy
inertial navigation system (Litton’s LN93) with GPS on board an aircraft. The objective was to
demonstrate that such an integration can maintain the GPS accuracy of 2-3 cm over short intervals
(few seconds) and to determine the capability using optimal estimation algorithms of maintaining
accurate positions over somewhat longer periods. The motivation behind this study is the fact that
GPS positioning may be interrupted because of a variety of reasons, from electronic interference
(causing cycle slips) to shadowing of the satellite signals (by aircraft wings and tail).

This report first reviews the essential measurement characteristics of both the GPS and the
INS. This is followed by a mathematical treatment of the integration of data from both systems to
achieve continuous positioning of the vehicle. The mathematical estimation methods are then
applied to data collected from systems deployed on an aircraft in order to demonstrate the levels of
position errors.

The results of these studies indicate clearly that such continuous positioning is possible with a
loosely integrated GPS/INS configuration. However, it is also noted that the integration cannot be
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completely uncoupled and requires a comprehensive filtering and smoothing algorithm in order to
estimate the INS errors. In fact, in order to achieve the predicted GPS accuracy capability of 2 - 3
cm on a continuous basis requires a high-order optimal estimation algorithm that correctly models
the drift and bias errors of the INS. Accuracies of 10 cm, or better, have been demonstrated for
GPS outages up to 30 seconds. This is also entirely adequate to recover from cycle slips over that
interval, since it represents only half of one wavelength of the carrier wave. Other results of the
study include recommendations on the quality of the INS needed for such application and the
opportunity to extract orientation information from the estimation algorithm.

The next step in this development is the construction of a fully dedicated system for operational
implementation, similar to the one tested, including an operational software package that can be
used routinely to process the GPS and INS data in an optimal and flexible manner.



PREFACE

This report presents the results of a study performed at the Department of Civil and
Environmental Engineering and Geodetic Science with application to ODOT’s Aerial Engineering
tasks. Specifically, the study was concerned with the integration of the Global Positioning System
and an inertial navigation system (INS) for precise, continuous positioning of ODOT’s aerial
photogrammetric airplane. The study was based on testing a medium-to-high accuracy inertial
navigation system (Litton’s LN93) with GPS on board an aircraft. The objective was to
demonstrate that such an integration can maintain the GPS accuracy of 2-3 ¢cm over short intervals
(few seconds) and to determine the capability using optimal estimation algorithms of maintaining
accurate positions over somewhat longer periods. The motivation behind this study is the fact that
GPS positioning may be interrupted because of a variety of reasons, from electronic interference
(causing cycle slips) to shadowing of the satellite signals (by aircraft wings and tail).

The results of the study, which are based on actual test flights with a similar system, the
LN100, indicate clearly that such continuous positioning is possible with a loosely integrated
GPS/INS configuration. However, it is also noted that the integration cannot be completely
uncoupled and requires a comprehensive filtering and smoothing algorithm in order to estimate the
INS errors. Other results include recommendations on the quality of the INS needed for such
application and the opportunity to extract orientation information from the estimation algorithm.

The next step in this development is the construction of a fully dedicated system for operational
implementation, similar to the one tested.

Christopher Jekeli
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CHAPTER 1

INTRODUCTION

The Ohio Department of Transportation (ODOT), Aerial Engineering Facility, has a
requirement to position a photogrammetrically equipped aircraft to an accuracy of 2 cm (1 sigma) in
all three coordinates relative to given base station coordinates at specific epochs defined by the
opening of the camera shutter.

Tests using Global Positioning System (GPS) methods have demonstrated this positioning
accuracy under suitable conditions. It is achievable because the positions are based on the
continuously tracked phase of the 19-cm carrier wave of the GPS transmissions. Conditions that
would encumber achieving this accuracy with GPS include unavoidable electronic interferences
that cause cycle slips, or full-cycle discontinuities, in the tracked phase, which results in the loss of
the integer count of full cycles. This so-called full-cycle ambiguity (needing resolution, in any
case, at the initial epoch) usually can again be resolved with special data processing methods, e.g.,
using the coded signal and the signal transmitted at the second frequency. However, this renewal
requires several epochs (tens of seconds and longer) of data, depending on the GPS receiver and
satellite configuration. Once reacquired, the full-cycle count is usable backwards (post-mission,
only) to the epoch of the cycle slip. Another condition inhospitable to maintaining accurate GPS
positioning is loss of signal due to temporary shadowing (e.g., by aircraft wings), thus possibly
reducing the number of tracked satellites to fewer than required for positioning (this is not a usual
occurrence, more so for ground vehicles passing larger obstructions).

The relatively long time interval between GPS-derived positions (1 second or longer) implies a
significant asynchronism with respect to the epochs of the opening of the camera shutter. The
magnitude of this problem becomes apparent considering that a mere 0.02 g acceleration of the
aircraft causes a 2.5 cm variation in position in a span of only 0.5 sec. Thus, even a 1-sec.
integration time poses interpolation problems. Also to consider is that an aircraft flying at 225
mi/hr traverses 100 m between GPS position fixes spaced 1 second apart.

In summary, the required accuracy based on GPS positioning alone is compromised in at least
two important ways: 1) cycle slips that span intervals too short to enable full-cycle ambiguity
resolution may cause the GPS solution to be severely inaccurate or even non-existent within that
interval (depending on the number of satellites available); and 2) the integration time of 1 second or
longer may be too long to permit accurate interpolation of position to the epoch of interest (e.g., the
time of camera shutter opening).

It is widely recognized that the integration of GPS with an inertial navigation system (INS) can
alleviate these shortcomings in positioning. Positions and velocities from an INS are obtained by
integrating accelerations sensed by accelerometers. Typically, these systems yield output rates on
the order of 100 Hz (or more), are very precise in the short term, and, therefore, serve as excellent
position interpolators. Moreover, the operation of an INS is completely autonomous, meaning that
the position solution is obtained entirely from the unit, in principle, without additional external
information. Only initial position and velocity must be known. Finally, the INS provides angular
data from a set of gyroscopes whose primary intent is to orient the accelerometers, but can also be
used to orient the GPS antenna with respect to local level. The major drawback of INS positioning



is accuracy degradation with time, where the amount of degradation for a system ultimately is a
function of sensor quality, and hence, sensor cost. However, the positioning requirements stated
above are for short periods, on the order of several seconds to minutes, where even a low-to-
medium accuracy INS could be effective.

The integration of GPS and INS is fast becoming the mode of operation for aerial
photogrammetric surveys (see Jekeli, 1995, for a broad overview). Primarily, INS is used to
recover quickly from cycle slips in the GPS data. In fact, the integration of GPS and INS has long
been recognized as providing robustness and added value to any platform requiring accurate and
uninterrupted positions, velocities, and orientation. The demonstrations of such integrations have
been reported consistently at national and international symposia and conferences in navigation and
positioning. As a relevant sample, it is worth mentioning the results of Schwarz et al. (1994), who
demonstrate the capability of INS data processing for cycle slip recovery. Their tests were done
using a ground vehicle and they show that position accuracy better than 10 cm during GPS outages
up to two minutes were maintained with the INS and a backward smoothing algorithm. Another
study was performed by S6hne and Heinze (1995) who also demonstrate INS bridging capability
during GPS outages using a ground vehicle. With only a filter algorithm (not smoothing), they
show that INS can maintain up to 60 cm position accuracy within one minute of GPS outage.
Both of these results (done with ground vehicles) were based on a similar INS as used for this
study.

The intent here is to demonstrate the integration of INS and GPS for ODOT’s airborne
accuracy requirements where the INS is used as an interpolator between GPS epochs as well as an
extrapolator / interpolator during GPS outages, thus better defining the aircraft position at the time
of camera shutter opening, and providing accurate capability to recover from cycle slips and other
lapses in GPS positioning. This project was motivated in part by the availability of a medium-to-
high accuracy INS. One system, model LN93, is on loan from Litton Guidance and Control; and a
second Litton system, model LN100, was obtained by OSU’s Center for Mapping to develop an
Airborne Integrated Mapping System (AIMS). Both of these systems were used to analyze the
integration of GPS and INS and determine the positioning capabilities of this integration.

