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Abstract

Intelligent transportation systems (ITS) include large numbers of traffic sensors that

collect enormous quantities of data.  The data provided by ITS is necessary for advanced

forms of control; however, basic forms of control, primarily time-of-day (TOD) which

are prevalent in the United States do not directly rely on the data.  Thus sensor data is

typically unused and discarded in this country.  The sensor data is in fact capable of

providing abundant amounts of information that can aid in the development of improved

TOD signal timing plans by providing historical data for automatic plan development and

TOD interval identification. Data mining tools are necessary to extract the information

necessary from the data to improve on timing plan development and in turn would allow

the timing plan development and monitoring process to be automated rather than the

time-consuming, intuition based practice currently implemented. This project describes

research investigating the application of data mining tools, including statistical clustering

techniques, to aid in the development of traffic signal timing plans.  Specifically, a case

study was conducted to illustrate that the use of hierarchical cluster analysis can be used

to automatically identify temporal interval break points, based on the data, that support

the design of a time-of-day (TOD) signal control system.  The cluster analysis approach

was able to utilize a high-resolution system state definition that takes full advantage of

the extensive set of sensors deployed in a traffic signal system.  Timing plans were

developed based on the clustering results, providing enhanced TOD intervals and peak

volumes, which were then tested through simulation and internal cluster validation,

which proved that the use of data mining tools for plan development is beneficial.  The

results of this research indicate that advanced data mining techniques hold high potential
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to provide automated techniques to assist traffic engineers in signal control system

design, development and operations, the entire process of plan development that is

currently practiced based on hand-counted volumes and single intersection TOD

intervals.
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Chapter 1.  INTRODUCTION

1.1 Traffic Signal Systems and ITS

It has been argued that traffic signal systems represent the first widespread deployment of

intelligent transportation systems (ITS).  Modern signal control systems are highly

complex, relying on sensors, advanced communications networks, and sophisticated

firmware and software.  Advanced forms of signal control, such as second and third

generation control, are dependant on the sensor data supplied by ITS.  However, basic

forms of control such as time-of-day (TOD) do not rely on the sensor data for operation.

These basic forms of control are in fact the most widely used methods of traffic signal

control in this country due to limited funding for the Department of Transportation and

the difficulty in maintaining the sensors for support of advanced control.    These signal

control systems are collecting enormous quantities of traffic flow data in an attempt to

provide information for the support and improvement of signal timing operations.  Due to

limited storage resources, the lack of available analysis tools, and the fact that the sensor

data is not necessary for the support of TOD signal control, the vast majority of signal

control systems in the United States do not archive detector data for an appreciable period

of time.  This is unfortunate, especially since it is plausible to utilize the sensor data not

only for advanced forms of control, but also for the most common method of signal

control in this country, TOD.  Thus, there is a need to use analysis tools that demonstrate

the value of this data, and justify the design of systems with increased storage

capabilities.
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1.2 Data Mining Tools

Tools used to analyze and extract information from large sets of data are generally

classified as “data mining” tools.  This project describes research that is devising a

procedure for developing, implementing and monitoring traffic signal timing plans using

available data mining tools.  The hypothesis premise of the research is that the data

collected by signal control systems can be used to improve system design and operations

for the current methods of traffic control.  The data-mining tool that serves as the

foundation for the proposed procedure for signal plan developments is hierarchical

cluster analysis.  It will also be recommended that a second data-mining tool,

classification, be used for monitoring plan effectiveness, however this project will not

explore the use of classification in the maintenance of timing plans in depth.  This project

offers a background on signal timing plan development, with consideration of system

state definitions, and detailing a proposed procedure for improved traffic control through

the use of hierarchical cluster analysis with a case study at a corridor in northern Virginia.

This case study shows that the sensor data provided by ITS holds valuable information

regarding the behavior of traffic, capable of automatically generating TOD intervals for

transitioning between timing plans as well as providing appropriate volume data for plan

development during these automatically generated TOD intervals.  The proposed

procedure introduced in this project allows for automation of the entire signal timing plan

process, which will save time for traffic engineers and improve travel conditions for

commuters.
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1.3 Existing Plan Procedures

There exist a number of optimization tools to assist traffic engineers in developing timing

plans for a particular set of operating conditions.  However, few tools exist to help the

engineer determine appropriate TOD intervals, or to monitor an existing TOD system to

ascertain if the conditions have changed sufficiently to require a new set of plans and/or

TOD intervals.  Certainly, no tools exist to accomplish these tasks automatically.  The

premise of this research is that using statistical clustering and classification analyses in a

data mining application has high potential to address these needs and allow for automated

procedures, while utilizing the information stored in the data for optimal signal

development and maintenance.

Clearly, the current practice of using single day, hand counted volumes to define

the state for time-of-day (TOD) plan development may be inadequate.  Given that

considerably more information is available to use in defining the state of the system in

electronic form, this research uses a more complete state definition based on a more

refined form of data available from the system detectors to identify TOD intervals and

develop more appropriate timing plans.

The typical approach used to identify intervals for TOD systems is to plot

aggregate traffic volumes over the course of a day, and then use judgment in the

identification of significant changes in traffic volume at the critical intersection that

indicate a need for a different timing plan.  It is important to note that the volumes used

to identify TOD intervals are bi-directional aggregate volume values from the critical

intersection.  An example of this approach is illustrated in Figure 1, which depicts a daily

aggregate volume plot at an intersection in Northern Virginia based on historical data.
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The vertical lines in the graph show the times that the traffic engineers chose to transition

between plans, the TOD intervals.  These intervals rely heavily on the traffic conditions

that exist at the critical intersection.  The critical intersection is the signalized intersection

in the corridor servicing the largest traffic demand.  Along this particular corridor, there

exists an AM-peak plan that operates from 06:00 – 08:30, a mid-day plan that operates

from 08:30 – 15:00, a PM-peak plan that operates from 15:00 – 19:00, and an off-peak

plan for the remainder of the day.

150020002500

Figure 1. TOD Interval Identification

1.4 The Need for Improved Control

While this approach is intuitive, there are a number of areas of concern.  First, the

aggregation of only volume from traffic sensors (that typically measure volume, speed,
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and occupancy) in different directions (and, often, even lanes), to one aggregate volume

measurement results in the loss of considerable information regarding the characteristics

of the traffic conditions.  In addition, as timing plans are developed for corridors, as

opposed to single intersections, this loss of data resolution becomes more apparent.

Finally, the visual selection of TOD intervals may be quite difficult for inexperienced

engineers, who ultimately spend much time developing and tweaking the plans and TOD

intervals.  These problems illustrate the need for automated data mining tools that take

advantage of the large quantities of data collected by ITS.  The use of cluster analysis

addresses these issues and uses a more robust state definition based on historical data at

all intersections and at all movements in the development of plans and TOD intervals.

Figure 2 depicts the TOD intervals developed by a clustering procedure versus those

developed manually as described above.  It will become clear that the clustering TOD

intervals are more robust based on the detector data rather than the one-day hand counts

practiced currently.  Sensitive traffic trends are detected by the clustering algorithm that

occur over a 24-hour period and these TOD intervals developed via clustering will be

investigated in detail in Chapter 5.
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Figure 2. Existing TOD Intervals vs. Cluster Intervals

It is also becoming increasingly vital to provide efficient and up-to-date signal

control due to the decreasing availability of land for road expansion (6).  With the

explosion of population, industry and “suburbia,” traffic conditions are becoming

increasingly congested in many spreading areas and with this growth comes the need for

more roads.  However, the land is becoming less available and the zoning laws stricter,

making it extremely difficult to build new roads.  The cost of building new roads is also

extremely expensive and traffic engineers are relied upon heavily to provide efficient

Existing TOD Intervals

Clustered TOD Intervals
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forms of traffic control to deal with growing traffic problems where new roads may be

highly needed but nearly impossible to construct.  Thus, the TOD signal procedures that

have not changed much over the past decades need to be improved, with a more reliable

means of developing meaningful plans and monitoring those plans automatically.

1.5 Forms of Advanced Signal Control

Intelligent Transportation Systems (ITS) tend to research areas of advanced signal control

such as second and third generation control, fully adaptive traffic signal systems and even

the smart highways.  However, realistically in the United States, these systems are not

ready for implementation and so less advanced systems are employed, such as time-of-

day (TOD), due to factors like lack of funding to the transportation infrastructure (5).

This research looks at improving and refining the current means of traffic signal plan

procedures (TOD), which tend to be overlooked as areas of research.  Existing literature

focuses on the improvements that can be made by implementing advanced control

methods with the resources provided by ITS.  Until the more advanced methods become

feasible in this country, it appears that little interest is taken in utilizing the ITS resources

for less advanced signal development practices.  This notion is reflected by the fact that

no existing literature was discovered on the use of ITS data for enhancing TOD methods

of signal development and implementation.  The Transportation Research Circular (6)

discusses research initiatives for advanced technology in traffic signal control systems

because of the need for improvement in this area.  These needs are due to the steady

increase in traffic congestion, in some areas reaching crisis proportions, and the

decreasing availability of land for the use of highway and road expansion (6).

There are four categories of traffic signal control:
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•  First Generation
•  1.5 Generation
•  Second Generation
•  Third Generation

TOD signal control falls into the first generation category, which consists of selecting a

timing plan from a library of stored plans, which have been developed off-line using a

tool such as Synchro (5).  1.5 Generation is identical to first generation except that it has

the automated ability to add plans to the library.  Second and third generation control are

advanced forms of control that implement traffic signal plans in real time based on

existing traffic conditions.  Third generation differs from second generation in that the

cycle lengths and splits have the capability of variability, whereas second generation has

fixed cycle lengths and splits (5).  The U.S. is one of the few advanced countries in the

world where adaptive control is not installed.  This is due to the increased cost of

surveillance for monitoring and maintaining the large number of detectors necessary for

supporting the use of this type of control.  Adaptive control reduces the need for timing

plan updates and it handles incidents, holiday and special events more efficiently (5).

These advanced forms of control are capable of using information about downstream

traffic to update plan parameters at the upstream signals.

Minneapolis is one of the few cities in this country that is testing a second-

generation adaptive control signal system.  The project is described in the paper, Addition

of Adaptive Control to the Minneapolis Signal System: Issues and Solutions (8).  This

project’s aim is to serve as a representative model for medium-sized North American

centrally controlled systems, which assesses costs, problems and potential gains from the

addition of such a system.  This project recognizes the fact that extensive detection

inputs, beyond those installed for existing signal methods are needed to support advanced
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forms of control.  It is also addressing the many other issues to consider with advanced

control.  These include determining the operational status of the system, how to verify

system requirements of the new system are being met, what sort of considerations must

be met when adding a new system to an operating system, and many other issues

involved with such an advancement (8).  There are many challenges to be met before

advanced forms of control are fully understood and supported affordably in this country.

1.6 Data and Data Collection

Data is collected at signalized intersections in Northern Virginia by single inductive loop

detectors.  These metallic detectors are embedded in the roadway and produce a magnetic

field.  The metal of a car passing over the detector interferes with the magnetic field, thus

permitting the detection of the vehicle by the detector.  The single inductive loop

detectors, referred to as system detectors, are recommended in the Traffic Control

Systems Handbook to be placed 61 – 76 meters upstream from an intersection’s stop-bar

at a minimum (1). The northern Virginia system detectors are typically placed at

approximately 100 meters upstream from intersection stop-bars.  The placement of

system detectors is a key consideration because lane discipline deteriorates in the vicinity

of the intersection, especially during periods of spill back, and lane-changing maneuvers

from upstream can produce significant errors in volume and occupancy readings.  A

system detector should never be placed where standing queues from the downstream

intersection typically extend.  Yet the detector should be placed close enough to the

intersection to distinguish between vehicles that are using turning lanes rather than the

through movement lanes.  Single loop refers to the fact that only one detector is placed

upstream from the intersection removing the capability of directly measuring speeds.
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Volumes and occupancies are directly measured and the speed is an internal calculation

formulated based on estimates of vehicle lengths and detector lengths.  Thus, speed was

not used in this research.

Volume is defined as the number of vehicles that pass over the system detector in

a given time period.  It is simply a count of the cars that is generally expressed in vehicles

per hour (VPH) or in the case of the Northern Virginia research in vehicles per 15-

minutes (VP15m).  According to the Highway Capacity Manual, a typical roadway

capacity for one hour is 1900 vehicles.  Occupancy is defined as the percent of time a

vehicle occupies a detector.  Occupancies are reported as a percentage.  Once

occupancies reach 25%, the roadway can typically be classified as saturated.  Saturation

occurs when the volume to capacity ratio (V/C) is near to or greater than one.

Occupancies greater than 25% lose meaning as they can fluctuate between 25% and

100% for varying values of volume, with no particular correlation other than the volumes

are typically at least greater than 600 VPH at this point.

1.7 Data Screening Tests

The data extracted from the database is cleansed prior to its use.  Much “bad” data is

returned from the detectors.  There are many possible reasons for this, such as damaged

or dead detectors.  Cleansing the data allows the user to look only at reasonable data, thus

removing many outliers and observations that will skew the clustering results.  Screening

rules were determined based on typical data relationships in the database.  For this

research, the screening rules were all used.  The screening rules are as follows to remove

bad data:
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Non-zero test:
•  Volume AND Occupancy AND Speed ≠ 0

Prescreening test:
•  Volume AND Occupancy AND Speed >= 0
•  Volume < 3100 AND Occupancy < 100
•  Volume >= Occupancy

Feasible Volumes:
•  IF Occupancy = 0 OR 1 THEN Volume < 580
•  IF 1 < Occupancy <= 15 THEN 1 < Volume < 1400
•  IF 15 < Occupancy < 25 THEN 180 < Volume < 2000
•  IF Occupancy >= 25 THEN Volume > 500

The methods the screening tests use to scrub data can be grouped into two categories,

threshold value tests and traffic flow theory tests.  The ‘Non-zero Test’ uses a threshold

value test, the ‘Prescreening Test’ uses both threshold value and traffic flow theory tests,

and the ‘Feasible Volumes’ test uses only traffic flow theory tests (18).  Threshold value

tests limit data to within physically reasonable values based on characteristics of volume

and occupancy.  Traffic flow theory tests restrict data to feasible combinations of volume

for a given occupancy.

All rules were established by examining data from 5 arbitrary intersections in

Northern Virginia for periods of up to one month.  The screening tests were then applied

to various intersections to test the procedures.  Values of volume for the hourly intervals

are given in vehicles per hour (VPH), the unit of measurement used in the database.

Occupancies are given as a percentage of time vehicles are located over a detector. Speed

is not used in the traffic theory rules because it is derived from volume and occupancy, an

assumed vehicle length and an assumed detector length, producing inaccurate data.

Figure 3, Figure 4, Figure 5 and Figure 6 show how the “Feasible Volumes” tests were
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derived from the data.  Based on typical volume and occupancy relationships derived

from the 5 intersections investigated as shown in the graphs below, the numerical values

for the threshold value, data screening tests were developed.

400500600700800

Figure 3.  Verification of Feasible Volumes test 1

150020002500

Figure 4. Verification for Feasible Volumes test 2
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Figure 5. Verification for Feasible Volumes test 3
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Figure 6. Verification for Feasible Volumes test 4
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1.8 Project Scope

This project research will introduce the use of data mining tools for timing plan

development based on system detector data.  The proposed procedure will be conducted

on a subset of a single corridor in the Northern Virginia arterial network.  The corridor

studied will be a piece of the Reston Corridor, consisting of 3 coordinated intersections

and 15 system detectors.  Figure 7, below shows the majority of the Reston corridor

layout taken from a Synchro file, from which the subset corridor is taken for the case

study.  The timing plan development scheme will be based only on Monday through

Friday for the entire 24-hour period.  The system detector data will be acquired from

system detectors, or single inductive loops, located in select lanes throughout the

corridor.  Volumes and occupancies collected from these system detectors and archived

in an Oracle Database in the Smart Travel Laboratory at the University of Virginia will

be used to conduct this research.  The Virginia Department of Transportation (VDOT)

supplies the data to the Smart Travel Laboratory (STL) at the University of Virginia,

which is aggregated to 15-minute observations.
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Figure 7. Reston Corridor Layout
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1.9 Project Statement

This project will contribute to the intelligent transportation systems (ITS) field by

utilizing real-time detector data through the use of data mining tools to aid in the

development of signal timing plans and fixed time-of-day (TOD) intervals for traffic

signal plan implementation. The thesis is that data mining techniques, not traditionally

used for timing plan development in transportation, such as clustering, can be used to

improve the development of signal timing plans and fixed time-of-day (TOD) intervals

for traffic signal plan implementations.  The main objective of this project is to propose a

procedure for utilizing detector data for improved plan development by detailing the

following tasks:

•  Use of data mining tools (cluster analysis) to extract information from a large
database,

•  Improve timing plans through use of data extracted from database versus the
current method of one-day volume counts,

•  Improve TOD intervals using cluster analysis on detector data with refined
and expanded state definition, and

•  Test clusters and plan performance through simulation and internal cluster
validation.

Chapter 2 will provide background information on the signal timing plans and

methods of current traffic control, while detailing current methods of timing plan

development.  Chapter 2 will also discuss related areas of research to the topics explored

in this project.  Chapter 3 will detail the problem formulation for each phase of the

research, including the selection of a clustering method, validation of the clusters

developed, timing plan development in Synchro and simulation with SimTraffic for plan

evaluation.  The proposed procedure will be outlined in detail in Chapter 4, fully
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describing the tools used for this research and providing guidance in following and

enhancing the procedure.  Chapter 4 will provide the major deliverable of this project, the

proposed procedure with guidelines for following the procedure and automating the

procedure.  Discussion of the results of the analysis based on a single corridor case study

and a brief analysis at a single intersection in Northern Virginia will be introduced in

Chapter 5.  Evaluation of the proposed procedure and the applicability of this research are

discussed in Chapter 6, with emphasis on the future research needs for a more robust

procedure.
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Chapter 2.  BACKGROUND

2.1 Signal Timing Plans

The operation of a coordinated signal control system on an arterial corridor, or a series of

signalized intersections operating under a common traffic signal plan, requires a timing

plan for each signal in the corridor.  A corridor-timing plan consists of four main

elements: cycle length, splits, offsets and phase sequences (1).  The cycle length is the

time required for one complete sequence of signal phases to rotate through the green

time. The split refers to the percentage of a cycle length allocated to each of the various

phases at an intersection in a signal cycle, where phase refers to the portion of a cycle

allocated to any single combination of traffic movements simultaneously receiving the

right-of-way (1).  Finally, the offset is the component of the signal-timing plan that

coordinates a series of signalized intersections in a corridor or network.  The offset is the

time difference (in seconds or in percent of the cycle length) between the start of the

green indication at one signal as related to the start of the green indication at the

corresponding downstream signal (1).

Aside from the three main elements of a coordinated traffic signal as discussed

above, there are many other components that must be taken into account in the

development of timing signals.  These components are as follows:

•  Traffic Volume per lane movement
•  Turn type (Protected or Permitted)
•  Minimum Initial
•  Minimum Split
•  Maximum Split
•  Total Split
•  Yellow Time
•  All-Red Time

•  Lead/Lag
•  Allow Lead/Lag Optimize?
•  Vehicle Extension
•  Minimum Gap
•  Pedestrian Phase
•  Walk Time
•  Bus Blockages (#/hr)
•  Heavy Vehicles (%)
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•  Growth Factor
•  Peak Hour Factor
•  Ideal Saturated Flow
•  Lane Width
•  Grade (%)

•  Area Type
•  Storage Length (ft)
•  Storage Lanes (#)
•  Right Turn on Red?

Clearly, the development of traffic signals is highly complex, which is why tools like

Synchro are used (16).  For this research, the Synchro files developed by VDOT were

used so that the all the timing plan components listed above were already archived.  The

only alterations made to the Synchro files for this research are the volumes for the

modified TOD intervals for which the timing plans are servicing.  With the alteration of

the volumes, Synchro optimizes the cycle length, split and offset to best suit the timing

plan inputs.

2.2 Phase Movements

Opposing movements at an intersection are defined by phases.  Phases are numerical

values (1,2,3,…8)  assigned to through/right-hand-turn movements and left-hand-turn

movements.  Even phase numbers are always assigned to through/right-hand-turn

movements and odd phase numbers are assigned to left-hand-turning movements.  Figure

8 shows a sample intersection with phase assignments.
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Figure 8. Phase Diagram

Phase numbers are always grouped together as shown in Figure 8.  The only dynamic

element of the phase diagram is whether phases 2/5 and 1/6 lie on the east-west direction

or the north-south direction.  This element is dependent on the direction of the main

throughway.  Phases 2 and 6 always correspond with the main throughway.  If the main

throughway lies in the east-west direction, then the phase diagram is as shown in Figure

8.  If the main throughway lies in the north-south direction, then the phase diagram in

Figure 8 would have to be rotated 90 degrees to the right.

2.3 Local Detection Control

Traffic signals can be actuated, semi-actuated or pre-timed.  Actuated signals are driven

by the traffic conditions sensed by the local detectors.  Local detectors do not collect

volume, occupancy and speed data as do the system detectors.  They are solely for the

purpose of traffic signal actuation.  Fully actuated control is extremely difficult to

implement because of the difficulty and expense involved with maintaining enough
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detectors to support the control.  Second and third generation control run with fully

actuated corridors.  Vehicles trigger the detector to change the green split to that phase

movement.  Semi-actuation is the form of signal control used in the Northern Virginia

arterial system.  In semi-actuation, the main throughway is always given its preset green

split time, even if no vehicles are detected at the intersection.  However, the side streets

will only maintain a minimum green time allotted to that phase split if vehicles are not

detected.  The remaining green time that would make up the full side street split is given

back to the main throughway.  If vehicles are detected on the side streets, then the

maximum green time is given.  Non-actuated control would exist at an intersection with

no local detectors and the signal would operate under fully pre-timed signal parameters.

2.4 TOD Plan Methodology and Issues

The most widely used method for timing plan selection and implementation is time-of-

day, or TOD, where a pre-set plan is automatically used for a particular time interval (1).

TOD requires traffic engineers to develop signal-timing plans that are affective for

particular time intervals in a day.  For example, an AM-peak plan that favors work-bound

commuter traffic might be used from 06:00 – 09:30.  The AM-peak plan would typically

be developed using timing optimization tools such as Synchro, based on a single volume

count from the critical intersection.  The volume count used for timing plan development

in Synchro is taken from the traffic engineers’ hand-counts of cars during assumed peak

traffic time for the TOD interval.  This single-day count is used for developing a timing

plan for the entire corridor.  Therefore, one will note that the challenge in designing a

TOD system lies in identifying the appropriate time intervals for plans, and then

developing effective corridor plans to operate within each interval.  Another challenge
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faced by traffic engineers is monitoring the performance of timing plans over time and

retaining up-to-date timing plans.  Because of the time and effort that goes into the

current method of TOD plan development, the plans are generally left in place for many

years, with no automated form of performance feedback.  The use of electronic data and

data mining tools would make automated timing plan development and maintenance

readily available.  Another issue that must be overlooked with the current means of TOD

traffic control is that variance in traffic conditions can not be accounted for and variance

over time may go overlooked until conditions become severe.  Figure 9 and Figure 10

show a volume vs. time plot in the northbound and southbound direction for an

intersection in the Reston corridor.  Volume data from March 8, 2000 until September 29,

2000 were plotted.  Traffic trends remain similar over such a short period of time, but

there are erroneous days where variant traffic conditions get serviced by timing plans

constructed for “normal” conditions.  With automated maintenance tools, that will be

made possible with the use of data mining tools, erroneous days and changing trends over

time can be detected and archived.  This will allow for the development of theories and

rules based on traffic variance-time/event trends, thus preparing for changes in the future

before they occur.  The TOD itnervals may also change over time, where data mining

tools would allow for detection of slight variations in transition times.
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Figure 9.  NB Volume vs. TOD at one intersection

150200250300

Figure 10. SB Volume vs. TOD at one intersection
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2.5 Proposed State Definition

Time-of-day (TOD) signal control is an example of a form of system control known as

state-based control.  A “state” is an abstract representation of the condition of that system

at some point in time.  The defined state serves as a sufficient statistic for the condition of

the system, i.e., it contains all possible information regarding current status, propensity to

change and information necessary to evaluate the defined indices of performance for the

system (2). The concept of state-based control is to use a set of established rules or

policies to guide the selection of a control strategy for a system as the system transitions

from one state to another.

