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ABSTRACT 

Signalized intersections are a critical element of an urban road transportation system and 

maintaining these control systems at their optimal performance for different demand conditions 

has been the primary concern of the traffic engineers. Currently, average control delay is used as 

a performance measure of a signalized intersection. The control delay is estimated using the 

delay equation provided by the Highway Capacity Manual (HCM). The HCM delay equation is a 

function of multiple input parameters arising from geometry, traffic and signal conditions. 

Variables like volume, green time and saturation flow rate that influence delay computations are 

stochastic variables, which follow their characteristic distribution. This implies that delay has to 

be estimated as a distribution as against the point estimate, the average delay. 

Various simulation programs and optimization techniques have evolved that aid the 

traffic engineer in the optimization process. None of the optimization programs consider the day-

to-day stochastic variability in the delay during the optimization process. The purpose of this 

research is to estimate variability in delay at signalized intersections and incorporate the 

variability in the optimization process. 

An analytical methodology to compute the variance of delay for an isolated intersection 

and arterial intersections is developed. First, delay variance is computed for an isolated 

intersection using expectation function method for undersaturated conditions and integration 

method for oversaturated conditions. The variance computation for an isolated intersection is 

expanded to arterial intersections using the integration method and the analytically approximated 

platoon dispersion model.  



The delay variance estimates are then utilized in the optimization of intersections. A 

genetic algorithm approach is used in the optimization process using either average delay or the 

95th percentile delay as an objective function. The results of the optimization, especially for 

isolated intersections, have shown considerable improvement over SYNCHRO, a signal 

optimization program, when evaluated using microscopic simulation programs SIMTRAFFIC 

and CORSIM. However, the results of arterial optimization did not show any significant 

improvement over the SYNCHRO.   
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CHAPTER 1 INTRODUCTION 

1.1 Background 

Transportation systems are an integral part of a modern day society designed to provide 

efficient and economical movement between the component parts of the system and offer 

maximum possible mobility to all elements of our society. A competitive, growing 

economy requires a transportation system that can move people, goods, and services 

quickly and effectively. Road transportation is a critical link between all the other modes 

of transportation and proper functioning of road transportation, both by itself and as a 

part of a larger interconnected system, ensures a better performance of the transportation 

system as a whole. 

Signalized intersections, as a critical element of an urban road transportation 

system, regulate the flow of vehicles through urban areas. Traffic flows through 

signalized intersections are filtered by the signal system (stopping of vehicles during red 

time) causing vehicular delays. Vehicular delay at signalized intersections increases the 

total travel time through an urban road network, resulting in a reduction in the speed, 

reliability, and cost-effectiveness of the transportation system. Increase in delay results in 

the degradation of the environment through increases in air and sound pollution. Thus, 

delay can be perceived as an obstacle that has a detrimental effect on the economy. It has 

been the traffic engineers� endeavor to quantify delay and optimize the signal system to 

perform at a minimum delay. 
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1.1.1 Delay Estimation 

Delay estimate measures reflect the driver discomfort, frustration, fuel consumption and 

lost travel time. Numerous equations have been developed for the estimation of delay. In 

the U.S., delay is estimated using the Highway Capacity Manual (HCM). The HCM 

equation is a function of multiple input parameters arising from geometry, traffic and 

signal conditions. The HCM procedure for a signalized intersection uses average demand 

flow rate and saturation flow rate in order to estimate volume to capacity ratio and the 

corresponding performance measure, delay. The Level of Service (LOS) is then 

determined from a predefined range of average control delay values.  

 In practice, for gathering inputs for the evaluation of delay in the field, most 

efforts are given to the estimation of capacity, while traffic volumes are collected just for 

a day or two, with the exception of locations with existing surveillance systems. The 

delays are then calculated based on the average demand observed from the data collection 

process. Conversely, the demand volumes are subject to stochastic variability and usually 

follow a Normal distribution for daily variability and Poisson distribution for cyclic 

variability. Further, variables like green time and saturation flow rate (in addition to the 

volume) that influence delay computations are stochastic variables which follow their 

characteristic distribution. In addition, the average control delay at signalized intersection 

in the real world might vary depending on traffic conditions including different arrival 

distributions, percentage of trucks, and driver characteristics. Considering that delay is 

governed by a number of stochastic variables, it is imperative that delay also be 

considered a stochastic variable. This implies that delay has to be defined through a 

distribution as against the point estimate, the average delay. 
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 This implies that an average delay value obtained from the data collection may 

not reflect the actual performance of the intersection. In other words, an average delay 

value of say 35 seconds per vehicle (LOS D) obtained on the data collection day has no 

significance if the 95th percentile confidence interval of delay varies from 20 to 50 

seconds per vehicle (LOS B to LOS D).  Further, LOS is not a good performance 

measure when the delay value lies borderline of two LOS categories. For example, an 

average delay of 34.9 seconds is considered as LOS C, while 35.0 is LOS D. 

Computation of the variability of delay often requires information on the demand 

variability like variance. With the use of advanced vehicle detection and communication 

technology, traffic count data from signalized intersections are extensively archived in 

places such as the Smart Travel Laboratory (STL) at the University of Virginia. The data 

in the STL is provided from Northern Virginia Smart Travel Signal System. The 

Management Information System for Transportation (MIST) at Northern Virginia 

controls over 1,000 signalized intersections, and system detectors report vehicle counts, 

speed, and occupancy every 15 minutes. Thus, vehicle demand variations can be easily 

captured and analyzed. Then, the delay variance could be estimated through sampling 

processes like Monte Carlo Simulations and Latin Hypercube Design. However, 

sampling techniques provide inconsistent results from different runs and requires a fairly 

large sample size to get close to the analytical values. Thus an analytical methodology 

that overcomes the drawbacks of the sampling procedures is desirable.  
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1.1.2 Optimization 

Various simulation programs and optimization techniques have evolved that aid the 

traffic engineer in the optimization process. Delay and its derivative are used as the 

objective function in most optimization software. For example, SYNCHRO optimizes 

based on the percentile delay while TRANSYT-7F optimizes based on factor that 

involves the average delay called the disutility index. However, delay is a stochastic 

variable and optimizing a signalized intersection for an average value fails the system 

performance for extreme demand conditions.  Thus, a methodology that optimizes the 

intersection considering stochastic variability would be very useful. 

 

1.2 Objectives 

The objectives of this analytical research are to  

a) Develop an analytical methodology that estimates the variability of HCM delay 

equation for both undersaturated and oversaturated conditions, and  

b) Optimize the signalized intersections considering stochastic variability, and 

evaluate its performance using microscopic simulation programs like 

SIMTRAFFIC and CORSIM.  

 

1.3 Scope and Structure  

An analytical methodology to compute the variance of delay for isolated and arterial 

intersections is developed. First, delay variance is computed for an isolated intersection 

using expectation functions for undersaturated conditions and numerical integration for 

oversaturated conditions. The variance computation for an isolated intersection is 
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expanded to an arterial intersection using the platoon dispersion model. The HCM delay 

equation is utilized in the computations and is assumed to be valid. However, the same 

methodology could be used with any analytical delay computation equation. The 

stochastic variability in delay is studied for the variability in the demand volumes only 

and the effect of variable saturation flow rates and green times is not studied. 

The delay variance estimates are then utilized in the optimization of intersections. 

A genetic algorithm approach is used in the optimization process. Average delay, 95th 

percentile delay, and the total delay are some of the delay derivatives used in the 

optimization process. In addition to optimizing an isolated intersection, arterial network 

optimization is also presented. In the optimization of arterials, only two intersections are 

considered in the present report. However, the methodology could be expanded to a full 

fledged arterial. 

This report commences with a literature review. Chapter 2 reviews the delay 

computations, uncertainty quantification, the platoon dispersion model and the genetic 

algorithm technique. Chapter 3 outlines the methodology in detail with sufficient 

examples. Chapters 4 - 7 present the results and comparisons with simulation models. 

Finally, the report concludes with conclusions and recommendations. 
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CHAPTER 2 LITERATURE REVIEW 

This chapter presents the relevant literature that has been reviewed as a part of this 

research. This chapter commences with a discussion on the delay equations that have 

been developed beginning with the early 20th century. The platoon dispersion model, 

which is the link between isolated and arterial intersections, is reviewed next. This is 

followed by an overview of the uncertainty analysis where the pros and cons of the 

sampling procedures are presented. Finally, the optimization procedure utilized by 

various simulation programs is discussed followed by the Genetic Algorithm procedure. 

 

2.1  Delay Background    

Signalized intersections were developed in England in the early 20th century. With the 

introduction of these controls to maneuver conflicting streams of vehicular and passenger 

traffic, researchers have concentrated on estimating delays due to these controls and in 

developing the optimum signal timings to minimize delay especially for pre-timed 

signals. Webster�s equation is one of the fore most delay equations developed in 1958 

assuming practical distributions like Poisson (random) arrivals with uniform discharge 

headways [1]. Webster introduced three terms to the delay equation as shown below. 
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where,  

 d is the average delay per vehicle, 

 c is the cycle time, 
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 λ is the ratio of the effective green to the cycle length, 

 q is the flow rate, 

 s is the saturation flow rate, and  

 x is the degree of saturation. 

 

The first term in Equation (1) represents the delay when traffic is considered to 

arrive at a uniform rate. The second term is a correction to consider the random nature of 

the arrivals. The third term is the empirical correction term introduced to give a closer fit 

to the simulated delay values. Furthermore, Webster used differential calculus techniques 

on the developed delay estimate to compute the cycle length for the minimum average 

delay.  

Akcelik further developed the delay equation by utilizing the coordinate 

transformation technique to obtain a time-dependent equation that is applicable to 

signalized intersections [2]. A generalized delay equation of the form shown in Equation 

(2) was developed that embraces the Australian and Canadian delay formulas as well. 
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where, 

 d = average overall delay 

 c = signal cycle time in seconds 

 u = g/C (ratio of effective green to the cycle length) 

 x = degree of saturation 

 T = flow period in hrs 
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 m, n = calibration parameters 

x0 = degree of saturation below which the second term of the delay formula is 

zero 

 

In the U. S., the Highway Capacity Manual (HCM) delay equation is utilized in 

delay computations. The HCM 2000 propounds that delay be computed using the 

following equation [3]:  
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Where,   

C = cycle length in seconds, 

g = effective green time in seconds, 

X = degree of saturation (v/c), 

v = demand volume in vehicles/hour 

T = duration of analysis period hours, 

k = incremental delay factor, 0.5 for pre-timed signals, 

i = upstream filtering/metering adjustment factor, 1 for isolated intersection, and 

c = capacity in vehicles per hour. 

 

Engelbrecht et al. have validated the HCM delay equation for oversaturated 

conditions and for different period of analysis [4]. Delays estimated by the HCM 2000 
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delay model were observed to be in close agreement with the delay estimates from 

TRAF-NETSIM simulations. 

In addition to computing point estimates like the average delay, attempts have 

been made to quantify the variability in delay due to random nature of the arrivals. 

Olsweski developed numerical methods to calculate average delay and estimate the 

distribution of the average cyclic delay. The methodology is based on sequential 

calculation of queue length probabilities with different arrival processes and was not 

applicable to practical situations [5].   Fu et al. modeled analytical equations to compute 

the variance of delay based on a simulation study [6]. The model for variance had to be 

calibrated extensively and the calibration depended on the delay definition used in the 

simulation program. Further, a signalized intersection optimization based on variance 

minimization was conducted and the results were similar to that obtained from average 

delay minimization. 

The arrival process observed downstream of a traffic signal is expected to differ 

from that observed upstream of the signal due to platooning of the vehicles. Thus, the 

delay equation developed for an isolated intersection has been modified to be applicable 

to arterial intersections. A progression factor was introduced for estimating delays for 

intersections in an arterial to account for this process. Rouphail developed a set of 

progression factors that adjusts delays at coordinated intersections using time-space 

diagrams and flow counts [7]. Levinson, also attempted to compute the signal delay for 

platooned arrivals for two extreme conditions [8]: 

a) When the first vehicle in the platoon arrives during a green interval and is 

unimpeded and  
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b) When the first vehicle in the platoon arrives during the red period and is impeded 

by queued vehicles.  

Olszewski computed delay for a pretimed signal when the arrival rate is non-

uniform by utilizing the step arrival rate model [9].  A significant finding of his research 

was that the progression effects the uniform delay term and not the overflow delay term 

in the HCM delay equation. Teply presented a practical system to evaluate the signal 

coordination at a series of intersections and studied the quality of signal progression 

based on the time-space charts developed from surveys and simulation [10].  

 

2.2 Platoon Dispersion 

�The on-off nature of traffic signal tends to create bunches or �platoons� of vehicles. The 

platoons of vehicles disperse as they travel away from the lights due to the different 

speeds of the individual vehicles� [11]. Thus the arrival pattern at an intersection 

downstream from another signal is different from an isolated intersection. Robertson 

developed the platoon dispersion model for the Road Research Laboratory in United 

Kingdom in 1969. The dispersion model was developed based on the observations made 

at four sites in West London at approximately 300, 600 and 1000 ft downstream of the 

stop bar. The predicated flow rate at any time step is expressed as a linear combination of 

the original platoon flow rate in the corresponding time step (with a lag of t) and the flow 

rate of the predicted platoon in the step immediately preceding it. Equation (24) presents 

the recursive model developed by Robertson. A smoothing factor �F� is used in the model 

to best fit the actual and calculated platoon shapes and is inversely proportional to the 

travel time on the link. The arrivals at the downstream intersection are estimated 
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depending on the discharge patterns from upstream intersection. The smoothing factor is 

found to be site specific and depends on the road width, gradient, parking, opposing flow 

level, etc [11]. 

Rouphail developed a closed form solution for the recursive model developed by 

Robertson, and studied the effect of platoon dispersion on signal coordination and delay 

estimation. Flow rates in the predicted platoon measured at the kth interval of the jth 

simulated cycle are expressed in terms of the demand and capacity rates at the source 

intersection in addition to signal-control and travel-time parameters [12]. 

Successful implementation of the dispersion model needs parameters like the 

dispersion factor α and travel-time factor β (Refer to Equation (24)) to be calibrated 

according to the conditions of the arterial. McCoy et al. attempted to calibrate the platoon 

dispersion model for passenger cars under low friction traffic flow conditions and 

suggested appropriate values for α and β to 0.21 and 0.97 for two-way-two-lane street 

and 0.15 and 0.91 on a four lane divided highway [13]. McTrans suggests that the degree 

of platoon dispersion on internal links can be calibrated for local conditions by using the 

platoon dispersion factor (PDF). High platoon dispersion factors indicate heavy friction, 

(i.e., urban central business districts (CBD) areas having significant amounts of parking, 

turning, pedestrians, and narrow lane widths), which conspire to reduce platoon 

intensities. Low platoon dispersion factors indicate low friction, (i.e., ideal suburban 

high- type arterial street conditions) that allows increased platoon intensities [14].   A 

value of 0.35 for α was found to be suitable for U.S. conditions.  
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2.3 Uncertainty Analysis 

Uncertainty is inherent in any system or model and it has been the engineers� endeavor to 

reduce uncertainty to the minimum wherever possible and to quantify the uncertainty in 

the system. Sampling techniques have been widely used in transportation engineering to 

quantify variability [15]. Sampling techniques involve the running of the model for a 

selected set of inputs based on their probability distributions to generate the probability 

distribution of the output. These sampling procedures lack accuracy because every 

simulation run produces different results and a large sample size might be necessary for 

the convergence to the true solution. Some of the widely used sampling methods for 

uncertainty analysis are Monte Carlo Simulation and Latin Hypercube Sampling.  

