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Executive Summary

Poor visibility conditions often lead to large-scale chain accidents causing human
fatalities and property damage. Such visibility-related vehicle accidents could have been
prevented if motorists were warned ahead of time to reduce speed and remain cautious
before moving into the poor visibility zone. Poor visibility reduces the sight distance of
motorists, such that if the traveling vehicle’s stopping distance is longer than the
motorist’s sight distance, and if a stopped vehicle or an object is present outside the range
of the sight distance, crashes are bound to occur. Such crash accidents can be easily
avoided if the stopping distance is decreased to a range shorter than the sight distance by
reducing the vehicle’s traveling speed. Therefore, the challenge remains to accurately
measure visibility in real time to determine the optimal speed limit and notify drivers of a
safe speed limit in real time. The objective of this research was to advance visibility
measurement technologies that work based on processing images captured through video
cameras.

There are two fundamental problems in converting atmospheric parameters into
visibility, which is the case in most of today’s visibility meters. The first is that visibility
is a complex multivariable function of many atmospheric parameters such as air light',
objects available, light scatter, light absorption, etc., so that measurements of one or two
parameters (as in most of today’s visibility meters) cannot accurately estimate the true
human-perceived visibility. On the other hand, any attempt to measure every possible
atmospheric parameter to derive human perceived visibility is simply too complex and
costly. The second source of difficulty is contributed by an attempt to express the
spatially variant nature of atmospheric visibility using a single representative value,
distance. It works only if the atmosphere is uniform, which rarely happens. A solution
presented in this report is to measure visibility using visual properties of video images
(perceived information) instead of indirectly measuring physical properties of atmosphere
and converting them into visibility. The spatial variance problem in visibility was solved
by introducing a new concept of relative measurement of visual information referred to as
the Relative Visibility (RV).

This report also includes extensions of the first phase of the video-based visibility
study [11] in which fixed multiple targets were used. Theoretical analysis and verification
using real examples on limitations of using a small number of visibility targets are
presented in this report. The main finding was that the accuracy of visibility
measurements increases as more targets at varying distances are available. For night
visibility, this report includes the results of a feasibility study on utilizing apparatuses of
low cost, near infrared (NIR) light sources and cameras. It was found that measurements
of air-opacity using a reflective NIR source from specific types of surface properties
provided the most accurate representation of night visibility. The rest of the report is
focused on introducing the RV concept and theory, and development of image-processing
techniques for computing RV.

' The amount of light intensity in the visible spectrum available in the measuring space.
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CHAPTER 1: INTRODUCTION

1.1 Nature of Visibility

Atmospheric visibility can be reduced by fog, snow, dust, sand, smog or any
combination of them, and is a part of normal atmospheric phenomena. Although the
accuracy of weather forecasting has steadily improved over the years, accurately
predicting visibility conditions is considered extremely difficult. The difficulty lies in that
reduced visibility frequently occurs in localized areas as a result of microclimate changes
in that region, and in many cases the condition changes in a matter of minutes or seconds.
Such visibility changes along highways can be fatal causing large-scale pileup accidents
involving many vehicles. In the western part of Minnesota, severely reduced visibility by
blowing snow on highways is a well-known problem that creates extremely difficult and
dangerous driving conditions. The Minnesota Department of Transportation (Mn/DOT)
often resorts to closing the highways to avoid deadly crash and rollover accidents if
severely reduced visibility is reported.

Although reduced visibility along highways presents a great danger to motorists,
there exists a simple solution for avoiding crash accidents. Poor visibility reduces the
sight distance of motorists up to the point at which motorists cannot see objects beyond
the distance determined by visibility. Crash accidents occur because motorists cannot
bring their vehicles to a stop or to a slow enough speed due to insufficient reaction time
and braking distance after recognition of another vehicle or an object. This means that, if
the vehicle was traveling at a speed that gives sufficient reaction and braking time for a
complete stop within the sight distance, collisions can be avoided. Such a safe driving
speed along with a safe following distance can be readily computed by combining the
braking distance, sight distance, and reaction time if we know the visibility in real time
[11]. Therefore, a solution for avoiding crash accidents under poor visibility is simply
communicating a safe driving speed and following distance to motorists in real time.
Advising motorists of driving speed in real time could be accomplished using variable
message signs (VMS), but the challenge lies in accurately measuring visibility. The goal
of this project is advancing the visibility measurement technology.

1.2 Visibility Definitions

According to the American Meteorological Society’s Glossary [1], daytime
atmospheric visibility is defined as the greatest distance from an observer where a
prominent dark object against the sky at the horizon can be seen and identified by an
unaided eye. At night, a known, preferably unfocused, moderately intense light source is
placed as the visibility target of recognition for the measurement of maximum visible
distance. These original visibility definitions were developed based on human
observation of atmospheric visibility conditions. Although, these measurement
definitions do not seem complicated, they present difficulties in scientific measurements



due to a number of ambiguities. The size and shape of the target, the light intensities for
night targets, the air light intensities of the observing area, the observer’s angle to the
target and height, etc., have not been clearly defined while they significantly affect the
measurements. More importantly, the requirement that visibility targets be both detected
and recognized by the naked eye adds human factors. These ambiguities were
significantly reduced, since Middleton’s suggestion of the term “visual range,” which
was defined for daytime as a subjective estimate of atmospheric attenuation of contrast,
and for nighttime as the attenuation of flux density [2]. In the Middleton’s definition of
visual range [2], the recognition portion of visibility was omitted, from which observer’s
visual acuity and judgments are no longer the factor. Further narrow definitions of visual
ranges were introduced to limit the scope to specific applications, such as runway visual
range, slant visual range, meteorological visual range, etc. [3]. Today, the terms
“visibility” and “visual range” are almost interchangeably used without clear distinction
suggested by Middleton. In the recent Federal Meteorological Handbook No. 1 published
by the National Weather Service, the term visibility is still in use and defined as a
measurement of the opacity of the atmosphere, and the handbook suggests observation of
four different visibilities, i.e., prevailing visibility, sector visibility, surface visibility, and
tower visibility [5].

Visibility study in this project is intended for surface transportation applications.
As a result, we are more interested in the perceived maximum distance at which motorists
can recognize vehicles and road boundaries than the measurement of atmospheric
parameters. Therefore, the term, visibility, in this report more closely follows the original
definition in [1] that was defined based on human perception. However, measuring
human perceived visibility is extremely challenging, as discussed in the next section.

1.3 Background on Visibility Technologies

Many instrumentation approaches for measuring visibility have been developed
over the years [2,3], but they can be said to fall into one of the following two categories:
telephoto meters that measure luminance or flux from projectors, and light-scatter sensors
that measure the amount of light scatter at a certain angle. Other instrumentation
methods such as the optical counting of atmospheric particles [6-9] and image processing
of digitized video images [11] have been developed, but they are only experimental study
results and no commercialized products are available. Today’s commercial products are
predominantly based on measuring the amount of modulated lights scattered at a certain
angle (forward scatter, back scatter, or side scatter) [10, 12], perhaps due to their compact
and low cost designs. Although this method works fairly well under foggy conditions, its
accuracy tends to significantly drop under snowy and rainy conditions [12]. This is due to
space-variant light-scatter coefficients and non-uniform atmospheric densities that are
more prevalent under snowy and rainy conditions. Consequently, such differences result
in a measurement value that significantly differs from the visibility a human observer
perceives. To date, manual measurements by human subjects using appropriately
designed targets are considered to be most accurate and reliable, despite many visibility-
measurement methods have been developed over the years.



