[mMme

MULTIDISCIPLINARY CENTER FOR EARTHQUAKE

A Nationat Center of Excellence in Advanced Technology Applications

55N 1520:295 I AR

PB99-162877

Experimental Study on the Seismic Design
and Retrofit of Bridge Columns
Including Axial Load Effects

by

Anindya Dutta, Tatiana Kokorina and John B. Mander

University at Buffalo, State University of New York
Department of Civil, Structural and Environmental Engineering
Ketter Hall
Buffalo, New York 14260-4300

Technical Report MCEER-99-0003

February 22, 1999

REPRODUCED BY: NTIS.
m

eeeeee
Springfield, Virginia 22161

This research was conducted at University at Buffalo, State University of New York and was sup-
ported by the Federal Highway Administration under contract number DTFH61-92-C-00106.



PROTECTED UNDER INTERNATIONAL COPYRIGHT
ALL RIGHTS RESERVED.

NATIONAL TECHNICAL INFORMATION SERVICE
U.S. DEPARTMENT OF COMMERCE

NOTICE

This report was prepared by the University at Buffalo, State University of New
York as a result of research sponsored by the Multidisciplinary Center for Earth-
quake Engineering Research (MCEER) through a contract from the Federal High-
way Administration. Neither MCEER, associates of MCEER, its sponsors, Univer-
sity at Buffalo, State University of New York, nor any person acting on their behalf:

a. makes any warranty, express or implied, with respect to the use of any infor-
mation, apparatus, method, or process disclosed in this report or that such use
may not infringe upon privately owned rights; or

b. assumes any liabilities of whatsoever kind with respect to the use of, or the
damage resulting from the use of, any information, apparatus, method, or pro-
cess disclosed in this report.

Any opinions, findings, and conclusions or recommendations expressed in this
publication are those of the author(s) and do not necessarily reflect the views of
MCEER or the Federal Highway Administration.



i *x

-

50272 -101
a1 VN s
PAGE

MCEER-99-0003
PB99-162877
4, Title and Subtitie 5. Report Date
Experimental Study on the Seismic Design and Retrofit of Bridge Columns Including Axial Load Effects February 22, 1999
6.
7. Authors 8. Performing Organization Report No.

Anindya Dutta, Tatiana Kokorina and John B. Mander

10. Project/Task/Work Unit No.

106-F-2.1
9.Performing Organization Name and Address 11. Contract(C Jor Grant (G) No.
Department of Civil, Structural and Environmental Engineering (C) DTFH81-92-C-00106
State University of New York at Buffalo
Ketter Hall ©)
Buffalo, New York 14260-4300
12. Sponsoring Organization Name and Address 13. Type of Report & Period Covered
Multidisciplinary Center for Earthquake Engineering Research Technical report
State University of New York at Buffalo
Red Jacket Quadrangle, Buffalo, NY 14261 7

15. Supplementary Notes
The research was conducted at the University at Buffalo, State University of New York and was supported by the Federal Highway Administration under
contract number DTFH61-92-C-00106 ‘

16. Abstract (limit 200 words)

This report details the development of retrofit procedures for reinforced concrete bridge columns and their connections. The report extends the Control
and Repairability of Damage (CARD) column design philosophy for new structures that use replaceable fuse bars in the plastic hinge zone for the design
of new structures (NCEER-97-0013). The work reported resulted in the development of a new philosophy, ReCARD (Retrofit, Control and Repairability
of Damage) that uses the same fuse-bar concept adopted in CARD designs. Fuse-bars are spliced into existing non-ductile columns that have
vulnerable hinge zone details. This type of retrofit permits relatively rapid and cost-effective repairs following a damaging earthquake. Both the CARD
and ReCARD details are examined to verify that they have adequate fatigue life under realistic seismic loading, including the effects of variable axial
loads that arise from a combination of the framing action of multiple column pier bents and vertical ground motions.

17. Document Analysis a. Descriptors

Earthquake engineering. Modeling. Control and Repairability of Damage (CARD). Retrofit, Control and Repairability of Damage (ReCARD). Seismic
design. Retrofit. Replaceable fuse bars. Seismic displacement. Replaceable fuse bars. Sacrificial fuse bars. Non-ductile columns. Reinforced
concrete bridge columns. Variable axial loads.

b. Identifiers/Open-Ended Terms

c. COSATI Field/Group

18. Availability Statement 19. Security Class (This Report) 21. No. of Pages
Release unlimited. Unclassified 145
20. Security Class {This Page) 22. Price
Unclassified

(see ANSI_Z39.18)







MULTIDISCIPLINARY CENTER FOR EARTHOUAXE ENGIA!

S0
RESEAREH
A Nationa! Center of £ inAdvanced Te C

Experimental Study on the Seismic Design
and Retrofit of Bridge Columns
Including Axial Load Effects

by

Anindya Dutta!, Tatiana Kokorina' and John B. Mander?

Publication Date: February 22, 1999
Submittal Date: September 12, 1998

Technical Report MCEER-99-0003

Task Number 106-F-2.1

FHWA Contract Number DTFH61-92-C-00106

1 Research Assistant, Department of Civil, Structural and Environmental Engineering, Univer-
sity at Buffalo, State University of New York

2 Associate Professor, Department of Civil, Structural and Environmental Engineering, Univer-
sity at Buffalo, State University of New York

MULTIDISCIPLINARY CENTER FOR EARTHQUAKE ENGINEERING RESEARCH
University at Buffalo, State University of New York
Red Jacket Quadrangle, Buffalo, NY 14261







Preface

The Multidisciplinary Center for Earthquake Engineering Research (MCEER) is a national center
of excellence in advanced technology applications that is dedicated to the reduction of earthquake
losses nationwide. Headquartered at the University at Buffalo, State University of New York, the
Center was originally established by the National Science Foundation in 1986, as the National
Center for Earthquake Engineering Research (NCEER).

Comprising a consortium of researchers from numerous disciplines and institutions throughout
the United States, the Center’s mission is to reduce earthquake losses through research and the
application of advanced technologies that improve engineering, pre-earthquake planning and
post-earthquake recovery strategies. Toward this end, the Center coordinates a nationwide
program of multidisciplinary team research, education and outreach activities.

MCEER’s research is conducted under the sponsorship of two major federal agencies, the
National Science Foundation (NSF) and the Federal Highway Administration (F HWA), and the
State of New York. Significant support is also derived from the Federal Emergency Management
Agency (FEMA), other state governments, academic institutions, foreign governments and
private industry. )

The Center’s FHW A-sponsored Highway Project develops retrofit and evaluation methodologies

for existing bridges and other highway structures (including tunnels, retaining structures, slopes,

culverts, and pavements), and improved seismic design criteria and procedures for bridges and
other highway structures. Specifically, tasks are being conducted to:

« assess the vulnerability of highway systems, structures and components;

« develop concepts for retrofitting vulnerable highway structures and components;

+ develop improved design and analysis methodologies for bridges, tunnels, and retaining
structures, which include consideration of soil-structure interaction mechanisms and their
influence on structural response;,

« review and recommend improved seismic design and performance criteria for new high-
way systems and structures.

Highway Project research focuses on two distinct areas: the development of improved design
criteria and philosophies for new or future highway construction, and the development of
improved analysis and retrofitting methodologies for existing highway systems and structures.
The research discussed in this report is a result of work conducted under the existing highway
structures project, and was performed within Task 106-F-2.1, “Seismic Retrofit of Shear-Critical
Bridge Columns” of that project as shown in the flowchart on the following page.

The overall objective of this task was to develop retrofit procedures for reinforced concrete bridge
columns and their connections. This report extends the Control and Repairability of Damage
(CARD) column design philosophy for new structures that uses replaceable fuse bars in the
plastic hinge zone (see technical report NCEER-97-0013) for the design of new structures. The
work reported herein resulted in the development of a new philosophy, ReCARD (Retrofit,
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Control and Repairability of Damage) that uses the same fuse-bar concept adopted in CARD
designs. Fuse-bars are spliced into existing non-ductile columns that have vulnerable hinge zone
details. This type of retrofit permits relatively rapid and cost-effective repairs following a
damaging earthquake. Both the CARD and ReCARD details are examined to verify that they have
adequate fatigue life under realistic seismic loading, including the effects of variable axial loads
that arise from a combination of the framing action of multiple column pier bents and vertical
ground motions. :
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ABSTRACT

This research is concerned with validation of alternative theories for seismic design and
retrofit of bridge structures. The intent of these methodologies is to not only maintain life safety
of bridges in a strong earthquake, but also to control damage while accommodating large

seismically-induced deformations in order to maintain post-earthquake serviceability.

The primary purpose of this research endeavor is to verify that both Control and
Repairability of Damage (CARD) and Retrofit, Control and Repairability of Damage (ReCARD)
sacrificial fuse-bar plastic hinge details have adequate fatigue life under realistic seismic loading
-including the effects of variable axial loads that arise from a combination of the framing action

of multiple column pier bents and vertical ground motion.

As a secondary purpose, a new technique called Quasi-Earthquake Displacement (QED)
Experimentation is developed to verify the CARD and ReCARD construction details. The
experimental technique uses a non-linear time-history computational simulation to predict seismic
displacements (and forces) in a prototype structure. These earthquake-induced actions are scaled

to permit laboratory experiments to be conducted on reduced scale subassemblages of the

prototype structure.

It is concluded that reinforced concrete bridge columns that possess sacrificial
/replaceable fuse-bars have sufficient cyclic capacity under the most adverse seismic loading

conditions (including large axial load variation) to sustain a strong foreshock, mainshock and

aftershock.
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SECTION 1
INTRODUCTION

Recent earthquakes, particularly the 1989 Loma Prieta and 1994 Northridge earthquakes
in California, and the 1995 Kobe earthquake in Japan have caused extensive damage to a
considerable number of bridge structures that were ostensibly designed for nominal seismic
forces. The post-earthquake serviceability of many damaged bridges were jeopardized. This
was due to the prevailing ductile design philosophy that permits damage while aiming to preserve
" safety to life and limb. Consequently, the foundation of the ductile design philosophy has been
seriously questioned. For example, Mander and Cheng (1997) advocate a new philosophy called
Damage Avoidance Design (DAD). This approach is especially suited to precast/prestressed
construction where dry-joint connections are used instead of conventional plastic hinges. The
DAD philosophy is a radical departure from the conventional wisdom of hysteretic energy
dissipation (damage) and may not always be tenable to design engineers even though
conventional ductile design may be untenable from an owner’s point of view. To this end,
Cheng and Mander (1997) developed an alternative design philosophy called Control and
Repairability of Damage (CARD). The ductile design philosophy can be maintained, but it is

the detailing of the plastic hinge zones that has been improved to permit repair of earthquake-

induced damage.

The CARD philosophy introduced by Cheng and Mander (1997) was primarily aimed at
new construction, whereby it is possible to design structures that serve two specific needs:
Firstly, columns are designed to be strong enough to withstand the expected shaking, with
damage incurred only at specific locations. Secondly, since the damage location is predefined,

it is possible to quickly repair the column following an event and restore full operational

serviceability.

Cheng (1997) proposed that the CARD philosophy could also be extended for use in
retrofit purposes. Thus the notion of ReCARD —Retrofit Control and Repairability of Damage

1



was born. From experimental results on near full-size bridge columns with lap splices at the
base, Cheng (1997) showed that it is possible to restrict and localize damage and then repair that

damage so that the column remains fully functional by using some careful detailing strategies.

