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Preface

The Multidisciplinary Center for Earthquake Engineering Research (MCEER) is a national center
of excellence in advanced technology applications that is dedicated to the reduction of earthquake
losses nationwide. Headquartered at the University at Buffalo, State University of New York, the
Center was originally established by the National Science Foundation in 1986, as the National
Center for Earthquake Engineering Research (NCEER).

Comprising a consortium of researchers from numerous disciplines and institutions throughout
the United States, the Center’s mission is to reduce earthquake losses through research and the
application of advanced technologies that improve engineering, pre-earthquake planning and
post-earthquake recovery strategies. Toward this end, the Center coordinates a nationwide
program of multidisciplinary team research, education and outreach activities.

MCEER’s research is conducted under the sponsorship of two major federal agencies, the
National Science Foundation (NSF) and the Federal Highway Administration (FHWA), and the
State of New York. Significant support is also derived from the Federal Emergency Management
Agency (FEMA), other state governments, academic institutions, foreign governments and
private industry.

The Center’s FHWA-sponsored Highway Project develops retrofit and evaluation methodologies

for existing bridges and other highway structures (including tunnels, retaining structures, slopes,

culverts, and pavements), and improved seismic design criteria and procedures for bridges and
other highway structures. Specifically, tasks are being conducted to:

« assess the vulnerability of highway systems, structures and components;

« develop concepts for retrofitting vulnerable highway structures and components;

« develop improved design and analysis methodologies for bridges, tunnels, and retaining
structures, which include consideration of soil-structure interaction mechanisms and their
influence on structural response;

« review and recommend improved seismic design and performance criteria for new high-
way systems and structures.

Highway Project research focuses on two distinct areas: the development of improved design
criteria and philosophies for new or future highway construction, and the development of
improved analysis and retrofitting methodologies for existing highway systems and structures.
The research discussed in this report is a result of work conducted under the existing highway
structures project, and was performed within Task 106-F-2.1 “Seismic Retrofit of Shear-critical
Bridge Columns” of that project as shown in the flowchart on the following page.

The overall objective of this task was to develop retrofit procedures, verified by experimental
testing, for reinforced concrete bridge columns and their connections. This report describes the
development of a comprehensive theory for analyzing the inelastic shear force versus shear
deformation behavior of columns. To achieve this, two concrete shear truss mechanisms (constant
angle truss and variable angle truss) are investigated and as a result, new truss models based on
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numerical integration schemes are suggested and analyzed. These models will enable structural
engineers to quantitatively as well as qualitatively understand the flow of forces at any instance
of column deformation. They are suitable for hand (design office) analysis. However, more
sophisticated truss models can easily be incorporated with comprehensive computational
modeling-based techniques (such as DRAIN-2DX).
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ABSTRACT

A reinforced concrete beam-column, assumed to possess a series of potential crack
planes, is considered as a truss consisting of a finite number of differential truss elements and
analyzed using the virtual work method to define the lateral force-deformation relationship. The
differential truss is simplified using various numerical integration schemes, since the analytical
integration involves the complexity. From such truss models the effects of the diagonal shear
cracking can be reliably modeled and valuable information such as crack angles and the cracked
elastic stiffness in both shear and flexure can be determined. An ‘equation to estimate the
theoretical crack angle is derived by considering the energy minimization on the virtual work
done by shear and flexural components. Theoretical crack angles compare favorably with

experimentally observed crack angles reported by previous researchers.

It is postulated that the total shear strength can be found by combining three
complementary mechanisms that arise from: truss action that incorporates the transverse hoop
steel; truss action that incorporates the concrete tensile strength normal to the principal diagonal
crack plane; and arch action that incorporates the axial load transferring mechanism.
Displacement compatibility requirements are applied when combining the three mechanisms to
give the overall shear force-deformation behavior. The theory is also implemented
computationally using cyclic non-linear truss elements. However, the present version of
modeling technique cannot properly account for the cyclic loading effect due to the earthquake
duration effect. If improved constitutive models were used to more faithfully represent concrete
and steel behavior (under cyclic loading), then the overall predictions should also markedly

improve.
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SECTION 1
INTRODUCTION

1.1 Overview

It is now almost a century since Ritter (/899) and Morsch (1908) first introduced the
truss concept to explain the flow of forces in a cracked reinforced concrete member. Dilger
(1966) performed an extensive study and formulated the cracked elastic shear stiffness using a
constant angle continuum truss model. Paulay (1971a,b) performed an extensive experimental
and theoretical study on the behavior of thin webbed coupling beams. Paulay (1971a) was the
first to utilize a variable angle truss model in defining the contribution of the truss action. Park
and Paulay (1975) also derived the cracked elastic stiffness due to shear using the constant angle
truss model and the stiffness is identical to the one derived by Dilger (1966). Schlaich, et al.
(1987) defined B- and D-regions in a structural member, in which B-region represents the beam
region where Bernoulli’s beam theory holds and D-region represents the disturbed region where
beam theory does not hold. Vecchio and Collins (7986) introduced the utilization of concrete
tensile strength in column shear resistance, this is referred to as the Modified Compression Field
Theory (MCFT) for structural concrete. MacGregor (1992) extensively studied for the solution
of deep beams using Strut-and-Tie models. In parallel to Collins and Mitchell (1991), Hsu
(1993, 1996) and Pang and Hsu (1996) developed a "softened truss theory" also based on axioms

of equilibrium and compatibility.

The shear analysis of reinforced concrete beam-columns has been a contentious issue to
researchers as well as structural engineers for decades. This is because there has been a general
lack of comprehensive analysis tools that permit cyclic inelastic shear analysis similar to column
flexural analysis (Schlaich, et al., 1987; Collins and Mitchell, 1991; Hsu, 1993). Asa result,
analysis approaches that unify shear and flexural behavior have been difficult to achieve in a
comprehensive way. Even though certain researchers have proposed some advanced analysis
tools (Collins and Mitchell, 1991; Chang and Mander, 1994; Priestley, et al., 1994a,b,c) to

overcome some of these modeling difficulties, they are still complicated in usage and limited in



applicability. This situation is the principal motivation in the present study which seeks to
develop a comprehensive theory for modeling inelastic shear and flexural behavior so that a
unified column analysis can be performed using hand-calculations as well as advanced
computational modeling. Since flexural analysis using Bernoulli’s beam theory is well
established for reinforced concrete members, the focus of the present study is to advance shear

analysis methods that can be amalgamated with flexure.
1.2 Background of Column Shear Analysis

In recent years there has been a resurgence in the use of truss models for the analysis of
structural concrete members. Such models can be divided into two categories: (i) continuum
truss models based on an extension of panel elements; and (ii) plastic truss models. The
Modified Compression Field Theory (MCFT) (Collins and Mitchell, 1991) and the Softened
Truss Model (Hsu, 1993) use the former and consider both equilibrium and compatibility at a
critical section, while Strut-and-Tie (SAT) models use the latter and idealize an entire member
as a truss but are only concerned with the equilibrium of the truss elements. Furthermore, the
former is usually applied to thin webbed members such as prestressed concrete beams, whereas
the latter is applied to disturbed regions in deep beams, brackets, and corbels, etc. The MCFT
theory includes the concrete (tensile) component of shear resistance, but SAT models do not.
The recent AASHTO LRFD code (7994) has implemented these two types of truss models into
its provisions for shear design; the MCFT is used for beams, and SAT models for disturbed

regions.

In its most general form the ultimate shear resistance given by MCFT in the LRFD code
is
Vi=V,+V +V, 1-1)
where V, = contribution of the transverse reinforcement, v, = contribution of tensile stress in

the concrete, and v, = shear carried by the axial compression. These shear resisting components

are given by



V, = Ay £l cotd (1-2)
S

V, = Byf b,dcote 1-3)
v, - Puna (1-4)

in which 4= cross section area of transverse shear reinforcement at spacing s, f, = yield
strength of transverse reinforcement, jd = internal flexural lever arm at the critical section, 6 =
crack angle measured to the longitudinal axis of the element, g = factor depending on the tensile
capacity of the concrete, £/ = compressive strength of concrete cylinder, d= effective depth of
column section, P= applied axial load, tana = jd/L= aspect ratio of the column, and L=
column clear height. This form of ultimate strength of resistance is consistent with the most
recent recommendations for shear analysis of Priestley et al. (1994a,b,c). However, they

recommend that based on the crack angles observed in their tests that 6 = 30°.

Thus the present shear evaluation models may be characterized as being somewhat
empirical in terms of strength and deformation. Furthermore, the present models are unable to
trace shear deformations that relate to the current state of shear force in the members. There
are, however, several truss models found in the literature that address shear stiffness. For
example, Dilger (1966) and Park and Paulay (1975) present constant angle truss models for the
assessment of shear stiffness. A variable angle truss model was adopted by Paulay (1971a) to

assess the stiffness effects of squat (fixed-fixed) coupling beams.
1.3 Background of Force-Deformation Analysis

A concrete member may be considered as a structural element of combined mechanisms
as shown in figure 1-1. Therefore, the total column rotation (drift) angle can be expressed in

terms of two deformation components as:

8- +6 (1-5)



Ve, 04 Vi, O v e
AW WM —— —=—=
Vo, 04

Figure 1-1. Spring analogy for combination of load transfer mechanisms.



where ©, ©, and @, are column total, shear and flexural rotation (drift) angles, respectively.

Then, the resultant lateral resistance of the column should be the lesser of

V=V, =V +V +V, (1-6a)
and
V=1V = %2 (1-6b)
L

where V,= shear resisted by flexural mechanism, M, = moment capacity due to longitudinal
steel, and M, = moment capacity due to eccentric concrete stress block. Using equations (1-5)
and (1-6), the complete relationship of column force and deformation can be obtained. In order
to maintain the deformation compatibility and equilibrium conditions between load transferring
mechanisms, it is assumed that the column cross section is proportioned to the ratio of

component strength to the total strength. Thus
A, =b,jd; A, =b, jd; A, =b,jd 1-7)
where 4, , A.and 4, are respectively effective shear areas for v,, v, and ¥, mechanisms and

b,,, b, and b,, are respectively effective column width for v,, v, and v, mechanisms which

are estimated as

ﬂvs_-_-_VE‘b_wc=Kg'_b_“z=ZE (1"8)
b, VvV, b, V, b, V, :

It is noted that b, = b, + b, + b,, as shown in figure 1-2 and 4, =4, + A, + 4, = b jd in

which 4, is the total shear area of a concrete column.
1.4 Scope of This Report

In order to develop a comprehensive theory for analyzing the inelastic shear force - shear
deformation behavior of columns, two truss mechanisms (constant angle truss and variable angle
truss) are investigated in Section 2 and as a result, new truss models based on numerical

integration schemes are suggested and analyzed. In Section 3, a piece-wise linear elastic analysis
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Figure 1-2. Proportioning of column section for load transfer mechanisms.



for shear and flexure is introduced using the analysis results of the proposed truss models. The
analysis method is advanced by employing the material constitutive law for steel. The effect of
concrete tensile strength on column shear strength is discussed in Section 4. The axial load
effect on column lateral strength via arch action is discussed in Section 5. In Section 6, the load
transfer mechanisms developed in the foregoing sections are combined together to produce some
analysis procedures useful for engineering design practice. Also presented in the same section
is the verification of the theory using the experimental results reported by previous investigators
in the literature. Demonstration of the CIST (Cyclic Inelastic Strut-and-Tie) modeling technique
is also made in this section. Finally, conclusions and suggestions for further research are

presented in Section 7.






SECTION 2
STIFFNESS ANALYSIS OF CONCRETE COLUMNS

The purpose of this section is to investigate unifying attributes of strut-and-tie (SAT)
models in order to solve combined shear force and deformation problems due to the truss
mechanism (v,) and flexural mechanism (V) for concrete columns. The effect of other shear
components such as tensile stress in the concrete (V,) and column axialv compression (V,) will

be discussed later in the following sections.
2.1 Pre-Cracked Elastic Stiffness

The elastic stiffness for shear and flexure of a concrete column before the formation of
cracks can be formulated using the principles of elasticity. The modulus of elasticity in shear is

obtained from the well-known relationship

E, @2-1)

G -
2(1+v)

where E_ = 4700 f, (MPa) is the modulus of elasticity for normal weight concrete and v =
Poisson’s ratio. If v = 025, then G = 04E_, thus the shear rotational stiffness of an uncracked

column section may be expressed by

K, = 04EA, 2-2)

where A, = area contributing shear stiffness.

The uncracked elastic flexural stiffness of a column for the applied shear force with
respect to the drift angle may be determined using the well-known moment-area theorem, that
is,
12EI,

L2

ro = for fixed-fixed column (2-3a)




_3EI

K 5 £ Jor fixed-pinned column (2-3b)
L

fe -

where I, = moment of inertia of a column gross cross section and L= column clear height.

2.2 Post-Cracked Elastic Stiffness

After concrete cracking, the member stiffness drops dramatically as a new internal force
transfer mechanism develops. The shear resistance is formed by a series of concrete struts,
aggregate interlock and dowel action. Park and Paulay (1975) show that the latter contribute
little in terms of strength and stiffness, and it is principally truss or arch action that provides the

post-cracked strength and stiffness. Truss analogies will now be discussed in what follows.

2.2.1 Introduction to the Truss Anhlogy

It has long been recognized that the behavior of reinforced concrete beam-columns after
the onset of cracking can be analyzed using an appropriate truss model (Ritter, 1899; Mérsch,
1908; Dilger, 1966; Paulay, 1971a,b; Park and Paulay, 1975; Schiaich, et al., 1987: Collins
and Mitchell, 1991; MacGregor, 1992; Hsu, 1993, 1996; and Pang and Hsu, 1996). In truss
analogies, longitudinal reinforcement is represented by the longitudinal chords of a truss while
transverse hoop steel is represented by the transverse tensile ties. The effect of concrete in
flexural compression may be considered as a part of the longitudinal compression chord member.
The longitudinal chords and the transverse tensile ties are internally stabilized by the diagonal
struts which model the concrete compressive stress field. The inclination of the diagonal struts
should coincide with the probable diagonal crack direction. For simplicity, the longitudinal

chords, transverse tensile ties and diagonal struts are assumed to be joined together through rigid

nodes.

Schlaich, et al. (1987) defined two standard regions in structural concrete elements.
Behavior in these regions is either governed by beam action or is disturbed, and are respectively

referred to as B- and D-regions. In the B-region the Bernoulli’s hypothesis of plane sections
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remaining plane is assumed valid while in the D-region the strain distribution of a section is
disturbed and may be significantly non-linear. Near concentrated loads, corners, bends, openings
and other discontinuities are included in the D-region. Figure 2-1 shows the concept of the

structural B- and D-regions in reinforced concrete beam-columns in terms of crack patterns.

Based on these considerations two truss mechanisms are investigated in the present study:
(i) constant angle truss; and (ii) variable angle truss. Constant angle truss models should be used
for the undisturbed region (B-region) of a column which can be defined as "long". This
generally means that the shear span of the column (L = M/V) should be longer than the length
defined by crack angle, that is, L > jdcotd. The analysis of shear deformation of a "short"
column or the disturbed region (D-region) of the "long" column that has regions of disturbance
that affect the entire length of the column can be achieved using a variable angle truss (when

o > 0).
2.2.2 Constant Angle Truss

Figure 2-2 shows the shear transfer mechanism for undisturbed regions (B-regions) in a
diagonally-cracked "long" beam/column member. From the overall member shown in figure
2-2(a) a "differential” portion of truss with prismatic members having finite depths can be
extracted for analysis purposes as shown in figure 2-2(b). In this representation, it is assumed
that the transverse steel is uniformly distributed over the length of the member. Consider this
single differential truss subjected to the differential shear force dv,. Member forces of the
differential truss can easily be found by static equilibrium as shown in figure 2—2(c). The shear
deformation of a differential truss due to the applied differential shear force can be calculated
using the principles of Virtual Work method of analysis. Rigid longitudinal chords are assumed
in this calculation in order to negate the effect of flexural deformation. The analysis using this
method is presented in table 2-1. It should be noted that under constant shear the deformation

of each differential truss is the same over the entire constant angle truss.

11
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Figure 2-1. Postulated diagonal crack patterns in concrete columns.
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Figure 2-2. Constant angle truss model.
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Table 2-1. Virtual work done on a differential portion of a constant angle truss.

Member Force Unit Load Length Rigidity Strain Deformation
F f I EA e = FJEA £l
EA
+sdV jid s dV
B-D +dv, +1 jd Ea, % : adald'
s EA,dx EA ,dx
av. 7 - dV. id dV.
B-C —_— L J4 | Ep sinbd : had
sind sind sin E_ b, sin0 dx E b, sin0 dx

Note: Refer to figure 2-2.

The shear deformation of a differential truss is contributed by a transverse tie and a strut,

thus,
= z F_ﬂ = jd st o bw + 1
s EA E b dx| E (2-4a)
o 'EsAsh [—?ﬂ} sin*0
c b,
Rearranging,
_ jdav, (1 . 1
s E b, dx|pn b (2-4b)
f sin*6

where jd= internal lever arm of the section, 4, = cross section area of transverse shear
reinforcement at spacing s, p,= volumetric ratio of shear reinforcement content, » = E|E,
which is the modular ratio and 5_/b, is given in equation (1-8). The internal lever arm may
be idealized as the distance between the outermost layer of the longitudinal steel as shown in

figure 2-3. The volumetric ratio of transverse steel content is given by

A
p, = —b—"' for a rectangular column : (2-52)
s
w
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Figure 2-3. Definition of column shear area.
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Ps 2Ab

2 ds

c

p, = for a circular column (2-5b)

where 4, = section area of a single leg of a transverse hoop and d_ = center-to-center diameter

of the transverse reinforcement in a circular column.

The corresponding shear strain (or rotation) is then determined by dividing equation (2-

4b) by the unit length of a single crack (jdcot8), thus

o A, dv, 1 1
= = ——
§ jd cotf E_ b, cot@dx | p,n (2-6)
2 1s5in*0
bW
Therefore, the shear stiffness of a differential truss element is
dv, E_b, cotd dx
s 1 + __1__ @-7)
p,n b
5 [sin@
bw

The total shear stiffness of a cracked concrete member due to the constant angle truss mechanism

is derived by integrating equation (2-7) through the unit length (jd cot6):

K = de - f jd coth E, bw cotd

0
Ln 1 (2-8a)
P b
’ (—3‘—] sin*@
bW
Carrying out the integration gives:
p, 1 cot?@
K = > EA, (2-8b)
b
1+ pvn[—i]cosec“e
bWS
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where A, = b, jd= shear area of a column section defined in figure 2-3. When b, /b, = 1, this
expression is identical to the equation developed for 90° transverse steel ties by Dilger (1966)
and Park and Paulay (1975).

2.2.3 Variable Angle Truss Theory

A variable angle truss shown in figure 2-4(a) can appropriately represent a diagonally
cracked short column where the disturbed regions prevail. As mentioned previously, Paulay
(1971a,b) extensively investigated the variable angle truss. For ease of integrating, Paulay
determined the stiffness of his variable angle truss model by assuming a quadratic distribution
of transverse tie forces over the length of a squat coupling beam. A more rigorous integration

procedure is now investigated.

In a manner similar to the solution of the constant angle truss mechanism, consider a
single differential truss element subjected to the differential shear force v, in figure 2-4(b).
Unlike in the constant angle truss, the differential shear force 4v, is not uniform over the
longitudinal axis of the variable angle truss. Note that a differential truss consists of an idealized
steel tie with a finite depth Ldx and two tapered diagonal concrete struts, where x is a non-
dimensionalized parameter varying from O to 1. A tapered diagonal concrete strut is idealized
as a prismatic strut with the average depth. Assuming rigid longitudinal chords to eliminate the
effects of flexural deformation, the shear deformation of the differential truss can be calculated
by the Virtual Work method of analysis using the member forces shoWn in figure 2-4(c). Since
the differential truss element is statically determinate, the member forces can easily be
determined by static equilibrium. The determination of the member deformations of a differential
portion of a variable angle truss is presented in table 2-2. Again, the displacement compatibility
requires that the deformation of each differential truss element be the same as the overall shear

deformation of the whole variable angle truss.
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Figure 2-4. Variable angle truss model.
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Table 2-2. Shear deformation of a differential element in a variable angle truss.

Member Force Load Length Rigidity Strain Deformation
F f ! EA e = F|EA Ll
EA
+sdvV, jd dV,
B-C +dv, +1 id EA, L i akidiad N
s E A, Ldx EA,Ldx
AB -dvV, -1 jd E b, L sinb, dx -2dV, 2jddv,
sin6, sin@, sin6, 2 E b, Lsin®0,dx | E b, Lsin*6 dx
oD -dv, -1 jd E b, Lsing, dx -24dv, 2jddv,
sin6, sind, sin6, 2 E b, Lsin’6,dx | E b, Lsin*6,dx

Note: Refer to figure 2-4.

The shear deformation of a differential truss is the sum of the component deformations

of a tie and two struts, thus

A, = Efﬂ _ jdadv | sb, 2{1 * xz(ﬁg . 2{1 + - x)z(j%)z}z "
EA Ecbdex EA [b ) [bws]
b,

E sh
where b /b, is the ratio of effective column width for the steel truss mechanism given in

(4

equation (1-8). Recalling that cote = L/jd, p, = Ay/b,s, A, = b, jd and n = E [E_, equation (2-9)

can be rewritten as

_ jdav,
* E A, cotedx

(2-10)

1 +2(_§1]({1 +x2coa )t + {1 + (1 - x)Pcote *)

p,n

ws

where « = corner-to-corner diagonal angle of the variable angle truss. Then, the end-to-end
rotation (drift) angle is determined by dividing the shear displacement by the column length

L = jdcota , thus
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dv. b
0, = ——= |1 .ol 2%l +x2cofa)? +{1 + (1 - 22col?af) @-11)
E A cotfadx|p,n b,

Therefore, the shear stiffness of a differential portion of the variable angle truss is

av, E A, cottadx
K, = == -
R 5 @-12)
+2 7,1 ({1 + x%co?al + {1 + @ - x’cofa)?)
P ws

The elastic shear stiffness of a cracked concrete column due to the variable angle truss

mechanism can be obtained by integrating equation (2-12) over the entire length of the variable

angle truss, thus

K - des } fol p,nE A cotla

1+ 2pvn[—bb—“’][{1 + x2cotfaf + {1 + (1 - x?cottal?]

ws

(2-13)

A closed-form analytical solution to this equation has not been found. However, it is possible

to use an appropriate numerical integration scheme instead. Such schemes are investigated in

the following subsections.
2.2.4 Numerical Solution to Find The Stiffness of A Variable Angle Truss

Several efficient numerical integration schemes such as Gauss quadrature and Newton-
Cotes closed formulas may be employed for solving equation (2-13). The numerical schemes
investigated in this study are two-point and three-point Gauss-Legendre formulas for Gauss
quadrature, and Simpson’s 1/3 rule and Boole’s rule for the Newton-Cotes family. Details of
these numerical integration schemes may be found in any numerical analysis text such as
Hornbeck (1975) and Chapra and Canale (71988). Using those numerical schemes, the cracked

elastic shear stiffness of the variable angle truss in equation (2-13) can be expressed as
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o, p, ncotfe
EC AV
(2-14)

N
K =3

o 1+2 pvn(-j—“’][{l + x,-zcotzcc}2 + {1 + (1 - xi)zcotza}z]

ws

where N= number of numerical integration points considered, »,= numerical weight factor,
and x,= normalized coordinate of i” numerical point. The values of these parameters with the

truncation error for each numerical integration scheme are presented in table 2-3.

Table 2-3.  Numerical scheme parameter values for cracked elastic column shear stiffness due
to variable angle truss model for the steel mechanism.

Numerical Scheme N i x; o, Truncation Error
Two-Point Gauss 2 1 0.2113249 0.5 ﬁ @
2 + 0.7886751 0.5
Three-Point Gauss 3 1 0.11270171 5/18
1_£®
0.5 8/18 Lo
3 0.88729829 5/18
Simpson’s 1/3 Rule 3 1 0.0 1/6
-1 s
2 0.5 4/6 Lo
3 1.0 1/6
Boole’s Rule 5 1 0.0 7/90
2 0.25 32/90
N ST )
3 0.5 12/90 1935360f (&)
4 0.75 32/90
5 1.0 7/90

Figure 2-5 compares the stiffness of the constant angle truss given by equation (2-8b)
with the variable angle truss stiffness given by equation (2-14) when b, /b, = 1 and also
compares the sensitivity of the numerical integration schemes for the variable angle truss. For
this purpose, it is necessary to put « = 8 which denotes that the steepest crack angle to the
longitudinal axis of the fan-shaped cracks at the disturbed region of the column will be equal to
the constant crack angle at the undisturbed region. The shear stiffness due to the variable angle

truss in figure 2-5(a) represents the "exact" solution of the variable angle truss in figure 2-5(b).
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Figure 2-5. Comparison of shear stiffnesses between truss mechanism models.
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The "exact" solution of the variable angle truss was calculated using 20-segment Simpson’s 1/3

rule. It is of interest to note that:

1) All methods give similar results so that either of constant angle modeling or
variable angle modeling may be satisfactory for determining shear stiffness over
the length of the member.

2) The shear stiffnesses calculated by three-point Gauss quadrature and Boole’s rule
are closest to the exact solution of the variable angle truss mechanism.

3) For squat columns where shear is generally critical (small L/jd), there is virtually

no difference in stiffness calculations between numerical schemes.

Since equation (2-14) with numerical parameter values in table 2-3 gives a lengthy

solution, a convenient simplified solution may be obtained from the following approximation:

neotte
K = Py EA

s b cY (2_15)
1+4p.n —b—w (1 + 039 cot?ae )

ws

This approximate solution (equation 2-15) is plotted and compared to the exact solution (equation
2-14) for the variable angle truss in figure 2-6 for b, /b, = 1. It is evident that the agreement

between the approximation and the exact solution is very close.
2.2.5 Implementation of Numerical Schemes into Truss Modeling and Dimensioning

Using equation (2-14) with numerical integration weights given in table 2-3 implies that
the variable angle truss model shown in figure 2-4 can be physically simplified with reasonable
accuracy. Consider the compound truss in figure 2-7. The compound truss consists of a series
of lumped transverse hoops allocated by weight factor «; at numerical coordinate x,. Then, the
behavior of the compound truss can be determined by the sum of responses of the individual
strut-and-tie linkages, that is, v, = ¢,V, in which ¢, = distribution factor of shear resistance for

i* linkage. It should be noted that for the statically indeterminate truss model, usually ¢, * o,.
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Figure 2-6. Approximation of shear stiffness due to variable angle truss model.
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Figure 2-7. A compound truss model due to numerical integration schemes.

25



These simplified truss models may not only be used to determine the force-displacement
relationship of concrete columns subjected to applied shear forces, but can also be imbedded

within advanced computational modeling techniques.