Measurements of visibility mentioned above can be said to belong to a class of
absolute measurements that must produce an absolute value, i.e., distance, as the end
result. Unfortunately, absolute visibility measurements computed from atmospheric
parameters cannot accurately estimate what human observers perceive. There are two
factors that cause the differences. The first is that visibility is a complex value that is
influenced by many factors such as air light, objects available, light scatter, light
absorption, etc., and the measurements of only one or two factors are not sufficient to
accurately estimate the human perceived visibility. On the other hand, any attempt to
measure every possible atmospheric factors to derive human perceived visibility is
simply too complex and costly. The second source of difference is contributed by an
attempt to express the spatially variant nature of atmospheric visibility using a single
representative value, distance. It may work only if the atmosphere is uniform, which
rarely happens. A solution presented in this report and the first phase of this research [11]
is to understand visibility using visual properties such as acuity of objects in the varying
distance instead of physical atmospheric properties. Video-based approaches provide an
important intrinsic advantage over the light-scatter or other atmospheric coefficients
based approaches; the image acquisition processes between the camera lens system and
the human eye are similar. A video image-based approach along with multiple targets
was studied in the first phase of this research [11] and this report presents the second
phase of the study that further extends the video-based approach.

1.4 Relativity in Visibility

While using video images simplifies visibility measurement by not directly
dealing with various atmospheric effects, it still presents a difficult challenge when an
absolute measurement is to be derived from the image. Visibility at any given time is
spatially variant and cannot be effectively represented by a single value. Statistical
measurements such as an average can mislead the spatially variant conditions. As a
solution for this spatial variant problem, this research introduces a completely new
concept based on a relative measurement of visibility. To illustrate the reasoning,
consider two images taken from the same location under two different visibility
conditions as shown in Figure 1. We can readily tell that image (a) has worse visibility
than (b). To be more accurate, we just need to determine how much the visibility in
image (a) is worse than (b), which can be more effectively computed using image-
processing techniques. Image (b) was taken on an ideal clear day that provides the best
visual information so that it can be used as a reference. An interesting observation is that
spatial variance of visibility is reduced to loss of visual information from an ideal
condition. Suppose that after some image processing we found that the visibility
condition in (a) has 30% less visual information than the ideal visibility condition in (b).
This is clearly a relative measurement based on visual information, which is important to
real world applications such as driving. By generalizing this example, Relative Visibility
(RV) is introduced as a percent of visual information available in reference to an ideal
visual condition in the area of measurements. From this relative visibility, safe speed
limits could be more accurately established, since motorists maneuver vehicles mostly
based on visual information.



In this report, we focus on developing a concrete concept and measurement
approaches for RVs in highway applications. However, the same principle could be easily
extended to other visibility applications. For the representation of relativity, we adopt a
normalized expression where relative visibility is represented by a real number between
zero and one, so that it can be equivalently represented by a percent similarly to the
representation of relative humidity. One of the gains of using RV in instrumentation is
that video cameras, which are considered not effective in measuring atmospheric
parameters, can become an effective tool. In addition, visual images provide an
opportunity to verify whether the computation is correct or not through a manual
inspection.

Figure 1: Comparison of visibility conditions through recorded images at the same location



CHAPTER 2: SYSTEM SETUP AND DATA
COLLECTION

2.1 System Setup

For this study, a field laboratory station was set up at the Thompson Hill site
located near Spirit Mountain along Interstate highway I-35 northbound, Duluth,
Minnesota and its location is shown in the map in Figure 2.a. This is a well-known
location in this region for visibility problems caused by lake effect fog and snow. Figure
2.b shows a picture taken in the direction of North from the site. The experimental setup
includes targets (Figure 2.c), cameras mounted on a pole (Figure 2.d), and a cabinet that
houses a PC and a frame grabber (Figure 2.¢). Two cameras were mounted on the pole as
shown in Figure 2.d: the camera at the top of the pole is a Charge Coupled Devise (CCD)
color camera that captures images within visual spectrum and the camera at the bottom is
a near infrared (NIR) camera with an NIR light source that captures images in the NIR
spectrum region. Six visibility targets were installed at 20m, 40m, 100m, 150m, 200m,
and 300m apart from the camera pole with increasing sizes according to the camera’s
perspective view affected by the camera’s focal length. The targets at 20m and 40m were
designed by embedding a constant light source to study night visibility.

2.2 Data Collection

Data collection was performed using a PC housed in the cabinet (Figure 2.¢). In
order to collect images from poor visibility ranges, a light scatter meter built by Bristol
Industrial and Research Associate Ltd was installed at the 40m target. This sensor is
called a HSS™ sensor (model number VPF-710) and generates extinction coefficients as
the output and its installation on the target is shown in Figure 3. The extinction
coefficients were translated into meters and used in visibility data collection and for
comparative studies. Images were automatically collected through an algorithm based on
the flow chart shown in Figure 4. The data collection algorithm works as follows. Images
are captured at every 3 minutes and then evaluated to determine whether the image is
worthwhile to save into the data collection folder or not. If the visibility was less than
1,000 meters and has been changed sufficiently enough to give variations in the image,
the image file was saved into a data collection folder. To save the memory space, all
images were saved in JPEG compression format. For the detailed data collection
algorithm, please refer to Figure 4. The test data was collected for two years, 2000 and
2001.
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Figure 2: Visibility study site at the Thompson Hill, Minnesota. (a) Top left: map of the site, (b) Top
right: overall view, (c) Middle left: six visibility targets, (d) Middle right: camera pole, (e¢) Bottom
left: cabinet houses a PC.



Figure 3: HSS™ (Model VPF-710) sensor integration at the 40m target.
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CHAPTER 3: VIDEO CAMERA LIMITATIONS ON
LUMINANCE MEASUREMENTS, AND STUDY ON
ACCURACY OF VISIBILITY MEASUREMENTS
AFFECTED BY NUMBER OF TARGETS

3.1 Video Camera Analysis

Before developing visibility measurement algorithms using video images, it is
important to understand the limitations of video cameras. In particular, the dynamic
range of sampled pixels produced by video cameras is of prime importance for
computing visibility because luminance differences generate contrasts in which objects
are recognized. The question to ask is with what detail a video camera can distinguish
gray scale (achromatic color). In order to test the gray scale of optical inspection systems
and cameras, the Electronics Industry Association (EIA) devised a test pattern called EIA
Equal Steps Density pattern or EIA 20:1. This standard pattern uses a principle that linear
halftone density with fine pitch has logarithmic transmission, i.e., ultra fine halftone
patterns with equal steps produce logarithmic gray levels. The standard EIA Gray Scale
pattern has 15 density steps and was used as a target to study limitations of CCD (Charge
Coupled Device) video cameras in measuring luminance.