Monte Carlo simulation, a simple random sampling (SRS) procedure, is the most 

widely used sampling method for computer experiments because they are quick and easy 

to implement for high dimension problems. Many of the initial studies in computer 

experiments investigated the distribution of the response given "random" inputs. 

However, with increasing complexity of the problems, an improved design strategy 

called the Latin Hypercube Design is utilized.. 

A Latin Hypercube Design improves the distribution of input variables in the 

design of a sample and the design with the best distribution of points is selected. Ideally, 

the Latin Hypercube design generates a minimal number of input combinations that are 

spread as evenly as possible in the experimental space. A Latin Hypercube design with 

the design points more uniformly spaced can be chosen by measuring the variability of 

the number of design points in a randomly located sub region of the experimental design 

space. To ensure that each of the input variables Xk has all portions of its distribution 
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represented by the input values, the range of Xk is divided into N strata of equal marginal 

probability 1/N and one sample is picked from each stratum [16]. 

Other probabilistic methods like expectation functions have evolved. Expectation 

functions can be used to quantify uncertainty contributed by uncertain input parameters 

and expectation functions overcome the drawbacks of the sampling procedures. The 

moments of the output variable about the mean are estimated based on the distribution of 

the input parameters. Exact knowledge of these moments is used in identifying the 

distribution of the output random variable. Tyagi et al. discusses various distributions for 

these input parameters and developed generic expectation functions [17].  

Very little literature was found on the uncertainty analysis of delay under variable 

demand conditions. Olszewski attempted to develop the probability distribution of delay 

while Fu et al. calibrated a model that computes the variance of delay assuming that the 

arrivals follow a Poisson distribution [6, 18]. The developed calibrated model was 

compared to the theoretically developed Markov Chain model and was found to comply 

well within a range of degree of saturation values. 

  

2.4 Optimization 

One of the primary objectives of this research is to optimize signalized intersections 

using stochastic variability in delay. Delay is a stochastic variable and its variability has 

to be accounted for in the optimization process. Simulation and optimization programs 

like SYNCHRO and TRANSYT-7F do not consider the variability in delay for their 

optimization.  
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2.4.1 TRANSYT-7F 

TRANSYT is macroscopic optimization and simulation tool originally developed in the 

United Kingdom by the Transport and Road Research Laboratory (TRRL) [11]. It is a 

model that considers platoon dispersion for its computations. TRANSYT-7F is a U.S. 

version of TRANSYT developed by the University of Florida. TRANSYT-7F uses a 

delay derivative (Disutility Index) as the objective function during the optimization 

process [14]. The delay definition used is the entire amount of time spent while not 

traveling at the prevailing cruise speed. TRANSYT-7F measures this by periodically 

counting the number of vehicles queued at a signal and integrates this series of counts 

over time. Uniform and residual delays are computed based on the area under the uniform 

queue profile (queue.out from Spyglass). Incremental delay is computed by using the 

Highway Capacity Manual equation, where certain input parameters (e.g., capacity) are 

obtained directly from TRANSYT-7F simulation, and other input parameters (e.g. 

duration of the analysis) are obtained directly from the input data file. TRANSYT-7F 

uses genetic algorithms or the hill climbing method for optimizing cycle length, splits, 

phase sequences and offsets.  

 

2.4.2 SYNCHRO 

SYNCHRO, developed by Trafficware Inc., is a software package that can model and 

optimize traffic signal timings. SYNCHRO minimizes a parameter called percentile delay 

in its optimization. The Percentile Delay is the weighted average of a delay 

corresponding to the 10th, 30th, 50th, 70th and 90th percentile volumes. SYNCHRO 

accommodates for progression by calculating the progression factor (PF) used in the 
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delay equation using the ratio of uniform delay calculated by SYNCHRO with 

coordination and uniform delay calculated by SYNCHRO assuming random arrivals. 

Furthermore, SYNCHRO uses quasi-exhaustive search in offset optimization [19].  

 

2.4.3 Genetic Algorithms 

Genetic Algorithms are search algorithms based on the mechanics of natural selection 

and evolution. John Holland, his colleagues and his two students at the University of 

Michigan developed these algorithms [20]. 

A genetic algorithm process starts with a random set of individuals called the 

population. The individuals in a population are represented in the form of binary strings. 

These strings are then acted upon by operators, which produce a different population 

every generation, and then this cycle is repeated until certain termination criteria are met. 

A simple genetic algorithm is composed of three operators: 

! Reproduction 

! Crossover 

! Mutation 

The reproduction is a process in which individuals are selected based upon their 

fitness value or the objective function. This operator is an artificial version of natural 

selection, the survival of the fittest. The reproduction operator is implemented in 

algorithmic form in a number of ways. Roulette wheel selection and tournament selection 

are some of them. After reproduction, a crossover operator involving two steps is 

operated. Firstly, members of the newly reproduced strings in the mating pool are mated 

at random. Secondly, each pair of strings undergoes crossover as follows: an integer 
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position k along the string is selected uniformly at random between 1 and the string 

length minus one. Two new strings are created by swapping all characters, between 

positions k+1 and the string length. A mutation is an operator to move the function from 

local maxima and minima. A simple mutation involves generating a random number for 

every digit in the binary string and if the number is less than a predefined mutation 

probability (usually 0.05) the digit in the binary string is flipped.  

These genetic algorithms have been gaining significance in its applications for 

transportation signal system optimization. Foy et al. have used GA to develop a demand 

responsive (adaptive) optimization technique to control traffic signals (Traffic GA) [21]. 

A street network with four intersections shaped in a square configuration and each 

intersection being connected to two other intersections by perpendicular roadways was 

simulated. A two phase signal control was assumed for all the four intersections. Nine 

decision variables were involved in the optimization process, the total green for all the 

phases and two variables (for all the four intersections) one for the phase sequence and 

the other for the proportion of the green time allocated the phases. These nine variables 

were coded into a 24 bit string. In Traffic GA, the inverse of the total average wait time 

was used as an objective function. A simulation model was developed by them to be used 

as an evaluator. Each GA run consisted of 50 individuals and the program was run for 60 

times for every set of conditions. After 60 generations, the member with a minimum 

fitness value was chosen as the best solution for the given set of conditions. Traffic GA 

was run repeatedly while using the newest traffic data and new signal timing plans better 

suited to the present conditions are displayed. Balanced conditions of green phase times 

and a reasonable cycle lengths were obtained as a function of the traffic demand. The 
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traffic GA results and the theory of convergence indicate that GAs may be able to solve 

more difficult problems than traditional control strategies and search methods. 

Park et al. [22] have developed a procedure that optimizes all the traffic control 

parameters (i.e., cycle length, green split, offset, and phase sequence) for oversaturated 

and undersaturated conditions. The procedure utilizes genetic algorithm-based program to 

optimize the four parameters simultaneously as well as model queue blocking effects. 

Delay multiplied by -1 is utilized as an evaluation function for the optimization process. 

The genetic algorithm-based signal optimization program was implemented at two 

closely-spaced signalized intersections within 100 meters of each other. The GA 

optimizer utilized up to 250 generations with a population size of 10 per generation, a 

crossover probability of 0.4, and a mutation probability of 0.03. An elitist method was 

used for the GA selection process. The results of genetic algorithm optimizer indicate that 

the GA optimizer searches more frequently for a good cycle length range. It was found 

that the proposed GA-based program provides acceptable solutions within reasonable 

amount of time [22].  

The above study was extended to deal with three different optimization strategies 

and was tested under different intersection spacing: 100, 200, and 300 meters [23]. Three 

types of objective functions are considered namely, throughput maximization, average 

delay minimization, and modified average delay minimization with a penalty function. 

An arbitrary arterial system consisting of four intersections was selected in order to test 

the GA-based program. Of the three objective functions, the delay minimization strategy 

is observed to be applicable to both undersaturated and oversaturated conditions. The 

GA-based program and TRANSYT-7F timing plans were compared. The GA-based 
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program yielded less queue time than that of TRANSYT-7F on the basis of multiple 

CORSIM runs [23].  
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CHAPTER 3  METHODOLOGY 

As mentioned earlier, the primary objectives of this research are to develop an analytical 

methodology that estimates the variability of HCM delay equation for both 

undersaturated and oversaturated conditions, and further, to optimize the signalized 

intersections considering stochastic variability in the demand volumes. The methodology 

for the realization of these objectives will be presented in this chapter. Furthermore, the 

results of the optimization are compared with that of SYNCHRO and the timing plans 

from both the optimization processes are evaluated using microscopic simulation 

programs SIMTRAFFIC and CORSIM. The results will be presented in the chapter 7. 

 The following is an overview of the methodology chapter. Firstly, the HCM 

delay equation for a signalized intersection is presented and its stochastic variables are 

identified. Then, the methodology developed for the delay variability estimation of an 

isolated intersection is outlined. Undersaturated and oversaturated intersections are dealt 

differently and the methodology for each condition is presented separately. The delay 

variability estimation for an arterial intersection is presented next. Finally, the genetic 

algorithm based optimization procedure is presented along with a brief overview of the 

C++ program developed for the optimization. The results of the methodology will be 

presented in the later chapters. 

3.1 Highway Capacity Manual Delay Equation for Isolated intersection 

The Highway Capacity Manual (HCM) delay equation has been presented in the 

literature review. The HCM delay equation (Equation (3)) has a number of input 

variables some of which are subject to stochastic variability. The following section 

presents in detail the stochastic input variables to the HCM delay equation. 
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3.1.1 Stochastic Variables Identified 

Of the multitude of input variables presented in Equation (3), effective green time, 

saturation flow rate, and degree of saturation are identified to be stochastic variables. The 

reasons for identifying only three variables are presented here.  

The effective green time is computed using the following equation 

LRYGg c −++=           (4) 

Where, 

  g = effective green time, 

G = displayed green time, 

Y = yellow time, 

Rc = red clearance time, and 

L = lost time. 

 

The lost time in Equation (4) changes from driver to driver and hence induces 

stochastic variability into the effective green time. However, the magnitude of the 

variability in lost times is negligible compared to the variability of the volumes and it is 

difficult to quantify the variability in the lost times that driver�s experience, as it would 

involve collecting data on human perception. Likewise, saturation flow rate also has 

stochastic variability arising from the presence of heavy vehicles and the temporal 

variations in saturation flow estimation. Nevertheless, as the variability of effective green 

time and saturation flow rate are relatively small, for this exploratory research the 

variations in traffic demand are only considered. 
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The variability in the degree of saturation arises from the random nature of the 

traffic arrivals at an intersection. The degree of saturation is nothing but the ratio of the 

volume to the capacity. The assumptions of constant green time and saturation flow rate 

fixes the capacity which is a function of green time and saturation flow rate. This implies 

that the degree of saturation (X), which is governed by the volume (V) and capacity, will 

vary according to the volume only. The variability in the traffic demand (V) is inherent to 

any traffic system due to the random nature of the arrivals at an intersection and this 

induces stochastic variability into the degree of saturation. The variability of the arrivals 

could be identified from one cycle to the other and/or from one day to another. Since the 

degree of saturation (X) is equal to demand volume (V) divided by a constant capacity 

(c), the mean of X will be the average demand divided by a constant capacity and the 

standard deviation of X will be the standard deviation of demand divided by the capacity. 

Further, the distribution of X will be the same as that of V with the mean and standard 

deviation scaled down by a factor (capacity) as mentioned above. Hence, given the mean, 

variance and distribution of the demand volumes, the stochastic properties of X can be 

computed and these values of mean and variance are further used for delay variance 

computations.  

 

3.2 Inputs 

The proposed methodology computes the delay variance at a signalized intersection. The 

variables required for delay variance computations are mentioned here. Firstly, HCM 

delay for an intersection is computed by taking the weighted average of the delays from 

all the lane groups with their corresponding average volumes. Similarly, the delay 
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variance is also computed for all the lane groups separately and then aggregated. 

Therefore, the data required for the delay variance computations are required for each 

lane group separately.  

As mentioned earlier, computation of the variability of delay requires the mean, 

variance and distribution of all the stochastic variables. As volume is the only variable 

that is being considered for stochastic variability, information on the average volume, 

variance and distribution is needed for every lane group.   In addition to stochastic 

details, other information like the signal timing plan, saturation flow rates and other 

variables that are essential to HCM delay computation are necessary. The following is a 

detailed list of all the variables required for an isolated intersection computation 

• Average volume, variance and distribution for every lane group 

• Green times for every lane group 

• Cycle length for the intersection 

• Saturation flow rate by lane groups (left turn and through volumes may 

have different saturation flow rates) 

• Duration of analysis period (T) 

• Incremental delay factor, upstream filtering/metering adjustment factor.  

 

For an arterial intersection delay variance computation, the following additional 

inputs are required: 

• Cruise time on the arterial link 

• Platoon dispersion factor (α) and the empirical factor (β) 
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These additional factors are used to calibrate the platoon dispersion model and are 

explained in section 3.6.2.  

The mean and variance of volumes could be obtained from data collection. A 

signal control system like the Management Information System for Transportation 

(MIST) of Northern Virginia can provide volume information. The distributions of the 

volumes are usually assumed to be Poisson for cycle-by-cycle variability and Normal, 

Uniform or any other feasible distribution for day-to-day variability. However, the 

distributions mentioned are valid only for an isolated intersection. For an intersection in 

an arterial, the arrivals are screened through an upstream intersection and therefore, the 

distribution of arrivals at a downstream intersection is different from the standard 

distributions and has to be estimated. The platoon dispersion model is used in the 

estimation process and the parameters required to calibrate the model are presented in 

section 2.2.  

 

3.3 Overview of the Methodology  

The following flow chart (Figure 1) is an overview of the methodology involved 

in the optimization procedure. Two modules are marked as the delay variance 

computation module and the optimization module. The delay variance computation 

module involves inputting the data and computing the delay variance for different 

demand conditions. The optimization module involves the signal timing development 

process using the genetic algorithms. The different aspects involved in the flowchart will 

be presented in the later sections of the methodology chapter. 
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Figure 1. Flowchart of intersection signal timing optimization 
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3.4 Undersaturated isolated intersection 

The following section presents the methodology involved in the delay variance 

computations for an undersaturated intersection. The methodology for an isolated 

undersaturated intersection involves the expectation function method.  First, the 

assumptions are highlighted followed by the expectation function method. Then, the 

Taylor series expansion used to simplify the HCM delay equation is explained. Finally, 

the procedure for HCM delay variance computation is presented.  

 

3.4.1 Assumptions 

The following assumptions are made in developing the methodology. 

! HCM delay equation is valid.  

! Intersection is operating under undersaturated conditions. 

! Saturation flow rate and effective green times are constant. 

 

The first assumption is valid as has been observed in the literature review. The 

second assumption implies that after considering the variability in the volumes, the 

99.99th percentile upper confidence limit on the degree of saturation has to be less than 

one. Otherwise, the methodology for an oversaturated intersection has to be applied. The 

validity of the third assumption is discussed earlier in this chapter under the inputs 

section 3.2.  
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3.4.2 Expectation Function Method 

The expectation method is an analytic procedure that overcomes the shortcomings of 

sampling procedures. This method involves expectation functions. In this methodology, 

each stochastic input variable is considered a random variable following a distribution 

with known mean and variance. Since the output (from the function) is dependent on the 

input variables, the output is also a random variable whose higher order moments are to 

be calculated based on the variation of the input variables. The expectation method can 

be used to calculate the first and higher order moments of an output variable that is a 

function of several independent random variables in multiplicative, additive and 

combined forms. The following section explains the expectation functions utilized in the 

methodology. 