The purpose of this report is twofold. First, the Cheng and Mander (1997) CARD
column design philosophy for new structures that uses replaceable fuse bars in the plastic hinge

zone is extended to incorporate retrofit of existing structures. Thus a ReCARD philosophy is

advanced that uses the same fuse-bar concept adopted in CARD designs. Fuse-bars are spliced
into existing non-ductile columns that have faulty hinge zone details; such a retrofit permits

repairs following a damaging earthquake.

The second purpose of this report is to verify that both CARD and ReCARD details have
adequate fatigue life under realistic seismic loading —including the effects of variable axial loads
that arise from a combination of the framing action of multiple column pier bents and vertical

ground motions.

Following this introductory section, the report is divided into eight sections. Section 2
deals with the previous work and a basic overview of CARD philosophy and its extension to
ReCARD principles. Section 3 deals with the experimental approach adopted in the laboratory
testing of near full size specimens. These specimens are introduced in Section 4. Section 5
describes the constant amplitude results on the retrofitted columns. The Quasi-Earthquake
Displacement (QED) experimentation that is developed as part of the current program is
introduced in Section 6. Results from the QED tests on specimens incorporating CARD and
ReCARD details are presented in Section 7. Section 8 presents a discussion comparing the
theoretical and experimental fatigue life of these specimens. Finally a summary and references

cited in this research are presented in Sections 9 and 10, respectively.



SECTION 2
RESEARCH OVERVIEW

2.1 BACKGROUND

In the United States there is a large inventory of bridges that were built before the era
of modern seismic design. An evaluation of these bridges in the light of current understanding
has revealed major flaws with respect to reinforcement detailing. Since it is not economically
feasible to demolish and replace all substandard existing structures and start afresh, the concept

of seismic retrofitting has become an issue both for researchers as well as the practicing

engineering community.

One of the most common detailing deficiencies found in existing bridge columns is the
presence of lap splices in the potential plastic hinge zones. These bridges were typically
designed with compression lap splices consisting of twenty longitudinal bar diameters (20d,).
Due to insufficient lap length, tensile bond failure in the lap splice is likely to occur in a strong
earthquake following the spalling of the cover concrete. This may also mark the end of usable
life of the bridge column since the residual strength and energy dissipation capacity following

bond failure is negligible.

In their attempts to seismically retrofit such bridge columns researchers have primarily
aimed at increasing transverse confinement of the longitudinal rebar using a variety of
techniques. The foremost amongst these techniques is the use of steel jackets (Priestley et al.
1996). Other methods such as composite jackets including fiberglass as well as carbon fiber that
can be used to confine the potential plastic hinge zones have also been investigated (Priestley et
al. 1996; Xiao et al. 1997) and these are beginning to find increasing acceptance in the field.
Although retrofit techniques currently in vogue are effective in rehabilitating existing structures

by increasing the inelastic (plastic) deformation capacity, this is generally associated with an



increase (albeit a modest increase) in the strength capacity. Any accidental or intentional
flexural strengthening action in columns will raise the shear demand on those columns as well
as the adjacent elements (cap beams and/or superstructures) and connections. Such strengthening
will generally cause damage to both the column elements and connections or other undesirable

elements (superstructure or foundation beams) that maybe jrreparable following a strong
earthquake.

It is extremely unfortunate that the present state-of-the-art seismic design/retrofitting
procedures are not intended to limit and/or avoid structural damage, but merely to ensure life-
safety. Moreover, post-earthquake serviceability is generally not possible owing to lack of
repairability strategies. As stated in the research of Chai (1996), a possible ultimate limit state
exists, particularly for large jacket thickness, where failure of a steel jacketed column may be
governed by the fracture of the longitudinal reinforcement instead of the ultimate compressive
strain of the concrete. The failure in low cycle fatigue of the longitudinal reinforcement (see
for example Chai et al. 1991) is impossible to repair as the damage generally penetrates well into
the pile cap beam connection. Even though the longitudinal reinforcement might not have
fractured in an event, the degree of damage incurred and the extent of the fatigue life consumed

are pertinent questions that cannot be answered—i.e. after an earthquake it is not possible to

make an assessment of the remaining fatigue life, if any.

The problems discussed above can be explained with the use of fragility curves illustrated
in figure 2-1. These curves show the expected performance and damage states of a hypothetical
column before and after retrofit by either steel or composite fiber jacketing. As an example it
may be presumed that for the unretrofitted column, the damage states of interest are
cracking/spalling of the cover concrete which marks the onset of any visible damage and last but
not the least, some form of a life safety limit state signifying impending collapse. The various
median PGAs are typical of non-seismically designed bridge columns found in the United States.
Thus the boundary between cracking of cover concrete and the life safety limit state can be

conceived of damage states that are repairable following a seismic event. The retrofitted column
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shown in figure 1-1b however reveals some interesting information. The median PGA for onset
of damage improves by a small amount when compared to the curve for the unretrofitted column
(in dotted lines). The fragility curve corresponding to the life-safety (collapse) limit state will
shift considerably due to the effect of increased transverse confinement. However a new damage
state in between these two cases will be introduced corresponding to some form of severe
damage (e.g. fatigue fracture of the longitudinal reinforcing bars) that will effectively mark the
boundary between repairable and irrepairable damage states. It can also be seen that for a peak
ground acceleration of 0.4, there is about 20% probability that the life safety limit state can be
mobilized for the unretrofitted column. Although for the retrofitted column there is even a
lesser probability for the same limit state, there is unfortunately about 75% probability that

severe damage will occur at the same level of ground shaking.

Although an engineer may choose to “do nothing” when it comes to retrofitting, there
are cases when it is necessary to retrofit a bridge especially when post-earthquake functionality
is an issue. This arises when there is little or no redundancy with respect to alternate routes in
a transportation network or if the bridge itself is critical for maintaining lifeline usage following
a major seismic event. Under such circumstances it may be desirable that the structure incur
no or limited damage in the event of a maximum credible earthquake. However, any earthquake
induced damage should ideally be repairable with minimum disruption of traffic flow.
Unfortunately such performance objectives are outside the purview of current retrofitting

techniques and is the major motivation for the current research program.
2.2 A MOVE TOWARDS A NEW DIRECTION

As discussed in the previous section, any suitable design or retrofit program should
ensure easy repairability without interfering with the functionality of the structural system.
Design and retrofitting strategies currently in vogue are effective in improving the overall
performance but may lead to unwanted failure modes that often lead to irreparable damage.
Thus for a critical bridge it is necessary to adopt a technique that can not only control damage

while accommodating large seismically-induced displacements, but also ensure quick repairability
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to restore post-earthquake serviceability. To this end Cheng and Mander (1997) and Mander
and Cheng (1997) have proposed several new design philosophies referred to as CARD (Control
and Repairability of Damage) and DAD (Damage Avoidance Design). Cheng (1997) extended
these for retrofit of structures ReCARD (Retrofit Control and Repairability of Damage) and
ReDAD (Retrofit Damage Avoidance Design). This subsection presents a brief overview of the

two philosophies CARD and ReCARD that form the basis of the current research.

2.2.1 Control and Repairability of Damage (CARD)

Cheng and Mander (1997) proposed a technique for new construction that addresses the
issue of easy repairability. Salient features of this design paradigm referred to as CARD
(Control and Repairability of Damage) are explained schematically in figure 2-2. As can be
observed from figure 2-2, the design basis of relocated hinge zones is to ensure that damage is
limited and controlled entirely within plastic hinge zones which are specially detailed to permit
repair and restoration following a strong earthquake. All other portions of the structure remain
uncracked and essentially elastic at all times. The CARD philosophy thus uses a "weakening"
concept: the hinge zone becomes a sacrificial fuse that is repairable. The weakening is achieved
by machining the longitudinal reinforcement to a smaller diameter thereby creating a "fuse-bar"”
which is replaceable. This weakening also protects the rest of the structural system from
damage. Through a series of experiments on near-full size prestressed-precast concrete bridge
columns Cheng and Mander (1997) illustrated that such structures can not only accommodate
large seismic deformations (see figure 2-3) without collapse, but can also be rapidly repaired to
restore the bridge function to full service immediately after an earthquake. The current research
builds on this design paradigm and also applies it for the purpose of retrofitting deficient
structures with a special emphasis on bridge columns with lap splice details and/or inadequate

transverse reinforcement in the potential plastic hinge zones.
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2.2.2 Retrofit Control and Repairability of Damage (ReCARD)

In a follow-up to the CARD philosophy, Cheng (1997) proposed a methodology for

retrofitting deficient structures based on the principles of damage control. As this is applied to

existing structures, the philosophy is aptly named ReCARD —Retrofit Control and Repairability

of Damage. Based on the experimental results on three-quarter scale lap spliced columns (figure
2-4), it was concluded that it is possible to control damage within the lap splice itself and obtain
an adequate level of performance with some prudent detailing strategies. Since strengthening
the lap splice might cause irreparable damage to other locations (e.g. in the

foundation through low cycle fatigue of the longitudinal reinforcement), the splice was turned
into a fuse-like entity by lowering the lap length from 20d, to 10d, (d, = longitudinal bar
diameter). Premature bond failure was prevented by providing extra transverse confinement that
ensured delayed failure but not transferred to any other location—a principle advocated by the

CARD philosophy.
2.3 FURTHER CONCEPT DEVELOPMENT ON RECARD

The ReCARD philosophy proposed by Cheng (1997) is essentially an extension of the
CARD principle to retrofit deficient structures. Although it was shown that the basic ideals of
CARD are met satisfactorily by ReCARD, Cheng’s application was somewhat limiting. It is
considered that Cheng’s post-earthquake repair of damaged columns with lap splice might be a
satisfactory approach for bridges in low to moderate zones of seismicity, but a lack of
redundancy in single column bents for bridges, particularly in high seismic risk zones,
necessitates an approach in which the strength capacity can be maintained at large ductilities for
several cycles of loading. Therefore, an approach is needed that is competitive with a

conventional retrofit that uses steel jacketing, but without the fundamental flaw of that method.

A probable solution lies in incorporation of the detailing features of CARD for the

purpose of retrofitting deficient structures. In other words the same fuse-bar concept can be
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used (see figure 2-5) that will relocate and restrict damage in specialized locations which can be

capacity designed to ensure superior performance under strong ground shaking.