The target used for testing gray level performance of a CCD camera in this study
is a 8.5”x11” mylar variable density target supplied by Edmund Industrial Optics®. The
15 density steps in this mylar film represent a density of 0.07 to 1.5 on two progressions
from high to low and low to high. This corresponds to optical density increments of 0.10.
The variation between density steps is linear, which leads to a logarithmic change in
diffused reflectivity. Since logarithmic reflectivity progression offers both finer and
coarser increments than a comparable linear chart, it is often preferable for optic system
testing. The video camera used for testing was Cohu 1322-1000/EH13® and the target
images were digitized as B/W at 8-bit resolution using a Videum AV Frame Grabber®.
All settings of the frame grabber were left at default and a sampled digitized image is
shown in Figure 5. If the CCD camera under this test is able to perfectly capture the
pattern, the grayscale of each step should increase in a log step due to the linear step
density in the target. Figure 6 depicts a graph of pixel values of a cross section of the top
step patterns. Notice that the overall graph follows a log relationship that we anticipated,
but oscillations and noise can be clearly observed from the curve instead of clean log
steps. Higher oscillation near the step boundaries is caused by the reflectivity transition of
the discrete step patterns that influence the CCD sensor resolution of detection where
Gibbs phenomenon is present. These noise levels clearly indicate that CCD cameras have
a limitation in measuring luminance. To test how accurately the average of each field
follows the theoretical curve, the average of each step field was plotted using a log graph
along with a linear fit line and shown in Figure 7. Notice that the average follows
reasonably closely to the ideal log linear line. This suggests that using the average of
pixel values is more reliable than using individual pixel values in computing luminance
of targets for visibility measurements. The actual average and standard deviation of each
step density is summarized in Table 1.
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Figure 7: Log scale plot of average pixel values in each step density that fits to a linear line

Table 1: Average and standard deviation of pixel values in each field and linear fit error in

transmission
Step | Avg Standard % Transmission
Field | Pixel Deviation Linear
Value | of Step Average Fit Error
of Step | Field Luminance (%) | (%)
Field
1|57.7685 | 4.28384 | 22.6543 0.180242
2 | 67.6265 | 3.50483 | 26.5202 1.67043
3170.7076 | 3.23992 | 27.7285 0.251854
41757280 | 2.97792 | 29.6973 0.683869
5186.1740 | 2.60147 | 33.7937 0.201048
6 | 92.1736 | 2.56739 | 36.1465 0.997180
7 | 100.646 | 2.93708 | 39.4688 1.60128
8 [ 114.293 | 3.16833 | 44.8210 0.590590
9 | 121.890 | 2.65945 | 47.8001 2.41186
10 | 137.322 | 296177 | 53.8517 1.66806
11 | 154.193 | 2.96306 | 60.4679 0.920817
12 | 176.318 | 2.78168 | 69.1443 1.26625
13 | 202.387 | 2.30709 | 79.3676 4.31431
14 | 218.193 | 2.06313 | 85.5659 2.57884
15 | 235.834 | 1.78900 92.4839 0.724427
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3.2 Analysis of Visibility Measurement Limitation on Single and
Multiple Targets Using Video Images

It was shown in Section 3.1 that resolution of luminance levels in CCD video
cameras is limited by the noise levels. Dynamic range of pixel values is less than the
ideal range of 0 to 255. This section presents a theoretical analysis on the visibility
measurement limitations related to the number of targets under the assumption of ideal
targets that lead to ideal measurement of contrasts. This theoretical analysis is supported
by actual data.

The most fundamental visibility principle is Duntley’s law [1] that is expressed as

S e (1

where Cp is the inherent contrast, C is the contrast of an object or target of observing, G is
the extinction coefficient, and d is the distance from observer to the object. This relation
can be adapted to digitized images obtained from cameras. First assume that the
digitization is done at 8-bit which ranges from values of 0 to 255. With this range of gray
scale, it is also safe to assume that the range is normalized to [0, 255]. For simplification,
we further normalize this range to [0, 1]. This simplification gives the following relation:

C =e™ (2)

where C; is a normalized contrast obtained from an image. Just noticeable contrast is
defined as C/ Cy = 0.05 which is translated to 0.05 * 255 = 12.75 of luminance difference
in pixel values that create contrast. This just noticeable contrast is the distance in which
the visibility is determined. This value is used for a contrast threshold for computing
visibility. Therefore, we arrive at a relation:

=3V 3)

where " denotes visibility, i.e., distance, and o is inverse of distance. Two cases are
studied based on this normalized assumption.

Case 1: Unlimited number of targets at all distances

Under the normalized assumptions, we would like to explore the question, “How does the
contrast of targets at different distances vary under different visibilities if an unlimited
number of uniform identical targets are placed?” Assume that the targets have a simple
shape as shown in Figure 8 where the normalized inherent contrast is 1, which is
computed from digitized average pixel values between black and white areas.
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Figure 8: Ideal target with normalized inherent contrast, 1, between black and white

Assume that targets are arranged at all different distances. In order to see how the
contrasts of these targets change under different visibility conditions, we first need to
compute extinction coefficients for various visibilities using Eq. (3). We pick the
following values: for V =100m, ¢ = 3/100 = .03; for V = 200m, 6=3/200=.015; for
V=300m, 0=3/300=.01; for V=400m, c=3/400=0.0075; for V=500m, 6=3/500=.006.
Using Eq. (2) and the computed extinction coefficients, normalized contrasts can be
computed by substituting distances between 0 to 500 meters. The resulting graph is
shown in Figure 9.
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Figure 9: Contrast changes of targets at all distances under selected visibility conditions
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The horizontal axis denotes the distances of targets. The horizontal line at normalized
contrast 0.05 is a threshold level of contrast that determines visibility in terms of meters,
i.e., any target’s contrast that drops below 0.05 is considered not visible. Notice from
Figure 9 that the contrast drops more quickly as visibility becomes lower. It is also
obvious that targets located at a distance farther than visibility cannot contribute in
measuring visibility. For example, if visibility is 100 meters, all targets located beyond
100 meters cannot be used for computing visibility. This would be the first limitation of
the observation.

Case 2: Limited number of targets at selected distances

Suppose that targets are placed at distances 10m, 20m, 40m, 100m, 150m, 200m, and
300m. The question we wish to explore next is, “How does the contrast of each target
change under various visibility conditions?” This means that the variable d in Eq. (2)
must be fixed for each target, and the extinction coefficient ¢ should be varied for the
selected target. Hence, the contrast for each target follows the relation:

C[ _ 67(3/1/)0 (4)

where D is a constant that must be replaced for each target distance (distance from
camera to target) and V' is the visibility that must be varied for various visibilities. For
each target, we varied the visibility from 0 to 1000 meters and the result was plotted in
Figure 10. Again, the horizontal straight line at the normalized contrast 0.05 is the
threshold that determines the visibility. Notice from Figure 10 that, if visibility is below
the target distance, the target is no longer visible. For example, the target at D=300m has
less than 0.05 contrast if visibility is lower than 300m and will not be visible. Notice also
that contrasts tend to quickly saturate if visibility becomes much higher than the target
distance. This means, for example, the target at 10m will not be able to provide
measurable contrast differences if visibility is higher than 100m.