Clearly, the current practice of using aggregate volumes to define state, as

described in the previous section, may be inadequate.  Given that considerably more

information is available to use in defining the state of the system, this research uses a

more complete state definition based on a refined form of data available from the system

detectors to identify TOD intervals.

By considering the data collected by the system detectors in as high a resolution

as possible, one can expect to better capture the nuances of the system’s dynamic

behavior.  Therefore, the state definition used for this case study is a vector of volume

and occupancy measures for each directional phase movement at each intersection in the

corridor.  The directional phase movements are identified by their corresponding phase

numbers, which are denoted in Figure 8.  In addition, to account for the difference in

scale between volume and occupancy measures, the values were standardized using a Z-

score, (Z), which represents a dispersion or spread from the mean that each value lies and

is defined in the following equation.
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Z = X � M / σσσσ

Chapter 5 will investigate alternate input cluster variables in the ‘Sensitivity

Studies’ section in addition to equally weighted, standardized variables.  Since volume

and occupancy represent different traffic states, where occupancy values lie on a percent

scale of 0 – 100 and volume values lie on a numeric scale of 0 – 1900+, the

standardization process is necessary to transfer these values to a uniform, meaningful

scale with no units (13).  The possible effects of variable weighting will be discussed in

more detail in Chapter 5, where consideration of un-standardized occupancy and volumes

are taken into account.  For the scope of this research, the detectors and cluster variables

were weighted equally, however future considerations should include weighting cluster

variables such as detectors and intersections to account for influence and importance of

those factors in traffic flow through the corridor. The state definition used is as follows,

with each variable number assigned according to its phase number.  Not all intersections

have system detectors located at every phase, so the state definition may vary from

intersection to intersection depending on the availability of system detectors.

X(t) = (V1, O1, V2, O2, V3, O3, V4, O4, V5, O5, V6, O6, V7, O7, V8, O8),

Where  X(t) = system state at time t

V1 = standardized phase 1 volume at time t (NBL)

O1 = standardized phase 1 occupancy at time t (NBL)

V2 = standardized phase 2 volume at time t (SB)

O2 = standardized phase 2 occupancy at time t (SB)

V3 = standardized phase 3 volume at time t (EBL)

O3 = standardized phase 3 occupancy at time t (EBL)

V4 = standardized phase 4 volume at time t (WB)

O4 = standardized phase 4 occupancy at time t (WB)

V5 = standardized phase 5, volume at time t (SBL)



26

O5 = standardized phase 5, occupancy at time t (SBL)

V6 = standardized phase 6 volume at time t (NB)

O6 = standardized phase 6 occupancy at time t (NB)

V7 = standardized phase 7 volume at time t (WBL)

O7 = standardized phase 7 occupancy at time t (WBL)

V8 = standardized phase 8 volume at time t (EB)

O8 = standardized phase 8 occupancy at time t (EB)

2.6 RELATED RESEARCH

Data mining tools are not widely used in transportation systems (7).  In fact system

detector data collection is a fairly recent advancement with the rise of ITS and has not yet

been utilized to its full capacity.  Traffic may be viewed as unpredictable and

uncontrollable, but with archived data that is now available, it can be shown that traffic is

in fact predictable to a degree and control can be improved with the utilization of this

data.  There are other DOT’s that have looked into advanced forms of control such as

traffic responsive and second generation, where the system detector data is necessary to

support such control techniques, but it has not been found to be used for TOD signal

control (6).  Data mining tools are useful for uncovering patterns in data and making

classifications and these notions can be highly beneficial in transportation systems.

These data mining techniques have been used in many other fields and areas to produce

similar results from many types of data sets.

2.6.1 Data Mining as an Emerging Field
Data mining is utilized in the disciplines of computer science and statistics and is making

progress in extracting information from large databases (20).  It is an emerging field that

promotes the progress of data analysis.  Due to the competitive nature of today’s business
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economy, information technology has been invested in heavily to aid in the management

of effective business performance.  Over the last three decades, increasingly large

amounts of critical business data have been stored electronically and this volume is

expected to continue to grow considerably in the future (20).  Despite this wealth of data,

many companies have been unable to fully capitalize on its value.  This is because the

information implicit in the data is not easily discernable without the use of data mining

tools.  Data mining tools allow businesses to leverage their data effectively and obtain

insightful information that can give them a competitive edge.  It enables them to discover

previously undetected facts present in the data.

Data mining tools can provide benefits to any number of potential users.  The

finance and insurance industries have long recognized these benefits, but these principles

can be applied in many areas.  For example the retail/marketing sector, the banking

sector, the insurance and health care sector, the transportation sector and the list goes on

to those who can reap benefits from data mining tools (20).  The following list

summarizes some of the benefits that each of these sectors can achieve (20).

Retail/Marketing

•  Identification of buying behavior patterns from customers
•  Finding associations among customer demographic characteristics
•  Prediction of customers responsive to mailing

Banking

•  Detection of patterns of fraudulent credit card use
•  Identification of “loyal” customers
•  Prediction of customers that are likely to change credit card affiliation
•  Determination of credit card spending by customer groups
•  Finding hidden correlations between different financial indicators
•  Identification of stock trading rules from historical data market

Insurance/Health Care
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•  Claims analysis – determination of which medical procedures are
claimed together

•  Prediction of which  customers will buy new policies
•  Identification of behavior patterns of risky customers
•  Identification of fraudulent behavior

Transportation

•  Determination of distribution schedules among outlets
•  Analysis of loading patterns
•  Identification of seasonal and time-of-day traffic trends
•  Location of high risk incident areas

There is an extensive body of technology that exists and continues to evolve that

can be used to construct data mining functions.  A number of data mining methods exist

that can be classified in four major groups: Associations, sequential patterns, classifiers

and clustering (20). In associations, a collection of items and a set of records, each of

which contain some number of items from the given collection exist for which an

association function is established which returns affinities that exist among the collection

of items.  For example, these affinities can be expressed by rules such as “72% of all the

records that contain items A, B and C also contain items E and F.”  With sequential

patterns, a transaction log exists, which identifies transaction and product information,

generally without customer identity.  A sequential pattern function will analyze

collections of sets of products a customer buys in every purchase order.  With classifiers,

there exists a set of records with a number of attributes, a set of tags (representing classes

of records) and an assignment of a tag to each record.  A classification function examines

the set of tagged records and produces descriptions of the characteristics of records for

each of the classes.  These class descriptions can be used to tag new records.  In

clustering, there exists a set of untagged records.  Since no classes are known, it is the
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goal of a cluster to produce a reasonable segmentation of the set of input records

according to some criteria.  These data-mining operators can be used cooperatively or

individually.  With automated techniques as those described above, businesses can utilize

the database information to discover trends and improve on current practices.

2.6.2 Cluster Analysis Applications
Cluster analysis deals with automating a commonly utilized human activity of forming

classes or groups of similar objects.  The objects to be clustered could be of any origin,

from hospital patients, product brands and insect species to traffic data.  Cluster analysis

has been widely used in many diverse disciplines such as biology, psychology,

archaeology, geology, marketing, information retrieval, and remote sensing (12).

Clustering in computer science and engineering has been a more recent outcome solving

many problems with pattern recognition and image processing.  In these fields it has been

used for things such as unsupervised learning, speech and speaker recognition, work-load

characterization, crime detection and image registration.  Cluster algorithms may be

applied in many different fields to many different domains, but for all, the outcome is a

grouping of underlying themes in a data set that may not be intuitive or easily established

without such a tool.

Francois-Joseph Lapointe and Pierre Legendre performed a research project using

hierarchical cluster analysis at the University of Montreal to distinguish between different

types of single malt whiskies (17).  The data consisted of Scottish produced single malt

whiskies totaling to 300 varieties.  Single malts differ in nose, color, body, palate and

finish.  To produce a connoisseur’s guide to Scottish malt whiskies, they had to be

distinguished base on three major questions:
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1. What are the major types of single malt whiskies that can be recognized and what are

their chief characteristics and best representatives?

2. What is the geographic component in that classification?

3. Do the various categories of characteristics – nose, color, body, palate and finish –

lead to the same classification?

The first and third questions will be of interest here because the whiskies will be

categorized based only on the variables; nose, color, body, palate and finish, using

hierarchical clustering.  These questions can be answered with the results of cluster

analysis.  The geographic components will be used for checking the clustered

classification a posteriori and determining whether location effects the categorized

whiskies.  By comparing raw data sets (canonical analysis), distance matrices (correlation

matrices) and dendrograms (consensus measures), these questions can be answered.  This

process is similar to that done in this project, where groupings were found in the data and

the clusters formed were validated using methods similar to those mentioned above.

A distance matrix was constructed for the malts based on color, nose, body, palate

and finish, where each description was scored in such a way that the relationships could

be represented numerically.  The clustering used Ward’s minimum variance method,

detailed in Section 3.4, to form a dendrogram for depicting the whisky clusters.  A

cophenetic matrix, described in Section 3.10.1.5, was computed from this dendrogram, in

which the distances between objects is equal to the value of the fusion level where these

two object were joined to the same cluster.   The distance matrix from the a priori

canonical analysis was compared to the dendrogram of the cluster analysis, where the

null hypothesis tested is that the two comparisons are no more similar than randomly
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generated dendrograms with the same number of objects, random topology and random

labels would be.  When the resulting classification of single malt whiskies was compared

to geographic locations, it was shown that the whiskies could not only be characterized

by physical properties, but also by distillery traditions and regions, where they are

effected by soil, water, temperature, etc.  This research not only classified single malt

whiskies by defining characteristics and regions, but also characterized the whiskies

based on clustered characteristics.  The performance of comparisons among raw data,

distance matrices and dendrograms was used to validate clusters.

The validation of the clusters formed in the single malt whiskey example and the

idea of forming logical groups based on data characteristics where no response variable

exists follows the idea of the research being done on volume and occupancy traffic data.
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Chapter 3.  PROBLEM FORMULATION

3.1 Cluster Tools and Algorithms

SAS, a software system for data analysis, was the main tool used to implement data

mining procedures, clustering in particular, in this research (10).  The cluster analysis was

done with the SAS software using 15-minute volume and occupancy data obtained from

an Oracle database in the Smart Travel Laboratory.  This data is based on a continuous,

quantitative scale.  The purpose of cluster analysis is to place objects into groups or

clusters suggested by the data, not defined a priori, such that objects in a given cluster

tend to be similar to each other and objects in different clusters tend to be dissimilar (9).

A vast number of clustering methods have been developed in several different fields, with

different definitions of clusters and dissimilarity among objects.  The choice of clustering

algorithm depends both on the type of data available and on the particular purpose (13).

Since cluster analysis is used as a descriptive or exploratory tool unlike statistical tests,

which are used for confirmatory purposes, it is permissible to choose a clustering method

based on cluster runs from the same data set.  Thus suggesting and testing the theories

introduced in this project with a clustering algorithm is sufficient in providing

information on what the data are indicating.

The majority of clustering methods in the classification literature fall into one of

two types of cluster algorithms; disjoint (partitioning) or hierarchical methods (13).

Disjoint clusters place each object in only one cluster, where the number of clusters, k,

have been defined a priori.  Hierarchical clusters are organized so that one cluster may be

entirely contained within another cluster, but no other overlap between clusters is allowed

and the clusters are joined from n observations until only one cluster remains.  SAS
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procedures for clustering are oriented toward disjoint or hierarchical clusters from

coordinate data, distance data, or a correlation or covariance matrix.

For the recommended procedure, hierarchical clustering has been used, however

the optimal clustering method was not fully researched and may be further investigated

for future timing plan development procedures.  Hierarchical clustering seems

advantageous to disjoint clustering (13).  Disjoint clustering uses a k-means method

where the number of clusters to be formed must be pre-determined.  The determination of

the optimal number of timing plans before the cluster analysis results in uncertainty and

error, since the number of timing plans or clusters is an unknown statistic that cannot be

firmly established prior to the cluster analysis.  The disjoint clustering algorithm would

have to be run several times with different values of k to retain the clustering that appears

to provide the most meaningful interpretation based on data characteristics or graphs

(13).  Thus, hierarchical clustering appears to be the best choice for the purpose of

supplying the data necessary for determining the optimal number of clusters based on the

cluster analysis.  Another disadvantage with disjoint clustering includes the non-stability

of the clusters formed due to the choice of initial cluster seeds, which are affected by the

order in which the data are read into the computer.  Because of the large number of

choices for the number of clusters and the location of the cluster seeds associated with

each cluster, this procedure may become computationally infeasible, especially with large

data sets (10).  Hierarchical cluster analysis, on the other hand, results in much more

stable clusters due to the procedure implemented where each observation begins in a

unique cluster.  Clusters are then joined based on the minimum dissimilarity measure

between clusters, until only one cluster remains.
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3.2 Introduction of Research Case Studies

Two exploratory case studies were performed to test the procedure proposed in this

project.  This proposed procedure offers a method for TOD timing plan development that

creates TOD intervals and timing plans for those intervals based on clustered system

detector data.  This procedure introduces methods of timing plan development with the

capability to greatly reduce the time spent on plan development, while creating better

suited TOD plans for current traffic conditions.  This process also provides a means to

automating the plan development and maintenance process.

The first case study is performed on a series of three intersections to form a small

corridor for testing the validity and methods of the proposed procedure on a coordinated

arterial.  Figure 12 shows the lane configuration for this corridor, which is a subset of the

full Reston corridor.  This subset corridor consists of New Dominion, Bluemont and

Sunset Hills, all intersecting with Reston Parkway.  This small corridor will support

theories proposed for the procedure with a fairly simple data set.  The second case study

consists of a single intersection at Baron Cameron and Reston Parkway.  Figure 11 shows

the lane configuration of this intersection.  This will look at a simplified version of the

procedure with a small data set taken from seven months of historical data from one

intersection.  The procedure will be evaluated based on single intersections supported by

the Baron Cameron and Reston Parkway intersections to draw conclusions on the

performance of the plan on single intersections.
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Figure 11. Reston - Baron Cameron Intersection Layout

Figure 12. Reston - Sunset Hills, Bluemont, New Dominion Intersections Layout
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3.3 Hierarchical Clustering

The concept behind TOD control is that traffic conditions during particular intervals of

the day are roughly equivalent, and therefore a single timing plan can be used effectively

throughout that interval.  In other words, if traffic conditions are sampled at regular

intervals, two samples, measured during the same TOD interval will be very similar.

Cluster analysis is a statistical technique that has been developed to “group together”

similar cases when categories of the data are not defined a priori.  Hierarchical clustering

algorithms are methods to divide a set of n observations into g groups so that the

members of the same groups are more alike than members of different groups or clusters

(3).  Thus, the premise of this research is that cluster analysis can be used to

automatically group together similar samples of traffic conditions to identify TOD

intervals for which timing plans should operate in based on similar traffic characteristics.

With Hierarchical clustering, each observation begins in a cluster by itself.  The

two closest clusters are merged to form a new cluster that replaces the two old clusters.

Merging of the two closest clusters is repeated until only one cluster is left.  At each level

of the merging process, there exists one less cluster due to the joining of a cluster from

the previous level (13).  The various clustering methods differ in how the distance

between two clusters is computed.

3.4 Cluster Methodologies

There are many clustering methods that can be implemented for a cluster analysis.  These

include methods such as average linkage, Ward’s minimum variance method, centroid,

complete linkage, single linkage, and density linkage (10).  In average linkage, the
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distance between two clusters is the average distance between pairs of observations, one

in each cluster.  Average linkage tends to join clusters with small variances and is slightly

biased toward producing clusters with the same variance (10).  In Ward’s minimum

variance method, the distance between two clusters is the ANOVA sum of squares

between the two clusters added up over all the variables.  At each generation, the within-

cluster sum of squares is minimized over all partitions obtainable by merging two clusters

from the previous generation.  Ward’s method tends to join clusters with a small number

of observations and is strongly biased toward producing clusters with roughly the same

number of observations (10).  It is also very sensitive to outliers.  In the centroid method,

the distance between two clusters is defined as the squared Euclidean distance between

their centroids or means.  The centroid method is more robust to outliers than most other

hierarchical methods (10).  In complete linkage, the distance between two clusters is the

maximum distance between an observation in one cluster and an observation in the other

cluster.  Complete linkage is strongly biased toward producing clusters with roughly

equal diameters and can be severely distorted by moderate outliers.  Complete linkage

(furthest neighbor) determines the distances between clusters by the greatest distance

between any two objects in the different clusters (10).  This method is inappropriate if the

clusters tend to be elongated or of a chain nature.   In single linkage, the distance between

two clusters is the minimum distance between an observation in one cluster and an

observation in the other cluster.  Single linkage sacrifices performance in the recovery of

compact clusters in return for the ability to detect elongated and irregular clusters.  It

tends to string objects together in cluster formation (10).  Density linkage encompasses

the kth-nearest neighbor method, the uniform kernel method and the Wong’s hybrid
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method.  Wong’s hybrid clustering method uses density estimates based on preliminary

k-means or disjoint clustering.  The kth-nearest neighbor method uses kth-nearest neighbor

density estimates and the uniform-kernel method uses uniform-kernel density estimates.

These density linkage methods do not apply constraints to the shapes of the clusters and,

unlike most other Hierarchical clustering methods, are capable of recovering clusters with

elongated or irregular shapes (10).  Yet density linkage is less effective at recovering

compact clusters from small samples.

Studies have been done comparing the various methods of cluster analysis.  Many

of the methods are biased towards finding clusters possessing certain characteristics

related to size, shape or dispersion (9), (10).  For instance, Ward’s minimum variance

method and k-means tend to find clusters with roughly the same number of observations

in each cluster.  Average linkage tends to be biased towards finding clusters of equal

variance.  Many clustering methods tend to detect compact, roughly hyper-spherical

clusters and are incapable of detecting clusters highly elongated or irregular shapes.  The

methods with the least bias are those based on non-parametric density estimation such as

single linkage and density linkage.

3.5 Suggested Cluster Methodology

The appropriate clustering method was only briefly investigated; however, based on

studies done by Milligan and cluster comparisons from the brief review, an appropriate

method was selected for use based on data characteristics and preliminary results (9).

The outputs of the centroid, Ward, K-nearest neighbors density and single linkage

methods were tested and compared, based on the data characteristics these methods

utilize and the capabilities of the methodologies.  The other methods were ruled out based
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on performance observations by Milligan, such as the severe distortion of the complete

linkage method by moderate outliers and its inability to detect elongated clusters.  Each

method was tested on the same data set, with five clusters being formed with each of the

methods.  Cluster outputs for these analyses are shown in Figure 13, Figure 14, Figure 15

and Figure 16.

The density method was ruled out due to the inability of the method to detect

clusters with large enough number of members comprising the clusters.  Figure 13

portrays the problem with clustering the volume, occupancy data with a density method.

Different numbers of K were chosen for the nearest neighbor value and the results did not

change.  According to studies, density linkage methods do not apply constraints to the

shapes of the clusters and do not perform well at recovering compact clusters from small

samples.  Since the volume, occupancy data sets used for the purpose of timing plan

development are fairly small samples, density methodologies seem to be inappropriate.
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Figure 13. Cluster vs. TOD Results for K-nearest Neighbors Method

The single linkage method has been ruled out due to its inability to place a

‘minimum number of observations’ constraint on the clusters.  This results in clusters

being formed based only on a few number of observations, which could cause an

inefficient transition between timing plans due to the shortened duration in each timing

plan.  See Figure 14.  It also does not uncover compact clusters from data sets, rather it

finds highly elongated clusters.  Since the volume and occupancy data are quite similar, a

method that uncovers compact clusters is preferable.



41

345

Figure 14. Cluster vs. TOD Results for Single Linkage Method

The centroid method produces fairly good clusters.  Figure 15 illustrates this with

the intuitive TOD intervals that form the clusters.  Cluster 1 can be classified as the post-

AM / post-PM period.  It is based on observations from times that range from 9:15 –

11:30 and 19:00 – 19:45.  It makes sense that traffic conditions occurring at these two

times, directly after the two largest peak periods in a day, should have similar volume,

occupancy pairs.  Cluster 2 represents an off-peak period ranging from 22:15 – 5:30.

Cluster 3 can be classified as a pre-AM / pre-Off-peak period ranging from 5:45 – 6:45

and from 20:00 – 22:00.  Again, these TOD intervals that make up cluster 3 make sense

in that similar traffic conditions occur at these alternate times.  Cluster 4 covers the AM

peak period and most of the lunch and mid-day period.  The times range from 7:30 – 9:00

and approximately 11:45 – 17:00.  This particular data set appears to be missing
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observations from the PM peak period, a situation addressed in the ‘Sensitivity Analyses’

section of chapter 5.

345

Figure 15. Cluster vs. TOD results for Centroid Method

Ward’s method produces very similar results as the centroid method.  See Figure

16.  Centroid and Ward’s methods seem more appropriate than the others for this data

because they are able to produce clusters based on a constraint for a minimum number of

observations to exist in each cluster formed.  This is an important constraint due to the

necessity of cluster formations with a large enough number of observations to support a

timing plan for an appreciable period of time, to be developed for that cluster.  For the

case of the volume and occupancy data, it is not necessary to choose a method that will

detect irregular or elongated clusters.  It is preferable that the clusters maintain a nearly

hyper-spherical shape to ensure that cases that should operate in opposing timing plans

do not get placed in the inappropriate cluster, due to the similarities in variables of certain
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opposing timing plans.  For example, northbound and westbound volumes and

occupancies may be very similar for the AM and PM peak periods, while the main

differences lie in the southbound and eastbound variables.

345

Figure 16. Cluster vs. TOD Results for Ward's Method

The only outstanding difference between Ward’s method and the centroid method

is that centroid is robust to outliers, whereas Ward’s is not. Thus, for the purpose of this

research, the centroid method will be used with the recommendation that further analysis

may be conducted in the future for insight into the most beneficial methodology for

clustering traffic data into timing plan intervals.  Since outliers are inherent to traffic data

due to things like incidents and holidays, the cluster method should not be overly

sensitive to outliers. Figure 17 shows where the volume and occupancy centroids of each

cluster lie for the centroid cluster methodology.  The error bars represent the standard

deviation within each cluster.  The centroids in Figure 17 are intuitive for their

corresponding timing plan periods.  For instance, cluster 2 represents the off peak TOD
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interval and the smallest volume and occupancy represent this cluster centroid.  It is clear

that the fifth cluster (C5) has a much larger occupancy mean than the other clusters.  This

is an issue that has arisen in preliminary analysis with the formation of bad clusters,

discussed in the following section.  Overall, this figure demonstrates that the clusters

formed by the centroid method are meaningful for TOD interval plans.  Refer to the

internal cluster validation in Section 3.10.1 for further testing of the formation of clusters

under the Centroid methodology.