The simplified truss model with two-point and three-point Gauss quadratures will now
be used to determine the forces of longitudinal and transverse truss elements in order to establish
the overall deformation/stiffness of combined shear and flexure. Two-point Gauss truss model
leads to a simpler expression of force-deformation relationship in shear and flexure while three-
point Gauss truss model gives more accurate relationship of shear force - strain for the
transverse ties. Boundary conditions considered are fixed-fixed and fixed-pinned ends. In order

to assess truss member deformations, the sectional dimensions of the elements should first be

determined,

The location and size of transverse ties are readily determined by the numerical
coordinates and weight factors of the two-point and three-point Gauss quadrature schemes
presented in table 2-3. Therefore, the axial rigidity of a transverse tie at each numerical point

in figures 2-8 and 2-9 can be expressed as

(EA),, = o, E A~ (2-16)

i™ssh

where o, = numerical weights at i* Gauss point.

For longitudinal chord members, a distinction should be made between tension and
compression member stiffnesses. For tension members, the concrete will naturally be cracked
and not contribute significantly to the axial stiffness of those members. For the compression
members, however, in addition to the stiffness contribution of the steel, an allowance should be
made for concrete compression. Flexure causes linear compression strain profile in the concrete
over a depth ¢ from the neutral axis to the extreme compression fiber. Thus, the effective area
of concrete in compression may be taken as 0.5¢b,, or 0.5 %Ag. Paulay (1971a) has shown that
for cracked squat/deep members with fixed-fixed ends, the longitudinal reinforcement may

behave in tension over its entire length. Thus, the longitudinal chord members can be modeled
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Figure 2-8. Member forces in a truss model by two-point Gauss quadrature.
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with one half of column longitudinal steel content with the distance of the column section
flexural lever arm jd over the length of the column. The axial rigidity of a longitudinal tension

chord member in figure 2-8(a) is thus given by

(EA), = 05E,A, = 05E A p,n (2-17a)

where A, = section area of total longitudinal steel in a column section. For more heavily loaded
column members or columns with fixed-pinned ends, where compression exists in the

longitudinal chords, the following axial rigidity should be used:

(E4), = 0.5(% . p,(n-l))EcAg (@-17h)

This equation may be used in dimensioning the longitudinal chord members of a truss model for
rigorous computer analysis. However, the difference in resultant column stiffness between two
equations is negligible. Therefore, equation (2-17a) will be used for all longitudinal chord

members of the Gauss trusses for simplicity in the present investigation.

The sectional dimensions of diagonal struts can be determined by comparing the truss
solution to the numerical solution. The rigidities of diagonal struts shown in figures 2-8 and 2-9

use the following expression with unknown parameters until they are determined:

(EA), = o,E,A, 2-18)

where a, = effective sectional area factors of diagonal struts at i numerical point. It is assumed

that the behavior of concrete diagonal struts is linear elastic.
2.2.6 Analysis of A Truss Model with Two-Point Gauss Quadrature
2.2.6.1 Shear Deformation
Consider a truss model shown in figures 2-8(b) and 2-8(c). Also shown are the member

forces determined by static equilibrium at each joint. Note that the two-point Gauss truss model

is statically determinate. Comparing member forces in between fixed-fixed and fixed-pinned
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columns, it is noted that the shear transfer mechanism causes the same member forces in
transverse ties and diagonal struts. Thus the shear stiffnesses of the truss models with fixed-
fixed and fixed-pinned ends should be the same. The shear deformation of the truss model is
determined using the Virtual Work method of analysis on the transverse ties and diagonal struts.

The analysis is presented in table 2-4.

Table 2-4.  Virtual work done on transverse ties and diagonal struts of the two-point Gauss
truss model.

Member Force Unit Load Length Rigidity Strain Deformation
F f ! EA e = FJEA Efl
. . EA
v, EA_L 14 V. jds
N,(8) = +1 jd s sh s S _LaJe5
2 2 2s EA,L 2E A L
-V - 7 -V V_jd
©,02) : 1 L | s, | —
2sin, 2sin8, sin®, 2a,E A sin®, 4a,E A sin’6,
-V _ ; -V, V. jd
(10),(11) _ 2 4 LEA, | e
25sin0, 2sind, sin6, 2a,E A sinb, 4a,E A sin’6,
Note:

1. Refer to figure 2-8(b) for member forces.
2. Refer to equations (2-16) and (2-18) for rigidities.

sinb, = — > ; sin@, = 1

V1 +x12 cot?a ,/1 +(1 -3\:1)2 cot?e

The shear deformation of the simple truss model with two-point Gauss quadrature is the

sum of the deformation components. Recalling that cote = L/jd and p, = 4,/b,s,

(2-19)

A - i Efl _ V. jd{l +xlzcot2¢:z}2 . jd{1+(1—xl)zcot2m}2 . _Jd
EA

EA, 2a,/1+x}cotte  2ay/1+(1-x) cot’a p,ncote
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The shear strain (rotation) is then determined by dividing the shear displacement by the length

of the truss model, thus

s
C v

Vs [ {1 +Xg cotza} {1 +(1-x )2C°t2a} 1 ] (2-20)

2a, cota ‘/1 +x’cotta 2a ycote (1 +(1-x) ot Pv"°0t2“

Therefore, the shear stiffness of the truss model with two-point Gauss quadrature can be given
by

ncot?
K, - il EA,
coto. {1 +x? cotzcz}2 cota {1 +(1 —Jc1)2c0t2¢nz}2 (2-21)
1+2p,n +
4a/1+x] cotta 4a,y/1+(1-x)) cot’a

The cracked elastic shear stiffness of concrete columns given by equation (2-14) using two-point

Gauss quadrature is
p, ncotta
KS = ECAV
b, N 2-22)
1+2p,n S ({1 +x; cotza} {1 +(1-x,) cotza} )

ws

By comparing equations (2-21) and (2-22), the effective sectional area factors for diagonal struts

can be obtained. That is,

w

a. = cota [Pﬁ] (2_23)

4‘/1 + xizcota b

The axial rigidities of the diagonal struts of the truss model in figure 2-8(a) are then determined
by

05 w, b 025E A |b
(BA)y = ——t EcAv[bm) ) : [ ws] 2-24)
w

2
x; +tan’a

where o, = ©, = 0.5, x, = 1-x, and A, = b, jd. The values of x, and o, for two-point Gauss

quadrature are available in table 2-3. The section areas of diagonal struts can alternatively be
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obtained by measuring the depth of the diagonal struts along the truss center line on the scaled
sketch of the truss as shown in figure 2-10(a). However, equation (2-24) provides the simpler
and more accurate way in determining axial rigidities of diagonal struts. For more complex
section shapes (eg., non-prismatic members) the graphical determination of diagonal strut sizes

should suffice. The corresponding compressive axial stress in i diagonal strut is obtained from
table 2-4, thus

—2Vs{1 + xizcotza}

b (2-25)
A, (—“’s] cota

w

fai = E.tyy =

Note that the location of i" diagonal strut is depicted in figure 2-8(a). It is assumed that
diagonal struts of the truss model behave linear-elastically. Therefore, the magnitude of axial

stress in the diagonal struts should be checked over the column response.

The average tensile strain of the transverse hoops in the two-point Gauss truss model is

readily available in table 2-4, thus

ep = 2r o SV _ v 2-26)
jd EA,L E_A, p, ncote

where A = transverse elongation of the truss member (7) or (8) in figures 2-8(b) and (c). It
should be noted that the tensile strain given by equation (2-26) is only the numerical average of
the transverse steel strain over the length of the concrete column. Note that if it is important
to assess the maximum transverse hoop strain that occurs at the center of the column, then it is
necessary to use a numerical integration scheme that has an integration point at the center of the
truss. Therefore, the more realistic transverse steel strain distribution over the column length
can be captured by truss modeling with higher order of numerical integration schemes such as

three-point Gauss quadrature and Boole’s rule.

2.2.6.2 Flexural Deformation

Consider a truss model with fixed-fixed ends shown in figure 2-8(b). It is of interest to
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(a) Truss model with two—point Gauss quadrature
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(b) Truss model with three—point Gauss quadrature

Figure 2-10. Determination of diagonal strut size by measurement.
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note that no compression forces are generated in longitudinal chord members over the entire
length of the model. As mentioned above, this same phenomenon was also observed by Paulay
both theoretically and experimentally (1971a,b). Note that this is contrary to the Bernoulli beam
theory where a column always has compression and tension parts. The flexural deformation of
the truss model can be determined using the Virtual Work method of analysis considering only

the longitudinal chord members in figure 2-8(b). This analysis is presented in table 2-5.

Table 2-5.  Virtual work done on longitudinal chord members of the two-point Gauss truss
model with fixed-fixed ends.

Member Force Unit Load Length Rigidity Strain Deformation
F f ! EA e = F/EA Ll
. EA
+V. E A +V_cota V.x, Leot?a
(1), (6) s +1 le s4%st s 5”1
2 tane 2tana EA, 2E A,
E A
2), (5) 0 0 x, L ’2 2 0 0
+V + EA +V_Q, cota V.Q Q,L
@), @ & < QL sa *¥sQ cote AL
2 tane 2tane 2 EA, 2E A tan’a

Note: Refer to figure 2-8(b) for member forces.
where Q =1-x; Q =1-2x

The flexural deformation of the truss is the sum of the component deformations taking

the value of x, = 0.2113249 (see table 2-3 for two-point Gauss quadrature), thus

Ffl V,Lcota
Af = z__f_ =0

6
2-27)
& EA EA,

where { = x, +(1-x)*(1-2x,) = 0.5704. The flexural drift angle is then determined by dividing the

flexural displacement by the length of the truss model, thus
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V, cot o
ES Axt

)

3 (2-28)

A
= =
7 ¢

Therefore, the elastic flexural stiffness of a cracked concrete column about drift angle due to the

variable angle truss model with fixed-fixed ends is

K;o = {1 E A tan’e (2-29)

where ¢! = 1.753.

It is of interest to compare this result with Bernoulli beam theory. Considering the

longitudinal steel only, the flexural stiffness in terms of drift angle for a fixed-fixed beam is

Ga?
gl _ REASY

L? L?

2-30
K, - (2-30)

= 3E A tan’a

Thus, by using a truss model there is a 40% reduction in flexural stiffness for a fixed-fixed

column.

The corresponding tensile strain of the longitudinal chord at the critical region can be
determined by the average strain over the chord length of x L in figure 2-8(b) and is readily
available in table 2-5. Thus

V, cota
E A

(2-31)

A,
8 _ e— 3
L x, L

st

where A, = longitudinal elongation of truss member (1) or (6) in figure 2-8(b).
Consider a truss model with fixed-pinned ends shown in figure 2-8(c). The flexural
deformation of the truss model can be determined by the Virtual Work method of analysis on

the longitudinal chord members in figure 2-8(c). The analysis is presented in table 2-6.

In a manner similar to the fixed-fixed column, the flexural deformation of the simplified

truss model with fixed-pinned end is the sum of the component deformations taking the value
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of numerical coordinate x, from table 2-3, thus

6
A= ERL L Vekoota @32
£ EA E,A,

where { = 2-3x,+5x) -2x; = 1.5704. The flexural drift angle is then determined by dividing the

flexural displacement by the length of the truss model, thus

V, cota
EA

(2-33)

A
e =_7=
f L ¢

st

Table 2-6. Virtual work done on longitudinal chord members of two-point Gauss truss model
with fixed-pinned ends.
Member Force Unit Load Length Rigidity Strain Deformation
F f ! EA e = FJEA £
EA
+V. E A +2V _cota 2V.x, L
(1) s +1 x, L s4 st s $71
tan o tan o 2 EA, E_A_tan’a
-V, -1 EA, -V cota V. x, Leotta
o) 5L ZV,cote Yz Loot'a
2tane 2tanc 2 E A, 2E A,
3 v, Q *Q, or | Efs Y, Q V,QrQ L
2tana 2tana 2 2 E A tana 2EsAsttan2a
Z
2tana 2tana E A tana 2E A tan’a
+V, E A +V_cote V.x, Lot a
(5) s +1 xl L s“ st s s
2tana 2tana 2 E A, 2E A,
EA
(6) 0 0 x L = 0 0

Note: Refer to figure 2-8(c) for member forces.
where Q =2-x; Q, =1-2x,.

Therefore, the elastic flexural stiffness of a cracked concrete column about the drift angle due
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to the variable angle truss model with fixed-pinned ends is

Ky = U E A e @34

where (! = 0.6368.

Compare now this result with Bernoulli beam theory. Considering the longitudinal steel

only, the flexural stiffness in terms of drift angle for a fixed-pinned beam is

(’-d)z
- 3E1 _ 3ESASI_—

K - 0.75E,A, tan’e | @-35)

fe

L? L?

Thus, by using a truss model there is a 15% reduction in flexural stiffness for a fixed-pinned

column.

The corresponding tensile strain of the longitudinal chord at the critical region can be
determined by the average strain over the chord length of x,L in figure 2-8(c) and is readily
available in table 2-6. Thus

2V cota
EsAst

€

(2-36)

_ AL
L x, L

where A, = longitudinal elongation of truss member (1) in figure 2-8(c).

2.2.7 Analysis of A Truss Model with Three-Point Gauss Quadrature

2.2.7.1 Shear Deformation

The simplified truss model with three-point Gauss quadrature is investigated to determine
the forces and deformations in the transverse ties of the truss model. As mentioned previously,
the compound truss due to three-point Gauss quadrature in figure 2-9 can be decoupled into three
truss linkages as shown in figure 2-11. Unlike the flexural force transfer mechanism, the shear
transfer mechanism between the fixed-fixed and fixed-pinned columns caﬁses the same member

forces in transverse ties and diagonal struts. This means that the shear stiffnesses of the truss
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Figure 2-11. Decoupled linkages of three-point Gauss truss model.
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model with fixed-fixed and fixed-pinned ends should be the same. Therefore, it can be said that
the boundary conditions of the column do not affect the features of column shear. The
distribution factors ¢, of the shear force v, for each truss linkage in figures 2-9 and 2-11 are not
clearly defined at present because the truss model due to three-point Gauss quadrature is
statically indeterminate. Those unknown factors will be defined using the geometry and

displacement compatibility at ends of the truss model in what follows.
First, consider the truss linkage 1 with member forces in figure 2-11(a). The shear
deformation of the truss linkage 1 is determined using the Virtual Work method of analysis. The

analysis is presented in table 2-7.

Table 2-7.  Virtual work done on the truss linkage 1 of the three-point Gauss truss model.

Mem Force Unit Load Length Rigidity Strain Deformation
F 7 I E4 e = FJEA Efl
EA
+¢, V.5 V. jds
B-C +¢,V, +1 jd mlEsAsh£ _ﬁ_‘_ _9‘_51__
s o, E AL o EA,L
-9,V - 7 -, V. jav.
ap | bk — — abA, | e
sin@, sin®, sin@, a,E A sinb, a,E A sin’0,
—b.V _ ; -, V. jdV.
C-D "‘Ll = . ! .Jd a3EcAv d)l .s ¢11 >
sin6, sinf, sin0, a,E A sinb, a,E A sin’0,
Note:

1. Refer to figure 2-11(a) for member forces.
2. Refer to equations (2-16) and (2-18) for member rigidities.

§in6, = ——1 ; sin@, = L

Y1+ xlcotfa 1 +(1-x,) cot’ar

The shear deformation of the truss linkage 1 is the sum of the deformation components.

Recalling that cote = Ljjd and p, = A,/b,s, the shear deformation is
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Ffl
AﬁEgﬁ

¢, V, jdtana 1 . Lipn {1 -:~x12cot2m}2 @, p.n {1 +(1 —xl)zcotza}z
= . .
EA,o.p,n a,tanc \/1 +x12cot2a a,tane ‘/1 +(1 -x,)%cot’e

The shear strain (rotation) is then determined by dividing the shear displacement by the length

of the truss linkage, thus

] (2'37)

A
6=~

(2-38)

¢,V tan’a [1 0, p,n{l +x12¢:ot2m}2 o, p,n{l+(1-x)%co m}zJ
= +

+
EA, o pn a tane 1 +x12<:ot2a aytana (/1 +(1 -x,)?cot’a

Therefore, the shear stiffness of truss linkage 1 for the applied shear force ¢, V, is obtained as

K - ®, p,ncotle E A
sl T 2 2 5 v
L. o pvn{l +X; cotza} .9 pvn{l +(1 -xl)zcotza} (2-39)

aytane /1 +x2cofe  ajtana/1+(1-xcoffa

It should be noted that the unknown factor ¢, for the distribution of shear force v, due to

indeterminacy of the truss model is no more included in equation (2-39).

Next, consider the truss linkage 2 with member forces in figure 2-11(b). The shear
deformation of the truss linkage 2 is then determined using the Virtual Work method of analysis.

The analysis is presented in table 2-8.

The shear deformation of the truss linkage 2 is the sum of the deformation components.

Recalling that cote = L/jd and p, = A_/b,s, the shear deformation is given by

i 2 2
A, =L ®V.id |, 20,p,ncotafl +x} cot’a)

EA E A 0,p, noote a, /l +x22cotza

(2-40)
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Table 2-8.

Virtual work done on the truss linkage 2 of the three-point Gauss truss model.

Member Force Unit Load Length Rigidity Strain Deformation
F f ! EA e = FJEA Ef
EA
+¢, V. V. jd
B-C 4V, .1 jd 0,E Ay L 1A bV Jds
s "0,EA,L w,EA,L
-0,V - j -, V. V. jd
aB,cp | %% -1 Ja_ a,EA, %Y AL
sin6, sin®, sinf, a,E_A sinb, a,E_ A sin’0,
Note:

1. Refer to figure 2-11(b) for member forces.
2. Refer to equations (2-16) and (2-18) for member rigidities.

1

{1 +x; cot’a

sinf, =

The shear strain (rotation) is then determined by dividing the shear displacement by the length

of the truss linkage 2, thus

2 2
o, - A, o,V, - 2w2pvncotu{1 +x2cot2a} 2-41)
L EA 0,p,ncot’a a,y/1+x; cof’a.

Therefore, the shear stiffness of the truss linkage 2 for the applied shear force ¢,V, is obtained
by

w,p,ncot?a

EA
2 2 ¢y
2 } 2-42
. 2w2pvncota{1 +X, cot o (2-42)

a,y/1+x3 cotle.

1

Now, the geometrical symmetry of the truss model of three-point Gauss quadrature
requires that the shear resistances of truss linkages 1 and 3 are the same, that is, ¢, = ¢, (see

figures 2-9 and 2-11). Therefore, the total shear force resisted by the truss mechanism can be

expressed as
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Ve = @ +d,+9)V, = (24, +9,)V, (2-43)
in which 2¢;+¢, = 1. Using this relationship, the total combined shear stiffness of the concrete
column represented by the simplified truss model can be obtained as

K, =2K,+K, (2-44)

Substituting equations (2-39) and (2-42) into equation (2-44) and rearranging,

2w, p.ncot2
K = 1P, 11C0% & E A

$ [

w,cote 1 +x12<:o1;2m}2 , ©goota {1+(1 -x)cofa}’

1+42p,n
2a,41 +x2cot 2a,y/1+(1 -x,)*cote
(2-45)
», p ncota .
+ 2pv EA

<Y

2 2
I {1 +Xy cotza}

2ay1 +x} cotta

_ The cracked elastic shear stiffness of concrete columns given by equation (2-14) for three-point

1+4p,

Gauss quadrature is

K - 2, p ncote EA

1+2p,n [gi-] ({1 +x? cot’nc}2 +{1+q -xl)zcotza}z)

(2-46)

. o, p,ncot’a E A

1+4p.n [Zbi] {1 +x; <:ot2<x}2

The stiffnesses given by equations (2-45) and (2-46) should be the same. Therefore, the
effective section area factors for diagonal struts can be obtained by comparing equations (2-45)
and (2-46), thus,

0 = 0.5 @, cota [ﬁ] 2-47)

1
Y1+ x?cotta b

w
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The axial rigidities of the diagonal struts of the truss model in figures 2-9 and 2-11 are

determined by

0.5 w, s
(EA)y = ————E.4,-" (2-48)

in which x, = 1-x,, @, = », and A, = b, jd. The values of numerical coordinates x; and
weighting factors «, for three-point Gauss quadrature are defined in table 2-3. As mentioned
previously, the section areas of diagonal struts can alternatively be obtained by measuring the

depth of the diagonal struts along the truss center line on the scaled drawing as shown in figure

2-10(b). However, equation (2-48) provides the simpler and more accurate way in determining
axial rigidities of diagonal struts il; normal cases. Note that equations (2-24) and (2-48) are
identical, which means that the axial rigidities of the diagonal struts of the truss model with any
numerical integration scheme can be simply determined using equation (2-48) and the
corresponding parameter values are available in table 2-3. The corresponding compressive axial

stress in i diagonal strut is obtained from tables 2-7 and 2-8, thus

-4, Vs{l + xfcotza}

b (2-49)
A, [—“) cota
b

w

fcdi = Ececdi =

The location of i diagonal strut is depicted in figure 2-9(a).

The distribution factor ¢, of shear force v, is now investigated. Consider the compound
truss in figures 2-9 and 2-11. Then, the displacement compatibility at both ends of the truss

requires that the shear displacement of truss linkages be the same all the time, that is,

(As)l.inkagel = (As)linkagez = (As)u,,kage3 (2-50)

Therefore, by equating equations (2-37) and (2-40) with a;, determined by equation (2-48) the

relationship between ¢, and ¢, can be obtained as
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ws

1 lw 2 2
—11 4 — {1 2
2[ + pvn[ ){ +X, CO d}]

¢1=

&, 2-51)

1+2p,n ( :w ] ({1 +xlzcot2m}2 +{l +( —xl)zcotza}z)

ws

where ¢, = ¢,. Relating this equation to equation (2-43), the shear force distribution factor ¢,

can be defined as

¢1 = ¢3 = b 1
2. L+ 2pv”(7::]({1 +xpooa)’ + {1+(1-x co’al’) (2-52a)
b
0.625 [1 +4p,n (;i] {1 +x22cot2a}z]
¢2 = 1
125/1 + 4 p,n| 22 {t+x7cot'af’
N 5 (2-52b)

ws

1+2pn [;bi] ({1 +x12c9t2a}2 {1+ -xl)zcotza}z)

The tensile strains of the transverse ties of the truss model are readily available in tables
2-7 and 2-8, that is

e < An_ ___V____(_“’_) | (2-53)
T jd EAp,ncotalo,

where e, = tensile strain of the transverse ties and A, = axial deformation of the transverse ties

of the truss model and the transverse tie strains at linkages 1 and 3 are the same. It should be

noted that the tensile strain is the maximum at the center of the member as shown in figure 2-12.

Whereas, the transverse hoop strain given by the two-point Gauss truss model is the overall

average for the column. Therefore, the ratio of the maximum transverse hoop strain to the

minimum in the three-point Gauss truss model can be obtained from equation (2-53):
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Figure 2-12. Elongation of transverse ties across a diagonally cracked zone.
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Prme | Pm (&][&] = 0.625& (2-54)

€ 7 min €1y b )\ @, 1

where values of «, are defined in table 2-3. Compared to the average tensile strain of the
transverse hoops in the two-point Gauss truss model given by equation (2-26), the ratio of the

maximum and minimum transverse hoop strain to the average is respectively given by

e
b _ fm _ & (2-552)
e T-avg e T-avg )
brmn _ _fr1 _ H (2-55b)
£ T-avg A T-avg (O] 1

2.2.7.2 Flexural Deformation

Consider a truss model with fixed-fixed ends shown in figure 2-9(b). As in the truss
model with two-point Gauss quadrature, no compression forces are generated over the entire
length of the model. The flexural deformation of the truss model can be determined using the

Virtual Work method of analysis on the longitudinal chord members. The analysis is presented
In table 2-9.

The flexural deformation of the simplified truss model is the sum of the component

deformations, thus

8 V_Lcotta
Af=EF—ﬂ=C—S——— (2-56)
2 E4 EA,

where ¢ = x, +(1-2x){2¢](1-x* +05(1-2¢,x,*}. The flexural drift angle is then determined by
dividing the flexural displacement by the length of the truss model, thus

V, cotta
ESAS‘

6

Ay @-57)
L
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Table 2-9.  Virtual work done on longitudinal chord members of three-point Gauss truss
model with fixed-fixed ends.

Member Force Unit Load | Length | Rigidity Strain Deformation
F f ! EA e = F|EA Efl
EA
v, E A V cot L 2
(1)(®) " s +1 %L A +V, cotar V.x, Leota
2tanc 2tana 2 EA_ ———-—2ESA_“
EA
@) 0 0 5L A . .
3)(6) A *Q QL EA, +¥,Q, V.01 Q,L
2tana 2tne 2 2 E A, tanc 4E,A, cof’a
@)(5) A *Q QL E A, +V,Q, V.02 Q,L
2tana 2tanc 2 2 E.A_mna A5 A_cofe

Refer to figure 2-10(b) for member forces.

where Q =1-2¢x,;Q, =1-20,x,-¢,;Q; =1-2x,.

Therefore, the elastic flexural stiffness of a cracked concrete column about drift angle due to the

variable angle truss model with fixed-fixed ends is

Ky = U E A tan’e (2-58)

The corresponding tensile strain of the longitudinal chord at the critical region can be
determined by the average strain over the chord length of x,L in figure 2-9(b) and is readily
available in table 2-9. Thus

ey = 2L - (2-59)
x, L
where A, = longitudinal elongation of truss member (1) or (8) in figure 2-9(b).
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Consider a truss model with fixed-pinned ends shown in figure 2-9(c). The flexural

deformation of the truss model can be determined by the Virtual Work method of analysis on

the longitudinal chord members in figure 2-9(c). The analysis is presented in table 2-10.

Table 2-10.  Virtual work done on longitudinal chord members of three-point Gauss truss
model with fixed-pinned ends
Member Force Unit Load Length Rigidity Strain Deformation
F f I EA e = FJEA En
EA
o +V, +1 v L EA, +2 ¥V cote 2V,x, Leota
1
tanc tan e 2 EA, E A,
@ -V, -1 %L EA, -V, cota V,x, Leota
2tana 2tana 2 E A, 2E A,
3) +V,Q +Q QL EA, +2V,Q V,QQ,L
tane tane 2 2 E A tanc E A_tan’e
@ V.Q, "2, QL EAy “2%,Q, AN
tane tan o 2 2 E A tana E A tan’a
) +V,Q, +Q, QL EA, *2V,Q v,050,L
tana tan o 2 2 E A tanc E A_tan’a
© | 2% | en 0L EA, 20 vz oL
tana tana 2 2 E A tana E A tan’a
+V. E +V_cote V. x, Lcot?a
(7) s +1 x, L sAn s sl
2tana 2tana 2 E A, 2E A,
E
(8) 0 0 x, L ’:" 0 0

Note: Refer to figure 2-9(c) for member forces.

where

Q =1-¢,%;0Q= ¢1x,+%¢2 ; Q,

1
= 1-¢1x1——2-4>2 3 Qg =1-2x,.