The studies were limited to the loosely integrated concept with the goal of yielding an
uninterrupted aircraft positioning capability (post-mission) at the accuracy of 2-3 cm over short (on
the order of a few seconds) intervals. This accuracy is commensurate with the accuracy available
from precision GPS alone under normal operating conditions, and the intent is to demonstrate the
transfer of positioning accuracy from the GPS epochs to any intermediate epoch (the time of
shutter opening) and to bridge other positioning gaps in the GPS data stream. In addition, the test
results will identify the important characteristics of the INS needed for this type of application, as
well as other survey applications, e.g., positioning ground vehicles subjected to longer GPS
outages. :

This final report reviews the essential instrumentation components, both GPS and INS,
including the data output and their integration for accurate continuous positioning. The results of
the studies show the benefit of using INS to interpolate between GPS position determinations and
are based on actual flight tests conducted by the Center for Mapping. These results then lead to
specification for an INS suitable for improving the positioning of an operational aerial
photogrammetric platform. In addition, software algorithms needed to perform the integration of
the GPS/INS data are described and form the basis for future design and implementation. These
specifications and software algorithms can be implemented to design an optimal cost-effective
mechanization of an operational integrated GPS/INS for the airborne platform.

2
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CHAPTER 2

THE GLOBAL POSITIONING SYSTEM

2.1 Introduction

The Global Positioning System (GPS) comprises a set of orbiting satellites which may be
thought of as active beacons in space transmitting signals that when observed on the Earth (or
anywhere in space where the satellites are in view) provide information about the distance between
the satellite and the observer. With favorable geometry among the satellites and the observer and
with error-free and time-synchronized instrumentation, three distances to distinct satellites whose
positions are known enable a solution of the observer’s position by the method of intersection.
This concept is basic to the now standard practice of geodetic static surveying and has been
demonstrated to yield precise positioning of aircraft and other vehicles that carry scientific as well
as surveying (photogrammetric and remote sensing) types of instrumentation (e.g., Yang, 1995).

2.2 Kinematic Positioning

Kinematic positioning refers to GPS positioning of a moving vehicle or platform. One could
attempt this either in real time, that is, instantaneously, or usually with higher accuracy in a post-
mission mode. The term navigation is used to refer to the real-time processing of the positioning
data, while kinematic positioning is reserved for the post-processing of the data (as computers
become more powerful, the distinction may become rather nebulous).

The observables are the same whether in static or kinematic positioning. The differences do
include, however, the loss of the benefit of time averaging that yields higher accuracy per point in
the static case and the need to increase the bandwidth of the tracking loop to accommodate the high
frequency dynamics of the vehicle. (On the other hand, we are not interested in high-dynamic
vehicles, such as military fighter aircraft.) In addition, kinematic GPS positioning often is
burdened by a more restrictive and changing environment in terms of visible satellites, interference
from passing structures, and multipath. This, of course, is one of the reasons for integration with

INS.
2.3 The GPS Observables and Unknowns

The GPS receiver measures the correlation between the received satellite signal codes and
identical codes that are generated by the receiver and synchronized to the codes generated in the
satellite. The correlation is highest when the incoming codes are shifted in time to account for the
time of their transit from the satellite to the receiver. The amount of this imposed time delay,
obtained from the maximum code correlation, then represents the time of transit of the satellite
codes from the satellite to the receiver; and when multiplied by the speed of light in vacuum yields
the satellite-to-receiver distance. Because in reality there are errors such as clock errors,
propagation medium effects, multipath, and receiver electronic delays, the measured delay
represents not the true range, but the pseudorange, between receiver and satellite.



If t represents true time (GPS time), then let 7,(t) be the time of reception of the signal as
indicated by the clock of the rtb receiver, and let T2(t — Atf) be the time of transmission of that
same signal as indicated on the clock of the p'® satellite. The time of transmission on this clock is
supposed to be the true time minus the actual time of transit of the signal, At?. Notationally, it is
convenient as well as conventional to let superscripts identify quantities referring to satellites and to
let subscripts identify quantities referring to receivers. Quantities with both superscript and
subscript depend on both satellite and receiver.

It can be shown (Leick, 1995) that the pseudorange, sP, at the receiver-indicated time is given

by

sP(t,) =pP(t,) +c (AT, - ATP) - pP AT,
2.1

p p P p p p
+ Ap offsetr +Ap iono,r +Ap tropo,r +Ap m.path,r +Ap equip,r + 8p,l'

where pP is the true range at the indicated time, AT, is the receiver clock error, AtP is the satellite
clock error, p? At, accounts for the fact that the true range is different at the indicated and true
time epochs, Ap ﬁffsm is an error due to antenna center offsets, Ap f;nm is the error due to
ionospheric refraction, Apgo is the error due to tropospheric refraction, Ap gl_path‘r is the
multipath effect, Ap E quipyr [EPTESENLS signal delays within the equipment electronics, and eg  isthe
random noise of the measurement. Some of these errors can be calibrated or compensated fairly
readily, using different frequencies or models. Others, in particular the multipath, are notoriously
difficult to deal with.

A pseudorange observable, as shown in (2.1), is available for each of the transmitted codes,
the C/A code, as well as the P-codes on the L1 and L2 carriers, on appropriately equipped
receivers.

The GPS codes are transmitted on carrier signals whose phase can be measured with respect to
nearly identical signals generated by the receiver. Thus, another type of observable available on all
geodetic receivers is the difference between the phase of the receiver-generated carrier signal at the
time of reception and the phase of the satellite signal at the time of transmission (which arrives at
the receiver unaltered except for the propagation effects that similarly corrupt the code
measurement). The difference in phases, again, is due to the time of transit of the signal.
Actually, the phase tracking loop of the receiver, when it first locks on to the signal, has no way of
knowing the integer number of full cycles that comprise the difference in phases. Therefore, the
absolute range to the satellite cannot be determined directly on the basis of the phase measurement.
On the other hand, once acquired, the signal is tracked continuously and the complete cycles are
counted and added to the measurement of the fractional phase difference.

It can be shown (Leick, 1995) that the accumulated carrier phase observable,¢? , is given by

: f, f, -
0P(1,) =2 pP(x,) + fo (AT, — ATP) + ¢ — 0 ~NP -2 pP A7,
(2.2)
p P p p AMP
+ A¢offset.r + A¢ iono,r + A¢ tropor + Aq)m.path,r + A¢ equipr + gg,r

where f; is the nominal frequency, ¢ is the speed of light, ¢y, and (bg are receiver and satellite
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phase offsets, NP is the integer also known as the carrier phase ambiguity representing the
unknown full number of cycles at the initial time of phase lock, Ep.r is the phase measurement
error, and the other errors are analogous to the corresponding pseudorange errors. A carrier phase
observable such as given in (2.2) holds for both L1 and L2 carriers, where, of course, the nominal
frequency, f,, as well as the phase error terms are different in each case.

2.4 Combinations of Observations

Inspecting the measurement equations for the pseudorange and carrier phase, one sees some
quantities that do not change, such as clock biases and the phase ambiguity, or that change more
slowly or have a long correlation time, such as tropospheric delays. In addition, there are terms
common to observations that correspond to different receiver-satellite combinations. One could
use each observation of pseudorange or carrier phase and try to solve for (or model or ignore)
unknown error terms to the extent possible using observations to different satellites. This is
known as absolute positioning. Or, what turns out to be more accurate in a relative sense, one
could take differences between observations thus canceling the common mode terms and greatly
reduce the effects of slowly varying error terms. This is known as relative positioning. In
kinematic positioning, this means that one receiver is stationary and one receiver, the rover, is
moving. Relative kinematic positioning has its limitations for a given tolerance in accuracy. The
larger the baseline between rover and stationary receiver, the less is the cancellation of certain
correlated errors, such as tropospheric delays and satellite orbit error (that is, they become
uncorrelated).