80100120140160

Figure 17. Centroid Cluster Centroids and Standard Deviations
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3.6 Interpreting “Bad” Clusters

The centroid and Ward’s methods produce fairly good clusters as can be seen in Figure

15 and Figure 16.  The times of day for which the clusters are formed from make sense

intuitively.  Situations arise in cluster analysis where “un-clean” clusters may be formed

that don’t follow an intuitive TOD scheme as do the majority of the clusters formed.

This is apparent in Figure 15 and Figure 16 for cluster 5, which doesn’t fall into an

intuitive time interval for a timing plan.  These random clusters arise in all of the

methodologies and are usually due to one or two extreme variables existing for some of

the observations.  Data cleansing tests are induced to alleviate most such cases from

arising, but bad clusters can still be formed.  For example cluster 5, mentioned above,

was formed based on extremely large phase 6 occupancies, in the above 50% range.

Since occupancies greater than 25% mean the roadway is saturated, it is rare to see

occupancies greater than 25%.  During peak periods, occupancies typically exist around

the 20% - 25% region.  The fact that these occupancies exist only on one phase during

these times may clue the traffic engineer to the fact the roadway in the phase 6 direction

just can’t handle the volume of traffic during those times and that an additional roadway

may be needed.  In cases such as the above example, it would be preferable to discard

cluster 5 as a timing plan, especially since there is not a clean TOD interval for that

cluster.  Instead, such results could be used for alerting and making recommendations to

the traffic engineers for problems on the roadway and the need for possible physical

alterations.  Methods of dealing with bad clusters will be addressed in Chapter 5, for

sensitivity analyses with cluster input variables.
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3.7 Euclidean Dissimilarity Measure

With Hierarchical Cluster analysis, observed data points are grouped into clusters in a

nested sequence of clusterings such that the algorithm starts with n clusters, each

containing only one observation and joins the n clusters one at a time until only one

cluster remains.  The two closest clusters or observations are joined based on the measure

of dissimilarity (d) chosen to be used, in this case the squared Euclidean distance, which

is the default measure in SAS for the centroid methodology.  The squared Euclidean

distance is as follows:

d = Σk=(1,n)[(Xi
k � Xj

k)2]

The dissimilarity between each new cluster formed and any other observation or cluster is

defined as the minimum distance between the two observations in the new cluster formed

and any other observation or cluster.  While the clusters are formed based on the

minimized dissimilarity within clusters, the distance between clusters is maximized based

on the squared Euclidean distance between cluster centroids.  A minimum number of

observations belonging to each final cluster formation is one constraint imposed on the

cluster analysis such that clusters formed are valid based on a significant amount of

observations, thus assuming clusters are not formed based on erroneous cases.  This

constraint also forces the time intervals formed by the cluster analysis to be of a

significant duration, i.e., 30 minutes or greater so that timing plans are not scattered

individually throughout the day.  The time lost due to transition between timing plans is

not thoroughly investigated in this research and should be examined in future research.

However, some insights into effects on performance due to transition are evident from

simulation, which simulates over plan transition periods.
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To illustrate that Euclidean distance measure is a viable measure of dissimilarity

for the clustering procedure, a demonstration on a small data set was done.  Twenty-nine

observations were chosen randomly to cover a 24-hour period. The data set had been

clustered prior to the demonstration, thus assigning each observation a cluster

membership to be used in illustrating the validity of the clusters based on the Euclidean

distance.  The 29 observations came from four clusters representing an AM-peak, a Mid-

day peak, a PM-peak and an Off-peak.  A dissimilarity matrix was constructed from the

standardized volume, occupancy pairs making up this small data set.  The Euclidean

distance was the measure of dissimilarity between observations used to construct the

matrix.  Figure 1 illustrates the Euclidean dissimilarity measure on the y-axis between

each of the four clusters, represented as four unique series on the graph, and each

observation in the data set.  The 29 observations are labeled on the x-axis by their cluster

membership.  The graph shows that the dissimilarity tends to be the lowest between

observations belonging to similar clusters.  Observations in clusters 1 and 3 are less than

1 unit apart from each other and clusters 4 and 6 are comprised of observations between 1

and 2 units apart.  Observations between opposing clusters are between 2 and 5 units of

distance apart from each other.  This is apparent in Figure 18 demonstrating that

Euclidean distance does cluster observations in an appropriate manner for minimizing the

within-cluster distances and maximizing the between-cluster distances.
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Figure 18. Observation dissimilarity demonstration

3.8 Determination of the Optimal Number of Clusters

It is of importance with hierarchical clustering to determine the appropriate number of

clusters, for it is this number that represents the number of timing plans to develop based

on the sensor data.  In cluster analysis, the rules that determine the optimal number of

clusters are called “stopping rules.”  Statistics for determining the number of appropriate

clusters are also numerous.  Common statistics used for making such determinations

include R2 values, analysis-of-variance F-tests, the determinant of the within-cluster sum

of squares matrix |W|, the cubic clustering criterion (CCC), pseudo F statistic and pseudo

t2 statistic (9).  For the traffic signal control procedure, the CCC will be recommended

because it can be used with any of the hierarchical or disjoint clustering methods.  To

ensure a robust measure, the pseudo F and t2 statistics will also be used in correspondence
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with the CCC.  The level of perfect replication from random partitions of an original data

set will be investigated as a cluster analysis stopping rule tool from more recent research

studies (14).

The R2 value is only of use when the purpose is not to uncover real clusters or

when the clustering method is average, centroid or Ward.  Ordinary significance tests

such as the ANOVA F-test are not valid for testing differences between clusters since

clustering methods attempt to maximize the separation between clusters, thus drastically

violating assumptions for normal significance testing.  It cannot be assumed that the

clusters are formed based on random assignment of observations to clusters, since that

would defeat the purpose and methodologies of cluster assignment.  The |W| criterion is

an extremely conservative test because the cluster procedures in SAS attempt to minimize

the trace of W rather than the determinant.  There are alternate means of determining the

number of clusters, but these are generally restricted to use with individual cluster

methods.  For instance the kth-nearest neighbor clustering method can provide

information for the number of clusters based on estimated number of modes versus k-

values.

Since the cubic clustering criterion (CCC) can be used universally with all

clustering methods and is a fairly accurate measure of determining the number of

clusters, it will be recommended for use with the pseudo F and t2 statistics for

determining the number of clusters.  According to stopping rule studies done by Milligan

and Cooper, the CCC performed at a competitive rate, as the 6th best, with the other 29

stopping rules tested (9).  The stopping rules were tested based on prior knowledge of the

correct number of clusters.  The CCC does exhibit a fairly high rate of determining too
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many clusters, but it did produce a very low number of solutions with too few clusters.

The overall rate of correct determination of the true number of clusters for the CCC in

Milligan and Cooper’s studies was 74.3%.  This was the sixth best overall rate of the 30

stopping rules investigated.  The CCC is based on the assumption that a uniform

distribution on a hyper-rectangle will be divided into clusters shaped roughly like

hypercubes (9).  In large samples, this assumption proves to give very accurate results.  In

other cases, the approximation is generally conservative.

The pseudo F and t2 statistics will also be recommended as a measure of the

appropriate number of clusters.  Since SAS outputs these values for the cluster

methodologies suggested above as well as the CCC, it will be advised that all three

statistics are used together to choose the number of clusters.  This should increase the rate

of appropriate cluster choice that would not be achieved with using just one or the other.

In an adaptation of the SAS User’s guide (1990) and Sarle and Kuo (1993), it is

recommended to look for consensus among these three statistics (15).  In other words,

local peaks of the CCC and pseudo F statistic combined with a small t2 where a larger t2

value occurs at the next cluster fusion.  These criteria are most appropriate for compact or

slightly elongated clusters, preferably clusters that are roughly multivariate normal (15).

The pseudo F and t2 statistic are also related to stopping rules tested by Milligan and

Cooper.  Calinski and Harabasz developed the pseudo F statistic.  The pseudo t2 statistic

can be transformed from Duda and Hart’s test statistic: J_e (2) / J_e (1) (15).   According

to the stopping rule study by Milligan and Cooper, the Calinski and Harabasz rule

performed the best overall of the 30 rules tested with a 90.3% rate of the correct level of

clusters (9).  The Duda and Hart statistic performed the second best in the 30-rule test
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with a rate of 89.8% correct level of clusters.  Both of these stopping rules tend to suggest

one too few clusters, which is where the majority of the mis-classification lies.

Combining the pseudo F and t2 statistic with the CCC, whose main error lies in producing

too many clusters, should balance each other, providing fairly reliable determinations for

cluster number.

3.8.1 Cubic Clustering Criterion (CCC)
The cubic clustering criterion (CCC), a measure produced by the statistical software

package, SAS, is the stopping rule implored in this research in combination with the

pseudo F and t2 statistics.  The CCC is based on the R2 value, where R2 is the proportion

of variance accounted for by the clusters, and it is based on the P value, where P is an

estimate of dimensionality of the between cluster variation (9).  The definition of R2 is

defined as:

R2 = 1 � (PG / T), where

•  PG = ΣWj = Σi∈ Cj  xi - xave(j) 2, where summation is over G clusters at
Gth level

•  T = Σi
n xi - xave 2

•   x = Euclidean length of vector x, or the square root of the sum of
squares of elements of x

•  xi = ith observation
•  xave(j) = Mean vector for cluster Cj
•  xave = Sample mean vector
•  Cj = jth cluster
•  G = Number of clusters at any level of hierarchy
•  n = Number of observations

Based on the detailed comparative evaluation of stopping rules (14), Milligan and Cooper

concluded that a ratio for between cluster variance to the within cluster variance provides

a superior index for determining the optimum number of clusters.  Sarle also provides
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studies on the superior performance of the cubic clustering criterion (27).  The CCC

definitions below are taken from Sarle, where it is stated that the total sample variance

along the jth dimension of the hyperbox is proportional to sj
2 and the within cluster

variance along the jth dimension is proportional to c2.   Sarle also states that “The CCC is

based on the assumption that clusters obtained from a uniform distribution on a hyperbox

are hypercubes of the same size.  The hypercube assumption is obviously false in most

cases, but is generally conservative unless the number of clusters is very large in two or

more dimensions.” (27)

CCC = {ln[(1 � E(R2)) / (1 � R2)} * {((nP/2).5) / ((.001 + E(R2))1.2)}, where      (27)

•  E(R2) = 1 – [(Σp*
j=1(1/(n + uj)) + (Σp

j=p*+1 (u2
j / (n + uj))) / (Σp

j=1 u2
j )] *

[ (n – q)2 / n] * [ 1 + (4 / n)]
•  n = Number of observations
•  q = Number of clusters
•  p = Number of variables
•  sj = Edge length of hyperbox along the jth dimension
•  v = Volume of hyperbox
•  v = Πp

j=1 sj
•  c = Volume of hyperbox
•  c = (v/q)1/p

•  uj = Number of hypercubes along jth dimension of the hyperbox
•  uj = sj/c
•  p* = Dimensionality between clusters, p* < q

The largest CCC value represents the most stable and meaningful level of the hierarchical

cluster tree at which point the clusters are most representative of the timing plans and

TOD intervals to be developed based on historical traffic conditions.
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3.8.2 Pseudo F and t2 Statistics
The pseudo F and t2 statistics are output in SAS when the data are coordinates or when

using the centroid, average or Ward cluster method.  The F statistic for a given level is

calculated according to the following formula (10).

Pseudo F = (((Σi
n xi - xave 2 – PG / G – 1)) / (PG / (n – G)) , where

•   x = Euclidean length of vector x, or the square root of the sum of
squares of elements of x

•  PG = Σ Wj, where summation is over G clusters at Gth level of
hierarchy

•  Wj = Σi∈ Cj  xi - xave(j) 2

•  xi = ith observation
•  xave(j) = Mean vector for cluster Cj
•  xave = Sample mean vector
•  Cj = jth cluster
•  G = Number of clusters at any level of hierarchy
•  n = Number of observations

This calculation takes into account the between and pooled within cluster sum of squares.

The following formula shows the calculation for the pseudo t2 statistic (10).

     t2 = BKL / ((WK + WL) / (NK + NL – 2)), where

•  BKL =  WM – WK – WL
•  NK = Number of observations in Kth cluster
•  NL = Number of observations in Lth cluster
•  Wk = Σi∈ Ck  xi - xave(k) 2

•  xi = ith observation
•  xave(k) = Mean vector for cluster Ck
•  Ck = kth cluster

The pseudo t2 statistic, which can be taken from Duda and Hart’s Je(2) / Je(1) stopping

rule, considers the sum of squared errors within clusters, the standard normal score, the

number of dimensions and the sample size (9).  It is important to note that these statistics
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are not distributed as random variables since the cluster algorithms do not assign clusters

randomly.

3.8.3 Recent Cluster Stopping Rule Studies

It has been stated, “There are no completely satisfactory methods for determining the

number of population clusters for any type of cluster analysis (Everitt 1979, 1980;

Hartigan 1985; Bock 1985), (15).  Studies have been conducted to test the validity of

clusters at different levels for determination of an appropriate hierarchical clustering

level.  These stopping rules have not produced a clear-cut solution to this problem due to

the problem of ordinary significance tests failing with cluster testing.  For instance

normal ANOVA tests do not hold up under the assumptions imposed because cluster

algorithms attempt to maximize the separation between clusters and the formation of

clusters is not random (15).  The stopping rules recommended in this project come from

studies done in the 1980’s.  This section discusses more recent stopping rule studies.

In the last decade, further research has been conducted to find the optimal method

of determination of an appropriate hierarchical level.  Atlas and Overall propose a

method of evaluating higher-order cluster analyses in 1994, on cluster means from split-

sample cluster analyses to determine the number of clusters using a replication criteria

(14).  Perfect replication at any particular hierarchical level is defined as a solution in

which a single cluster mean from each of the preliminary analyses is grouped into each

higher-order cluster.  This method was compared to the Calinski and Harabasz pseudo F

statistic, which performed the best in Milligan and Cooper’s comparison of 30 stopping

rules.  Atlas and Overall discovered that both methods uncovered the correct number of

clusters for well separated populations; however, their study investigated the use of
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overlapping clusters.  Much of the work to evaluate stopping rules has involved an

unrealistic separation between clusters.  The following claim was made by Atlas and

Overall:  “At present, the perfect replication criterion applied to results from a higher-

order clustering of means from several preliminary cluster analyses appears superior in its

ability to determine the number of discriminably different underlying multivariate normal

populations.  Further evaluative work is perhaps needed, and we would hope that the

replication criterion provided by higher-order cluster analysis can be included there as

well (14).”  Due to the investigative nature of this research, the replication criteria will

not be investigated thoroughly in this project but will be recommended for future

research.  Sensitivity analyses in Section 5.4 address the number of clusters determined

by the pseudo F, T2 and CCC stopping rules.  These rules uncover appropriate levels of

the cluster hierarchy for the purpose of signal plan development and TOD intervals for

volume and occupancy traffic data.

3.9 Cluster Analysis Input Data

The preliminary data analysis was done on a small data set consisting of approximately

126 data points, with the final analysis being done with a data set on the order of 1000

observations to see how cluster formations are affected with different sample sizes.  As

the cluster analysis is performed on larger data sets, certain concerns must be considered.

For example, clusters formed from a period of over 6 months, as is the case with the

formal data analysis in this project, may produce clusters that contain observations over

similar times of day in different clusters.  This may be due to traffic variance over time

and variant conditions occurring due to holidays and events and random days.  Figure 19
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shows a case where a large data set produces these repetitive clusters.   Since the goal of

this research is to base timing plans and TOD intervals on large historical data sets to

capture a realistic picture of traffic conditions, it is important to remedy this situation.

4567

Figure 19. TOD Intervals with Large Data Set

One possible solution to the case described above is that different clusters can

contain different densities of observations, thus promoting the use of one cluster for

particular times of day over another even though they both may contain observations at

the same TOD.  For example, in Figure 19, cluster 1 and 2 appear nearly repetitive, but

cluster 1 may contain 700 observations at 22:00, while cluster 2 may only contain 10

observations at that time.  This would suggest the use of cluster 1 at that time; however,

such an observation is impossible to make from the above graph.  Thus, the suggested

procedure will be to take the mean of all volumes and occupancies at each 15-minute
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interval from the historical data set used for the cluster analysis prior to clustering.  To do

this, the assumption must be made that the volumes and occupancies are normally

distributed about the mean at each 15-minute time interval.  The following figures show

an example of a volume distribution at an individual time period.  Figure 20 and Figure

21 show the distribution of volumes at 7:15 over a 6-month period compared to a normal

distribution.  Figure 20 shows the volume distributions with a normal curve and Figure

21 shows the same volume distributions with the red bars showing how those volumes

would be distributed for a normal distribution.  The normal fit to these variable

distributions according to ‘Expert Fit’ is 95% accurate and a “Good” fit, thus validating

the averaged TOD method for cluster analysis (26).    Table 1 displays the statistics

associated with this volume distribution.

Figure 20. Volume Distribution with Normal Curve at 7:15
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Figure 21. Volume Distribution Compared to Normal Distribution at 7:15

Table 1. Descriptive Statistics for 7:15 Volume Distribution

MeanStandardErrorMedianModeStandardDeviationSampleVarianceKurtosis

All of the data follow a normal distribution as shown in the example above.  Thus,

it is viable to use the mean of the observations in the data set at each 15-minute time
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interval for cluster development to avoid situations of repetitive clusters as seen in Figure

19.  The 95th confidence intervals for the averaged volumes from the three-intersection

case study are displayed on the Volume vs. TOD plot in Figure 22.  This shows that the

range that 95% of the historical volumes lie in about the mean is fairly compact.  The

largest ranges occur during the peak periods of the day.  Since the intervals lie fairly

symmetrically about the mean, it is viable to assume an average value at each TOD is a

good representation of traffic at that time.  The plot of all volumes that exist during each

TOD corresponding to this plot can be viewed in Figure 9.

The confidence intervals are fairly small, so the choice of timing plans may not be

influenced by the occurrence of a maximum versus a minimum volume at most times.  It

is possible that during the peak periods, especially, the occurrence of a minimum volume

may suggest the use of a pre/post-peak period plan; however, unless this was a very

regular occurrence (which is highly unlikely), the suggested peak plan would suffice

during the peak periods.
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Figure 22. NB Volume vs. TOD Plot with Confidence Intervals

3.10 Cluster Validation

It is extremely important to validate the cluster formations before drawing conclusions

about the behavior of the data.  Yet, cluster validation is commonly overlooked for

several reasons.  It is an extremely difficult problem due to the disagreement of what

“cluster” means or what “validity” means (25).  Since clustering is a tool used for

discovery, rather than an end solution, it is common that inappropriate statistical models

are chosen to validate the clusters.  To make a substantial contribution to data analysis, it

is essential that the clusters be validated to ensure meaningful conclusions.

Two methods for cluster validation have been implemented for evaluating the

results of the cluster analysis on the 3-intersection case study.  The first method is an

internal validation criterion based on the raw data before and after cluster analysis and the
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second is an external validation method through the use classification and simulation.  An

internal criterion assesses the fit between the structure and the data, using only the data

(11).  External methods may measure performance by rating a clustering structure using

an outside tool such as simulation to assess the performance of the clusters under realistic

conditions.  The clusters formed by the 3-intersection case study are illustrated in Figure

25, from which TOD intervals are determined depending on when clusters are formed.

3.10.1 Internal Cluster Validation

Internal cluster validation should consist of two levels; validation by data and validation

by imposed structure (25).  The first task, validation by data, is to check the data for

clustering tendency, or in other words, to ensure the data is not spatially random.  This is

important because clustering algorithms will produce clusters in any data set, whether it

is completely random or contains some inherent groupings in the data.  If a random data

set gets clustered, the clusters would most likely be random themselves, holding little

meaning.  Projecting the variables onto a 2-dimensional space prior to clustering will

show whether any natural groups exist in the data.  The data set can also be broken into

subsets and clustered.  This should produce similar clusters if the data is not spatially

random and the clusters formed are meaningful.  Another measure for cluster tendency is

the proximity matrix, which is a major data component used to validate clusters by the

data themselves when testing for spatial randomness (25).  The entries in a data matrix

are indices of similarity, such as correlation, or dissimilarity, such as distance. The

proximity matrix can be used to see if patterns exist in space prior to the clustering to

support the assumption that the data is not random and should be clustered.  The second

task will judge the success of an algorithm in imposing a structure, assuming the data is
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non-random.  The following four structural criteria must be clearly defined for validation

of the clustering structure imposed on the data (25).

1. Compactness: Measure the cohesion or uniqueness of an individual cluster.
2. Isolation: Measures the distinctiveness or separation between a cluster and its

environment.
3. Global fit: Measures the accuracy with which the structure describes

relationships between clusters, as well as the extent to which individual
clusters are valid.

4. Intrinsic dimensionality: Determines the shape of a cluster and provides
information about representing the patterns in a cluster.

A methodology for measuring these four criteria is not apparent, especially since the four

criteria are not mutually exclusive but highly inter-related.  A series of techniques will be

presented to account for these criteria.  Graphics for distance between opposing clusters

and distance of observations within clusters will provide insight into the compactness and

isolation of the cluster formations.  The proximity matrix and the dendrogram will

measure the global fit of the cluster analysis and the intrinsic dimensionality will be

addressed by projecting the clustered data into a 2-dimensional space.

3.10.1.1 Cluster Tendency

Testing for the tendency of the data to cluster can also be viewed as the test for “complete

spatial randomness,” a major piece of the validity tests.  For this research, the principle

components of the raw data were analyzed and the data projected onto the two primary

principle components for a two-dimensional viewing of the cluster tendencies in the raw

data.  For the volume and occupancy data set from the three-intersection corridor case

study, a principal component analysis was performed in SAS on the raw data and the

projection can be viewed in Figure 23. The principal components or eigenvectors of the

covariance matrix define a linear projection that replaces the features in the raw data with



63

uncorrelated features. The data can be projected onto the axes of the two largest

eigenvalues, thus showing whether there is any natural grouping tendency in the data or

not in a two-dimensional space (11).  The eigenvalues represent the roots of the variance-

covariance matrix.  Due to the decreasing order of variance associated with the

eigenvectors, it is typical that a summarization of the variability and covariability of the

original variables from the two largest eigenvectors is sufficient (21). See Figure 23 for

the 2-D projection of the raw volume and occupancy data from the three-intersection case

study onto the axis of the primary principle components.  From this figure the natural

tendencies of similar times-of-day to group together are shown.  See Table 2 for the

corresponding times associated with each graph symbol.  A series of similar symbols

exist in the graph to represent an individual 15-minute interval from the time periods

listed in the table.  For example the number 2 represents 02:30 – 05:00, according to

Table 2, and there are ten 2’s in Figure 23.  Each of the ten 2’s represents a 15-minute

time slice from the period of 02:30 – 05:00.  The groupings of similar numbers shows the

raw data exhibit a tendency to cluster during similar times of day based on the volume

and occupancy pairs over a 24-hour period of the day.
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Figure 23. Natural Raw Grouping Tendencies
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Table 2. Graph Symbol Representations for TOD�s from Figure 23

GraphSymbolTimeofGraphSymbol1234

Even before a data set is clustered, it should be determined if the data exhibit a

“cluster tendency” or a predisposition to cluster into natural groups without identifying

the groups themselves (11).  This is an important consideration for cluster validity

because clustering algorithms will create clusters whether data are naturally grouped or

completely random, the latter resulting in meaningless clusters.  Testing for cluster

tendency essentially consists of testing the raw data for spatial randomness, which would

infer the data is not appropriate for clustering. It is also possible for data to be regularly

spaced, or to exhibit mutual repulsion, which would defeat the purpose of applying a

clustering algorithm.  The 3-intersection case study data set has shown to be non-random

based on the natural groupings in the data over a 24-hour period as seen in Figure 23 and

so the cluster validation process will continue to test for the validity of the cluster

structure.