The flexural deformation of the simplified truss model is the sum of the component

deformations taking the value of numerical coordinate x, from table 2-3, thus

2 V, L cot?
A =N E . L2 (2-60)
& EA EA,

where ¢ = 3x, +(1 —2x1){(1 ~d,x, )+ (1-¢,x, = 9,%,)% + (B X, + b,x,) +¢‘1"xf}. The flexural drift angle is then
determined by dividing the flexural displacement by the length of the truss model, thus

V, cot o
EA

A
8 = 1 =
3 ¢

), (2-61)

st

Therefore, the elastic flexural stiffness of a cracked concrete column about the drift angle due

to the variable angle truss model with fixed-pinned ends is
K, = {1 E A tan*e (2-62)
The corresponding tensile strain of the longitudinal chord at the critical region can be

determined by the average strain over the chord length of x,L in figure 2-9(c) and is readily
obtained from table 2-10. Thus,

2V cote
Es A&t

(2-63)

_A
where A, = longitudinal elongation of truss member (1) in figure 2-9(c).
2.3 Determination of Crack Angle 6

2.3.1 Theoretical Basis from Energy Considerations

As noted previously, the crack angle in a structural concrete member is very important
as it affects both the strength (equations 1-2 and 1-3) and stiffness (equations 2-8 and 2-14) of
the member. The theoretical determination of the crack angle 6 was first attempted by Dilger
(1966). However, this was for a constant angle truss mechanism and concerned only the shear

component of displacement.
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It is believed in this study that the crack angle in a concrete member depends on both

flexure and shear components of displacement and will occur at an orientation that requires the

minimum amount of energy.

The external work done on the member due to a unit shear force (v, = 1) is the same as

the total drift angle, thus

EWD =6, =6, +9 (2-64)

£l

The shear rotation of a column subjected to a unit shear force using the constant angle truss

mechanism is obtained from equation (2-8b) for b,/b, =1 as

_ 1+ p, n cosecd 2-65)
E.A,p,ncof?6
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Recalling that » = E/E, and p, = A /A, and letting « = 6, the flexural drift angle of a squat
column subjected to lateral loading may be obtained by rearranging equations (2-28) and (2-33)

as

{ cot?0
EcAg p,n

o, =

et (2-66)

where ¢ is a boundary condition constant and may be taken as 0.5704 for a fixed-fixed column
and 1.5704 for a fixed-pinned column in which the analysis results of two-point Gauss truss are

used for simplicity. Therefore, the external work given by equation (2-64) can be rewritten as

1 + p, ncosec'd { cot?8
+
E A,p,ncot’®  E.A p.n

EWD = (2-67)

Thus by differentiating equation (2-67) with respect to 8 and minimizing the external work done

leads to the crack angle causing the minimum energy:

d(EWD) _

(2-68)
de

Carrying out the differentiation of equation (2-68) leads to the following solution for the crack

angle o:
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p,1 + CE? (2-69)

The crack angle given by equation (2-69) denotes the steepest crack angle measured to the
longitudinal axis of the fan-shaped cracks at the disturbed region of the column and the constant

crack angle at the undisturbed region.

2.3.2 Validation with Experimental Observations

It is considered important to validate the theoretical crack angle with cracks observed in
previous experimental investigations. Unfortunately, there is a paucity of data with good
photographic documentation of crack distribution to be found in the literature. Table 2-11
presents a comparison of experimentally observed crack angles with crack angles computed using
equation (2-69). This table gives results of columns with a light amount of transverse
reinforcement as well as more highly confined columns. The comparison is also made in figure
2-13 by visualizing the data in table 2-11. It is evident that the theoretical results using equation
(2-69) compare very favorably with the experimentally observed crack angle. It is considered
that this finding is of particular significance as it shows the dependence of the crack angle on
the quantity of longitudinal and transverse reinforcement. Thus it is clearly evident that the
crack angle of 45° that has been traditionally assumed in the ACI 318 code (1995) for many
decades as well as the newly suggested 6 = 30° recommended by Priestley, et al. (1994a,b,c)
that has been recently incorporated into the FHWA Seismic Retrofit Manual (Buckle and
Friedland, 1995) both lead to a faulty prediction of shear strength.

2.4 Parametric Studies

In this subsection, parametric studies for the boundary condition constant ¢ of three-point
Gauss truss model, its effect on the theoretical determination of crack angle 6, distribution of
tensile strain at transverse steel over the length of a cracked column, and the effective stiffnesses

of concrete beam-columns are presented.

51



Table 2-11. Crack angle comparison between theory and experiment.

Specimen Boundary n P, P, A, /4, Oueory 6.erp.
A) 1/3 Pier Model® F-F 5.7 0.0186 0.00147 0.756 24.3° 26°
B) Prototype? E-P 6.3 0.0186 0.00115 0.746 27.9° 26°
C) 1/3 Model® F-P 6.0 0.0102 0.00492 0.701 40.7° 39°
D) Column - A¢ F-P 7.8 0.0156 0.00785 0.405 37.8° 36°
E) Column - C¢ F-P 7.9 0.0156 0.01178 0.405 40.4° 39°
F) Column - D¢ F-P 7.9 0.0156 0.00785 0.405 37.8° 33°
G) Circular - C1¢ F-F 7.2 0.0254 0.00089 0.852 21.3° 22°
H) Rectangular - R2¢ F-F 7.2 0.0255 0.00102 0.901 22.2° 23°
I) Unit_9° F-P 7.8 0.032 0.00518 0.828 35.0° 35°
J) Unit_13¢ F-P 7.1 0.032 0.00518 0.828 34.9° 35°
K) Unit_14¢ F-P 7.3 0.0324 0.00259 0.828 30.5° 31°
L) Unit_16¢ F-P 7.4 0.032 0.00259 0.828 30.6° 32°
M) 2R10-60uf F-P 7.8 0.032 0.00727 0.81 37.1° 38°
N) 4R6-65uf F-P 7.8 0.032 0.00239 0.828 30.1° 26°
0) 4R10-60u’ E-P 7.8 0.032 0.00727 0.81 37.1° 36°
P) OR6-80bf F-P 7.8 0.032 0.00194 0.828 28.9° 29°
Q) 2R6-60b’ F-P 7.8 0.032 0.00259 0.828 30.6° 30°
R) R1As F-F 6.9 0.025 0.00123 0.881 23.0° 24°
S) R3As F-F 7.2 0.025 0.00123 0.881 23.1° 24°
T) R5A: F-F 7.5 0.025 0.00123 0.881 23.1° 22°

*Niagara Parkway bridge pier circular column tested by Mander, et al. (1996a,b).

*Seismically designed circular column tested by Mander and Cheng (1995).

¢Square hollow-core columns tested by Mander et al. (1984).

Specimens tested by Chai, et al. (1990).

¢Circular columns tested by Ang, et al. (1989).

'Circular columns tested by Wong (1990).

tRectangular columns tested by Priestley, et al. (1994a,b).

F-F: Fixed-fixed ends.
F-P: Fixed-pinned ends.

Note: Comparison is also made in figure 2-13.
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Figure 2-13. Crack angle comparison between theory and experiment (Note: letters define data
points and refer to table 2-11).
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2.4.1 Boundary Condition Constants of Three-Point Gauss Truss Model

It is of interest to quantify the boundary condition coefficient { shown in equations (2-56)
through (2-62) given for cracked elastic flexural deformation determined by three-point Gauss
truss model so that it can be compared with the results of two-point Gauss truss model as well
as Bernoulli’s beam theory. Table 2-12 presents the values of boundary condition constant¢
for those specimens that have been also used for the cfack angle calculation in table 2-11. Those
experimental specimens show the wide range of transverse steel contents. It is noted that the
corner-to-corner angle a was set to be equal to the constant crack angle 6 and b, /b, = 1 for
the calculation of shear force distribution factor ¢, and ¢,. It is also noted at a glance that the
boundary condition constants { determined by the three-point Gauss truss model analysis tend
to be approximately 0.54 for fixed-fixed ends and 1.54 for fixed-pinned ends no matter what the
transverse and' longitudinal steel contents are. Thesé results are close to those determined by
the two-point Gauss truss model which are 0.5704 for fixed-fixed ends and 1.5704 for fixed-
pinned ends. It is found from the present study that {(fixed-fixed) = {( fixed-pinned) + 1 in both
two-point and three-point Gauss truss models. Moreover, the results show that the boundary
condition constants are almost constant along the wide range of transverse steel contents.
Therefore, it is concluded that the two-point Gauss truss model is sufficient to determine the

post-cracked elastic flexural stiffness of beam-columns.

2.4.2 Crack Angle Determination Using Three-Point Gauss Truss Model

Determination of the theoretical crack angle 6 based on energy minimization has been
demonstrated in table 2-11. For this purpose, the shear deformation of the constant angle truss
model and the flexural deformation of the variable angle truss represented by two-point Gauss
truss model, both subjected to a unit shear force, were considered. The components of shear
and flexural contribution are included in equation (2-69). The effect of three-point Gauss truss
model on determination of the theoretical crack angle can be investigated by using the

corresponding boundary condition constants determined previously. As expected, there is no
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Table 2-12. Coefficients for elastic flexural stiffness of cracked concrete columns determined
by three-point Gauss truss model.

Specimen n Py ¢, b, ¢ (F-F) ¢ (F-P)
A) 1/3 Pier Model® 5.7 0.00147 0.25315 0.49370 0.535225 1.535225
B) Prototype* 6.3 0.00115 0.26456 0.47088 0.540553 1.540553
C) 1/3 Model® 6.0 0.00492 0.26773 0.46454 0.542092 1.542092
D) Column - A° 7.8 0.00785 0.25539 0.48922 0.536245 1.536245
E) Column - C° 7.9 0.01178 0.25516 0.48969 0.536138 1.536138
.F) Column - D* 7.9 0.00785 0.25518 0.48964 0.536149 1.536149
G) Circular - C1¢ 7.2 0.00089 0.24640 0.50720 0.532224 1.532224
H) Rectangular - R2¢ 7.2 0.00102 0.24713 0.50575 0.532542 1.532542
I) Unit_9° 7.8 0.00518 0.25551 0.483890 0.536319 1.536319
1) Unit_13° 7.1 0.00518 0.25680 0.48641 0.536893 1.536893
K) Unit_14° 7.3 0.00259 0.25685 0.48630 0.536917 1.536917
L) Unit 16° 7.4 0.00259 0.25695 0.48611 0.536961 1.536961
M) 2R10-60u’ 7.8 0.00727 0.25511 0.48979 0.536115 1.536115
N) 4R6-65u’ 7.8 0.00239 0.25629 0.48743 0.536657 1.536657
0) 4R10-60u’ 7.8 0.00727 0.25511 0.48979 0.536115 1.536115
P) OR6-80b 7.8 0.001%94 0.25651 0.48699 0.536758 1.536758
Q) 2R6-60b 7.8 0.00259 0.25620 0.48759 0.536619 1.536619
R) R1A® 6.9 0.00123 0.24760 0.50481 0.532748 1.532748
S) R3As 7.2 0.00123 0.24679 0.50642 0.532395 1.532395
T) R5A® 7.5 0.00123 0.24627 0.50747 0.532165 1.532165
Average 0.2545 0.4909 0.5359 1.5359

*Niagara Parkway bridge pier circular column tested by Mander, et al. (1996a,b).
bSeismically designed circular column tested by Mander and Cheng (1995).
°Square hollow-core columns tested by Mander et al. (1984).

dSpecimens tested by Chai, et al. (1990).

¢Circular columns tested by Ang, et al. (1989).

fCircular columns by Wong (1990).

#Rectangular columns tested by Priestley, et al. (1994a,b).

F-F: Fixed-fixed ends.

F-P: Fixed-pinned ends.
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significant difference in theoretically determined crack angle between two-point and three-point

Gauss truss models because of closeness of the boundary condition constants.

2.4.3 Strains at Transverse Steel

It is of interest to compare the maximum and minimum tensile strains of the transverse
steel in a cracked concrete column. As previously mentioned, the tensile strain of the transverse
ties in the two-point Gauss truss model given by equation (2-26) represents the average (e;_,,.)

of the transverse steel strain over the length of the concrete column. That is,

V.
= 5 (2-26)
O7-ag E_A, p ncota
In the three-point Gauss truss model, the transverse tie strain at linkage 1 represents the
minimum tensile strain (e, ) while the transverse tie strain at linkage 2 represents the
maximum tensile strain (e, ) as given by equation (2-53) of the transverse hoop steel for the
applied shear force. It is noted that the minimum strain occurs at near ends while the maximum

strain occurs at the center of a cracked column as shown in figure 2-12.

By examining values of ¢; and ¢, in table 2-12, these parameters can be approximated
so that ¢, = 0.25 and ¢, =~ 0.5 no matter what the transverse and longitudinal steel contents are.
Using these values and the values for «, and , in table 2-3 for equation (2-53), the minimum

and maximum tensile strains of transverse steel can be obtained as

€ pmin = _ﬂlj"—_ (2-70a)
™" E,A,p,ncota

e = — 12V, (2-70b)
™% E,A, p, ncota

Therefore, the ratio of maximum tensile strain to the minimum is e, , /e, . = 1.25 which
means that the tensile strain of the transverse steel at the middle will be larger than that at near

ends of a cracked column by 25%. Equation (2-54) also gives the same ratio. Also noted is
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that the ratio of the maximum tensile strain to the average is ey, /¢r ., = 1.125 while the ratio
of the minimum tensile strain to the average is e, ., /e7 ., =09 as given by equation (2-55).
Figure 2-14 describes the distribution of the tensile strain of the transverse steel over the length

of a cracked column.
2.4.4 Effective Stiffness Ratios

The effective stiffness in this study is defined as the total combined stiffness in shear and
flexure of reinforced concrete beam-columns and can be obtained by taking the inverse of the
total combined flexibility. The total combined flexibility is expressed referring to equation (2-
64) as

8, =8, +8, @-1)

where @, and @,, are the flexibility in shear and flexure, respectively. The effective stiffness
ratio is defined as the ratio of the effective flexural stiffness to the uncracked elastic flexural
stiffness of a reinforced concrete beam-column and obtained by the ratio of the effective flexural
rigidity EI, to the rigidity of the uncracked gross section EI, . The effective flexural flexibility

with respect 'to the drift angle can be expressed referring to equation (2-3) as

o - tL” 2-72)

2
offi1

k EI o
where ¢ is the boundary condition constant for uncracked beam-columns and is taken as 1/12

for fixed-fixed ends and 1/3 for fixed-pinned ends. The effective stiffness ratio of a reinforced

concrete beam-column can be obtained by equating equations (2-71) and (2-72), that is,

R 4 S @-73)

EI, (6, + 8,)EL
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Figure 2-14. Tensile strain at transverse steel over the length of a cracked column.
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2.4.4.1 Pre-Cracked Stage

The shear flexibility of a uncracked concrete beam-column is obtained by taking the

inverse of equation (2-2). Expressing it more rigorously by including the form factor f,,

25§,

cY

2-74)

where £, may be taken as 1.2 for rectangular, 1.1 for circular and 4, /A, for hollow-core or 1
sections. In a manner similar to shear, the flexural flexibility of a uncracked concrete beam-
column with respect to the drift angle is obtained by taking the inverse of equation (2-3), that
is,
Y% g
8, = A (2-75)
-4

Substituting equations (2-74) and (2-75) into equation (2-73), the effective stiffness ratio of

uncracked concrete beam-columns can be obtained as

o - 1 (2-76)

The parameter A, for uncracked stage is obtained by section shapes and boundary conditions

such that:
Ay, = (%) for fixed-fixed rectangular column;
A, = 75(%) for fixed-pinned rectangular column;
A, = %5(2)2 for fixed-fixed circular column;
Au = % _13)2 for fixed-pinned circular column,;
Ay, = 5[(—’;:)2 + ( ) ] for fixed-fixed square hollow-core column; and
Ay = L 5[ —:1)2 ] for fixed-pinned square hollow-core column

in which D is the overall depth of a section; L is the column length; and ¢ is the wall thickness

of a square hollow-core section.
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2.4.4.2 Post-Cracked Stage

The shear flexibility of a cracked elastic concrete beam-column is obtained by taking the
inverse of equation (2-8b) which is the expression for column shear stiffness for b,_/b, = 1, that

is,

1+ p_n cosec*d
8, = 27 pyn cosect @2-77)
" pncot?® E A,
The flexural flexibility of a cracked elastic concrete beam-column is obtained directly from

equations (2-28), (2-33), (2-57), and (2-61) by putting V, = 1, that is,

_ {eofe 278

O EA, ' 79
where ¢ is the boundary condition constant for two-point Gauss truss model and may be taken
as 0.5704 for fixed-fixed column and 1.5704 for fixed-pinned column. Substituting equations
(2-77) and (2-78) into equation (2-73) and recalling that p_ = Aylb,s, p, = A /A and n = E [E,

and putting « = 6, the effective stiffness ratio of cracked elastic concrete beam-columns can be

obtained as
.d 2
El, A, pn (iD-)
—__EIg = YA ) 2-79)
¢ +|—="|| =% |tan'® + p,n|—£ |sec'0
pv AV AV

The parameter A, is determined by section shapes and boundary conditions such that:

A, = 1 for fixed-fixed rectangular column;
A, = 4 for fixed-pinned rectangular column;

i

A, = % for fixed-fixed circular column;

A, = % for fixed-pinned circular column;
A, = [1 + (1 - 2%)2]"1 for fixed-fixed square hollow-core column; and

A, = 4[1 +1 —2%}2]'1 for fixed-pinned square hollow-core column
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in which ¢ is the wall thickness of a square hollow-core section; and D is the overall depth of

a section.
2.4.4.3 Worked Examples

Table 2-13 presents a series of worked examples for the effective stiffness ratio using
those columns used for the calculation of crack angles in table 2-11. Evidently the effective
stiffness ratio of a cracked section to an uncracked section ranges from 0.07 through 0.28 in
most cases. Also note that the longitudinal steel content affects the "effective stiffness ratio"
more than the transverse steel content. The effective stiffness obtained by the suggested equation

can be used for the evaluation of the natural period of structures before and after cracking.
2.5 Summary and Conclusions of Elastic Truss Representation of R.C. Columns

The present study on the stiffness analysis of post-cracked reinforced concrete beam-

columns draws the following conclusions:

1. Caveats in this analysis are: i) tensile part of concrete is not considered, concrete is
assumed to already be cracked and mostly ineffective; and ii) corner-to-corner strut that is

important for heavily loaded columns is not considered.

2. Either of constant angle modeling or variable angle modeling is satisfactory for
determining shear stiffness over the length of the beam-column. However, the shear stiffness
calculated by three-point Gauss quadrature and Boole’s rule are closer to the exact solution of

the variable angle truss mechanism.

3. Numerical integration schemes employed for the solution of the variable angle truss are
also used for physical simplification of the truss model. Two-point Gauss truss model provides
a simple and sufficiently accurate tool to determine the post-cracked stiffness in shear and

flexure. However, using three-point Gauss truss model, a more realistic distribution of tensile
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Table 2-13.

Effective Stiffness Ratios of Reinforced Concrete Beam-Columns.

Specimen L Aun A, Stiffness Ratio (Eleﬁ,/EIg) EI |EI,,
(mm) Pre-Cracked | Post-Cracked

A) 1/3 Pier Model? 1844 0.0473 1.3333 0.95479 0.06517 0.06826
B) Prototype? 2012 0.0895 5.3333 0.91784 0.11869 0.12932
C) 1/3 Model® 641 0.0979 5.3333 0.91087 0.05936 0.06517
D) Column - A° 3225 0.0989 2.7352 0.91003 0.06863 0.07542
E) Column - C° 3225 0.0989 2.7352 0.91003 - 0.06827 0.07502
F) Column - D¢ 3225 0.0989 2.7352 0.91003 0.06952 0.07640
G) Circular - C14 2438 0.1289 1.3333 0.88581 0.11915 0.13451
H) Rectangular - R2¢ 2921 0.1875 1.0 0.84211 0.09504 0.11286
I) Unit_9° 1000 0.0825 5.3333 0.92379 0.24268 0.26270
J) Unit_13¢ 800 0.1289 5.3333 0.88581 0.22520 0.25422
K) Unit_14¢ 800 0.1289 5.3333 0.88581 0.22771 0.25707
L) Unit_16° 800 0.1289 5.3333 0.88581 0.23717 0.26774
M) 2R10-60uf 800 0.1289 5.3333 0.88581 0.22724 0.25653
N) 4R6-65uf 800 0.1289 5.3333 0.88581 0.24803 0.280

0) 4R10-60uf 800 0.1289 5.3333 0.88581 0.22724 0.25653
P) OR6-80bf 800 0.1289 5.3333 0.88581 0.24926 0.28139
Q) 2R6-60b° 800 0.1289 5.3333 0.88581 0.24752 0.27943
R) R1Ae 2438 0.1875 1.0 0.84211 0.08651 0.102726
S) R3As 2438 0.1875 1.0 0.84211 0.089425 0.106192
T) R5As 1829 0.3333 1.0 0.75 0.091347 0.121796

*Niagara Parkway bridge pier circular column tested by Mander, et al. (1996a,b).

*Seismically designed circular column tested by Mander and Cheng (1995).

¢Square hollow-core columns tested by Mander et al. (1984).

dSpecimens tested by Chai, et al. (1990).
*Circular columns tested by Ang, et al. (1989).

‘Circular columns tested by Wong (1990).

t!Rectangular columns tested by Priestley, et al. (1994a,b)
F-F: Fixed-fixed ends.

F-P: Fixed-pinned ends.
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strain in the transverse ties can be obtained. This may be an important factor when modeling
the non-linear (post-yield) behavior of columns which are lightly reinforced transversely and may
eventually lead to premature failure at column mid-height due to corner-to-corner diagonal

cracking (refer to figure 2-12).

4. A theoretical foundation for computing the principal crack angle has been formulated
using energy considerations in which the combined external work done by both shear plus
flexure is minimized. Comparison of the theoretical crack angles with those observed

experimentally showed very favorable agreement.

5. The ratio of maximum to minimum tensile strain at the transverse steel over the length
of a cracked column has been found by the analysis of three-point Gauss truss model. The
tensile strain of the transverse steel at the middle of a column is larger than that at near ends by

25% and the average strain by 12.5%.
6. The effective stiffness ratio of a cracked section to a uncracked section may range

between 0.07 through 0.28 in most cases, where it may be observed that the longitudinal steel

content has a more pronounced effect on the ratio EI,/EI, than the transverse steel contents.

63






SECTION 3
STRENGTH ANALYSIS OF TRUSS MODELS - EFFECT OF STEEL YIELDING

The purpose of this section is to generate a comprehensive shear force-deformation
relationship for reinforced concrete beam-columns using the truss models described in the
previous subsection. Two analytical approaches will be discussed: one is the piece-wise linear
elastic analysis, while the other is an advanced strength method of analysis using the material
constitutive law. These analyses will still be limited to the contribution of transverse and

longitudinal reinforcement and diagonal compression struts in the concrete.
3.1 Piece-Wise Linear Elastic Analysis

A piece-wise linear elastic analysis is one way to generate the force-deformation
relationship of truss models for reinforced concrete members by hand-analysis. In this analysis
approach, the response of a structural member is built up by connecting the nearest events with
straight lines, in which the event is termed for a point where the stiffness changes. Using the
foregoing equations resulting from the truss model analyses, this analysis approach can readily
produce the combined shear and flexural response of reinforced concrete members. However,
because of the linearity, this analysis approach is more proper for thin-webbed squat members

such as coupling beams where the effect of concrete in tension is minimal.
3.1.1 Total Stiffness of a Cracked Member

The total drift angle of a cracked concrete column for a unit shear force (¥, = 1) is shown
in equation (2-64) to be the sum of shear rotation and flexural drift angle. For the general
column lateral force v due to the contribution of transverse reinforcement, the expression

becomes

8-=9,+6, (3-1)
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In terms of stiffness, the equation can be rewritten as
e - (.L + _.L)V (3-2)
K

in which X, and K, are shear and flexural stiffness, respectively, about column drift angle.

Therefore, the combined total stiffness of a member is

o
Ko = (3-3)

1,1
Ks Kf@

As previously discussed, the three-point Gauss truss model provides a suitable numerical
representation as it models well the real distribution of the tensile strains in the transverse ties
while the two-point Gauss truss model gives an overall average transverse tensile strain. The
three-point model which gives the user more information is slightly more accurate but being
more complex to use lends itself to computer analysis, whereas the two-point model being
statically determinate lends itself to hand-analysis. Thus both truss models will be discussed to

investigate the combined total stiffness of reinforced concrete beam-columns in what follows.

3.1.1.1 Two-Point Gauss Truss Model

As the tensile strain in the transverse ties in this model represents the overall average,
then the relationship between the applied shear force and shear strain of the two-point Gauss
truss model can be expressed as a function of one variable, the average transverse tie strain.
Since equation (2-15) has one simple term that gives good accuracy, the cracked elastic shear

stiffness of a concrete column can be expressed by putting « = 6, thus
K - p, ncot’6 EA,
b -4
1+4p.n b—‘” (1 +0.39 cot?6)

ws

Rearranging equations (2-29) and (2-34), the flexural stiffness of a cracked column in terms of

~ drift angle is found to be
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K=" |%)g 4, (3-5)
{ cota (4,

in which ¢ is a boundary condition constant and may be taken as 0.57 for a fixed-fixed ends and
1.57 for fixed-pinned ends. Note that the corner-to-corner angle « has not been converted to the
crack angle 6 in equation (3-5) because unlike the shear transfer mechanism, the flexural
mechanism should be considered with the shear span M/V rather than the unit length defined by
a single crack (jdcotf). Substituting equations (3-4) and (3-5) into equation (3-3), the combined

total stiffness of a member due to the two-point Gauss truss model is expressed as

E A

Ke - c v
b
1+4p n{—2|(1 +0.39 cot?0) (3-6)
bws + Ccotza fl
p,ncot?® P, |4,
The corresponding lateral force-deformation relationship becomes
E A, 8
V=K, =
b
1+4p, n[—2|(1 +0.39 cot?6)’ G-7
bws + Ccotzu ﬁ
p,ncot’® pen |4,

3.1.1.2 Three-Point Gauss Truss Model

Unlike the two-point Gauss truss model, the maximum and minimum tensile strains in
the transverse ties can be obtained from the three-point Gauss truss model. As mentioned
previously and shown in figure 2-12, the maximum and minimum tensile strains at transverse
ties occur in the middle (linkage 2) and near ends (linkages 1 and 3) of the truss model,
respectively. Therefore, the relationship between the applied shear force and shear strain of the
three-point Gauss truss model should be expressed as a function of two variables, the maximum
and minimum tensile strains at transverse ties. For this purpose, the cracked elastic shear

stiffness given by equation (2-46) with « = 6 should be used, since the equation has two terms
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in which the first is for linkages 1 and 3 and the second is for linkage 2. Thus,

2 @, p,ncot’®
K, = > E.A

1+2p,n [bi:s-] ({1 + xlzcotze}2 +{1 +(1-x)* cotze}z)

(3-8)
26
. ®, p,nCo 4,
bw 2 2
1+4 pvn[a){l +x, cotze}

Introducing the shear force distribution factor ¢, given by equation (2-52), the expression for

shear stiffness given in equation (3-8) by the three-point Gauss truss quadrature can be reduced
to
w, p, ncot?6

K = E A :
s bw , , [ 4 (3_9)
é,|1+4p,n T {1 + X, cotze}

ws

Rearranging equations (2-58) and (2-62), the flexural stiffness of a cracked column about drift

angle is

n A
Kf@ = B —£ EcAv (-10)
{cot?a | A,

in which ¢ is a boundary condition constant taken as:

¢ = x+(1-2x){24}(1-x,* +0.5(1-2¢,x,)?} for fixed-fixed ends; and

¢ = 3% +(1-2x){A-0x ) + (1-0yx, =) +(@x, +d,x) +¢ix;} for fixed-pinned ends.
The numerical coordinates x, for three-point Gauss quadrature are available in table 2-3. Again,
as noted previously, the corner-to-corner angle « has not been converted to the crack angle 6
in equation (3-10). Substituting equations (3-9) and (3-10) into equation (3-3), the combined total

stiffness of a member due to the three-point Gauss truss model becomes

Ke . EcAV
b 2 2
¢2[1 +4p n[—i] 1 +x; cot?0 ) (3-11)
"\ b, { } . ¢ cot?a ﬂ
w, p, ncot?6 p,r (A4,
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Therefore, the column lateral force related to the deformation of the truss mechanism is

expressed as

EA
V=-K0 - A, ®
b
¢, [1+4p 0|2 {1 +x2 cotzﬁ}2 (3-12)
b, N L cot?a (ﬁ)
®, p, 1 cot?d p.r \4

3.1.2 Post-Yield Stiffness

All that is necessary to obtain the post-yield stiffness is to use the appropriate modular
ratio » in the foregoing stiffness formulations. By respectively defining the transverse and
longitudinal modular ratios as n, = E,/E, and n, = E, /E,, the expressions for stiffness and
strength should apparently include the modified modular ratios. Prior to yielding of any
reinforcement, n, = n, = E JE.. If the transverse steel yields, then n, = E_/E_, or if the
longitudinal steel yields, then =, = E_/E, where E_ is the post-yield plastic modulus of
reinforcement. For this purpose, the material properties of concrete in compression and
reinforcing steel are idealized as shown in figure 3-1. The stress-strain relation of concrete in
compression is idealized as a straight line passing through the stress-strain curve at 04£,. This
secant modulus E, is given as 4700\/% for normal weight concrete in ACI 318 (1995). It
is assumed that concrete in compression behaves linear-elastically up to the stress of 0.85f/. For
reinforcing steel, the modulus of elasticity E, is assumed to be 200GPa and the post-yield
ascending branch of the simplified trilinear model was built up as suggested by Hsu (1993)
considering the average stress - average strain of rebar imbedded in the cracked concrete.