The design basis of relocated hinge zones is to ensure that damage can be limited and
controlled entirely within plastic hinge zones which are specially detailed, while all other
portions of the structure remain uncracked and essentially elastic at all times. However, since
an existing column will have continuous longitudinal reinforcement, the sacrificial plastic hinges
with the fuse-bars need to be installed in a manner such that they carry the entire tensile force
when the column is subjected to reversal cyclic loading. This will ensure that the performance
of the column is governed by the behavior of the fuses only i.e. usable fatigue life of the column
is determined by the fatigue life of the fuse-bars. One way to achieve this is to discontinue the
existing reinforcement in the column by cutting it at the center of the "to be installed" hinge and
then introducing the fuse between the main column and the foundation as shown in figure 2-6.
Specially sized rectangular plates can be used to transfer the tensile forces between the main
column bars to the fuse-bars and back to the foundation. The whole assembly can be prepared
in the shop and field welded after removing an adequate amount of concrete from the cover and
behind the longitudinal bars. The artificial hinges can be further confined by transverse
reinforcement so that adequate shear resistance is obtained. For extremely squat columns, such
as those commonly found in highway bridge approach ramps, sacrificial hinges can be included
at probable plastic hinge locations and the remaining portion of the column can be jacketed by
either steel or composite fiber jacketing so that they remain undamaged and " capacity protected"”
against shear failures. The column failure mode can be changed from that of brittle shear to a

more ductile flexural mode. Details of this retrofit design concept are discussed in the next

subsection.
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2.4 RETROFIT DESIGN
2.4.1 Fuse-Bar Design for Plastic Hinge Zones

In order to weaken the plastic hinge for controlling and limiting damage to the hinge
zone, the longitudinal reinforcement in that zone needs to be weakened. This is achieved by
machining the longitudinal bars to a smaller diameter. This approach ensures the longitudinal
reinforcement outside the plastic hinge zone remains elastic at all times. It is necessary to
ensure that the upper bound ultimate tensile stress over the reduced area is less than the specified

yield force on the root thread diameter of the threadbar, thus

<2 T dlf, XY

where 4, = reduced fuse-bar diameter and d, = diameter of the two longitudinal steel rebars that
connect into the single fuse-bar, £, = an upper bound ultimate strength of the fuse-bar steel, and

f, = dependable yield stress of the starter bar steel or column steel whichever is less. This

reduces to

G| @-2)
d, Sa

For design purposes, it is proposed d, = 0.95d,. Although this is on the conservative (low) side,

it should ensure that outside the fuse zone the steel remains elastic at all times. Moreover, the

existing steel yield strength () can only be assumed based on the specified minimum and the

ultimate tensile strength of the replacement steel (f,,) could conceivably be somewhat greater

| than that of the original fuse bars. This ratio (when d, = 0.95d,) implies from equation (2-2) thatf, > 045f,

and ensures an acceptable margin of safety for all likely replacement scenarios.
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2.4.2 Determination of Fuse-Bar Length

It was shown by Dutta (1995) that the maximum plastic curvature obtainable from a well-
detailed reinforced concrete column of incipient fatigue of the longitudinal reinforcement is given
by

b

$,D = 0.16 Y,

-0.5 -
(2N, 2-3)
where ¢, = plastic curvature, D = overall depth (diameter for circular section), D’ = distance
between the extreme tension and compression bars (pitch circle diameter for circular section) and
2N, = number of reversals to fatigue fracture. Multiplying this equation by the normalized fuse

length (L/D) and using the well-known moment-area theorem, the plastic hinge rotation angle

can be expressed as

L D L
- 7| = 4 -05 2-4
8, = (¢,D) (B) = 0.16 =D @N) 2-4)
In the preceding equation the number of cycles to fatigue failure (N,) depends upon the
demand imposed on the structural element by the particular seismic event. However, based on

the analysis of typical ground motions, Chang and Mander (1994b) concluded that such demand
is linked to the fundamental period of the structure and is given by

N, = T, but 4 < N, <20 2-5)

Rearranging equation (2-4), the normalized fuse length

6 p/
= 2 2 NS (2-6)
16 D Ny

STNy

Assuming that for typical bridge columns D//D = 0.8 and 6, = 0.03 rad., the upper and lower

bounds of the fuse length is given by



043 < % < 0.95 2-7

corresponding to N, = 4 and 20, respectively. It is thus evident that the fuse-bar length is related
to the fatigue life of the column hinge. If the fuse length provided is less than required, the
plastic hinge will fail prematurely. If necessary, an improved fatigue life can be obtained by
lengthening the machined portion of the fuse bar. Based on studies investigating this parameter
(Lf/D), Cheng and Mander (1997) concluded that for most column aspect ratios, good

performance can be obtained when L,=0.67D.
2.4.3 Determination of the Plate and Weld Size

The required size of the plate (height and thickness) is linked directly to the force it is
required to transmit. Assuming the electrode used is of the E7T0XX type and the plate is welded
to both sides of the coupler, then as per AISC LRFD (1995)

20, x 0.707 x s, x ¢F,) = % d:f. 2-8)

where 1, = length of the weld in mm, s, = size of the weld in mm, ¢F, = 217 MPa for E7T0XX
electrode, d, = diameter of fuse bar in mm and £, = ultimate strength of the fuse bar (MPa).

Thus rearranging and solving for 7,:

2
1, = 056 4 Ja 2-9)

w

As per the requirements of AISC LRFD (1995), the minimum plate thickness is given by

Loie = Size of weld + 1.6 mm (2-10)
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2.4.4 Design of Transverse Reinforcement

It was shown by Dutta and Mander (1998) that transverse reinforcement is required in
a reinforced concrete beam-column element mainly for three purposes. They are

(i) confinement of core concrete

(ii) confinement of the longitudinal reinforcement, i.e., antibuckling reinforcement

(iii)  shear resistance

Accordingly they proposed the following equations for volumetric ratios of transverse

reinforcement for circular sections.

Confinement of Core Concrete

2
o, - 0008 = |12 T +p_y(f£)_1 @-11)
con U&f fc Ag fc{ ACC
Antibuckling
p,=0025 2 5 5 @-12)
s d, fy "
Shear Resistance
o, 0758 Le T A |y | 065 -P WAy (2-13)
¢ fn A 0.65+1.2p, £, If!

In the above equations

18



A = area of the core concrete

A, = gross area of the concrete section
D = diameter of the section
P, = applied axial load

U, = strain energy/unit volume of longitudinal reinforcement = 110 MJ[m?

d, = diameter of the longitudinal reinforcement
f = unconfined compression strength of concrete (MPa)
f, = ultimate strength of longitudinal reinforcement (MPa)

f, = yield strength of longitudinal reinforcement (MPa)

fu = yield strength of transverse reinforcement (MPa)

s =  spacing of the transverse reinforcement

¢ = undercapacity factor for shear = 0.85

A = 1 for fixed free columns and 2 for fixed-fixed columns
p, = volumetric ratio of longitudinal reinforcement

D/L = pitch circle diameter/height of the column

tan o

tan 6

i}

tangent of the crack angle such that

2-14)

with p_ = 0.5 p, provided, » = modular ratio = E_/E, .cree.» & = 0.5704 for fixed-fixed and 1.5704

for fixed-free end conditions and 4, = effective shear area normally assumed to be 4, = 0.84,.

Using the principles of capacity design, transverse reinforcement should be provided

corresponding to the greatest amount required from these three criterion.
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2.5 CLOSURE

The issue of controlling damage and maintaining post earthquake serviceability is not
addressed by any of the current seismic design codes. However, this can be extremely important
for a bridge that lies in a major highway system network with little or no redundancy. The
requirement of easy repairability is equally valid for new construction as well as retrofit of
existing columns. In this section a new technique for retrofitting bridge columns with inadequate
lap splices is advanced that caters to this specific requirement. The concept is based on the

CARD and ReCARD philosophies proposed by Cheng and Mander (1997) with modifications

to suit the requirements of high seismic zones.
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SECTION 3
EXPERIMENTAL APPROACH

3.1 INTRODUCTION

This section describes the experimental apparatus, instrumentation, data acquisition
system, and testing procedures of the experiments. As was stated earlier, the three-quarter scale
bridge column retrofitted with sacrificial fuse bars required testing under reversed cyclic loading
with the purpose of observing the efficiency of the retrofitting technique. Moreover, to examine
the effect of variation of axial load on a reinforced concrete beam-column element, another
three-quarter scale prestressed concrete CARD specimen and a further repair of the retrofitted
column was also tested under realistic seismic input. A new method for application of lateral

load was investigated as a part of the current research which is also discussed in detail in the

following subsections.
3.2 IMPROVEMENTS IN THE EXPERIMENTAL INFRASTRUCTURE

Experimental investigations of the seismic performance of column components have been
widely undertaken by various researchers. Different testing configurations are adopted
depending on the nature of the available equipment. For a few of the different types of column
tests conducted see for example, Mander et al. 1984, Yok Lung Wong 1990 and Sheikh et al.
1990. Figure 3-1 presents a typical test set up that has been used at the University at Buffalo
over the last decade (see for example Cheng and Mander, 1997). The problem with most of the
current test approaches is they do not correctly model P - A effects due to the inclination of the
applied axial load with lateral displacement. Figure 3-2 shows the effect of axial load on the
specimen and contrasts that with how the tests should be conducted to properly reflect the trueP - A
effects. From figures 3-1 and 3-2(a) it is evident that at the base of the column where the
bending moments are the largest when under lateral load there is an additional secondary

moment due to the column’s deflected shape. This secondary moment is equal to P-3 that arises
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from the deviation in the axial force vector from the bent column axis. The experimentalP -3

moment is less than the correct P-A moment, where P should always be aligned vertically.

To rectify the experimental deficiency in the secondary P-8 moments, it is necessary to
ensure that the experimental axial load (as applied by an actuator system) be truly vertical. To
this end the University at Buffalo strong-floor based column testing rig was modified as shown
in figure 3-3. The vertical load is applied by a lever beam system connected to a secondary
frame. This frame is then connected to a second (lower) actuator. The displacements of this
actuator are slaved to the top actuator that is the primary driver in the experiment. The axial
load is controlled by a vertical servo-hydraulic actuator (250 kN) mounted on the secondary frame
at the eastern end and a 35mm diameter high strength threadbar at the western end via a lever
beam mounted on top of the column. The frame is supported by two 32mm diameter high
strength threadbars at the western end and by two 25.4 mm diameter bars of the same variety at
the eastern end. These bars in turn pass through specially constructed H-beams with oversized
tubular gaps along the web and anchored at the bottom via washers and locking nuts. The H-

beams were supported on elastomeric bearings and prestressed to the laboratory strong floor.

Lateral load is applied to the specimen by a 500kN capacity +127mm stroke MTS servo-
hydraulic actuator at a height of 2712 mm from the top of the foundation beam. One end of the
actuator is attached to the specimen through the actuator end plate and another end of the

actuator is bolted to the extension and connected to the reaction frame.

A second "horizontal" actuator with a load capacity of 1100 kN and 102 mm displacement
capacity is attached to the horizontal frame and traces the same displacement pattern
(displacement "slaved") as the top actuator. This automatically ensures that the line of
application of the axial load is kept vertical at all times thereby eliminating any possibilities ofP~A
error. This is illustrated in figure 3-4 which shows the proposed load application mechanism

at its original and deflected positions, respectively.
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To prevent sliding of the specimen under lateral load the foundation beam is anchored
to the laboratory’s 457 mm thick strong floor by applying prestress of 250 kN to each of the 25 mm
diameter high strength threadbars. These threadbars pass through 76 mm steel pipes that are cast
in the foundation beam giving a total hold-down prestress of 1000kN. Therefore, by assuming
a conservative value for the coefficient of friction of, say, 0.5 between the concrete specimen
and the concrete strong floor, the dependable resistance against sliding is S00&N. This is
considerably greater than the lateral load capacity expected for the types of specimens to be

tested in this research.