 

3.4.2.1 Expectation Functions 

 Expectation functions provide the expectation values of the powers of the variable given 

the mean, variance, and distribution of the variable. That is, given the mean (µ), variance 

(σ2), and the distribution of a random variable X, expectation functions provide the 

expectation of Xn as a function of X  and σ2 (i.e., E(Xn) = f( X ,σ2)). The nature of the 

function depends on the distribution of X. 

Tyagi et al. developed generic expectation function equations, which are functions 

of the mean and coefficient of variance (COV) of an input random variable [17]. The 

input random variable can have a Uniform, Triangular, Lognormal, Gamma, Exponential, 

or Normal distribution. With a prior knowledge of the mean, variance and the distribution 

of the input random variable the expectation values of the higher powers of the variables 
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can be computed. For example, consider an input variable (X) that follows a distribution 

with a mean value of µX and a coefficient of variance of CVX (i.e., the ratio of Standard 

deviation to mean). The expectation values of powers of X (depending on the 

distribution) are presented below for Normal, Uniform, Log-normal and Gamma 

distributions [17].  

 

For Normal distribution, 
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Where, 

r is the power of the variable for which the expectation value is being computed, 

and 

z is the unit normal variable. 

 

For Uniform Distribution, 
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For Lognormal distribution, 
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For Gamma distribution, 
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Where,  

Γ is a gamma function.  
 

 
As pointed-out previously, the variability in the volumes could be identified from 

day-to-day and/or from cycle-to-cycle. The above distributions could be used for day-to-

day variability condition in the demand volumes. However, the demand conditions are 

expected to follow a Poisson distribution for a cycle-to-cycle variability. Hence to 

compute the cyclic variability in delay, expectation values for Poisson distribution are 

required. These expectation values are generated from the basic definition of a Poisson 

distribution.  

 Poisson is a count distribution. A cycle-by-cycle distribution for volumes implies 

that the volume counts from different cycles follow a Poisson distribution. Therefore, the 

expectation values are generated for these cyclic volume counts and then translated to 

hourly volumes. 

The generalized expression for Poisson distribution is as shown in equation below 
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Where, 

  λ is the mean value of the variable x. 
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Poisson distribution is a discrete distribution. Therefore, the generalized 

expression for computing the expectation values could be written as 
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This equation implies that the mean of a Poisson distribution is λ! which is true.  
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The above equation implies that the variance of Poisson distribution is λ2+λ−λ2  

(i.e., Var(x) = E(x2)-E(x)2) = λ which is the basic property of a Poisson distribution. 

Similarly, computing the expectation values for up to n=6 the following equations are 

obtained. The expectation values for Poisson distribution are as shown below 



 30 

( )
( )
( )
( )
( )
( ) 654326

54325

4324

323

22

1565809
102515

67
3

λλλλλλ
λλλλλ

λλλλ
λλλ

λλ
λ

+++++−=

++++=

+++−=

++=
+=

=

UE
UE
UE
UE
UE
UE

      (9) 

Where,  

λ is the mean of the random variable, and  

U is a random variable representing the cyclic counts.  

  

The expectation values in Equation (9) are applied onto the counts and, these 

count expectation values have to be translated to that of the hourly volumes and then the 

degree of saturation (X). The count (U), vehicles per cycle, could be related to the degree 

of saturation X using the following process. 

The U in the above equation represents the volume counts for a time period equal 

to a cycle length (i.e., C secs). Volume is the vehicle count per hour, therefore the counts 

per cycle have to be converted to the counts per hour. This implies that if the vehicles are 

counted for every C seconds (where C is the cycle length), the volume will turn out to be 

(3600/C) times the count.  

The following equations are developed: 
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Where,  
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U is the count for a period of C secs, 

V is the arrival volume, and 

c is the capacity. 

 

Using Equation (10), the following expression for the degree of saturation (X) is 

obtained.  The expectation values of U and X can also be related as shown. 

( ) ( )

( ) ( )
n

nn

cC
UEXE

cC
UEXE

Cc
UX








∗
×=

∗
×=

∗
×=

3600

3600

3600

        (11) 

Using Equation (11) and the expectation values for counts Equation (9), the 

expectation values for the degree of saturation (X) are obtained. The expectation values 

of X obtained using the above equations are as presented in Equation (12): 
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    (12) 

Using these expectation values in a simplified delay equation, an approximated 

polynomial obtained from the Taylor series expansion, the expectation values for delay 

and its higher powers are obtained. The variance of delay from day-to-day and cycle-to-
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cycle is computed. The reasons for simplifying the delay equation and the process 

involved are discussed in the following section. 

 

3.4.3 Taylor series expansion 

The HCM delay equation could be conceptualized as a function of demand volume if the 

other stochastic variables are considered to be constant. However, it is noted that since 

expectation values have been developed for power functions or additive and 

multiplicative terms of these power functions, this method cannot be applied directly on 

the HCM delay equation. The HCM delay equation has to be transformed to an equation 

involving only additive and multiplicative terms of the powers of X. This can be realized 

by approximating the delay equation to a polynomial as a function of X. Taylor series 

expansion on the delay equation is used for the transformation.  

Given that the delay equation is a function of a single stochastic variable X, the 

delay equation is approximated as a univariate polynomial of X using Taylor series 

expansion. 

The generalized Taylor Series expansion of any function F(x) is: 
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Where, 

F(X) = the function being approximated, and 

X0  = the point about which the equation is expanded 

The Xo in the above equation is the point where the function is expanded. The 

approximated function F(X) yields values that are very close to the true values around the 

point Xo and is exact at the point Xo. Since traffic demand volume is a random variable 
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with a particular mean and variance, traffic demand volumes vary around the mean 

volume in a pattern depending on the distribution of volume. When Taylor Series 

expansion (Equation (13)) is used to approximate the HCM delay equation, it is logical to 

utilize a value of X0 equal to the mean volume. This will result in the best 

approximations. It is noted that different mean values yield different approximation 

equations. 

In Equation (13), the F(X) is replaced with D(X) implying that delay is a function 

of X only. This would yield an approximate equation of the generalized form  

∑
=

=
n

j

j
j XXD

1
)( α                                     (14) 

Where,  

D(X) is the delay function, 

 X is the degree of saturation, 

 αj are the constants, and 

 n is the number of terms or the order of the polynomial. 

 

The n value is determined on the basis of how well the approximation replicates 

the HCM delay curve within reasonable percentile confidence intervals for X. Usually, 

for low degrees of saturation, a value of 3 or 4 should suffice. An example of the 

comparison between the delay equation and the approximation is shown in chapter 4.  

 

3.4.4 Calculation of HCM delay variability 

This section presents half of the variance computations module depicted in Figure 1. The 

methodology involved in the delay variance computations for an undersaturated 
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intersection, which is the right portion of the variance computation module, is presented 

here. Figure 2 depicts the delay variance computation in detail through a flow chart.  

The steps I and II in Figure 2have already been explained in the sections 3.4.2 and 

3.4.3. Step III involves computing the expectation values for the powers of X which has 

been explained in section 3.4.2. The expectation values for Xr are computed depending 

upon the probabilistic distribution, mean and variance of the arrival flow as elicited 

earlier from Equations (5)-(8), (9) and (12). Step IV involves the computation of the 

expectation values for delay. The expectation values for the delay (D) and for D2
 are 

calculated from the expectation values of Xr as shown below. Using Equation (14) and 

the expectation values generated from the Equations (5)-(8), (9) and (12), the expectation 

of delay is calculated as in Equation (15). 
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j XEDE

1
)()( α                                     (15) 

Similarly, the delay equation is squared, the expectation of D2 is computed, and 

from these values, the variance of delay is calculated as  

[ ]222 )()( DEDED −=σ                                    (16) 

Equation (16) is the step V portion of the flow chart where the delay variance is 

obtained. Furthermore, if the distribution of delay and its percentile values are known, the 

confidence intervals of delay can be computed. Using the standard deviation of delay (σ) 

from Equation (16) and mean value of delay (µ) from Equation (15), the confidence 

interval is computed as follows.  

C.I. = µ ± σ × (percentile value)                                                                             (17) 
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The percentile values are calculated from statistical tables depending upon the 

distribution and the percentile. For example, in case of Normal distribution, the 95th 

percentile value is 1.96, while 99.99 percentile uses the value of 3. The day-to-day 

variability computations are the simplest as the expectation values can be computed 

directly from the Equations (5)-(8). The cycle-to-cycle variability computations involve 

the expectation values from the Poisson distribution Equation (12). 
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Figure 2. Flow Chart of the HCM delay variance computation for undersaturated 

intersection 
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3.5 Oversaturated Intersections 

The methodology for undersaturated intersections involved expectation functions. 

Expectation functions could be used as long as the function is continuous i.e. retains its 

analytical equation throughout its domain. The methodology for oversaturated 

intersections differ from that of the undersaturated intersection case because of the 

discontinuity of the delay equation at X=1. This discontinuity arises from the definition 

of delay equation provided in the HCM. The HCM delay equation is different for 

oversaturated and undersaturated conditions as shown in Equation (18). The expectation 

values cannot be used here as the function changes its equation.  

 
 









+−+−××+−××









+−+−××+

∗−

−××

=

cT
kIXXXTCgC

cT
kIXXXT

C
gX

CgC

D
8)1()1(900)1(5.0

8)1()1(900
1

)1(5.0

2

2
2

 

 
 

For an undersaturated intersection, by definition the volumes are less than the 

capacity implying that the degree of saturation (X) is less than one. Considering the 

stochastic variability in the volumes, if the 99.99th percentile confidence intervals of X 

are found to be less then 1, the expectation methodology could be used.  

Conversely, by the definition of an oversaturated intersection, the volumes are 

very high at an intersection such that they do exceed the capacity. Furthermore, with the 

inherent variability in the volumes, the degree of saturation encompasses the regions of 

X≤ 1 and X >1 and delay changes its equation at the value of X=1 and hence expectation 

methodology provides results that might not be accurate.  

When X<1 
              
                      (18) 
When X≥1 
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Therefore, to compute the variance of delay for an oversaturated intersection, an 

integration technique is utilized. The flow chart presented in Figure 3 depicts the process 

of delay variability estimation for oversaturated conditions. A detailed methodology is 

also explained below. 

 

 
Figure 3. Flow Chart of the HCM delay variance computation for oversaturated 

intersections 
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The first step in delay variance computations involves gathering the relevant data 

and computing the average and variance of the degree of saturation which will be used 

for further calculations. The next step involves computing the expectation values for 

delay and delay squared using integration as is explained below.  

The expectation value for any function f(x) can be computed from the following 

integral: 

∫=
XofLimitstheOver

dxxPxfxfE )()())((  .        (19)  

Where, 

f(x) = the function for which expectation values are needed, and  

P(x) = probability distribution of x. 

 

The above integration is computed within the limits over which x varies and in the 

present case; x is the degree of saturation (X) and is assumed to be in the range [0, 3] as 

the degree of saturation is not usually expected to exceed 3.  

For the present case, the function f(x) is of the form shown in Equation (18)  
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The expectation of f(x) could be computed using the following equation  
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The f1(x) and f2(x) are replaced by the two equations shown in Equation (18). The 

p(x) used is the probability distribution of the variable x that is known prior to the 

When x<1 
 
When x≥1 
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computation. P(x), as is mentioned earlier, is Poisson for cyclic variability and Normal 

for daily variations. 
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Similarly, the delay equation is squared and the integrals are computed again but 

this time with the squared values of the functions f1(x) and f2(x) and with the same 

probability distributions as shown in Equation (21). This would give the expectation 

value of D2 and the average delay value is obtained from Equation (20).  

The next step (step III) involves using the expectation values of delay and delay 

squared to compute the variance of delay and the variance of delay is computed as in 

Equations (16). Finally, if the distribution of delay is known with percentile values then 

the confidence intervals on delay could be computed using Equation (17). 

 

3.6 Arterial Intersections 

The delay estimation procedure for an intersection at an arterial is the same as that of an 

isolated intersection except for the through movements on the arterial link. A different 

delay equation is applied as is shown in Equation (22). The delay estimation process for 

through movements at an arterial is different from that of other movements in two 

aspects. First, arrivals at the downstream intersection depend upon the turning vehicles 

that join the main stream in addition to the through vehicles at the upstream intersection. 

Thus the mean and variance of the arrivals downstream have to be estimated based on the 

component movements mean and variance. Furthermore, the arrival distribution for 
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through movements at an arterial intersection may or may not be Poisson (for cyclic 

variations) or Normal (for daily variations) as was assumed for an isolated intersection.  

Second, the arrival pattern within a cycle at the downstream intersection is not 

uniform due to filtering of vehicles at the upstream signal and consequent platoon 

dispersion along the arterial in addition to the turning vehicles. The arrival pattern at the 

downstream intersection has to be estimated using the platoon dispersion model (section 

3.6.2). The progression factor used in the HCM delay computations for an arterial 

intersection reflects the arrival pattern onto the delay estimate.  

Thus the delay variance estimation for an arterial intersection requires information 

on the arrival mean, variance and distribution from cycle-to-cycle or day-to-day and the 

arrival pattern within a cycle at the downstream intersection. The arrival mean, variance 

and distribution from cycle-to-cycle or day-to-day are assumed to be input by the user. 

Although the distribution, mean and variance of the arrivals at the downstream 

intersection can be computed, based on the mean, variance and distribution of the 

upstream arrivals, the existence of sinks and sources along the arterial change the mean 

and variance of the arrivals at downstream and complicate the situation. Hence, the 

arrivals at the downstream intersection along with the mean, variance and distribution are 

assumed to be input by the user. The arrival pattern within a cycle is estimated using the 

platoon dispersion model presented in section 3.6.2. 

 The following sections illustrate the delay estimation procedures in detail and are 

organized as follows. The HCM equation for the delay estimation for an arterial 

intersection is presented along with the progression factor estimation procedure. The 

platoon dispersion model used in the estimation procedure is presented next followed by 
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the simplifications made to the model. Finally, the procedure for delay variance 

computation is summarized at the end of the chapter.  

 

 
3.6.1 HCM Delay Equation for an Arterial Intersection 

As is mentioned earlier, HCM delay equation is assumed to be valid. The HCM delay 

equation for an intersection at an arterial is different from that of an isolated intersection 

and is shown below. 
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Where,  

 PF is the additional term called the progression factor 

 

The progression factor is an indication of the arrival pattern at an intersection 

within a cycle. Progression factor accounts for proper/ improper progression 

arrangements in the arterial. This factor is estimated based on the arrivals during green as 

follows: 
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Where, 

 u = Green time ratio (g/C), 

When X<1 
  (22) 
 
When X≥1 
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 yL = Lane group flow ratio defined as vL/sL, 

 Rp  = Platoon ratio defined as vLg / vL. 

 

 vLg is the arrival flow rate during the green period, vL is the average arrival flow 

rate during the signal cycle, sL is the lane group saturation flow rate per lane. The factors 

involved in the progression factor estimation procedure except for the arrival flow rate 

during the green period are available and this term is computed using the platoon 

dispersion model. The procedure is presented below. 

 

3.6.2 Platoon dispersion model 

The platoon dispersion model used in this methodology is the following [11]: 

( ) ( ) ( ) ( )[ ]1`1' −+×−+×=+ TtqFtqFTtq ββ      (24) 

Where,  

q'(t + βT) = Predicted flow rate at the time interval t + βT, 

 q(t)  = Flow rate of the initial platoon during the step t, 

 T  = Cruise time on the link in steps, 

 β  = Empirical factor ~0.8, 

 F   = (1 + αβT)-1 is the smoothing factor, and 

 α  = Platoon dispersion factor ~0.35. 