To investigate the relationships between certain unknowns and the observations, or
combinations thereof, consider again the pseudorange (2.1) with some of the error terms excluded:

$P(1) = pP(T,) + (AT, (1) - ATP(t ~ AtD)) + ApD  + €2 2.3)

ionor p.xr

Similarly, the phase observable (2.2) simplifies to

£
02(t,) = € pR(t,) + fo (AT, (1) - ATP(t - AD)) + 0, — 05 - NP+ A0D  +eb (2.4)

Each observable, whether code or phase, is a function of the range between the receiver and the
satellite, but also of the additional parameters, including the clock errors, the phase offsets, the
initial phase ambiguity, and the ionospheric delay. These so-called nuisance parameters can be
solved only if at least as much information (independent observations) is available as unknown
parameters. o

Additional information comes in many forms. By observing additional ranges to other
satellites, the receiver clock error can be solved for each time epoch. Or, one can difference
observations between the (more than 3) satellites and thus eliminate the common receiver clock
error. Many geodetic receivers are capable of tracking the code and carrier signals on both L1 and
L2 frequencies. This additional information allows solving for the linear ionospheric delay. It also
helps in solving for the phase ambiguity. Differencing the observables with respect to those of
another receiver (usually stationary) observing the same satellites yields only relative positions, but
also reduces the satellite clock error and effects due to orbit error, as well as ionospheric and



tropospheric delays. It is worth mentioning that an INS also provides additional information,
although it is only in the form of relative positions and introduces several additional systematic
errors. Yet, with proper modeling, integrating INS into the GPS positioning problem solves
difficulties in the kinematic mode related to achieving required resolution and accuracy and
recovering from the inevitable cycle slips in the phase data.

We consider only the double differencing of pseudorange and phase observables from two
receivers, one at a base station and the other on the vehicle. This eliminates receiver and satellite
clock and phase biases (approximately). Two subscripts, r, s, are used to signify the between-
receiver difference and two superscripts, p, q, are used to signify the between-satellite difference.
We have a doubly differenced pseudorange and phase observable for each frequency, L1 and L2,
thus four observables at each epoch, that can be combined in one observation set as follows:

As1P9(1) ApPAg o
! (1) Ael

M@ 1 a0 o || AR | Aey 2.5)
ORI || VA WAy -1 0 ] ANPY | aeidd,

AG22%(7) VA, =92, 0 -1 /| AN2Pd pea2,

where the wavelengths of the carrier signals are A; and A, (frequencies are f; and f,), and
where:

AsiP(t) = 12(t,) - s1(r) - s18(ny) + s13(n)
Ap173(T) = ¢18(t) - d1.(1,) - ¢18(t) + 41 ()

ApPI(T) =pP(1) - p (1) - p2(1) + p(7)
—c (Atp(t — At?) - ATI(t — At®) — ATR(t - AtP) + ATY(t Atg))
~(p?-p7) At + (2 - p3) A0
2.6)
AIPI=TP —I3-1P + ¢

AN1?3=N1P - N1? - NiP + N1d

P4 _oP _ 09 _ P q
AEIPJ'S—EIN o, — €l +El5

and where it can be shown that the ionospheric term, IP, is proportional to the pseudorange and
phase delays as shown in the second column of the matrix in (2.5), with o = (f,/f,). Definitions
similar to (2.6) hold for the second frequency, L2. The true ranges refer to different true times
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A i .

i




since the receivers are not synchronized perfectly. In addition, the satellite clock errors do not
cancel completely because they refer to different times of transmission.

Up to this point, the unknown parameter of primary interest was identified simply as the range;
but the actual unknowns, of course, are the coordinates of the receiver. Toward determining these,
one must examine the true range, for example, pP, between the receiver and the p® satellite. It is
given, in terms of the true time of reception, explicitly by

PR(Y) =| Ra(AL? @) xB(t - AtP) ~ x,(1) 2.7

where xP(t - AtP) is the true vector of coordinates of the satellite at the true time of signal
transmission and x(t) is the true vector of coordinates of the receiver at the true time of reception.
The coordinates of these position vectors are in an Earth-centered-Earth-fixed system. That is why
the satellite position vector must be prefixed with a rotation matrix that advances it by the angle
At? @, to the frame of the receiver at the time of reception, where ®, is Earth’s rate of rotation.

2.5 Estimation of Receiver Positions

In all cases, we will assume a linear model for the relationship between the unknowns and the
observables. Also, only the double difference types of observations (2.5) will be considered. The
cases where the relationship is non-linear, as for the unknown coordinates, x,, in (2.7), a
linearization must be developed. Since usually the number of unknowns is smaller than the
number of observations, a least-squares techniques based on minimizing the square of residuals
between observation and adjusted observation is employed to find the optimal solution. It is noted,
however, that the coordinates in the present context of kinematic positioning depend on time, and
thus the number of parameters (coordinates of positions) is quite large, being at least three times
the total number of epochs. This suggests a recursive linear least-squares approach, that is, the
Kalman filter algorithm. This has the added benefit that parameters, or states, of the system may
be added or deleted as time progresses and as warranted by the situation and with systematic and
rigorous propagation of the covariances.

The Dynamics Model for the Unknowns. Following this approach, it is first necessary to identify
the states of the system and to specify a model for their dynamics. Among the states one naturally
includes the position coordinate errors; but also the velocity errors, the clock errors, and assorted
perturbing effects due to atmosphere, multipath, and electronic delays may be included. For each
state variables, one must define a (linear) dynamics model, with appropriate statistical information.

The simplest assumption is that the coordinate errors essentially are completely unknown, that
is, they are states with arbitrarily large white noise. The dynamics model then loses its
significance, and, lacking a better one at this point, we proceed under this assumption.

Let the state of the system be represented by the 3x1 vector, 6x,. Here, the receiver
subscript, r, has been omitted since only the coordinate errors of the roving receiver are to be
estimated; while the subscript, k, refers to the time epoch. The “dynamics” of this state, as per
above assumption, is '

8%y = Wy (2.8)



where wy is a 3x1 Gaussian (normally distributed) white noise vector with
w~ N(0.Q)) (2.9)

and (in a qualitative sense) the covariance matrix of the noise is given by

Q (308) (2.10)
100w '

The model (2.8) implies that the state transition matrix, @, is zero. The initial estimates of the
states are also equal to zero. It is noted that the true position errors are the differences between the
coordinates “indicated” by the system, in this case selected initial values, denoted by x,, and the
true coordinates:

8%y = Xy — Xy 2.11)

More sophisticated models for the coordinate errors would assume, for example, that the error
at ime k is correlated with the position error at time k+1, as described by a reasonable variance for
the velocity error or acceleration error (see Leick, 1995). Lacking specific dynamics, the model
(2.8) requires that adequate observations be available at every epoch in order to estimate the errors.