 A method of establishing the stability of a cluster solution, another form assuring

the data is not random, is to randomly divide the data set into sub-sets and performing a

cluster analysis on each subset separately (22).  Similar solutions should be obtained from

both sets when the data is clearly structured. This technique was used successfully by

Jolliffe, et al., 1982 (23).  To demonstrate this approach, a sub-set of the original data set
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from the three-intersection corridor was used for an example.  The original 3-intersection

data set consisted of volume and occupancy data from 8 March – 29 September 2000,

while the subset data set consisted of data from 8 March – 1 July 2000.  Figure 24 shows

the TOD intervals formed from the cluster analysis for the full data set and Figure 25

shows the TOD intervals formed from the cluster analysis from the subset of that data set.

4567

Figure 24. TOD Intervals for Full, 3-Intersection Data Set
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Figure 25. TOD Intervals for subset of 3-Intersection Data Set

From the above charts, it is clear that both data sets created clusters distributed over

nearly exact times of the day.  Both clusters produced clear TOD intervals for the off-

peak, AM, post-AM, Mid-Day, PM, post-PM, Evening and Pre-Off peak periods, where

the mid-day and post-PM periods exist in the same cluster for each data set.

3.10.1.2 Global Fit

Figure 26 shows the dendrogram produced for the 3-intersection cluster analysis.  The

dendrogram shows the level of dissimilarity along the y-axis at which point clusters join.

The time-of-day associated with each initial cluster is displayed on the x-axis in a

vertical, downward format.  The times join in an intuitive manner as far as typical TOD

traffic conditions exist.  The dendrogram for the partial subset clustering is nearly the

same as that for the full, 3-intersection data set.  The dendrogram can also be viewed as

an indicator for the degree to which a cluster formed is “real.”  A cluster can be termed
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“real” if it forms early in the dendrogram for its size and lasts a relatively long time

before being joined into another cluster (25).  The smaller the dissimilarity (y-axis

distance), the more alike observations in the cluster are.  As the dissimilarity measure

gets longer, the clusters are more likely to contain observations less similar.  This is

apparent in Figure 26 where the last levels of the cluster hierarchy join smaller clusters

and the dissimilarity distance becomes elongated since clusters are being formed with all

of the observations.  This dendrogram was cut at the 7th level according to stopping rules

produced for the cluster analysis.  The red line represents the 7th level at which the

dendrogram was cut.  Determining if a cluster is “real” addresses the 3rd point above

about determining the global fit of the cluster.  From the dendrogram, it appears that the

clusters formed at the 7th level consist of similar groupings of observations, with fairly

small dissimilarity distances.
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Figure 26. Distance between Clusters for 3-Intersection Data Set

3.10.1.3 Validation of Individual Clusters

The two main properties of clusters are compactness and isolation (11).  A valid c

would be one that was “unusually” compact and isolated, where compactness refe

cohesion among objects within a cluster and isolation refers to the measure of sep

between separate clusters.  This section addresses the isolation criterion and the

compactness criterion by visualizing these aspects of the resulting cluster analysis

The first graphic for portraying the compactness and isolation of individua

clusters is the distance of observations from their cluster centers and the distance o

opposing cluster centroids from each other.  Both of these aspects of individual clu
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validity are displayed in Figure 27.  The first 7 characters in the legend represent the

distance each observation in that cluster falls from its center.  The remaining 21

characters in the legend represent the upper diagonal values of the distance between

cluster centroids for all seven clusters to portray the between cluster distances.  This

display validates that the observations making up each cluster are much closer to their

own cluster centers than opposing clusters are to other clusters.  This supports the

criterion that clusters must be compact and isolated.  The clusters that fall closest to each

other are intuitive.  For instance, at cluster member 4, cluster 1 falls fairly close cluster 4,

and these clusters represent the off peak and the pre-off peak periods.  All of the closest

cluster centroids follow this intuitive TOD scheme.  The cluster member TOD

classifications can be found in Table 3 for reference.

250300350400450

Figure 27. Cluster Isolation and Compactness with Distance Measures
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Another visualization aid for assessing cluster solutions, suggested by Cohen (23),

is to plot the cluster membership along the x-axis and above each cluster label, plot

variable values for that cluster.  Figure 28 shows the mean volumes for the cluster input

variables that exist in each cluster.  The error bars represent the standard deviations of

each variable in each cluster.  The variables are represented by ‘V’ or ‘O’ for volume or

occupancy, a phase number and an intersection identifier, where ‘SH’ = Sunset Hill,

‘BLMT’ = Bluemont and ‘ND’ = New Dominion.  Figure 29 shows the same plot, except

with the occupancy means that exist in each cluster for each variable.  The standard

deviations are also represented in this chart as error bars on each variable.

Table 3 shows the times of day that each of the clusters represents.  The variable

values that exist in each cluster correspond to the TOD associated with each cluster.  For

instance, cluster 1 contains mean volumes and occupancies with the smallest values and

this cluster represents the off peak period, while cluster 7, which contains the largest

volume and occupancy values, represents the PM period.  These two figures validate the

criterion that the clusters must be unique as well as contain correlated variables.  Each

cluster is comprised of a combination of volume and occupancy values of which

represent different movements at the different intersections.  The volume and occupancy

differences are obvious and intuitive for the timing plans they represent.
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Figure 28. Volume Means for 3-Intersection Clusters

2025303540

Figure 29. Occupancy Means for 3-Intersection Clusters
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Table 3. TOD Classifications for 3-Intersection Corridor

Cluster #TOD Classification  Cluster 1Off Peak   Cluster 6AM   Cluster 2Post AM   

Figure 28 and Figure 29 provide a visual for the cohesiveness of the variables

within each cluster and the differentiation between opposing clusters.  To present an even

clearer portrayal of the separation between clusters, Figure 30 shows the overall mean

and standard deviation of the volume and occupancy values present in each cluster.

Again, the increasing volume and occupancy values with peak periods are apparent here.

This plot is not as detailed since the individual movement volume and occupancy values

that make up each cluster are averaged to one value.

100120140160180

Figure 30. Cluster Mean Volumes vs. Occupancies for 3-Intersection Case
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The final display for cluster compactness is a demonstration of one of the cluster

variable compositions for all 7 clusters. Figure 31 also shows the distribution of the

variables within each cluster.  The assumption can be made that the variables are

normally distributed about the mean of each cluster centroid.  This figure demonstrates

this trend with an example from the volume variables at the Bluemont intersection, in the

northbound direction.  The cluster 2 and 5 volumes at this intersection, in the northbound

direction, as well as clusters 3 and 6, contain similar, overlapping volume values.

However there are many more variables than just this one contributing to the formation of

these clusters, so this is not an issue.

150200250

Figure 31. Variable Distribution within Clusters

3.10.1.4 Intrinsic Dimensionality & Isolation Criteria

The following figure follows the same idea as that of Figure 30 to represent the location

of the cluster in a 2-dimensional space, only in a more detailed diagram.  Each of the
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volume and occupancy pairs for every movement in the 3-intersection corridor are

displayed in their corresponding cluster in Figure 32.  The projection was made on the

two primary canonical variables, derived from the cluster membership values in SAS.

The cluster groupings follow the same pattern as those in Figure 30, where similar TOD

periods are located closest.  The only difference in the following graph is that each

observation making up each cluster is included in Figure 32.  The numbers in this graph

represent cluster membership values, whose TOD classification can be viewed in Table 3.

This figure validates the isolation of the cluster formations as well as providing insight

into the shape of the clusters formed.

   
Figure 32. 2-D Projection of Clustered Variables
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3.10.1.5 Validation of Hierarchies (Global Fit)

The cophenetic correlation coefficient (CPCC) has been proposed for quantitative data

for determining if the results of a hierarchical clustering are good, in particular to validate

the hierarchies imposed by the clustering algorithm (11).  The proximity between objects

i and j can be called d(i, j), and the cophenetic proximity, to be called dc(i, j), is the level

in the dendrogram for a particular clustering method where objects i and j are first placed

in the same cluster.  The CPCC is the product-moment correlation coefficient between

the entries of these two matrices.  These matrices are symmetric and so only the entries

above the main diagonals are computed.  The value of CPCC is between –1 and 1, and

the closer it is to 1, the better the match between the two matrices and the better the

hierarchy fits the data.  Appendix A contains the matrices of CPCC values for each of the

7 clusters in the 3-intersection corridor analysis.  It would be expected that if the

hierarchy split at the 7th level is a good cluster fit, then the CPCC values in the matrix

should be close to 1, implying the variables in that cluster were joined at a level

appropriate for the minimum distance of those clusters.  It is important to recall that the

variables making up the clusters represent opposing traffic movements and so certain

movements should be less correlated than others should.  For instance if the cluster to

represent the AM peak is examined, some cluster variables represent northbound

movements and some represent southbound movements.  The AM peak northbound

traffic will be much heavier due to the location, south of the business area, whereas the

southbound AM traffic will be much smaller at that time.  Of course the opposite

becomes true during the PM peak period.  Therefore, it would be expected that less

correlation exist between opposing movements than like movements.  This relationship
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must be considered when examining the proximity and correlation matrices.   The

cophenetic correlation coefficient matrices in Appendix A follow these guidelines, in that

the expected traffic movements with heavy flow at certain times, contain CPCC values

close to 1.  This implies the hierarchical cluster fit to the data is a good fit.

The validation methods investigated above provide the necessary insight into the

clustering tendency of the data and the overall fit of the cluster hierarchy.  By showing

the stability of the cluster formations and the isolation and compactness of the clusters

formed, it follows that the clusters formed are based on real grouping tendencies in the

data.  The groupings formed also follow a traffic condition intuition for the behavior of

traffic during a 24-hour period during the week.  The number of clusters that should be

formed, or the level at which to cut the tree is another important issue that will be

investigated in the ‘Sensitivity Analysis’ section in Chapter 5.  Some external forms of

cluster validation include testing the classifications formed by the cluster analysis, as well

as simulating the formation of clusters as timing plans to test for actual performance of

the groups formed.  The next section deals with rating the cluster memberships formed

with classification models.

3.10.2 Secondary Cluster Validation � CART
Classification and Regression Trees (CART), version 3.6.3, is a classification tool that

can be used as a secondary method of cluster validation.  CART is based on decision tree

technology that automatically searches for patterns and relationships and uncovers hidden

structure in data.  This information can then be used for predictive modeling, which is a

useful and important piece for the future work of this project to be discussed in Chapter
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6. Classification is appropriate since the target value, which will be introduced as the

cluster membership developed in SAS, exists as a categorical variable representing a

timing plan.  Based on the input volume and occupancy variables at each detector

associated with each cluster membership value for each observation, CART will

construct a classification tree for classifying observations that can be used without cluster

memberships’ to a cluster or timing plan.  Cross-validation is used for constructing the

classification rule in CART due to the limited size of the data sets, which consist of only

96 observations (to cover a 24-hour period).  The success of the classification rule on the

cross-validated data will supply a secondary form of cluster validation since it can be

assumed that a highly successful classification rule would imply meaningful clusters

were formed (21).  This secondary validation technique was performed on the two case

study cluster outputs: the single intersection at Baron Cameron and Reston and the 3-

intersection corridor.

For both of the case studies, the classification results were superior with equal

priors.  The tree was selected based on the minimum cost of the tree and the GINI method

was implored for splitting the data.  In the single intersection case study at Baron

Cameron, it was determined that four clusters were optimal, so this is the number of

levels for the target variable in CART.  Table 4 shows the cross-validation classification

table for the Baron Cameron intersection.  The total correctly predicted observations by

the classification rule developed are 96.9%.  Observations in cluster 1 and 4 were

classified correctly 100% of the time, while the observations in clusters 2 and 3 were

never classified less than 90%.  This single intersection classification of the 96 clustered

observations implies that the data were clustered into meaningful groups by SAS.
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Table 4. CART - Cluster Validation at Baron Cameron

This secondary cluster validation technique with classification was also

performed on the 3-intersection case study.  This data set also contains 96 observations

but this set was clustered with 7 clusters so the target variable for the classification

consisted of 7 levels.  Table 5 shows the cross-validated classification table for the 3-

intersection classification.  The overall percent of correctly classified observations with

cross-validation was 92.7%.  The clusters that performed the worst for correct

classification are those with very few observations in them, thus producing low

classification results.  Only cluster 4 and 5 mis-classified more than one observation, with

cluster 4 mis-classifying 3 observations and cluster 5 mis-classifying 2 observations.  The

overall classification rate for the example is good at 92.7% even with a small sample size

and a fairly large number of clusters.  This again supports the clusters produced in SAS

as valid by secondary validation with classification.
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Table 5. Cluster Validation at Three-Intersections

3.10.3 External Cluster Validation � Simulation

Clusters developed in the cluster analysis were also validated using simulation.  Since the

clusters represent TOD intervals, the performance of these newly created intervals under

actual traffic conditions provides feedback as to the validity of the clusters formed.  The

aim is that the use of a refined state definition and accumulated historical data will

develop more appropriate TOD intervals to be determined by the cluster analysis.  Figure

33 shows the measures of performance from the 3-intersection simulation.  The legend is

explained below Figure 33 and can be referred to for the Chapter 4 analysis of results as

well.
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Figure 33. SimTraffic Outputs for 3-Intersection Case Study

Old Plan, Old TOD – Plan developed with hand-counted volumes, implemented
during the handpicked TOD intervals based on critical intersection traffic.

Old Plan, New TOD – Plan developed with hand-counted volumes, implemented
during newly clustered TOD intervals based on full state definition.

New Plan, New TOD – Plan developed with database volumes from 6 months,
implemented during newly clustered TOD intervals based on full state definition.  

New Plan, Old TOD – Plan developed with database volumes from 6 months,
implemented during newly clustered the handpicked TOD intervals based on critical
intersection traffic.

The TOD intervals represented in the legend as ‘New TOD’ were developed from the

cluster analysis.  The 90th percentile volumes for these centroids were used for Synchro

timing plan development.  These newly optimized plans based on cluster volume values

are represented as ‘New Plan’ in the legend.  ‘Old TOD’ represents the current TOD

intervals used by VDOT and ‘Old Plans’ represent the current timing plans developed

from the single-day, hand counts.  It is clear that the new TOD’s with the new plans
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perform better than the Old TOD’s with the New Plans, supporting the claim that the

clustered TOD intervals perform better in simulation than those chosen be traffic

engineers with the aggregate volumes at the critical intersection.  When comparing the

Old TOD’s and Old Plans with the New TOD’s and Old Plans, it is again shown that

performance is improved with the newly clustered TOD intervals operating under similar

timing plans with the old TOD intervals.  The support of the simulation results for the

improvement of performance with new TOD intervals can be viewed as a secondary,

external validation that the clusters formed are logical and do provide a better form of

defining TOD intervals based on data from all intersections in the corridor. These results

will be discussed in more detail in Chapter 5.

3.11 Timing Plan Development and Simulation (Synchro/SimTraffic)

Synchro/SimTraffic is a complete software package for modeling and optimizing traffic

signal timing plans and then simulating these plans with the software, SimTraffic.

Synchro and SimTraffic have been developed to provide simultaneous plan development

and simulation.  This software has been developed by Trafficware,

(http://www.trafficware.com), a traffic signal software company.  Synchro implements

the methods of the Highway Capacity Manual to provide intersection capacity analysis

and timing optimization where it optimizes cycle lengths, splits and offsets (16).  This

eliminates the need to try multiple timing plans in search of the optimum.  Synchro

optimizes to reduce delays and is the only signal software currently available that models

actuated signals.  Timing plans are developed in Synchro using historical data base

volumes and output files for each timing plan are created for use in SimTraffic

simulations to test the clustered plans that corresponds with each TOD interval.

http://www.trafficware.com)/
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SimTraffic is designed to model networks of signalized and un-signalized

intersections (16).  The primary purpose of SimTraffic is to check and fine tune traffic

signal operations before implementing them in the field.  SimTraffic includes the vehicle

and driver performance characteristics developed by the Federal Highway Administration

for use in traffic modeling (16).  SimTraffic is especially useful for analyzing complex

situations that are not easily modeled macroscopically including:

•  Closely spaced intersections with blocking problems
•  Closely spaced intersections with lane change problems
•  The affects of signals on nearby un-signalized intersections and driveways
•  The operation of intersections under heavy congestion

The following list summarizes the features modeled by SimTraffic (16):

•  Pre-timed Signals
•  Actuated Signals
•  2-way stop intersections
•  All-way Stop intersections

•  Freeways
•  Roadway Bends
•  Large Traffic Circles
•  Lane additions and Lane Drops
•  Cars, Trucks, Buses
•  Pedestrians

SimTraffic is capable of simulating traffic conditions read in from outside files.  These

files are based on data base volumes at 15-minute intervals and the simulation effectively

mimics the trend of traffic conditions according to these historical volumes.  SimTraffic

is also able to simulate transitions between timing plans by reading in the plan files

output from Synchro that correspond to the times being simulated.  The transitions occur

according to the following steps (16):

1. New timing plan is loaded and cycle clock set based on time from midnight.
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2. Cycle Clock for current state is calculated based on current phase durations and
their start time.

3. The calculated cycle clock is compared to the target cycle clock.  If the calculated
cycle clock state is ahead by less than half a cycle, the controller will attempt to
regain coordination by using shortened phases.  Otherwise the controller will
attempt to regain coordination by using longer phase times.

4. The transition max-times are calculated by increasing or decreasing the phase
max green times by 17%.  No green times will be shortened below the pedestrian
walk plus flashing-don’t-walk times or the minimum initial time.  If shortening is
unable to reduce the cycle length by at least 10%, the transition will occur using
longer green times.

5. The signal will continue to time using the shorted or longer phase times.  No force
off or yield points are used.

6. At the beginning of each barrier transition, the calculated cycle clock is compared
to the actual cycle clock.  When the calculated cycle clock is a little bit behind,
the transition is complete and the signal will begin operating coordinated with the
new timing plan.

Signal transitions with pre-timed signals can be quite disruptive.  It may take nearly an

entire cycle to reach the sync point, then the signal may rest on the main street phases for

up to a full cycle in addition to the normal main street green time.  Thus, it is imperative

that studies be conducted for network performance at transitional points, especially since

this proposed procedure tends to portray an increased number of TOD intervals for which

transitions must occur.  A major draw back with SimTraffic is that only 19, 15-minute

intervals can be simulated at one time, however there are no restrictions on the number of

intersections in the network.

3.11.1 SimTraffic Outputs & Measures of Effectiveness

SimTraffic produces three main output elements for analysis of timing plan performance.

The first is a performance report where delay, travel times, fuel emissions, etc. are

reported.  The second output is the queuing report, which includes the queuing



85

information at each movement.  The final output is the signal report, which produces

signal outputs from each phase in the system.  Sample output files from each of the three

reports are displayed in Figure 34, Figure 35 and Figure 36.  The following is a list of

Measures of Effectiveness SimTraffic provides in its reports:

•  Slowing Delay
•  Stopped Delay
•  Stops
•  Queue Lengths
•  Speeds
•  Travel Time and Distance
•  Network Throughput
•  Fuel consumption and efficiency
•  Exhaust Emissions
•  Observed Actuated Green Times

Each of these elements are included in the three main output files mentioned above and

are discussed in full detail in the following sections.

3.11.1.1 SimTraffic Performance Report

The performance report includes measures of performance for delay, stops, speeds, travel

times, travel distances, number of vehicles and exhaust emissions.  This is the main

output report for use in this research for evaluating timing plan effectiveness.  Figure 34

shows an example performance report created by SimTraffic.
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Figure 34. SimTraffic Performance Report

Total Delay is equal to the travel time minus the time it would take the vehicle

with no other vehicles or traffic control devices (16).  For each time slice of animation

the incremental delay is determined with the following formula:

TD = dT * (spdmax - spd) / spdmax, where

TD = Total Delay for time slice
dT = time slice = 0.1s
spdmax = maximum speed of vehicle
spd = actual speed

The maximum speed may be less than the link speed if a vehicle is within a turn,

approaching a turn, or accelerating out of a turn.  Total delay also includes all time spent
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by denied entry vehicles while they are waiting to enter the network.  Delay per Vehicle

is calculated by dividing the total delay by the Number of Vehicles.

The Number of Vehicles is not a fixed number because some vehicles are in the

area analyzed before the interval begins and some are in the area after the end of the

analyzed period after the interval ends. Part of these vehicles delay is counted in prior and

subsequent intervals and thus it is not fair to count these vehicles in the vehicle count for

this interval.  The Number of Vehicles is thus equal to:

nVeh = nX - 0.5* nS + 0.5 * nE, where

nVeh = Number of Vehicles
nX = Vehicles Exited this interval
nS = Vehicles in area at start of interval
nE = Vehicles in area at end of interval

Per vehicle values for a network or arterial will be higher than their intersection

components. If, for example, all vehicles are delayed at 3 intersections for 5 seconds

each, the network delay per vehicle will be 15s.

The Stopped Delay is the sum of all time slices where the vehicles are stopped or

traveling at less than 10 ft/s (3 m/s).  Normally the Stopped Delay will be less than the

total delay. Stopped delay also includes all time spent by denied entry vehicles while they

are waiting to enter the network.  Stop Delay/Vehicles is calculated by dividing Stop

Delay by the Number of Vehicles.

The Total Stops is a count of vehicle stops.  Whenever a vehicle's speed drops

below 10 ft/s (3 m/s) a stop is added.  A vehicle is considered going again when its speed

reaches 15 ft/s (4.5 m/s).  Stops /Vehicles is calculated by dividing the number of Stops

by the Number of Vehicles.
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The Travel Distance is simply a summation of the vehicle distance traveled.  This

distance includes the curve distance within intersections.

The Travel Time is a total of the time each vehicle was present in this area.  The

travel time includes time spent by vehicles Denied Entry.

The Average Speed is calculated by dividing Total Distance by Total Time.

Average Speed is weighted by volume and includes stopped time and denied entry time.

The time use in calculation for Average Speed does not include time spent by denied

entry vehicles while they are waiting to enter the network.  Average speed may thus be

higher than Total Time divided by Total Distance.

Fuel Used is calculated with the fuel consumption tables.  The fuel used in each

time slice is determined by the vehicle's fleet (car, truck, or bus), speed, and acceleration.

The Fuel Efficiency is calculated by dividing the Total Distance by the Fuel Used.

Emissions data are calculated with the vehicle emission tables.  The vehicle's speed and

acceleration determine the emissions created in each time slice.  The vehicles queued in

the denied entry number are not accounted for in the fuel used calculation and so this

value would be disproportionally smaller than MOP’s such as travel time.  There is no

emission tables available for trucks and busses.  SimTraffic assumes trucks and busses

emit exhaust at three times the rate of cars.