Using Figure 9 and 10 graphs, we can draw some important conclusions regarding
the measurement limitation of visibility using a fixed number of targets. Suppose that we
are allowed only one target to measure visibility from 10m to 500m. Then the target must
be placed at 10m since any target placed beyond 10 meters will not be visible at visibility
10m. This can be verified from Figure 9 by placing a vertical line at 10m, which would
cross all of the visibility lines. On the other hand, contrast changes of this target at 10m
shown in Figure 10 suggest that accuracy will be very low under higher visibility
conditions using this target. For example, this target’s contrast will not change much
when visibility changes from 400m to 500m.

The conclusion is that, in order to be able to measure visibility in a wide range,
uniform targets must be placed at a wide range of distances. Using only a single target
will severely limit the measurement accuracy and range, and more targets at varying
distances will increase the measurement range and accuracy according to the inspection
of graphs.
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Figure 10: Contrast changes of targets under various visibility conditions

In order to verify whether the theoretical curves obtained in Figure 10 from Case
2 actually exist under real varying visibility conditions with real targets or not, real world
data was analyzed. We picked a day that had visibility recoded from 60 to 490 meters. A
target at 100m was selected. Its contrast data, computed by the differences of luminance
between white and black area of the target, were plotted in Figure 11. Notice that the
normalized theoretical contrast curve at D=100 in Figure 10 is roughly equivalent to the
real world data shown in Figure 11. Although they are not shown, similarities were
observed from the targets at other distances.

From this normalized contrast analysis, we can also learn that luminance values of
camera images are equivalent to normalized values within the calibrated camera range.
This suggests that equivalent normalized contrast can be obtained by the differences of
luminance values between the white area and black area.
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CHAPTER 4: NIGHT VISIBILITY EXPERIMENTS
USING NEAR IFRARED SOURCE AND TARGETS

4.1 Introduction

This chapter describes the results of experiments performed using Near Infrared
(NIR) light sources and cameras for night visibility study during this project. NIR
cameras sense a wide range of spectrum typically ranging 400-1,000nanometer (nm) with
low cost. Using NIR cameras, objects are recognizable under low lighting conditions (as
low as 0.05 LUX) and the images are not distorted as much as the case in deep IR
cameras. The question we wish to answer is, “Can NIR cameras be used for
measurements of night visibility?”” Three different types of apparatuses were tested for
this study: (1) No NIR light source, (2) NIR light source attached to target, and (3) Target
illumination using NIR light source. The target was set up at 10m from the camera that
had a focal length of 3.6millimeter (mm). In a few experiments, we found that the NIR
camera we used was not able to see the target without any light source on dark nights.
Therefore, the second and third options (that utilize an active NIR light source) were
rigorously tested, and the result is presented in this chapter.

4.2 NIR llluminated Target

Since the NIR camera used was not able to see the target on dark nights, the first
option was to illuminate the target using an NIR light source. The NIR source was set up
on the pole where the camera was mounted. Two square box units shown in Figure 12 are
the NIR light sources that were mounted on the pole. This NIR source produced 840nm
NIR light within a range 10m. Figure 13 shows one of the images captured by the NIR
camera. The target is shown in the right side of the image with a faint white stripe.

The hypothesis we wish to test in this experiment was that the contrast of the NIR
illuminated target would be lower as visibility becomes lower. This hypothesis is based
on the reasoning that, if visibility becomes lower, only a partial amount of NIR light will
be able to reach the target since the NIR light rays will be scattered by air particles.
Reduced light rays scattered on the target in turn reduce the contrast of the target.
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Figure 12: NIR light source mounted on the camera pole

Figure 13: NIR source illuminated target

To test this hypothesis, images were organized into visibility range from 130m to
490m. Contrasts of the target area were computed and plotted, which is shown in Figure
14. Notice that the curve is noisy, but it can be clearly observed that the basic principle of
contrast reduction relation of visibility demonstrated in Chapter 3 holds, i.e., its curve
follows an exponential relation shown in Figure 10. This proves that the hypothesis is
correct. In the graph, the noise was largely due to the headlights of vehicles passing by
the highway because the target was set up along the highway. One approach of solving
this noise problem would be using modulated light sources and adding a demodulation
filter to the camera. Such experiments were not performed due to limited budget and
time.
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Figure 14: Visibility VS Contrast plot of NIR illuminated target

4.3 NIR Light Source Attached to Target

In this experiment, the NIR light source was directly attached to the target with a
45 degree angle from the target surface as shown in Figure 15. The hypothesis we wish to
test in this experiment is that, as visibility decreases, the NIR light source attached on the
target will be more scattered causing the NIR camera to capture more luminance. More
specifically, the summation of luminance in the target should increase, as the visibility
becomes lower.

19



Figure 15: NIR light source attached target

Figure 16 shows an example image of the NIR light source attached target seen by
the NIR camera. The small white circle is the light source and the tail is the amount of
light scattered by atmospheric conditions.

Target area

NIR light
reflected on
ground

Figure 16: A sampled image of NIR source attached target
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Figure 17: Visibility versus luminance sum of NIR attached target

A plot of visibility against sum of luminance in the target area is shown in Figure
17. In Figure 17, a clear trend can be noticed, i.e., target luminance decreases as visibility
increases. Therefore, the hypothesis of this experiment is proven correct. However, noise
effects by surrounding light sources can be also observed.

Using the same setup and images collected, the luminance reflected on the ground
by the NIR light source was tested. The NIR reflected ground area was covered with
grass. We found that the texture of grass blades have an interesting property that NIR
lights are evenly reflected as shown in Figure 16. Moreover, the area becomes brighter
when air has less opacity and becomes darker when air has more opacity since the
amount of NIR lights can reach to the reflected area is limited by air opacity. Therefore,
the sum of luminance in the reflected area is a function of transmissivity or visibility.
Figure 18 shows the plot of visibility versus sum of luminance. Notice that there is a
linear relation with some noise, but the trend is clearly tighter than the measurement of
luminance from the NIR attached target. These observations suggest that measuring the
luminance of NIR reflected targets could provide a good way of measuring night
visibility. We also tested images obtained by pointing the NIR light source directly to the
NIR camera, but pixels in the images were completely saturated and therefore not
desirable.

Among the various methods tested using NIR light sources and camera, the
measurement of air opacity using the intensity of NIR reflected on a special pattern (grass
blades) gave the most reliable correlation with visibility. This approach can be improved
by two additional changes in the apparatus. First, it is recommended that an NIR band-
pass filter be mounted on the NIR camera since it will cut off the noise in the range of
visible spectrum produced by headlights of passing vehicles. Second, a more uniform
reflector pattern that has a similar texture as grass blades should be placed. It is expected
that these two changes will drastically improve the accuracy of night visibility
measurements.
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CHAPTER 5: RELATIVE VISIBILITY AND
COMPUTATIONAL METHODS

5.1 Introduction to Relative Visibility

Sections 1.2 and 1.3 discussed why absolute measurements cannot effectively
express true atmospheric visibility and why relative visibility (RV) can provide a better
representation. We briefly revisit the issue in this section and formally establish the
definition of RV.