The Measurement Equations. The observations are the doubly differenced pseudoranges and
phases for a number of satellites at each epoch. In practice the observations are processed in two
passes. In the first pass, the equation (2.5) is used to solve for the double-difference cycle
ambiguity for each observed combination of satellites. It turns out that the correlations of the
estimated unknowns in (2.5) with the difference in L1 and L2 ambiguities are much less than with
either ambiguity by itself (Leick, 1995). Therefore, the so-called wide-lane ambiguity

A(N1-N2)P9 = (N1P - N17 - NiP + Nig) - (N2f - Naf - NoP + N2§) 2.12)

is determined in the initial pass of the GPS data. _
Subsequently, now that this parameter (the wide-lane ambiguity) is known, the only
observation equation used is that of the “wide-lane phases”:

Alo1 - ¢2)P4 =(¢1§’-¢1§ —¢1P +¢1‘s‘)k—(¢2£’—¢2§ —¢2f +¢2§)k _ (2.13)

k

which is related to the unknown coordinates of the receiver according to (2.4) by



fo; — £
Algr-¢2)Pd| =010 (p}? ~pd-pP+ pg)k ~ A(N1-N2)P3 + Ale1 - e2)0d (2.14)
k k
where the ranges are given by (2.7).
At any particular epoch, the measurement equation relates the 3 states, 6x, , to n differences
between observed quantities of the type (2.14) and corresponding calculated quantities. Let y, be

the nx 1 vector of observations at epoch k of the corresponding true function, h(x,), of the true
parameters, presumably with additive discrete white noise:

Yi=h(xy) + vi (2.15)

The difference between the vectors of calculated values and observations is given by

8y =h(xy) - yy

(2.16)
=YYk
A linear approximation of dy, is given by
Syk = h(;k) - h(Xk) -V
(2.17)
= Hk Sxk -V
where
dh '
H,= 2.18
k= 3% |y, (2.18)
is a n X 3 matrix of evaluated partial derivatives.
In the present case,
Sy = A(Eu - 52)5 ’sq — Afo1 - ¢2)P4 ;  nx 1 vector (2.19)
k

k (P el

where Z is the set of integer pairs designating the two satellites that enter in the calculation of a
double difference observation (Z contains n such pairs), and where

O
=——°lc 02 (pf—pg—pf+p§)k—A(N1—NZ)E’Sq (2.20)
K

A(cTn - 62)11_" 'sq



is the double difference phase at epoch k computed on the basis of the approximate roving receiver
coordinates, X, (the subscript, r, has been deleted for the sake of convenience). The ranges p°
and 52 are computed according to (2.7) for each epoch using the given coordinates of the
stationary receiver and the coordinates of the satellites p and q. The corresponding ranges to the
roving receiver are computed from

=[Ry(At? @) xP(- AD) - X, @.21)
k

H

and similarly for pJ.
The nx 3 measurement matrix of partial derivatives in (2.18) for each epoch, k, is given by

1

~ T ~ 1T
=~y [R3(Atf: ) xP(Ty — ALD) - ka + # [R3(Atg ) X9ty - ALY - xk] }
(pg)eZ

k k

(2.22)

where, again, the subscript, r, has been omitted. Finally, the white noise vector in (2.17) is

Vi = A(El - Ez)p'q

o ; nXx1vector (2.23)

kKlpgez

In the calculation of the ranges Ef , 5? , 53 , and f)'f » as well as the matrix H, , the signal transit
times, like At?, can be calculated from approximate receiver and satellite positions.

The covariance matrix, R, , of the measurement noise vector, v , at epoch k, is determined by
appropriate transformation from the covariance matrix of the phase observations (i.e., taking due
account of the covariance propagation associated with the double differencing). It is assumed that
the errors from epoch to epoch are uncorrelated.

Under these simplifying assumptions (no dynamics model for the position errors, no
correlation of observation errors in time), the position error states are estimated epoch by epoch
using the standard least-squares solution:

8%, =-(HfR¢' Hy) " HIR 8y, (2.24)
with covariance matrix given by
P, = (HER;' Hy)™ (2.25)

From (2.11), the estimated coordinates of the GPS receiver at epoch k are given by
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Xy = Xp — 0%y (2.26)
These Cartesian Earth-Centered-Earth-fixed coordinates can be converted to geodetic latitude,

longitude, and height (e.g., with respect to the Geodetic Reference System 1980) using standard
formulas (Borkowski, 1989).
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CHAPTER 3
THE INERTIAL NAVIGATION SYSTEM

3.1 Introduction

An inertial navigation system (INS) consists of an inertial measurement unit (IMU) and a
navigation computer. The essential element of an IMU is the accelerometer whose output is
integrated twice in time to obtain positions. A common class of accelerometers is the force-
rebalance type. Although a variety of designs exist, most are based on the principle of maintaining
the null position of a proof mass on a spring. The electronically applied force needed to do this is a
measure of the acceleration. Three accelerometers with sensitive axes mutually perpendicular
provide three-dimensional navigation.

Of equal importance, however, is the coordinate frame in which the accelerometers are to
provide positions. In this respect, not only the orientation of the accelerometers in the coordinate
system, but also their angular velocity affect the determination of position. The orientation
determines the component of the position vector that a particular accelerometer provides; and, as is
known from elementary physics, the angular rates with respect to an inertial frame contaminate the
accelerometer outputs with centrifugal and Coriolis accelerations.

The orientation and angular rates of the accelerometer platform are determined with
gyroscopes. Most INS for commercial deployment, today, use either the ring laser gyro or the
less costly (and less accurate) fiber optic gyro. Both types of gyros require that the INS be
mechanized in the so-called strapdown configuration; that is the INS is physically mounted to the
frame of the vehicle (no gimbal support system). This reduces the cost of the INS considerably as
compared to gimbal-supported, local-level stabilized systems.

3.2 The Ring Laser Gyro

The ring laser gyro (RLG), in principle, has no moving parts - it is based on the concept of the
Sagnac effect: The frequency of a light beam travelling in a resonant closed circuitous path (where
the number of wavelengths is always the same; i.e., it is a laser) must change if the apparent
length of the circuit changes because it rotates in inertial space. Two such counter-travelling beams
of light are used to create a fringe pattern where they recombine. The fringe pattern is stationary if
there is no rotation in inertial space. But, it migrates in the presence of rotation about the axis
perpendicular to the plane of the circuit, because then one beam sees a longer path, the other a
shorter path; and the number of fringes passing a detector per unit time indicates the rate of
rotation. .

The major problem with RLG's is a phenomenon called lock-in: due to imperfections
(scattering of light in the resonant cavity) the two beams lase at the same frequency even in the
presence of a small rotation, typically up to several hundred degrees per hour; they lock to the same
frequency and indicate a zero rotation. One common solution to this problem is to bias the output
of the device by applying a physical rotation away from the lock-in range. To maintain stability,
this mechanical "bias" is in the form of an alternating rotation, i.e., a dithering or oscillation (tens

12



to hundreds of Hz) of the gyro about its sensitive axis. This is the operational concept of the gyros
used in the Litton LN93 INS. .

A newer approach is to apply an optical bias by creating left- and right-circular polarization of
the two beams, respectively. In the presence of an applied magnetic field, the speeds of the beams
differ, which is equivalent to an effective difference in path length (Faraday effect), hence creating
a bias in the frequency difference. The complete absence of moving parts (no mechanical
dithering) improves the stability and substantially reduces the random noise of the IMU as a whole.
This is the operational concept of the gyros used in the Litton LN100 INS.

3.3 Essential INS Characteristics and Configuration

Size, weight, and power requirements, as well as the standard error budgets for each system
are listed in Tables 3.1 and 3.2. The accelerometers are the same model for both systems, but
current sensors are slightly improved. The characteristics of these two systems were provided by
Litton (person communication). Both are quite similar and several other subordinate error sources,
especially misalignments, temperature transients, and other correlated noise, as well as acceleration
sensitivities are not included here.

Table 3.1: Essential characteristics of the LN93 and LN100 inertial systems.

LN93 LN100
Data Rate 20 Hz (user defined) 32 Hz (256 Hz, raw data)
Size (excludes mount) 1089 cu. in. 539 cu. in.
Weight (excludes mount) 48.5 1bs. 19.4 1bs
Power 28 VDC, 150 Watts 28 VDC, 26.5 Watts

Table 3.2: Essential error budget for LN93 and LN100 inertial systems.