Vehicles Entered and Vehicles Exited is a count of how many vehicles entered

and exited the link or area in the interval(s).  If this is a network or arterial summary, the

Vehicles Entered and Vehicles Exited do not count a vehicle moving from one

intersection to the next within the arterial or network. The Entered and Exited counts for

a network or arterial will thus be less than the sum of the counts from each intersection.
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The Hourly Exit Rate is the Vehicles exited at an hourly rate.   If the intersection is above

capacity and the input volume is not constrained upstream, this value might be used as

the capacity for this movement

Denied Entry is a count of vehicles that are unable to enter a link due to

congestion.  The report lists the number of vehicles denied entry at the start and end of

each period.  Thus, to determine the number of vehicles denied entry during each time

interval, the number denied entry before must be subtracted from the number denied after

the interval.  This is useful to see if congestion is getting worse or better.  Denied Entry

can also be used to determine the Network Throughput.  In a congested network, lower

values of Denied Entry indicate increased throughput and vice versa.  This is a good

determining factor for the effectiveness of timing plans.  The higher the number of denied

vehicles typically infers that those timing plans are performing worse.

3.11.1.2 SimTraffic Queuing Report

The queuing report includes information on queues and blockages encountered by the

vehicles in the simulation.  The Queuing and Blocking report gives information about the

maximum queue length for each lane and the percentage of time critical points are

blocked.  Figure 35 shows an example queuing report file output by SimTraffic.
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Figure 35. SimTraffic Queuing Report

Queues are reported individually for each lane, no summing or averaging is

performed between lanes. A vehicle is considered queued whenever it is traveling at less

than 10 ft/s (3 m/s). A vehicle will only become “queued” when it is either at the stop bar

or behind another queued vehicle.  The Maximum Queue is the maximum back of queue

observed for the entire analysis interval. This is a simple maximum, no averaging is

performed.  The maximum queue is calculated independently for each lane.  The queue

reported is the maximum queue for each individual lane, NOT the sum of all lanes’

queues.  SimTraffic records the maximum back of queue observed for every two-minute

period. The Average Queue is average of all the 2-minute maximum queues.  Vehicles

can stop when queued and when waiting for a mandatory lane change.  SimTraffic tries to

determine whether the stopping is due to queuing or lane changes.  In some cases

stopping for lane changes will be counted as queuing.  Sometimes in SimTraffic and in

real life, the lane changes and queuing behavior are closely interconnected.
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The Link Distance is the internal distance of the link from stop-bar to stop-bar.

This value will be less than the link distance defined in Synchro because it is the internal

distance after subtracting the widths of the intersections.

Upstream Block Time is the proportion of time that the upstream end of the lane

is blocked.  There is a hot spot 20ft (6 m) long placed at the top of the lane.  Every time

slice that this hot-spot is occupied by a queued vehicle counts towards the block time.

The Queuing Penalty is a rough measure of how many vehicles are affected by the

blocking.  The Queuing Penalty is equal to the estimated volume of the lane times the

percent of time the lane is blocked. The Queuing Penalty for a storage bay blockage is

based on the volume of the adjacent lane.  If a through lane is blocking a storage bay, the

penalty is based on the volume of turning traffic.  The Queuing Penalty is a quick way to

quantify the affects of queuing.  It can be used to show, for example, that Timing Plan A

has less blocking problems than Timing Plan B. Queuing Penalty is not calculated for

external links.

Storage Block Time is the proportion of time that a lane is queued at the top of the

storage. There is a hot spot 20ft (6 m) long placed at the top of the storage bay.  Through

lanes adjacent to storage bays are also tracked. Queuing in the through lane can block

access to the storage bay.  Every time slice that this hot-spot is occupied by a queued

vehicle counts towards the block time.

3.11.1.3 SimTraffic Actuated-Signals, Observed Splits Report

The actuated signal report displays information about the actual times observed in

actuated signals (16).  This report can be used to show how an actuated signal will
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perform with detailed modeling.  This report can be helpful to compare the affects of

adjusting gap settings, detector layouts, recalls and so on.  Figure 36 shows an example

report.

Figure 36. SimTraffic Actuated Signals, Observed Splits Report

Each column in the figure above represents one signal phase.  Movements are the

lane groups served by this phase.  Maximum Green is the maximum green time before

this phase will max out and the green time will be given to the next phase.  For a

coordinated signal this is the maximum time before the signal will yield or be forced off.

Minimums Green is the minimum green time that a phase must retain the green, even if

no vehicles are detected.  In Synchro this is called the minimum initial time.  Recall is the

recall for the phase.  This will be Coord for coordinated, Max for Max recall, Ped for

Pedestrian recall, Min for minimum recall, or None for no recall.  Avg Green is the

average of all green times.  Skipped phases do not count.  Green periods that begin or end

in another interval do not count.  g/C Ratio is the observed green time to cycle length

ratio.  Since there may be green time measured from cycles that fall partially outside this

interval, an adjustment is used.  The formula for g/C is as follows:
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g/C  = TotalGreen / TotalCycles * NumCycles / (NumGreens+NumSkips)

Cycles Skipped (%) is the percentage of cycles skipped by this phase. Green periods or

permissive periods that begin or end in another interval do not count.  Cycles @

Minimum (%) is the percentage of cycles that show for their minimum time. Normally

these phases have gapped out. Green periods that begin or end in another interval do not

count.  Cycles Maxed Out (%) is the percentage of cycles that max out.  This value also

includes all cycles for coordinated phases and phases with Max Recall. Green periods

that begin or end in another interval do not count.  Cycles with Peds (%) is the percentage

of cycles with a pedestrian call.  If this phase has Pedestrian Recall all phases will have

pedestrians. Green periods that begin or end in another interval do not count.  Average

Cycle Length(s) is an average of the cycle lengths modeled. For a coordinated signal, this

is the actual cycle length.  Number of Complete Cycles(s) is a count of the number of

complete cycles modeled.  Partial cycles do not count, although phases from partial

cycles may count for individual phase statistics.

The outputs produced by SimTraffic can be used to analyze entire network

performance over entire TOD intervals, network performance at specific TOD intervals,

intersection performance at TOD intervals and phase movement performance at TOD

intervals.  The capability for analysis is in-depth and for the scope of this study will focus

on the main elements in the performance report for comparing TOD interval and plan

effectiveness of the entire corridor.
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3.12 Chapter Summary

This chapter provides the background and selection of methods for the proposed

procedure.  The clustering algorithms are presented with the support for the selection of

the centroid methodology for cluster analysis.  Typical cluster outputs are presented with

emphasis on issues faced such as the production of “bad” clusters by the cluster

algorithm.  Stopping rules are introduced and the selection of the CCC, Pseudo F and

Pseudo t2 statistics are supported and detailed for selection of the appropriate number of

clusters.  This chapter also summarizes some cluster validation techniques and presents

the results of these validations for the 3-intersection case study.  The final piece of this

chapter is a detailed report of the simulation tool implemented in this research and the

outputs available from SimTraffic.
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Chapter 4.  Proposed Procedure

Based on the research done with the Northern Virginia system detector data, a procedure

has been proposed for developing improved timing plans through the use of data mining

tools.  Since no such procedures have been discovered for utilizing detector data being

collected by many DOT’s, a proposal has been developed for using this resource on the

most widely implemented method of timing plan development, TOD.  The procedure

section outlines the tools used in this research for the procedure and the steps taken

through each stage of the process.

Figure 37 depicts the proposed procedure in a flow chart format.  This procedure can be

refined and improved with extended research, but is at this time introduces a method of

utilizing detector data to improve on existing methods of signal timing development.

4.1 Tools

The tools to be used for the proposed procedure are as follows:

•  Data Extractor Tool
•  Developed by the Smart Travel Laboratory at the University of Virginia (2000)
•  http://smarttravellab.virginia.edu/Data%20Extractor/home.htm

•  Microsoft Excel

•  SAS, Version 8
•  Developed by SAS Institute, Inc.

•  Synchro, Version 4
•  Developed by TrafficWare
•  http://www.trafficware.com

•  SimTraffic, Version 4
•  Developed by TrafficWare
•  http://www.trafficware.com

•  Classification and Regression Trees (CART)

http://_________________________/
http://www.trafficware.com/
http://www.trafficware.com/
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4.2 Proposed Procedure Flow Chart

[Print out separate page for this figure in Landscape]

Figure 37. Proposed Procedure Flow Chart
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4.3 Data Collection

The use of the Data Extractor Tool will query the Oracle database housed at the

University of Virginia in the Smart Travel Laboratory where 15-minute Volume,

Occupancy and Speed data can be retrieved from all intersections in the Northern

Virginia arterial network.  The Data Extractor outputs the data to an Excel spreadsheet,

which can be used for any necessary data manipulation and for storing the data sets.  The

procedure for using the Data Extractor is as follows:

•  Select ‘Nova Detector Info’ from menu.

•  Select ‘intersection’ or ‘corridor’ to collect data from necessary detectors.

•  The Data Extractor lists all detectors in each section and corridor with the phase
movement of each detector.

•  Add the detectors or intersections of interest to the extraction list for data gathering.

•  Select the ‘Extract Data’ view from the menu.

•  Set the date and time interval for the dates of historical data collection.

•  Select weekdays, weekends or particular days for tailored data collection, for the case
presented here select weekdays.

•  Select ‘continuous’ or ‘segmented’ interval for continuous 24-hour sampling or a
subset of the 24-hour period to be sampled over dates chosen, for this case select
‘continuous’.

•  Select all screening procedures for fully screened data.  (See Help menu of Data
Extractor or Chapter 1 of this report for details of data screening procedures).

•  Select average volumes for each phase movement to obtain an individual value for
each movement, thus eliminating the need to research the number of lanes that exist
in each movement since detectors may not exist in all lanes.

•  Select “Get Data” and select “Data Formatting – Graph Format” to return data in a
usable format in Excel.

•  Save Excel output to file.
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•  In the Excel file, insert an addition column by the Datex column for time-of-day.  The
‘convert to text’ option can be used to separate the date and time in the Datex column
to only times-of-day.  This is necessary for proper TOD identification after the cluster
analysis.

•  Average similar TOD variables to represent one mean value at each TOD for cluster
analysis.

4.4 SAS Procedure for Cluster Analysis

The statistical software package, SAS is used for producing clusters from the data to

represent timing plans. The timing plans will exist for the time-of-day intervals to be

specified by the cluster analysis.  The hierarchical cluster procedure will be used for

cluster development.

•  Import the saved Excel data file into SAS.  The import data function is in the File
menu.

•  Use ‘Procedure Cluster’ in SAS to develop clusters from the data file.  A sample code
for use in SAS can be viewed in Table 6.

•  The ‘Standardize’ option should be used to standardize all variables to mean =
0 and a standard deviation of 1 prior to the clustering process since volume
and occupancy variables lie on a different scale.

•  The ‘NPRINT = 9’ option can be used to display only the statistics for the
final 9 clusters since, due to hardware constraints, a maximum of 9 timing
plans can be produced.

•  The ‘CCC’ option is used to display stopping statistics for use in determining
the number of clusters to produce.

•  The ‘PSEUDO’ option can be used to display a pseudo F and t2 statistic for
aiding in the determination of the optimal number of clusters to produce.

•  The volume and occupancy variables at each movement at each intersection
are the input variables and should be read in as they exist in the data file.

•  The ‘ID = TOD’ option should be used to copy the time-of-day values
associated with each cluster assignment for identification of TOD intervals.
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Table 6. SAS Cluster Procedure (Code Example)

•  View the CCC, Pseudo F and t2 statistics from the output file from the Cluster
Procedure to determine the proper number of clusters to form.  The cluster level with
the first local maxima Pseudo F statistic, the largest CCC value and a small Pseudo t2

value should be the optimal number of clusters to form.
•  The number of clusters to form can be determined with an expert rule.  This rule

should be based on the fact that the CCC provides an accurate descriptor of the
appropriate number of clusters, with its inaccuracy exhibiting too many clusters as
the appropriate number.  The Pseudo F and t2 statistics are also accurate with the
mis-classifications occurring with too few clusters identified as the appropriate
number.  So if the maximum CCC, Pseudo F and minimum Pseudo t2 do not
occur at the same level, these factors can be accounted for in the expert rule for an
automated selection of the number of clusters.

•  With the proper number of clusters chosen, run the Tree Procedure in SAS.  A sample
of ProcTree can be viewed in Table 7.

•  The ‘Dock = n’ option should be used to require a minimum number of
observations to exist for cluster formations, thus reducing the creation of
clusters with too few observations.  The n variable should be chosen
according to the sample size of the data set, for this research an n value of 4 is
used.

•  The ‘Method = Centroid’ cluster method should be used for the cluster
analysis (The Ward method is also a good choice and produces very similar
results).

•  The ‘Nclusters = n’ option should be used, where n = the appropriate number
of clusters to be formed as decided from the output statistics of the Cluster
Procedure (CCC, Pseudo F and t2).

•  The ‘Copy TOD, input variables’ option should be used to copy the TOD’s
and volume and occupancy values associated with each observation and
cluster.
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Table 7. SAS Tree Procedure Cluster Code

•  When the clusters have been formed, the Means Procedure should be run on those
clusters to determine the descriptive statistics associated with each cluster.  See Table
8 for a sample SAS code for the ProcMeans procedure.

•  In the File Menu, Export the data tables produced with the Tree Procedure and the
Means Procedure to an Excel Spreadsheet.

Table 8. SAS Mean Procedure Cluster Code

4.5 Determination of TOD Intervals

The clusters produced in SAS will be used to determine the TOD intervals for improved

timing plan development.  The Excel file that was output from the Tree Procedure in SAS

should be used to identify the TOD intervals.

•  Format the ‘TOD’ column to time-of-day (hh:mm).

•  Graph the times-of-day on the x-axis and the cluster membership on the y-axis to
produce a graph of the TOD intervals as determined from the cluster analysis.

•  The cluster analysis will produce patterns in the graph where the TOD intervals
exist and these transitions can be used to represent the new timing plans.
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4.6 Synchro Timing Plan Development

The timing plans for use with the newly developed TOD plans via the historical data will

be developed in Synchro.  Volumes for each movement in each intersection for the

corridor under development must be determined.  These volumes must be those that exist

for the TOD intervals developed in the cluster analysis.  These volumes should also

service the densest portions of those TOD intervals.  Thus the 90th percentile volume

values from the data set are used.  The output data file from the ‘Tree Procedure’ in SAS

can be used to determine these values existing for each cluster or timing plan. Once the

timing plans have been developed and optimized for each of the TOD intervals, the

timing files can be written to an Excel spreadsheet for use in SimTraffic.  These files

include split, cycle length, offset and lead information.  This will allow the simulation to

account for transitioning between plans during the 24-hour period.  The Synchro files for

Northern Virginia have been obtained from VDOT, such that all lane geometry’s and

statistics, plan statistics, driver characteristics, vehicle types, etc. have been developed

accurately for proper timing plan development.   The following list details the timing plan

development procedure.

•  A timing plan will be developed in Synchro for each cluster developed.

•  The volumes for each timing plan are obtained from the volume values that make up
the observations contained within the cluster that represents the timing plan being
developed.

•  Organize the SAS ProcTree output data set such that the data is sorted by cluster
membership.

•  Use the ‘Percentile = (Volume data, .9)’ to search for the 90th percentile of the
volume data making up the cluster or timing plan being developed.
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•  Find the 90th percentile volume for each movement at each intersection.

•  This 90th percentile value will ensure that the timing plan developed will
accommodate the heaviest traffic conditions during that time period.  The Maximum
volume is not used to ensure that an erroneous case is not used.

•  For intersections where detectors do not exist at every movement, a turning
conversion obtained from current VDOT Synchro files must be used.

•  These conversion factors should eventually be validated with data collection counts
from the ‘CAMVAN.’

•  The Northern Virginia Synchro files obtained from VDOT are being used, while only
altering the input volumes that the plans must accommodate.  The existing volumes in
the Synchro files were obtained from one-day physical hand counts.  Through-
movement to turning-movement conversions for all intersections in the Reston
corridor have been developed from the existing volumes in the Synchro files.  These
conversion factors are used to infer turning movement volumes where detectors do
not exist from the through-movement lanes, where detectors always exist for the
newly developed timing plans inputs.  Another method is ratio of change from known
detector data over TOD’s for each movement.

•  To input these new volumes at an intersection click on that intersection and then hit
the timing window icon and the lane configurations and volumes will be visible.
•  Use this value in the Synchro file, multiply by the number of lanes in each

movement and multiply by 4, to represent the entire flow (VPH) for each
movement since the data being used for clustering is an average value for each
movement based on 15-minute intervals.

•  On the left side of the screen under “options”, make sure that the type of controller is
actuated, coordinated and make sure that the “lock timings” box is not selected.

•  Once the new volumes have been input, select the “optimize” tool bar from the top
menu and optimize the splits, offsets and cycle length, for each intersection.

•  Optimize network cycle length and offsets for entire network.

•  On the left hand side of the screen the timing plan characteristics such as cycle
length, V/C ratio, intersection delay, etc. can be seen.

•  With the new timing plans in place for the clustered TOD intervals, the timing files
can be written to and Excel spreadsheet by selecting ‘Data Options’ from the
‘Transfer’ tool bar.  Make sure the ‘Timing’ sheet is selected and select the location
for the timing file, which should be written in (.csv), comma delimited format.
Assign the timing plan a name in the ‘Timing Name’ section for use in SimTraffic.
Hit the ‘Write’ button and the timing plan file will be available for use in SimTraffic.
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•  Before running SimTraffic, make sure all TOD interval timing plans are
placed in a single Excel spreadsheet.

•  Check the timing files to ensure the maximum splits match those in Synchro
as well as the cycle length and offset information.

•  With the new timing plans in place, the ‘Animate’ button can be selected from the
icon menu bar and the plans will be used for simulation in SimTraffic.

4.7 Validation of Timing Plans with SimTraffic

SimTraffic will be used to simulate the newly developed timing plans for the newly

developed TOD intervals.  Average 15-minute volumes from each time interval during

the 24-hour period obtained from the SAS ProcTree output data set will be used to

develop the clusters to feed into the simulation for setting up the parameters for the

proper number of vehicles. These 15-minute volumes must be determined for each

movement at each intersection to account for changing traffic patterns during each TOD

interval.

4.7.1 Preparing 15-minute data tables for simulation

•  Determine time interval that the specific plan is implemented.

•  Organize the SAS ProcTree output data file by cluster and then by time-of-day.

•  Find the average volume for each 15-minute interval in each timing plan at each
movement.

•  If detector data does not exist for all movements at the intersection, then use the
conversion factors from the Synchro files to produce the missing volumes.  Or, use
original Synchro volumes for turning movements at peak TOD for each plan period,
fluctuating the value over time to match the fluctuation of the detector volumes,
available.
•  Transfer these values to an Excel spreadsheet.
•  The intersection ID can be obtained from Synchro by highlighting the intersection

and selecting the “#” icon from the toolbar.
•  The date column can identify the date for which the data was collected.
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•  The excel file must be saved as a .csv file (comma delimited) for use with
SimTraffic.

4.7.2 Preparing SimTraffic Parameters

•  After pressing the “Animate” icon in Synchro, you will be transferred to SimTraffic.

•  Stop the simulation and select the options menu and then select “Database Access” to
prepare for inputting the 15-minute volumes.

•  Go to “Data Options” and select “read Volumes from UTDF file” and find the
location of the 15-minute volume table that was created for simulation.  Make sure
the data format option for .csv file is selected.

•  Select the date that appears in the 15-minute volume file.

•  In the “Data Options” sheet, also select the “read Times from UTDF file” and locate
the timing file that was written from Synchro.

•  Go to the intervals tab and make sure seeding is set at 0 for random seeding or select
specific numbers for the seeding when performing multiple runs.

•  Insert enough intervals to represent the correct length of time that the simulation will
be run for.

•  Change the duration time to 15 minutes if that is the length of volume intervals being
read in from the file.

•  Make sure that the times correspond to those times on the excel file.

•  Allow an initialization of the simulation by seeding for at least three minutes without
recording, prior to the interval start time, to allow the system to fill.

•  Select the appropriate timing plan ID’s as written from the Synchro file to coordinate
with the times being read from the volume file.

•  Press the animate simulation icon and once the simulation is complete, go to file and
create a report.  A text version of the report can be saved.

•  MOP’s such as travel time, number of stops, total delay, fuel used and travel distance
are output by SimTraffic for the entire time period as well as for each 15-minute
interval.  These outputs are available for the entire corridor or for each individual
intersection and movement.  Any level of analysis can be performed using the
outputs.
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4.8 Development of Classification Rule using CART (Future Research)

Once new timing plans have been developed based on historical data, a classification rule

can be developed for classifying future cases into a pre-determined timing plan.

Classification and Regression Trees (CART) is the tool used to create the classification

rule by imploring binary splits on the data.  The cluster membership value developed

with cluster analysis is used as the response variable, while the volume, occupancy pairs

are used as the input variables in the CART model.  Further research should be conducted

in this area to verify classification rules developed will handle the classification of future

traffic states.  Guidelines should also be established for number of mis-classifications

necessary for out-dated plans and/or the need to adjust TOD intervals.

•  Import data from cluster output.
•  Use cluster membership as target variable.
•  Use volume and occupancy variables as predictor variables.
•  Use cross-validation for tree development.
•  Use equal priors.

4.9 Chapter Summary

The procedure detailed in this chapter directs the user through every step of the signal

plan development procedure.  Figure 37 summarizes this chapter into a flow chart that

can be followed for developing timing plans with system detector data and data mining

tools.  The first three levels of Figure 37 will be automated during the summer of 2001 in

the Smart Travel Lab to be delivered to the northern Virginia signal control group.  This

will allow the TOD intervals to be determined via cluster analysis and historical detector

data with the push of a button.  This will also produce the 90th percentile volumes

associated with each cluster formation for plan development in Synchro.  At this stage of
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development of the automated procedure, the tool will produce formatted, Excel files for

importing into Synchro and Simtraffic with all of the lane turning movement volumes

and timing plan TOD intervals necessary to produce plans and simulate them based on

the detector data.  The use of classification for determination of out-dated timing plans

will be a separate study conducted in the Smart Travel Lab, with the automation of this

process existing as part of the NOVA map, which is under development in the Smart

Travel Lab.  This is expected for completion in the summer of 2001.
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Chapter 5.  RESULTS AND ANALYSIS

5.1 Introduction

This chapter will investigate alternate input variables for the cluster analysis and the

effects of the input variables on the cluster outputs in the ‘Sensitivity Analyses – Cluster

Input Variables’ section.  These sensitivity analyses will suggest the form of cluster input

variables that produce the cleanest TOD clusters.  Sensitivity analyses will also be

conducted for the investigation of the ‘minimum number of observations’ constraint

imposed in the SAS cluster analysis.  This section will look at the effects of imposing

such a constraint on the cluster analysis and suggest an appropriate value for this

constraint.  The final sensitivity analysis conducted will investigate the selection of the

appropriate number of clusters based on the stopping rules implored in this research.  The

levels at which to cut the cluster tree will be evaluated to verify that the stopping rules do

in fact suggest the appropriate number of clusters for formation.  The analysis of the

exploratory case studies for a single intersection and a 3-intersection corridor will then be

presented.  The 3-intersection corridor will be presented with full detail of the

significance of the results, while the single intersection case study will be presented for

suggesting the usefulness of this procedure at single intersections versus corridors to be

discussed in the Conclusions section.  The single intersection case study will not provide

the level of detail of analysis that the corridor supplies due to its less significant role in

this project.
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5.2 Sensitivity Analyses – Cluster Input Variables

One of the capabilities of cluster analysis for the development of TOD intervals and

timing plans is that it can utilize all available data in creating timing plans for new TOD

intervals.  This data includes volume and occupancies, which are available at lanes that

contain system detectors.  Some of the sensitivity analyses done here include creating

clusters using different input variables. Standardized volumes and occupancies were

initially used as cluster input variables.  However, the cluster analysis may produce better

clusters without occupancy or with it weighted less than volume, since occupancy really

only provides useful information from values of 0% – 25%.  Values greater than 25%

may skew the resulting clusters.  Occupancy greater than 25% means the roadway is

saturated.  For example, it is common for occupancy of 25% to have the same meaning as

occupancy of 90%, whereas occupancy of 5% represents quite different conditions than

occupancy of 20%.  The cluster analysis was done using the initial volume and

occupancy variables, which were standardized and thus equally weighted.  A comparison

of results was done using only standardized volumes, standardized volumes and

occupancies, standardized volumes with occupancies converted to values < 26 to create

clusters.  These three cases were then compared with the variables un-standardized to

utilize the natural weighting of the volumes and occupancies inherent in their data

representation of traffic conditions.  Finally, a case was done using weighted volumes,

where the volume and occupancies were first standardized.  All cluster analyses were

constrained to only producing clusters containing at least four observations and the

cluster methodology imposed was the centroid method.