Atmospheric visibility is an essential part of information to gauge navigational
difficulties and risks that are associated with reduced human visible information caused
by poor atmospheric conditions. Visibility measurements are, therefore, important and
should be a good measure of difficulties or disruption of visible information caused by
atmospheric conditions. However, nearly all visibility meters today rely on measurements
of one or two of many atmospheric parameters, and the measurements often do not match
what the human eye sees. This is because they are measuring just one or two of the many
causes that affect the visibility rather than directly measuring the amount of visible
information. For an illustration, consider a visibility meter design based on light-scatter
measurements, since most commercial visibility meters are designed that way. If we
measure visibility using such instruments, one on a dark night and another in a bright
daylight, they would report an identical visibility as long as the density and sizes of
atmospheric particles that affect light scatter are the same. For the human eye, visibility is
clearly reduced at night because the distance you can see is much shorter. Snowy and
rainy conditions also cause similar types of errors [12]. Such discrepancies between what
the human eye sees and what the visibility meters report have been a major problem for
developing critical safety applications based on visibility. Visibility measurements are
simply not trustworthy.

The fundamental problems with the present approaches are twofold. First, we
understand that visibility is affected by many atmospheric and environmental factors.
However, any attempt to measure every possible cause that affects visibility would be
neither practical nor economical. Second, spatial variants in visibility present additional
problems, i.e., visibilities can quickly change from one location to another, and any single
measurement of atmospheric parameter can only represent a single spot of the area. On
the other hand, the human eye uses the whole region of interest to sense the visibility.
Therefore, there are two challenges in increasing accuracy of visibility measurements in a
conventional way: (1) find every possible cause that affects visibility and develop the
measurement instruments, and (2) find an economical way of measuring spatially variant
visibility. Both challenges are impractical and nearly impossible to meet.

The fundamental problem with the conventional ways of measuring visibility lies
in trying to indirectly measure visibility using atmospheric conditions. Moreover,
conventional definitions of visibility itself present an additional problem in that the
spatially variant nature of visibility cannot be effectively expressed by a single parameter.
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To resolve the visibility issues discussed, we introduce a new parameter referred
to as the Relative Visibility (RV) that represents a relative amount of visual information
observable in reference to the amount of visual information at the same location on an
ideal clear day. For simplicity, RV is represented by percent or equivalently using a real
number between zero and one. Zero percent of RV means that no visual information is
available, e.g., total whiteout or blackout conditions. RV increases as the objects in the
area are more clearly visible to human eye, or as the visual condition improves. One
hundred percent of RV means that the present condition is identical to the ideal clear
condition. Hence, RV represents how close the measuring visual condition is to the ideal
condition. It should be noted that RV reference depends on the viewing area or region of
interest that is determined based on applications. To clarify the region of interest, we
further define RV into Motorists Relative Visibility (MRV) for ground transportation
applications. For motorists, important visual information is not clouds in the sky but road
boundaries and vehicles ahead. Hence, MRV should be measured using visual
information needed for vehicle driving, and the measure of MRV should imply road
boundaries and surroundings as the region of interest (ROI). For an actual usage example,
50% MRYV should mean that motorists’ effective visual information for driving has been
reduced to 50% in comparison to that of an ideal condition. For other applications such as
aviation, we may introduce the term Aviation Relative Visibility (ARV) to limit the scope
to towers and runways. The scope of this report is limited to ground transportation, thus
the discussions in this report are limited to MRV.

5.2 Motorists Relative Visibility (MRV)

MRYV should describe how clearly the road geometry and surroundings are visible
to the motorists in reference to an ideal clear day. Presently, video cameras or digital
cameras that work in visible spectrum are the only type of sensors that can capture visual
information. Therefore, MRV measurement methods in this project were studied using
video images with an assumption that the visual information captured through a forward-
looking video camera is an estimate of what a typical motorist sees through the front
windshield of a vehicle. This is a gross simplification, since human vision is based on a
stereoscopic system where 3-D information is available. Moreover, human perception of
visibility is based on object recognition with distance estimates based on 3-D
information, which is not available from 2-D video images. On the other hand, video
images provide a reasonable estimate since MRV measurements are only intended for
obtaining relative measurements that estimate visual characteristics that contribute to a
reduction of human visual information. However, MRV measured from video images
would not represent one to one mapping or quantification of human perception until
video technologies and signal processing techniques advance to creating a system
equivalent to human vision.

First, we introduce an index referred to as the Motorist’s Visual Index (MVI)
that represents measurable visual characteristics and clarity from video images. The
details on how to compute M VI are presented in Section 5.3. Let MVI measured at a
location / at time ¢ be denoted as MVI(1,¢). Suppose that MVI was computed using an
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image taken under an ideal visual condition, i.e., a clear day with no cloud cover and no
obstruction of view. Let this MVI be denoted as MV1,,(!), then it should satisfy:

MVL,, () = Max MVI(,0) (5)

opt

Using measured MVI, MRV is then formally defined as

MV, (1) - MVI(L{)
MRV(l,t)=1-—"2 (6)
MV, ()

Notice that the range of MRV is [0,1]; the maximum occurs when MV1,,(1) =MVI(1,t);
the minimum occurs when MVI(l,1)=0. Essentially, MRV represents a parameter in which
how close the measuring video image is to the image taken under an ideal condition in
terms of the image features extracted by MVI. This also indicates that, as long as we can
compute MVI from images or other means, MRV can be easily obtained using Eq. (6). In
the following section, MVI computational methods are presented.

5.3 MVI Computation from Video Images

5.3.1. Theoretical Derivation of MVI

Ideally, MVI should be a linear function of atmospheric visibility. However, in
order to be able to measure atmospheric visibility from video images, the distances of the
objects or pixels in the image must be known. Unfortunately, such distance information is
lost during the 2-D video imaging process and cannot be recovered from the image alone,
unless specific distances and inherent contrasts of the object are known. Therefore, an
alternative approach sought in this project is computing the factors that influence
visibility, such as reduction of edge information and contrast trends in the area that has a
property of 2-D images projected with measurable distance changes.

In order to extract features that affect atmospheric visibility from images, we start
the derivation from the fundamental principle of visibility in atmosphere. One of the most
fundamental principles governing visibility under uniform distribution of air particles is
expressed using luminance of a black target against horizon sky as [2,3]:

L =Le™+L,(1-e") (7)

where L) is the inherent luminance of a black target that is non-zero; L, is the apparent

luminance of the target; L, is the luminance of horizon sky; o is the extinction

coefficient (inverse of distance function); and x denotes the distance from the target to the
observation point. The first term describes exponential decay of inherent luminance of

25



the target as a function of distance and atmospheric conditions, and the second term
describes the air light changes.