3.3 ACCOMMODATING AXIAL LOAD CHANGES

In the laboratory testing of structural concrete column components under simulated
earthquake loading, there can be a number of ways in which the lateral load can be applied
based on the orientation of the actuators. As will be shown, it is possible to accommodate the
effect of tension uplift using a suitable control algorithm for the hydraulic actuator that applies
the vertical load. The need to physically model the effect of tension uplift can be explained with
reference to figure 3-5(a) which shows a typical twin column pier bent subjected to a lateral
force of magnitude 2F. From equilibrium considerations, the following equations are obtained:

=2Mp=

v, T 3-D
L

and by taking equilibrium about the base

2F-H =2M, + T-L (3-2)

where v, = cap beam shear force, T = tension tie down force to restrain overturning,
M, = plastic moments in the column, H = height of the column and L = distance between the
centerline of the adjacent columns. By substituting equation (3-1) into (3-2) one obtains an

explicit relation connecting F and 7 in terms of the geometric parameters. Thus,
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T=F= 3-3)

In the laboratory the effect of tension uplift can be incorporated by suitably aligning the
horizontal actuator and using a suitable control signal for the vertical actuator. The various

alternatives are described below.

Method 1: Inclined Actuator: The setup shown in figure 3-5(b) consists of an inclined actuator

meant for applying the horizontal load in displacement control. The axial load P, is applied
through a vertical actuator that is held constant to simulate the constant gravity load. Lateral
loading is applied by an actuator inclined at angle 6 from the horizontal. The total reaction

force in the column is the sum of the two actuator components:

P, =P, +J, sin@ (3-4)

where J, = force applied by the "diagonally" oriented actuator. Note that when the force acts

in the direction opposite to the direction shown in figure 3-5(b) it is taken as negative.

The main advantage of this setup is that it can directly accommodate vertical force
changes including tension uplift. However, for high H/L ratios it is necessary to apply the
horizontal force at a steep angle thereby sacrificing the horizontal displacement capability.
Generally in a laboratory setup the proximity of the reaction frame inhibits provision of such

steep angles.

Method 2: Horizontal Actuator with Variable Vertical Force: The setup shown in figure 3-5(c)

is commonly used in laboratory testing. It consists of a horizontal actuator operating in
displacement control and the vertical actuator operating in load control. If a variable axial load

is necessary this can be accommodated as follows
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Py=P,+a-Jy (3-5)

where o is a proportionality factor that suitably adjusts the additional tension uplift force over
and above the vertical component of the inclined actuator force. If the vertical actuator can only
apply compression forces (due to the presence of tension-only tie down rods in the test set up)

then this approach is limited so that J, <P L/H.

Method 3: Hybrid Setup: Each of the first two methods have a disadvantage. Both of these

disadvantages can be overcome by combining the two approaches as shown figure 3-5(d). The

total vertical force is given by
P,=P, +al, +J,sinb (3-6)
Rearranging to solve for the axial load change (A T) gives:

AT=T-1J, sin9=JD(IZI) cos® - J, sin® = aJ, 3-7)

from which the actuator proportionality factor is given by

LZ cos 6 (1 -tan 8) (3-8)

o =

Clearly for a horizontal actuator (when 6 =0), « = H/L.
In this research Method 2 has been used for the variable amplitude tests with « = 0; i.e.
the axial load is held constant. For seismic simulations where the vertical load changes of a pier

bent need to be accommodated, Method 3 has been used with 6 =28.2° and « is a variable that

is changed by the computer software driving the test.
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3.4 INSTRUMENTATION, DATA ACQUISITION AND PROCESSING

Forces, displacements and column curvatures were measured by load cells, displacement
transducers and potentiometer, respectively. Figure 3-6 represents the instrumentation for the
Variable Amplitude Tests and QED test on the ReCARD specimen. Four sonic transducers (T1
through T4) were used to monitor the transverse displacements relative to the fixed base. Out
of the four transducers, three were attached to the specimen at various heights while one was
connected to the horizontal frame. To measure the column curvatures, six potentiometers (three
on each side) were used. Two potentiometers were mounted on each aluminum chassis; one
covering the upper gauge length, the other covering the adjacent lower one. The chassis was
bolted to a 9mm diameter threaded rod that was previously cast in the concrete during

construction.

For the Quasi-Earthquake Displacement test on the CARD specimen, the instrumentation
is presented in figure 3-7. Seven sonic transducers (T1 through T7) were used to monitor
horizontal displacements. Seven pairs of potentiometers were used to measure column
curvatures. Each potentiometer was mounted on an aluminum chassis that was attached to

9 mm threaded rods previously cast into the specimen .

During each test, the instrument output was recorded by an Optimum Megadac 5533A

Data Acquisition System in an ASCII format. The method for data analyses are outlined below:

Column drifts (8) were calculated using the relation

3-9)

(=]
]}
Sl

where T, = displacement at the top sonic transducer and H = column height measured from the

top of the foundation beam to the centerline of action of the lateral load actuator.
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Curvatures and strains (¢,, ;) over the i-th gauge length were calculated from:

A .
¢, = b ' (3-10)
I‘pi Lgi
and
e = ﬁ (3-11)
1 Lgi

where A, = algebraic difference of readings from the potentiometer pairs, L, = center-to-center

distance between the potentiometer pairs, and L, = gauge length.

Hysteretic energy absorption (E,) by the column per cycle is given by the area within the

force-displacement loop. One cycle of loading is defined as one complete reversal between
positive and negative drift amplitudes. The trapezoidal rule is used to find the hysteretical

energy absorbed by the column resulting in

F. +F.
i B ) -7 3-12)

EﬁE

i=1

in which F, = force in the i-th step and x, = displacement of the same step.

The hysteretic energy absorption can be related to Elasto Perfectly Plastic (EPP) material
by E,=nEg,, where n = an efficiency factor, and E,, = the energy absorbed by a 100%

perfect elasto-plastic system, defined as:

Eppp = (Mr: +M,:)(6; * 61:) G-13)

where M, ,M, = nominal moment capacities respectively in the push and pull direction and
6,0, = plastic component of the drift amplitude in the respective direction. The normalized
energy is defined by dividing the energy in equation (3-12) by (M, +M,). Thus, by also
dividing the EPP by (M, +M,) in equation (3-13), a comparison of the efficiency of energy
absorbed by the column and a 100% EPP material can be obtained.
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From the hysteretic energy absorbed by the column, two approaches for establishing the
relationship between effective damping ratio and displacement ductility are proposed and

described in what follows.

Cyclic Energy Absorption Efficiency (n)

One way to evaluate the equivalent damping ratio is by measuring the hysteretic
performance using the concept of energy absorption efficiency with respect to an Elasto-Perfectly
Plastic (EPP) system. By dividing the real cumulative energy absorbed by the piers (that is the
area under the load-displacement hysteresis loop) by equation (3-13), the efficiency of energy

absorption along cumulative plastic drift can be obtained from

by

cycle (3-14)
E EP.

1’]:

-

where E_,, = energy absorbed in an entire pier system over one complete loading cycle (between
drifts 6, and 6,). Generally, the values of n for a given loading cycle are initially constant until
severe deterioration commences at the onset of either buckling of the longitudinal steel and/or

spalling of the cover concrete.

Effective Viscous Damping Ratio (&)

One way to calculate the effective damping ratio &, is by directly calculating the
equivalent damping ratio &, from the hysteresis area of the column. Therefore, the effective

damping ratio is defined as

oL Foue (3-15)
2m F A,

geﬂ‘ = Eo + Eeq = Eo

where &, = ordinary structural damping (usually taken as 5% of critical), &, = equivalent
damping ratio of column, F, = average maximum strength in forward and reverse loading

direction and A_, = average maximum displacements in both loading directions which can be
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taken as p A, where A, is the yield displacement.

From the result of the calculation of the energy absorption efficiency for each bridge pier
and assuming a bilinear hysteresis loop, the equivalent damping ratio g,, for the bridge system

can be derived as

1
2y (1) 610

E“’=T (1-e+pe)

where p = displacement ductility factor and « = ratio between the post yield stiffness and initial
stiffness, which usually ranges from 0 to 0.05 for most reinforced concrete members. For
convenience, it is desirable to further simplify equation (3-16) to give

£ = 005 + 067 (1 - l) (3-17)
B

The response spectra adjustment factors for high damping in the short and long period ranges

can also be obtained as

E 0.5 3 0.3
AT

3.5 CLOSURE

A three-quarter scale ReCARD column was tested to verify the efficacy of the new
retrofitting technique that was introduced as part of the current research. Another three-quarter
scale CARD column and a further repair of the ReCARD specimen were tested under realistic
seismic input for evaluating the sensitivity to variable amplitude displacement path and variable
axial load. The conventional testing configuration was considered and modified. The problem
with most of the current approaches is that they do not correctly model P - A effects. In an
attempt to correctly mimic the secondary P-A moments that always exist due to the deflected

shape of the column, a modification to the experimental setup was implemented. The so-calledP - A
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apparatus consists of a secondary frame that is attached to a lower horizontal actuator which is
slaved to the principal lateral loading actuator. In this way the vertical load can be applied in

a truly vertical orientation.
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SECTION 4
TEST SPECIMENS —DESIGN AND DETAILING

4.1 INTRODUCTION

This section presents a brief overview of the configuration and detailing for the specimens
that were used in the laboratory testing. These consisted of an as-built column with insufficient
lap splice length that was eventually retrofitted and a CARD specimen that was essentially a
further repair of a specimen tested by Cheng and Mander (1997). The first retrofit (Test RO)
and the repair (Test R1) of the inadequate lap splice column was tested under variable amplitude
loading at increasing drift amplitudes. This was primarily done to check the efficiency of the
retrofitting technique. Following this the CARD specimen and a second repair of the retrofitted
specimen was tested under Quasi-Earthquake Displacement to investigate the effect of variable

axial load on the fatigue life of such specimens. The details of the various specimens are given

in the following.

4.2 As BuiLt COLUMN

One of the objectives of this research was to evaluate the experimental performance of
a three-quarter scale model bridge column with inadequate lap splice after retrofit. The retrofit
was performed on an almost exact replica of an existing bridge column in the field. Hence it

was necessary that the column be constructed in the laboratory with identical details.

The as-built column shown in figure 4-1 was designed based on a 3/4 scale of a prototype
column of diameter 813mm. As shown in figure 4-1, the 3048 mm tall and 610mm diameter
model column was reinforced with 12 deformed #6 (nominal diameter = 19 mm) rebars which
constituted a longitudinal steel ratio of 1.17% of the gross area of the column section. The top
and lower 610 mm of the column was reinforced with deformed #3 (nominal diameter = 9.53 mm)

spirals at a pitch of 102mm. At the central 1828 mm part of the column the pitch was doubled.
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Figure 4-1 Construction Details of the As-built Column Specimen.
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The longitudinal steel was lap spliced for 64 mm at the base of the column Although such a
small lap length is not expected even in a non-seismically designed column, it was chosen to
reflect the most adverse situation and also enabled the use of the foundation beam constructed

for earlier experiments by Cheng and Mander (1998).
4.3 RETROFIT OF THE INADEQUATE LAP SPLICE COLUMN

The as-built column with inadequate lap splice length was retrofitted in its undamaged
condition in accordance with the ReCARD concepts developed in Section 2. The retrofitted
column is shown in figure 4-2. The main feature of this retrofit include the provision of "fuse
bars" in the potential plastic hinge zone so that the failure is governed by low cycle fatigue. The
actual load path needed to be transferred from the existing longitudinal reinforcement to the fuse
bars and finally down to the foundation. This requirement necessitated the provision of
rectangular plates as shown in figure 4-2 which transferred the load from the main column bar
to the fuse bar and back to the foundation via the welds. To prevent the existing longitudinal
bars from carrying any tension, they were cut at mid-height with a portable band-saw. This was

deliberately done so that these bars would only be effective in compression but not in tension.