The clustered TOD intervals produced in this section contain some gaps in time

during the 24-hour period from which one plan transitions to the next (See Table 9).  This
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is due to the situation in which too few cases comprise a cluster or a small time slice is

represented by a particular cluster.  For the proposed procedure and automation of the

plan development procedure, expert rules will be introduced to account for such

situations.  Small clusters that cannot support the development or transition to a timing

plan will be assigned to the cluster occurring immediately before and after such an

occurrence.

5.2.1 Standardized Input Variable Cluster Analyses

Figure 38 shows a cluster analysis done with standardized volumes and occupancies at

one intersection in the Reston Corridor.  Table 9 shows the TOD classifications for this

cluster analysis.  Five clusters were formed, with a constraint imposed on the clusters of a

minimum of four observations existing in order for a cluster to be formed.  Clusters 1 – 4

are intuitive as far as peak periods go.  The fifth cluster does not make sense without

looking at the data that makes up cluster 5.  The reason for its formation is that the phase

6 (northbound) occupancies in cluster 5 are all greater than 50%.   All other occupancies

never get much higher than around 20%.  So, the formation of cluster 5 is useless for

developing a timing plan for that particular timing period due to the randomness of the

times associated with the observations making up cluster 5.  In reality, cluster 5 should

probably be part of cluster 4, or a PM period, but the occupancies seem to confuse the

clustering process here.
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345

Figure 38. Clustering with Standardized Volume & Occupancy

Table 9. TOD Classification for Volume & Occupancy Cluster

ClassificationClusterOff Peak   Pre AM   AM   

Figure 39 shows a cluster analysis done on the same data set where only the

standardized volumes were used as input variables.  The TOD classifications can be

viewed in Table 10.  The erroneous looking cluster 5 that was formed in Figure 38 does

not appear in Figure 39 since occupancies are not included.  Cluster 5 in the following

cluster analysis is representative of a PM peak period that was not captured in the cluster
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analysis in which volume and occupancy was used.  The first four clusters in both

analyses capture similar TOD intervals and transitions between timing plans.  Erroneous

data hurts the cluster analysis and it may not be a good idea to use the occupancies in the

cluster analysis unless the data is further cleansed before clustering.  For instance, all

occupancies greater than 25% could be assigned a value of 25% to represent saturation,

thus eliminating situations as that in Figure 38.

345

Figure 39. Cluster Analysis with Standardized Volumes

Table 10. TOD Classification for Volume Cluster

ClassificationClusterOff Peak   Pre AM   AM   
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Figure 40 shows a cluster analysis with the standardized volume and occupancy

values; however, the occupancies have been adjusted such that all occupancies < 26.  As

discussed above, since any occupancy of approximately 25% or greater represents

saturation, all saturated values were converged to 25%.  This eliminates the erroneous

cluster 5, assigning it PM peak values as in Figure 39.  The TOD intervals and timing

plans can be classified as follows in Table 11.

345

Figure 40. Clustering with Standardized Volume & Occupancy < 26
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Table 11 . TOD classification for V, O < 26 Cluster

ClassificationClusterOff Peak   Pre AM   AM   Post AM   

The above demonstration shows that the standardized volume and occupancy

values may not be the optimal input variables to use for the cluster analysis.  The volume

only cluster analysis and the volume with the transformed occupancies to values < 26,

result in cleaner, more refined TOD intervals.  It is important to use the cleanest possible

data so as not to form useless clusters.  Figure 41 shows the volume and occupancy

cluster centroids for the cluster analysis where the occupancies were transformed to

values < 26 and then all volumes and occupancies were standardized.  The error bars on

this chart represent the standard deviation within the clusters.  This figure shows that the

centroid method using the standardized volume and occupancy < 26 values, produce

clusters consistent with the TOD intervals as produced in Figure 40.
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Figure 41. Cluster Centroids and Standard Deviations

5.2.2 Un-Standardized Input Variable Cluster Analyses
The cluster analysis was done on the same data set for un-standardized input variables.

The resulting clusters are quite similar as those with standardized input variables.  The

most significant difference is that when clustering based on volumes and occupancies, the

un-standardized cluster analysis does not produce the useless cluster 5 as above from the

phase 6 saturated volumes.  See Figure 42 for the cluster output of this cluster analysis.

This is most likely due to the fact that when using raw data, the occupancies are not

weighted nearly as heavily as the volumes because they lie on such a smaller scale than

volume.  Thus occupancies do not drive the clusters as significantly as the volumes do.

Table 12 shows the TOD classifications associated with the un-standardized volume,

occupancy cluster analysis.  One can see that the clusters formed relate closely to those

produced in the standardized volume, occupancy cluster analysis.  The only differences

are that here, the fifth cluster represents a PM peak plan and there is no post AM plan as
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in the standardized cluster analysis.  The latter may point to the fact that not as much

resolution is achieved without standardizing variables; however, the occupancies will not

contribute so much to producing useless clusters during times of saturation.

345

Figure 42. Cluster with Un-Standardized Volumes and Occupancies

Table 12. TOD Classifications for Un-Standardized Vol & Occ Clusters

ClassificationClusterOff Peak   Pre AM   AM   
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The cluster analysis with the un-standardized volumes is nearly the same as the

standardized volume cluster analysis.  The standardized results for the volume only

cluster analysis appear to provide cleaner TOD intervals than the un-standardized

volumes.

345

Figure 43. Cluster with Un-Standardized Volumes

Table 13. TOD Classification for Un-Standardized Volume Clusters

ClassificationClusterOff Peak   Pre AM   AM   MidDay   
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The cluster analyses for the standardized and un-standardized volume and

occupancy < 26 analyses are also similar; however, the analysis with the standardized

variables provides more refined results with more detailed TOD intervals.  The un-

standardized output appears to have too many transitions between clusters or timing plans

without a substantial amount of observations existing for some of the transitions.  For

instance, there does appear to be a pre and post PM period for the un-standardized

analysis, but there aren’t a constant and substantial amount of observations comprising

those periods, making it difficult to make such a classification.  Thus, it would be

recommended that standardized results provide better TOD intervals.

345

Figure 44. Cluster with Un-Standardized Volume and Occupancy < 26
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Table 14. TOD Classification for Un-Standardized Volume and Occupancy < 26

ClassificationClusterOff Peak   Pre AM   AM   

For the most part, the standardized results seem to be superior except in the case

where volume and occupancy are being used as input variables.  To deal with such a

situation, the variables could be standardized and then weighted manually so the

occupancies do not contribute to the cluster formations as greatly.  Otherwise, if

clustering based on volumes and occupancies, it may be beneficial to use un-standardized

variables to remove the emphasis from the occupancy variables.  However, cluster

analysis literature also recommends standardizing input variables as general practice.

From the above analyses, it would be suggested that the standardized volume and

occupancy < 26 variables be used in the cluster analysis in the situation that saturation

occurs and large occupancies skew the results.  This method responds the most

effectively to the sensitivity of the changing traffic conditions throughout the day,

especially during the mid-day period.

5.2.3 Weighted Cluster Input Variables
This section investigates the use of standardized volume and occupancy pairs, so as to

keep the state definition as refined as possible, while assigning weights to the input

variables to produce improved clusters.  Though volume and occupancy pairs produce

good results when occupancies are reduced to values of 25% or less, the weighting of

volumes would eliminate the need to manipulate the occupancy data in the absense of
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data cleansing tools, while retaining that information in the state definition.  Figure 45

depicts the TOD intervals created by the cluster analysis with the standardized volumes

and occupancy pairs where volume is weighted by a factor of 20.  The 20 factor is a

commonly used weighting value that represents the degree of scale difference that

naturally exists between common volume and occupancy pairs (5).  The TOD intervals

are exactly the same as those from the standardized volume only cluster analysis and the

un-standardized volume and occupancy < 26 cluster analysis.  The TOD intervals appear

to be cleaner in Figure 45 than in the above mentioned analyses.

345

Figure 45. TOD Intervals with Standardized and Weighted Volumes and Occupancies

The sensitivity analysis done using alternate input variables for cluster formation

shows that most combinations of cluster variables produce similar results, while some

appear slightly superior to others.  The worst case cluster analysis was the standardized
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volume and occupancy case.  This was due to the large occupancy values that don’t add

much information to the state definition, but rather clutter it with confusing information.

When using occupancies in the state definition, values greater than 25% should be

reduced to that value to reduce the possibility of meaningless cluster formations.  Also,

with occupancies in the state definition, the volumes can be weighted heavier.  Using

occupancies and volumes versus only volumes catches more of the sensitive changing

traffic conditions, however both provide fairly good TOD interval results.  It would be

recommended from these sensitivity analyses that weighting volumes heavily or reducing

occupancies to < 26 for input variables be practiced.  These methods allow for good TOD

intervals with standardized variables.  Also, much literature exists supporting the

effectiveness of volumes over occupancy in classifying traffic conditions, thus supporting

conclusionary results of weighting volumes more heavily (1).

5.3 Sensitivity Analyses – Minimum Number of Observations Per Cluster

One constraint imposed on the cluster analysis is that there must be a minimum number

of observations existing in a cluster for it to form a unique cluster in the output.  In SAS,

this constraint is induced with the ‘Dock = n’ command, where the n is the minimum

number of observations that must make up each cluster.  The value of n should be

dependent on the data set sample size.  The use of the ‘Dock’ command alleviates the

formation of small clusters that occur for too short a time in which it would be unsuitable

to create and implement a timing plan.  This sensitivity study explores the cluster output

produced with different values of n, primarily with ‘Dock = 1, 2’ versus larger values of

n.  Two comparisons were done here using a 5-cluster analysis and a 6-cluster analysis.

The only negative effect of imposing the ‘minimum number of observations’ constraint is
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that it is possible to lose some observations in the cluster analysis since if they would

have formed a smaller cluster than n, those observations would have been removed from

the cluster output.  The following cluster analyses were done with the centroid cluster

methodology.

The 5-cluster analysis dock comparison looks at the use of ‘Dock  = 4’ versus

‘Dock = 2.’  Figure 46 shows the TOD intervals formed when the cluster formations are

constrained to containing a minimum of 4 observations.  Figure 47 shows the TOD

intervals formed when the cluster formations are not constrained to containing a

minimum number of observations.

345

Figure 46. TOD Intervals with Minimum of 4 Observations Per Cluster
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345

Figure 47. TOD Intervals with a Minimum of 2 Observations Per Cluster

The cluster analysis that does not constrain the clusters to contain a substantial

amount of observations does not form very good TOD cluster intervals.  The AM peak is

not distinguishable, but is included in the large mid-day period.  This is due to the

meaningless cluster formed at the fifth level, where only two observations are contained

within the cluster.  Refinement of the clusters is lost when not enough clusters are formed

to represent the main periods of time, as is the case in Figure 47 where the fifth cluster

failed to represent a main time period due to the nearly unconstrained cluster formations.

The cluster formations in Figure 46 represent clean, intuitive TOD intervals, with no

wasted clusters.  Analyses show that the Dock command with a value of n less than 4

produce results similar to those in Figure 47.

The next example compares the cluster outputs for 6 cluster formations with

‘Dock = 1’ versus ‘Dock = 4.’  Figure 48 represents the clusters formed from the

unconstrained case.  Clearly, the clusters formed here do not hold much meaning.
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Clusters 4, 5 and 6 all represent a PM peak at different levels, thus leaving too few

clusters to represent the remaining intervals that should exist during the day.  Only two

well-defined clusters exist at this point for the off peak and mid-day periods.  Figure 49

shows the same cluster analysis using a constraint of at least 4 observations existing in

each cluster.  The clusters formed here make sense and follow an intuitive pattern.

Cluster 6 is not a very solid cluster, probably due to the fact that one too many clusters

were formed here.  The number of clusters formed will be discussed in more detail in the

next section.  Also, some observations from the PM period are missing in the output due

to the constraint imposed, but this is a tradeoff worth making for the formation of clean,

meaningful clusters.

The studies here show that the constraint on the clustering algorithm for

constraining the number of observations to a minimum value for a cluster to be formed is

essential.  Without this constraint, the clusters tend to form levels at which only one or

two observations exist in the clusters.  This commonly produced multiple levels at the

PM peak period for the data set used here, as seen in Figure 48.  This removes any

refinement of the remaining clusters to distinguish changing traffic trends during the

remaining periods of the day.  One tradeoff that may be made with the use of this

constraint is that some of the observations are removed from the output tree.  This is due

to the fact that the constraint for basing clusters on a certain number of observations

removes those observation from the output that do not follow the constraint.  This is

apparent in Figure 49, where the PM peak observations are missing since they were

excluded in the output for not containing enough observations.  Yet, the clusters formed

with this constraint are meaningful and catch the changing traffic conditions over the
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entire 24-hour period and so this constraint should be imposed to ensure meaningful

clusters.  The tradeoff of missing observations with the use of the constraint does not

occur with all data sets.

456

Figure 48. TOD Intervals from Unconstrained Number of Observations Per Cluster
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456

Figure 49. TOD Intervals from Minimum of 4 Observations Per Cluster

5.4 Sensitivity Analyses – Number of Clusters

One of the most important considerations in the clustering process is the number of

clusters formed.  This influences the TOD intervals produced which represent the timing

plans to be developed, the basis of this research.  As discussed in Chapter 2, the cubic

clustering criterion (CCC), the pseudo F statistic (PSF) and the pseudo t2 (PST2) statistic

are used for guidance in the selection of the number of clusters.  This section looks at the

values of these SAS statistics and the corresponding TOD interval outputs produced

using different numbers of clusters.  Table 15 shows the statistics for the last ten clusters

formed.  Of particular interest in this table are the CCC, PSF and PST2 statistics.  The

largest absolute value for the CCC is recommended, along with the first local maxima

value of the PSF statistic and the smallest PST2 statistic.  This study includes an example

from the data set consisting of standardized volume and occupancy data from 8 March –
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29 September 2000.  Regardless of the values of the stopping statistics, the formation of

1, 2, 3 or more than 8 clusters will be ignored.  The clusters are formed for representation

of timing signal plans during a 24-hour period.  Less than 4 clusters would not allow

enough timing plans to capture the changing traffic conditions during a day and the signal

controllers can only hold up to 9 timing plans at one time, at least one or two of which

must contain weekend traffic plans.

In Table 15 it appears that the best choices for the number of clusters is 7 and 6

clusters is also possibly a good solution, though according to the statistics, not as optimal

as 7 clusters.  The largest CCC value and pseudo F statistic occur at the seventh level.

The pseudo t2 statistic is small, although it is a bit smaller at the eighth level, not

significantly though.  Cluster level 6 statistics are not as good as level 7, however they

are good enough to consider the sixth level as an option.  Figure 51 shows the cluster

TOD intervals produced from the sixth level cluster analysis.  Figure 52 shows the fifth

level of cluster analysis output solely for the purpose of comparison of the outputs of an

un-optimal stopping rule statistic from Table 15.

Table 15. SAS Stopping Rule Outputs
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Figure 50 shows the TOD intervals produced by the cluster analysis at the seventh

cluster level, which should represent the optimal clustering according to statistics.  The

TOD intervals formed here are clean clusters that occur at intuitive times of day.  There

exists a clear off peak, an AM peak, a post-AM peak, a mid-day peak, a PM peak, a post-

PM peak that returns to the mid-day peak cluster, and then two transitions during the

evening period before returning to off peak.   The intervals are refined, and the

consideration of too many transitions should be considered here.

4567

Figure 50. Optimal Number of Clusters (7 Clusters)

Figure 51 shows the TOD intervals for the sixth cluster level.  The only difference

between these TOD intervals and those formed from the seventh cluster level is that the

AM and post-AM peak have merged into one cluster.  This signifies that those two timing

periods probably consisted of the most similar traffic conditions.  This result shows a
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little less refinement in the production of TOD intervals, however this may not be a

significant effect for the production of timing plans if those two plans were similar

enough.

456

Figure 51. Optimal Number of Clusters (6 Clusters)

Figure 52 shows the cluster outputs from the fifth cluster level.  From Table 15,

these stopping rule statistics are not as optimal as those are for the sixth and seventh

cluster levels.  This output is the same as that for the sixth cluster level, except that now

the AM peak is merged into the mid day peak period.  This would probably have a more

significant effect on signal plan development, since the AM peak period is typically an

important plan for a 24-hour period.  This shows that the CCC, PSF and PST2 values are

accurate descriptors for choosing the number of clusters and the choice of number of

clusters should produce the most refined and intuitive results when following these

stopping rules.
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45

Figure 52. Optimal Number of Clusters (5 clusters)

5.5 Single Intersection – Baron Cameron & Reston Parkway Case Study

The single intersection case study is from the Reston Parkway and Baron Cameron

intersection.  See Figure 11 for the layout of this intersection.  The single intersection

case study was performed prior to the three-intersection corridor case study to ensure a

complete process with valid results on a simple case.  The results are presented here to

make a recommendation for this process for single intersections as well as corridors and

to support the claims made for the proposed procedure improving corridor performance.

The analysis of the results for the single intersection is brief, due to its minor role in this

project. Figure 53 shows the TOD intervals developed from a cluster analysis with 4

clusters being the optimal number of clusters for this data set.  Table 16 displays the

times associated with the new TOD intervals taken from Figure 53.  This table also shows
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the old TOD intervals, which are similar, but differ the most in the shortened periods for

the new intervals.  Unique timing plans were developed for the off peak, AM, MD and

PM periods.  This is the same four timing plans developed implemented currently by

VDOT, however the cluster analysis does transition between them more than once.  This

is the case for cluster 2, which represents a pre-AM, MD and post-PM period.  This

clustering across times-of-days is intuitive in that the traffic conditions represented at

these opposing times would probably assume similar traffic states.

34

Figure 53. TOD Intervals at Baron Cameron & Reston

Table 16. TOD Interval Classification for Baron Cameron

Cluster #TOD Classification New TOD Intervals   1OFF22:30 - 6:00   4AM7:30 - 9:00   
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The same four scenarios are examined for the single intersection case as for the 3-

intersection corridor case.  These scenarios include the performance of:

1. The old plans & old TOD’s
2. The old plans & new TOD’s
3. The new plans & new TOD’s
4. The new plans & old TOD’s

Figure 54 shows the simulation MOP results from the single intersection case.  These

results vary from those of a multiple-intersection coordinated system in that the old

TOD’s perform significantly better than the new TOD’s.  This may possibly be due to the

fact that since the TOD intervals are similar to the old ones, the increased transition

effects dominate the increase in transitions.  This also demonstrates the ease in

identifying TOD intervals for single intersections, since the intervals can be based solely

on that single intersection without any concern for corresponding intersections in the

system.  The difficulty in TOD interval selection arises as more intersections become

involved in a coordinated system, since manual identification does not take into account

traffic conditions at every intersection and every movement.  Thus the traffic engineers

rely on the critical intersection demand for TOD intervals and the remaining intersections

are not considered.  It can be hypothesized that as the corridors become more

complicated with more intersections, the automation of TOD interval selection would be

increasingly significant in identification of optimal intervals.  The newly developed

timing plans, however, perform significantly better than the old timing plans as is the

case for the corridor case.
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Figure 54. Simulation Outputs from Single Intersection

The single intersection case study supports the use of timing plan development with

system detector data versus hand-counted data.  It also shows simplicity of selecting TOD

intervals manually at single intersections and supplies a basis to the theory that the

increasing difficulty of TOD selection is due to the increase in intersections that do not

contribute to the selection of the TOD intervals in corridors.

5.6 Three-Intersection Corridor Case Study Results

The three-intersection corridor case study includes the intersection of Reston Parkway

with Sunset Hills, Bluemont and New Dominion.  See Figure 12 for the corridor layout of

these intersections.  The clusters for this case study were validated in Chapter 4 and the

simulation results can be viewed as an external validation of the cluster formations based

on the performance on traffic conditions of the resulting clustered timing plans. Figure 55

shows the TOD intervals developed from a cluster analysis with 7 clusters.  Table 17

displays the times associated with the intervals taken from Figure 55.  Unique timing
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plans were developed for the off peak, AM, post-AM, PM, evening and pre-Off periods.

The seventh timing plan represents the mid-day as well as the post-PM periods.

4567

Figure 55. TOD Intervals for 3-Intersection Corridor

Table 17. TOD Interval Classifications for 3-Intersection Corridor

Cluster #TOD Classification  Cluster 1Off Peak   Cluster 2Post AM   Cluster 3MidDay, Post PM      

This case study supports the hypothesis that timing plans can be improved

through the use of data mining tools. Figure 56 shows the outputs of the simulation from

four scenarios.  These scenarios include the performance of:
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1. Old Plan, Old TOD – Plan developed with hand-counted volumes,
implemented during the handpicked TOD intervals based on critical intersection
traffic.

2. Old Plan, New TOD – Plan developed with hand-counted volumes,
implemented during newly clustered TOD intervals based on full state
definition.

3. New Plan, New TOD – Plan developed with database volumes from 6 months,
implemented during newly clustered TOD intervals based on full state
definition.  

4. New Plan, Old TOD – Plan developed with database volumes from 6 months,
implemented during newly clustered the handpicked TOD intervals based on
critical intersection traffic.

Detailed comparisons of these four scenarios follow.  “Old Plans” refers to the timing

plans developed by VDOT from the one-day, hand-counted volumes.  “New Plans” refers

to the timing plans developed in Synchro from the historical database volumes.  “Old

TOD’s” refers to the time-of-day intervals selected by VDOT engineers based on the

critical intersection and intuition.  “New TOD’s” refers to the time-of-day intervals

produced from the cluster analysis, where the newly developed intervals are based on all

intersection and movements in the corridor for more refined intervals.  These four

headings will be found in charts and analyses to follow and comprise the four scenarios

being studied.

The four main simulation outputs used to evaluate performance of opposing

timing plans are:

•  Travel time
•  Total delay
•  Fuel used
•  Denied entry

These measures of performance are defined in detail in Section 3.11.1.1.