 

This model predicts the flow rate at the downstream stop bar (ignoring the 

presence of queue) for a particular time interval based on the discharges from the 

upstream signal. The predicted flow rate depends upon the cruise time on the arterial link, 
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the flow rate in the previous interval and the upstream discharge rate. As is mentioned in 

section 3.2, all the parameters required for this model are input by the user. The factors 

involved in the platoon dispersion model are the empirical factor (β) and platoon 

dispersion factor (α). A value of 0.35 for α best represents the measured dispersion on 

typical urban streets in the U.S. [11]. The platoon dispersion factor (α) is a site specific 

factor and a value of 0.35 corresponds to light turning traffic, light pedestrian traffic and 

11 to 12 foot lanes. Using the two parameters (α and β) and the travel time on the link, a 

smoothing factor (F) is calculated. Based on the discharge pattern at the upstream 

intersection and the smoothing factor, the arrivals at the downstream intersection are 

calculated.  

 

3.6.2.1 Upstream discharge pattern 

The platoon dispersion model requires the upstream discharge pattern as an input to 

predict the arrival pattern at the downstream intersection. Figure 4 shows the discharge 

pattern for a simple through flow at the upstream intersection. The vehicles are 

discharged at a saturation flow rate up to go (i.e., until the queue is dissipated). Once the 

queue is dissipated, the vehicles pass through an intersection as they arrive and hence the 

discharge rate is v, the rate at which the vehicles arrive. As is mentioned earlier, the 

saturation flow rate is assumed to be a constant and the arrivals at the upstream 

intersection are assumed to follow a Poisson distribution.   
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Figure 4. Discharge pattern at an upstream intersection considering only through 
volumes 

 
However, the left turn volumes that join the arterial add a new component to the 

discharge pattern. The discharge pattern with the left volumes is as shown in Figure. At 

the upstream intersection, the left volumes are assumed to receive the green after the 

through volumes. Thus the discharge pattern of the through volumes is repeated again 

with the left turning volumes after a time period equal to the yellow + red clearance time. 

This discharge pattern is based on the assumption that the signal timing plan follows a 

go g 

S 

go g

S 

g+y+Rc 

Figure 5. Discharge pattern at the upstream intersection considering through and 
left vehicles 
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NEMA phasing where the left turn movement leads the through volumes as is shown in 

Figure. The movements in dark represent the through and left turning movements at the 

upstream intersection. The two movement volumes arrive downstream as is shown in the 

layout in Figure. Furthermore, the left and through arrivals are independent of each other. 

Hence, the platoon dispersion model can be applied to each of the component discharge 

patterns separately and later combined. 

 

Since the movements are independent of each other and follow a similar discharge 

pattern, a generic platoon dispersion model based on the discharge pattern in Figure 4 is 

developed and then the volumes at the downstream intersection are cumulated. 

 

NEMA PHASING 

Figure 6. Figure depicting the Platooned arrivals at downstream 
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3.6.2.2 Simplification of the platoon dispersion model 

The platoon dispersion model from Equation (24) can be further simplified by using the 

equation sequentially to the nth term. That is, the Left Hand Side (LHS) of Equation (24) 

is q`(t+βT) which can be substituted in the RHS of equation as q�(t+βT-1) for the next 

time interval. Suppose, the flow is predicted for a time interval 1, using Equation (24), it 

is evident that q�(1) is depended on q�(0) and a known upstream discharge rate. 

Furthermore, q�(0) is assumed to be equal to zero as there are no discharges prior to the 

time t = 0. Thus q�(1) is calculated from q�(0). Similarly, q�(2) could be calculated from 

q�(1) and so on . Thus by repeating the above process q�(n) is computed. This q�(n), the 

nth term (i.e., the flow rate for the nth interval) turns out to be a summation of a geometric 

series. Representing the above process in equations yields the following:  

For the first interval at downstream,  

( ) )(' tFqTtq =+ β  because q�(t + βT-1) = 0 

For the next interval,  

( )
[ ])1(1)()1('

)1()()(1'
FtFqTtq
FtFqtFqTtq

−+×=++⇒
−×+=++

β
β

 

Similarly, for the next interval, the flow turns out to be ( ) ( )[ ]2111)( FFtFq −+−+× . 

Therefore, if the discharge flow rate at upstream remains the same as q(t), the flow rate at 

down stream for the nth interval would be: 

 [ ]nFFFtFqnTtq )1......()1()1(1)()(' 2 −+−+−+×=++ β  

 The expression in the square brackets on the right hand side (RHS) is the 

summation of a geometric series with 1 as the first term and a common ratio of (1-F). The 

RHS would simplify to the following: 
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 Thus, for the upstream discharge pattern assumed in Figure 4, the flow rate 

downstream for any interval up to g0 can be computed using Equation (25a).  

 However, as shown in Figure 4, the discharge flow rate from upstream changes to 

v at time go (time when the queue is dissipated). Therefore using the equation sequentially 

after the change in q(t), the following equation is obtained. 
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                              ( )[ ] ( ) ( )[ ]111)(11)(' ++−−−+−−= nmmm FFtqFtq   

                               ( )[ ] ( ) ( )[ ]11111 ++−−−+−−= nmmm FFsFv  

Where, 

n = the interval at downstream where the flow rate changes from s to v at 

      upstream, equal to g0 expressed in intervals, 

m = any interval after the flow has changed from saturation flow to v, and 

v = the flow rate in vehicles per hour. 

 

Further, the discharge from the upstream intersection falls down to zero at the end 

of the green period at the upstream intersection. Using the methodology used above, the 

platoon dispersion model can be simplified to predict the flow for entire two cycle 

intervals assuming that q(t) the discharge from upstream is zero after a time g (green 

time). The equation for the flow rate would be:  

  [ ] [ ] [ ]{ }1)1()1()1(1)1()(' ++−−−+−+×−=++++ nmmmp FFsFvFpmnTtq β   (27a) 

(25a) 

(26a) 
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Summarizing the above equations,  

[ ]1)1(1)(' +−−×=++ nFsnTtq β        (25a) 
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Where, 

 n varies from (0, g0-1), 

   m varies from (1, g-g0), and 

p varies from (1, 2C-g) this is because the platoon is assumed to disperse within 

two cycles only (as is mentioned previously). 

 

The above flow pattern represents the flow arriving at a downstream intersection 

that is dispersed within two cycle lengths. The Equations (25) � (27) are transformed to 

involve only a single variable n. The downstream arrival flow pattern from time periods 0 

to 2C can be represented as: 
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3.6.3 Estimation of the Arrival Pattern and Progression Factor 

The arrival pattern at the downstream intersection is computed by first computing the 

total arrivals at the downstream intersection for one cycle based on the upstream 

discharge pattern (Figure 4). Then, the template equations are applied to the through and 

left turning volumes and then the total arrivals during green are computed. From the 

arrivals during green, the flow rate during the green period is estimated. Using the 

analytical expressions developed in Equations (25)-(27), cumulative arrivals are 

computed.  

In every cycle, the platooned arrivals at downstream are assumed to disperse 

within two cycles as shown in Figure 7. That is, vehicles that are discharged from 

upstream in the present cycle would reach at the downstream intersection in the next 

cycle. This assumption is based on the premise that if the platoon disperses over more 

than two cycles, the arrivals would be close to random. Therefore, for any intermediate 

cycle, the volume at the downstream intersection should consist of two parts one that is 

the portion of platoon that is departing during current cycle and is dispersed for a time of 

C (cycle length in secs) (Region I in Figure 7Figure) and the other is the remaining 

portion of the platoon that has already departed in the previous cycle from upstream 

(Region II in Figure 7Figure). 
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Figure 7. Depicting the platoon dispersion process 
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The expression for the total arrivals downstream could be presented as shown in 

Equation (28) � (30). The downstream arrival flow pattern from time periods 0 to C can 

be represented as shown in Equations (25b) � (27b): 
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Similarly, the arrival pattern for the vehicle that would arrive downstream in the 

next cycle could be represented as 
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As explained earlier, the arrivals during the two cycles are added to compute the 

effective arrivals at the downstream intersection as 
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Equations (28)-(30) represent the arrivals at downstream for any intermediate cycle.  
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3.6.3.1 Combining the through and left turning volumes at downstream intersection 

Equations (28) � (30) represent the arrival pattern at the downstream intersection for the 

upstream discharge pattern presented in Figure 4. These Equations (28) � (30) are used 

separately with the upstream through and the left turning volumes to compute the arrivals 

at the downstream intersection. The volumes are then combined according to the 

vehicular arrival times at the downstream intersection.  

According to the platoon dispersion model, the first vehicle arrives at the 

downstream intersection at a time equal to βT after the start of green at the upstream 

intersection. Where β is the parameter used in the platoon dispersion model and T is the 

travel time estimated from the ratio of the distance between the intersections and the free 

flow speed. From the knowledge of the arrival times for both the upstream left and 

through volumes, and the offset between the intersections, the total arrivals during green 

are computed by cumulating the arrivals during the downstream green time. 

Based on the above arrival pattern, with a knowledge of the downstream green 

time and cycle length (usually same as that of the upstream intersection when 

coordinated), the percentage of arrivals during green are computed as shown below. 

Equations (28)-(30) could be generalized as a function q(t) which represents the arrival 

pattern as a function of time. The proportion of arrivals during green is computed using 

the ratio of the arrivals during green to that of the total arrivals during the cycle. This 

computation is represented as follows: 
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Where, 

 gd is the green time for the major street movement at the downstream intersection, 

C is the cycle length. 

The numerator in Equation (31) is the arrivals during green and this is expressed 

in vehicles per hour to get the arrival flow rate during the green period. 

 

3.6.4 Delay Variance Computations 

The flow rate during the green period is computed using the simplified platoon dispersion 

model as presented so far. The progression factor is computed using the average volume 

over a cycle, green time, cycle length. This would yield a number that is to be multiplied 

by the Uniform delay (D1) term of the HCM delay equation.  

With the computed progression factor, the HCM delay equation presented in 

Equation (22) can be used to compute the delay variance. For undersaturated conditions, 

the expectation methodology is utilized with the HCM equation for an arterial. Equation 

(22) is expanded as a polynomial as a function of X. The expectation values of X are 

computed from the mean, variance, and distribution of the arrivals using Equations (5)- 

(8) and (12). The generated expectation values are used on the approximated HCM 

equation and using Equations (15) � (17) the delay variance is computed.  

For an arterial under oversaturated conditions, the progression factor is estimated 

and multiplied to the D1 term of the HCM delay equation as in Equation (22). Using this 

equation and the mean, variance, and distribution of the arrival volumes, delay variance is 

computed in a method similar to that of an isolated intersection as shown in Equations 

(18), (20), and (21). 
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3.7 LOS Computations  

The level of service (LOS) at signalized intersections is determined based on the average 

delay ranges that are predefined in the HCM. Six ranges have been defined in the HCM 

that correspond to six different LOS levels (A � F). The following table presents the 

HCM delay ranges with the corresponding LOS level. 

Table 1. HCM level of service criteria 
Delay (secs/veh) LOS

Less than 10 A
10 - 20 B
20 - 35 C
35 - 55 D
55 - 80 E

Greater than 80 F  

For example control delay values between 20 and 35 seconds per vehicle are 

defined as LOS C. 

 However, delay is a stochastic variable. This implies that delay has a mean about 

which it varies according to its distribution and variance. Thus the intersection could 

perform in multiple LOS ranges depending on the delay variability. Hence, based on the 

mean and variance of delay, (assuming that delay follows a normal distribution) the 

probability of different LOS ranges could be quantified. 

Consider the following figure which shows the delay as a normally distributed 

variable. 
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Figure 8. LOS ranges with delay distribution 

 

The area under the probability curve for delay within different LOS limits gives 

the probability that the intersection performs at that LOS value. Thus, the probability of 

the intersection performing at LOS A is equal to the probability that the delay is less than 

10 seconds per vehicle. Similarly, based on the mean and variance of delay, the 

probability of occurrence of different LOS levels is quantified. Thus, based on the 

computed probabilities, a new LOS for the intersection could be defined that would look 

like the following: ApA-BpB-CpC-DpD-EpE-FpF where the alphabets in capitals correspond 

to the LOS level, the subscript corresponds to the probability of occurrence at that LOS 

level. 

 Furthermore, based on the probability of occurrence of different LOS levels, a 

new index is developed to quantify the delay variability. This index called level of 

service performance index (LOSPI) is computed as shown below. 



 57 

 
)(*)( LOSLOS

levelsLOSallOver
PDelayMedianLOSPI ∑=  

 
where,  

Median DelayLOS is the median of the delay interval, and 

 PLOS is the probability of occurrence of the LOS.  

 

3.8 Optimization 

The delay variability estimation processes for isolated and arterial intersections were 

discussed in the previous sections. The next objective of this research is to optimize 

intersections with stochastic variability. Genetic algorithms are used to realize the 

optimization process for signalized intersections. Both average delay and the 95th 

percentile delay are considered as objective functions to optimize signal timing plan at an 

intersection with stochastic variability.  Different scenarios are optimized and compared 

with SYNCHRO optimized timing plans by means of microscopic simulation programs 

CORSIM and SIMTRAFFIC. The following sections provide an introduction to the 

genetic algorithms and the coding procedure adopted. The results of the optimization for 

an isolated intersection and arterial are provided in Chapter 7.  

 

3.8.1 Optimization procedure 

The proposed methodology uses the 95th percentile delay or the average delay value as 

the objective function in the optimization process. This would provide a signal-timing 

plan that optimizes intersection performance for the 95th percentile vehicular delay.  The 

mean and variance of delay are obtained either from the expectation functions or the 
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integration methodologies depending upon the lane group v/c ratios. The 95th percentile 

delay is computed using the Equation (17) in chapter 3 assuming that delay follows a 

Normal distribution.  

Genetic algorithms are used to optimize an intersection signal timing plan. The 

general process of genetic algorithms has been outlined in the literature review section. 

The coding process and implementation procedure are presented here. The coding 

process is different for isolated and arterial intersections and hence is presented 

separately.  

3.8.1.1 Isolated intersection 

An isolated intersection with eight NEMA phases is considered as shown in 

Figure 9. The phase numbers are the NEMA standard phase numbers. 
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Figure 9. NEMA phase notation 
 

Firstly, a population of n individuals (binary strings) is generated at random. The 

number of individuals in a population is decided depending on the type of intersection 

being optimized (isolated / arterial intersection). A value of n equal to 20 is chosen for an 

isolated intersection and a value of n ranging from 25 to 50 is chosen for an arterial 
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intersection depending on how well the GA converges to the optimal solution. An 

individual is a 36 digit binary string that is used to code one cycle length and eight green 

times for eight different NEMA movements for an isolated intersection. Every individual 

can be conceptualized as a set of signal timing conditions. The 36 digit binary string can 

be decoded to generate a set of feasible signal timing conditions and based on the green 

times generated for all the movements and the input volume conditions and average (or 

the 95th percentile) delay values are computed. 

A coding procedure has to be adopted to generate a set of feasible green times. 

The coding procedure used is presented below. The 36 digit binary string is broken down 

into 6 strings of 6 bits each. Six fractions are generated from these strings by converting 

the binary string to a decimal number and dividing the number by 63 (the max possible 

decimal number with a 6 digit binary string). The six fractions are used to code the green 

times and cycle length as shown by the following equations 

 

))0()(( fMINMAXIntMINCycle ×−+=       (32) 

Where,  

 Cycle = cycle length, 

 MIN = minimum allowed cycle length, 

 MAX = maximum allowed cycle length, and 

 f(0) = random number generated. 