The design details of the fuse bars and that of the plastic hinge closely follows the
criterion developed in Section 2. The fuse bars were machined from 28.6mm diameter B7
threaded rods whose typical stress strain behavior is shown in figure 4-3. As can be seen from
this figure, the steel does not have a particularly well defined yield plateau. The yield and
ultimate stresses were measured as f, = 855 MPa and f, = 990 MPa, respectively. The ultimate
strain at ultimate stress was 0.05 and at fracture 0.225. The fuse bars were machined down t017.8 mm
diameter to conform to the requirements of equation (2-2). The length of the fuse was set at

406 mmwhich was equivalent to L,/ D = 0.67.

The design of transverse reinforcement was based on Dutta and Mander (1998). Figure
4-4 shows the plot for the theoretical volumetric ratio of transverse reinforcement required for

concrete confinement, shear protection and antibuckling purposes. From the plot it is clear that
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for the retrofitted column the volumetric ratio of transverse reinforcement corresponding to

antibuckling is critical at p_ = 0.015.

Transverse reinforcement was provided in the form of 9.5 mm galvanized 1 x 7 strand wire

rope. The stress-strain property of the wire rope is shown in figure 4-5.

4.3.1 Retrofit and Repair Procedures

This subsection describes the retrofit and repair procedures for the original column. The
initial retrofit column test is referred to as RO. As intended by design, the specimen was

repaired and retested twice following the initial retrofit tests. These experiments are referred
to as R1 and R2.

Retrofit (Test RO): This is the initial retrofit of the original as-built column that possessed a lap
splice in the potential plastic hinge zone. About one month after casting the as-built column,
the cover concrete around the perimeter of the column was removed by jack hammer from the
top of the foundation beam for a height of 838mm. After the hoop steel was exposed, it was
removed (by gas cutting). In order to place the fuse-bar hardware, approximately 25mm of
additional concrete was removed behind the longitudinal column bars. The starter bars were cut

so that sufficient length remained for welding of the splice plates. Figure 4-6 presents a view

of the column at this stage.

After the cover concrete and a portion of the core concrete were removed, the
216 x 114 x 113 mm steel plates were inserted behind pairs of adjacent reinforcement and fillet
welded with E70xX electrode. Care was taken to ensure the vertical clearance between the ends

of the top and bottom plates was sufficient to secure the fuse-bar with the coupling arrangement.

Since the fuse-bars were to be assembled with hexagonal couplers both at the top and

bottom, it was necessary that the other end of each coupler be screwed to the starter studs that
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Figure 4-6  Photographic View of the As-built Column after Removal of the Cover and

Portion of the Core Concrete.
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in turn would be connected to the steel plates. Hence, 152 mm B7 starter studs (diameter 28.6 mm)
were attached at both ends of the fuse-bars via 76 mm hexagonal couplers. Another pair of
couplers were screwed to the starter studs and then welded to the metal plates at the top and
bottom. Care was taken so that the starter-coupler-fusebar assembly was properly aligned during
the welding procedure. The fusebar was then lock-nutted to prevent any slackness of fit. The
assembly procedure is schematically portrayed in figure 4-3 and figure 4-7 presents a view of

the column after the completion of the assembly.

After the fuse-bars were welded, transverse reinforcement in the form of 9.5mm
galvanized 1 x 7 strand wire rope was wound around the fuse-bars. Although in accordance with
the design it was necessary to maintain spacing of 38 mm for antibuckling considerations, it was
decided that the spacing in the actual hinge zone measuring 152 mm on either side from the center
of the fusebar should be relaxed to 58mm to deliberately weaken the region. Conversely, to
further strengthen the lower portion of the fusebar attachment, a pedestal (914 x775) was cast
up to 165mm from the foundation (figure 4-2) and reinforced with additional rectangular hoop
reinforcement consisting of 12.7mm diameter deformed bars. These were welded to twelve
longitudinal bars of the same diameter and of the same height as the pedestal and were
distributed uniformly around the perimeter. Finally circular formwork in the form of proprietary

cardboard tubing was assembled around the repaired hinge and high performance concrete was

placed.

Concrete for the retrofit was cast in four pours. First the concrete in the pedestal was
poured. The concrete proportions used for the pedestal are given in table 4-1. Next a strong
layer extending some 51 mm from the top of the pedestal consisting of water, EMARCO-S77-CR
and pea gravel in the ratio of 0.14:1:0.56 was cast. Concrete in the third level was the main
portion expected to be damaged in an earthquake. In order to deliberately weaken this portion
of the hinge zone a weaker strength concrete was poured for the next 457mm. This weakening
was achieved by adding 9.3miI/1 of Micro Air. Finally, for the top layer the same concrete mix

as used in the second pour was used. Relevant information is included in table 4-2.
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Figure 4-7  Photographic View of the Column after the Assembly of the Plates and Fuse-

Bars.
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Table 4-1 Mix Proportions for 1=* of High-Strength Silica Fume Concrete Used for the

Pedestal after Moknes and Jakobsen (1985).

Silica fume 32kg
Plasticizer 6.141

Type III cement 416 kg
Fine aggregate (sand) 880 kg
Coarse aggregate (19 mm) 960 kg
Water 1521

Water : Cement : Fine Aggregate : Coarse Aggregate = 034 : 1.0 : 1.96 : 2.14

Table 4-2 Concrete Mix Proportions in the Column Hinge Zone.

Micro 7 Day
Water Pea Gravel Air/Liter | Pouring | Target
EMARCO §77 -CR EMARCO §77 -CR of Water Height Strength
Batch (ml) (mm) (MPa)
2 0.14 0.45 - 51 68
3 0.14 0.45 9.3 560 45
4 0.14 0.45 - 114 68

Repairs (Tests R1 and R2): Following the initial retrofit test (R0), the specimen was repaired
and retested twice. On each occasion concrete in the sacrificial fuse zone was jack hammered
up to 611mm from the top of the pedestal and wire rope hoops were cut and removed. The
damaged fuse-bars were replaced by a set of new fuse-bars and lock nuts tightened against the
end of all couplers. Transverse reinforcement in the form of 9.5 mm galvanized 1 x 7 strand wire
rope was wound around the hinge zone at a pitch of 38 mm. Figure 4-8 shows a typical view of
the specimen at this stage. Finally, high performance concrete was poured in two layers with

proportions corresponding to batches 2 and 3 in table 4-2.
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Figure 4-8  Typical Photographic View of the ReCARD Specimen during Repair.
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4.4 PRESTRESSED CONCRETE REPLACEABLE HINGE CARD SPECIMEN

This subsection describes the repair preparations for retesting the three-quarter scale
prestressed concrete column previously tested three times by Cheng and Mander (1997). The
construction details for the specimen can be found in that reference. Based on lessons learned
from those tests certain changes were incorporated into the specimen repair. The original three-
quarter scale prestressed concrete column had a central core stub which was 279 mm diameter
and reinforced with four 19mm diameter deformed bars along with a 10mm diameter spiral
reinforcement wound with a pitch of 102 mm. The stub extended from the top of the foundation
into the main portion of the column. This created a discontinuity at the column cap beam
interface. However, the discontinuity should ideally be located at the mid-hinge height where
the weakest zone is located. Therefore, the stub was cut 254 mm from the base of the column
and seated on a concrete filled tube (310 mm in diameter, 343 mm in length). The lower end of
the tube was secured by welding to the top rebars of the partially prestressed foundation beam.

Figure 4-9 presents a view of the CARD specimen seated on the concrete-filled cast iron tube.

In the next phase a new set of fuse-bars was installed which were machined from 25.4 mm
(Dywidag™") threadbars. In order to ensure that no damage propagated beyond the machined
portion of the fusebar into the foundation, a pedestal (725mm x 725 mm) with a height of 190 mm
from the foundation beam was cast at the base of the column and reinforced with two levels of
19mm diameter rectangular hoops. The concrete had the same mix proportions as listed in table
4-1. Finally, transverse reinforcement in the form of 9.5mm galvanized 1x7 strand wire rope
was wound around the plastic hinge with a variable pitch of 90mm in the middle and 50 mm at
the top and bottom. Details of construction are shown schematically in figure 4-10 and a view

of the transverse and pedestal reinforcement is shown in figure 4-11.

The concrete used for the replaceable hinge zone was poured into hexagonal shaped
plywood formwork in three distinct layers with proportions as listed in table 4-3. To further

weaken the hinge zone, the hexagonal formwork was modified so that in the central portion of

the hinge zone the overall width was 560 mm .
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Specimen.
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Figure 4-11 Photograph of the Hinge Zone of the ReCARD Specimen After the Placement
of Transverse and Pedestal Reinforcement.
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Table 4-3 Concrete Mix Proportions in the Replaceable Hinge Zone

Water

Pea Gravel

Pouring Height

28-Day Target

Batch (mm) Strength
EMARCO C77-Ct | EMARCO C7-CR
(MPa)
1 0.193 No 55 48
2 0.273 0.91 350 21
3 0.193 0.91 205 48

4.5 CLOSURE

This section provided a brief overview of the specimens that were tested as part of this

research program. The construction details of the as-built lap splice column, its retrofit and a

CARD specimen were discussed.
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SECTION 5
EXPERIMENTAL RESULTS OF VARIABLE AMPLITUDE TESTS
ON ReCARD SPECIMENS

5.1 INTRODUCTION

This section presents experimental results of the variable amplitude tests on the lap splice
retrofit (Test RO) and its first repair (Test R1). The main purpose of these tests were to judge
the efficiency of the retrofitting technique and verify the concept of repairability after a

damaging earthquake.
5.2 EXPERIMENTAL PROTOCOL

Testing of the first retrofit (R0) and the repair (R1) was performed under displacement
control where a command signal was provided by an analog function generator in the form of
a positive sine wave which loaded the specimen first by pushing and then by pulling. The
loading consisted of two cycles each at drift amplitudes of +0.5%, 1%, +2%, +3%, and +4%.
The specimen was tested at two quasi-static rates of cycling referred to as "slow" and "fast".
Initially slow cycling at a 0.017Hz test frequency (60 s period) was used. In the latter stages
of testing a fast loading at a 0.033Hz test frequency (30 s period) was used. The drift level for
the fast cycle was maintained at +4% until the end of testing. A constant vertical (gravity) load
of 716 kN was applied to the specimen throughout each phase of testing. The sampling rate for
the data acquisition system was set at 3Hz and 6Hz for slow and fast loading respectively, both

rates providing 180 data samples per cycle of loading.

5.3 VISUAL OBSERVATIONS

The strong upper portion of the column remained undamaged at all stages of loading.

Thus all damage was forced into the sacrificial reinforced concrete (fuse-bar) hinge zone. The
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flexure fatigue failure modes were dominant in all the tests. The following presents a descriptive

outline of the events that occurred at various drift levels for each test.

Test RO (First test after retrofitting the lap splice zone with fuse-bars)

Drift Level
0.5%
1%

2%
3%

4%
4 % (fast)

Events

One flexural crack initiated at the center of the hinge zone on both sides.
Additional hairline flexural cracks appeared at the interface between middle and
lower layers of concrete.