From Figure 56, it can be seen that the new plans & new TOD’s do in fact

perform better, while the current plans implemented, represented by the label ‘Old Plans,
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Old TOD’s,’ perform the worst.  The combination of old plans with new TOD’s and new

plans with old TOD’s fall in between the two extremes as will be discussed in the

following section.  The current plans, which form the basis of comparisons in the

analysis, are the plans developed by VDOT.  These plans were recently optimized

approximately one year ago with hand-counted volumes.  These plans are considered

“newly updated,” by the VDOT traffic control center in northern Virginia.  Since the

northern Virginia arterial network consists of approximately 120 corridors, the Reston

Parkway corridor will not again be updated for many years.  Through interviews

conducted with the traffic control engineers, it was learned that the traffic engineers

spend periods of weeks, or even months in re-optimizing timing plans for one corridor.

By the time this process is completed for one cycle of the all the corridors, quite a few

years may go by before the cycle can be restarted for another re-optimization of plans at

each corridor.

1200014000160001800020000

Figure 56. SimTraffic Outputs for Three Intersections
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The four scenarios that were simulated have been shown to display significant

amounts of variance between the scenarios.  This demonstrates the significant variance

between the measures of performance for the different scenarios (old plan & old TOD,

new plan & new TOD, old plan & new TOD, new plan & old TOD).  F-tests were

conducted for each of the four measures of performance: travel time, delay, fuel used and

denied entry, to measure the between-scenario variation to the variation calculated from

within each scenario.  The F-statistic deals with I populations (scenarios) with a random

sample of J observations from each one (28).  The F-test is valid under the assumptions

that the distribution of the I scenarios are normal with the same variance.  The F

distribution arises from a ratio in which there is one number of degrees of freedom (df)

associated with the numerator and a different df associated with the denominator.  The

variable v1 and v2 denote the degrees of freedom associated with the numerator and

denominator respectively.  For the MOP variance testing, the parameters are as follows

(28):

F = MSTr / MSE, where

MSTr = between-sample variation
MSTr = J / (I – 1) Σi (Xi – ((Σi

I Σj
J Xij) / IJ))2

MSE = within-sample variation
MSE = S1

2 + S2
2 + …. + SI

2 / I
Si2 = Σj=1

J
 (Xij – Xi)2 / J - 1

V1 = I – 1
V2 = I ( J – 1)
I = 4 scenarios
J = 6 observations in each scenario

The null hypothesis (H0) being tested is that the means between scenarios are equal.  The

null hypothesis can be rejected if (28):
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f ≥≥≥≥ Fαααα, I � 1, I(J � 1), where

α = .05
H0 : µ1 = µ2 = … = µI
Ha: at least two of the µi’s are different

Table 18 shows the computed f, compared to Fα, I – 1, I(J – 1), and the p-value, which

represents the level of significance with which the null hypothesis can be rejected.  As

long as the p-value remains less than the testing level of significance, .05, then it is

assumed that the null hypothesis should be rejected.

Table 18. F-tests across 4 scenarios

MOPRejectH0?Rejectif:f>F(05320) jDelayYES2756>310TraveltimeYES1618>310

From this table, it is clear that the null hypothesis for each MOP is rejected.  This implies

that at least two of the scenario means are significantly different.  To determine which of

the scenarios are significant from each other, paired t-testing will follow in Section 5.5.4.

5.6.1 Three-Intersection Case Study Assumptions
The assumptions made for the process of developing and simulating new timing plans are

stated in the following list.

•  The system detector data accurately represents actual traffic conditions
occurring in northern Virginia, thus the simulations are based on an accurate
representation allowing for validation of the newly developed timing plans.

•  The volume and occupancy data are normally distributed over similar times-
of-day, thus validating the averaging technique used to create one
representative value for each TOD.  See Figure 20 for a normally distributed
time-slice of data.
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•  The data representing each of the simulation MOP’s for each simulation run
are normally distributed, thus validating the use of t-tests for significance
testing.

SimTraffic accurately models transition effects as experienced in the field and does not

conceal declined performance due to increase transitions.

5.6.2 Evaluation of Simulations

Refer to Section 3.11.1.1 for full detail of the measures of performance described briefly

here.  The Travel Time is a total of the time each vehicle was present in the simulation

area.  The travel time includes time spent by vehicles Denied Entry.  Total Delay is equal

to the travel time minus the time it would take the vehicle with no other vehicles or traffic

control devices (16). Total delay also includes all time spent by denied entry vehicles

while they are waiting to enter the network.  Fuel Used is calculated with the fuel

consumption tables.  The fuel used in each time slice is determined by the vehicle's fleet

(car, truck, or bus), speed, and acceleration.  Denied entry is one of the most important

measures of performance because it is a measure of vehicle throughput in the system.

Denied Entry is a count of vehicles that are unable to enter a link due to congestion.

Denied Entry can also be used to determine the Network Throughput.  In a congested

network, lower values of Denied Entry indicate increased throughput and vice versa.

This is a good determining factor for the effectiveness of timing plans.  The higher the

number of denied vehicles typically infers that those timing plans are performing worse.

The calculations of these MOP’s are fully detailed in Chapter 4.  The totals of these

MOP’s are a function of the number of cars in the system for each scenario.  The number
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of simulations run was evaluated to be significant at 6 runs for equalization of the number

of vehicles across scenarios; this is explained below in Section 5.5.2.

5.6.3 Number of Simulation Runs

The current practice by VDOT for testing timing plans with simulation is to run three

simulations with different random number seeds to ensure stable results.  This research

investigated the stability of running more than three simulations to ensure accurate

simulation results.  The number of vehicles that enter the system is the stabilizing

variable that should equalize for each simulation scenario.  T-tests were performed on the

‘Vehicles Entered’ variable to ensure the means were equal between different scenarios at

the 95th confidence level.  For all of the hypothesis testing done in the analysis, it can be

assumed that the data is normally distributed about the mean.  Table 19 shows the t-test

results for the comparison of the four scenarios used to evaluate timing plan

effectiveness.  The null hypothesis tested is that the means of the two samples are equal

and since the null hypothesis is not rejected for any of the scenarios, the means are

assumed to be equal, thus validating that 6 simulation runs is sufficient for producing

accurate results.

Table 19. t-test Results for Number of Simulation Runs

VehiclesEnteredOldPlanOldTOD160100161940NOVehiclesEnteredOldPlanOldTOD160100161940NOVehiclesEnteredOldPlanOldTOD160100161940NO
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5.6.4 Improvements with New Plans
The use of data mining tools to aid in timing plan development can benefit two aspects of

the process.  The first aspect is the development of new timing plans based on 90th

percentile volume data retrieved from the historical database.  The procedure would

replace the current practice of hand-counting cars to develop timing plans.  The second

aspect is to look at the refined TOD intervals, which are developed with cluster analysis

based on similar traffic conditions occurring over the course of a day.  This method

would allow for a data driven selection of TOD intervals rather than an intuitive, human

selection based on the aggregate volumes at the critical intersection.  The analysis will be

broken down into these two parts to provide a sense of where the most gains are

achieved; through the new plans or through the new TOD intervals.

To visualize the benefits of the newly developed plans based on 90th percentile

volumes from the database, a chart of the percent reductions from the new plans over the

old plans is displayed Figure 57.  The old plans that these reductions are being compared

to are the currently implemented plans where the volumes were achieved through the

one-day, hand-counted process.  The first bar in Figure 57 represents the gain of the new

plan over the old plan for the old TOD intervals, while the second bar represents the gain

of the new plan over the old plan for the new TOD intervals.  Both of these comparisons

are being made to show the reductions from the use of the new plans over the old plans,

while holding the TOD intervals constant.  The third, dotted bar represents the gain that

would be achieved from the use of the new plan and new TOD intervals over the current

plans being implemented (the old plans and the old TOD’s).
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Figure 57. MOP Gains of New Plan over Old Plans for Old and New TOD's

All of the gains achieved for delay, travel time, fuel used and denied entry of new

plans over old plans, evaluated during the old TOD intervals are significant at the 95th

confidence level.  The null hypothesis tested was that the means of the old and new plans

were equal.  The t-tests are based on 6 simulation runs and the statistics are displayed in

Table 20.   The t-test results for the new plans vs. the old plans, evaluated for the new

TOD intervals, as outlined in Table 17, are displayed in Table 21.  These results show

that at the 95th confidence level; delay, travel time and denied entry are significant

improvements for the new plans over the old plans; however, fuel used is not a significant

gain, with the new TOD intervals.  However, with the old TOD intervals, all MOP’s

improve significantly when the new plans are compared to the old plans.
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Table 20. t-test Results for New Plans vs. Old Plans Evaluated at Old TOD Intervals

MOPTimingPlanConfidenceInterval%GainjjjDelayOldPlanOldTOD92229905DelayNewPlanoldTOD84769131795%TraveltimeOldPlanOldTOD1738718129TraveltimeNewPlanoldTOD1607416683777%

Table 21. t-test Results for New Plans vs. Old Plans Evaluated at New TOD Intervals

MOPTimingPlanConfidenceInterval%GainjjjDelayOldPlanNewTOD91229895DelayNewNew754883681631%TraveltimeOldPlanNewTOD1721818028TraveltimeNewNew1512916956897%

5.6.5 Improvements with New Time-of-Day Intervals
To visualize the effects of the newly developed TOD intervals from the cluster analysis

over the old TOD intervals, the percent reductions can be viewed in Figure 58.  The first

bar represents the gain of implementing the old plans during the new TOD’s over the old

TOD’s.  This bar is presented in Figure 58 for a full comparison of the scenarios;

however, it is unrealistic since the old plans would never be implemented over new TOD

intervals.  If the new TOD intervals were developed, then the new volume plans would

automatically be produced in correspondence with the new TOD intervals and these

would be used together (As seen in bar three in Figure 59).  The second bar represents the

gains achieved from implementing the new plans for the new TOD’s versus the old

TOD’s.  Here the timing plan is held constant for each of the two comparisons while the

opposing TOD intervals are compared.  Less lift is achieved when only adjusting the

TOD intervals versus renewing the plan itself as displayed in Figure 57.  The third bar
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again represents the percent gain for each of the MOP’s of implementing both the newly

developed timing plans at the new, clustered TOD intervals over the current plans (old

plans and old TOD’s).  This is the case where the optimal amount of lift is achieved and

is displayed to show that a smaller proportion of gains come from using the new TOD

intervals over the old TOD intervals, while the larger proportion of lift is coming from

the new plans.

16%21%26%

Figure 58. Percent Gains of New TOD's over Old TOD's for Old Plans & New Plans

The improvements of implementing timing plans over the new TOD intervals

versus the old TOD intervals is not as significant as when the newly developed plans are

also implemented.  Table 22 shows the t-test results of the significance of the

improvements for implementing the old plan during the new TOD versus the old TOD.

These results show that at the 95th confidence level, none of the MOP’s measured provide

significant amounts of improvement.  This scenario is not as accurate as the TOD

comparison for the new newly developed timing plans since for the old plans, the exact

plans had not been developed for the new TOD intervals.  Also, this scenario is



144

unrealistic, as it would never be implemented in such a combination in the field.  For the

second bar, the case where new plans were implemented over the new TOD intervals

versus the old TOD intervals, only delay resulted in a significant improvement.  Fuel

used actually provided negative gain to the new TOD intervals.  These results can be

viewed in Table 23.  It is possible that the increase in fuel usage for the new plans and

new TOD’s is due to the fact that with increased throughput in the corridor, vehicles are

able to travel at higher speeds and accelerate faster.  Since the fuel used is calculated

based on speed and acceleration, this may cause an increase in fuel usage.  Also, the

types of vehicles in the system effect the fuel usage calculation.  It is possible that more

trucks and busses were present in the system, causing a higher fuel usage value for the

new plans and new TOD simulations.

Table 24 shows the t-test results for the third bar that is displayed in both ‘Percent

Gains’ charts.  These are the improvements achieved using both the new timing plans and

the new TOD intervals versus the old timing plans and the old TOD intervals, which are

those currently implemented in the field.  This third bar is the same as that in Figure 63.

All of these MOP’s provide significant improvements at the 95th confidence level.

Table 22. t-test Results for New TOD vs. Old TOD Intervals Evaluated by Old Plans

MOPTimingPlanConfidenceInterval%GainjjjDelayOldOld92229905DelayOldPlannewTOD91229895058%TraveltimeOldOld1738718129TraveltimeOldPlannewTOD1721818028076%
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Table 23. t-test Results for New TOD vs. Old TOD Intervals Evaluated by New Plans

MOPTimingPlanConfidenceInterval%GainjjjDelayNewPlanOldTOD84769131DelayNewNew75488368960%TraveltimeNewPlanOldTOD1607416683TraveltimeNewNew1512916956206%

Table 24. t-test Results for Old TOD & Old Plan vs. New TOD & New Plan

MOPTimingPlanConfidenceInterval%GainjjjDelayOldOld92229905DelayNewNew754883681680%TraveltimeOldOld1738718129TraveltimeNewNew1512916956966%

5.6.6 Time Periods where New TOD Intervals show Significant Improvements
Due to the fact that only delay provided significant improvement when implementing the

new TOD intervals over the old TOD intervals, a 24-hour breakdown shows the periods

during which significant improvements are achieved.  Narrowing the confidence intervals

would have supported a significant improvement in all the MOP’s, however a 95th

confidence level is preferable, so the periods of the day at which this is achieved are

displayed in Figure 59.  From 17:45 – 24:00, the new TOD intervals for the new plans

performed significantly better than the old TOD intervals for the new plans.  From the

figure below, it is clear that a portion of the current PM peak period is significantly

improved with the clustered TOD intervals. The remainder of the day (00:00 – 17:45),

performed at similar rates of performance between the new TOD intervals and the old

TOD intervals, both with the new plans.  Gains during the peak periods are critical and

the most effective since those are the times where the most difficulty is met by traffic

engineers in increasing flow through the corridor.  From 17:45 – 24:00, is also the portion
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of the day in which the majority of the new plan periods were developed by the cluster

analysis excluding the post-AM period.  Figure 55 shows the clustered TOD intervals

produced for the 3-intersection corridor.

Figure 59. Periods of Significant Gains from New TOD's versus Old TOD's

The delay/vehicle over the 24-hour period is discussed on page 154, where the delay can

be seen to be much lower during this time period for the new TOD’s and new Plans

versus the Old TOD’s and New Plans.  The fact that the significant improvements do in

fact occur during the newly developed plan periods, supports the hypothesis that

clustering produced refined TOD intervals, better suited for traffic conditions through a

corridor.

Again, the level of significance for the t-tests on the new TOD’s versus the old

TOD’s is at the .05 level.  The null hypothesis is that the means of these two samples are
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equal.  Table 25, Table 26 and Table 27 show the results of the t-tests for comparing new

TOD’s versus old TOD’s during the 17:45 – 24:00 period.

Table 25. PM - Post PM, t-test Results for New vs. Old TOD Intervals

MOPTimingPlanConfidenceIntervalRejectH0?jjDelayNewPlanOldTOD16231809YESDelayNewNew9171444YESTraveltimeNewPlanOldTOD27602939YESTraveltimeNewNew20772593YES

Table 26. Post PM - Evening, t-test Results for New vs. Old TOD Intervals

MOPTimingPlanConfidenceIntervalRejectH0?jjDelayNewPlanOldTOD895975YESDelayNewNew221246YESTraveltimeNewPlanOldTOD14971572YESTraveltimeNewNew847879YES

Table 27. Evening - Pre-Off - Off, t-test Results for New vs. Old TOD Intervals

MOPTimingPlanConfidenceIntervalRejectH0?jjDelayNewPlanOldTOD318356YESDelayNewNew221245YESTraveltimeNewPlanOldTOD9851023YESTraveltimeNewNew886915YES

5.6.7 Volumes from Old Timing Plans vs. New Timing Plans
Under the assumption that the historical data base values represent actual traffic

conditions on the roadway, the following charts represent the volumes used in opposing

timing plans with the actual traffic conditions.  Figure 60, Figure 61 and Figure 62 show

these plots for each intersection in the three-intersection corridor.  The ‘UTDF
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VPHPmvmt’ data label represents the averaged historical volumes extracted from the

database to represent actual traffic conditions.  These are the volumes used in the

simulation.  The ‘90%, New TOD’ data label represents the 90th percentile volumes taken

from the clustered volumes for newly developed timing plans corresponding to the new

TOD intervals.  The movement of the volumes across the 24-hour period in the following

figures shows the transitional points from plan to plan.  Periods of equal volume

represent opposing times of the day that operate under the same plan.  The ‘90%, Old

TOD’ data label represents the 90th percentile volumes taken from the historical database

for plan development based on the old TOD intervals, which are the same as those being

currently implemented by VDOT.  The ‘Original Volumes’ label represents the volumes

used for timing plan development by VDOT, which are the current timing plans

implemented at these intersections.  These TOD intervals match those from the ‘90%,

Old TOD’ data since both of these lines represent transitioning through the timing plans

based on the current interval selection method.  It is clear that the original volumes,

which are the hand-counted volumes for timing plan development, are much too low to

handle the traffic conditions that actually exist.  Timing plans should be developed for the

high end of traffic volumes to ensure enough green time during the most congested

periods of TOD intervals.  Hence the use of the 90th percentile volumes for timing plan

development.  To account for the heaviest periods under the current means of hand-

counting cars, the traffic engineers count during what they assume to be the peak 15-

minute period of a timing period.  The two newly developed plans account for the high

end of traffic volumes during the timing period that plan is implemented.  These plans are

naturally better suited to handle actual traffic conditions and the TOD intervals are
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tailored to the changing traffic trends.  A one-day hand count for timing plan

development is not a reliable measure as is clear from the charts below.

6000800010000

Figure 60. Timing Plan Volumes versus Actual Volumes at Sunset Hills

400050006000

Figure 61. Timing Plan Volumes versus Actual volumes at Bluemont
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Figure 62. Timing Plan Volumes versus Actual Volumes at Bluemont

Another conclusion that can be drawn from these volume figures deals with the

selection of TOD intervals.  At the three intersections representing the corridor, the above

figures show that different volumes occur at opposing intersections at similar times of

day.  For this case study, the largest volumes occur at Sunset Hills (the critical

intersection in the Reston Corridor) in the 9000 VPHPmvt range, while the smallest

volumes occur at Bluemont in the 5000 VPHPmvt range.  These opposing volumes occur

during the same peak periods, with the maximum volumes shifting only slightly in time.

Of course the peak volume shift would become more severe as the size of the corridor

were increased.  The current method of TOD interval development is based on the critical

intersection alone, since that is the intersection servicing the maximum amount of traffic.

The number of vehicles, occurring at cascading times through the corridor, including all

turning movements and directions cannot be taken into account with manual TOD

interval selection.  These charts show that traffic does follow different patterns at
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coordinated intersections, even those right next to each other and it may be beneficial to

consider all intersections versus one in the selection of TOD intervals.

5.6.8 Gains of New Plan versus Current Plans
Any of the combinations of the newly developed timing plans and/or TOD intervals will

increase performance in a signalized corridor.  This section looks at the comparison of

these combinations of new timing plans to the original plans, which are those being used

currently with the old plans and old TOD’s.  Figure 63 shows the percent gains achieved

from the three combinations of new scenarios over the current timing plans.  As stated

above, the ‘new plan and new TOD’ combination provides the most gain for

performance.  The second bar shows the gains for developing new plans in combination

with the old TOD intervals and still, the gains here are significant.  The third bar

represents the old plans implemented in combination with the new TOD’s.  Here, gains

are still achieved, however they are only significant at certain times of the day.  The new

TOD selection procedure is beneficial whether significant improvements are achieved or

not, in that the choice of TOD intervals can be automated and is based on historical data

from all intersections, not just the critical intersection.
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Figure 63. Percent Gains for New Plans over Original Plans

5.6.9 Putting It All Together

The following figures show the MOP’s and gains in a more meaningful form.  The costs

were converted from total cost for all vehicles per day to cost per vehicle per year.  This

shows the gains for each vehicle achieved over the course of a year.  These numbers hold

much more meaning and can easily be considered for savings over a lifetime of

commuting to and from work.  Figure 64 shows the simulation output comparisons for

the four plan scenarios to portray the yearly cost per vehicle associated with each

scenario.  Figure 65 shows the yearly gains per vehicle for each of the combinations of

new timing plans versus the currently implemented plans.  This figure confirms the

significance of adopting the new plans & new TOD’s, for the impact on one vehicle is

impressively improved over the current performance.  For instance in one year, 3.16

hours per vehicle are saved under the new timing plan with the new TOD interval.
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Assuming a 30-year commute for a job, this equates to 94.8 hours saved, almost three

days over the lifetime of that vehicle’s commute!

253035

Figure 64. MOP's at 3-Intersection Corridor based on Per Vehicle Per Year

225335

Figure 65. Yearly Gains of New Plans over Original Plans
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5.6.10 Plan Performance Over 24-Hour Period
The delay/vehicle plot over the 24-hour period that was simulated shows the periods of

the day where the most improvements were achieved from the new plans.  The

transitional time lines for the old TOD intervals and the new TOD intervals are included

in the Delay/Vehicle plots in Figure 66.  The top line shows the TOD intervals for the

new TOD plans, and the bottom transitional line represents the original TOD intervals

currently implemented in northern Virginia.  The new plan and new TOD scenario

performs better than the old plan and old TOD plan at all times during the 24-hour

period, however the most significant gains appear to be achieved during peak periods,

i.e., the AM, MD, PM and evening periods.  The new plans and the old TOD’s perform

similarly to the new plans and new TOD’s except during the post-PM and evening

periods, where the new plans and old TOD’s perform much worse.  This is probably due

to the fact that traffic conditions most likely remain too heavy to support the off peak

plan during the evening.
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Figure 66. Delay/Vehicle over 24-Hour Period at 3-Intersections

5.6.11 Emissions of Timing Plans
The fuel and emission parameters control the rate at which vehicles consume fuel or emit

exhaust.  ‘Fuel Used’ was one of the MOP’s evaluated in the above analysis.  Here the

emission parameters will be investigated to supply a performance measure of significant

importance not only to commuters and traffic engineers, but also to larger concerns such

as the environment.  The emission values are based on the Federal Highway

Administration Research and are dependant on the vehicle types, speed and

acceleration/deceleration of the vehicles emitting exhaust.  The three exhaust emissions

in Figure 67 are carbon monoxide (CO), hydrocarbons (HC) and nitrogen-oxides (NOx).

The emissions produced when the old timing plans and old TOD’s are implemented are

the greatest, with the least emissions occurring when the new plans and new TOD’s are

implemented.
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5.6.11.1 Carbon Monoxide

Carbon monoxide (CO) is a colorless, odorless, poisonous gas (24).  It is a public health

problem because it enters the bloodstream through the lungs and forms

carboxyhemoglobin, a compound that inhibits the blood's capacity to carry oxygen to

organs and tissues.  Infants, elderly persons, and individuals with respiratory diseases are

also particularly sensitive. Carbon monoxide can affect healthy individuals, impairing

exercise capacity, visual perception, manual dexterity, learning functions, and ability to

perform complex tasks. In 1992, carbon monoxide levels exceeded the Federal air quality

standard in 20 U.S. cities, home to more than 14 million people (24). Nationwide, two-

thirds of the carbon monoxide emissions come from transportation sources, with the

largest contribution coming from highway motor vehicles. In urban areas, the motor

vehicle contribution to carbon monoxide pollution can exceed 90 percent.  Carbon

monoxide results from incomplete combustion of fuel and is emitted directly from

vehicle tailpipes (24).