 

Equation (32) constrains the random cycle lengths generated through the string 

within the maximum and minimum allowable cycle lengths. Using the cycle length 
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generated above, the green times are assigned to the eight movements. The left turn green 

times are assigned using the following equations: 

4))5())1(1()50((10)7(
4))3()1()50((10)5(

4))4())1(1()50((10)3(
4))2()1()50((10)1(

−×−×−+=
−××−+=

−×−×−+=
−××−+=

ffCycleIntgreen
ffCycleIntgreen

ffCycleIntgreen
ffCycleIntgreen

 

Where, 

 green(i) = effective green time for the NEMA phase i, 

 Cycle = cycle length generated in Equation (32), and 

 f() = random numbers/fractions generated. 

 

The 10 seconds used in the Equation (33) is the minimum green time assigned to 

left turn movement. The 50 seconds is the sum of all the phases� minimum greens in a 

cycle.  The 4 seconds is the lost time assumed to convert the display green to effective 

green for delay computations. Thus, these green times are generated within a feasible 

range.  

 Similarly, the through green times are also coded as shown in the Equation (34). 

The 15 seconds is the assumed minimum green for through movements.  

4)))5(1())1(1()50((15)8(
4)))3(1()1()50((15)6(

4)))4(1())1(1()50((15)4(
4)))2(1()1()50((15)2(

−−×−×−+=
−−××−+=

−−×−×−+=
−−××−+=

ffCycleIntgreen
ffCycleIntgreen

ffCycleIntgreen
ffCycleIntgreen

 

 Where, 

 green(i) = effective green time for the NEMA phase i, 

 Cycle = cycle length generated in Equation (32), and 

(33) 

(34) 
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 f() = random numbers/fractions generated. 

 

These green times along with the volumes are used to compute the intersection 

delay and variance (as shown in the chapters 4 and 5) and the 95th percentile delay value 

is calculated using Equation (17) to be used in the optimization procedure. The process is 

repeated for all the n individuals in the population. Thus n numbers of 95th percentile 

delay values are obtained. The offsprings are selected from the population of n using a 

tournament selection. In a tournament selection procedure four individuals are selected at 

random and the best individual (i.e. an individual with the best fitness value) is selected. 

The best solution from the four individuals is the one with a minimum average delay. 

This process is repeated n times to generate n offsprings. 

These n individuals are mated at random. That is, individuals are selected at 

random and mated. A single point crossover procedure is utilized as mentioned in chapter 

2. The individuals are then mutated to jump out of local minima. The fitness values of 

these individuals are then computed again and the entire process is repeated for a fixed 

number of generations or until a user defined criteria is met. The individual with the best 

fitness value in the final generation is selected as the optimum solution and results are 

provided after decoding the string. Thus, GA generates a solution, an individual with 36 

digit binary string which results in minimum delay for the given set of conditions. The 

above process is realized through a C++ code. The results of the optimization process are 

presented in the chapter 7. 
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3.8.1.2 Arterial intersections 

An arterial with two intersections is considered initially. As was observed with the 

isolated case, there are eight NEMA phase green times for every intersection. Therefore, 

for a network with two intersections, sixteen green times, a cycle length and an offset 

value have to be coded using the binary strings. The coding of the fractions used for that 

of the isolated intersection case is repeated for both the intersections. A binary string of 

length 72 is generated to produce twelve random numbers for generating the sixteen 

green times, cycle length and offset. The coding of the 72-digit string is as follows: 

The string is broken down into 12 strings of six digits each. Each of the 12 strings 

are converted to a decimal number and divided by 63(i.e., (26 � 1), the maximum possible 

decimal number with a six digit binary number) to generate random fractions lying 

between 0 and 1. The cycle length is coded using the first fraction as in Equation (32). 

The next fraction is used to code the offset value using the following Equation (33) 

 

)1()1( −×= CyclefOffset        (35) 

 

This would result in an offset value that lies between 0 and the cycle length minus 

one. The remaining 10 fractions are used to code the green times for the two intersections 

using the Equations (33) and (34). These green times along with the volumes are used to 

compute the intersection delay and variance. The process is same as that of an isolated 

intersection. The offsprings are generated using a tournament selection and a fitness 

value of inverse of delay is used.  A single point crossover procedure is utilized for 

mating and then the individuals are mutated. This process is repeated for a fixed number 



 63 

of generations or until a certain criteria is met.  A C++ code is used for the optimization 

procedure. The results of the optimization process are presented in the chapter 7. 

 

3.9 Evaluation of the optimization result 

Signalized intersections subject to stochastic variability are optimized using the genetic 

algorithms in conjunction with delay variance computation methodologies. The result 

from GA is compared with the result of the signal optimization program SYNCHRO. 

Synchro is an optimization program that optimizes intersections for percentile delay. The 

signal timing plans from both the optimization programs are evaluated using unbiased 

microscopic simulators. The microscopic simulation programs chosen for the evaluation 

are SIMTRAFFIC and CORSIM. The following sections introduce the evaluation 

methodologies. 

 

3.9.1 SIMTRAFFIC evaluation 

Since signalized intersections subject to stochastic variability are being optimized, the 

result of the optimization should be tested under varying demand conditions. 

SIMTRAFFIC has the option of generating different (pre-specified) percentile volumes 

for different time intervals. This option in SIMTRAFFIC has been made use of and 

random percentile volumes are generated for a total time period of 225 mins. These 

volume conditions are then run using the optimized timing plans from SYNCHRO and 

GA and the delay results are compared. The results of the comparison are provided in the 

chapter 7. 
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3.9.2 CORSIM evaluation 

CORSIM is a microscopic simulator capable of conducting multiple simulation runs of a 

particular demand condition. Multiple runs up to 100 could be conducted for every 

volume condition. This functionality of CORSIM has been made use of in the evaluation 

process.  

Firstly, as was previously mentioned GA conducts a stochastic optimization of a 

signalized intersection. That means that the GA timing plan has to work well under a 

range of demand volume conditions. Hence different combinations of demand volume 

conditions have been generated using a Latin Hypercube sampling procedure. The 

resulting combinations of volumes are representative of the demand variability and 

encompass the whole domain of demand variability. The examples involving Latin 

Hypercube design were carried out using ACED (Algorithms for the Construction of 

Experimental Designs; Welch 1996). ACED is UNIX based software where it is fairly 

easy to add new criteria to this software which can interface with all implemented design 

optimization algorithms. A hundred combinations of demand conditions are generated 

based on the mean and variance of the lane group volumes. Every combination is run in 

CORSIM using the signal timing plans from SYNCHRO and GA for five times. The 

average delay value of these five runs is used in the evaluation procedure. A hundred 

different average delay values are compared by movement and by approach. Finally these 

results are tested statistically and are presented in chapter 7.  
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CHAPTER 4. DELAY VARIABILITY FOR UNDERSATURATED                      

ISOLATED INTERSECTIONS 

This chapter explains through examples the delay variance computations using the 

expectation methodology for an isolated intersection. Firstly, a lane group at an 

intersection is considered and delay variance computations are provided for the lane 

group subject to day-to-day variability. The result of the example is verified through 

Monte Carlo Simulation. Then the delay variability is studied with the degree of 

saturation for a lane group with daily demand variations. Finally, the mean and variance 

of delay are compared for different input demand distributions. 

 

4.1 Example Delay Variance Estimation For an Undersaturated Intersection 

The delay variance estimation process follows the flow chart in Figure 2 and every step 

will be highlighted for easy readability. A hypothetical situation is assumed with the 

numerical values assigned as shown below. Consider a lane group in a pretimed 

signalized intersection with the following conditions 

Average volume     = 300 vph 

COV (Coefficient of Variance) of volume  = 0.25 

Cycle length      = 100 sec 

Effective Green time     = 30 sec 

Saturation flow rate     = 1800 vphplg 

The traffic volume and v/c ratio are assumed to follow normal distribution. 

The analysis period was 15 minutes, i.e., T = 0.25   

For a pretimed signalized intersection K = 0.5 
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Also for an isolated intersection, I = 1 

 

STEP I: Computation of average and variance of the degree of saturation (X)  

The HCM delay equation is approximated using Taylor Series expansion about 

the value of X corresponding to the average demand. Therefore, the X0 in Equation (13) 

has to be computed from the ratio of volume to capacity. The capacity can be found as 

follows: Capacity (c) = vphpl
C
gs   540

100
301800 =×=×  

Average X = Average volume / Capacity = 300 ÷ 540 = 0.55. 

Standard deviation of Volume = 300 × 0.25 = 75 

Variance X = Variance volume / Capacity2 = 752 / 5402 = 0.019 

Standard deviation X = √0.019 = 0.138 

 

STEP II: Approximate the HCM delay equation about 0.55 (Average X)  

Using the Equation (13) and substituting all the above values one can obtain the 

approximated equation (i.e., Taylor Series equation) as follow.  

Average delay = 18.4467 + 48.6496 × X � 76.8930 × X2 + 68.4761 × X3                 (36) 

An average delay of 33.48 seconds per vehicle is obtained from HCM delay 

Equation (3). Equation 36 provides a delay value of 33.48 at X=0.58 which is the exact 

value provided by the approximate delay curve.  

The equation is expanded only to four terms (n = 4) as it is observed to replicate 

the HCM delay equation with a fair degree of accuracy, within the 95th percentile 

confidence interval. This is determined by comparing the delay curve with the 

approximation and Figure 10 shows the comparison.  
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Figure 10. Comparison between approximate equation and HCM delay curve n=5 

 
 

The 95th percentile confidence intervals for X turn out to be (0.3, 0.8) and within 

this range, the delay curve is well represented by the approximation. However, a higher 

value of n could be utilized to get an exact replication. 

 

STEP III: Compute the expectation values of X based on the distribution 

Given that X follows a normal distribution, and using the mean and variance (or COV) 

from step I and Equation (5) following values are obtained.  
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STEP IV: Apply the expectation values onto delay and delay squared 

E(D) can be computed using Equation (14) as follows using the approximated 

Equation (36).  

E(D) = 18.4467 + 48.6496 × E(X) � 76.8930 × E(X2) + 68.4761 × E(X3) = 34.20  

Similarly squaring the delay equation and applying the expectation values, gives 

the following result: 

E(D2) = 340.28 + 1794.85 × E(X)  - 470.06 × E(X2) � 4955.31 × E(X3) + 12575.20 × 

E(X4) � 10530.67 × E(X5) + 4688.98 × E(X6) = 1171.7 

 

STEP V: Compute delay average and its variance from the expectation values 

Using the expectation values generated in Step IV and the Equation (16), a delay 

variance of 15.06 is produced. The average delay is nothing but the expectation of delay 

and is equal to 34.20. The 95th percentile confidence interval assuming Normal 

distribution on delay, 34.20 ± 1.96 × 3.88 or (26.59, 41.80), is obtained from Equation 

(17). 

 

4.2 Evaluation of Expectation Function Method  

In order to verify the proposed expectation function method for day-to-day variability, 

Monte Carlo simulation is utilized. For the above example, 500 data points that follow a 

Normal distribution with mean of 300 and coefficient of variance of 0.25 are generated. 

These data points can be considered as realizations of hourly traffic volumes over 500 

days. Then, delays for 500 days are calculated using HCM delay Equation (3). The mean 

delay and its variance are calculated from these 500 delay values. This process is 
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repeated twenty five times and the frequency histogram is plotted for all the twenty five 

cases. These histograms are compared to the distribution generated from expectation 

function method as shown in Figure 11. 

As in the example in the previous section 4.1, the expectation methodology 

produced a mean value of 34.20 and variance of 15.06. For presentation purpose, it is 

assumed that the delay follows a normal distribution. Note that delay could follow any 

distribution with a mean of 34.20 and a variance of 15.06.  

As indicated earlier, Monte Carlo simulation generates inconsistent results. The 

Monte Carlo simulation could produce the mean and variance that are very close to the 

expectation function method if a large number of random samplings were utilized. As 

shown in Figure 11, the expectation function method based distribution is well 

represented by distributions generated from Monte Carlo simulation.   
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Figure 11. Expectation Function Method versus Monte Carlo Simulation 
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4.3 Evaluation of the Variance of Delay under Different Demand Conditions 

The variance of delay is computed for demand conditions ranging from 0.2 to 0.7 for the 

example problem used previously (section 4.1). Inputting different X0 values into the 

Taylor series expansion and applying the expectation values on these different curves 

provide the mean and variance (Repeating the procedure shown above using the 

Equations (5)-(16). Figure 12 shows the 95th percentile confidence intervals on delay for 

different degrees of saturation. 

 

0

10

20

30

40

50

60

70

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80

Degree of Saturation

De
la

y 
(s

ec
s/

ve
h)

HCM Delay Average Delay

 

Figure 12. Confidence intervals on delay for different degrees of saturation 
 

 

Some of the features of Figure 12 are that as the degree of saturation increases, 

the variability in the delay increases. This is shown by the increase in the confidence 

interval range as the degree of saturation increases.  
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As shown in Figure 12, the HCM delay and the average delay show discrepancies 

when the degree of saturation is higher than 0.6. It should be noted that the discrepancies 

is due to the nature of HCM equation � the delay increases exponentially when degree of 

saturation is higher than 0.6. The HCM delay line is obtained using average traffic 

volume per each degree of saturation in computing delay, while the average delay line is 

obtained from the average value of HCM delays calculated from varying demands per 

each degree of saturation. Thus, when degree of saturation value is higher than 0.6, the 

impact of volume that is bigger than average would result in exponentially higher delay 

values. Therefore, the average delay from varying demand would be higher than the 

delay at average volume level. However, when degree of saturation is less than 0.6 or so 

the HCM delay and average delay yield very similar values since the HCM delay 

equation is close to linear. It is also noted that Figure only shows the degree of saturation 

up to 0.7 since the confidence interval of the degree of saturation 0.7 or higher is almost 

meaningless due to very wide interval range and also, this methodology is designed for 

undersaturated intersections   

 
4.4 Evaluation of the Mean and Variance of Delay For Different Distributions 

The expectation function method can be used for any distribution of the input volumes as 

long as distribution parameters are known. These distributions include normal, gamma, 

uniform and lognormal distributions to name a few. In this section, we utilized normal, 

uniform, gamma, and lognormal distributions in order to explore HCM delay and its 

variability.  

An example is utilized. Four different traffic volume distributions are applied 

under the same conditions of traffic demand and capacity. Also, the traffic demand 
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conditions are consistent in all the examples. The degree of saturation is varied from 0.0 

to 1.0. As shown in Figure 13, regardless of distributions average delay appears to be 

fairly consistent. However, variability varies significantly as volume to capacity ratio 

closes to 1.0 (see Figure 14). As one would expect, lognormal distribution produced the 

highest delay variance.  

The lognormal distribution is a well spread-out distribution with a big tail on both 

sides causing high variability, while the gamma distribution is mostly skewed positively 

with a very long tail on one side resulting in a lower variance than that of lognormal. The 

uniform distribution is uniform throughout the entire range and hence yields a lower 

variability than those of the above two distributions. The normal distribution has neither 

any skewness nor big tail and hence has the lowest variability. 

 

 

0

20

40

60

80

100

120

0.00 0.20 0.40 0.60 0.80 1.00

Degree of Saturation

D
el

ay
 (s

ec
s/

ve
h)

Mean-Normal Mean-Uniform

Mean-gamma Mean-Lognormal

 
 

Figure 13. Expected delay under selected input distributions 
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Figure 14. Standard deviation of delay for different distributions of the input 
volume 

 
4.5 Evaluation of Variance of Delay under Different Variance Conditions 

The example provided previously was studied for different coefficient of variance (CV) 

values. The delay variability was calculated for CV values ranging from 0.2 to 0.6 and 

the results are provided in the Table 2. The new LOS values are also defined with the 

Performance Index. It is evident that as the variability increases, the performance of the 

intersection decreases. 

 
Table 2. Delay Confidence Interval with respect to Coefficient of Variance 

 

COV Delay 
(sec/veh) SD Upper C.I. Lower C.I. 