Therefore, the post-yield plastic modulus of reinforcing steel for the trilinear model is given by

_ Joos -8 (3-13)

? " 005 - ¢,

where f,,; is the stress of steel at strain of 0.05 and f, is yield stress and e, is the yield strain.
For convenience, this may be taken as 25% of the measured strain-hardening modulus E;, or

0.5% of the modulus of elasticity £,. Therefore, diagonal struts will behave in a linear elastic
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Figure 3-1. Idealized properties of materials for piece-wise linear elastic analysis.
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manner through the entire response while transverse ties and longitudinal chords will work

trilinearly.

3.1.2.1 Two-Point Gauss Truss Model

With the modified modular ratios, the combined total stiffness of a member due to two-

point Gauss truss model given by equation (3-6) becomes

E A

Ke - c 'y
b
1+4p, ny|—2|(1 +0.39 cot?)’ (3-14)
bws + C Cotza ﬁ
p, nycot?0 Py \A,
The corresponding column lateral force-deformation relationship becomes
E A8
V =
b
1+4p ng|—=1(1+0.39 cot?8) (3-15)
b, . { cot?a ﬁ
p, npcot’® Py |4,
3.1.2.2 Three-Point Gauss Truss Model
The combined total stiffness of a member given in equation (3-11) becomes
E A
Ke = c v
b 2 2
&,|1 +4p,ny|—=|{1 +x; cot?d (3-16)
[ “(bws]{ K }] , Ceofa (4,
@, p, iy, cO2O Py \4,

Using the modified modulus ratios, the shear force distribution factor ¢, given in equation (2-52)

becomes
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b, = &, = 1

5 4 (3-17a)
W, By b, 2 2
. "n[l +4 Pv"n(:] {1 +xzcot26} ]
¢2 = 1
Oy Byy b 2 2
—-T|1+4 —2 ({1 + x; cot?6
1+ @y nTZ[ i nn(bws { 20 } ] (3-17b)

bW
1+2p ny [K] ({1 +xf cot?6)” + {1 + (1-x,)* cot?6)?)
where n;; and np, are the modified transverse modulus ratios for truss linkages 1 and 2,
respectively. Note that n;, is also used for truss linkage 3. The expression in equation (3-12)

given for the relationship between column lateral force and deformation of the three-point Gauss

truss model becomes

_ E A, 0
b 2 2
$,{1 +4p, np|—={{1 +x, cot?® (3-18)
( ”(bm]{ " }] , Loota (4,
@, p, Ny, COFO Py \ 4,

It is of interest to investigate how much the boundary condition constant ¢ is influenced by
yielding of the transverse tie at truss linkage 2 which is critical. For this purpose, the
experimental specimens shown in table 2-12 for the cracked elastic stage are used taking
E, = 0.005E, for n,, in equation (3-17). The calculated results are presented in table 3-1. It is
noted that after yielding of the transverse tie at linkage 2 the boundary condition constants ¢
determined by the three-point Gauss truss model analysis are approximately 0.72 for fixed-fixed
ends and 1.72 for fixed-pinned ends no matter what the transverse and longitudinél steel contents
are. These values are quite close to those determined by the two-point Gauss truss model (0.57
for fixed-fixed ends and 1.57 for fixed-pinned ends) as well as those determined by the three-
point Gauss truss model at cracked elastic stage (0.54 for fixed-fixed ends and 1.54 for fixed-
pinned ends). Therefore, it is concluded that the boundary condition constants determined by

the two-point Gauss truss model analysis may be used in all cases for simplicity. However, the
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Table 3-1.  Coefficients for cracked concrete columns determined by three-point Gauss truss
model after yield of transverse tie at linkage 2.

Specimen n P, ¢, o, { (F-F) { (F-P)
A) 1/3 Pier Model® 5.7 0.00147 | 0.49731 0.00538 0.719685 1.719685
B) Prototype? 6.3 0.00115 | 0.497585 0.00483 0.719976 1.719976
C) 1/3 Model® 6.0 0.00492 | 0.497415 | 0.005171 0.719796 1.719796
D) Column - A® 7.8 0.00785 | 0.496528 | 0.006945 0.718858 1.718858
E) Column - C° 7.9 0.01178 | 0.496099 | 0.007801 0.718406 1.718406
F) Column - D° 7.9 0.00785 | 0.496503 | 0.006993 0.718832 1.718832
G) Circular - C1¢ 7.2 | 0.00089 | 0.497144 | 0.005712 0.719509 1.719509
H) Rectangular - R2¢ 7.2 0.00102 | 0.497144 | 0.005711 0.71951 1.71951
) Unit_%° 7.8 0.00518 | 0.496814 | 0.006372 0.719161 1.719161
J) Unit 13° 7.1 0.00518 | 0.496917 | 0.006167 0.719269 1.719269
K) Unit_14° 7.3 0.00259 | 0.497178 0.00661 0.719537 1.719537
L) Unit_16° 7.4 0.00259 | 0.497172 | 0.00657 0.719539 1.719539
M) 2R10-60uf 7.8 0.00727 | 0.496574 | 0.006852 0.718907 1.718907
N) 4R6-65uf 7.8 0.00239 | 0.497156 | 0.005688 0.719522 1.719522
0) 4R10-60u’ 7.8 0.00727 | 0.496574 | 0.006852 0.718907 1.718907
P) OR6-80bf 7.8 0.00194 | 0.497218 | 0.005564 0.719588 1.719588
Q) 2R6-60bf 7.8 0.00259 | 0.497129 | 0.005741 0.719494 1.719494
R) R1A? 6.9 0.00123 | 0.497135 | 0.005729 0.7195 1.7195

S) R3A® 7.2 0.00123 0.4971 0.0058 0.719463 1.719463
T) R5A® 7.5 0.00123 | 0.497076 | 0.005847 0.719438 1.719438

*Niagara Parkway bridge pier circular column tested by Mander, et al. (1996a,b).
®Seismically designed circular column tested by Mander and Cheng (1995).
¢Square hollow-core columns tested by Mander et al. (1984).

dSpecimens tested by Chai, et al. (1990).

*Circular columns tested by Ang, et al. (1989).

fCircular columns by Wong (1990).

gRectangular columns tested by Priestley, et al. (1994a,b).

F-F: Fixed-fixed ends.

F-P: Fixed-pinned ends.
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shear force distribution factors ¢, and ¢, are affected a lot by transverse steel yielding. It is
noted that after the critical transverse steel yields, linkages 1 and 3 resist virtually all of the

applied shear force.
3.1.3 Strength Analysis

In order to generate the shear force-deformation relationship, it is necessary to relate the

local truss member strain to the global truss deformation.
3.1.3.1 Yield of Transverse Ties
Two-Point Gauss Truss Model

Consider the average force in transverse hoops of the two-point Gauss truss model in
figure 2-8. Rearranging equation (2-26) with « = 6, the column lateral force at the average

tensile yield strain of transverse hoops is
(VY)T = (ey)T E A, p, 1y cotd (3-19)
where (e,), is the average yield strain of transverse hoop/stirrup steel. Substituting equation (3-

19) into equation (3-7) and rearranging, the drift angle corresponding to the yield of transverse

ties can be obtained as

b
1+4p n|—2|(1+0.39 cot?6)?
") ’(b ]

wSs

{ cota (Av] (3-20)
+ —_

A, . p, nycot?6 p.ny (A4,

Three-Point Gauss Truss Model

Consider truss linkages of the three-point Gauss truss model in figures 2-9 and 2-11.

Although the tensile strain of the transverse tie of truss linkage 2 located at the column middle
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is the critical one as shown in figure 2-12, it is necessary to investigate the tensile strains of
transverse ties at all linkages for global force-deformation plotting. Again, by introducing the
modified modular ratios n,, and n,, and « = 6, the expressions for the tensile strains of
transverse ties given in equation (2-53) can be rearranged to obtain the shear force when the

transverse ties yield as follows

w

(V)')n = [Ef](SY)Tl E_A, p, nq cotd (3-21a)
[}

(Vy)n B (_522-](83’)7‘2 E A, p,np,cotd (3-21b)

where )z and (V) ar€ respectively column lateral forces at yield of transverse ties at linkages
1 and 2, and (&) and (e)  are respectively yield strains of transverse ties at linkages 1 and 2.
Therefore, column end-to-end rotation (drift angle) when transverse ties yield is found by

relating equation (3-21) to equation (3-18) to be

o, (1 +4p ng, (gi] {t+5 cotzﬂ}z]

4 A (3-22a)
(ey)n - ( y)rl . { cot’a (___V.)
E A, W, PRy cot?0 Py \4,
&,|1 +4p npy|—=|{1 + x5 cot?0 -
). - )ry 2[ n[bws]{ } , Leotle 4, (3-22b)
Y12 E A, @, P, Ry COEO Pl \4,

where CA and ®,),, are respectively column rotation angle at yield of transverse ties of

linkages 1 and 2.
3.1.3.2 Yield of Longitudinal Chords
Two-Point Gauss Truss Model

The strain at the critical longitudinal chord given by equations (2-31) and (2-36) can be
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rearranged with the modified modulus ratio », to obtain the expression for column lateral force

v when the longitudinal chord at the critical section yields as follows

(Vy), = (&), E. A p,n tane  for fixed-fixed ends (3-23a)

(Vy)L =05 (ey)L E A, p,n tane Jor fixed-pinned ends (3-23b)

where (v,) is shear force at yield of the critical longitudinal chord and (e,), 1s the corresponding
yield strain. It is noted that the corner-to-corner angle « is used for the flexural strength, since
the flexural mechanism should be considered with the shear span M/v rather than the unit length
defined by the crack angle (jd cot6). As expected for the column lateral force Vv, the critical
longitudinal strain of a fixed-pinned column is twice that of a fixed-fixed column. Therefore,
column end-to-end rotation (drift angle) corresponding to yielding of the longitudinal chord at

the critical section is found by relating equations (3-15) and (3-23) to be

b
1+4p, n,|—|(1+0.39 cot’8)’
Vo), ’[b ]

ws

EA, p, nycot’® p.ny

oot (5_) 629

Three-Point Gauss Truss Model

The strain at the critical longitudinal chord given in equations (2-59) and (2-63) can be

rearranged by introducing the modified modular ratio n, for shear force v,. Note that equations
are exactly the same between the two-point and three-point Gauss truss models. Therefore, the
expressions given in equation (3-23) for column lateral force when the longitudinal chord at the
critical section yield in the two-point Gauss truss model can also be used for the three-point
Gauss truss model. Thus the column end-to-end rotation (drift angle) when the longitudinal

chord at the critical section yield is found by relating equations (3-18) and (3-23) to be

b s 2
¢, |1 +4p, np|—=|{1 +x; cot?® y
(9 ) ) (V)’)L 2( 2 was]{ X } ] . C cotzoz ﬁ (3 25)
Y1 EA, ®, p, Ry, cot?0 p.ny \A,
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3.2 Advanced Strength Analysis Using A Material Constitutive Law

In the previous subsections, the piece-wise linear elastic analysis method using the
idealized lineaf model for concrete diagonal struts and trilinear model for longitudinal chords
and transverse ties in Gauss truss models was introduced. That simple and comprehensive
analysis method enables the strength analysis of reinforced concrete beam-columns to be
performed by hand-calculation. In the present subsection, the analysis method is advanced by
implementing a non-linear material model for reinforcing steel. In performing this advanced
analysis method, any spreadsheet type computer software may be suitable for automating the
calculations. It is noted that the discussion is still limited to the truss mechanism. For the
purpose of simple analysis method, only Gauss 2-point truss model will be considered in the

present study.
3.2.1 Material Model for Reinforcing Steel

Chang and Mander (1994) suggested a steel model (stress-strain relationship) for

reinforcing steel by modifying the Menegotto-Pinto equation (1973) and the expression is

E ¢ 1 +signfe_-¢ e -e |
f — s s + s sh (f _f) 1-j—=_s
s E 20]0-05 2 su Yy, £, €, (3-26)
€
1 + sSs
% )
e —¢
where p= Es,,( ;“ _fs"] and E, = 0.02E
s Jy

sign (e, - e,)= -1 for e <e,, and sign(e,-e,) =1 for e 2 ¢, and notations for other parameters are
described in figure 3-2. This equation fits very accurately experimental results of steel coupon
tests. However, as previously mentioned, the study conducted by Hsu (1993) indicates that the
average stress - average strain relationship should be used for the reinforcing steel embedded in
the cracked concrete. Considering this effect, the steel model given in equation (3-26) is

modified as
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Figure 3-2. Proposed model for reinforcing steel.
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E 1 , .t )
f.; _ s & - +[ +Slgn2<€s SY)](fm_Esey)(l_

esu B SS
et (3-27)

- f;-Eshesh

where g,
Es - Esh

and other parameters are defined in equation (3-26) and figure 3-2. The parameter e is the
average strain of transverse hoop steel at imminent yielding. Figure 3-2 gives a comparison

between steel'models given by equations (3-26) and (3-27) for Grades 40 and 60.

It is noted that the strain amplitude in longitudinal steel at the critical column section is
localized, while the one in transverse hoop steel is considered quite evenly distributed.
Therefore, it is recommended that equation (3-26) be used for longitudinal reinforcing steel and

equation (3-27) be used for transverse hoop steel.
3.2.2 Force-Deformation Relationship of Gauss 2-Point Truss due to Shear

The average transverse tie strain is used in evaluation of column shear force and
deformation relationship for this truss model. The column shear strength v, can be expressed
in terms of transverse tie strain e, or stress f, by rearranging equation (2-26) withp, = 4, /b, s

and « = 6. Thus

V, = E e.A p, cotd (3-28a)

s

V, = fA,p,cotd (3-28b)

s

The column shear deformation can also be arranged in terms of average transverse tie strain

using the information available in table 2-4, that is,
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— 2V (14 x2eofoP + [1 + (1 - cofe]) (329

Note that the diagonal concrete struts are assumed to be linear elastic. The corresponding

column shear rotation (drift) angle can be obtained by dividing the displacement in equation (3-

29) by the shear unit length jd cot6, thus

6, = ¢, tanb + M ([1 +xfcot26]2 + [1 +(1 —xl)zcotze]z) (3-30)

b
EA4,|

w

Substituting equation (3-28b) for v, into equation (3-30),

2 T*(6
6, = g, tan® + ————prv ©®

s

(3-31)
E

c

b
—‘5] cot@
b

w

where 7*(0) = [1+x] cot26]2 + [1+(1-x, cof?0]’. Substituting equation (3-27) for f, into equation

g —¢
€~ Sy

in which parameters are defined in equations (3-26) and (3-27). Rearranging equation (3-32),

(3-31) and rearranging, the column shear rotation 8, becomes

i-

s *
€

R -00s . .
0, = o, |tan + 2p,nT*(6) {[1 . (f_f]m] . {1 +sz;g::£eerr ey)} (f,u'Ese;)

bWS
~— |cot®

w

the transverse tie strain e, for a given column rotation 8, becomes

O, cotd

Er

1

*

&y

L2enT ) [[1 +[i!]2°]-w , L sign(es-e))} (fu-E.e;)
2E e,

By substituting e, calculated by equation (3-33) into equation (3-27) the transverse tie stress fr

can be obtained. Solution of equation (3-33) may require some iterative process since e, is a
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function of itself. By rearranging equation (3-28b) with 4, = b,,jd and p, = A, /b, s, the column

shear strength v, can also be expressed as

V. = A,f 1% coto (3-34)
S

This equation is the same expression as the traditionally accepted formula (Dilger, 1966, Park

and Paulay, 1975) as well as the expression for the transverse steel contribution of the recently

highlighted MCFT (Collins and Mitchell, 1991).

The solution strategy for the force and deformation relationship of Gauss 2-point truss

model due to shear is summarized as follows:

Step 1 Choose column shear strain (rotation) 8,.
Step 2 Determine the ratio of effective column width b, /b, .
Step 3 Calculate the transverse tie strain e, for a given column shear strain (rotation)e,

using equation (3-33). Repeat this step until converged.
Step 4 Calculate the transverse tie stress f, using equation (3-27).
Step § Calculate the column shear resistance v, due to the transverse steel mechanism

using equation (3-34).

Step 6 Return to step 2 until converged.
Step 7 Repeat steps 1-6 for increasing values of 8,.
Step 8 Plot 8, vs. v, and ¢, Vs. f;.

3.2.3 Force-Deformation Relationship of Gauss 2-Point Truss due to Flexure

The tensile strain of the longitudinal chord at the critical region of the truss model is used
in evaluation of the column flexural force and deformation relationship. The column flexural
strength ¥, can be expressed in terms of the critical longitudinal chord strain ¢, or stress f; by

rearranging equations (2-31) and (2-36). Thus,

for a column with fixed-fixed ends,
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V., = E e, A tana (3-35a)

V, = f,A,tane (3-35b)

for a column with fixed-pinned ends,
V; = 05E e, A tana (3-36a)
V, = 05f, A tana (3-36b)

Note that the corner-to-corner diagonal angle « is used for flexure rather than the crack angle
6. Substituting equations (3-35a) and (3-36a) for V, into equation (2-28) and (2-33) and

rearranging, the column drift angle 8, is expressed as

for a column with fixed-fixed ends,

Of = { ¢, cote (3-37a)

for a column with fixed-pinned ends,

Of = 05¢ g, coto (3-37b)

in which ¢ is a boundary condition constant and may be taken as 0.57 for a column with fixed-
fixed ends and 1.57 for a column with fixed-pinned ends. Therefore, the longitudinal chord

strain ¢, at the critical region for a given column drift angle 8, is obtained as:

for a column with fixed-fixed ends,

e, = 17538 tanc (3-38a)

for a column with fixed-pinned ends,

g, = 12746, tana (3-38hb)
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The solution strategy for the force and deformation relationship of Gauss 2-point truss

model due to flexure is summarized as follows:

Step 1
Step 2

Step 3
Step 4

Step 5
Step 6

Choose a column drift angle @,.

Calculate the longitudinal chord strain e, at the critical region for a given drift
angle ©, using equation (3-38).

Calculate the corresponding longitudinal chord stress f, using equations (3-26).
Calculate the column flexural strength V, using equations (3-35b) and (3-36b) for
a column with fixed-fixed ends and with fixed-pinned ends, respectively.
Repeat steps 1-4 for increasing values of @,.

Plot 8, vs. ¥, and ¢, Vvs. f;.

3.3 Supplementary Flexural Analysis

Even though the cracked effective stiffness can reasonably be predicted, the flexural

response obtained by the truss model analysis may have some shortfall because:

1)

2)

3)

When dimensioning for truss model in subsection 2.2.5, it is assumed that the
longitudinal chord members in the truss model can be modeled by one half of
longitudinal steel content with the distance of flexural lever arm jd over the
column length;

Also assumed is that involvement of concrete compressive stress block has been
ignored for simplicity; and

Externally applied column axial load is not considered.

In order to overcome the probable shortfall in flexural response due to the mentioned

assumption for truss modeling, the column flexural force-deformation response can be

determined by the moment-curvature relationship rather than the truss model analysis. The

moment-curvature analysis can be performed by any suitable computer program, such as:

COLUMN (Mander, et al., 1984); RESPONSE (Collins and Mitchell, 1991); and UB-COLA
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(Chang and Mander, 1994a). Mander et al. (1984) suggested the idealized plastic curvature
distribution as shown in figure 3-3. Then, the elastic portion of the curvature can be

extrapolated using the curvature at first yield moment, that is,

M
b, = ¢ == (3-39)
¥y My

where M, and ¢, are respectively the first yield moment and the corresponding curvature and
M__ is the moment at the critical column section. Utilizing moment area method, the elastic

portion of column end-to-end rotation can be calculated as

9; = %‘be Lc (3-40)

where L =M/v. The plastic portion of column end-to-end rotation angle is calculated by

& < (0031 1y) (41

" ‘
where L, =L, [1 oY, 2 ] and L, = 32,/d, (mm).

max

Then, the column end-to-end rotation (drift) angle is the sum of elastic and plastic portions:

8 = 6+ (3-42)

Plotting v, and @, gives the column flexural force-deformation response. If the joint where the
fixation is provided to the column end is expected to rotate due to the flexibility of cab beam
or foundation beam, the effect can also be accounted for. Consider column-beam subassemblage

shown in figure 3-4. Using the momient-area theorem, the flexibility of the connected beam is

calculated by

for T-shaped beam-column,

(3-43a)

for L-shaped beam-column,
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Figure 3-3. Moment-curvature relationship after Mander, et al. (1984).
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Figure 3-4. Consideration of beam-column joint flexibility.
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Lb
3EI,

f = (3-43b)
in which f, is flexibility of a beam, L, is shear span of the beam and 1, is the moment of inertia

of the beam section. Considering joint rotation, the total column end-to-end rotation due to

flexure will be

0 - 6 6 +fi M (3-44)

3.4 Combined Response of Shear and Flexure

Once shear and flexure responses are defined, they should be combined together to obtain
the total response as shown in the previous subsections for the piece-wise linear elastic analysis.
Since the discussion for shear so far has been limited to the truss mechanism only, the combined
total response will be discussed after concrete and arch (axial load) mechanisms are defined in

the following sections.
3.5 Evaluation of Effective Section Area of Shear Steel in Circular Columns

It is important to properly evaluate the effective section area of transverse shear
reinforcement 4, at spacing s in equations (3-28) through (3-34) for the calculation of shear
strength v, of circular columns. In prismatic sections such as square, rectangular and square
hollow-core columns, the section area of transverse shear reinforcement can be straightforwardly
obtained, that is, the multiplication of the section area of a single leg by the number of
transverse steel legs across the cracked plane. However, in circular columns since the fraction
of stress intensity along the circular hoop steel in the loading direction varies as shown in figure
3-5, special care should be used in the evaluation of the effective section area of transverse shear
reinforcement of circular columns. Ang (1985) and Ang, et al. (1989) suggest a reasonable
approach in assessing the effective section area of transverse shear reinforcement of circular
reinforced concrete columns. Their idea is supplemented and extended to a more general form

of equation in the present subsection.
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Figure 3-5. Shear resisted by transverse hoops of circular columns after Ang, et al. (1989).
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Consider a potential diagonal failure plane defined by the crack angle 6 measured to the
column longitudinal axis in figure 3-5. Then, the shear force v, is resisted by the summation
of the fractions of forces generated along the circular hoops across the failure plane in the
loading direction. Using the average transverse steel strain approach in which it is assumed that
the considered transverse hoops develop the same amplitude of stress and strain, the shear force

resisted by the transverse hoop steel is calculated by

N
Vv, = 213 2 4,fysindi = 2A,f;N(sindi),, (3-45)

where N is the number of transverse hoops across the cracked plane and 4, is the section area

of a single leg of a transverse hoop. Then the average of sindi is calculated by

N
sindi),,, = _;-’21: sindi (3-46)
where & = = /(N+1). Performing the summation of the series of constants in equation (3-46),
(3 7]
< s 1 2 N+1
8 =~ \eANr (3-47)
(sin l)'”g N . (n 1 )
smj|—
2 N+1
where N = d_cot6/s. Substituting equation (3-47) into equation (3-45) gives

. {n N
1 Sm(? N+1) d
v - L_\2N+1) 5, 0 %y (3-49)
S

¥ N .(=n 1
sin| =
2 N+1

where d_ is the center-to-center diameter of the transverse hoop reinforcement in a circular

column. Equation (3-48) can be expressed in resemblance of equation (3-34), thus

d
V, = Ayf, = cot (3-49)
S

s

Since d, = jd, this equation is considered identical to equation (3-34) itself. Now, the effective

section area of transverse shear reinforcement 4, for circular columns is obtained as
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(3-50)

where 4, = area of the spiral or circular hoop bar. Substituting N = jd cot6/s into equation (3-50),

the expression can also be

/2
1+ tano
4, - 2(—- tanB)————-Jd— 4, (3-51)

/2
1+j—dc0t6

s

This equation can be interpreted in the way that the effective section area of transverse shear
reinforcement for a circular column is the summation of the effective number of section areas
of single legs of a transverse hoop. The effective number of single legs of a transverse hoop
depends on the number of transverse hoops N across the cracked plane as presented in figure
3-6 where equation (3-50) is plotted. It is noted from the figure that the range of the effective
section area of a transverse hoop for circular columns is from 4, = 24, through 4 = %Ab.
This means that the effective section area of a transverse hoop for a circular column varies with
the number of transverse hoops provided within the unit length defined by the crack angle
(jdcotd). Therefore, when a single transverse hoop is placed in the middle of the unit length
defined by the crack angle, the effective section area of a transverse hoop is the full section of
the transverse hoop reinforcement (24,). When N ~ = which is for the case of circular steel
jacketing, the effective section area of transverse shear reinforcement is reduced to %Ab in
which 4, = tf where ¢ is the thickness of the steel jacket. The present study indicates some
insufficient aspect on the shear resisted by transverse reinforcement of circular columns
suggested by Ang (/985) and Ang, et al. (1989), Chai, et al. (1991) and Priestley, et al.
(1994a). In their study, they used a single constant parameter %Ab for the effective section area
of transverse shear reinforcement in all cases. This may not do serious harm to the evaluation
of shear strength for circular columns with non-seismically designed transverse hoop

reinforcement, since the parameter %Ab gives slightly conservative results. However, for well-
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confined circular columns with close spacing, the parameter %Ab gives unconservative results.
For circular steel jacketing as an extreme case, it gives about a 20% overestimation of the shear
capacity. In reality, this measure of unconservatism may be compensated for by the fact that
the transverse steel yields and strain-hardens. However, it is recommended that equation (3-49)
continued to be used for analyzing circular columns, but A, be determined specifically from
equation (3-50) or (3-51).