Assume that an object A has background B. Writing the luminance relation, Eq.
(7), for A and B and finding the difference of luminance gives:

Li—-L;= (L(/)4 _L%)e_ox (8)

where L, and L, are the apparent luminance of A and B, and L, and L), are the inherent

luminance of A and B, respectively. Using a difference notation, Eq. (8) can be simply
written as:

D, =D"e™ : )

The difference D ,, essentially represents a contrast formed by foreground A and
background B in an image. If visibility V i.e., the distance from camera, is determined at
a threshold £ =D, / D), which would be the point where the difference between the

foreground and background is no longer distinguishable, then the visibility is computed
from Eq. (9) by replacing x with V', i.e.,

yo_lne (10)
(o2

This principle given in Eq. (10) has been the basis for nearly all visibility studies and
instrumentations that have been developed [2]. It should be noted that ¢ is always less
than 1 since D, < D}, , resulting a positive visibility. This relation obtained for the

standard definition of contrast is referred to as the Koschmieder’s rule [2,3], that is, if
contrast is defined as:

8 . (11)

Coming back to our focus, Eq. (11) normalization is not necessary in video images, since
pixel values are already normalized within the sensing range when the image of real-
world scene is converted into a digital form.

For simplicity, let C, denote the apparent contrast of an object and C' the

inherent contrast of the object at distance x. Then Eq. (9) under a uniform extinction
coefficient can be rewritten as:

C,=Cle™™ (12)

This relation was first derived by Duntley [5], which enabled visual-range measurement
from any background using the contrast reduction instead of horizon sky.
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Next, consider a line of sight from the camera that linearly increases the distance,
and integrate the contrasts along the selected line from zero to infinity, i.e.,

0

J; =[] Clemas = (13)

It is assumed that the inherent luminance C! is a constant, which would be equivalent to

placing objects with the same contrast along the line that linearly increases the distances
from the observation point. Since the inverse of extinction coefficient is proportional to
visibility as shown from Eq. (10), the following relation holds:

j: CdxocV (14)

Eqgs. (13) and (14) tell us that atmospheric visibility is strongly correlated (linear)
to integration of contrasts, if objects with the same contrast can be placed in a straight
line. However, such a set up would be expensive. Early research by Kwon [11] showed
that few targets with an identical contrast can be used for the estimation of atmospheric
visibility using Eq. (14).

In order to further examine the visual-range principles, consider that images are
taken at the same location under different visual range conditions. Let two extinction
coefficients be o, and o,, and the corresponding observed contrasts be C,, and C,, ,

respectively; then the following relations holds,

1 Cx,l
—:xln 0 =Vl (15)
Gl X

and
1 C,
—=xlh—22=V, (16)
0-2 X

where V; and V', denote two different visibility conditions and Cf is the inherent contrast
at distance x. Suppose that two conditions are compared by simple subtraction, that is,

I/1 - VZ = x(ln Cx,Z - ln Cx,l) (1 7)

Note from Eq. (17) that, when two images taken at the same location are compared,
inherent contrasts are no longer a factor, but distance information is needed. More
specifically, when two identical locations are compared, distance and the contrasts are the
only parameters that we need to know for comparison of two different visibility
conditions. Therefore, simple measurements given in the following form computed over a
region of interest can be used as MVI for computing MRV.
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V=xInC, (18)

From Eq. (18) we can draw important information that the contrasts and distances
of the objects in an image are the key factors that directly influence visibility and must be
included in the computation of MVI. We extend this analysis by introducing a threshold
of contrast. Based on the definition of visibility shown in Eq. (10), visibility is
determined at a threshold, & = C_ / C\, where the object and background are no longer

distinguishable, which means visibility can be directly computed by

V=xIlné, (19)

if we can find an object at the threshold and the distance. In fact, if we let In& =1, then x
would be the visibility, which follows the basic definition of visibility in Eq. (10). To
extract this threshold information from an image, we define an indicator function /_ as

I =

X

{ 1 ifC >C, 0

0 if C, <C,

where C, is a threshold in which inherent contrasts of all objects in the image are greater

than this value. Suppose that we choose a line that linearly increases in distance and
compute the indicator function /_, then it is clear that

Vol =Y xl,. (21)

Since /, is directly computable from the images using Eq. (20), Eq. (21) is computable if

we can estimate the distances in the image. If we assume that roads are flat, the distance
of pixels in the image may be estimated using the camera angle to a flat road model and
the focal length of the camera. This estimation technique is described in Section 5.3.3. In
Eq. (21), I, essentially quantifies the amount of recognizable objects in the image since

we can recognize objects when the contrast is above the recognizable threshold.

There are other factors that influence visibility in an image. Because visual range
is reduced more by light scatter than absorption when visual range is reduced, the average
luminance approaches the luminance of horizon sky. More specifically, within a certain
luminance range the following relation holds,

Vel —L (22)

v

where L__ is the maximum luminance that corresponds to the horizon sky and L, is the

max

average luminance of the image. As long as the images are taken at the same location
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with the same objects, Eq. (22), i.e., overall luminance is another factor that influences
visibility.

Yet, another factor that also influences human visual information is the acuity of
the objects in the scene. Such information can be estimated through the amount of edge
information [16,17]. Therefore, the acuity factor can be estimated through the average
contrast or variance of luminance.

By combining the three factors discussed, we construct a formula for computing
MVT using the following relation:

MV = fi(1,)+ f,(L,) + f5(C,) (23)

where f; are control functions for each component, 7, quantifies the amount of
recognizable objects, L is the average luminance measured in the image, and C,, is the

average contrast of the image. The contrast average, C

> may be replaced with a
variance of the image depending on whichever computation is efficient. The choice of

control functions of each component is discussed in Section 5.4.

3.3.2. Contrast Computation from RGB (Red Green Blue) Color Images

Images collected from most video cameras are produced in an RGB color space.
RGB color space is represented by red, green, and blue primaries as orthogonal axes.
Although contrasts may be computed using luminance conversion from the RGB color
space, it loses the information on color contrast that the human eye perceives. For
example, yellow lines in a pavement do not show as significant contrast as the human
perceives when the color is converted to gray scale. Therefore, a more desirable approach
would be directly computing the color contrast from the RGB space. Unfortunately, RGB
color primaries were developed for color reproduction of monitors, and some portions of
colors do not scale like human color perception [13].

For standardization of color sets, the CIE (Commission Internationale
d’Eclairage) set up three hypothetical primaries, XYZ, which is referred to as CIEXYZ.
The resulting color representation is that all visible colors are in the positive octant in the
integration of matching functions being equal, and in the Y function matching the
luminance efficiency function. Although the color specification in the CIEXYZ color
space is useful for color reproduction, it is not useful for evaluating relative color changes
or human perception of color contrast [13]. Therefore, other alternative color schemes
have been developed such as L*u*v* and L*a*b* [13, 14]. One practical approach was
proposed by Mayer (1988) [15]. He examined the sensitivity of the visual system and
derived a set of color axes that pass through the regions where the tristimulus are most
likely to occur [13, 15]. He calls this coordinate system the AC,C; space. The AC,C,
color space was adapted for our color contrast computation in this project.