Current 
HCM LOS 

Range 
Proposed LOS Range LOSPI 

0.1 33.60 1.49 36.52 30.68 C-D C0.83-D0.17 30.47 
0.2 33.94 3.05 39.92 27.96 C-D C0.64-D0.36 33.80 
0.3 34.52 4.75 43.83 25.20 C-D C0.54-D0.46 35.55 
0.4 35.32 6.67 48.39 22.26 C-D B0.01-C0.47-D0.52 36.47 
0.5 36.36 8.86 53.72 18.99 B-C-D B0.03-C0.41-D0.54-E0.02 37.37 
0.6 37.62 11.41 59.98 15.26 B-C-D-E B0.05-C0.35-D0.53-E0.07 38.95 
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CHAPTER 5. DELAY ESTIMATION FOR OVERSATURATED INTERSECTION 

The methodology involved in the delay variance computations for oversaturated 

intersections are explained in the Chapter 3 and is highlighted through the Figure 3. The 

methodology proposed for oversaturated intersections uses integration techniques to 

quantify the HCM delay variability. A C++ program is coded to compute the integrals 

using approximation techniques.  

This chapter provides the results of this methodology for oversaturated 

intersections. First, single approach delay variability is computed and the variance values 

are verified through Monte Carlo Simulation for cycle-to-cycle variability condition. 

Then, the average and variance of delay are studied for different degrees of saturation. 

Finally, the variance of delay for an intersection is computed through an example. 

5.1 Single Approach  

The delay variance estimation process follows the flow chart in Figure 3 and every step 

in the chart is highlighted for easy readability. A hypothetical situation is assumed with 

the numerical values assigned as shown below. Consider a lane group in a pretimed 

signalized intersection with the following conditions 

Average volume = 500 vph 

Cycle length  = 100 sec 

Effective Green time = 30 sec 

Saturation flow rate = 1800 vphgpl 

The traffic volume and v/c ratio are assumed to follow Poisson distribution. 

The analysis period was 15 minutes, i.e., T = 0.25   

For a Pretimed signalized intersection K = 0.5 
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Also for an isolated intersection, I = 1 

 

STEP I: Computation of average and variance of the degree of saturation (X) 

Average and variance of X calculation requires capacity to be computed. The capacity of 

the approach can be found as follows:  

Capacity (c) = vphpl
C
gs   540

100
301800 =×=×  

Average X = Average volume /Capacity 

Average X is found from Average volume to capacity ratio, as 500 ÷ 540 = 0.92. 

Demand is assumed to follow a Poisson distribution therefore variance computations are 

redundant. Furthermore, with the variability in the volumes, the degree of saturation 

crosses one and the intersection will be oversaturated.  

 

STEP II and STEP III 

As is mentioned earlier, the integration process is coded into a C++ program and 

the Steps II and III from the flowchart in Figure 3 have been integrated into the code. 

Hence the final outcome of the program would be the delay average and variance. The 

C++ program is run and the average and variance of delay obtained from the program are 

59.01 seconds/vehicle and 51.58 respectively. The variance value of 51.58 corresponds to 

a standard deviation of 7.18.  An average delay of 57.12 seconds per vehicle is obtained 

from HCM delay Equation (3).  

Further, assuming that the percentile value for the 95th percentile confidence 

intervals is 1.96, the 95th percentile confidence interval (59.01 ± 1.96 × 7.18) or (44.79, 

73.08) is obtained using Equation (17). 



 76 

The variance of delay increases with the degree of saturation (as observed with 

the undersaturated condition) and will be discussed in later sections. This implies that 

with increasing degree of saturation, the variance of delay would no longer have any 

significance as the 95th percentile confidence interval range gets to gigantic proportions.              

The variance of delay is studied with increasing X and is presented a few sections later. 

The variance value obtained in the example presented in this section is validated using 

Monte Carlo simulation as follows. 

 

5.2 Evaluation of Integration Method  

In order to verify the proposed integration method, Monte Carlo simulation is utilized. 

The simulation utilized here is similar to that of the undersaturated case. For the above 

example, 500 data points that follow a Poisson distribution with mean of 500 are 

generated. These data points can be considered as realizations of traffic volumes arriving 

over 500 cycles. As is mentioned earlier, it is assumed that the delay equation is valid. 

The HCM delay considers overflow conditions and computes delay for all the vehicles 

that arrive during the analysis period. Thus, delays for the 500 cycles are calculated using 

the HCM delay equation (Equation (3)). The mean delay and its variance are calculated 

from these 500 delay values and the histogram is plotted as in Figure 15. This process is 

repeated twenty five times and the distributions of these data sets are compared to the 

distribution generated from integration method. As in the example in the previous 

section, a mean value of 59.01 and variance of 51.58 is obtained. It is evident that the 

mean is almost equal to the variance of the delay from the result of the computations in 

section 5.1. Thus the delay distribution is assumed to be close to a Poisson distribution. 
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For the purpose of demonstration, a theoretical distribution, which follows a Poisson 

distribution with a mean of 59.01, is plotted on the twenty five histograms as shown in 

Figure 15. 

As indicated earlier, Monte Carlo simulation generates inconsistent results. The 

Monte Carlo simulation could produce the mean and variance that are very close to actual 

values if extremely large number of random samplings were utilized. As shown in Figure 

15, the integration method based distribution is well represented by distributions 

generated from Monte Carlo simulation.   
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Figure 15. Expectation Function Method versus Monte Carlo Simulation 
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5.3 Evaluation of the Average and Variance of Delay under Different Demand 

Conditions 

The variance of delay is computed for demand conditions ranging from 0.8 to 1.5 for the 

example problem used previously. The X range of 0.8 to 1.5 corresponds to a range of 

432 to 810 for the volumes. Inputting different average volume values into the program 

provides the mean and variance (Repeating the procedure shown above using the steps I 

to III in Figure 3).  

Figure 16 shows the effect of stochastic variability on Average Delay. As 

explained in chapter 5, the discrepancy between HCM delay and average delay arises 

when the HCM curve is not linear. Thus the two curves do not concur when the degree of 

saturation is around one. For very high X values, the delay curve is almost linear as it is 

designed to go asymptotically to a straight line.  Therefore, the average delay and HCM 

delay coincides for very high X values. 
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Figure 16. Average delay compared with HCM delay for over saturated conditions 
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As explained in the chapter 4 the HCM delay values and the average delay values 

diverge. The reasons for the divergence of the two curves provided in the Figure 16 are 

provided in the undersaturated intersection chapter.  

Figure 17 shows the trend in the standard deviation of delay with increasing 

degree of saturation. As was observed for the undersaturated intersection, the delay 

standard deviation is observed to increase with increasing degree of saturation. 
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Figure 17. Standard Deviation of delay with degree of saturation 
 

 

5.4 Intersection 

The computations shown so far in this chapter are for a particular lane group in an 

approach. This methodology is expanded to compute the delay mean and variance for an 

intersection. The delay computation methodology shown so far is repeated for all the lane 

groups. Delay mean and variance are obtained separately for all the lane groups in an 
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intersection. The delay average and variance for an intersection are obtained by taking the 

weighted average of the delay average / variance values for every lane-group. The 

following equations further elicit the process.  

Consider an intersection with n lane groups with the average delay and variance 

for a lane group i as µi and σi
2

 respectively. The number of lane groups in an intersection 

depends on the lane assignment and the volumes in the lanes. Based on the lane group 

delay average and variance, the average delay µD for an intersection is calculated as 

follows 

 

∑

∑ ×
= n
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n
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V
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1
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µ
µ          (37) 

and the variance of delay for the intersection is calculated as follows 
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Where, 

Vi is the volume for the ith lane group 

µi is the average delay for the ith lane group 

σi
2

 is the delay variance for the ith lane group 
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5.4.1 Example  

The equations presented above, Equations (37) � (38), are implemented using a 

hypothetical example. Consider an intersection with the following layout 

 

 
Figure 18. Example layout of an isolated intersection 

 
Based on the guidelines provided by the HCM, eight lane groups could be 

identified. A left turning lane group and a through and right lane group for each approach 

results in a total of eight lane groups for the intersection. The volumes and green times 

assigned to each lane group are tabulated in Table 3. 

 
Table 3. Example demand conditions for an isolated intersection 

 

NEMA Phase
Average Volume 

(vph) Distribution
Effective Green 

Time (secs)
1 100 Poisson 12
2 650 Poisson 50
3 100 Poisson 12
4 650 Poisson 50
5 100 Poisson 12
6 650 Poisson 50
7 100 Poisson 12
8 650 Poisson 50  
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The cycle length for the intersection is 140 seconds. The capacity for a through 

lane (even NEMA phase numbers) is (50/120)*1800 = 642 while the left turn lanes (odd 

NEMA phase numbers) have a capacity of (12/120)*1800 = 180. Therefore, the through 

lanes operate under oversaturated conditions while the left lanes are undersaturated. The 

delay average and variance is computed for all the eight lane groups using the 

methodologies presented previously. The delay values with their variances are 

highlighted in Table 4. 

Table 4. Example Problem Delay Mean and Variance 
 

NEMA Phase Average Delay Variance 
1 81.72 27.6
2 84.05 113.01
3 81.72 27.6
4 84.05 113.01
5 81.72 27.6
6 84.05 113.01
7 81.72 27.6
8 84.05 113.01  

 
The intersection average and variance are calculated as follows using Equations 

(37)-(38) as follows 

Average delay = 






+++++++
×+×+×+×+×+×+×+×

650100650100650100650100
65005.841007.8165005.841007.8165005.841007.8165005.841007.81  

 Average delay = 251218/3000 = 83.74 secs/veh 

Similarly, intersection variance is computed as 192090900/30002 = 21.34. Thus 

the intersection delay average and variance are obtained as 83.74 seconds/vehicle, 21.34 

respectively.  
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CHAPTER 6. ARTERIAL INTERSECTIONS 

The delay variance computations for an isolated intersection required inputs like the 

arrival mean, variance, and distribution. Depending on the intensity of arrivals and their 

distribution, the expectation value (for undersaturated intersection) or integration (for 

oversaturated intersection) methodology was utilized appropriately. This procedure could 

also be extended to the arterial intersection case by utilizing a factor called the 

progression factor for the through movements on the arterial links. This progression 

factor is multiplied to the uniform delay term in the HCM delay equation and it accounts 

for the progression of arrivals. 

The arrivals (on the arterial link) at an arterial intersection do not follow any of 

the standard distributions and the distribution has to be estimated for the reason that the 

vehicular arrival at an upstream intersection is random (Poisson distribution) and these 

arrivals are filtered by the upstream signalized intersection (i.e., vehicles are queued up 

during the red period to be discharged during the green time only). Thus, the volume 

mean, variance, and distribution are assumed to be input by the user and these volumes 

are used in the delay computations along with the calculated progression factor. 

The arrival pattern is accounted for by using the progression factor and is 

estimated using the platoon dispersion model. This procedure is presented in the next 

section using a hypothetical example. This example is followed by the delay mean and 

variance computations for the same example major street through movement.  
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6.1 Estimation of Arrival Pattern and Progression Factor 

The following example is utilized to explain the progression factor estimation 

methodology. Consider an arterial with two intersections as shown in Figure 19 with the 

following conditions. 

 
 

Figure 19. Example situation for arterial intersections 
 
 

• The spacing between the intersections is such that the travel time is 20 secs from 

one intersection to the other 

• There are no right turning vehicles during the red period 

 The example situation is explained through Figure 19. The movements at the 

upstream intersection are numbered according to NEMA standard phasing. The 

movements in dark (NEMA phases 2 and 7) contribute to the volumes onto the arterial 

(Movement in dark on the major street) that undergoes platoon dispersion. The 

progression factor is estimated for this movement based on the mean volumes, green 

times for movements 2 and 7.  
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Inputs for the platoon dispersion model 

T is the cruise time on the link in steps   = 20 secs 

 β is the empirical factor    = 0.8 

 F = (1 + αβT)-1 is the smoothing factor  = 0.125 

 α is the platoon dispersion factor   = 0.35 

Upstream Volume and signal timing Inputs 

The arrival distribution at the upstream intersection is Poisson 

Mean of the through arrivals (NEMA 2)  = 400 vph  

Mean of the left turning arrivals (NEMA 7)  = 100 vph 

 Green time for the through movement (NEMA 2) = 50 secs 

 Green time for the left turning movement (NEMA 7)= 25 secs  

  Cycle length C      = 140 secs 

Saturation flow rate      = 1800vph 

Downstream signal timing Inputs 

 Green time downstream for major street through = 50 secs 

 Offset (assuming perfect)    = 20 secs 

Firstly, the downstream arrival pattern has to be estimated using Equations (23) � 

(26). The arrival pattern for the left movement (upstream NEMA 7) and the through 

movement (upstream NEMA 2) are computed separately and aggregated according to the 

time the vehicles arrive. The g0 for each movement has to be calculated using the 

equation  
)(0 vs

vrg
−
×=  

where,  
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 r is the duration of red for the movement 

 v is the average flow rate over the cycle 

 s is the saturation flow rate 

 

g0 for through movement = 90×400/(1800-400) = 25.7 secs ~ 26 secs 

g0 for left movement   = 115×100/(1800-100) = 6.7 secs ~ 7 secs 

These values are substituted into the equations along with the cycle length, green 

time, smoothing factor (F), average flow rate and saturation flow rate. 

The arrival pattern downstream for the through volume turns out to be 

]140,50[)875.0(63.462)875.0(63.462
]49,27[)875.0(63.462)875.0(1800)875.0(1400400

]26,1[)875.0(63.462)875.0(18001800
)(

9050

9027

901

∈+

∈+−+

∈+×−

=
+−

+−

++

t
t
t

tQ
tt

ttt

tt

 

The arrival pattern downstream for the left volumes turns out to be  

]140,25[)875.0(7.189)875.0(7.189
]24,8[)875.0(7.189)875.0(1800)875.0(1700100

]7,1[)875.0(7.189)875.0(18001800
)(

11525

1157

1151

∈+

∈+−+

∈+×−

=
+−

+−

++

t
t
t

tQ
tt

ttt

tt

 

The t used in the above equations is with reference to begin of green for that 

particular movement. That is t = 1 is the beginning of the green for the corresponding 

movement. These time scales have to be transformed with reference to the downstream 

intersection. The offset is the time difference between the beginning of green for the 

upstream intersection through movement (NEMA 2) to the beginning of green for the 

downstream intersection through movement. In this example, it is equal to the travel time 

on the link, therefore, the through vehicles arrive downstream exactly at the beginning of 

green. Therefore, t = 1 for the through volume is the beginning of the downstream green.  
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Similarly, the left volume starts departing after a time equal to 50 secs, (green 

time for the through movement). After the beginning of green for the upstream through 

phase, the first vehicle (from NEMA 7) arrives downstream after a time 50secs after the 

begin of green at the downstream intersection. However, the downstream green time = 50 

secs therefore, these vehicles arrive at the end of green. Therefore, for 90 secs (red 

period), the vehicles are queued up and at t = 90 the green period begins.  

Thus the arrivals during green constitute the sum of volumes from t = 1 to t = 50 

for the through movement and sum of t= 90 to t = 140 for the left movement (since the 

downstream green is 50 secs). Adding up the corresponding volumes and dividing by the 

green time to get the flow rate during the green time, results in an average flow rate of 

1121.57 vph during the green period. 

Based on the flow rate during the green period, using the Equation (23), results in 

a progression factor of 0.268. 

 

6.2 Delay Variance Computations Using the Progression Factor 

The same example as in the previous section is utilized here. Additional information on 

the arrival mean, variance, and distribution are necessary for delay variance 

computations.  