3.6 Conclusions Arising from Strength (v,) Analysis of Truss Mechanism

In this subsection a discussion has been presented for the strength and deformation

analysis of a Gauss truss model. The following conclusions are drawn:

1. The piece-wise linear elastic analysis method using the idealized linear model for concrete
diagonal struts and trilinear model for longitudinal chords and transverse ties offers a simple and

comprehensive analysis tool for shear and flexure that can be performed by hand-calculation.

2. The present study shows that the analysis method can be advanced by implementing a

non-linear material model for reinforcing steel which can still be performed by hand-analysis.

3. Yielding of critical transverse steel does not seriously affect the boundary condition
constants of the three-point Gauss truss model which are close to those of the two-point Gauss
truss model. Therefore, the boundary condition constants determined by the two-point Gauss

truss model analysis may be used in all cases.
4, Yielding of critical transverse steel influences the shear force distribution factors for truss
linkages of the three-point Gauss truss model. This makes hand analysis implementation a

protracted process, but lends itself to a computer-based implementation.

5. The effective section area of transverse shear reinforcement for circular columns is

affected by diameter of column section, crack angle and transverse hoop spacing. This indicates
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that the widely accepted constant =/2 used for the calculation of shear strength of circular
columns due to transverse steel is not universally applicable, but strictly only applicable when
approximately four circular transverse hoops pass through the diagonal crack. Instead, the
constant should range between 2 and 4/=, the former being applicable when only one circular
transverse hoop cuts the crack and the latter when the circular transverse hoops are very closely

spaced or if a steel tube is used for confinement.
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SECTION 4

MODELING THE EFFECT OF CONCRETE TENSILE STRENGTH
ON COLUMN SHEAR STRENGTH

The truss analogy for the analysis of beam-columns subjected to shear and flexure
discussed so far has been limited to the contribution of transverse and longitudinal steel and
diagonal concrete compression struts. It should be noted that even though the behavior of
reinforced concrete beam-columns after cracking can be modeled with the truss analogy, they
are not perfect trusses but still structural elements with a measure of continuity provided by a
diagonal tension field. The mere notion of compression field denotes that there should be some
tension field coexisting perpendicularly to the compression field. The compression field is
assumed to form parallel to the crack plane that forms under combined flexure and shear.
Therefore, the concrete tension field may be defined as a mechanism existing across the crack
and resisting crack opening. In the present section, the effect of concrete tensile properties on
the shear strength and stiffness of reinforced concrete beam-columns is discussed using the Gauss

two-point truss model.

4.1 Modeling the Cracked Concrete in Tension (Strain-Softening)

There is a common misconception that concrete having limited tensile strength behaves
in a brittle fashion (Barnard, 1964). This misconception has arisen over the years mostly
because there is only limited number of references available describing the tensile behavioral
characteristics of concrete (ACI, 1982; Carreira and Chu, 1986; Vecchio and Collins, 1986;
Yankelevsky and Reinhardt, 1987; Collins and Mitchell, 1991; Hsu, 1993). In fact concrete
stress and strain characteristics when normalized with respect to the peak stress and strain are
similar in both tension and compression. Such tensile behavior can play a vital role in the shear
resistance mechanism of structural elements. Therefore, it is important to utilize the tensile as
well as compressive characteristics of concrete in estimating the shear strength and stiffness of
reinforced concrete beam-columns. However, it should be noted that following cracking the
effect of concrete tensile strength on column shear strength lessens as the deformations increase.

Moreover, the scale of concrete tensile strain is considered as about one tenth of concrete
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compression strain, which denotes that the effect of concrete tensile strength will be mostly

exhausted within a small to moderate deformation range if the column behavior is governed by

shear.

4.1.1 Nonlinear Descending Branch Model

Collins and Mitchell (1991) suggested the experimentally verified monotonic tensile
stress-strain relationship by modifying the equation recommended by Vecchio and Collins (1986)
to take tensile stresses in concrete between the cracks into account using the average stress-

average strain relationship for the cracked concrete. That is,

fi=Ez¢, for ¢ < el (@-1a)

b
f= ——2t 2f,J for & > e,/ (4-1b)

1+ ‘/500 £, ‘

where f, = average concrete tensile stress, e, = average concrete tensile strain, €, = strain at
peak tensile stress, «; and a, = factors accounting for bond characteristics of reinforcement and
sustained or repeated loading, respectively, and f/ = concrete tensile strength. Collins and

Miichell (1991) recommended to take the following as the concrete tensile strength

£ = 0333, (MPa) = 4|/f (psi) 42

where f] is the concrete cylinder compressive strength. This formulation implicitly assumes that
the average concrete stress between diagonal cracks is about two thirds of the maximum given
by Carreira and Chu (1986). When the crack opens widely, the shear transfer capacity of the
member calculated using equation (4-1) for the average stress — average strain of the cracked
concrete may be limited by local variations along the crack plane. The principal local variations
are known to be the dowel action and aggregate interlock mechanisms. Paulay (1971a,b)
theoretically and experimentally showed that the effect of dowel action on the shear behavior is
small. To avoid crack slipping failure due to loss of aggregate interlock, the descending branch

of the average stress-average strain relationship given in equation (4-1b) needs to be limited by
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0.6yf
f; s —T\/‘;—;— (MPa and mm) (4_3)

'mo ~'t

d, +16

+

where s,, = average spacing of the diagonal cracks and 4, = maximum aggregate size. Refer
to Vecchio and Collins (/986) and Collins and Mitchell (/991) for a description of this
limitation. However, Hsu (/996) and Pang and Hsu (7/996) have recently pointed out that this
is a theoretical fallacy as shear can not coexist in the direction of principal tension strains. Their

so-called "softened truss" model neglects this effect.

According to Carreira and Chu (1986), the shape of the monotonic tensile stress-strain
curve has been shown to have a descending branch similar to that of monotonic compression.
Thus they proposed the use of an equation by Popovics (1973) for modeling cracked concrete

in tension. The suggested Popovics equation for concrete tensile stress-strain relationship is

f = (4-4)

where
E f
re—— , E,=% ad E- 5000)[f, (MPa).
[ 'sec St

One advantagé in using Popovics’ equation is that the equation contains the ascending as well
as descending branches in a single expression. For f/ = 30 MPa, ¢, = 0.0002, s,, = 450 mm and
d, =20 mm, figure 4-1 presents the normalized stress-strain curves of concrete in tension
suggested by Collins and Mitchell (/991) and using Popovics equation. Note the closeness of
two curves to each other. Furthermore, Chang and Mander (1994) concluded that considerable
experimental data scattering for the descending branch of concrete in tension given by Vecchio

and Collins (1986) makes the choice of any simple equation justifiable. This is a very important
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Figure 4-1. Concrete tensile stress curves considered for concrete mechanism.

98



conclusion. Therefore, Popovics equation will be adopted herein for concrete tensile

characteristics in the following discussion.
4.1.2 Linear Descending Branch Model

The previously mentioned concrete tensile stress curves can be further simplified by using
the straight line descending branch. The simplified model can then be implemented into
computational modeling of concrete mechanism for shear resistance using a general purpose
nonlinear inelastic structural analysis program. In the simplified model with the linear
descending branch, it is very important to properly determine the ultimate tensile strain at which
tensile stress can no longer be transferred. For this purpose, the fracture energy of concrete is
considered so that the equivalent amount of energy can be dissipated by concrete rupture

between the nonlinear and linear descending branch models.

For the consideration of fracture energy of concrete in the present study, references are
made to Rots, et al. (/985) and Morcos and Bjorhovde (1995). The fracture energy G, is
defined as the amount of energy required to create one unit of area of a continuous crack and
calculated by the area under the tensile stress - cracking opening softening diagram as shown in

figure 4-2. Therefore, the fracture energy G, can be expressed as

G, = hg, = hf;,' o de, 4-5)

where g, = area under the stress-strain softening diagram, e, = f/IE, and e, = ultimate strain
where stress can no longer be transferred. The discrete crack model can be related to the

smeared crack model by the relationship of

w = he, (4-6)

where w = crack opening displacement due to crack strain over the crack band width 2 within
the finite element and e, = average crack normal strain over the band width # in the direction
of the maximum tensile stress. Based on studies undertaken by BaZant and Oh (1983), the crack

band width # is dependent on the aggregate size, they found:
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100



h=3d @-7)

where d, = maximum aggregate size. Referring to figure 4-2 and using equations (4-5) and (4-

7), the ultimate tensile strain e, for the straight line descending branch model is obtained by

G

. . 2

154, f £k

(4-8a)

Note that the inelastic portion of ultimate strain given by equation (4-8) is identical to the one
proposed by Rots, et al. (1985). Petersson (1980) found from the experimental study that typical
values of the fracture energy of normal-weight concrete are in the range of 60 - 100 N/m. As
an example, for G, = 100 Njm, d, = 20 mm, f/ = 2 MPa (f, = 30 MPa) and ¢, = 0.000067, then the
ultimate strain becomes ¢, = 0.00173 which is 26¢,. Rots, et al. (1985) also proposes a bilinear
descending branch model as shown in figure 4-2(e). The ultimate strain e, is given by

18 G
5

r
fin

8u=

(4-8b)

The bilinear representation of the stress-strain relation for concrete in tension can be

achieved using the Menegotto-Pinto equation, thus

1-0Q
fi = E.g)Q +
1 Ee, 2] 4-9)
%)

where

E ¢ (eu - e:)

Using the previously presented parameter values, the resultant bilinear behavior of concrete in
tension is shown in figure 4-1 together with previously discussed models. Also shown in figure
4-1 is the behavior of bilinear softening diagram. From the comparison it is noted that the

fracture energy-based model shows much more rapid descending branch than the other models.
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4.2 Variable Angle Truss for Concrete Only Mechanism - Theory

A variable angle truss shown in figure 4-3 is considered for the effect of concrete
continuum acting across the representative corner-to-corner crack plane on the shear strength of
a short column. In a similar way to the solution of the variable angle truss mechanism for
transverse steel contribution discussed in subsection 2.2.3, consider a single differential truss
element subjected to the differential shear force dV, in figure 4-3. The differential shear force
dV, depends on the concrete tensile stress-crack opening relation and varies along the column
length. Note that a differential truss consists of an idealized concrete tie with a finite depth
d,cosa inclined by corner-to-corner angle « from the transverse direction of the column and
two tapered diagonal concrete struts. A tapered diagonal concrete strut is idealized as a
prismatic strut with the average depth. Assuming rigid longitudinal chords to negate the effects
of flexural deformation, the contribution of concrete only mechanism to the column shear
resistance can be considered. The shear deformation of the differential truss can then be
calculated by the Virtual Work method of analysis using the member forces shown in figure 4-3.
Since the differential truss element is statically determinate, the member forces can easily be
determined by static equilibrium. The determination of the member deformations of a
differential portion of a variable angle truss is presented in table 4-1. Displacement
compatibility requires that the deformation of each differential truss element be the same as the

overall shear deformation of the short column.
The axial strain and stress of truss member B-C are respectively considered as the
principal strain €, and stress £, acting across the crack plane. Using this notion, the component

shear deformation due to the contribution of truss member B-C can also be expressed as

Ap e = (%) = ¢, fL = ¢,jdsec’a 4-10)
B-C

The shear deformation of a differential truss is the sum of the component deformations of a tie

and two struts, thus
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Table 4-1. Shear deformation of a differential element in a variable angle truss.

Member | Force | Unit Load | Length Rigidity Strain Ffl
F f l EA e = F|EA EA
A-B -dv, -1 jd E_b,dxsin6, -2dV,_{dx 2jddv,|dx
sin 8, sin 8, sin 6, 2 E b, sin®0, E b, sin'd,
B-C +dv, +1 jd E_b dxcosa +dV, [dx jdadv, |dx
COS & cos a Cos o Ectbwcosz a Ectbwcos4 o
C-D -dv, -1 jd E_b,dxsin®, -2dV, [dx 2jd dv, |dx
sin 6, sin 6, sin 6, 2 E b, sin’0, E_b,sin%,

Note: Refer to figure 4-3.

sin@, = (!f) ; sin@, = — (%1)

VT - N[- 32T - (e

@-11)

E b

ccTwe

L) {

ECIECE

&

where E,, = modulus of elasticity of concrete in compression and b, = portion of column width
contributing to struts for the concrete only mechanism. Note that the same shear deformation
A, should be imposed on the concrete truss mechanism as well as the steel truss mechanism.

Recalling that cot « = L/jd, equation (4-11) can be rearranged as:

(f - ltanzcr.)2 + tar("cc}2 + [(1 -x_1 tanzcc)2 + tanzaﬂ
L 2 1 2 @-12)

+£,jd(1 +tan’a)

y E b dx

€CTWe

A = 2jdcot*e. _‘_15{

where « = corner-to-corner diagonal angle of the variable angle truss. Then, the column end-

to-end rotation (drift) angle is determined by dividing the shear displacement A, by the column
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length L, thus

2
+

G
E b, . dx

[

_ 2cot’a 4V ]|(x
L 2

(1 _x_ 1 tzmzcz)2 + tanzar}
L 2 4-13)

2
(x - ltanzcc) + tan’a

+ ¢, tan o (1 + tan’a)

Referring to table 4-1 for the axial strain of truss member B-C, dV,/dx can be expressed as:

av
—=< = ¢,E, b, cos’a = f,b, cos’a 4-14)

where ¢, and £, are the principal tensile strain and stress, respectively. It is noted that the full
width of column section (b,) is used in equation (4-14) for concrete tensile tie member B-C
because cracking over the full width (s, + b, + b,,) should be considered for the contribution
of concrete tensile strength. However, only a portion of column width (b,.) is considered in
equations (4-11) to (4-13) for concrete struts (members A-B and C-D) for equilibrium and
. coxflpatibility conditions in compression struts between different mechanisms. The significance
of b, b, and b,, has been mentioned in Section 1. Substituting the expression for dv, /dx into

equation (4-13), the shear deformation can be expressed in terms of stress-strain relation, thus

9 = M { (_’E - ltanza)z +tan2ar +[(l - _'_x_ - .].‘.tanza)z +tan2a]z}
s b L 2 L 2
Ew[ ‘"] (4-15)
w

b,

+ ¢, tan a (1 + tan’e)

Rearranging equation (4-15), a convenient constant can be defined as

C

6, cot & cos’a

2 ficosta cotla
B L 2

2 4-16
(l_ﬁ_lmnza) ”3112“]2}*91 @16

2
% _Liae| +tan%a| +
L 2

It is noted from the first term of equation (4-16) that the constant C for the given shear

deformation is independent on coordinate x. Therefore, the relation of stress f; and strain ¢,
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for concrete in tension acting across and along the crack plane can be defined for the given
constant . Furthermore, the constant C, as a function of f, and e, can be used to determine

the shear deformation ©,. That is, from equation (4-16):

6, = Ctan o sec’e 4-17)

It is also noted in equations (4-15) and (4-16) that the ratio of column width b,. /b, is
introduced. When the column is reinforced only with longitudinal reinforcement and there is
no axial load which means that p, = 0.0 and P = 0.0, the full range of column width becomes
effective, thatis, b, /b, = 1.0. In all other cases, the ratio b, /b, should change instantaneously
with shear deformation in proportion to ¥, /v, to maintain the equilibrium and compatibility
conditions, in which v, = v,+¥_+V,. In defining the column shear force and deformation
relationship due to the contribution of concrete only mechanism, two equations are considered
for concrete tensile stress-strain relationship: Popovics equation for the nonlinear descending
branch model and Menegotto-Pinto equation for the linear descending branch model. The
analysis can be performed by hand-calculation using the spreadsheet or implemented into the

advanced computer analysis program.
4.2.1 Nonlinear Descending Branch Model

Substituting Popovics equation given in equation (4-4) into equation (4-16) for f, and

rearranging,

2cos‘a cotla {[(—E - -;-tanza)z + tanzoc}2 + [(1 -£- -;- tanzoz)2 + tanzar}

[bm) { (E ] (” @19
— 1 + -1ll—
bw Esec e:

in which E_=E, is the modulus of elasticity of concrete struts and r and E__ are defined in

C=¢g]1+

equation (4-4). The concrete tensile strain profile along the crack plane is then obtained from

equation (4-18) in terms of the longitudinal coordinate x, thus
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= 9
g =

1 2

L L 2 (4_19)
bwc Ecc £y i
il o+ - 11—
bw Ew: e,/

Since for a given shear deformation, C is constant through the column length [see equation (4-

16)], € can be determined by any value of x. Taking x/L = 0.5 where the maximum concrete

tensile strain is expected (see figure 2-12), € can be defined in terms of the maximum strain
ep ", that is,

, 4-20)
_I—aﬁ 1+ E, _q e
bw Esec 8/
t

Substituting the constant € in equation (4-20) into equation (4-19), the ratio of the

concrete tensile strain e, of any location x to the maximum concrete tensile strain 7™ at column
center can be calculated as

1 +
r
81 _ bw Esw 8:
— =
4 4 x 1.,V 2 x 1.,V 2
2costa cot®a V|| = - —tana | +tan‘e| +|[1 - = - —tan®a| +tan‘o
L 2 L 2
bw Em 8:

Therefore, for a chosen £, the principal tensile strain profile ¢, along the column length can

4 cos'o cot“cc[% (1 -tan’a)? + tan"’ct}2

@-21)

1+

be determined. However, some iterative procedure is required since ; is also a function of
itself.
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4.2.2 Linear Descending Branch Model

Substituting Menegotto-Pinto equation given in equation (4-9) into equation (4-16) for f

and rearranging,

C=e 1+2cos“czcot“az 0+ 1-Q [

_J_f__l 22+ 2 _5__1 22+ 2
R B O | .

in which E_, = E_ is the modulus of elasticity of concrete struts and Q is defined in equation (4-
9). The concrete tensile strain profile along the crack plane is then obtained from equation (4-

22) in terms of the longitudinal coordinate x, thus

81=

1 + 2cos*acotie [Q . 1-Q H(i‘, - lmza)z + t::mzlvc]1 +

)

Taking x/L=0.5 where the maximum concrete tensile strain is expected (see figure 2-12), the

1 X _ ltan2 2 . 2
——L- 5 [+ tan“¢ (4-23)

constant C can be defined in terms of the maximum strain ™, that is,

4 ot
C =™ 1+4cosaoota[Q+ 1-Q -l-(l—tanza)2+ta.n2a
L ||4 @-24)

1 bt

t

Substituting the constant C in equation (4-24) into equation (4-23), the ratio of concrete tensile

strain ¢, of any location x to the maximum concrete tensile strain e}** at column center can be

calculated as

1+ 4cos'a cot'a -Q + 1-Q [% (1 - tan?a)? + tanzar

@-25)

1+ 2cos*a cot'a 0+ 1-Q {

o
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4.2.3 Solution Strategy

Equations derived through subsections 4.2.1 and 4.2.2 are to build up the profiles of
concrete tensile strain and stress acting across and along the corner-to-corner diagonal crack

plane. The following calculation steps are introduced for this purpose:

Step 1 Choose 1™ .
Step 2 For all locations of x, calculate e,/e]™ using equation (4-21) for nonlinear

descending branch model; equation (4-25) for linear descending branch model.

Step 3 Calculate ¢,(x) for all locations of x, where e, = e7™(e,/e}™).
Step 4 Return to Step 2 until converged.
Step S Calculate f(s,(x)) for all locations of x using equation (4-4) for nonlinear

descending branch model; equation (4-9) for linear descending branch model.
Step 6 Repeat Steps 1-5 for increasing values of 7.

Step 7 Plot ¢, vs. f, for a given «.

Figures 4-4 and 4-5 present the concrete tensile strain and stress profiles for nonlinear
and linear descending branch models, respectively, with value of b,_/b, = 1.0, acting across and
along the diagonal crack plane. As an example, f/=30 MPa, f =2 MPa , ¢,=0.0002, and
cota = L[jd = 2 (i.e., « =26.6°) are used for the nonlinear descending branch model. For linear
descending branch model ¢, = 0.000067 and e, = 0.00173 are used. The maximum principal strains e3>
at column center is chosen as 0.0002, 0.0004, 0.0006, 0.0008 and 0.001 for demonstration.
The increasing ¢ denotes the increasing column shear deformation @ . It is noted that the
principal strain and stress profiles are changing as ;™ changes. Principal strain and stress
profiles are symmetrical about column center along the column longitudinal axis. Also noted
is that the peak stresses are moving outward as ;™ increases. Note that the similarity of the
principal strain and stress profiles between nonlinear descending branch model in figure 4-4 and
linear descending branch model in figure 4-5. Principal stresses of the linear descending branch
model degrade more rapidly than those of the nonlinear descending branch model as expected

from the concrete tensile stress curves presented in figure 4-1. Because of the effect of
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Figure 4-4.  Concrete tensile strain and stress profiles using nonlinear softening model for
f{=2 MPa, €/=00002, L{jd=2 and b, [b, =10.
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Figure 4-5. Concrete tensile strain and stress profiles using linear softening model for
f/=2 MPa, ¢/=00002, L/jd=2 and b, [b, =10.
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exponential parameter in equation (4-9), the peak stresses of the linear descending branch model

are slightly less than f/. Also noted is that the strains at peak stresses between two descending

branch models are different from each other.

The limit of effective zone noted in figures 4-4 and 4-5 is introduced to consider the
effect of flexural cracking at the critical region which is usually the disturbed region (so-called
D-region). There are shaded triangular parts in a column at both ends shown in figure 4-3. If
concrete tie member B-C is located within this region, it is considered that because of flexural
cracking along the column end, there will be no proper anchorageb existing to maintain the
concrete tie strength. The same problem is expected to exist at the free end zone, too. Those
shaded triangular end regions, either of fixed or free, become ineffective on the strength of
concrete only mechanism. Therefore, the only effective zone will be considered for the column
shear resistance in the following discussion. By the column geometry and corner-to-corner

diagonal angle a, the effective zone is estimated as

L = jd(cot o« - tan &) = L(1 - tan’ex) (4-26)

4.3 Numerical Solution of A Variable Angle Truss for Concrete Only Mechanism

To obtain the column shear strength ¥, due to concrete tensile strength effect, it is
necessary to integrate the principal stress profiles shown in figures 4-4 and 4-5 over the effective
length of the column given in equation (4-26). For this purpose, equation (4-13) is rearranged

for differential shear force dv,:

—=={8, - ¢, (0 tana (1 + tan’ a)}
av, = dx @-27)

2 2
X _linta) +tanel + 1-%_1pe) +tan?e
L 2 L 2

The column shear strength v, is then calculated by integrating equation (4-27) along the effective

region of the column length. Normalizing x with respect to column length L = jdcota,
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Ecc bwcjd {es
_ fl - 0.5tn?e 2 cot?

0.5tan’e
1.,V 2 1., Y 2
x——2—tancc +tan“af + 1—x——2—tana +tan” o

Using the numerical integration schemes such as Gauss quadrature or Newton-Cotes closed

- g, () tana (1 +tan’ e}

dx 4-28)

c

formulas discussed in subsection 2.2.4 for the solution of a variable angle truss due to steel

mechanism, the column shear strength v, given in equation (4-28) can be expressed as

05w, E,b,, jdtan’a {8, - e ,(x)tane (1 +tan’a)}

N
ZDY

i=1 . 1 2 _ 1 2 2
(xi——z—ta.nza) +tan®q| + (1 —xi——itanza) +tan®q

where N = number of numerical integration points considered, », = numerical weight factor

4-29)

and x, = normalized coordinate of i* numerical point for concrete only mechanism. The values
of these parameters with the truncation error for each numerical integration scheme are presented
in table 4-2. It is noted in tables 2-3 and 4-2 that the numerical coordinates (x;, and x,) and
weight factors (v, and ©,) between steel mechanism and concrete only mechanism are not

coincided with each other.
4.4 Analysis of A Truss Model with Two-Point Gauss Quadrature

Since the two-point Gauss quadrature is reasonably accurate and simple enough to handle
as discussed in Sections 2 and 3, the generation of column shear force and deformation
relationship due to the contribution of concrete tensile strength can be accomplished using this
numerical integration scheme. The column shear force given in equation (4-29) can be rewritten

for the two-point Gauss quadrature, thus

_05E_b, jdtan’a(l -tan’a) {8, - ¢, (x,) tana (1 + tan’ )}

[(1 - tan?a’x? + tan? u]z + [(1 -tanza)z(l -xf ta.uzoc]2

(4-30)

Rearranging equation (4-30) with respect to @,
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Table 4-2. Numerical scheme parameter values for column shear strength due to a variable
angle truss model for concrete only mechanism.

Numerical Schemes N i x, ®, Truncation Error
Gauss 2-Point 2 1 %, +(05-x))tan’a 0.5(1 - tan®a) A G)
2 1-x, -(0.5-x)tan’e 0.5(1 - tan’a)
Gauss 3-Point 3 1 x; +(05 -x,)tanle, 5(1 - tan%e)/18
— tan? 1 _r®
2 0.5 8(1 - tan’a)/18 et A3
3 1-x -(0.5-x)tan’ 5(1 - tan?a) /18
Simpson’s 1/3 Rule 3 1 0.5 tan’e (1 -tan’a)/6
—tan2 -1 @
2 0.5 4(1 -tan’a)/6 ) @)
3 1-05tan’y - (1 - tan’a) /6
Boole’s Rule 5 1 0.5 tan’a 7(1 - tan?e) /90
2 0.25 +0.25 tan’c; 32(1 - tan?«) /90
- tan? 1l _r®
3 0.5 121 - tan’a) /90 i L O®
4 0.75 - 0.25 tan’e. 32(1 - tan’a) /90
5 1-05tan’e 7(1 - tan?e) /90

Note:  x, = 0.2113249 is the first numerical integration point of Gauss truss for steel mechanism. Refer
to table 2-3.

e = el(J—cl)tana(l + tan’a:)

2V, cotla rer - . @-31)
+ E b jd(l—tanza){[(l—tan ) x; + tan a]z +[(1—tan a) (1 -x,) +tana]2}

in which e, (x)) is the principal tensile strain of column concrete at coordinate x, in the two-point

Gauss quadrature which denotes the average tensile strain e7° over the diagonal crack plane.
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4.4.1 Average Strain and Average Stress of Concrete in Tension

The average principal strain and stress may be calculated by integrating the strain and

stress profiles shown in figures 4-4 and 4-5 over the effective column length as presented in
figure 4-6. Thus

avg 1 1-05tan’e -
o= [0S o @) dr é-32)
g _ 1 1-05tan’a :
U = s Josane e @) @-33)

where x is the normalized coordinate along the column longitudinal axis. The solution strategy
of equations (4-32) and (4-33) is readily available in subsection 4.2.3. The calculated average
principal strain and stress profiles are presented with solid straight lines in figures 4-7 and 4-8

by overlapping over the original profiles shown in dashed curves which are identical to those

profiles presented in figures 4-4 and 4-5.
4.4.2 Gauss 2-Point Truss Model with Inclined Ties

The average principal strain and stress can also be obtained by performing the analysis
of Gauss 2-point truss model. Also obtainable using the analysis results is the column shear
force and deformation relationship due to concrete only mechanism. For this purpose, consider
a truss model with inclined ties and corresponding struts shown in figure 4-9(a). The truss
model is proportioned according to the two-point Gauss quadrature and the effective zone only
is considered. Member forces determined by the static equilibrium at each joint are also
presented. The inclined ties represent the concrete tension field lumped at the modified Gauss
points x, and x,, due to ineffective zone, where the average component responses are expected.
The diagonal struts represent the concrete compression field stabilizing the truss model. Also
important is to maintain the equilibrium and compatibility conditions in diagonal struts between
steel mechanism and concrete only mechanism. For this purpose, the effective column width

b,, for concrete only mechanism is used and is expected to change instantaneously in proportion
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to the ratio of v,/ V¥, in which v, = V,+V, +V,. For consistency, struts and ties are numbered
in the same fashion as the two-point Gauss truss model with perpendicular ties for steel
mechanism shown in figure 2-8. It is thought that the effect of concrete tensile ties on the
longitudinal flexural elements is less than that of transverse steel since concrete in tension has
the descending branch and the anchorage of concrete tensile ties will degrade as deformation
increases. As noted in Section 2 for the Gauss 2-point truss for steel mechanism, the shear
transfer mechanism is not affected by column end condition. The shear deformation of the truss
model with inclined ties is determined using the Virtual Work method and the analysis is
presented in table 4-3. Strut sizes are not yet known so that they are expressed with unknown

factors a, and a,, but they will be determined later.