For actual computation of the AC,C, color space, RGB is first converted to
CIEXYZ using the following translation,
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X 0.412453 0.357580 0.180423 || R
Y |=]0.212671 0.715160 0.072169 || G (24)
Z 0.019334 0.119193 0.950227 || B

Next, the AC;C; color space is derived using the following mapping:

A -0.0177 1.0090 0.0073 || X
C |=|-15370 1.0821 03209 Y (25)
C, 0.1946 —-0.2045 0.5264 || Z

With the color conversion to the AC;C, color space, color contrasts of objects can
be computed using the geometrical distance in the color space because the color space is
now converted into a space where human perception of color contrast can be uniformly
evaluated. Let 3x3 segments or pixels of an image be denoted as:

v
BavNavEIRe -/
U U U

where P; denotes a vector of the three color components at segment location i. Then, one
simple way of computing the point contrast in all directions at the center location 5 is:

1 1
C =7 |(B+2B+ B)=(B+ 2R+ B) [+ [(R+2F,+ B)—(B+ 2B + )|

(26)
Another alternative is,
1
Cs=Z(IPI—P2|+|Pz—R;|+|Pg—P7|+|B1—1%|) (27)
Yet, another alternative is,
1 1
C;=5|B=B|+|R-B] (28)

It should be noted that P. can be a pixel value at the finest scale, but is not
recommended for MVI computation. Rather the P should be computed from a small
segment due to the noise effects discussed in Chapter 3 and object emphasis in visibility.
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For example, we may select four pixels as the basic unit of segment and represent it using
the average.

One implication of the contrasts defined in Eq. 26-28 is that the values computed
are equivalent to a measure of edges in the image [16,17]. Thus, the color contrast
computed as above integrates acuity of images, which is one of the desirable
characteristics determining RV.

5.3.3. A Flat Road Model for Distance Estimation

As discussed in Section 5.3.1, distance information to each pixel or region is
needed for MVI computation (e.g., Eq. (21)). In general, accurate distance computation
from a 2-D image is extremely difficult even if it is possible, due to loss of information
by 2-D projection of a 3-D real world in the imaging process. However, a rough estimate
of distances may be computed if the road is assumed to be flat in the computing region
and the camera characteristics and the pointing angle are known. This section shows how
the distance can be estimated from an image using a 3-D to 2-D projection relation.

For convenience of description, we first define the symbols used as follows:

L, : Camera lens height from the ground
CCD Size:

Gy

f: Camera focal length
@™ : Camera vertical angle of view

max

. Camera horizontal angle of view
(P, P,): Pixel x and y position, the lower left corner is (0,0)
(P™,P™): Bound of pixel (x,y) position, the upper right corner.
T, : Horizontal distance to target
@] : The angle from the vertical line to the target

""" : Lower bound of the vertical angle of view expressed in relation to the vertical line

v

¢ Upper
v

: Upper bound of the vertical angle of view expressed in relation to the vertical line

T, ,: Parallel line distance from the camera lens to the centerline point that meets with the

perpendicular line drawn from an object
T, : Direct line distance from the camera lens to an object

T,,: Perpendicular line distance from the centerline to an object

@, : Horizontal angle from the centerline to an object
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Consider that a camera with a CCD size of (C, xC,)) is mounted at a fixed height

L, and inclined towards the road with the degree of 6. It is assumed that the camera does

not have left or right tilt, such that the lower side of CCD is parallel to the ground level.
A target is assumed located at the horizontal distance 7, from the vertical line. This setup

is illustrated in Figure 19.

Horizontal and vertical angles of view of the camera follow a simple

trigonometric relation:
¢ =tan” (C,/ f) (29)

" =tan”' (C, / f) (30)

h =

The lower and upper bounds of the vertical angle of view expressed in relation to the
vertical line are then expressed as:

P =(90°—0) — g™ /2 31
P =(90°—0)+ 4™ /2 (32)
The vertical pixel position of the target is then computed by,
T _ gLower
— ¢V ¢V Pmax (33)

y ¢:nax y

This relation provides an estimate of y-axis position on the CCD for the target position
projected on to the CCD.
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Figure 19: Side view of geometrical relation

Next, in order to find the mapping point to the x-axis of the CCD the top view of
the geometrical relation is considered, as illustrated in Figure 20. The imaging area spans
along with the left and right bounds of the horizontal angle of view of the camera. To
create reference points, the imaging area is split in half using the horizontal centerline. A
negative sign is assigned to the left side of the angles and distances from the centerline. A
positive sign is assigned to the right side of the angles and distances from the centerline.
Thus, the centerline is used as the starting point for both sides and has zero degrees and
zero perpendicular distances along the line (see Figure 13 for a visual aid).

The parallel line distance from the camera lens to the centerline that meets with
the perpendicular line drawn from an object, 7, , has the following relation:

Tcd :\/Li +Td2 (34)

Direct line distance from the camera lens to an object, 7,,, and the horizontal

angle from the centerline to an object, ¢, , are then computed as:

Tdd :\/ch/ +szd (35)

T
¢, =tan"' -2~ (36)
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Similar to the vertical case, the horizontal pixel position of the target is obtained
using the horizontal angle found, i.e.,

T
P = (¢—+1J P (7)
h 2 )

where all parameters are now obtainable.

Next, we wish to estimate the distance from the camera lens to an object using a
pixel position (X, y).
. r_T,sing . .
Sincetan g, = T the final distance from the camera lens to the target is
cd
obtained as,
T
_ I, tan &,
“ sing!

B \/Li +(L, tan géVT)2 tan ¢hT
- sin ¢,

(38)

where
1 max
¢T — IDX A R‘ max
h pmax h
and
P 1
To900— 0+ g™ | L
¢V ¢V ijmax 2

Notice that the final derivation in Eq. (38) is a function of all known values, i.e.,
pixel (x,y) position, horizontal and vertical angle of camera, and the camera angle in
relation to the horizontal line. Therefore, an estimate of the distance from the camera lens
to a target can be computed based on the pixel positions in the CCD. However, it should
be cautioned that these estimates are based on a perfectly flat road model with no
occlusion, which rarely occurs in the real world. Thus, one should accept a certain level
of error in the final computed distances. Another point that must be mentioned is that
human perception on distance is in a log scale like many other human perceptions. Thus,
the distance computed by Eq. (38) should be implemented as a log scale.
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Figure 20: Top view of geometrical relation

5.3.4. Selection of Region of Interest For MRV Computation

A typical highway scene projected onto a CCD by a forward-looking camera may
be divided into three regions as shown in Figure 21 (assumed one direction of a two-lane
highway). Regions 1 and 3 represent the left and right shoulder of the road, respectively;
and Region 2 represents the driving lanes. In Region 2, the number of vehicles on the
lanes can significantly affect MVI instead of visual range or weather conditions. As a
result, vehicles can create an effect of noise. Regions 1 and 3 are more stable in terms of
object variability over time, such that visual information is most likely influenced by the
atmospheric visual conditions. In particular, Region 3 has a better property in terms of
distance information, because it shows better near distances than Region 1. Therefore,
Region 3 is considered most desirable for MRV computation.

Region 3

Region 1 ]

Vehicle head Region 2

Figure 21: Region of interests in highway
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5.3.5 Control Functions of M1 Components

In the MVI derivation in Section 5.3.1, Eq (23) essentially tells that MVI is a
function of the amount of visible objects, the average luminance, and the average contrast
in the ROI in an image, but the control functions were omitted in that derivation. In the
following we show how to determine a sensible choice of a control function that closely
models human perception from stimuli. Since MVI should be a measure of information
on visible features, a sensible choice of control functions would be adapting a shape of an
Entropy function, i.e., f(x) =—xlogx. This type of function has been used for

quantifying information [18] and has an inverted cup-shape. Human perception typically
has an optimal sensing level and exceeding or less than that optimal level reduces
information, which follows an inverted cup shape curve.