Two new flexural and several vertical cracks opened on both sides.

The existing cracks extended. Figure 5-1 shows a view of the specimen at the
end of the 2% and 3% drift subtest.

The concrete cover on both sides started spalling.

Buckling of the fuse-bars was first observed in the north side in the first cycle of
loading. Bar fracture due to low cycle fatigue occurred in the first quarter of the
fourth cycle (south) and immediately on reversal (north). Figure 5-2 shows a

view of the column at the end of testing.

Test R1 (Retest following first repair after initial testing and damage sustained by Test R0O)

Drift Level
0.5%

1%
2%
3%
4%

Events

One flexural crack initiated at the center of the hinge zone on both sides. A
flexural crack on the north side appeared at the interface of middle and lower
layers of concrete. Figure 5-3 shows a view of the specimen at this  stage.
The flexural crack at the center widened.

Several inclined cracks appeared on both sides as indicated in figure 5-4.

The concrete cover on the north side started spalling.

Concrete cover continued spalling. Diagonal cracks opened on both east and west

sides. Longitudinal reinforcement in the south side fractured during the second
cycle at 4% drift.
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Figure 5-1 Photographic View of the Specimen RO at the Conclusion of 3% Drift Level.
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Figure 5-2 Photographic View of the Specimen R0 at the Conclusion of Test.
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Figure 5-3 Photographic View of the Specimen R1 at the end of 0.5% Test.
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Figure 5-4 Photographic View of Specimen R1 at the end of 2% Drift Sub-test.
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4 % (fast) Buckling of the longitudinal reinforcement was observed during the second cycle
at 4% (fast) in the north side. Longitudinal rebar in the north side fractured in the
fourth cycle. Figure 5-5 shows the specimen at the end of testing.

5.4 HYSTERETIC PERFORMANCE

The lateral force versus column displacement results from the tests RO and R1 are plotted
in figure 5-6. The "reversed Z" dotted line in each graph represents the nominal flexural
strength of the specimen accounting for the P - A effect. Note that the nominal flexural strength

is based on measured material properties. Both columns behaved in a ductile manner showing

good energy dissipation.

In the slow loading tests, both specimens behaved essentially elastic until reaching <1 %
drift and then entered into the plastic range at +2% drift. The lateral force in both columns
reached a maximum (about 0.3 base shear capacity) in the first cycle of 2% drift for all
columns. Degradation in the force level was observed due to spalling of the cover concrete and
buckling of the longitudinal rebars. For both columns there was a sudden drop in the force level

when bars fractured at 4% drift.
5.5 STRENGTH DEGRADATION AND ENERGY ABSORPTION

Figure 5-7(a) presents the peak forces for all columns with respect to the applied
cumulative total drifts. The total forces are defined here as the average of the push and pull
loading directions in one complete reversal cycle. The first repair (R1) had a premature bar

fracture indicating lower force levels.
The normalized cumulative energy (defined in equations 3-12 and 3-13) versus the

cumulative plastic drift for each test is plotted in figure 5-7(b). The dashed line represents the

efficiency of the specimen with respect to EPP behavior. This is used as a reference to compare
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energy absorption efficiency for each specimen. The procedure for determining the rate of
energy absorption is the same as described in Section 3.4. For both specimens, overall energy

absorption efficiency was about 27%.

The equivalent damping ratio (determined by equation 3-15) with respect to displacement
ductility factor for each specimen is presented in figure 5-5(c). A prediction of theoretical

damping calculated by equation (3-17) is also presented. The spectral adjustment factors are

shown in figure 5-5(d).
5.6 DISCUSSION

This section presented the variable amplitude test results on the retrofitted lap splice
column and its first repair. As was evident from the test results, the retrofitted specimens
performed very well and showed satisfactory energy dissipation characteristics. This was a
marked improvement over the test results of Cheng (1997) as shown in figure 2-4. The repaired
specimen performed as well as the original retrofit, thereby proving that such a technique can

be reused repeatedly without any significant detrimental effect on performance.
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SECTION 6
QUASI-EARTHQUAKE DISPLACEMENT EXPERIMENTATION

6.1 INTRODUCTION

This section presents the development of the Quasi-Earthquake Displacement (QED)
experimental technique.  This experimental technique uses a non-linear time-history
computational simulation to predict seismic displacements and forces in a prototype structure.
These earthquake-induced actions are scaled to permit laboratory experiments on reduced-scale
subassemblages of the prototype structure. The QED experimental objective for this research
was to verify the behavior of bridge piers built with sacrificial hinges to random displacement

input such as that typically experienced under earthquake loading. The effect of variation of

axial load on the column was also an issue that was investigated during this research.
6.2 PREVIOUS RESEARCH

Testing of structures subjected to randomly generated displacement is not new. Igarashi
et al. (1993) and Seible et al. (1994) used an online technique to test a three-story in-plane shear
walls and a five-story full scale masonry building. In this technique the structure was subjected
to a ground motion, its stiffness evaluated and fed into a computer program, the restoring force
output from which was input to the actual structure and the loop retraced. Kunnath et al. (1997)
while experimenting on one-quarter scale bridge piers used generated displacement output from
the inelastic analysis program IDARC as an input signal to the test specimens. The sequence
of chosen earthquake ground motions represented various combinations of a major earthquake,
a minor aftershock and finally a major event. However, none of the above research studied the
influence of axial load variation that can play a important role when significant inelastic behavior
is expected in the structural concrete element. This research uses a similar technique as the one

used by Kunnath et al. (1997) with further modifications to account for axial load changes. Two
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specimens were tested—a CARD specimen which essentially was a fourth repair of the column
tested by Cheng and Mander (1997) and a further repair (Test R2) of the three-quarter scale lap

splice column. Details of the experimental program are presented next.
6.3 QUASI-EARTHQUAKE DISPLACEMENT (QED) EXPERIMENTATION

A fourth repair of the CARD specimen tested by Mander and Cheng (1997) and a further
repair of the ReCARD specimen was tested under a random displacement pattern to simulate the
effects of real ground motion. The Quasi-Earthquake Displacement (QED) experimentation
technique was introduced as a method of testing. This requires the prototype (full scale) bridge
to be modeled by any reasonable inelastic analysis program and subjected to a dynamic input.
Such input should ideally characterize a foreshock, a main shock and an after shock. The real
magnitude of the forces and deformations obtained from the computer program can then be

appropriately scaled and used on the model structure.

The QED technique was used for the testing the CARD and ReCARD specimens. The
hybrid setup discussed in section 3.3 was used for application of the lateral and vertical load on
the specimen with the angle of inclination chosen as 6 = 28.2° based on laboratory constraints
(refer to figure 6-1 for a schematic of the test setup). However, since the inclined actuator was
to operate on displacement control it was necessary to know the exact displacement signal that
it was to follow. For this purpose a prototype bridge was modeled using the inelastic analysis
program Drain-2DX and éubjected to a random ground motion input. The results from the
computer simulation were used as input to the three-quarter scale specimens after applying

proper scale factors. The details of the model is discussed next.

Full Scale Computer Model: The prototype structure was modeled as part of a long multiple

span concrete slab on steel girder bridge (figure 6-2a). Each span was assumed as 28 m in length
and 10m in width. The soffit of the superstructure was assumed to be 7m above the rigid piled

foundation. For simplicity, the effective deck weight (girders, concrete deck, guard rails) was

assumed as 7kPa.
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Tributary gravity weight:

W, =10m x 28m x 7kPa = 1960 kN

Transverse inertia weight:

W, =2 x W, = 3920kN

The transverse inertia weight was chosen as double the gravity weight to deliberately magnify

the lateral displacement. The model also assumed two columns at the bent, each of

diameter= 0.8m.

Cross sectional area of each column:

2
A:%XD2=.’EX_O-8_=0.502m2
Column self weight:
2
W= AxHxp = "—X(%M X7 m x2.4tm? x 9.81 m|s? = 88 kN

where 4 = area of the column, H = effective height of the column, p = density of concrete.

Average axial load in each column:

P=05W, + W, =05x1960kN + 83 kN = 1068 kN

Total stiffness of pier bent:

Assuming the columns fixed at each end

24xE xI, 24xmuxE_xD*
K: =
H? 64 x H?

where H = effective column height taken as 7m, D = column diameter,E, = Young’s modulus

of concrete calculated as E, = 4700/f/ (MPa) = 4700,/30 = 30000 MPa = 30x10°kPa and I = cracked
4
concrete moment of inertia with I = “—:413— x 0.5 = 001m*. Thus,
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_ 24 %30 x 1000000 x 0.01
73

K

= 20991 kN/m

The two-dimensional model of the prototype bridge, shown in figure 6-2(b), was
composed of discrete beam-column elements having both flexural and axial stiffness in the
DRAIN-2DX program. Flexural yielding was concentrated in plastic hinges located at the
element ends. The post-yield stiffness was assumed to be 2% of the initial elastic stiffness. The
gross moment of inertia of the columns in the model was multiplied by a factor of 0.5 to account
for cracking. The soffit of the superstructure was modeled to be stronger than the pier bent so

that an energy dissipation mechanism with plastic hinges at the ends of the columns was

developed.

The model was tested under variable axial load and variable flexure in four stages. On
the first three stages the algorithm presented in figure 6-3 was followed. The final stage of

testing consisted of constant amplitude cycling at a drift amplitude of +3.5%.

First Stage. The specimen was subjected to a sine wave with a drift amplitude of +0.5% .
Following the conclusion of the experiment, the experimental stiffness of the specimen was
scaled up to 100% and used to represent the initial stiffness of the column in the computer model
of the prototype bridge. Next TAFT (July 21, 1952, Lincoln School Tunnel S69E record)
ground motion was selected to represent the foreshock. The horizontal component was scaled
to give a PGA of 0.2g and the vertical component was scaled by the same factor as the
horizontal. This earthquake motion was used to evaluate the dynamic response to the prototype
bridge. After output axial force-time and displacement-time histories were generated, they were

scaled to 75% and applied to the specimen.

Second Stage. The stiffness of the model was determined at the end of the previous
experiment (the TAFT earthquake). The model stiffness was scaled up for the 100% prototype

and used as input to the computational model. Dynamic nonlinear analysis was performed using
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Figure 6-3  Algorithm used for the Testing of Prestressed Concrete CARD Specimen
during the QED Experimentation.
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various ground motion records of moderate and higher intensity, namely the Great Hanshin
(January 25, 1995 Kobe Station N-S record), Northridge (January 17, 1994 Sylmar Hospital 90°
record), and San Fernando (February 19, 1971 Pacoima Dam S16E record) earthquakes.
Following the computer analysis the axial force-time and displacement-time histories were scaled
and combined into one input segment and applied to the 3/4 scale model specimen in the
laboratory. For each segment of earthquake, the responses of both the left and right piers were

considered in the final combination.

Third Stage. The complete algorithm was repeated again for a Great Hanshin earthquake
(January 25, 1995 Kobe Station) record.

Fourth Stage. The specimen was subjected to a constant amplitude +3.5% drift cyclic test

until failure occurred through low cycle fatigue of the longitudinal reinforcement.