[N

Table 4-3.  Shear deformation of the Gauss two-point truss model with inclined ties for

concrete only mechanism.
Member Force Unit Length Rigidity Strain Ffl

F f 1 EA e=F|EA EA
(;/) +V, +1 jd 1 -2sin’e +V,tana V, tano
(®) 2cosa | 2¢ose | cosa 2simna | o | EA(-2siPa) | 2Eb,costa(l -2sia
(9) - Vc __1 .Li_. 4, EccAv ” Vc Vc
(12) 2sing, | 2sin6; | sin®, 2a,E, A sin6, 4E_b,_a, sin’6,
(10) -V, -1 jd a,E A, -V, v,
11 2sinG, | 2sin6, | sind, 2a,E, A sin6, 4E, b, a,sin’0,
Note: Refer to figure 4-9(a).

sin6, = tang ) sin®, = tana
\/(1 -tan?a) x? + tana {1 -tana)? (1-x,} + tan’

The shear deformation of the Gauss 2-point truss model with inclined ties is the sum of

component deformations. Recalling that cote = L/jd, the column shear deformation is
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4-34)

oy id_ V, jd cot’a [(1 ~tan?a)’ x7 +tan2a]2 . [(1 -tan’a )’ (1 -x,)? +tanzoz]2
' cosa 2E A,

al‘/(l -tar’a )’ x; + tan’o az\/(l -tan’a)’ (1 -x,)? + tan’a

in which the average strain £7* is used for the strain of the inclined ties located at two Gauss
points x, and x,. The shear strain (rotation) is then determined by dividing the shear
displacement by the length of the truss model. Rearranging the resultant equation in a form

similar to equation (4-31),
8, = ¢1* tane (1 +tan’c)

2V, cotfa (1 —tanza)[(l -tan?a)? x2 + tanzcz]2 . (1 —tanza)[(l -tan"’a)z(l —x,f tan2c4z];2

+

] 4-35)

EccAv(l _tanza) 4a1 J(l —tanza)z x,2 +tan?a, 4az\ﬂ1 "tanZa)z (1 _xl)z + tan’e,

By comparing equations (4-31) and (4-35), the effective sectional area factors a, for diagonal

struts can be obtained. Thus

2
a = 1 - tan"a [b_wc] (4-36)
4\/(1 - tan? ) x7 + tan o b,

where x, is the Gauss node location for steel mechanism defined in table 2-3. Then, the axial
rigidities of the diagonal struts of the Gauss 2-point truss model with inclined ties in figure 4-

9(a) are determined by

w

05w, b — tan? b
(EA),, = had ECCAV(__WE) o 025(-wmte) g Av(—"'f] @37
‘/(E,. —0.5wn2a)2 +tan’a ‘/(1 —tan?a)? x” + tan’ e :

where x, and o, are the Gauss node location and weighting factor for concrete mechanism
available in table 4-2. The corresponding compressive stress in i diagonal strut is obtained

from table 4-3, thus
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-2V {1 - tan? )’ x? + tan’ «
Jfoio = E &y = C{ - }

Av[l;—“]tana (1 - tan® )

w

(4-38)

Note that the location of i* diagonal strut is depicted in figure 4-9(a). It is assumed that
diagonal struts of the truss model behave linear-elastically. Therefore, the amplitude of axial

stress in the diagonal should be checked over the column response. .

Note from table 4-3 that the average strain ¥ in the inclined ties is expressed as

v
e = ctane (4-39)
E_A (1 -2sin’a)

ct Ty

Substituting ¢; and €7 into equation (4-35) and rearranging, the cracked elastic stiffness of the

concrete mechanism can be calculated, that is,

K - cos*a cot?a (1 - tan’a) E_A,

SC

b, (4-40)
1+2costecot'a (—b——] {[(1 - tan?a)? x7 + tan? a]z + [(1 - tan? o) (1 - x,)? + tan? ar}

we
in which E_=E, =E_ is assumed within the elastic range and 1 - 2sin?« = cos?a (1 -tan?a).

Using equation (4-39) the column shear force can be expressed in terms of the average

strain €7 as well as the corresponding stress £ in the inclined ties, thus, recalling that

A,=b,jd,

V, = E,e® A, cota cos2a (4-41)

(4

V, = f{ ¥4, cota cos2a (4-42)

Substituting v, given in equation (4-42) into equation (4-31) and replacing e,(x,) with 7%, the

column shear deformation becomes
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6, = ¥ tana (1 +tan’a)

2f ™ cot’a cos?a

+ - @ O
E cc|
bw

Now, the average principal strain and stress relationship is readily obtained. Two different

{[(1 -tan’a) x; + “’nz‘"]z * [(1 -tanza)z(l —x,f + tanza]z} @43

material models are investigated in what follows.
4.4.2.1 Nonlinear Descending Branch Model

Substituting Popovics equation given in equation (4-4) into equation (4-43) for f™ and

rearranging for 7%,

6, cota cos’a

2 T(ax) cos*a cotta
- (4-44)
Picy B ey IS DRI Capu 3 | DU
bw Esec 8/
t

in which T(a) = [(1 -tan’e)}’ x] + tan’a] + [(1 -tan?a)’ (1-x,? + tan’a] and parameters such as £, and

1 +

r are defined in equation (4-4). The corresponding average stress can be obtained by equating
equations (4-30) and (4-42), thus

05E_(b,, ]
= @ (b—w]tan%c(l +tan2¢zz){9s - e7%tana(l +tan2a)} (4-45)
Substituting £{* into equation (4-4) is expected to give the same result as equation (4-45). It
is noted that the solution of equation (4-44) requires some iterative process since 7 is a

function of itself.
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4.4.2.2 Linear Descending Branch Model

Substituting the Menegotto-Pinto equation given in equation (4-9) into equation (4-43) for

£ and rearranging for %,

2
o _ 6_cota cos“a

£ =

1+ 2T cos*a cotta . 1-Q
Q o1 (4-46)
[”_»r] B o) ®
b Laf—o
” £

in which constant T(e) is defined in equation (4-44) and parameter Q is defined in equation (4-
9). The corresponding average stress £, can be obtained by equation (4-9) or (4-45). Equation

(4-46) requires some iterative process for solution.
4.4.3 Conversion into Gauss 2-point Truss Model with Perpendicular Ties

The Gauss 2-point truss model with inclined ties discussed for concrete only mechanism
can be converted to the one with perpendicular ties by modifying properties of the concrete ties.
This enables the steel mechanism (¥,) and concrete only mechanism (v,) for shear resistance to
be considered together using the geometrically identical truss model, which allows combined
computational modeling of reinforced concrete columns for shear to be feasible. For this
purpose, consider the Gauss 2-point truss model shown in figure 4-9(b). This truss model is
identical to the one shown in figure 2-8 used for the steel mechanism with the exception of
rigidity of transverse ties and applied shear force. The column shear force Vv, instead of vV, is
applied and transverse ties represent the lumped concrete tension field projected from the
principal direction instead of the lumped transverse steel. Considering the effective zone only
[equation (4-26)], the shear deformation of the truss model with perpendicular tieé is determined

using the Virtual Work analysis method as presented in table 4-4.
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Table 4-4.  Shear deformation of the Gauss two-point truss model with perpendicular ties for

concrete only mechanism.

member | Force Unit | Leng. Rigidity Strain Ffl
F f I EA £=F/|EA EA
0 Y W1 jd E_A (cota -tanc) +V, v, id
®) 2 2 2 E_A,(cota ~tanc) 2E_A (cota —tana)
® -V, -1 jd 025E,b,. jd 7.2 N )
—_— = T e wer 2V tan' V.jd tan’

(12) om6. | 2sin® | sind, — B2 i it T YT Than e

1 x; +tan‘a E_ b, jdsin®, E_b,, jdsin361
(10) e -1 Jd 025E.b,.jd 2V, (1 -x,)* + tan’e. vV, jdy(1-x) + tan’a
(11) 2en6. | 2sn® | sn6, 7 2Con) S %)

2 \/(1 -x) + tan’e: E_b,, jdsin6, E,b, jdsin’0,
Note: Refer to figure 4-9(b).

sinb =——L 5 sing,- 1

J1+x7 cot?a 1+(1-x,)? cot’a

The shear deformation of the Gauss 2-point truss model with perpendicular ties is the sum

of component deformations. Thus

S,
= @-47)
=g, jd + E—bi%—gt: {[1 +x} <>otzaz]2 + 12y cotza]z}

cc T we

where the asterisk mark (*) in superscript denotes that the corresponding response is for the
converted Gauss 2-point truss model with perpendicular ties. The shear strain (rotation) is then
determined by dividing the shear displacement by the length of the truss model. Recalling that

L=jdcota,
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oy (4-48)

= g tana + < {[1 +x? cotzoz}2 L+ (1-x)p cotzaf}
E Av(-bbﬁ] cot’e

cc
w

From table 4-4, the column shear force can be expressed in terms of the average strain ¢; and

the corresponding stress £ in the perpendicular ties, that is, recalling that A, =b jd,
V, = E,e; A cote (1 -tan’a) (4-49)
V, = f; A, cote (1 -tan’a) (4-50)

Substituting v, given in equation (4-50) into equation (4-48), the column shear deformation

becomes

. . 2/ tan (1 -tan’a) {[l +x? cotzoz]2 + L+ (1-x) °°t2°‘]2} (4-51)

In order to compare the behavior of the truss model with perpendicular ties to the truss
model with inclined ties due to concrete mechanism, the stiffness must be the best measure.

From equation (4-49) the average strain of the perpendicular tie is obtained as

| 4
el = L @-52)
E_A cota (1 -tan’a)

Substituting e; into equation (4-48) and rearranging with E_=E_= E_, the cracked elastic
stiffness of the truss model with perpendicular ties due to concrete mechanism can be calculated,
that is,
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. cot?e (1 ~tan’a) E A,
K =

1+2(1-tan’a) (?) {[1 +x} cotzec]2 1 (-x) cotza]z}

we

(4-53)

For the comparison, normalizing K to Kk, in equation (4-40) gives the ratio of cracked elastic

stiffness of the truss model with perpendicular ties to the one with inclined ties, that is,

*

bw 2 2 2
1 +2 cos*a cot'a [—b——] {[(1 ~tana ) x| + t,anzcz]2 + [(1 -tan’e) (1 -x,)? + tanza]z}

>

— wce

(4-54)

e

2}

[1 +2 (1 -tan’e) [—bt-’i] {[l +x} cotzoz]2 [t (1-x) cotzaf} costa

we

The stiffness ratio K /K, given in equation (4-54) is plotted in figure 4-10 taking « =6 for
b, /b,= 0.25,0.5,0.75 and 1.0. It is noted that the amplitude b, /b, does not seriously affect
the stiffness ratio. That is, for the range of practical crack angle considered to be 15°-35°, the
stiffness ratio shows very narrow difference over largely varied values of b, /b,. However, it
is noted that within this variation of crack angle, the cracked elastic stiffness ratio varies between
0.7 and 1.0. This denotes that the two-point Gauss truss model with inclined ties for concrete
only mechanism can not be perfectly converted to the one with perpendicular ties. Therefore,

when the truss model with perpendicular ties should be used, it should be used with caution.
4.4.4 Solution Strategy for Column Shear Force and Deformation Relationship

The generation of column shear force and deformation relationship is readily obtainable
but is limited to the truss model with inclined ties discussed in subsection 4.4.2. Note that the
corner-to-corner diagonal angle « is usually not the same as the crack angle 6. Therefore, for
shear analysis, the crack angle 6 should be used for « in equations. The step-by-step solution

procedure is as follows:

Step 1 Calculate the crack angle 6 using equation (2-69) and put & = 6.
Step 2 Choose column shear deformation 8.
Step 3 Calculate the ratio of effective column width b, /b, .
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Step 4 Calculate the average principal strain €7 using equation (4-44) for the nonlinear
descending branch model; and equation (4-46) for the linear descending branch

model. Repeat this step until converged.

Step 5§ Calculate the average principal stress £, using equation (4-45).
Step 6 Calculate column shear strength V. using equation (4-42).

Step 7 Return to Step 3 until converged.

Step 8 Repeat Steps 2-7 for increasing values of 6.

Step 9 Plot ® vs. V, and £ vs. £%.

4.5 Conclusions

The effect of concrete tensile strength on column shear force and deformation relationship
has been discussed in the present section and the findings from the study are summarized in the

following:

1. Concrete tensile stress and strain relationship has been formulated using the Popovics
equation for the nonlinear descending branch model and a softening bilinear form of the
Menegotto-Pinto equation for the linear descending branch model. For the linear descending
branch model, the ultimate tensile strain at which no more concrete tensile strength can be
expected has been determined by considering the fracture energy capacity. As a result, the
corresponding column response shows more brittle property as compared to the nonlinear

descending branch model.

2. A variable angle truss model may be used for the concrete only mechanism from which
the concrete principal tensile strain and stress profiles along the diagonal crack plane have been
obtained. The average values of principal tensile strain and stress can be obtained by integrating
those profiles within the effective region of the column length. The effective region has been

defined by consideration of flexural cracking at the critical section.
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3. The solution of the variable angle truss model has been achieved by several numerical
integration schemes. Among them, the two-point Gauss-Legendre quadrature and the
corresponding simplified truss model with inclined ties have been extensively investigated. The
location of Gauss points for the truss model with inclined ties are different from those for the
truss model with perpendicular ties used for transverse steel mechanism. Using the Gauss two-
point truss model with inclined ties, the concrete average principal tensile strain and stress as
well as column shear force and deformation relationship have been obtained. It has been shown
that for convenience in analysis, the Gauss truss model with inclined ties can be converted to
the truss model with perpendicular ties with an acceptable degree of accuracy. However, the
column shear strength due to concrete truss mechanism may be properly accounted for by

adjusting concrete tensile strength proportionally based on the stiffness ratio shown in figure 4-
10.
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SECTION 5
AXIAL LOAD EFFECT ON COLUMN SHEAR STRENGTH

5.1 Introduction

The column axial load is considered to be transferred from the corner of one end of the
column to the corner of the other end through a compression field formed along the corner-to-
corner diagonal when the column is subjected to the lateral displacement as shown in figure 5-
1(a). This phenomenon can also be obserVed by performing the ACI style (ACI, 1995) flexural
analysis on column sections along the length of the column. The axial load transferring action

through the corner-to-corner concrete strut is termed as the "arch action" or "strut action”.

There are some examples utilizing this mechanism in estimation of the member shear
strength. Paulay (1971a,b) and Watanabe and Ichinose (1992) used the arch action mechanism
in calculation of beam shear capacity. Paulay, in particular, attempted to relate the shear force
and deformation due to the arch action. However, Paulay’s arch action was not for the axial
load transfer mechanism but resisted against the lateral deformation of coﬁpling beams by the
axial deformation of the corner-to-corner diagonal strut. Priestley et al. (1994c) showed the
enhancement of column shear strength with the coiumn axial load via the arch action using a
Watanabe and Ichinose-like model. However, these previous models do not provide an overtly
clear understanding for the corner-to-corner diagonal strut mechanism and the relationship of

shear force and deformation due to arch action.

The corner-to-corner diagonal compression field can be idealized as a concrete diagonal
strut presented in figure 5-1(b) for columns with fixed-fixed and fixed-pinned ends. The shape
and dimension of the diagonal strut has been determined based on the postulated compression
field in figure 5-1(a) and Paulay’s assumption for his coupling beam study (1971a,b). The axial
load P is assumed to apply to the flexural compression block at the fixed end of the laterally
deformed column while 0.5 P is to be evenly applied to both sides of the pinned end. Note that

there is no way in the arch action mechanism to relate the corner-to-corner diagonal angle « to
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Figure 5-1. Axial load transferring mechanism - arch action.
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the crack angle 6.

There may be two possible approaches in modeling the axial load transfer mechanism
through the corner-to-corner diagonal strut: i) ¥, only mechanism; and ii) ¥, +V, combined
mechanism, in which v, is a portion of column shear resistance due to the applied axial load and
v, is due to the effect of concrete tensile strength. The ¥, only mechanism consists of a single
corner-to-corner diagonal strut and hand-analysis is feasible for this mechanism. The v, +V,
combined mechanism (which is discussed in more detail in subsection 5.3) includes a tie element
to take the effect of concrete tensile strength into account and the calculation of member forces
are complicate enough to have to use computer analysis. In the present study, the ¥, only
mechanism is extensively investigated to obtain the column shear force and deformation

relationship.
5.2 Analysis of v, Only Mechanism

The mean section area of the corner-to-corner diagonal strut in figure 5-1(b) can be

estimated by

Ap = I 1,52 -1 (5-1)
2cosa | b, jd

where b,, given in equation (1-8) is a portion of column width effective for shear resistance due
to the axial load transfer mechanism and « is the corner-to-corner diagonal angle. There may
be three stages in defining the action of the corner-to-corner diagonal strut: i) initial stage; ii)

loading stage; and iii) rocking (releasing) stage.
5.2.1 Initial Stage

The initial stage is represented by the state that no lateral deformation is yet imposed
which means that ¥, = 0. The axial load P at this stage is supported exclusively by the column
longitudinal elements only. Figure 5-2(a) describes the state of the initial stage. It is noted that

the axial load P is assumed to evenly distributed to both sides of the column section.
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5.2.2 Loading Stage

In the loading stage the shear resistance Vv, increases up to the incipient rocking stage in

which the theoretically possible maximum V, is

(V )m = Ptana  for fixed—fixed ends (5-2a)

P,

¥, )m = 0.5Ptane  for fixed-pinned ends (5-2b)

P

The increase of v, is attained by the axial deformation of the corner-to-corner diagonal strut.
The column response at the loading stage can be estimated by performing the Virtual Work
analysis method on a single strut truss model shown in figure 5-2(b). The rigidity of
longitudinal member is assumed to be infinity to remove any possible interaction with flexure.
Then, assuming the linear elastic behavior of the strut, the lateral displacement of the column

using the truss model is calculated by

e o
A, = Ffl _ \sinaj\sina)\cosa) _ 2vV,L 53
EA E A, b R
E A, (1.5._ -1)sin2a
b, jd

in which the strut section area 4, is given by equation (5-1). The corresponding column shear

rotation (drift) angle is

A 2V

@ = ¢ = p
s L b (5-4)

EA|>2|(152 - 1)sina
b, jd
Then, the shear stiffness for rotation due to column axial load transfer action is
vV b
Ko = -2 = 05E.4|-2|(152 -1}sina -5)
P e, b\ jd

At this juncture it is appropriate to determine the incipient rocking point in figure 5-2(d). The

column shear resistance at the moment of incipient rocking is calculated by
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e (5-6)

in which v, and @, are the column shear resistance and deformation at incipient rocking. The
same shear resistance should be obtained by consideration of overturning moment equilibrium,

that is,

Vy = P(tane -8, ) for fixed-fixed ends (5-7a)

pr
Ve = 05P(tana -8,)  for fixed-pinned ends (5-7b)

The column shear strain at the moment of incipient rocking can be obtained by equating
equations (5-6) and (5-7), thus

tana

Opr = X for fixed-fixed ends (5-82)
1+ _r8
oy = —%—;e Jor fixed-pinned ends (5-8b)
1+ —P5
P
Substituting equation (5-5) for K,, into equation (5-8) and rearranging,
tana
Gpr = ) Jor fixed—-fixed ends
0SE A, (1.5 — - 1) sin’ b (5-9a)
1+ Jjd (_wr;
P \ &,
tan o .
6, = > Jor fixed-pinned ends
E_A, (1.5 — - 1) sin?a b (5-9b)
jd wp '
1+ .
It is usual that the column axial load P can be expressed in the relationship:
P=1y f: A (5-10)
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where A, =b,D is the column gross section area. It is noted that ¢ < 0.2 in most short to
medium span bridge pier columns. Generally, the modulus of elasticity of concrete E_ can be

approximated by

E, = 1000f] (5-11)

Thus substituting equations (5-10) and (5-11) into equation (5-9) and recalling that 4, = b, jd,

the column shear deformation at the moment of incipient rocking becomes

e, = tan o for fixed-fixed ends
A,)(b D (5-12a)
1+ (@)sm% Zol|2e (1.5——1)
¥ A\ b, jd
8, = tano for fixed-pinned ends
. A - (5-12b)
1+ (looo)sinza Al o (1.52~1)
¥ AN b, jd

5.2.3 Rocking Stage

In the rocking stage, the axial stress stored in the corner-to-corner diagonal strut is
released. Accordingly, the column shear resistance ¥, also decreases down until ¥, = 0 as
column shear deformation @, increases. This can be achieved by reduction of the distance z as

shown in figure 5-2(c). Therefore, the column shear resistance at this stage is calculated by

V, = Ptane -8))  for fived-fixed ends (5-13a)

v, = 0.5P(tana -8) for fixed-pinned ends (5-13b)

Figure 5-2(d) presents the whole response due to the action of arch mechanism for the axial load

transfer. When @, = tane, there will be no more shear resistance due to arch action.
5.2.4 Analytical Model for v, Only Mechanism

Since the action of arch mechanism shown in figure 5-2(d) is bilinear, it can be expressed
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using the Menegotto-Pinto equation. Thus

1-
Vp:eresQ-l-—-—_——Q___

{ 0 12 0.05 (5-14)
1+]—=
[eprJ

V -8
where Kgo=-2F and Q= —12
e, tane -6

Note that the increase of v, also causes the axial stress in the corner-to-corner diagonal
strut to increase at the loading stage. Therefore, it is necessary to make sure that the diagonal
strut has an appropriate section size to successfully transfer the applied column axial load P.

The compressive axial stress in the corner-to-corner diagonal strut is calculated by

£ - Vp/sina _ —2Vpcota
¢ A, 5 (5-15)
Af|l15D2 4
b, jd

5.3 v,+v, Combined Mechanism

Figure 5-3 presents the v, + ¥, combined mechanism model. This model consists of one
longitudinal element, diagonal struts and inclined tie(s). This model is considered most adequate
for the analysis of transversely unreinforced concrete members in which v, = 0. However, the
calculation of member forces at each column deformation step is difficult to perform by hand-
analysis. Moreover, since this model includes several load transfer mechanisms together,

computational modeling may be required and further study is necessary.
5.4 Conclusions Arising from the Analysis of v, Mechanism
The axial load effect on column shear force and deformation relationship has been

discussed in the present subsection and the findings from the study are summarized in the

following:
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1. The mean section area of the corner-to-corner diagonal strut has been determined based

on the postulated compression field. It is noted that the arch action mechanism for column axial

load transfer has little to do with the crack angle.

2. The strength of arch action mechanism is governed by the amplitude of applied column
axial load and load transfer capacity of the diagonal strut. The column shear resistance increases
up to the moment of incipient rocking by axial deformation of the diagonal strut and then,

decreases with rocking. For this, the linear elastic behavior of the diagonal strut is assumed.

3. Since the action of arch mechanism is bilinear, it may simply be simulated by the

Menegotto-Pinto equation.
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SECTION 6
COMBINATION OF RESPONSES DUE TO SHEAR AND FLEXURE

6.1 Introduction

It has been postulated in Section 1 that the full range of column shear strength is
generated by three mechanisms: i) a transverse steel truss mechanism (¥,); ii) a truss mechanism
that utilizes the tensile strength of concrete (¥,); and iii) a corner-to-corner arch mechanism that
transmits axial load through a diagonal compression field (V,). At the same time, the column
lateral strength is also affected by the flexural mechanism (V,) which provides moment resistance
from two sources: i) moment from the longitudinal steel couple (M,); and ii) moments provided
by the eccentric concrete stress block (,). These two lateral force resisting mechanisms (shear
and flexure) are depicted in figure 1-1 using the spring analogy which is helpful in gaining an
understanding of overall behavior through the combination of the individual mechanisms. Thus
the full range of column shear strength v, can be obtained by summing v,, v, and v, for the
various values of shear deformation ,. Then, the total column strength (V) is determined by
the Weaker mechanism of flexure (V,) and shear (v,), and the total column deformation (8) is
determined by the sum of flexural (ef) and shear (8,) deformations as given in equation (1-5)

after adjusted for v = v, = V,.

3

When combining flexure and shear, an overall column failure mode can be approximately
expected by comparing the strengths of shear mechanisms with the flexural strength. Column

responses may be classified in a conservative sense as follows:

(i) Brittle Shear-Critical,

Ve+Vo+ V] < WV (6-1)

Plmax

(ii) Semi-Ductile Shear-Critical,
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Ve + Vil

Plmax

¥y i,
< V¥ < [VS*VC“Vp (6-2)
(iii) Ductile Flexure;

RN A4

Plmax

(6-3)

where ¥7 = flexural strength at first yielding.

~ In order to evaluate column responses in detail, strength variation with deformation and
interaction between flexure and shear should be considered. For this purpose, this section
presents a methodology to combine flexure and shear responses and application examples. The
methodology can cover all three failure modes mentioned above and has been implemented into
a Fortran computer program ENVELOPE, throﬁgh which a response envelope can be generated.
The present section also demonstrates that the proposed truss modeling technique can be used
to generate not only a monotonic response envelope but also cyclic responses for cyclic loading
of reinforced concrete members. The technique for cyclic response is defined as CIST (Cyclic
Inelastic Strut-and-Tie) modeling in this study and the general purpose nonlinear inelastic
computer program, DRAIN-2DX (Prakash, et al., 1992a,b), is used for analysis purposes. To

begin with, it is important to understand that there is a strength reduction in shear due to several

sources which are described in what follows.
6.2 Strength Reduction in Shear

It is considered that strengths of the three shear mechanisms (v,, v, and Vp) are limited

by interaction with the flexural mechanism (V,), the energy consumed by cyclic loading and/or

stresses in critical diagonal struts.
6.2.1 Interaction between Flexure and Shear

When combining the previously mentioned mechanism responses, it is important to

consider the interaction between flexure and shear and in particular which of the two
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mechanisms to govern the column response at any given deformation. Two important issues
need to be addressed: i) the loss of ¥, due to yielding of the longitudinal reinforcing steel, and

ii) the loss of ¥, and ¥, due to the decay in M, resulting from cyclic loading.