Consider luminance in ROI. Visibility increases as the average luminance of ROI
decreases up to a certain threshold that would be the optimal luminance point. If the
average luminance drops beyond this threshold (which would be the same as objects
under too dark light), visibility is rapidly decreased. A similar effect occurs for the
average contrast. Visibility increases only up to a certain threshold level of contrast. If the
average contrast reaches beyond this threshold, visibility begins to decrease again. In all
cases, visibility is more rapidly decreased after passing the optimal threshold. This
threshold effect can be estimated through a range controlled parabolic function with
different rates of decreases from the optimal point. Without further discussion, we
directly provide example control functions that were obtained from a color video camera
we used in our experiments.

Control function for indicator function:

£y = -1, -10, 000)* /333,333 +300, if 1, <10,000 (39)
e -/, -10, 000)* /1,000,000 +300, if 1, >10,000
Control function for average luminance:
—(L,, —160)*/85+300, if L, <160
f(Ly,) = ) . (40)
—(L,, —160)"/176+300, if L, >160
Control function for average contrast
—(C,, —42)*/20+300, if C, <42
5(C) = ) : (41)
—(C,, —42)"/6+300, if C, >42

In the above control functions, the optimal points for / 7o Loys and C_ are 10,000,

160, and 42, respectively. These optimal points could be derived from the images taken
under an ideal lighting condition, i.e., a clear day with no cloud cover. The choices of
actual values would be influenced by image resolution and camera characteristics.
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5.4 Examples

This section provides a few examples of MVI computation. The first example
shown involves computation of MRV from images produced by a fixed video camera
from another visibility project [12]. The site was located at Interstate Highway 1-35,
Thompson Hill, Duluth, Minnesota. In the testing area, nine targets were present at
distances of 5, 10.5, 20.1, 32.7, 67, 80, 100, 150, and 200 meters from the camera, which
are numbered 1 through 9. The targets are only used as manual verification of visibility.
For MRVI computation, Region-3 (right side of the road) in Figure 22 has the clearest
view of the areas with time invariant objects capturing targets ranging from close to the
camera to very far distances. Thus, Region-3 was chosen for MRV computation. Figure
23 depicts the computed MRV for the images taken on June 24, 1994 when low visibility
conditions occurred. The ordinate numbering corresponds to the time specified in the
caption. It can be observed that MRV was started from a low value of less than 0.2 at
4:59AM and then gradually increased. To show how MRYV relates to the visible
information, four sample images corresponding to ordinate numbers 1, 12, 17, and 20, are
chosen shown in Figure 24 along with the computed MRV. The images are arranged as
increasing MRV order. It can be clearly seen that, as MRV increases, the targets in the
images are more and more clearly identifiable, which corresponds to higher and higher
levels of visual information available to motorists.

Region 1

Region 3

Region 2

Figure 22: ROI selection

37



D.S T T T T T T T T T T T T T T T

ool oy
0 5 10 15 20
Imaoges

Figure 23: MRV computed for images captured on 6/24/1994. Image index on ordinate corresponds
to time: 0~18: Smin interval from 4:59AM to 6:29AM, 19=8:29AM, 20=5:29PM
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Figure 24: Sample images with MRV from Figure 23. A: MRV=17.2%, B: MRV=36.4%, C: MRV=
55.0%, D: MRV=69.6%

The next example involves 1,667 JPEG images (640x480 color) taken using a
patrol vehicle on a snowy day. This example illustrates a mobile application of MVI from
which a low RV section can be identified. Figure 25 shows a graph of three MVI
components computed from the video images. Notice that average contrasts have an
inverse relation to average luminance. On the other hand, the clarity indicator is closely
correlated to average contrast. Using these three components and the control functions
defined in Eq. (39)-(41), MRV was computed and plotted in Figure 26. Notice that
images between 900 and 1200 show poor visibility conditions and the visibility
conditions became close to a clear condition from images 1,400 to 1,600. To show
images of a different percentage of MRV, Figure 27 shows images with MRV computed
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as 36% and 96%. Two images were selected from the pool of 1,667 images. The
differences of visual information are clearly noticeable showing reduction of visibility.
This example demonstrates that MRV can even be used for a mobile condition where

measurements of visual conditions independent of locations are desired.
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Figure 25: Plot of MVI components measured from 1,667 JPEG images. Notations used: MVIindF is

1 ;> MVIavgL is L ,and MVIavgC is C_ . Horizontal axis represents image index.
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Chapter 6: Conclusion

This report presented the results of a two-year research on visibility
measurements based on video cameras and image processing. It was shown that images
directly obtained from common CCD video cameras have limited resolution and accuracy
in capturing luminance of visual information. The second limitation of video cameras
was loss of 3-D information, i.e., loss of distance information. These limitations were
overcome by placing multiple targets at varying distances with a uniform contrast. It was
theoretically shown and verified using real examples that visibility measurement range
and accuracy increase as more targets at varying distances are available. In essence, by
introducing known multiple targets the loss of distance information and limited
luminance resolution in video imaging was effectively restored by inducing spatial
information.

For night visibility, various apparatuses of NIR light source and camera were
studied. It was found through numerous experiments and sampled data that NIR source-
reflected target provides the most reliable measurements of night visibility. This approach
essentially measures the opacity between the target and camera but uses an indirectly
scattered light source. To increase the accuracy of this measurement method, it is
recommended that an NIR band-pass filter be mounted on the NIR camera and a more
uniform fine-grained reflector pattern be used as the target.

The research was further extended to develop a new concept of relative
measurements of visibility. Introduction of this concept was motivated by discrepancies
that are often found between the absolute measurements by today’s visibility meters and
what human observers see. In addition, absolute measurements of atmospheric
parameters are not an effective representation of spatially variant visibility conditions. It
was found that a better way of characterizing visibility conditions is using visible
information that is available to motorists. An effective way of expressing visible
information was a relative measurement against the visual information of an optimal
weather condition, from which the relative measurement was referred to as a relative
visibility.

As a measurement of visible information, three components that can be extracted
from video images were mathematically derived. They are the amount of recognizable
objects in the surrounding area, average luminance, and acuity of objects measured by
contrast in the image. One of the difficulties of measuring human perceived visibility is
that visibility is not only affected by the air particles in the atmosphere but it is also
affected by air lights and objects that are available as guides to motorists. Relative
visibility solves the affect of these and atmospheric parameters by directly measuring the
relative amount of visual information from video images.

This research merely introduced the basic RV concept and demonstrated the
measurement approaches using video images. Therefore, much research still needs to be
done in the area of quantifying human perception against RV and improving the accuracy
of RV computations. In order to closely simulate the human eye, future study should also
include measurements of RV using stereoscopic vision systems. Another important future
study would be to develop a mathematical model for computing a safe speed limit and
vehicle spacing using RV.
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