The prestressed concrete CARD specimen was tested with the generated random
displacement pattern from the computer program DRAIN-2DX. Figures 6-4, 6-5 and 6-6 show
the displacement and axial load signals applied to the column during the first three stages of
testing. Due to the difficulties in implementing the output rate in the servo controlled actuator,
the displacement signals were slowed down respectively by factors of 5, 10 and 20 for the Taft,

series of earthquake (second stage) and Kobe records.

Similar to the prestressed concrete CARD specimen the first phase of this test consisted
of two cycles at 0.5% drift amplitude. Due to the similar stiffnesses of the ReCARD and
CARD specimens the same displacement history was run for the ReCARD specimen. In this

way it was considered possible to easily establish similarities and/or differences between the two

specimens.
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6.4 CLOSURE

Quasi-Earthquake Displacement (QED) Experimentation was introduced as a means by
which the seismic behavior of bridge piers subjected to seismic excitation can be verified. This
technique uses a non-linear time history computational simulation to predict seismic
displacements (and forces) in the prototype structure. These earthquake-induced actions are then
scaled to permit laboratory experiments on reduced scale subassemblages of a prototype
structure. Random displacement and axial load input segments obtained through computer
analysis are then combined and applied to the experimental specimens. QED experimentation

is useful for evaluating seismic behavior of experimental specimens by applying pseudo-dynamic

forces and displacements.
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SECTION 7
RESULTS OF QED EXPERIMENTATION

7.1 INTRODUCTION

Two 3/4 scale model bridge columns built with replaceable hinges were tested under
combined axial load and flexure using the QED method. Real earthquake motions with large
impulse and vertical acceleration components were used. Figures 6-4, 6-5 and 6-6 show the
displacement and axial load signals applied to the column during the first three stages of testing.

The results of the testing are discussed in what follows.
7.2 PRESTRESSED CONCRETE CARD SPECIMEN

Visual Observations: The strong upper portion of the column remained undamaged at all

stages of loading. Thus all the damage was forced into the sacrificial reinforced concrete hinge
zone. The flexure-fatigue mode was dominant. The following presents a description of

observations at various stages of the test.

Phase Events
0.5% No visible distress to the column.
Taft 0.2¢g Two major horizontal cracks and a number of inclined cracks appeared in

the north and south side.

Series Concrete cover on both sides started spalling. Figure 7-1 shows the specimen at
the end of this stage.

Kobe Cracks widened and the cover concrete continued to spall (figure 7-2).

3.5% drift  Bar fracture due to low cycle fatigue occurred in the eleventh cycle (south side).

Figure 7-3 shows a view of the column at the termination of testing.
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Figure 7-2  Photographic View of the CARD Specimen after the Conclusion of QED
Testing with Kobe Earthquake Record representing the Aftershock.
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Hysteretic Performance: The force-displacement hysteresis for the CARD specimen for

each of the four stages of testing are plotted in figure 7-4. As can be seen, the column displayed
satisfactory energy dissipation characteristics and maintained a steady lateral resistance until the
fracture of the longitudinal bar due to low cycle fatigue. The moment curvature history for the
random earthquake testing phase along with strain profiles at the indicated points are plotted in

figure 7-5. Note that readings from potentiometers PW6 and PE6 (see figure 3-7) were used.

The final failure of the specimen was a result of fatigue fracture in the longitudinal fuse-
bars. Fatigue fracture is dependant on the magnitude of strain amplitude. This is shown in
figure 7-5)b). Since the primary effect of variation of axial load is to produce asymmetric strain

profiles, it is apparent that it is also to effect the fatigue life of the specimen. This issue is

addressed in Section 8.

7.3 RECARD SPECIMEN

Similar to the prestressed concrete CARD specimen, the first phase of this test on
ReCARD specimen consisted of two cycles at 0.5% drift amplitude. However, the similarity
between the stiffnesses of this specimen and the CARD specimen obviated any further analysis

and enabled the axial load signals of figure 6-4, 6-5 and 6-6 to be applied with alteration.

Visual Observations: As was the case with the prestressed concrete CARD specimen,
the strong upper portion of the column remained undamaged at all stages of loading with the
damage being concentrated in the sacrificial fuse-bar zone. The following presents a description

of observations at various stages of the test.

Phase Events
0.5% One hairline crack appeared at the center of the plastic hinge on the north side.
Taft 0.2¢g Two major horizontal cracks and a number of inclined cracks appeared in

the north and south side at the location where the original bars were cut.

Series Concrete cover on both sides started spalling. Figure 4-7-1 shows a view of the
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specimen at the end of this stage.
Kobe Cracks widened and the cover concrete continued to spall. First bar fracture

occurred. Figure 7-7 shows a view of the column at the termination of testing.

Hysteretic Performance: The force-displacement hystereses for the ReCARD specimen

are plotted in figure 7-8. Satisfactory energy dissipation characteristics as well as maintenance
of a steady lateral resistance were observed until the fracture of the main rebar due to low cycle
fatigue. The moment curvature history is plotted in figure 7-9. Only a pair of points are plotted

since the potentiometer readings at high strain amplitudes were not consistent, apparently due

to malfunctioning.

The overall hysteretic performance of the two specimens are compared in figures 7-10(a)
and (b). As can be seen, the specimens display unequal strength in the two opposite directions.
This is due to the variation of axial load and can be explained with the aid of a nominal axial
load-moment interaction diagram for the two columns as shown in figures 7-11(a) and (b). The
maximum and minimum axial loads in the P-M interaction diagrams correspond to the values
attained during the QED experiments. It is observed from these results that the nominal lateral
resistance (nominal moment divided by the lever arm) along with P-A effects constitute an
envelope that closely traces the experimentally observed values. Excellent energy dissipation

and maintenance of steady lateral resistance is observed from both the specimens.

7.4 CLOSURE

This section presented the results of testing of 3/4 scale CARD and ReCARD specimens
subjected to Quasi-Earthquake Displacement (QED) experimentation. The behavior of bridge
piers retrofitted with replaceable hinges responding in flexure to variable amplitude displacement

and axial load input was closely investigated during this research.

The 3/4 scale reinforced concrete CARD and ReCARD specimens was tested under
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realistic seismic input. The strong upper portion of both the columns remained undamaged at
all stages of loading. All damage was forced into the sacrificial reinforced concrete hinge zone.
The flexure-fatigue failure mode was dominant. Satisfactory hysteretic performance in terms

of steady strength degradation and energy dissipation was observed.

The seismic resistance of these test specimens was more than adequate for several
earthquakes. Therefore, the detailing would be satisfactory for a strong foreshock, mainshock,

and aftershock.
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Figure 7-6 Photographic View of the ReCARD Specimen after the Conclusion of the

QED Testing with Series of Earthquake Records representing the Mainshock.
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Figure 7-7 Photographic View of the ReCARD Specimen after the Conclusion of the
QED Testing with Kobe Earthquake Record representing the Aftershock.
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SECTION 8
COMPARISON OF THEORETICAL AND EXPERIMENTAL FATIGUE LIFE

8.1 INTRODUCTION

This section compares the theoretical and experimental fatigue life of the 3/4 scale
specimens that were tested as part of this current research program. Since the failure mode of
the longitudinal reinforcement in these columns was by design that of low cycle fatigue,

expressions for fatigue life are derived from such criteria and contrasted with experimental

observations.
8.2 THEORETICAL FATIGUE LIFE UNDER SYMMETRICAL LOADING

Symmetrical loading may be thought of as a case that produces equal compression on
either side (i.e. same depth to the neutral axis) when the structural element is cyclically loaded.
A constant (or variable) amplitude loading with a steady gravity load that targets the same drift
amplitude in both the positive and negative direction (push-pull or vice versa) can be thought of
as a symmetrical loading case. The strain diagram for such a sectional shape is shown in figure
8-1.

In a recent study on the low cycle fatigue behavior of reinforcing steel, Mander et al.
(1994) showed that the plastic strain amplitude (e,,) is given in terms of the fatigue life (N,

cycles to failure) by the relation

e,, = 008 (2N;)™° @8-1)

and a replot of the results in terms of total strain amplitude gives a simple relation in the form

e, = 0.08 (2N,) 0% 8-2)

where 2N, = number of reversals to the appearance of first fatigue crack, ¢, = total strain and
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Figure 8-1  Strain Diagram for a Circular Section under Constant and Variable Axial

Loading.
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e,, = plastic strain at the level of the reinforcing bars.

Using a simple strain transformation and elements of moment area theorem it was shown
by Dutta (1995) that the plastic drift amplitude 8, for specimens failing by low cycle fatigue

fracture of the longitudinal reinforcement is given by

L
6, = 0.113 i (N;) ™ (8-3)
D/

where L, = length of the plastic hinge (or length of the fuse zone) and D’ = pitch circle
diameter. By rearranging equation (8-3), the theoretical number of cycles to first fatigue crack

can be determined as

2
N;heory - 0.013 (ﬁf_) (8'4)
62 D/
P

In case of variable amplitude cyclic loading, 6, may be thought of as the maximum plastic drift

to which the element is cycled.
8.3 THEORETICAL FATIGUE LIFE UNDER ASYMMETRICAL LOADING

Asymmetrical loading may be defined as a case that produces unequal compression on
the two opposite sides when the element is cyclically loaded. Al realistic earthquake loading
can be thought of as asymmetric loading. Since the depth to the neutral axis for the forward and
reverse loading are not the same, it is necessary to alter the theoretical fatigue life expression

of equation (8-4) to reflect this effect.

Consider the strain diagram of figure 8-1 for the variable axial load case. It is assumed
that the neutral axis depth ¢ in the forward direction is less than the corresponding one (¢’) in
the reverse direction. From the same figure it can also be seen that the total strain amplitude

on the heavily strained side 2 ¢} is given by
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2¢l =2¢, =¢(D-c-d) + d(c'-d") = $(D-2d'-Ac) @8-5)

where ¢ = curvature, d’ = effective cover, Ac = ¢/-¢ and remaining symbols are easily
identifiable from figure 8-1. It can be concluded that for a symmetric loading scenario at the

same level of curvature, A ¢ = 0 and hence equation (8-5) simplifies to

2e, = ¢(D-2d) (8-6)
Thus the total strain amplitude at the level of the reinforcing bars for asymmetric loading
expressed as a ratio of the corresponding amplitude for symmetric loading can be written as

€& _ ¢D(1-2d'/DxAc/D)

*
a
ea

-1 Ac/D 8-7)
éD(1-2d'|D) 1-2d'|D

where the =+ sign is used to denote the fact that the asymmetric loading produces larger
compressive stresses in the direction for which the neutral axis depth is larger and vice versa.
This also signifies that the fatigue life will be less for the reinforcing bars on the heavily

compressed side, whereas on the less compressed side of the column fatigue life will increase.

If it is assumed that the change in the neutral axis A¢ only affects the compressive force
in the concrete (C,), it can be concluded that the difference in the axial loads in the forward and

reverse direction is equivalent to the change in the compressive force of the concrete. Thus
AP=AC, =(af)(BAc)B,, (8-8)

where «,p = stress block factors and B, = average width. Solving for Ac¢ in equation (8-8)

A.E = _—AP (8_9)
D upfB,D

Since bridge columns are lightly loaded, the neutral axis depth ratio (¢/D) for such columns is

usually around 0.3. For such a depth, B, can be conservatively taken as = D/4. Thus
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Ac _ AP _ AP

— = = (8-10)
D upf(n/4D*) «BflA,
where A, = gross cross sectional area. Substituting this in equation (8-7)
* /
ta _q, AP[BLA, @-11)

€, 1-2d'|D

Since the strain amplitudes e, and ¢, can be expressed as in equation (8-2) in terms of the
number of cycles to fatigue fracture N, and N;, equation (8-11) can also be expressed in an
alternative form as

Ny

Ny

-3
L. AP[aBfiA, 8-12)
1-2d'|D

It is evident that equation (8-12) is critical when the positive sign is considered.