When longitudinal reinforcing steel yields, it is assumed that the initial bond strength is
destroyed which may be the source of anchorage of tension ties in a series of differential trusses
for concrete mechanism (¥,). Therefore, as steel yielding penetrates along the longitudinal steel,
the effective region for v, mechanism will be reduced resulting in loss of v,. Paulay (1971a,b)
showed tensile stress distribution over the longitudinal reinforcing steel when lateral deformation
is impbsed on the tested reinforced concrete coupling beams as depicted in figure 6-1(a). This
phenomenon can also be observed from the plastic analysis of reinforced concrete columns using
the strut-and-tie model. Assuming a quadratic idealization for the nonlinear distribution of
tensile stress along the longitudinal steel, the probable reduction factor for concrete mechanism

(v,) due to flexural yielding may be estimated by

MYV v ¥
r(f) = ( y] = s < 1 (6-4)

in which v} = flexural strength at first yielding, v;* = maximum flexural strength. It is

implied from this equation that the semi-ductile shear failure mode is likely to emerge only in
columns with good confinement, without which the increment rate of the flexural strength cannot

be maintained to make r(f) small enough to cause a further loss of V..

When cyclic loading is applied, the eccentric concrete stress block will decay and the
centroid of the concrete stress block will move toward to the center of the column section as
depicted in figure 6-1(b). At the final stage, when only the residual stress exists in which M, =0,
the flexural lever arm will be jd=0.5D where D is column section overall depth. Then, the

reduced lever arm jd will cause to limit the strength of a corner-to-corner arch mechanism (V).

143



Ty S Tensile Stress

[T
/ L \/// V

— \\\\

Debonded
due to

yielding

(a) Tensile stress distribution over longitudinal steel

\

(b) Effect of cyclic loading on flexural lever arm

Figure 6-1. Factors causing degradation of shear strength.
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6.2.2 Energy Consideration due to Cyclic Loading

The concept of energy consumption is utilized to evaluate the cyclic loading effect on the
strength of transverse steel truss mechanism (¥,). This topic is extensively discussed elsewhere

(Kim, 1996; Dutta and Mander, 1998; Mander, et al., 1998).
6.2.3 Strength Limited by Stresses in Diagonal Struts

The expressions for strengths of three shear mechanisms (v, v, and V,) have been
derived on the assumption that the diagonal strut members behave linear-elastically. However,
since tensile stresses are generated in the direction perpendicular to the diagonal struts, it is
expected that the compressive strengths of diagonal struts are subjected to the corresponding
crack width and accordingly, in some stage, the strengths of those three shear mechanisms

become limited by the strengths of diagonal struts.

Based on the experimental observation on various concrete panel elements, Vecchio and
Collins (1986) suggested an upper limit of compressive stresses in the direction of diagonal

cracks when subjected to shear. The limit is, in terms of the principal tensile strain,

L 1

= = ——— <1 (6-5)
7 08 + 170¢,

Application of this limit to the expressions of v,, ¥, and v, derived from the analysis of two-
point Gauss truss model is straightforward. Rearranging equations (2-25), (4-38) and (5-15) for
V,, v, and v, mechanisms, respectively, after substituting equation (6-5) into them, the strength

limit of each mechanism due to stresses in critical diagonal struts is obtained as

bws

w

2(0.8 + 170 7¥) {1 + (1 -x,? cot’®}

V. <

s
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fl A, (Z—“] tan® (1 - tan?)

(6-7
rihvV, < 4 )
2(0.8 + 170 £7%) {(1 - tan?6)? (1 -x,)? + tan’6}
b D
A [-2Zi[15=-1
v 1.4, [ b, ( jd ) (6-8)
<

© 0 2(08+170 ™ cota

in which x, = 02113249. Note that the longer diagonal strut (£4) . 10 figures 2-8 and 4-9 is the

more critical for v, and v, mechanisms.
6.3 Calculation of Combined Responses

This subsection presents a summary of the solution strategy for the individual strength
mechanisms discussed through the foregoing sections in order to obtain a complete force-

deformation response envelope of a reinforced concrete member by combining flexure and shear

responses.
6.3.1 Step-by-Step Procedures for Combined Response Envelopes

Since procedures for flexure only analysis are readily available elsewhere (Mander, et
al., 1984, 1988a,b; Chang and Mander, 1994a,b), detailed derivation procedures for equations
are not included herein. However, reference can be made to subsections 2.2 and 3.3. Even for
shear-only analysis, the present subsection does not include every single equation for the sake

of brief presentation. Detailed equations should be referred to relevant parts of this report.

Part I Preliminary Calculation for Constants

Step 1 Calculate moments and curvatures at cracking and first yielding, respectively:

/
M,, ¢,, M, and ¢,.
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Step 2

Step 3

Step 4

Calculate effective elastic flexural rigidities before and after cracking: EI,, and

EL,. For this, elasticity and equations (2-29) and (2-34) are utilized.

M, L
EI, = X1 (6-9)
3 A,
for fixed-fixed ends,
El, = —i'EA L’ (6-10)
for fixed-pinned ends,
El, = JE'EA L’ tan’s (6-11)

where L, = M|V, A, = flexural displacement at first yielding, & = 0.5704 for

fixed-fixed ends, & = 1.5704 for fixed-pinned ends, L = column length ande =

corner-to-corner diagonal angle (rad).

Calculate the crack angle 6 using equation (2-69). Note that the corner-to-corner

angle « is used as a crack angle to calculate the shear strength of a cantilever.
n+{——
Py ¢ o, A (6-12)

Determine the ratio of the effective column width for each shear mechanism using
equation (1-8). For this purpose, mechanism strengths are recommended as per

equations (1-1) to (1-4).

by Vo B _ Vo by Y, (6-13)
b, V, b, V, b, V,
V, = V,+V,+V, (6-14)
V, = Ayfyi2 coto (6-15)
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V, = 01yf 4, coto (6-16)

V, = P, tana (6-17)

Note that mechanism strengths in equations (6-15) to (6-17) are suggested for

initial values.

Part II Flexure Only Analysis

Step 1 Choose a curvature ¢ at the column critical section.

Step 2 Calculate moment M and corresponding flexural lateral strength V;.

Step 3 Calculate column flexural displacement A , and drift angle ®,. For this equations

(3-39) to (3-42) and figure 3-3 are utilized.

ML} 1!
B = E " aa MM (M, c2m [ - o c19
3EI, 6M? EI, EI,
A, = 8,(L,-025L,) (6-19)
6, = &,(L./3+L,) (6-20)
M-M .
b -d -l - o 6-21
¢, = ¢-o,-(¢-9,) (My M] (6-21)
L, = |1-22|L > 0 6-22)
pc Mmax <
- 62
L, = 32 | (6-23)
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(6-24)

(6-25)

where A, = elastic flexural displacement and A, =plastic flexural displacement.
Part II1 Shear Only Analysis

Step 1 Choose a column shear rotation angle 8.

Step 2 Calculate transverse tie strain e,, stress f, and mechanism strength V, using

equations (3-33), (3-27) and (3-34), respectively. Repeat this step until

converged.
6, cotb
€& =
-0.05 , .
L 20T @[ () +[1 +szgn(eT-e,))(f B2 - £q = &gl (6-26)
b,. s; 2Ee; .o g~ s;
bw
i - E ¢, +(1+sign(er—s;)](f -E s*)l— e, ~ e
T .05 su sy *
e\ 2 gy ~ €y 6-27)
1+|<
&
V, = A, fTE cot® (6-28)
s

in which

T*®) = [1 +x] o6 +[1 +(1 - x,2 cof?6] ;

x = 02113249 ;
8' - f;v - Esh €n .
¢ Es _Esh ’
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Step 3

Step 4

E_~—¢€
p=E,| =%,
Sh( Jou =1,y ]
sign (eT— e;) =-1 for e;<e; ; and sign(er - e;> =1 for e, >¢; .
Calculate concrete average principal strain e, stress ™ and mechanism
strength ¥, using equations (4-44), (4-4) and (4-42), respectively. Repeat this

step until converged.

8, cotd cos?0

2 T(8) cos*d cot’d

81 =

b T (6'29)
avg
[_bl"’.] 1 +(E° _1]i17
b, E, ]
Ar|te
o= i (6-30)
r-1+ 1
7/
€
V, = f®A, cot (1 -2 sin®) (6-31)

in which

7@ = [P} -] « 1 - wr'ef (1 -5+ o]

£
E = =3 and
€,
r= E.
EC—EM

Calculate column rotational stiffness due to axial load transfer mechanism,
rotational angle at incipient rocking and mechanism strength v, using equations
(5-5), (5-12) and (5-14).
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Ko = O5E,A,

b (1,5 D _\sin (6-32)
b, )\ 7 d

for a column with fixed-fixed ends,

tan o
fz] (b_wp
A\ b,

for a column with fixed-pinned ends,

pr

1+ (500) sin’a
¥

6-33
(1.5 D_ 1) ¢339
d

tan o
O - (6-34)
1+ (looo)sixfa | (1.52 - 1)
A\ b, U7 jd
4 -
v, - k.60 —17Q
o 20]“ (6-35)
1+|=
Op,
-6
h =
where Q wna-6,
Step 5 Adjust mechanism strengths limited by stresses in diagonal struts using equations
(6-6), (6-7) and (6-8).
bWS
iA A, [—b——] cotB (6-36)
V. < Ld

s

2(0.8 + 170 e7¥) {1 + (1 —x,)? cot’6}

b, 5
7l A, [—5;) tan6 (1 - tan®6) 637

rihv, <

2(0.8 +170 ¢7%){{1 - tan’®)’ (1 -x,}* + tan’6}
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Step 6

Part IV

Step 1

Step 2

Step 3

b,, D
v D _
1. 4, bw] (1'5 jd 1) (6-38)

2(0.8 + 170 e7¥) cotax

Vp <

Calculate column shear strength v, using equation (1-6) with consideration of

reduction factor r(f) in equation (6-4).

V, = V,+r(HV, +V, (6-39)

Combination of Responses in Shear and Flexure

Adjust @, or @, so that v, =¥, in which the lesser of v, and v, should be the

base strength.

Calculate reduction factor r(f) using equation (6-4). If r(f) changes from the
value in the previous step, go to Step IIL.5.

MY v Y
r(f) =[ Y) = L] <1 (6-40)
Mm V;m

in which ¥} = flexural strength at first yielding, v/ = maximum flexural

strength.

Calculate combined column strength and corresponding deformation referring to

equations (1-5) and (1-6).

V=V = Vf (6-41)

o = 6-+6 (6-42)

where € = column total drift angle (rad).
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Step 4 Plot v vs. 6.

Step S Go to Step II.1 for next deformation level until the prescribed column maximum

deformation is reached.
6.3.2 Solution Algorithm and Computer Program ENVELOPE

Almost all steps in step-by-step procedures for combined response envelopes presented
in the previous subsection are straightforward to follow. The only step requiring further
explanation is Step IV.1. Adjustment of flexural (@) or shear (@,) deformation for the given
base strength, which is the lesser of ¥, and V,, involves a few cases to consider as shown in

figure 6-2, in which notation i+1 denotes a state that a step of increment in deformation is

imposed after step i . .

The first (v:*' > v!)and second (V"' < v, and av,/36, > 0) cases in the figure can

be considered together. Both cases are pertaining to the elastic shear behavior before diagonal

cracks in concrete advanced. There can be two subcases to consider:

() if vi** > v/, then find €} for v;"' = ¥,

3) 3 i+l i+l
Gi)if v," < ¥

[
S

, then find e}"* for v;*'

in which e!"' and ;"' are respectively shear and flexural deformation at step i+1.

The third case (V}*! < v/ and av,/38, < 0) in the figure is pertaining to the state after

concrete ruptures to form diagonal cracks. This state involves unloading in flexure and the

corresponding flexural displacement can be found as

9}‘,*1 = e} + (V,f*l - V,f) /K, (6-43)

where K, = effective elastic flexural stiffness for drift angle after cracking.
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Figure 6-2. Combination of responses in shear and flexure.
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In order to find ;"' or ©'' in cases 1 and 2, a root finding numerical scheme, the secant

method, which is a modified conventional Newton’s method (Hornbeck, 1975), is used.

Application of the numerical scheme to each solution is as follows:

(i) if V:d > VfHI, then find ei*‘l for V:+l - V;‘d:

AVitl o me - Vu"*l (6-44)
dehl - AVi+l

’ yirt -y (6-45)
de’

8" = o) +ael" (6-46)

DO i+1 i+l . i+l ivl i+l,
(ii) if v,”* < w7, then find @, for v, = v,

+ i+l +1 -
AVl =yt -y (6-47)
goit = AV
—
vt - v (6-48)
de;
i+1 i i+l -
e, = © +de, (6-49)

i+l

Repeat this operation until a¥i*! (difference between ¥;*' and ¥,"') becomes small.

The constitutive laws used for materials are the Tsai’s equation for concrete in
compression and the modified Menegotto-Pinto equation for longitudinal reinforcement (Chang
and Mander, 1994a). For concrete in tension and transverse hoop reinforcement, Popovics and

modified Menegotto-Pinto equations are respectively used as discussed in the foregoing sections.

For transverse hoop reinforcement, the effect of steel embedment in the cracked concrete is
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considered by using the average stress-average strain relationship as suggested by Hsu (1993).
Note that the concept of Gauss-Legendre numerical integration scheme is utilized for not only
shear analysis but also flexural analysis. For shear analysis algorithm, the analysis results of
two-point Gauss truss model are used while 2nd- to 6th-order Gauss quadratures can be

selectively used for the moment-curvature analysis algorithm.
6.4 Application Examples

Examples presented herein are to demonstrate the application of the truss modeling
technique to various reinforced concrete elements. For this, computer programs "envelope" and
DRAIN-2DX are used to produce monotonic response envelopes and cyclic responses,
respectively. However, it should be noted that the strength decay due to the cyclic loading effect

cannot be simulated in the current version of both computer programs.
6.4.1 Response Envelopes Calculated by ENVELOPE

The selected examples include two rectangular sections and three circular sections ranged
from a thin-webbed coupling beam to a large-section-webbed column-cap beam subassemblage
which respectively represent the brittle shear-critical and ductile failure modes. The examples

are:

Coupling Beam Specimen 312 (Paulay, 1971a,b)

Circular Column C5A (Priestley, et al., 1994a,b)

Rectangular Column R5A (Priestley, et al., 1994a,b)

Retrofitted Prototype Pier Subassemblage (Mander, et al., 1996a)
Retrofitted 1/3 Scale Model Pier (Mander, et al., 1996b)

Material and geometrical properties of above specimens for input data are presented in Table 6-1

and parameter values calculated by ENVELOPE for the analysis are presented in Table 6-2.
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Table 6-1.  Input data of ENVELOPE for worked examples to obtain shear-flexure combined
response envelopes.
Items Coupling Circular Rectangular Prototype Model
Beam Column Column Pier Pier
3122 C5A R5A
Geometry
b, (mm) 152 - 406.4 - -
D (mm) 787 609.6 609.6 838 279
L (mm) 1016 2438 1828.8 1791 1320
Cover (mm) 48 20.3 20.3 51 16
End Condition F-F E-F F-F F-P F-F
Section Type Rectangular Circular Rectangular Circular Circular
P (kN) 1.0 591.9 507.3 343+0.824V 59
Concrete
fc’ (MPa) 35.2 35.87 32.42 44.8 56.6
T 3.27 43 4.33 4.045 4.55
K, 1.13 - 1.045 - -
€l 0.0002 0.0002 0.0002 0.0002 0.0002
Longitudinal Steel
Diameter (mm) 23.4 19 19 28.6 9.5
Number of Bars 8 26 22 16 16
Number of Layers 2 - 8 - -
f, (MPa) 316 469 469 407 474
€ 0.015 0.015 0.015 0.005 0.005
E,|E, 0.02 0.02 0.02 0.02 0.02
[ (MPa) 474 703.5 703.5 421 750
g 0.15 0.15 0.15 0.19 0.12
Transverse Hoop
Diameter (mm) 12.8 6.35 6.35 12.7 4.8
Spacing (mm) 102 127 127 305 102
f, (MPa) 285 324.2 324.2 476 268
£ 0.02 0.02 0.02 0.02 - 0.02
E,|E, 0.015 0.015 0.015 0.014 0.03
[ (MPa) 427 486.3 486.3 586 408
g 0.15 0.15 0.15 0.15 0.14
Note:

200000 MPa is used.

0.33\/f (MPa) is used.

1. Modulus of Elasticity for Steel E_
2. Concrete Tensile Stress at Peak f;’
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Table 6-2. Parameter values calculated by ENVELOPE for analysis.

Parameters Coupling Circular Rectangular Prototype Model
Beam Column Column Pier ' Pier
312 C5A R5A Avg. Col.
Geometry
A, (mm?) 119624 291863 247741 551541 61136
A, (mm?) 97584 248602 218322 410891 46072
jd (mm) 642 537.2 537.2 682 227.9
Concrete
E, (MPa) 27885 28148 26760 13387¢ 35360
f (MPa) 1.978 1.996 1.898 2.231 2.508
flfL 0.00348 - 0.00635 - -
Folfes 0.0546 - 0.00994 - -
K, - 1.045 - 1.054 1.031
Steel
E JE, 7.17 7.11 7.47 6.36 5.66
€ 0.00158 0.00235 0.00235 0.00204 0.00237
€1 0.00143 0.00162 0.00162 0.00238 0.00134
A, (mm?) 3440.4 7410.6 6270.5 10278.8 1134.1
P, 0.0288 0.0254 0.0253 0.0186 0.0186
Shear
0 (deg) 37.5 21.3 23.1 27.9 24.3
A, (mm?) 257.4 43.8 63.3 185.5 27.1
P, 0.0166 0.000886 0.00123 0.00115 0.00146
Flexure
M, (kN~-m) 361.3 852.3 809.5 1409.5 61.5
M, (kN-m) 38.5 130.2 128.6 160 7.5
M, (kN-m) 335 647.1 625.4 1003 44.8
K., (kNjmm) 1195 86 205 136 18
K_ (kNJmm) 474 52 104 106 9

*About 04 E_ is assumed to account for the pre-existing cracked status.
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Coupling Beam Specimen 312

The schematic test setup shown by Paulay (1971a,b) and the section of coupling beam
specimen 312 are presented in figure 6-3. The material models used for analysis are shown in
figure 6-4 as an example for all specimens discussed hereafter. The coupling beam had a thin
web and hence, the effect of concrete tensile strength mechanism (V) is expected to be minimal.
The theoretical response of the coupling beam is expected to be governed by the transverse hoop
steel truss mechanism (V,). Note that even though there is no externally applied axial load, a
small axial load is provided for data input in order to avoid any possible numerical error in V,

mechanism.

The analysis results are presented in figure 6-5. The "shear-only” response has been
calculated assuming a rigid flexural response (no flexural flexibility) while the "flexure-only”
response has been calculated assuming a rigid shear response (no shear flexibility). The
experimental response has been constructed by picking several representative data points from
the reported experimental results. Note that the response is governed by the transverse hoop
steel mechanism (¥,) and the contribution of ¥, mechanism is minimal, as expected. Also note
that the strength of shear mechanism is governed by the strength of diagonal struts from the

shear rotation of 0.007 rad.
Circular (C5A) and Rectangular (R5A) Columns

These columns were tested by Priestley, et al. (1994a,b) to study the shear failure mode
of non-seismically designed reinforced concrete bridge columns and the effectiveness of full-
height steel jackets for enhancing the seismic shear strength. Column sections and test setup are
presented in figure 6-6. It is noted that the test setup was designed to provide the fixed-fixed
end condition in which the same magnitude of moment is expected to be generated at top and

bottom ends of columns.

Analysis results of columns before the seismic retrofit is practiced are presented in
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Figure 6-3. Test setup and section of coupling beam specimen 312 tested by Paulay
(1971a,b).
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Figure 6-4. Material properties assumed for the analysis of coupling beam specimen 312
tested by Paulay (1971a,b).
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figures 6-7 and 6-8 for C5A and R5A, respectively. The brittle shear failure mode is predicted
for the columns as shown in experimental results. Note that the predicted response of C5A fits
the experimental observation for displacement while the strength is overestimated by about 15%.
For R5A, the theoretical strength fits the experimental one while displacement is less predicted.
These deviations may be due to the imperfect boundary condition when modeling. In analysis,
fixed-fixed ends are assumed to be perfectly rigid while the actual experimental setup implies

some imperfection.
Retrofitted Prototype Pier Subassemblage

The experimental study was performed by Mander, et al. (1996a) to investigate the
seismic performance of a full-scale prototype cap beam - circular column bridge pier
subassemblage and its retrofit. The pre-retrofitted pier subassemblage was tested under quasi-
static cyclic loading and the failure mode was attributed to the loss of anchorage and joint
strength. The cap beam and joint were repaired and retrofitted by applying concrete jacketing
with prestressing but the column was left without retrofitting. Column reinforcement and test
setup of the retrofitted prototype subassemblage are presented in figure 6-9. Test of the
retrofitted pier subassemblage showed a semi-ductile shear-critical failure mode of its column

due to the effect of cyclic loading.

Analysis results for the retrofitted pier column are presented in figure 6-10. In order to
account for the pre-existing cracked status resulting from the previous experiment over the pre-
retrofitted pier subassemblage, the flexural rigidity of the column has been reduced to about
04 EI. The effect of cap beam flexibility, discussed in subsection 3.3, has also been considered
for the theoretical response. The comparison between theoretical response and experimental
observation shows good agreement. The column ultimately failed at 5% to 5.4% drift angle
with diagonal crack opening and subsequent fracture of transverse hoop steel. This failure mode

is attributed to the effect of cyclic loading which is not accounted for in the current version of
ENVELOPE.
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Retrofitted 1/3 Scale Model Pier

The experimental study was performed by Mander, et al. (1996b) to investigate the
seismic performance of a whole pier consisting of cap beam, three circular columns and
foundation beam. The 1/3 scale model pier was constructed and tested under quasi-static cyclic
loading to be damaged at joints , anchorage and lap-splice zones. The cap beam and joints were
repaired and retrofitted by prestressed concrete jacketing as used for the companion prototype
pier subassemblage (Mander, et al., 1996a) but columns were left without retrofitting. Column
reinforcement detail and test setup for retrofitted model pier are presented in figure 6-11. For
the purpose of comparison between theory and experiment, an average column is used for
analysis and the strength of the whole pier is obtained by summing three average columns. The

central column is used as the average one.

The theoretical prediction of the combined response is presented in figure 6-12. The
theoretical prediction of the elastic stiffness shows a better fit to the experimental one than in
the companion prototype subassemblage, which implies a less flexibility of cap beam and
foundation beam, and a better anchorage of column longitudinal reinforcement. The theoretical
response shows a ductile behavior of the retrofitted model pier, while the model pier failed at
3.1% to 4.7% drift angle due to the cyclic loading effect. Again, consideration of the strength

decay due to cyclic loading is not available in the current version of ENVELOPE.

6.4.2 CIST Modeling

As described earlier in this section, CIST is an acronym for Cyclic Inelastic Strut-and-Tie
modeling technique. This modeling technique utilizes the 2nd-order Gauss quadrature in
determining the geometrical details of a mathematical model for reinforced concrete structural
components. For the model analysis in this study, the general purpose nonlinear inelastic
computer program, DRAIN-2DX (Prakash, et al., 1992a,b), is used. The behavior of individual
CIST elements available in DRAIN-2DX are depicted in figure 6-13. Reinforcement is modeled

by a bilinear spring element and concrete in either compression or tension is modeled by a

169



1°3i 1140i 1524 \ 1524 102

i +=
S13= - N
279 =< -2
511 e =/
021 \
\ 5-13mm DIA
o84 4.8 mm DIA
SOFT WIRE THREADBAR
B 102 #3  IN PLASTIC DUCT
1 EACH FACE
LOAD CELL
381 16-#3 /—
I I———]
279 S5-#3 BAR
356 COLUMN SECTION /— EACH FACE
'y y.
381
279
REFERENCE FRAME W10x77 GRAVITY LDAD BEAM  REACION FRAME
LEAD BRICKS 100kN GLAVITY LEAD ACTUATOR _
W14x257 LOAD
TRANSFER BEAM _ $-19 HIGH STRENGTH BOLT CTYP)
ai EXTENSION BEAM
- 1
= ——| BN
. A b1 T ===1O11— - Tige
— - A=k s =R | S— | ]102
o ¥ 1100kN LATERAL
¢ N— SHEAR LoAD AcTUATOR U
L. NV LG L/ TRANSFER KEY
" g 1100kN RESTRAINT
z ACTUATOR 2299
' E A 610x406x25 FOUNDATION
0% / ADAPTOR PLATE 2259 200
s & 39 W 200
$ 1391 i 2302 +/- 102
: ] el - L
Ly o ) ® . W8x31 . 343

Figure 6-11. Reinforcement detail and test setup of the retrofitted 1/3 scale model pier tested
by Mander, et al. (1996b).

170



350
300 Shear Only Response j
2
E
S
o+ r — 7 5 ; r
0 0.01 0.02 0.03 0.04
Shear Rotation (rad)
350
r Flexure Only Response
3004}
250- Fiexure
_E 200+ ;
g 150} N
1001 /e
50
0 0.01 0.02 0.03 0.04
Drift Angle (rad)
350
Experiment ..................... e
300 . Founi
gt Theo
—~ 2501 ¥ i
2
£ 200 R
Tu 72
§ 150+ /
> 4
100{ / [ Combined Response
501/
0 0.01 0.02 0.03 0.04

Drift Angle (rad)

Figure 6-12. Combination of shear and flexural responses for retrofitted 1/3 scale model pier
tested by Mander, et al. (1996b).

171



F
A fs |
Tension
fy |
T= 00 ™ !
|
|
——— T : L
C=0.5Aq fy |
1
1,
Compression
(a) Boundary element (b) Reinforcing steel
fe | fv }

o

12, &

&

Ee 4e'c

-~

(]

(c) Concrete in compression (d) Concrete in tension

Figure 6-13. Behavior of individual CIST elements available in DRAIN-2DX.

172



trilinear uni-directional spring element. These individual CIST elements may be put together
to form a truss member to obtain a desirable behavior. Two examples are presented in this
subsection: coupling beam specimen 312 (Paulay, 1971a,b) and pre-retrofitted prototype cap
beam - column subassemblage (Mander, et al., 1996a). The necessary parameter values are

available in Tables 6-1 and 6-2.