LN93 LN100

Accelerometer (Litton A-4 model) :

Bias Error 25 mGal 20 mGal

Scale Factor Error 120 ppm 40 ppm

White Noise 5 mGal/NHz 5 mGalNHz
Gyro (ring laser gyro)

Bias (Drift) Error 0.003 °/hr 0.003 °hr

Scale Factor Error 5 ppm 0.2 ppm

White Noise 0.0015 °~hr <0.001 °Ahr

13



Figure 3.1 shows the basic configuration of the INS and computer interface for the LN93. A
similar setup exists for the LN100. The computer used with the LN93 is a laptop computer
mounted in a so-called docking station that contains both the 1553 bus controller card and the timer
card. The 1553 card is the direct interface to the INS and all requests of data from the INS are
made through this bus controller. The timer card can be programmed to synthesize a sequence of
interrupts at a specified rate which is then used to request the INS data at that rate. In the case of
the LN93, the data request rate is 20 Hz. The start of a sequence of 20 interrupts within each
second is initiated by the pulse coming from the GPS receiver that is synchronized to GPS time
within a millisecond, or better, depending on the receiver. This pulse also is used to reset the INS
clock to zero. Thus all INS data requests are synchronized to GPS time. Each data item from the
INS includes a time validity tag relative to the INS clock which can be used to determine the actual
time for which the data item corresponds. Additional data are retrieved from the GPS receiver by
the bus controller software to determined the actual GPS time stamp of the one-second-pulse, and
to provide altitude data for the INS. The INS data are saved by the bus controller software on the
hard disk storage device of the laptop computer. The GPS raw data are stored in the GPS receiver
and later retrieved and processed as described in Chapter 2.

1553 Card data_l N93INS
1 pps
— Timer Card
GPS
RCVR | data |
f,gn PC display

Figure 3.1: Basic configuration of INS, GPS receiver, and computer test equipment.

3.4 INS Data Output

The data output options of an INS range from position and velocity to orientation angles, as
well as raw sensor data, system status data, and time tags. The type of output is entirely dictated
by the navigation software that the INS manufacturer creates for its customers. The software for
the LN93, that is on loan to Ohio State University from Litton, allows users to request position and
velocity in the navigation frame (north, east, down; or NED) with double precision (32 bit data)
and orientation angles of the body frame with respect to the navigation frame in single precision
(16 bit data). The position coordinates have quantization errors of about 40 cm in latitude and 60
cm in longitude, being due entirely to an artifact of the data processing performed by the navigation
software. The velocities do not have this error and can be integrated independent of the INS
software to obtain very precise position coordinates at the millimeter level.

Nevertheless, the lack of availability of raw sensor data from the LN93 makes it less useful for
wider geodetic applications. In addition, care must be exercised in synchronizing the INS and
GPS data, since the INS software, performing real-time data processing, makes data available to
the user with time validity tags showing significant time delays from the actual data output time.
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The software of the LN100 obtained by OSU’s Center for Mapping was specifically modified to
provide raw sensor data which can be processed by the user independently of the navigation
software. Furthermore, the time synchronization is less problematic since the time of raw sensor
output coincides very closely to the time validity of the data (since very little processing takes

place).
The raw data comprise velocity increments, dv, from the accelerometers and gyro angle

increments, 60 , in vector form given by

Sv=|abm)dt, 80=|ah®dt (3.1)

t t

where 3t is the sampling interval (e.g., 1/256 s), ab is the acceleration vector of the INS in the
frame of the vehicle (the body frame, or b-frame), and (o?b is the angular rate of rotation of the
vehicle (or, body) with respect to the inertial frame, as coordinatized in the body frame. Here we
assume that the body frame and actual INS platform frame are identical (i.e., the axes of the INS,
being strapped down, are parallel to the principal axes of the aircraft: forward, to the right, and

through the floor).
The set of INS navigation equations implemented by the INS navigation computer are

differential equations of velocity and position, where the velocity part may be formulated generally
as

vy =ay + fn(v,h.9)
(3.2)

VE=ag+ fE(V,h,¢)
where v = (vN, VB VD)T is the Tvelocity vector in the navigation frame with north, east, and down
components, a" = (aN, ag, a?} is the acceleration vector in the same frame, h is height above a
reference ellipsoid, ¢ is geodetic latitude, and fy, fg are known functions. These navigation

equations are integrated to obtain velocities, which are further integrated to obtain positions. The
navigation-frame accelerations are determined from the body-frame accelerations using a rotation

matrix, Cp

an = Cg ab (33)

The rotation matrix, C{, is determined from the gyro angles by integrating the following
differential equation:

Ch=chlwbx] (3.4)

. b _ T
where with @°, = (0;, @, @3) we define
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0 -3 O,
(@8 x]=| @ 0 -0 (3.5)
-0, o; O

It remains to determine the angular rates, mgb, of the body frame with respect to the navigation
frame; and this is accomplished with the relationship

‘”gb = “’?b -Cp o, (3.6)

where the inertial rates, m?b , of the body are obtained from the gyros according to (3.1), and the
inertial rates of the navigation frame, @, , are obtained from the velocities.

Clearly, the navigation solution as outlined above involves a rather complicated numerical
procedure, the elaboration of which is beyond the scope of this report (see Jekeli, 1996a). The
final output data processed by the INS computer consist of geodetic latitude and longitude, as well
as orientation angles, being defined as roll, pitch, and yaw angles of the vehicle with respect to the
north, east, and down directions. The height of the vehicle cannot be determined from the INS
because of the well known vertical instability of the navigation solution due to the Earth’s centrally
directed gravitational acceleration.
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CHAPTER 4

POSITION ESTIMATION

4.1 Introduction

The integration of the two systems, GPS and INS, means primarily a fusion of the data from
each system in order to obtain the (best) position of the platform or vehicle at any time.
Mathematically, one may view the problem as presented in Sections 2.6 and 2.7. The position
coordinate errors are states (unknown parameters) that are measured via the measurement equation
(2.15). The states, themselves, are assumed to behave according to some dynamics model. In the
case of GPS alone, the simplest model is given by (2.8), namely that the states unless measured by
GPS are completely unknown. Other models might include some information about the velocity of
the vehicle, etc., in order to predict what the states might be just before 2 new GPS measurement.
In particular the incorporation of an INS provides very significant information on how the states
behave between GPS measurements since, in fact, the INS senses accelerations that precisely
indicate how the position of the vehicle varies in time.

4.2 System Error Dynamics

The model for the INS position error states is well known and can be derived from the
navigation equations and ancillary equations (3.2) through (3.6). The development of the system
error dynamics in the n-frame is found in great detail in the book by Britting (1971); see also
(Jekeli, 1996a). We give here only the formulas without derivation.

The states include not only position and velocity errors, but also orientation angles, since all
three types of errors are highly coupled. Let this vector of error states be

. T
el=(wN vg wp 56 8k 8h 8 &\ sn) @.1)

where Yy, WE, Wp are the errors in roll, pitch, and yaw angles, respectively, and the errors in
velocity and position are given in terms of latitude, ¢, longitude, A, and height, h. Then the
dynamics of this state vector are defined by the following linear differential equation:

%el =F; €+ G du - (4.2)

where, with r=R4 +h, {,=A+aw,,and b=A+20,, Ry being the Earth’s meridian radius of
curvature at geodetic latitude, ¢ , and ®, being Earth’s rate of rotation, we have
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Fl =
0 -bsing § 0 cost 0 —{,sing 0 0
bsinb 0  dcosp -1 0 0 0 0 0
-6 -bcosp 0 0 - sing 0 —bcosp 0 0
o lay
. n . . & + =Ab,sin2¢
I O
AR ﬂ‘(d"“h?@) ytang &
al ~al : hl -2, 2% tan¢ — (4.3)
R o R
al  -al 0 20 2dicos’d 0 —rAlsin2e O 7+ Abcosd
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
and where
-C 0 0 Ry+h 0 0
G=( 0 D7'Cy D?|; D=| 0 (Ry+h)cosop O (4.4)
0 0 0 0 0 -1

and the inputs that drive the error dynamics are the gyro errors, Sw2 it the accelerometer errors,
da®, both in the body frame, and the disturbing gravitational vector, dg" , in the n-frame:

Sop,
Su={ dab (4.5)
og"

The instrument errors consist of biases, scale factor errors, correlated noise, and white noise. This
fact introduces an additional set of models that characterize the dynamic behavior of these errors.
Also, the gravitational error may be modeled as a stochastic process, which requires another
model. In total then, the simple nine-state error dynamics model (4.2) must be extended to include
models for the disturbances (4.5).
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4.3 Instrument Error and Gravity Field Models

The errors of the accelerometers and the gyros in the body frame can be modeled in a variety of
ways, but usually the models are restricted to linear processes. That is, an error is described by a
linear differential equation with white noise forcing function. For example, the process, X, is
assumed to have a first-order Gauss-Markov model if:

X=-Bx+w (4.6)

where w is a zero-mean, Gaussian (normally distributed), random number. This yields a
stochastic description of the process, x, in terms of its variance, 62, and a correlation time, 1/p.
The spectral density of w in (4.6) is the constant, 2Bc2. If the correlation time is assumed to be
infinite (but the spectral density of the white noise is nonzero), then the process is a random walk;
if further the white noise is zero, then x is a random bias.