For convenience assume a = =0.85 and 1-24’/D = 0.8, then the modified number of
cycles to fatigue failure (N7) for a column with variable axial load (A P) compared to the

standard case (N,) where the axial load is constant (A P =0) is given by

* Nf

1a173.8P) @-13)
fiA,

8.4 EFFECTIVE NUMBER OF CYCLES TO FAILURE

The effective number of cycles to failure can be derived using Miner’s linear damage
accumulation criteria. For a symmetrical loading with increasing drift amplitudes it was shown

by Dutta et al. (1998) that the effective number of cycles in terms of the total drift is given by

i=1

3
n ei .
N =Y [—e ] 19

where 6, = total drift amplitude for the i-th cycle and 6,, = maximum drift.
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8.5 COMPARISON WITH EXPERIMENTAL RESULTS

Test RO and R1: The theoretical number of cycles to fatigue failure expressed by equation (8-4)

can be compared to the experimentally obtained cycles to failure (equation 8-14). Alternatively,
the inferred plastic strain amplitude using the moment-area theorem can also be compared to

equation (8-1) as

- /
S ) = (8-15)
2(H-y,) L
where A = applied ultimate displacement, A, = elastic displacement, ¥, = distance from the top

of the foundation to the center of the fuse bar and H = height of the column.

The results expressed in table 8-1 and figure 8-2 show that the theoretical prediction
matches very well for the retrofit. However, it exceeds the experimental value for the first
repair. This is because the second failure was not exactly true flexural fatigue. Based on a
post-test inspection it was apparent that a fatigue notch inadvertently existed in the bar due to
faulty machining of the fuse. Evidently the pre-existing flaw was instrumental in leading to a
premature fracture. The explanation is reasonable since the fracture of the bar in the north side

is again close to the theoretical prediction.

CARD Specimen: This was the first specimen that was tested under the quasi-earthquake loading

scheme. The theoretical number of cycles to failure is as obtained using equation (8-4). The

corrected value accounting for axial load effects is also evaluated and listed in table 8-2.

Alternatively, the reduction in fatigue life due to variable load effects can be deduced
from experimental strain data using a graphical approach. As was discussed previously and
evidenced in the strain profiles of figure 7-5(b), the most important effect of the variation of the
axial load is to produce asymmetric strain profiles under the forward and reverse loading. If
it is presumed that the critical (maximum) strain amplitude e, is on the south (failure) side of

the specimen, then an average strain amplitude ¥ can be defined as
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Note: N and S stand for north and south sides respectively.

Figure 8-2 Fatigue Plots for the Test Specimens.
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g% - %o * % (8-16)
a

where ¢} andel = strain amplitudes on the north and south side of the column, respectively.

The critical (maximum) strain amplitude thus corresponds to the total strain on the

southern side. Hence

) =& (8-17)

The ratio of the average strain and the critical strain can be related to the reduced fatigue life

N\3
1+50 (8-18)
s

using equation (8-2) as

from which

N\3
[1+fa_] (8-19)
S

where the symbols are as explained previously.

From the experimentally observed strain profiles in figure 7-5(b), €X/¢5 = 0.52. Thus,
according to the equation (8-19), the expected number of cycles to fatigue failure for the variable

axial load test is Ny = 0.44N,. This value is shown in parentheses in table 8-2.

The experimental results can also be plotted in a graph as shown in figure 8-2 where the
implied plastic strain corresponds to

. _ (A

eap =

u_Ae)
2(H -)

14173 Af-) (8-20)

D/
L fiA,

obtained by combining equations (8-11) and (8-15). The number of cycles to failure corresponds
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to N; .

Test R2: The number of cycles to failure can be calculated in the same manner as was done for
the CARD specimen. The number of cycles are modified to account for axial load effects.

Details are given in table 8-3.
It is apparent that the variation of axial load affects the fatigue life of the ReCARD

specimen as well. However, the strain ratio approach was not applied here due to apparent

errors in the potentiometer readings.

Table 8-1 Comparison of Experimental and Theoretical Number of Cycles to First Bar

Fracture.

Specimen Experimental N, Theoretical N,
RO 6.3 6.9
R1 2.3 (6.8%) 6.9

* Represents the experimental number of cycles to the second bar fracture.

Table 8-2 Comparison of Experimental and Theoretical Cycles to Fatigue Failure for
the CARD Specimen.

Earthquake/Cycle Suite | Experimental N/ Theoretical
N, N):
Series of Earthquake 6.6
Kobe - 12 19.7° 10.7°(8.7°)
Cycle 10.3
Total at Failure } = 18.1

a: For the calculation of N, D' = 497.8mm, L, = 4064 mm , 6, = 0.021.
b: For the calculation of N, AP/f/A, = 0.13
¢: Graphical Solution
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Table 8-3 Comparison of Experimental and Theoretical Cycles to Fatigue Failure for
the ReCARD Specimen.

Earthquake/Cycle Suite | Experimental N/ Theoretical
N, N;
Series of Earthquake 6.6
Kobe 1.2 19.7 13.4°
Total at Failure Y = 7.8

a: For the calculation of N;, AP/f/A_ = 0.08

8.6 COMPARISON OF FATIGUE LIFE OF RECARD RETROFITS WITH A CONVENTIONAL
STEEL JACKET RETROFIT

It is of interest to compare the fatigue life of the proposed replaceable hinge retrofitting

strategy that uses fuse-bars in accordance with the ReCARD philosophy with a conventional steel

jacket retrofit.

The fatigue life of the steel jacket retrofit can be found by using a modified form of
equation (8-3). The parameter L, is replaced by L, to give
p

L
0 = 0.08——’1(2Nf)_°'5 (8-21)
D/

where L, = equivalent plastic hinge length. According to Chai, Priestley and Seible (1991), the

equivalent plastic hinge length of a steel jacketed column is given by

L, =L, +124, 8-22)

where L, = the gap between the end of the steel shell and the cap beam (the gap is normally

50mm) and d, = diameter of the longitudinal reinforcing bars.
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Consider a typical 1500mm diameter column reinforced with #11(35mm) diameter
longitudinal rebars. If the column has 50mm cover and 12mm diameter hoops, then
D’ = 1500 -2 x (50 +12) -35 = 1341 mm
and . L, = 50 + 12 x35 = 470 mm
thus L,/D' = 470/1341 = 035

This is contrasted with a ReCARD design where L,/D’ = 0.67 is recommended.

Suppose now for a given design the plastic rotational capacity 6, = 0.02rad. was chosen.
Then, according to equation (8-4) the number of cycles to failure would be 15 and 4 for the
ReCARD and the steel jacket solutions, respectively. Not only is the probability of obtaining
a rebar fracture in the steel jacket considerably greater than the ReCARD equivalent, but it

should be emphasized that once fractured the steel jacket retrofit cannot be easily repaired.

A plot of plastic rotation versus fatigue life shown in figure 8-3 shows that the ReCARD
solution gives a consistently higher fatigue life compared to the steel jacket retrofit over the

entire range of possible plastic hinge rotations.
8.7 DISCUSSION OF RESULTS

It is clear from the previous section that the theoretical predictions match reasonably well
with the experimentally observed results. The effect of variation in axial load is clear from the
results of Test R2. Although the theoretical results are slightly higher than the experimentally
observed values, it should be realized that this is indeed very common in all fatigue-life results.

Considering this, the results can be considered satisfactory.
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Figure 8-3 Comparison of the Fatigue Life for the ReCARD and Steel Jacket Retrofit.
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SECTION 9
SUMMARY AND CONCLUSIONS

9.1 SUMMARY

This report has been concerned with two issues. First, the Control and Repairability of
Damage (CARD)design philosophy developed by Cheng and Mander (1997) for new structures
has been extended to incorporate seismic retrofitting of existing non-ductile bridge columns.
Like the CARD approach the Retrofit Control and Repairability of Damage (ReCARD) approach
developed herein uses specially machined fuse-bars which are installed in the potential plastic
hinge zone. Under reversed cyclic lateral loading all seismically induced damage is restricted
to the fuse-bar zone—all other regions, including the foundation or cap beam connection and the

column itself, remain elastic and undamaged. In addition damage in the fuse-bar zone is

repairable.

The second objective of this report was to investigate the effect of experimental load path
including the effect of axial load variations arising from frame action plus vertical ground
motions on the seismic performance and fatigue life of columns constructed using either CARD

or ReCARD philosophies.

The Quasi-Earthquake Displacement (QED) experimental technique was proposed in this
research as a means for testing structures subjected to seismic input in quasi-static conditions.
QED uses a non-linear time-history computational simulation to predict seismic displacements
and forces in a prototype structure. These earthquake-induced actions are scaled to permit

laboratory experiments on reduced scale subassemblages of the prototype structure.

For testing the efficacy of the proposed retrofit methodology, a 3/4 scale column
representative of as-built columns typically found in practice, was constructed in the laboratory

and retrofitted in accordance with the ReCARD principles proposed herein. Special fuse-bars
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that permit full repair and restoration following an earthquake were installed at the potential
damage zones. The results of the tests showed that the strong upper portion of the specimens
remained undamaged at all stages of loading. All damage was forced into the sacrificial
reinforced concrete hinge zones. The flexure-fatigue failure mode was dominant. In terms of
hysteretic performance, the models demonstrated good energy dissipation characteristics and
maintained a steady lateral resistance until the fracture of a longitudinal bar occurred due to low

cycle fatigue.
9.2 CONCLUSIONS
The following conclusions are drawn from the this research:

1. The ReCARD approach for retrofitting bridge columns introduced as part of this research
is suitable for deficient columns with inadequate lap splice or poor confinement at the potential
plastic hinge zones. The proposed methodology is a significant departure from the currently
used techniques since it allows for repeated usage and is apparently unaffected by past seismic
history. On the contrary, other methods like steel or composite jacketing may suffer from major
deficiencies including: (i) reduced fatigue life due to a short hinge zone; and (ii) jacket retrofits
do not allow for easy repairability after an earthquake. Moreover, the bridge owner may be

unaware as to the extent of damage incurred to the main column since damage may be hidden

by the presence of the jacket.

2. P - A effects which are not properly accounted for in currently used experimental setups
can be properly modeled using some modifications. This allows the full strength of the

specimen to be mobilized under simulated seismic loading.

3. The effect of sensitivity to realistic earthquake input was investigated. Results show that
axial Joad affects the fatigue life of columns. This aspect may become important for building

columns where the axial load variations are likely to be relatively high.
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4, Due to the provision of fuse-bars, the fatigue capacity of reinforced concrete bridge
columns designed in accordance with either the CARD or ReCARD philosophies is governed
by fatigue life of fuse-bar. The fatigue capacity can be tuned to the fatigue demand by providing
an appropriate length of fuse-bars. The recommendation that L, = 0.67D, where L, = length of

a fuse and D = diameter of the column of Cheng and Mander (1997) seems reasonable.
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