The CIST model of the coupling beam specimen 312 is shown in figure 6-14(a). It is
noted that concrete tensile ties are arranged in parallel to the transverse steel ties. Boundary
elements are provided in the longitudinal direction at both ends of the CIST model to simulate
yielding in flexural compression at critical sections. The analysis result for a series of cyclic
loading is presented in figure 6-15. The comparison shows a good agreement between theory

and experiment.

The CIST model of the pre-retrofitted prototype cap beam - column subassemblage is
presented in figure 6-14 (b). The specimen consists of a part of rectangular cap beam and a part
of exterior circular column of the original pier. Since the beam-column joint is expected to be
vulnerable, the CIST modeling technique is applied to all three structural components: column,
joint and cap beam. The axial load is assumed to be applied by a half at each corner of the
column end. Boundary elements are also provided in the column longitudinal direction at
locations of pedestal corner. The boundary element behaves axially rigidly in compression and
very soft in tension to emulate uplifting. A longitudinal truss member consists of three CIST
elements which are steel, concrete in compression and concrete in tension. A transverse truss
member consists of two CIST elements which are steel and concrete in tension. A diagonal truss
member consists of a single CIST element, concrete in compression. These elements are

dimensioned as explained through the foregoing sections.

The behavioral components to be compared to the experimental observation are the
overall force-displacement, force-joint shear strain and force-joint diagonal displacements.
Although many of these quantities are readily obtainable from the DRAIN-2DX analysis results,

the joint shear strain should be calculated considering elasticity theory. Consider a joint panel
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1-2-3-4 and its action for closing and opening moments as shown in figure 6-16. Then, total
displacement components in x and y direction due to the axial deformation of diagonals T-3 and 2-4

are

LA, = (Agg - A, cosa (6-50)

TA, = (A, - A, )sina (6-51)

y

The shear strain due to A_ only and XA, only are respectively

ZA cosa
Y, = I 2 = (A1-3 - A2-4) -l (6-52)
y y
YA sine
Yy = I 2 = (Ax-a = A2—4)' l_ (6-53)

Then, the shear strain of joint panel 1-2-3-4 can be obtained by averaging v, and y , thus

1 1 cosa sine }
Y = E(Yx * Y}’) = 5(A1—3 - A2-4)( ly * lx ) (6-54)

In the given example, « =45° and I = I,=689 mm. Thus the joint shear strain is calculated by

- A1—3 B A2-4 (6-55)
689 2
where joint diagonal displacement A, , and A, are positive in tension and negative in

compression, and are given by the DRAIN-2DX analysis results.

Analysis results are compared to the experimental observation in figures 6-17 and 6-18
and a good agreement between two is obtained with the exception of diagonal displacement
measured by T11 in figure 6-18. This deviation may be attributed to the loss of anchorage in
longitudinal reinforcement at inner side of the column. If the anchorage had been perfect, the
diagonal joint displacement would have been much larger than the experimentally observed one

in the direction. As mentioned previously, the loss of anchorage is not accounted for in the
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current version of modeling technique.

6.5 Conclusion

This section has presented the combination of the three mechanisms of shear resistance
(¥,, v, and V, described separately in Sections 2-5) with flexural strength and deformation
behavior to give the overall flexure-shear interactive response. Of particular concern is the
degradation in shear strength due to the loss of bond strength in the longitudinal bars that arises

from flexural yield, as well as crushing strength limitation of the diagonal struts. Both of these

phenomena are implicitly dependent on ductility amplitude.

Examples have been presented that demonstrate the entire approach. Two methods have
been used. The first is based on the force-deformation equations presented in the foregoing
-sections, while the second is a computational approach based on the CIST method. The

foregoing theory is used to size the struts and ties and to provide the appropriate strength and

deformation capacities.

Both methods have advantages and disadvantages. The first method, although straight-
forward in principle, is cambersome to implement due to the considerable bookkeeping necessary
owing to the large number of equations that are employed. It is therefore desirable to use a
computer program (such as the program ENVELOPE developed for this study) to automate the
analysis. The second method, which is computational, has the distinct advantage of tracking
cyclic loading behavior. However, the implementation is limited by the ability of the strut and
tie models resident in the computer program that are used to represent the constitutive relations
of the constituent materials - concrete and steel. For example in the DRAIN-2DX computer
code, it is not possible to model strength decay due to cyclic loading, nor the beneficial effects
of aggregate interlock. These are the primary factors that lead to differences in the predicted
and observed hysteresis loops. If improved constitutive models were used to more faithfully

represent concrete and steel behavior (under cyclic loading), then the overall predictions should

also markedly improve.
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SECTION 7
SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

7.1 Summary

This report has been concerned with development of the comprehensive analysis methods
to set up relationships between force and deformation of reinforced concrete beam/columns
subjected to both shear and flexure with a particular emphasis on the three principal shear
resisting mechanisms - that is, ¥,, v, and v, in terms of both stiffness and strength. The
proposed analysis methods enable structural engineers to quantitatively as well as qualitatively
understand the flow of forces at any instance of column deformation. For this purpose, two
truss mechanisms have been investigated: constant angle truss and variable angle truss. As a
result of the investigation, some pragmatic truss models based on simple numerical integration
requirements have been proposed suitable for hand (design office) analysis. Alternatively, more
sophisticated truss models can be easily incorporated with comprehensive computational
modeling-based techniques using the static options of general inelastic structural analysis
programs such as DRAIN-2DX. Even though the proposed analysis method may make the load
transferring mechanism in reinforced concrete structures quite transparent and comprehensive,
it lacks the capability to account for the effect of cyclic loading. As a supplemental option, the
evolving energy-based damage analysis has also been introduced and extended. The study on
the proposed truss models and energy-based damage modeling have produced some findings and

conclusions summarized in what follows.

7.2 Conclusions

7.2.1 Truss Mechanism due to Transverse Steel Contribution

1. Numerical integration schemes have been introduced for the solution of the variable angle

truss behavior. Either the constant angle modeling or variable angle modeling is satisfactory for

determining shear stiffness over the length of beam-columns.
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2. The numerical integration schemes have been implemented into truss models for physical
simplification while maintaining reasonable accuracy. Among them, two-point and three-point
Gauss truss models have been extensively studied. Two-point Gauss truss model provides a
simple and sufficiently accurate tool to determine the post-cracking stiffness and deformation in
shear and flexure. However, using the three-point Gauss truss model, a more realistic
distribution of tensile strain in the transverse ties can be captured. This can be an important
factor when modeling the nonlinear (post-yield) behavior of columns which are lightly reinforced

transversely and may eventually lead to premature failure at mid-member height due to corner-

to-corner diagonal cracking.

3. A mathematical expression for crack angle calculation has been derived by energy
minimization of external work done by shear as well as flexural behavior and gives very
favorable agreement with crack angles observed experimentally and reported in the literature for

a wide range of tests by many different investigators.

4. The piece-wise linear elastic analysis method using the idealized linear model for concrete
diagonal struts and bilinear model for longitudinal chords and transverse ties offers a simple and
comprehensive analysis tool for shear and flexure. The analysis method can be advanced by
implementing a nonlinear material model for reinforcing steel and be used to build the column
lateral force and deformation relationship. All approaches can be implemented by either hand-

analysis or using computerized cyclic non-linear force-deformation (CIST) analysis.

5. This study shows that the effective section area of the transverse shear reinforcement for
circular columns is affected by diameter of column section, crack angle and transverse hoop
spacing. This indicates that the widely accepted constant =/2 used for the calculation of shear
strength of circular columns due to the transverse steel should be corrected. Thus the constant

should range between 2 through 4/ .
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7.2.2 Effect of Concrete Tensile Strength

1. A variable angle truss model is used for the concrete only mechanism from which
concrete principal tensile strain and stress profiles along the diagonal crack plane have been
obtained. The average values of principal tensile strain and stress can be obtained by integrating
those profiles within the effective region of the column length. The effective region has been

defined by consideration of flexural cracking at the critical section.

2. The solution of the variable angle truss model has been achieved by numerous numerical
integration schemes in a way similar to the transverse steel truss mechanism. Among them, the
two-point Gauss quadrature and the simplified truss model with inclined ties have been
extensively investigated. Using the Gauss two-point truss model with inclined ties, the concrete
average principal tensile strain and stress as well as column shear force and deformation

relationship have been obtained.

3. The Gauss two-point truss model with inclined ties for concrete only mechanism (V,) can
be converted to the one with perpendicular ties for the convenience in CIST modeling.
However, the conversion may cause the ¥, mechanism stiffness to vary in a range of 0.7-1.75

of the original one.
7.2.3 Effect of Axial Load (Arch Action)

1. The mean section area of the corner-to-corner diagonal strut has been determined based
on the postulated compression field. The arch action mechanism for column axial load transfer

appears to be unrelated to the crack angle.

2. The strength of the compressive arch action mechanism is governed by the amplitude of
applied column axial load and load transfer capacity of the diagonal strut. The column shear
resistance increases up to the moment of incipient rocking by axial deformation of the diagonal

strut and then, decreases with rocking.
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7.2.4 Combination of Responses and CIST Modeling

1. Using the proposed advanced inelastic truss models, the force flow and interaction
between shear and flexure are explained and traced. Three response limits for beam-columns
subjected to lateral loading are defined: (i) brittle shear-critical; (ii) semi-ductile shear-critical;

and (ii1) ductile flexure.

2, The shear strength of reinforced concrete structural members are subjected to the
interaction between flexure and shear, and the compressive strength of diagonal struts. For this,

reduction factors are considered.

3. The calculation methodology of individual mechanism strengths and their combination
for a given deformation are summarized in step-by-step procedure and the corresponding solution
algorithm for numerical process is discussed. The entire combination procedure has been

implemented into a Fortran computer program ENVELOPE.

4. The CIST modeling technique can utilize the concept of Gaussian quadrature (numerical
integration) schemes (particularly 2nd-order Gauss quadrature in this study) to determine the
mathematical model geometry. For the model analysis, the general purpose nonlinear inelastic

computer program, DRAIN-2DX, has been successfully employed.
5. The analysis results in comparison to the experimental observation reported by various

researchers show good agreement. However, the present CIST analysis methodology shows a

limitation in predicting the gradual loss of anchorage and strength decay due to the effect of

cyclic loading.
7.3 Research Recommendations

1. Certain equations derived in the present shear study are rather complex. There may be

merit in studying more simplified ways of implementing inelastic truss models suitable for
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routine design office use.

2. Conversely, the proposed CIST truss models should be incorporated with the existing

advanced column analysis programs such as UB-COLA (Chang and Mander, 1994a).

3. The shear-flexure theory presented herein is based on a monotonic lateral load analysis,
whereas the CIST method of analysis is capable of reversed loading. Both approaches, however,
do not account for the strength deterioration expected as a result of cyclic loading. Research
is needed to extend the present shear-flexure and CIST analysis methodologies to account for
damage that occurs as a result of reversed cyclic loading. Recent work by Kim (71996) has

started in this direction and an energy-based approach shows promise.

4. Advanced analysis programs such as UB-COLA may capture all the non-linear features
of a column, but this is only for a single element. In this research, it has been demonstrated that
non-linear finite element analysis using inelastic truss models (CIST analysis) is a promising way
of looking at large structures. However, the force-deformation models used herein lack the
ability to accommodate strength degradation under cyclic loading. Therefore, it is recommended
that investigation using comprehensive CIST based macro-elements which include strength
degradation based on energy considerations be pursued with vigor. It is considered that this
could perhaps lead to some significant breakthrough in our understanding of structural concrete

behavior.
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"A Nonstationary Solution in Random Vibration Theory," by J.R. Red-Horse and P.D. Spanos, 11/3/87,
(PB88-163746, A03, MF-A01). )

"Horizontal Impedances for Radially Inhomogeneous Viscoelastic Soil Layers," by A.S. Veletsos and K.W.
Dotson, 10/15/87, (PB88-150859, A04, MF-A01).

"Seismic Damage Assessment of Reinforced Concrete Members," by Y.S. Chung, C. Meyer and M.
Shinozuka, 10/9/87, (PB88-150867, A0S, MF-A01). This report is available only through NTIS (see
address given above).

"Active Structural Control in Civil Engineering," by T.T. Soong, 11/11/87, (PB88-187778, A03, MF-A01).

"Vertical and Torsional Impedances for Radially Inhomogeneous Viscoelastic Soil Layers," by K.W. Dotson
and A.S. Veletsos, 12/87, (PB88-187786, A03, MF-A01).

"Proceedings from the Symposium on Seismic Hazards, Ground Motions, Soil-Liquefaction and
Engineering Practice in Eastern North America," October 20-22, 1987, edited by K.H. Jacob, 12/87, (PB88-
188115, A23, MF-AO1). This report is available only through NTIS (see address given above).

"Report on the Whittier-Narrows, California, Earthquake of October 1, 1987," by J. Pantelic and A.
Reinhorn, 11/87, (PB88-187752, A03, MF-A01). This report is available only through NTIS (see address
given above).

"Design of a Modular Program for Transient Nonlinear Analysis of Large 3-D Building Structures," by S.
Srivastav and J.F. Abel, 12/30/87, (PB88-187950, A0S, MF-AO1). This report is only available through
NTIS (see address given above). .

"Second-Year Program in Research, Education and Technology Transfer," 3/8/88, (PB88-219480, A04, MF-
A01).

"Workshop on Seismic Computer Analysis and Design of Buildings With Interactive Graphics," by W.
McGuire, J.F. Abel and C.H. Conley, 1/18/88, (PB88-187760, A03, MF-A01). This report is only available
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"Optimal Control of Nonlinear Flexible Structures," by JN. Yang, F.X. Long and D. Wong, 1/22/88,
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"Seismic Performance Assessment of Code-Designed Structures," by HH-M. Hwang, J-W. Jaw and H-J.
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102867, A04, MF-A01).
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A Study of Radiation Damping and Soil-Structure Interaction Effects in the Centrifuge," by K. Weissman,
supervised by J.H. Prevost, 5/24/88, (PB89-144703, A06, MF-AOQ1).

"Parameter Identification and Implementation of a Kinematic Plasticity Model for Frictional Soils,” by J.H.
Prevost and D.V. Griffiths, to be published.

"Two- and Three- Dimensional Dynamic Finite Element Analyses of the Long Valley Dam,” by D.V.
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"Damage Assessment of Reinforced Concrete Structures in Eastern United States,” by A.M. Reinhorn, M.J.
Seidel, S.K. Kunnath and Y.J. Park, 6/15/88, (PB89-122220, A04, MF-A01). This report is only available
through NTIS (see address given above).

"Dynamic Compliance of Vertically Loaded Strip Foundations in Multilayered Viscoelastic Soils,” by S.
Ahmad and A.S.M. Israil, 6/17/88, (PB89-102891, A04, MF-AO1).

*An Experimental Study of Seismic Structural Response With Added Viscoelastic Dampers," by R.C. Lin,
Z. Liang, T.T. Soong and R.H. Zhang, 6/30/88, (PB89-122212, A05, MF-A01). This report is available
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11/7/88, (PB89-145221, A0S, MF-A01).

"The Behavior and Design of Noncontact Lap Splices Subjected to Repeated Inelastic Tensile Loading," by
V.E. Sagan, P. Gergely and R.N. White, 12/8/88, (PB89-163737, A08, MF-A01).

"Seismic Response of Pile Foundations," by S.M. Mamoon, P.K. Banerjee and S. Ahmad, 11/1/88, (PB89-
145239, A04, MF-A01).

"Modeling of R/C Building Structures With Flexible Floor Diaphragms (IDARC2)," by A.M. Reinhorn,
S.K. Kunnath and N. Panahshahi, 9/7/88, (PB89-207153, A07, MF-AO1).

"Solution of the Dam-Reservoir Interaction Problem Using a Combination of FEM, BEM with Particular
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available only through NTIS (see address given above).

"Seismic Behavior of Flat Slab High-Rise Buildings in the New York City Area," by P. Weidlinger and M.
Ettouney, 10/15/88, (PB90-145681, A04, MF-A01).

"Evaluation of the Earthquake Resistance of Existing Bulldmgs in New York City," by P. Weidlinger and
M. Ettouney, 10/15/88, to be published.

"Small-Scale Modeling Techniques for Reinforced Concrete Structures Subjected to Seismic Loads,” by W.
Kim, A. El-Attar and R.N. White, 11/22/88, (PB89-189625, A05, MF-AO1).

"Modeling Strong Ground Motion from Multiple Event Earthquakes," by G.W. Ellis and A.S. Cakmak,
10/15/88, (PB89-174445, A03, MF-A01).

"Nonstationary Models of Seismic Ground Acceleration,” by M. Grigoriu, S.E. Ruiz and E. Rosenblueth,
7/15/88, (PB89-189617, A04, MF-AQ1).

"SARCF User's Guide: Seismic Analysis of Reinforced Concrete Frames," by Y.S. Chung, C. Meyer and M.
Shinozuka, 11/9/88, (PB89-174452, A08, MF-A01).

“First Expert Panel Meeting on Disaster Research and Planning," edited by J. Pantelic and J. Stoyle,
9/15/88, (PB89-174460, A0S, MF-A01).

"Preliminary Studies of the Effect of Degrading Infill Walls on the Nonlinear Seismic Response of Steel
Frames," by C.Z. Chrysostomou, P. Gergely and J.F. Abel, 12/19/88, (PB89-208383, A05, MF-A01).

"Reinforced Concrete Frame Component Testing Facility - Design, Construction, Instrumentation and
Operation,” by S.P. Pessiki, C. Conley, T. Bond, P. Gergely and R N. White, 12/16/88, (PB89-174478,
A04, MF-AQ1).

"Effects of Protective Cushion and Soil Compliancy on the Response of Equipment Within a Seismically
Excited Building," by J.A. HoLung, 2/16/89, (PB89-207179, A04, MF-A01).

"Statistical Evaluation of Response Modification Factors for Reinforced Concrete Structures,” by HH-M.
Hwang and J-W. Jaw, 2/17/89, (PB89-207187, A0S, MF-AQ1).

"Hysteretic Columns Under Random Excitation," by G-Q. Cai and YK Lin, 1/9/89, (PB89-196513, A03,
MF-AO01).

"Experimental Study of “Elephant Foot Bulge' Instability of Thin-Walled Metal Tanks," by Z-H. Jia and
R.L. Ketter, 2/22/89, (PB89-207195, A03, MF-A01).

"Experiment on Performance of Buried Pipelines Across San Andreas Fault," by J. Isenberg, E. Richardson
and T.D. ORourke, 3/10/89, (PB89-218440, A04, MF-A01). This report is available only through NTIS
(see address given above).

"A Knowledge-Based Approach to Structural Design of Earthquake-Resistant Buildings," by M. Subramani,
P. Gergely, C.H. Conley, I.F. Abel and A H. Zaghw, 1/15/89, (PB89-218465, A06, MF-A0Q1).

"Liquefaction Hazards and Their Effects on Buried Pipelines,” by T.D. ORourke and P.A. Lane, 2/1/89,
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M. Shinozuka, 1/26/89, (PB89-207211, A04, MF-A01).
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A.G. Ayala and M.J. ORourke, 3/8/89, (PB89-207229, A06, MF-AO01). .
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"Inelastic Three-Dimensional Response Analysis of Reinforced Concrete Building Structures (IDARC-3D),
Part T - Modeling," by S.K. Kunnath and AM. Reinhorn, 4/17/89, (PB90-114612, A07, MF-A01). This
report is available only through NTIS (see address given above).

"Recommended Modifications to ATC-14," by C.D. Poland and J.O. Malley, 4/12/89, (PB90-108648, A1S,
MF-A01).

"Repair and Strengthening of Beam-to-Column Connections Subjected to Earthquake Loading," by M.
Corazao and A.J. Durrani, 2/28/89, (PB90-109885, A06, MF-A01).

"Program EXKAL?2 for Identification of Structural Dynamic Systems," by O. Maruyama, C-B. Yun, M.
Hoshiya and M. Shinozuka, 5/19/89, (PB90-109877, A09, MF-A01).

"Response of Frames With Bolted Semi-Rigid Connections, Part I - Experimental Study and Analytical
Predictions," by P.J. DiCorso, A.M. Reinhorn, J.R. Dickerson, J.B. Radziminski and W.L. Harper, 6/1/89,
to be published.

"ARMA Monte Carlo Simulation in Probabilistic Structural Analysis," by P.D. Spanos and M.P. Mignolet,
7/10/89, (PB90-109893, A03, MF-AQ1).

"Preliminary Proceedings from the Conference on Disaster Preparedness - The Place of Earthquake
Education in Our Schools,” Edited by K.EX. Ross, 6/23/89, (PB90-108606, A03, MF-A01 ).

"Proceedings from the Conference on Disaster Preparedness - The Place of Earthquake Education in Our
Schools," Edited by K.EK. Ross, 12/31/89, (PB90-207895, A012, MF-A02). This report is available only
through NTIS (see address given above).

"Multidimensional Models of Hysteretic Material Behavior for Vibration Analysis of Shape Memory
Energy Absorbing Devices, by E.J. Graesser and F.A. Cozzarelli, 6/7/89, (PB90-164146, A04, MF -A01).

"Nonlinear Dynamic Analysis of Three-Dimensional Base Isolated Structures (3D-BASIS)," by S.
Nagarajaiah, A.M. Reinhorn and M.C. Constantinou, 8/3/89, (PB90-161936, A06, MF-A01). This report
has been replaced by NCEER-93-0011.

"Structural Control Considering Time-Rate of Control Forces and Control Rate Constraints," by F.Y. Cheng
and C.P. Pantelides, 8/3/89, (PB90-120445, A04, MF-A01).

"Subsurface Conditions of Memphis and Shelby County,” by K.W. Ng,

T-S. Chang and H-HM. Hwang,
7/26/89, (PB90-120437, A03, MF-A01).

"Seismic Wave Propagation Effects on Straight Jointed Buried Pipelines," by K. Elhmadi and M.J.
ORourke, 8/24/89, (PB90-162322, A10, MF-A02).

"Workshop on Serviceability Analysis of Water Delivery Systems," edited by M. Grigoriu, 3/6/89, (PB90-
127424, A03, MF-A01).

"Shaking Table Study of a 1/5 Scale Steel Frame Composed of Tapered Members,"

by K.C. Chang, 1.S.
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198



NCEER-89-0025

NCEER-89-0026

NCEER-89-0027

NCEER-89-0028

NCEER-89-0029

NCEER-89-0030

NCEER-89-0031

NCEER-89-0032

NCEER-89-0033

NCEER-89-0034

NCEER-89-0035

NCEER-89-0036

NCEER-89-0037

NCEER-89-0038

NCEER-89-0039

NCEER-89-0040

NCEER-89-0041

NCEER-90-0001

Formerly the National Center for Earthquake Engineering Research
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Documentation," by Jean H. Prevost, 9/14/89, (PB90-161944, A07, MF-A01). This report is available only
through NTIS (see address given above).

"1:4 Scale Model Studies of Active Tendon Systems and Active Mass Dampers for Aseismic Protection," by
AM. Reinhomn, T.T. Soong, R.C. Lin, Y.P. Yang, Y. Fukao, H. Abe and M. Nakai, 9/15/89, (PB90-
173246, A10, MF-A02). This report is available only through NTIS (see address given above).

"Scattering of Waves by Inclusions in a Nonhomogeneous Elastic Half Space Solved by Boundary Element
Methods," by P.K. Hadley, A. Askar and A.S. Cakmak, 6/15/89, (PB90-145699, A07, MF-AO1).

"Statistical Evaluation of Deflection Amplification Factors for Reinforced Concrete Structures,” by HH.M.
Hwang, J-W. Jaw and A L. Ch'ng, 8/31/89, (PB90-164633, A05, MF-AQ1).

"Bedrock Accelerations in Memphis Area Due to Large New Madrid Earthquakes,” by HH.M. Hwang,
C.H.S. Chen and G. Yu, 11/7/89, (PB90-162330, A04, MF-A0Q1).

"Seismic Behavior and Response Sensitivity of Secondary Structural Systems,” by Y.Q. Chen and T.T.
Soong, 10/23/89, (PB90-164658, A08, MF-A01).

"Random Vibration and Reliability Analysis of Primary-Secondary Structural Systems," by Y. Ibrahim, M.
Grigoriu and T.T. Soong, 11/10/89, (PB90-161951, A04, MF-A0Q1).

"Proceedings from the Second U.S. - Japan Workshop on Liquefaction, Large Ground Deformation and
Their Effects on Lifelines, September 26-29, 1989," Edited by T.D. ORourke and M. Hamada, 12/1/89,
(PB90-209388, A22, MF-A03).

"Deterministic Model for Seismic Damage Evaluation of Reinforced Concrete Structures,” by J.M. Bracci,
AM. Reinhorn, J.B. Mander and S.K. Kunnath, 9/27/89, (PB91-108803, A06, MF-AOQ1).

"On the Relation Between Local and Global Damage Indices," by E. DiPasquale and A.S. Cakmak, 8/15/89,
(PB90-173865, A0S, MF-A01).

"Cyclic Undrained Behavior of Nonplastic and Low Plasticity Silts," by A.J. Walker and HE. Stewart,
7/26/89, (PB90-183518, A10, MF-A01).

"Liquefaction Potential of Surficial Deposits in the City of Buffalo, New York," by M. Budhu, R. Giese and
L. Baumgrass, 1/17/89, (PB90-208455, A04, MF-A01).

"A Deterministic Assessment of Effects of Ground Motion Incoherence," by A.S. Veletsos and Y. Tang,
7/15/89, (PB90-164294, A03, MF-A01).

"Workshop on Ground Motion Parameters for Seismic Hazard Mapping," July 17-18, 1989, edited by R.V.
Whitman, 12/1/89, (PB90-173923, A04, MF-A01).

"Seismic Effects on Elevated Transit Lines of the New York City Transit Authority,” by C.J. Costantino,
C.A. Miller and E. Heymsfield, 12/26/89, (PB90-207887, A06, MF-A01).

"Centrifugal Modeling of Dynamic Soil-Structure Interaction," by K. Weissman, Supervised by J.H.
Prevost, 5/10/89, (PB90-207879, A07, MF-A01).

"Linearized Identification of Buildings With Cores for Seismic Vulnerability Assessment," by I-K. Ho and
AE. Aktan, 11/1/89, (PB90-251943, A07, MF-A01).

"Geotechnical and Lifeline Aspects of the October 17, 1989 Loma Prieta Earthquake in San Francisco," by
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_ AO0S5). This report has been replaced by NCEER-92-0018.
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"Seismic Hazard Along a Crude Oil Pipeline in the Event of an 1811-1812 Type New Madrid Earthquake "
by HH.M. Hwang and C-H.S. Chen, 4/16/90, (PB90-258054, A04, MF-A01).
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5/15/90, (PB91-108811, A0S, MF-AO1).

"Pilot Study on Seismic Vulnerability of Crude Oil Transmission Systems,” by T. Ariman, R. Dobry, M.
Grigoriu, F. Kozin, M. ORourke, T. ORourke and M. Shinozuka, 5/25/90, (PB91-108837, A06, MF-A01).

"A Program to Generate Site Dependent Time Histories: EQGEN," by G.W. Ellis, M. Srinivasan and A.S.
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"Active Isolation for Seismic Protection of Operating Rooms," by M.E. Talbott, Supervised by M.
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