In accordance with Table 3.2, the accelerometer and gyro errors, respectively, are decomposed
into bias errors, b and d, white noise, w, and w_, accelerometer scale factor error, X,, and
accelerometer colored noise, v, . The latter (not listed in Table 3.2), assumed to be of the form
(4.6) with standard deviation of 5 mGal and correlation time of 10 minutes, was included since a
model for it was available from the manufacturer specifications. On the other hand, the gyro scale
factor error is too small to have any consequence, and therefore, was excluded. The total inertial
instrument errors are represented as follows (each vector contains corresponding components for
each of the three respective sensors):

b
§a’=b + [a”Ix, + Vv +w,
4.7

S’

lb=d+w

g

where [aP ] denotes a diagonal matrix with the components of a® as diagonal elements. The
colored noise is assumed to be of the form (4.6), while the bias and scale factor errors are assumed
to be unknown constants with a given variance and are defined to be states of the system:

T

Ey= (4.8)

< A

As such these states are incorporated into the dynamics of the system through the following
differential equations:
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(4.9)

0
0
0
_—[Ba-] vV, +w,

J

The unknown gravitation, 8g" , known as the gravity disturbance vector, can also be modeled
as a stochastic process (Moritz, 1980). The degree to which the disturbance must be modeled in
this way depends on the reference gravitational model already available. Today, the gravity field
is known quite well, generally to a few parts per million. The third-order Gauss-Markov model of
(Jekeli, 1994) was chosen:

g;=Bg; +w;y; 8g"=Ae, (4.10)
where the states €, are driven (or forced) by the white noise, w3 (in this form, as a vector first-
order differential equation, only the last three elements of the white noise vector are non-zero).
Matrices A and B depend on the order of the Gauss-Markov model.

4.4 The State-Space Model

Combining (4.5), (4.7), and (4.10) yields

=
I 0 0 0 0 (/b| [w,
Su={ 0 I [@% I 0 |[[x,|+|w, (4.11)
0 0 0 0 Allv]|o
J

where Iis a 3 x 3 identity matrix and Ois a 3 X3 zero matrix. Substituting (4.11) into (4.2) and
augmenting with (4.9) and (4.10) then yields the total system of state equations:

nE T e T
€| {Fu Fi2 Fizllg | |G| .8
9x9

ox1 9’12 99 9xt 9x18
. w,
e =0 By 0 Gy || ™ 4.12
BT T2 U (+]1G, _ (4.12)
12x1 12x12 12x1 12xs | | Wy,

83 9(39 0 B €, G 3 W3

9xi2 9x9 I o || 9x1 ]
. o d -

where the dimensions of each matrix and vector are indicated and a third-order Gauss-Markov
model for the gravity disturbance is assumed. From (4.2), (4.4), and (4.1 D
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n
Cc, O 0 0 0
3x9
F,=F ; F,=| 0 D'c] D'cCia®] D'cCy|; F;=[D"A (4.13)
0
0 0 0 0 |
L ]
and similarly, from (4.9)
[
000 O
000 O
F2={000 o (4.14)
00 0—[3(,-] J
Also, from (4.2) and (4.11)
n
-G 0 3;915
G;=| 0 D7Cp 0, (4.15)
0 0 3)915

and G,, G; can be inferred from (4.9) and (4.10). The set of differential equations (4.12)
describes the total dynamics of the various errors (including the unknown gravity disturbance) of
the inertial system. It is certainly only a model - in the first place a linearization and in the second
place an approximation as regards the white noise forcing function and the characterizations of the
instrument errors and gravity disturbance components.

The noise processes w,, W,, Wy, and w3 (equation 4.12) are independently and normally
distributed with zero mean and standard deviations 6,, 0,, 0y, and 03, respectively. These are
approximated as being theoretically pure white noise processes with correlation functions

FElw®w(t)] = {25(t-t') (4.16)

where § is the Dirac delta "function” and {? is the power spectral density (a constant) of the white
noise process (values of £ are listed in Table 3.2 for the first two white noise processes and
£,=03 mGal/s/WHz ; see (Jekeli, 1994) for the gravity disturbance model). The relationship
between the psd of the white noise and the variance can be obtained by approximating the
correlation (4.16) as a first-order Gauss-Markov process with short correlation time (say, less than
the sampling interval). A typical relationship is

2 =2 At o2 4.17)
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however, a more conservative relationship (less correlation at At) would omit the factor of 2. In
the present case the white noise components of the instruments are specified in terms of the psd,
and so (4.17) is not needed, but can be used to get the equivalent variance assuming the noise is
white for all frequencies.

4.5 GPS/INS Integration

The type of GPS/INS integration considered for these studies is known as loose, or
decentralized integration. In this mode, the data from each system are processed separately (and
optimally) and then combined, in some fashion, to obtain the final position estimates. The
individual processing schemes for GPS and INS have been outlined respectively in Chapters 2 and
3, above. Thus, the input to our integration scheme constitutes a set of positions derived from the
GPS data and another set of positions provided by the INS. The alternative would be a centralized
integration where the raw data of each system are processed simultaneously to obtain the optimal
position estimates. Though perhaps preferable from an operational standpoint, this mode requires
considerable more program development and is outside the scope of this project. On the other
hand, decentralization also has its advantages, being generally more stable and allowing for better
detection and isolation (and correction) of system failures.

There are varying degrees of loose integration, ranging from basically uncoupled integration to
a coupling that adheres to the philosophy of the INS output yielding a dynamic behavior of the
position error states. In other words, instead of knowing nothing about the errors in position
between GPS epochs, the INS output allows us to interpolate what those errors might be on the
basis of sensed acceleration. Clearly, the Kalman filter is the ideal processing tool in this case.
Figures 4.1 and 4.2 show schematically the two loose integration options.

INS
l________—____.l
H O IMU  |[avae Filter l¢INS Mg
j Se—— g S | E_J ~ MNo A
RES ~ S0
Yes
]
GPS S Ad Filter ¢GPS kas | GPS available?

Figure 4.1. Uncoupled GPS/INS Integration

In the uncoupled integration mode, as depicted in Figure 4.1, the GPS positions are the final
product on the right side unless they are unavailable. In the case that GPS positioning is lost, the
INS position coordinates are reset to the GPS-derived coordinates at the time they are last
available. From that time forward the INS is allowed to navigate and it provides the positions of
the vehicle until GPS positioning resumes. The INS navigation is done without attempt to estimate
any of its errors, whose calibrations were last done during the initialization of the system (usually
at the start of the mission).
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In the loosely coupled integration of GPS and INS, as depicted in Figure 4.2, an attempt is
made to calibrate (estimate) the errors of the system using the GPS position data while they are
available. This is done through the Kalman filter and smoother algorithms described below.

INS
e — I
MU fav e Fiter |, %ins M
e e - - — === J Kalman | ¢ A
Filter/ >
Smoother
>
GPS Filter
549 ¢GPS Aaps

Figure 4.2. Loosely coupled GPS/INS Integration.