5.6.11.2 HydroCarbons

Hydrocarbon emissions result when fuel molecules in the engine do not burn or burn only

partially (24). Hydrocarbons react in the presence of nitrogen oxides and sunlight to form

ground-level ozone, a major component of smog. Ozone irritates the eyes, damages the

lungs, and aggravates respiratory problems. It is our most widespread and intractable

urban air pollution problem. A number of exhaust hydrocarbons are also toxic, with the

potential to cause cancer.
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5.6.11.3 Nitrogen Oxides

Under the high pressure and temperature conditions in an engine, nitrogen and oxygen

atoms in the air react to form various nitrogen oxides, collectively known as NOx (24).

Nitrogen oxides, like hydrocarbons, are precursors to the formation of ozone.  Nitrogen

Oxide emissions are a concern because they contribute to the formation of acid rain and,

either directly or through the creation of ozone, lead to harmful effects on human health

(24).  According to estimates made by the U.S. Environmental Protection Agency (EPA),

highway vehicles accounted for 35 percent of the 22 million tons of NOx emissions in the

United States in 1995 (24).

Figure 67. Emissions for 3-Intersection Corridor Plans

Figure 68 shows the grams of emissions saved per day by using each of the new

timing plans versus the old timing plans and old TOD’s.  The decrease in exhaust
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emissions for improved timing plans would greatly be reduced over time.  The following

section compares the national emissions averages to those resulting from the 3-

intersection corridor simulation.
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Figure 68. Emissions Saved for 3-Intersections Corridor over Current Plan

5.6.12 Average Emissions for an "Average" Passenger Car

According to the Environmental Protection Agency, the average exhaust emissions from

an “average” passenger car are listed in Table 28.  These averages are compared to those

resulting from the 3-intersection simulation in Figure 69.  According to the 1997 averages

for emissions by the EPA, all of the timing plans, even the old one, do well.  There is a

slight reduction, mainly in the Carbon Monoxide emissions for the new plans and new

TOD’s.  These figures are only approximate, due to the many assumptions imposed on

both the EPA values and the simulation values and are only to be used for guidance.
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Assumptions may include type of vehicle and size.  Also the number of vehicles

accelerating and deccelerating in the simulation may vary significantly from those

making up EPA’s average.

Table 28. EPA Emissions for an "Average" Passenger Car vs. Plan Emissions

PlanScenarioHC(g/mile) X/NewPlanNewTOD027OldPlanOldTOD029150020002500

Figure 69. Emissions (g/mile/veh) for EPA vs. Plan Averages

5.6.13 Three-Intersection Corridor Conclusions
The above case study supports the use of data mining tools for timing plan development

on coordinated intersections.  It has been shown that the use of system detector data for

plan development versus the single-day, hand counts produce significantly improved

timing plans.  This method allows for much more stable volume counts since the numbers
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can be taken from a historical period where variant days and traffic conditions won’t be

as influential on the volumes for plan development.  The current method of counting cars

is not reliable due to the fact that humans count cars, and for one day in which the

assumption is made that traffic conditions will be “normal.”  It is nearly impossible to

predict when traffic conditions will be “normal” or when exactly during a peak period,

traffic will reach its peak.  These are assumptions and educated guesses made by the

traffic engineers prior to making the hand-counts.  Using system detector data alleviates

these issues.

The second outcome of the use of data mining tools is the production of TOD

intervals based on volumes and occupancies at all intersections in the corridor.  These

intervals are more refined to the traffic conditions occurring throughout the corridor,

whereas the current method of TOD interval selection is based primarily on aggregate, bi-

directional volumes occurring at the critical intersection.  For the use of the new TOD

intervals with the new timing plans, only delay improved significantly when evaluated

over the entire 24-hour day.  However, after breaking down the 24-hour period, further

analysis showed that significant improvement in the new TOD interval selection through

cluster analysis did in fact provide significant improvements over certain periods of the

day.  These periods consisted of the majority of the newly developed TOD plan periods,

supporting the success of clustering in developing meaningful timing plans and plan

periods.  Since there was no decline in performance across the MOP’s evaluated for new

plans and/or new TOD’s, thus supporting the use of cluster analysis for plan

development, a fully automated tool to perform this process is achievable.  This tool

would allow timing plans to be developed based directly on the detector data, thus
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alleviating the need to choose the intervals manually through intuition, and lessening the

burden on traffic engineers job by also alleviating the need for manual volume counts in

the field for plan development.
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Chapter 6.  Conclusions: Evaluation & Applicability

6.1 Research Contributions

The major deliverables of this project are the proposed procedure (Chapter 4) and the

application of data mining tools to a real-world problem.  The proposed procedure

directly benefits transportation engineering, while the application of cluster analysis as a

basis for real-time control the systems engineering field.  From the proposed procedure,

the timing plan development and maintenance process can be replicated and automated.

The use of data mining tools will add numerous benefits to the signal timing plan

development process, especially on coordinated arterials and to the commuters using the

signalized roadways.  Specific benefits are summarized in the following list.

•  Capability to automate timing plan development process (alleviate need for counting
cars manually and avoiding issue of guessing when “normal” traffic conditions
occur).

•  Utilize actual data to develop more accurate timing plans and alleviating the
possibility of basing the plans on a variant day.

•  Utilize actual data to develop more accurate and refined TOD intervals based on all
intersections and movements in corridor rather than bi-directional movements at
critical intersection.

•  Develop TOD intervals and timing plans based on more refined state definition,
including occupancy and volume versus just volume data.

•  Provide feedback for lane storage and configuration problems (turning bay lengths,
the need for more lanes, etc.)

•  Reduce delays, travel times, fuel used and increase the network throughput of
corridors.

•  Reduce harmful emissions in the environment.
•  Reduce time and experience necessary by traffic engineers to develop useful timing

plans and TOD intervals.
•  Capability to provide up-to-date feedback of timing plan performance with ability to

automate recommendations (updated timing plans): To be investigated further in
future research.
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This project contributes to systems engineering by demonstrating the use of clustering

as a basis for real-time control.  The use of the systems analysis process to a traffic

control problem faced by traffic engineers, where the end product supports the ability to

develop and maintain timing plans in real-time, is a valuable resource for systems

engineering.  The procedures proposed in this project provide a basis for real-time control

that can be applied to many problems consisting of similar parameters; i.e., the collection

of real-time data describing the state of a system as it changes through time.  A valuable

demonstration of systems engineering tools and methodologies to an everyday issue,

resulting in a real-time, decision support system and development tool, portrays the

impact and vital role of systems engineering to other fields.

This project follows a Gibson methodology (29) to reach the end product, where the

problem in need of a solution is two-fold:  The broad picture being the improvement of

traffic movement through arterial networks and the immediate issue being the extraction

of meaningful information from a large database to address the traffic movement issue.

The identification of the problem at hand resulted in goals and alternatives to address the

data and traffic issues.  The goals set forth here were to implement data mining tools that

would organize the information contained in the data to support traffic control tools for

improved efficiency.  The alternatives to reach the goal included alternate data mining

tools and algorithms.  The format of the volume and occupancy data and the scope of he

current means of traffic control resulted in the selection of the best alternative solution:

hierarchical, centroid cluster analysis.  This alternative was selected based on clustering

research studies and analysis on sample data sets.  The selection of this solution for data

organization was tested with cluster validation techniques to ensure the solution of cluster
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analysis for meaningful data interpretation was valid.  Cluster validation was a vital step

in the systems analysis approach to solving a problem.  Often a solution is proposed and

untested under the assumption the solution is valid and optimal (29).  This project

includes the systems analysis approach, which showed that hierarchical cluster analysis

does create meaningful clusters from the data and so the information extracted from the

database can be implemented as a valid tool for signal development.

The result of a thorough systems approach to problem solving is shown here to

improve traffic performance through corridors with the ability to support automated tools

for plan development and maintenance.  The underlying application of data mining tools

to traffic data in this project can be used as a guide for the development of similar real-

time, automated control tools.   This demonstration of systems engineering tools and

analysis to a real-world problem is a valuable contribution to the systems engineering

field.

6.2 Usability of Procedure

The usefulness and usability of the proposed procedure must be considered for

effectiveness.  The primary user group considered here is the VDOT northern Virginia

traffic signal control group.  It was this center that supplied the data for this research and

who benefit first-hand from these research investigations.  The signal control method to

improve upon introduced here is the time-of-day (TOD) method signal control.  Since

this is the primary technique supported throughout the country, this procedure could be

adapted and utilized by any DOT that retrieves system detector data.  System detectors
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are becoming increasingly widespread and the full capability of utilizing such data has

not yet been fully realized, especially for the basic forms of signal control such as TOD.

The procedure allows for fully automated plan development and maintenance

tools; however, further research should be continued to reach this stage.  The proposed

procedure here supports the use of detector data for improved timing plan development at

single intersections, where it has been shown that performance improves significantly

when timing plans are developed from historical data.  This project has also supported the

claim that corridors do experience an increase in performance with the clustered TOD

intervals; however, these improvements are not as significant as those experienced by the

data base timing plan development.  Even in the case that there would be no change in the

performance of the system with the newly developed timing plan and TOD intervals,

since it would not degrade the performance, the procedure could still be utilized for

automation of the signal development and maintenance procedure.  The procedure is

useful for all cases in that it allows for TOD intervals to be selected automatically based

on traffic data versus engineers’ intuitions for corridors.  These intervals are also based

on individual volume and occupancy values collected continuously over the period of

multiple days to better represent actual traffic conditions.  Finally, this proposed

procedure introduces a method of data mining for maintenance and feedback of signal

performance over time to better alert the need for change and updating timing plans.

However, this area was not fully supported due to the scope of this research and should

be investigated in the future.

This procedure could benefit many traffic engineers that deal with traffic signal

control through signalized intersections.  It not only speeds up the timing plan
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development process and TOD interval selection process, basing it on historical data, but

it also allows for improved timing plans to be developed at single intersections for

improved performance, without the need to manually count cars.

6.3 Simulation as Realistic Representation

The simulation outputs presented here are the main support of the effectiveness of the

proposed procedure, so it is important to consider how accurately these results represent

actual traffic conditions.  SimTraffic accounts for conditions such as driver behavior

characteristics (aggressive, etc.), types of vehicles (trucks versus cars), road type and

grade, etc.  Conditions that would not be accountable for would be things such as weather

and incidents.  But these types of conditions may exist in the data used to drive the

simulation. This presents the ability to model traffic conditions as accurately as possible

in that actual 15-minute volumes can be fed into the simulation for recording the outputs

of the timing plan effectiveness for such traffic conditions.  The simulations can be run

repetitively using alternate random number seeds for representing a dynamic simulation.

SimTraffic is also capable of simulating during periods of transition between timing plans

to account for transition effects on performance.  Overall, the simulation is a fairly

accurate display of actual traffic conditions, especially with the detailed input available

for setting up the roadways and driver characteristics (16).  The simulation may be a

better representation if occupancies could also be considered in the simulation as well as

volumes, but since these values are correlated it is not essential.  Calibration of the

simulation tool using actual counts collected at the intersections would also provide a

better-supported representation of actual traffic conditions.
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6.4 Future Research

Due to the exploratory nature of this project, there remains much research to be done

before the optimal tool can be created for timing plan development and maintenance.  A

procedure has been proposed for the enhancement of signal timing plans through the use

of system detector data.  The purpose here is to show that detector data can be utilized to

simplify the timing plan development process, as well as to allow a means for constant

feedback on timing plans’ performance.  The use of detector data also allows for the

timing plans to be better prepared to handle actual traffic conditions based on the

historical data base of traffic trends.  The areas that need further investigation are as

follows:

•  The effects of increased transitions on corridor performance

•  Detailed analysis supporting the optimal clustering methodology

•  Identification and performance of reduced state space (Select intersections,
detector, etc.)

•  Appropriate time to extract data from the database for timing plan
development (Accounting for variance in traffic conditions over time)

•  Weighting the cluster input variables for optimal results (Importance of
intersections, detectors, etc.)

•  Appropriate simulation tool for monitoring timing plan performance

•  Detailed analysis of simulation performance outputs (Queue length, v/c ratio,
MOP’s at individual intersections, etc.)

•  Verification of detector data and turning lane conversion factors with the
SmartTravelVan

•  Classification as a tool for plan maintenance



168

•  Investigation of replication criteria for determination of the appropriate
number of clusters

•  Investigate lift achieved from hand-picking a greater number of TOD intervals
for comparison of lift achieved by cluster analysis

6.4.1 Cluster Methodology Analysis

The cluster methodologies were only briefly investigated to propose a sufficient method

for clustering volume and occupancy data.  The centroid cluster methodology was

proposed here, however an in-depth investigation into all of the possible methodologies

would be appropriate before proposing a finalized procedure.  Each methodology should

be evaluated based on dissimilarity metrics and performance on different sized data sets.

The performance of these cluster methodologies should be evaluated using internal

cluster validation.  The evaluation for this procedure is brief, but sufficient for

exploratory research.

6.4.2 Transition Effects on Corridor Performance

Transitioning between timing plans is an extremely complex event for signal plan

development.  There are alternate methods for a controller to transition between plans and

much research has been done on the best method of transition.  The simulation package

used for this research only transitions from plan to plan in one way that simTraffic

utilizes as discussed in Chapter 2.  However, there are multiple ways for a transition to

occur and so simulation packages that can compare these alternate methods should be

investigated.  Also, the procedure introduced here typically constructs more plans per

day, often transitioning from an existing plan to another and back.  This increased
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transition may in fact impede the performance of traffic control due to the setbacks that

may arise in traffic flow during transitional times.  Brief transition effects can be

observed from comparing the outputs of the performance of the same timing plans

operating under the original TOD intervals and the clustered TOD intervals.  Since there

were more TOD intervals created by clustering, the outputs of this simulation may

provide some insight as to how severe the increased number of transitions are to

performance.  However, it is essential that the effect of transitions be thoroughly

investigated, with a suggestion for the number of transitions acceptable before

performance deteriorates.

6.4.3 Reduced State Space
A major advantage of using detector data and data mining tools to develop timing plans

and TOD intervals is that the rawest form of the data can be used, i.e., volume and

occupancy at each system detector for each intersection from all historical data.  It may

not be necessary to use such a detailed state space in developing clusters.  It should be

determined what the optimal state space is with the least amount of variables involved.

This will simplify the state space, which in turn will speed up the analysis.   For instance,

small intersections may not contribute to the clusters or timing plans and thus could be

excluded from the analysis without any loss of TOD interval and plan resolution.  In this

research a brief analysis was done on cluster development with the use of only volume

values versus volume and occupancy values.  It was found that using both volume and

occupancy provided better-tailored plans for traffic conditions; however, there may exist

intersections and/or phases that do not contribute significantly to the analysis and should
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be removed.  Classification would be one form of determining variable importance once

the clusters have been developed.

6.4.4 Historical Data Period
  The period of time for which historical data is extracted from the database for cluster

analysis and timing plan development may also be crucial to accurate results.  There is a

point when going too far back in time to collect detector data will deteriorate the results.

With years of data available, it may be tempting to construct an overly detailed analysis.

Traffic varies over time and an approximate historical cut-off for data collection should

be determined such that the results are not influenced by out-dated traffic trends.  An

investigation into the variance in traffic over time and the significance of these changes

for timing plans is recommended.  This analysis should take into account seasonal trends

and the development of alternate plans for different seasons where traffic conditions vary

significantly.  The forecasting of traffic conditions based on historical trends can also be

investigated to further enhance the plan maintenance portion of this research.

6.4.5 Weighting of Cluster Input Variables
An extremely important consideration is the weighting of input variables for cluster

analysis.  This information can be determined with the effectiveness of a reduced state

space.  A process such as classification will provide variable importance scores, which

can be used to determine appropriate weights as the input variables contribute to the

cluster analysis.  For instance, it may be beneficial to weight the detectors at the critical

intersection more heavily than those at a much smaller intersection so the clusters will be
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affected by the more important intersection in the corridor.  The volumes and

occupancies may also need to be weighted differently.  This result was shown briefly in

the analysis of the un-standardized volumes and occupancies and the single case in which

standardized volumes were weighted more heavily than the standardized occupancies.

Both of these methods weight volume over occupancy as is natural from the raw data

since occupancy values are much smaller than volumes.  The brief analysis done here

shows that in fact the clusters are cleaner and more appropriate when more weight is

given to the volume, although it should be determined if this is a significant improvement

or not.

6.4.6 Simulation Tool
SimTraffic was used to run simulations for this research primarily because that is the tool

used by VDOT.  Since the data here has been provided by VDOT and this research is to

benefit the work done at the northern Virginia traffic signal control center, the procedure

introduced here is catering to a specific user and the timing plan development process

should mimic the current means.  However, timing plan development in Synchro can be

used in correlation with other simulation tools such as Corsim and Transyt 7-F.

SimTraffic provided the ability to simulate over alternate timing plans to address

transition times as well as the ability to simulate based on an off-line 15-minute volume

file straight from the database for simulation parameters. This allows for realistic results

based on actual traffic conditions.  Another benefit to SimTraffic is that the number of

intersection allowable by the software is extremely large (> 100) and so intricate

networks can me modeled.  SimTraffic only allows 19 intervals (15-minute intervals) to
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be simulated at a time, resulting in a tedious process.  There has also been the release of

the newest version of SimTraffic, version 5.0, which may provide further advantages for

simulating timing plans.  The strengths and weaknesses of Corsim and Transyt 7-F were

not thoroughly investigated and may enhance the simulation process for future analyses.

This may be an important consideration for further analysis into timing plan performance.

6.4.7 Simulation Outputs (MOP�s)
The measures of performance (MOP’s) provided by SimTraffic are numerous.  The

analysis in this project only examines outputs for the entire corridor and for the full day.

Future analysis should include comparisons of plan performance during different times of

the day and at individual intersections.  This will allow for the critical time intervals and

intersections to be identified to better understand where the timing plans are the weakest.

Results can also be compared on a movement or phase basis, looking into which direction

traffic suffers at different times of the day under the alternate timing plans.  There are

also numerous outputs from SimTraffic not used in this project such as queue lengths and

timing plan measures of effectiveness.  There are many forms to display and dissect the

simulation outputs, which may provide further insight into the conditions experienced

under alternate timing plans.

6.4.8 Verification of Detector Data with the SmartTravelVan
The Smart Travel Laboratory and Virginia Research Council own a SmartTravelVan,

which acts as a mobile video detection system.  This can be placed at any intersection for

traffic data collection.  The accuracy of the detector data can be evaluated with the
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SmartTravelVan data results.  Also, since no system detectors exist on many of the

turning lane movements, the SmartTravelVan can be used to collect this data for more

appropriate turning movement data.  This will greatly aid in the cluster development and

simulation of the timing plans, since the turning movements where system detectors do

not exist must be approximated based on data collected by VDOT.  These collections can

also be used to calibrate the simulation parameters for accurate timing plans and

simulations.

6.4.9 Classification as a tool for plan maintenance
CART was introduced in Chapter 3 as a tool for cluster validation.  The analysis from

such an output can be taken one step further to provide a feedback mechanism for traffic

engineers.  The trees produced by the classification of the clustered data provide splitting

rules for which proved to perform well ( > 90% for both single intersections and

corridors).  This would allow automation of the performance of the newly clustered and

implemented timing plans by monitoring each current 15-minute traffic state that occurs

and classifying it into the correct cluster or timing plan.  This procedure would not have

to be used with clustered data, but could be used on the current method, where the

assigned timing plan becomes the target variable by which the classification rule is

formed from the corresponding input variables.  This notion extends the idea of the use of

data mining tools for the enhancement of traffic signal maintenance and would alert

traffic engineers of the need to update timing plans or adjust the TOD intervals.  This is a

major component of automated timing plan tools and should be investigated as to its

ability to correctly identify outdated plans.
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6.4.10 Investigation of replication criteria
Recent studies by Atlas and Overall (14) have investigated stopping rules that uncover

cluster levels appropriate for overlapping clusters.  This may be useful for the traffic data,

since the volume and occupancy pairs over a 24-hour period do not form completely

distinct groups prior to clustering.  It is recommended that studies be conducted with the

replication criteria for higher-order clustering on split-sample means and compared to the

results of the pseudo F, T2 and CCC stopping rules, which have shown in this research to

perform well for determination of TOD intervals and timing plans.

6.4.11 Hand-pick increased number of TOD Intervals
An interesting study would be to handpick the TOD intervals and plan transition times for

a 24-hour period based on the number of clusters recommended (7 TOD intervals in the

3-intersection case study).  These intuition-based TOD intervals could be simulated and

the performance results achieved from these handpicked intervals compared to those

resulting from the cluster analysis.  The level of improvement in MOP’s can be analyzed

by the use of clustered TOD intervals for 7 clusters versus handpicking 7 TOD intervals.

It is possible that a significant amount of performance improvement results from the

addition of the number of plans implemented and an analysis should be conducted on the

value of the clustered selection of plans and intervals.  However, the cluster analysis

would still be valuable to determine the number of intervals and plans that should be

selected based on traffic data.

6.5 Research Discoveries
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Discoveries have been made in lieu of the research done here that were not initially

anticipated.  One find is that clusters can alert traffic engineers of critical conditions that

arise in certain situations.  For instance, if enough saturation is experienced by any

movement in an intersection, the occupancies would likely form a cluster for that

situation, which my not necessarily be taken care of with an additional timing plan due to

the severity of the situation.  This would alert the traffic engineers of the need for

extended or additional turning bays or alternate lane configurations to better support

existing traffic demand.

Another important discovery is that the input variables for the cluster analysis

should weight volume heavier than occupancy.  The variables should also be

standardized to produce the cleanest TOD intervals from the clusters.  The two

recommended formats for cluster variables is either standardized volumes and

occupancies, with volumes weight by a factor of 20, or standardized volumes and

occupancies with occupancies reduced to values of < 26.  Of course for insight into the

need to alter lane configurations or saturated movements problems, the occupancies

should be left untouched.  However, for plan development, it is necessary to alleviate the

formation of random clusters not represented by a particular time-of-day.

The project also recommends from the sensitivity studies, that a minimum number

of observations should exist in each cluster and should be applied to the cluster

algorithm.  This produces substantial clusters that exist for sufficient times, in order to be

supported by an entire timing plan.  Otherwise, clusters may be developed based on one

or two erroneous observations that cannot be supported by a timing plan and thus take

away from the refinement of the remaining clusters during the 24-hour period.
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Finally, it was discovered that TOD interval selection does become increasingly

difficult in a corridor versus a single intersection.  Thus the cluster procedure is highly

recommended, as corridors become increasingly large and complex for the identification

of TOD intervals.  Single intersections are easily defined with appropriate TOD intervals

by traffic engineers, however the single-day, hand-counts at single intersections and

corridors is an out-dated procedure and should be replaced by the use of historical data

for plan development.
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Appendix A � 3-Intersection Corridor CPCC Matrices for 7 Clusters

Cluster 1
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Cluster 1 (Con’t.)
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Cluster 2
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Cluster 2 (Con’t.)
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Cluster 3
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Cluster 3 (Con’t.)
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Cluster 4
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Cluster 4 (Con’t.)
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Cluster 5
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Cluster 5 (Con’t.)
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Cluster 6
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Cluster 6 (Con’t.)
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Cluster 7
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