Downstream volume inputs 

Average through volume = 400 vph 

Standard Deviation of through volume = 50 

Further, the demand distribution is assumed to be Normal. 
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The major street through movement arrives downstream with a progression factor 

of 0.268. Equation (22) is the HCM equation to compute delay for movements in 

progression. Utilizing the progression factor of 0.268 and the information provided, the 

C++ code is run and the delay average and variance values of 14.5 and 0.534 respectively 

are obtained. 
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CHAPTER 7 OPTIMIZATION 

The first objective of this research, to quantify the variability in delay due to variable 

demand conditions, was achieved using appropriate methodologies for different demand 

conditions as presented in Chapter 3. The next objective of this research, to optimize a 

signalized intersection subject to stochastic variability, will be realized through the 

examples in the present chapter. Genetic algorithms (GA) are utilized in the optimization 

process for the present study. The GA process commences with the generation of random 

input values using binary strings. These strings are acted upon by a few operators, leading 

to fitter individuals, every generation. The best solution in the final generation is chosen 

as the optimal solution. All the above steps leading to the generation of individuals has 

been coded into a C++ program. The program inputs the average and variance of all the 

demand volumes per lane group and the other necessary parameters and outputs the 

signal timing plan for the system. The signal timing plan should result in a minimum 

average delay or a minimum 95th percentile delay depending on the objective function 

used.  

Since stochastic optimization of signalized intersections is undertaken, the signal 

timing optimization strategy has to be tested under different average demand conditions. 

Scenarios of average demand conditions ranging from slightly moderate to heavy volume 

conditions are optimized and evaluated using microscopic simulation programs. The 

three scenarios namely, moderate traffic at isolated intersections, heavy traffic at isolated 

intersection and arterial intersections are presented separately. 

 



 90 

The GA program is run for each scenario and the obtained signal timing plan is 

then compared with SYNCHRO timing plan for each scenario using neutral microscopic 

simulators like CORSIM or SIMTRAFFIC.  The moderate volume condition is evaluated 

using SYNCHRO as an evaluator and then CORSIM is utilized. The heavy demand 

conditions are evaluated using SIMTRAFFIC as an evaluator. The arterial intersection is 

evaluated using CORSIM. The following sections present these evaluation procedures 

under various demand conditions.  

 

7.1 Scenario I: Moderate Traffic 

The GA optimization process is conducted on a hypothetical isolated intersection with 

moderate traffic conditions. The following are the conditions assumed to exist at the 

intersection 

 

7.1.1 Setting 

An isolated intersection with normal variations in the demand conditions is considered. 

Consider an isolated intersection with a layout as shown in the Figure 20. Based on the 

lane assignments, eight lane groups are identified, two for each of the four approaches. 

The two lane groups in an approach are left only lane group and a through and right 

movement lane group. As is mentioned earlier, the C++ program requires the volume 

mean and variance to be input by lane groups. The following Table 5 provides the 

average and variance of all the lane groups in the intersection. The intersection is 

designed such that the EB / WB approach volumes have a higher variability compared to 

the NB / SB approaches. 
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Figure 20. Layout of the hypothetical intersection 
 

Table 5. Demand conditions for Scenario I 
Nema Phase Average Volume Standard Deviation Distribution

1 100 30 Normal
2 400 120 Normal
3 100 10 Normal
4 400 40 Normal
5 100 30 Normal
6 400 120 Normal
7 100 10 Normal
8 400 40 Normal  
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7.1.2 Timing Plan development  

The GA code in C++ is run with the above input conditions. The GA optimization 

process has been explained earlier. Various GA optimization parameters have to be 

specified by the user to optimize the system more efficiently. Forty individuals are 

generated in every generation. A tournament selection process is utilized to select 

individuals to the next generation. A single point crossover is employed and a mutation 

probability of 0.05 is selected. The GA process is terminated after a 100 generations and 

the best individual in the final generation is selected as the optimal solution.  

Two objective functions are considered in the optimization process namely, 95th 

percentile delay and the average delay the GA code is run using these objective functions 

separately. The results of the optimization are provided in the table below. 

 

Table 6. Comparison of GA and SYNCHRO green times 

NEMA Phases

GA (Avg Delay) 
optimized phase 

times (secs)

GA (95th %) 
optimized phase 

times (secs)
SYNCHRO optimized 

green times (secs)
1 10 11 10
2 28 36 20
3 10 12 10
4 27 31 20
5 10 11 10
6 28 36 20
7 10 12 10
8 27 31 20  

 

Similarly, the average demand conditions shown in Table 5 are input into the 

SYNCHRO program and the intersection is optimized for Percentile delay that 

SYNCHRO computes. The result of the optimization is presented in the Table 66 above. 
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7.1.3 Evaluation 

The timing plans obtained in the previous section have to be evaluated with different 

demand conditions as the GA is optimized for stochastic variability and considers for the 

demand fluctuations. To aid in generating different demand conditions, a Latin 

Hypercube design is utilized.  

 

7.1.3.1 Experimental Design 

As is mentioned earlier, Latin Hypercube Sampling procedure is utilized to generate 

different demand conditions from the combinations of volumes generated for different 

movements. The details of the design are presented in the methodology chapter. The 

varying demand volume conditions involving Latin Hypercube design were generated 

from ACED (Algorithms for the Construction of Experimental Designs) program. ACED 

is UNIX based software, which can interface with all implemented design optimization 

algorithms. Using the ACED program, a hundred different combinations of volume 

conditions are generated based on the mean and variance values specified in the Table 5. 

Thus 100 demand conditions for an isolated intersection are generated. 

 

7.1.3.2 SYNCHRO Evaluation 

In the present section, the delays from the GA average delay optimized timing plan are 

compared to the delay from the SYNCHRO percentile delay optimized timing plan using 

SYNCHRO as an evaluator. The optimized timing plans are presented in the section 

7.1.2. As was mentioned previously, 100 different demand conditions are generated using 

Latin Hypercube sampling procedure. These 100 demand conditions are input into 
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SYNCHRO with the timing plans from GA and SYNCHRO as shown in Table 66. That 

is, the 100 demand conditions are input into SYNCHRO using the SYNCHRO optimized 

timing plan and the GA optimized timing plan and, the percentile delay and the HCM 

control delay from SYNCHRO are compared. The 100 demand conditions thus result in 

100 percentile delay and 100 HCM delay values for both the timing plans. Scatter plots 

are made with the HCM delay and Percentile delay values obtained from SYNCHRO. 

Figure 21 and 22 show the X-Y plot of the delay results.  
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Figure 21. Comparison of SYNCHRO and GA (Average) optimized timing plan 
using SYNCHRO – HCM delays 
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Figure 22. Comparison of SYNCHRO and GA (Average) optimized timing plan 
using SYNCHRO – Percentile delays  

 
 
7.1.3.2.1 Discussion 

The plots for both the percentile delay and the HCM control delay show that the GA 

optimized timing plan performs better than the SYNCHRO optimized timing plan. The 

45-degree line in the Figure 22 is drawn as a visual aid in identifying the better timing 

plan. Based on the SYNCHRO evaluations, GA performance is better than that of 

SYNCHRO. The reason for this could be attributed to the stochastic optimization of 

delay. For extremely high volume conditions, the SYNCHRO timing plan resulted in 

high delays whereas the GA timing plan was not affected by huge fluctuations in 

demand.  

 

7.1.3.3 CORSIM Evaluation 

The different demand conditions have been generated based on the Latin Hypercube 

sampling procedure mentioned in the section 7.1.3.1. The Hundred different demand 
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conditions are simulated in CORSIM using the GA and SYNCHRO optimized timing 

plans. Multiple runs are made in CORSIM, for every demand condition, to account for 

the stochastic variations. Thus the CORSIM simulations are repeated for five times for 

every demand combination and the average delay from the five runs is utilized for 

comparison. Since 100 different combinations of volumes are generated, 100 average 

delay values are obtained from each of the SYNCHRO, GA average and GA 95th 

percentile optimized cases.  

 

7.1.3.3.1 Evaluation criterion 

 The queue time from CORSIM output is used as an evaluation criterion. Queue time is 

used in the evaluation procedure because, the link delays in CORSIM are reported for 

vehicles that have been discharged through the link during the simulation period, and 

HCM evaluates the delay for all the vehicles present in the system during the analysis 

period. On the other hand, queue delay represents the cumulative measure for all the 

queuing in the network and includes the delay experienced by vehicles that remain in the 

network, or those that have yet to cross a link at the end of the simulation period. Hence, 

queue time is used in the evaluation procedure.  

 

7.1.3.3.2 Discussion 

The queue times obtained from the CORSIM simulation using the SYNCHRO percentile 

delay optimized timing plan and GA average and 95th percentile delay optimized timing 

plans are compared in the present section. 100 queue time values are obtained for the 

three timing plans separately. X-Y plots of these results are presented in the Figure 23 
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and Figure 24. Firstly, the queue times from the SYNCHRO optimized conditions are 

plotted against the queue times from the GA average optimized case. The plot in Figure 

23 shows that the GA average delay optimization is doing better than the SYNCHRO 

optimization. Similarly, the SYNCHRO timing plan is compared with the GA 95th 

percentile optimized timing plan. The plot in Figure 24 shows that the GA timing plan 

performs better than the SYNCHRO timing plan. The reasons for this performance could 

be attributed to the stochastic optimization undertaken by the GA program unlike 

SYNCHRO, which used average delay for optimization. High volumes resulted in very 

high queue times for the SYNCHRO case. However, for low volume conditions, the GA 

timing plan is out performed by the SYNCHRO timing plan. The reason for this could be 

the high green time and cycle lengths resulting from the GA optimization resulting in a 

large red period for the movements.   

 However, to measure the overall performance of the timing plans, a statistical test 

is conducted. The paired T-test is utilized to test if the queue time values from different 

timing plans are statistically different or not. Table 7 presents the results of the t-test. The 

test is conducted with the null hypothesis that the mean queue time obtained from the two 

timing plans is same. However, for the SYNCHRO � GA average delay comparison, a p 

value of 0.00 is obtained. Thus, null-hypothesis is rejected. This indicates that the mean 

queue time from the GA timing plans is considerably smaller than that from the 

SYNCHRO timing plan and the standard deviation value for the GA case is lower 

indicating superior performance when compared to SYNCHRO. Similarly, the GA 95th 

percentile optimized timing plan is compared with the SYNCHRO timing plan. Although 
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the GA 95th percentile timing plan showed better performance, it performed worse than 

the GA average optimized timing plan. 

Table 7. Comparisons of SYNCHRO and GA timing plans, T-Test result 
SYNCHRO GA-Average

Mean 1768.2 1127.4
Standard Deviation 1762.3 742.1
Observations 100 100
P(T<=t) two tail 0
t critical two-tail 1.984

SYNCHRO GA-95th Percentile
Mean 1768.2 1384
Standard Deviation 1762.3 1113.8
Observations 100 100
P(T<=t) two tail 0
t critical two-tail 1.984  
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Figure 23. SYNCHRO Timing Plan compared with the GA Average optimized 
timing plans in CORSIM 
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Figure 24. SYNCHRO Timing Plan Compared with the GA 95th Percentile 
optimized timing plans in CORSIM 
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7.2 Scenario II: Heavy Traffic 

The GA optimization procedure is evaluated for heavy traffic demand conditions. The 

GA procedure is compared with SYNCHRO and evaluated using SIMTRAFFIC and 

CORSIM. 

 

7.2.1 Setting 

The GA optimization is conducted on a hypothetical isolated intersection. An isolated 

intersection with a layout as shown in the Figure 20 is considered. Based on the lane 

assignments, eight lane groups are identified, two for each of the four approaches. The 

two lane groups in an approach are a left only lane group and a through and right 

movement lane group.  The average volumes presented in the Table 8 correspond to a 

degree of saturation of close to unity. Thus, the demand conditions are tagged as heavy 

traffic situation.  

 

Table 8. Example inputs for Optimization of an isolated intersection 
 
 
 
 
 
 
 
 
 
 
 
 

 

Nema Phasing
Average 

Volumes (vph) Distribution
1 100 Poisson
2 650 Poisson
3 100 Poisson
4 650 Poisson
5 100 Poisson
6 650 Poisson
7 100 Poisson
8 650 Poisson
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7.2.2 Timing plan development 

As is mentioned earlier, the C++ program requires the volume mean and variance to be 

input by lane groups. Table 8 provides the average and variance of all the lane groups in 

the intersection. The distribution of the demand volumes are also identified as Poisson for 

all the lane groups hence variance values are not provided in the table. With all the input 

parameters at hand, the objective function has to be identified to proceed with the 

optimization process.  

 

7.2.2.1 GA Average Delay 

To start off, average delay is chosen as the objective function. The average delay utilized 

here is different from the HCM delay as it incorporates the variability of the demand 

volumes into delay. All the input conditions are input into the C++ program and run, a 

cycle length of 140 seconds is obtained from the GA process. This cycle length resulted 

in an average delay of 92.78 seconds/vehicle. 

The GA optimization process has been explained earlier. Various GA 

optimization parameters have been used for this scenario and are similar to the ones used 

for Scenario I. For every generation, the minimum fitness value and the average fitness 

value of the population are plotted against the generation number. This plot gives an idea 

of the GA convergence to the optimal solution. Such a plot is presented in the Figure 25 

for the present example. 
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7.2.2.2 GA 95th Percentile Delay 

The hypothetical example is optimized using the 95th percentile delay as the 

objective function. All the other parameters are fixed including the GA operational 

parameters. The 95th percentile value is calculated using the Equation (17) with a 

percentile value of 1.96. The GA program resulted in a cycle length of 148 seconds as the 

optimal solution. The green times assigned to different lane groups are presented in table. 

The convergence of the GA to optimal solution is studied by plotting the minimum 

fitness value and average fitness value for every generation against the generation 

number. One such curve is shown for the 95th percentile optimization condition in Figure 

26. 
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Figure 25. GA convergence using the average delay for optimization 
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Figure 26. Convergence of GA algorithm to the optimal solution 

 

7.2.2.3 SYNCHRO 

The average volumes from the hypothetical example are input into SYNCHRO 

and optimized. SYNCHRO resulted in a cycle length of 100 secs. Since SYNCHRO 

utilizes percentile delay for its optimization process, the 100 secs cycle length resulted in 

an optimal percentile delay of 66.66 secs/veh. The following Table 9 shows the signal 

timing plan obtained from GA and SYNCHRO for the hypothetical example. The timing 

plans obtained from SYNCHRO and GA are then evaluated using a microscopic 

simulation program SIMTRAFFIC. The evaluation procedure is presented in the next 

section. 
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Table 9. Various timing plans for scenario II 

Nema Phase
GA average delay 

optimized phase times
GA 95th % delay 

optimized phase times
SYNCHRO Percentile delay 

optimized phase times
1 12 12 10
2 59 60 40
3 15 12 10
4 57 56 40
5 16 12 10
6 55 60 40
7 15 12 10
8 57 56 40  

 
7.2.3 SIMTRAFFIC Evaluation and Discussion 

The result of the optimization from GA and SYNCHRO are evaluated using a 

microscopic simulator SIMTRAFFIC. Since intersections are subject to random arrivals 

during the course of its operation, random volumes are generated for 225 mins in 

SIMTRAFFIC and the signal timing plans are evaluated. 

SIMTRAFFIC has the option of setting different percentile values for different 

time intervals during the simulation process i.e. if the simulation is being run for 30 min, 

the first 15 min volume could be set to a percentile of arrivals and the next 15min volume 

to a different percentile value. These percentile values have to be defined for the duration 

of the simulation prior to the evaluation. Usually, the first 15 min period is set for 

initializing the system while the last 15 min period is set to a zero demand condition to 

flush out all the vehicles from the system. 