4.6 Discrete Kalman-Bucy Filtering

The conventional discrete Kalman-Bucy filter, to which the smoothing algorithm is closely
related, is briefly summarized here. More details may be found in (Gelb, 1974). Instead of the
simplistic model for the position errors, as exemplified by (2.8), the INS now gives very
significant additional information on the errors, whose dynamics (as part of a larger set of error
states associated with the INS) are given by the set of differential equations (4.12), which are
repeated using simplified notation as indicated:

dx = F 8x + Gw (4.18)

The reader will forgive the ambivalence in notation here, where for GPS the position coordinates
are Cartesian, while for the INS the coordinates are the geodetic latitude, longitude, and height. As
one set can be transformed easily into the other set, the lack of notational uniformity, while
detracting in practical value, should not cause conceptual difficulties. The discrete equivalent of

(4.18) is given by
Sxk = d)(tk’tk—l) Sxk_l + Gk_lwk_l : (4 19)

where @ is the state transition matrix and w,_; is the white noise sequence corresponding to the
continuous white noise process w (Brown, 1983, p.254).

At specified intervals, denoted by index k, the states are measured. The optimal imposition of
these measurements onto the dynamics of the system is done through the Kalman filter. The model

for the measurements is given, as before, by (2.17):

8yk = Hk 8xk -V (4.20)
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where Hy is a matrix whose elements are zero except those elements corresponding to the
measured states (position errors) of 8x, , in which case they are equal to one (again, assuming like
coordinates for both systems). v, is a vector of observation errors presumably uncorrelated in
time.

The Kalman filter algorithm proceeds as follows (Gelb, 1974). The state vector estimates
propagate according to

8%y = Dty tyy) Sxpy (4.21)

from time t,_; to the time Just prior to the measurement update, t, , (denoted by the superscript
=). Initial values usually are taken as 5x0 0. Atthe time, t, , the estimate is improved due to the
measurement according to

8%y = 8, + Ky (Byy - Hy 8%,) (4.22)
where the "Kalman gain" is
~ T ~ T -1 T
Kiy=P, H (HP_H +Ry) " ; Ry = Blvyvy) (4.23)

The covariance matrix, P; , is the propagated covariance from the time t, _; . Let P, _; denote
the error covariance matrix of the estimated states at time t,_; . At time t;, prior to incorporation
of the measurement, dy, , the error covariance matrix has transitioned, due to the system
dynamics, to

P, =@ Py ‘I’;k_l +Qp-1 4.24)

where Q,_; is the covariance matrix associated with the second term on the right side of (4.19).
An initial covariance, Py, has to be given. At time t, a new measurement of the states in the form
of (4.20) improves their estimation and the new covariance matrix at this epoch is given by

Py =(I-KH)P, | (4.25)

4.7 Kalman Smoothing

The smoothing problem with discrete measurements can be expressed as an estimate of the
state vector at some time t, based on a set of noisy measurements before and after this time. The
INS system for the present application should interpolate positions between discrete GPS
measurement updates. As such, the so-called fixed-interval smoothing is considered and assumed
to be done post-mission. Fixed-interval smoothing yields an estimate 8x; for any time t, within
some interval: ke [0,1, ..., N]. This type of smoothing can be done only in post-mission data
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processing. The subscript notation "k/N" refers to the estimate of the state vector at time t, on the
basis of all measurements up to the end of the interval (i.e. up to t). For computational reasons, a
recursive discrete smoothing algorithm is used, although other algorithms could be considered
(e.g., batch least-squares).

The mBF (modified Bryson-Frazier) algorithm gives the smoothed estimate as a correction to
the Kalman filter estimate for the same point. This method was proposed by Bierman (1973) for a
continuous system with discrete measurement (see also Bierman, 1977). The smoothing is
obtained by performing a Kalman-like recursion, backward in time, where the filtered states, 0xy,
and their covariances do not have to be saved, except at the point at which the smoothed estimate is
desired. With appropriate definitions of a (so-called adjoint) variable, A, and its covariance, A, the
same algorithm used for the filter (forward sweep) can be used for the backward sweep. It is
necessary, however, to save the following quantities computed in the filter cycle:

\

g, = Oy, — Hy 8;; (predicted filter residual, or innovation) (4.26)
Dy=H, P, H, +Ry (predicted residual covariance) 4.27)
Ky =P, H; D, (Kalman gain) (4.28)

The equations associated with the backward filter are summarized in the following:

Initialization:
AN=0 (4.29)
An=0 (4.30)

where the superscript "+" denotes a time on the positive side of ty , in this case, i.e. just ahead of
the assimilation of the measurement at time ty, if there is any.

Time propagation (note its backward character):

A =D () Ay, (4.31)
Ap = DTty AL, | Pltiert) | (4.32)
Measurefnent update:
- -1 T
A=A —H Dy (g +Dy K A) (4.33)
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- T -1

AL =(T-KH)" Ap (T-KHy) + H, D Hy (4.34)
At those times when estimates of the smoothed state vector and its covariance are desired, they are
computed from

Sxy = 8% — Py A (4.35)
Pun=P, -P;ALP] (4.36)

Equations (4.35) and (4.36) work for either a priori and a posteriori quantities on the right side, as
long as one is consistent. If no measurement updates exist within the interval (but they do exist at
the endpoints of the interval), as is the case here, then only the time propagation equations (4.31)
and (4.32) are implemented.
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CHAPTER 5

TEST RESULTS

5.1 Introduction

The purpose of the tests conducted for this project was to demonstrate the feasibility of using
INS to aid GPS in positioning an aircraft at a level of accuracy commensurate with that of GPS,
with primary application in aerial photogrammetry where both GPS outages and the discreteness of
the GPS positions may require such aiding. In addition, integration algorithms were to be
developed and tested. The demonstration was to be conducted with actual data collected using a
medium-to-high accuracy INS with a geodetic quality GPS receiver on board the ODOT
photogrammetric aircraft. ’

The tests were planned around the availability of an LN93 INS, on loan from Litton through
the Air Force Phillips Laboratory. In addition, the Center for Mapping at Ohio State University
was constructing its own airborne GPS/INS platform using the Litton LN100 INS and Trimble
4100 GPS receivers. Data from their test flights would also be used to fulfill the requirements of
this project.

A brief consideration of the aircraft in which the INS would be used brings to light some of the
more mundane aspects of GPS/INS integration for a particular application. The airplane available
to ODOT is a light, twin-engine, propeller aircraft, designated the Partenavia P68, built by
Aeritalia. The GPS antenna is mounted on the fuselage above the camera that sits just aft of the
second (and last) row of seat(s) in the aircraft. As thus configured, the weight budget for the
aircraft is fairly tight and may allow for no more than an additional 50 kg (100 1bs). Aircraft power
is 28 VDC (unregulated) and would be available for the INS up to several amperes. Finally, a
desk-top/lap-top computer with appropriate interface to the must accompany the INS to control the
system and collect the data. Generally, available INS's being designed mostly for military
application use the RS 1553 data bus protocol. Special power considerations for the computer
must also be made, including primarily that it is uninterruptable.

5.2 Tests with the LN93

The LN93 tests started with ground trials in the laboratory and in a van to establish the
operational procedures and to confirm the advertised accuracy of the system. These tests were
largely successful and were described in an intermediate progress report (Jekeli, 1997) and at the
OTEC 1996 conference (Jekeli, 1996b). Figure 5.1 shows a local course driven three times with
the INS and GPS (unfortunately GPS was not operating well due to user errors; also a power
failure prevented one course from being completed). The misclosures of between 450 m and 900
m for the 0.75-hour trips verify that the LN93 is a system whose total error accumulates at the rate
of about 1 km per hour. This is the advertised capability of the system and means that the
individual components of the INS (three accelerometers and three gyros) are operating as specified.
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INS Trajectories for 22 and 27 September 1996
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Figure 5.1: a) Local test course for the LN93 along highways in Columbus, OH.
b) Detail showing misclosures.
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However, these and further preliminary achievements required much unplanned additional
work for the following reasons. The INS interface software (the bus controller) required major
modification to ensure proper synchronization of INS and GPS data. The synchronization is based
on the timing signal (1 pps) from the GPS receiver. In addition, software changes were needed to
allow interfacing to the Trimble GPS receiver (used by ODOT), rather than the Ashtech GPS
receiver originally used by the Air Force. Other software changes include allowing manual height
input to the INS when used on an aircraft where changes in altitude are significant (during ascent
and descent; the INS does not navigate in the vertical). These software changes were hampered by
the arcane coding (Pascal) of the Litton supplied “User Friendly Bus Controller” software.