SIMTRAFFIC was run with both the timing plans three times, every time with a 

different random number seed. The delay values reported by SIMTRAFFIC for all the 

cases are plotted against the simulation time. The Figure 27 below shows the result of the 

SIMTRAFFIC evaluation for the present case. The vertical bars in the background of the 

Figure 27 indicate the random percentile value used. 
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From the Figure 27 it is evident that the GA optimized timing plan worked better 

than the Synchro optimized timing plan. Initially, when the system was subject to low 

percentile volumes (shown in Figure 27), GA and SYNCHRO timing plans resulted in 

similar delay values. However, high percentile volumes disrupted the SYNCHRO timing 

plans and resulted in very high delays compared to GA. It is quite clear from Figure 27 

that after the second high 95th percentile volume, SYNCHRO consistently resulted in 

high delay values. The GA timing plan resulted in consistent performance with a minimal 

increase in delay (compared to SYNCHRO) even after the high percentile arrivals. The 

reasons for GAs� consistent performance could be attributed to the consideration given to 

stochastic variability in delay optimization. Since the GA program accounted for the 

variability, very high fluctuations in the volumes did not generate high delay values.  
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Figure 27. Comparison between SYNCHRO and GA 
 
 

The result of the optimization with the 95th percentile delay and the average delay 

are compared using SIMTRAFFIC. Random volumes are generated for 225 min and the 
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simulation is run with the signal timing plans from both the cases. The simulation is run 

for three times for each signal timing plan using different random seeds each times. The 

delay values obtained are plotted against time as shown in Figure 28.  It is observed that 

the 95th percentile optimized timing plan produced delay values slightly higher than that 

for the average delay optimized case. The reason for the higher delay estimate could be 

due to the 95th percentile value used for optimization. The optimal green times attributed 

to the movements are very high and hence for medium to low volumes, the delay values 

are higher than that for the average volume case.  
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Figure 28. Comparison between 95th percentile and average delay optimization 

 

7.2.4 CORSIM Evaluation 

The different demand conditions are generated based on the Latin Hypercube sampling as 

shown for the Medium demand conditions. The Hundred different demand conditions are 

simulated in CORSIM using the GA and SYNCHRO optimized timing plans. Multiple 
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runs are made in CORSIM, for every demand condition, to account for the stochastic 

variations. Thus the CORSIM simulations are repeated for five times for every demand 

combination and the average delay from the five runs is utilized for comparison. Since 

100 different combinations of volumes are generated, 100 average delay values are 

obtained from each of the SYNCHRO, GA average and GA 95th percentile optimized 

cases. Similar to the medium demand condition, queue time is used in the evaluation 

criterion. 

 

7.2.4.1 Discussion 

The queue times obtained from the CORSIM simulation using the SYNCHRO percentile 

delay optimized timing plan and GA average and 95th percentile delay optimized timing 

plans are compared in the present section. A methodology used for the medium demand 

condition is used here. The results of the evaluation are presented through Table 10 and 

Figures 29 and 30. 

X-Y plots of these results are presented in the Figures 29 and 30. The plot in 

Figure 29 shows that the GA average delay optimization is doing better than the 

SYNCHRO optimization. Similarly, the SYNCHRO timing plan is compared with the 

GA 95th percentile optimized timing plan. The plot in Figure 30 shows that the GA 

timing plan performs better than the SYNCHRO timing plan.  

 The paired T-test is utilized to test if the queue time values from different timing 

plans are statistically different or not. Table 10 presents the results of the t-test. The test is 

conducted with the null hypothesis that the mean queue time obtained from the two 

timing plans is same. However, for the SYNCHRO � GA average delay comparison, a p 
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value of 0.02 is obtained. And hence the null hypothesis is rejected. Also, the mean queue 

time from the GA timing plans is considerably smaller than that from the SYNCHRO 

timing plan and the standard deviation value for the GA case is lower indicating superior 

performance when compared to SYNCHRO. Similarly, the GA 95th percentile optimized 

timing plan is compared with the SYNCHRO timing plan. Although the GA 95th 

percentile timing plan showed better performance, it performed worse than the GA 

average optimized timing plan. 

 
Table 10. Comparisons of SYNCHRO and GA timing plans, T-Test result 

 
GA Average SYNCHRO

Mean 5045 5484
Standard Deviation 3180 3588
P(T<=t) one-tail 0.020
t Critical one-tail 1.660

GA 95th Percentile SYNCHRO
Mean 5215 5484
Standard Deviation 3373 3588
P(T<=t) one-tail 0.071
t Critical one-tail 1.660  
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Figure 29. SYNCHRO Timing Plan compared with the GA Average optimized 
timing plans in CORSIM 
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Figure 30. SYNCHRO Timing Plan Compared with the GA 95th Percentile 
optimized timing plans in CORSIM 
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7.3 Scenario III: Arterial Intersection 

The signal timing plans from the optimization of an isolated intersection have been 

evaluated so far. In the present section, an arterial intersection is optimized using the 

methodology presented in the Chapter 3 and the result of the optimization is compared 

with SYNCHRO optimized timing plan and evaluated using CORSIM.  

7.3.1 Setting 

A hypothetical example is considered for the evaluation procedure. The following are the 

demand volume conditions existing at the intersection. 

Table 11. Input demand conditions for the hypothetical intersection 

Intersection Nema Phase Average Volume
Standard Deviation 

of Volume
1 100 30
2 400 120
3 100 10

Downstream 4 400 40
5 100 30
6 400 120
7 100 10
8 400 40
1 100 30
2 400 120
3 100 10

Upstream 4 400 40
5 100 30
6 400 120
7 100 10
8 400 40  

 

The volumes for all the through movements are assumed to be 400 while that for 

the left turning movements 100 vehicles per hour. The standard deviations of the volumes 

are designed such that the variability on the major street or the arterial is higher than that 

of the other link volumes.  
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7.3.2 Timing Plan Development 

The GA program is run with the input conditions presented in the Table 11 and the 

system is optimized for the average delay and the 95th percentile delay. Similarly, the 

average demand conditions are input into SYNCHRO and the network is optimized for 

the percentile delay that SYNCHRO computes. The optimized phase times for the three 

cases are presented in the Table 2 using the standard NEMA phase numbering.  The cycle 

lengths and the offset vales obtained are also presented in the table. The offset value is 

the time difference between begin of green on the major street through movements (2/6 

NEMA phase). 

Table 12. Result of the optimization for the hypothetical arterial 
 

Intersection Nema Phase
SYNCHRO optimized 

phase times (secs)
GA Average delay optimized 

phase times(secs)
GA 95th Percentile 

optimized phase times(secs)
1 10 12 12
2 26 27 36
3 10 10 11

Downstream 4 24 26 31
5 10 12 12
6 26 27 36
7 10 10 11
8 24 26 31
1 10 10 12
2 26 27 36
3 10 11 11

Upstream 4 24 27 31
5 10 10 12
6 26 27 36
7 10 11 11
8 24 27 31

CYCLE (secs) 70 75 90
OFFSET (secs) 35 32 38  

  

7.3.3 Evaluation and Discussion 

The signal timing plans from GA are compared with that of SYNCHRO using the neutral 

microscopic simulation program CORSIM in a procedure similar to that of an isolated 

intersection. Firstly, demand conditions are generated using the Latin Hypercube design 
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and then CORSIM simulation is run with the timing plans from GA and SYNCHRO. The 

queue times from the CORSIM simulation output are used in the comparison. The queue 

time reports the delay experienced by all the vehicles in the network even if the vehicle is 

not discharged during the period of analysis and further, this definition is consistent with 

that of the HCM delay computations. Hence queue time is used as the MOE in the 

evaluation procedure. 

 A Latin hypercube sampling procedure is utilized to sample the various volumes 

and 100 combinations of the volumes that encompass the domain of the demand 

variability are generated. Thus 100 demand conditions are generated and these 100 

demand conditions are run in CORSIM using the timing plans obtained from GA and 

SYNCHRO (shown in Table2). For every demand condition, CORSIM is run five times 

and the average delay from these five runs is used to compare the results from the GA 

and SYNCHRO optimized timing plans. 

 The queue time obtained from CORSIM is used in comparing the signal timing 

plans from GA and SYNCHRO. The 100 delay values obtained using the GA timing plan 

and the SYNCHRO timing plan are plotted against each other in a scatter plot. The plot 

shows equally good performance from the GA timing plan and the SYNCHRO optimized 

timing plan. These results are then tested statistically using the paired T-test. A paired T-

test is conducted to verify the hypothesis that the mean of the delays from these 100 

demand conditions from both the timing plans is equal. Table3 shows the comparison of 

delay results of the GA timing plan for the average delay optimized condition and the 

SYNCHRO optimized condition. The table shows that the delay values from GA and 

SYNCHRO optimized timing plans are not significantly different. The T-test suggests 
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that the average values from GA and SYNCHRO are equal and the hypothesis cannot be 

rejected. However, standard deviation of the delay results from the Table3 suggests that 

GA performed better than SYNCHRO by reducing the variance even though there is no 

significant improvement in the average delay estimates.  
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Figure 31. XY scatter plot of the delay values from GA optimized timing plan and 

SYNCHRO optimized timing plan 
 
 
 Similarly, the delay estimates from the signal timing plan obtained by optimizing 

the 95th percentile of delay are compared with the delay values from the SYNCHRO 

optimal signal timing plan. The same demand conditions generated for the previous 

example are utilized here. X-Y plots of SYNCHRO vs GA 95th percentile are presented 

in Figure 32. The plot suggests that SYNCHRO timing plan seems to be working better 

for most of the demand conditions when compared to the GA 95th percentile optimized 

condition.  A T-test is also conducted on the result and the two variables are tested for the 

null hypothesis that the difference of the means are equal to zero. However, a t value of 
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considerably less than 0.05 is obtained suggesting that the means are different with a 

confidence level of 95%. Thus it is noted that the delays obtained from the SYNCHRO 

optimized timing plans works better than the GA 95th percentile optimized timing plan. 

Figure 32 and Table 13 present the results. 

 

Table 13. Paired T-test on the delay estimates from GA optimized timing plan and 
SYNCHRO optimized timing plan. 

SYNCHRO GA-Average
Mean 1668.7 1670.9
Standard Deviation 806.5 740.4
Observations 100 100
P(T<=t) two tail 0.972
t critical two-tail 1.984

SYNCHRO GA-95th Percentile
Mean 1668.7 1904.5
Standard Deviation 806.5 700.6
Observations 100 100
P(T<=t) two tail 0
t critical two-tail 1.984  
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Figure 32. XY scatter plot of the delay values from GA optimized timing plan and 
SYNCHRO optimized timing plan 
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CHAPTER 8. CONCLUSIONS AND RECOMMENDATIONS 

8.1 Conclusions 

A series of methodologies have been developed to compute the variance of delay for 

undersaturated, oversaturated and arterial intersections. In order to estimate the variability 

in HCM delay equation, the following two methods are developed and validated through 

Monte Carlo simulations.  

• Expectation Function Method: Works for undersaturated conditions and 

• Integration Method: Works for both undersaturated and oversaturated 

conditions. 

Cycle-by-cycle and day-to-day demand variability conditions can be modeled 

using the above methodologies. Distributions like Normal, Poisson, Lognormal and 

Exponential distributions have been utilized in delay variance computations. The average 

delay is consistent with different input demand distributions. However, the variance of 

delay is observed to depend upon the type of the demand distribution. Lognormal 

distribution with a big tail on both the directions resulted in a higher delay variance 

compared to distributions like Normal. This proves that LOS should not be determined 

solely based on the average control delay. In order to consider delay variability in level of 

service (LOS) determination, a new LOS scheme that considers variability in delay as 

and the level of service performance index (LOSPI) are proposed and demonstrated 

through an example.   

Delay variability of arterial intersections is computed using the platoon dispersion 

model. An analytical equation of the platoon dispersion model in a closed form was 

developed. This equation is utilized to compute the percentage of arrivals during green at 
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the downstream intersection, which in turn determines the progression factor. Integration 

methodology was developed for the delay variance computations for an arterial. 

The delay variance estimates from the methodologies were used in the 

optimization of signalized intersections under variable demand conditions. A genetic 

algorithm based approach was developed and the optimization process was coded into a 

C++ program. In order to evaluate the performance of the proposed program, 

optimization results or the GA timing plan was compared with the SYNCHRO timing 

plan using microscopic simulation programs CORSIM and SIMTRAFFIC. Firstly, the 

GA program was optimized using one of the two objective functions namely, average 

delay and 95th percentile delay. The timing plan from both these objective functions is 

compared with the SYNCHRO optimal timing plan. When evaluated in CORSIM using 

the queue time, both the average and 95th percentile optimized timing plans provided 

better results compared to SYNCHRO especially for an isolated intersection. The timing 

plan from the average delay optimization resulted in a better system performance than the 

timing plan with 95th percentile optimized condition. SIMTRAFFIC evaluations were 

similar to that obtained from CORSIM. The GA average and 95th percentile optimized 

timing plans performed better than the SYNCHRO timing plan and further, the timing 

plan from the average delay optimization produced better results.  

 The proposed GA based stochastic optimization program was extended to an 

arterial intersection by utilizing the progression factor. The performance of the program 

was compared with SYNCHRO using CORSIM. For arterial intersections, GA timing 

plan did not show any improvement over the SYNCHRO timing plan. This could be 
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attributed to the progression factor definition being used in the methodology and is left to 

future research to study the effect of the progression factor on the optimization. 

 

8.2  Recommendations 

Based on the study conducted in this report, the following recommendations were made: 

• It is stressed upon that delay has to be identified through a distribution rather than 

a point estimate, the average delay. Furthermore, it has also been identified that 

the variability in delay is sufficiently big enough for intersections to perform in 

more than one LOS range. Thus it is recommended that the variability in delay be 

considered in the determination of LOS, rather than determining the LOS at a 

signalized intersection based on the average delay. A newly proposed LOS 

scheme or LOSPI should be considered for updating existing HCM LOS criterion.  

• Different demand distributions have shown consistently similar average delays 

and hugely different delay variance values. Well spread out distributions have 

resulted in high delay variance compared to compact distributions. Thus it is of 

primary importance to identify the distribution of demand volumes before 

proceeding with the determination of the LOS at a signalized intersection.  

• Data on vehicular headways should be collected to determine the distribution of 

demand arrivals in addition to volume counts. Further, this data collection process 

could be extended to estimation of delay variability in the field to validate the 

delay variance computation methodology. So far, delay variance estimates from 

this research have been validated through analytical sampling procedures. Field 

evaluations of the results have not been considered due to fiscal and time 
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constraints. This element of the project is left for future research to collect the 

delay data in the field at different signalized intersections under different demand 

intensive conditions and evaluate it with the results from the corresponding 

methodology for a more comprehensive analysis. 

• Furthermore, delay variance estimates have been used in the optimization of 

signalized intersections and the result of the optimization have shown 

considerable improvement over the SYNCHRO timing plan especially for 

isolated intersections. This development could be made use of in designing 

signalized intersections effectively.  

• However, results for arterial intersections have not shown significant 

improvement over SYNCHRO. This has not be studied extensively and hence it is 

recommended that factors affecting the arterial results be studied in detail. Factors 

especially like progression factor are estimated differently from HCM and 

simulation models which result in different delay estimates and this could be one 

of the primary reasons for the results. 

• Finally, a C++ program has been developed as a part of this research to aid in the 

delay variance computations. The process of data input to the program is through 

a notepad and has to be thoroughly understood before changing values. A 

program with a better user interface could be desired by researchers as it could be 

very useful in identifying the delay variance at signalized intersections and also in 

the optimization process. 
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