A special uninterruptable power supply (UPS) was built at OSU for the laptop computer and a
custom cage for the INS and laptop computer was built by ODOT for mounting in the Partenavia
P68. These efforts were often delayed since they could only be done as time permitted. Several
more serious delays occurred due to problems in the hardware of the computer and the interface
boards, caused by faulty grounding and power failures that were difficult to isolate and correct.
Other delays were caused by the unavailability of the GPS receiver (needed by ODOT’s aircraft)
for laboratory testing and the aircraft itself that could only be used if otherwise idle.

Although most these problems were resolved by the conclusion of the contract for this project,
sufficient testing of the LN93 on the Partenavia was not possible. Only one test was conducted
with the ODOT airplane, but unfortunately, a problem with the UPS, as well as a software error,
prevented INS data from being collected by the laptop computer. Therefore, the numerical
analyses that constitute the essential results for this project were conducted using test data obtained
from the LN100 system and provided by the Center for Mapping.

5.3 Tests with the LN100

The LN100 is an inertial navigation system quite similar to the LN93, the only difference being
in the type of gyros used. This newer generation of gyros allows considerable savings in power
and weight for the system (see Table 3.1). The Center for Mapping conducted several test with the
LN100 and a Trimble 4000 SSE receiver on board a twin engine, turbojet airplane by Beechcraft.
One of these tests was a ten-minute flight in the St. Louis area, whose trajectory is shown in
Figure 5.2. GPS data were collected on board the aircraft as well as at a ground station with data
rate of 1 Hz. These data were processed by the Center for Mapping according to the algorithm
described in Chapter 2, thus yielding latitude and longitude of the aircraft GPS antenna for every
second of the total flight time. The estimated standard deviations of these positions are about 2-3
cm.

The raw accelerometer and gyro data from the LN100 were collected and processed by the
Center for Mapping using their own navigation algorithm as outlined in Chapter 3 (rather than the
one provided by Litton, as for the LN93). The result of this processing was the latitude and
longitude of the aircraft as indicated by the INS at a data rate of 32 Hz. '

To verify the position prediction and smoothing capabilities of the integration algorithms
described in Chapter 4, the entire flight period was divided into 30-second intervals. On each
alternate interval it was assumed that GPS positions are not available, representing outages due to
loss of lock, or multiple successive cycle slips. The positions on those intervals were then
computed on the basis of the INS data and compared to the positions actually available from GPS.
Thus, the GPS positions serve as truth values during these intervals of presumed unavailability. It
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was assumed that there is negligible rotation of the lever arm between the INS and GPS antenna,
so that the relative positions determined by the INS are reasonably accurate extrapolations /
interpolations of the GPS antenna position.
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38.64— 1

a ] ! l | ]
38'6-‘:’90.7 -80.68 -90.66 -90.64 -80.62 -90.6 -80.58

Longitude (deg)
Figure 5.2: AIMS test flight #2, Center for Mapping, OSU.

Figure 5.3 shows the difference between INS and GPS positions (latitude and longitude) when
INS is allowed to navigate in the free-inertial mode for the entire flight, where at the beginning of
each GPS outage the INS positions are reset to the (last known) GPS positions. This corresponds
to the uncoupled integration shown schematically in Figure 4.1. Figure 5.4 shows the difference
between INS and GPS positions during the “outages” in the case that INS errors are estimated
(calibrated) while GPS positions are available. The INS positions are determined on the basis of
the error propagation equation (4.21), where the INS sensor errors were estimated using the
Kalman filter algorithm described by equation (4.22) when GPS position observations were
available. This corresponds to the loose integration depicted schematically in Figure 4.2. Finally,
Figure 5.5 shows the differences between INS and GPS positions in the case that the INS position
errors are estimated using Kalman smoothing, as outlined in Section 4.7. This is similar to the
previous case of loose integration, but makes further use of the fact that GPS outages are finite in
duration (in this example, they last 30 seconds). Table 5.1 compares these three types of
integration in terms of some essential statistics: absolute maximum and root-mean-squares of
middle and endpoint differences in INS and GPS position coordinates over all outage intervals.
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Figure 5.4: Differences between GPS and INS determined coordinates in latitude (solid

line) and longitude (dotted line) during presumed GPS outages, for the case
of calibrated INS errors using the Kalman filter.
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Table 5.1: Summary of differences between INS and GPS coordinates based on unfiltered,
filtered, and filtered and smoothed INS errors. All values are in [meters].

Max. Abs. Diff. RMS Difference RMS Difference
middle of outage end of outage
[m] [m] [m]
lat. lon. lat. long. lat. lon.
Uncalibrated INS 9.92 2.72 3.775 0.746 7.15 1.40
Kalman filtered INS 0.682 0.589 0.153 0.115 0.326 0.314
Filtered & smoothed INS 0.260 0.123 0.106 0.070 0 0
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CHAPTER 6

SUMMARY

The objectives of this project have been achieved and the results of the work are described in
this report. Chapter 1 discusses the motivation and objectives of the project. Chapters 2 and 3
detail and compare the GPS and INS positioning systems to be considered. The algorithms for
integrating the two systems for practical implementation are reviewed in Chapter 4. And, the
results of test data analyses are presented in Chapter 5. While considerable knowledge has been
gained in configuring an integrated GPS/INS platform using the LLN93, this latter system failed to
become operational for test purposes during the period of this contract. The test data results
described in Section 5.3 and below refer to the LN100 INS that was operated by the Center for
Mapping. This INS is practically equivalent in terms of accuracy, but more versatile in terms of
operation and implementation.

From Figures 5.3, 5.4, and 5.5 it is evident that INS positioning is a valuable aid to GPS
positioning when the latter is unavailable for short periods of time. A comparison of Figure 5.3
with Figures 5.4 and 5.5 further shows that the integration of INS and GPS requires some form of
optimal estimation algorithm to achieve decimeter level accuracies during prolonged (30 second)
outages of GPS. The differences shown in the figures and synopsized in Table 5.1 do not account
for errors in GPS and thus are not total errors in INS-derived positions. However, since the GPS-
estimated positions have standard deviations on the order of 2-3 cm, these differences are close to
the total position errors. In summary, integration of GPS with an INS of the quality of the LN100
will support continuous aircraft positioning accuracy at the 10 cm level for GPS outages up to 30
seconds, and better for shorter outages. This is also entirely adequate to recover from cycle slips
over that interval, since it represents only half of one wavelength of the carrier wave.

It is noted that these results are much more pessimistic than predictions made under a previous
ODOT feasibility study (Jekeli, 1995). These predictions were based on longer calibration periods
for INS sensor errors than allowed here. This means that the quality of the INS recommended in
(Tekeli 1995), being of the LN100 type, is even more justified by the results of this report. Recent
studies by Wang and Jekeli (1998) show that improved modeling of position errors can reduce the
INS-derived positions from a calibrated, smoothed solution, such as above, to the level of the GPS
positional accuracy of 2-3 cm. .

Finally it is noted that angular data from the gyros of the INS is a by-product that could be used
to provide orientation information to the photogrammetric camera. The algorithms developed here
yield improved estimates of gyro drift and could be implemented to provide accurate orientation of
the camera at the times of exposure. In addition, the algorithm can be augmented with better
models that include correlated gyro errors. :

To implement the GPS/INS integration studied under this project in an actual operational
setting requires a dedicated GPS/INS system and software development. Most of the groundwork
for such a system has been laid with this and previous studies in terms of feasibility, hardware
configuration and integration, accuracy demonstration, and algorithmic development. The next
step would be the procurement of an LN100 INS, GPS receiver, and ancillary computer equipment
for the development of an integrated GPS/INS platform on ODOT’s Partenavia P68.
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