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Abstract

Congestion affects the trucking industry on three major service dimensions: travel time, reliability, and cost. Trucking is a commercial activity, and trucking operations are driven by the need to satisfy customer demands and the need to operate at the lowest possible cost. This industry is highly competitive, with easy entry into almost any market, relatively little differentiation between operators and slim profit margins.

However, most of the developed techniques and models for planning, routing and scheduling in the trucking industry assume ‘known’ static data as their input. For instance, in the Vehicle Routing Problem (VRP) the customer demands, travel costs, and travel times are known in advance.  In this case, the fundamental problem is to determine the optimal route that minimizes a certain objective such as fleet size and travel distance.   The built-in assumption of these approaches is that there will be small deviations on the realization of the demand and travel times from the plan so that the pre-determined routes form a basis for either the pickup or delivery schedule.  In the real world, however, operations in any traffic network contain a fairly high degree of uncertainties including variable waiting and travel times due to traffic congestion, arrival of new orders, and cancellation of existing orders.  In a highly dynamic and stochastic environment, the pre-planned optimal routes are no longer of practical use.  In this case, most of the research effort has focused on easy to control dispatching rules.  The drawback with these techniques is that they do not make use of pre-planned and known information. 

There is a gap in the routing literature for systems that operate between the two ends of the spectrum, which is the most realistic condition for trucking operations. Our research on partial route development addresses this gap by developing a new approach within an area that has received little attention. In a simulation study, we demonstrate the benefits of the partial routing approach over the pre-planned and dispatching methodologies.
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1 Introduction 

The ability of a trucking company to succeed economically rests on its ability to move goods reliably and efficiently, with minimal delay. In many traffic networks especially in major cities, traffic congestion has already reduced mobility and system reliability, and has increased transportation costs. In addition to contributing to truck-drivers’ inefficiency, traffic congestion is a major source of air pollution (especially diesel toxins), wasted energy, increased maintenance cost caused by the volume of trucks on roadway, etc. (Barton, 2001).

With the expected substantial increase in the volume of international and national cargos entering and moving through the U.S. highway system, together with the anticipated growth in the number of personal vehicles in use, it is expected that the condition of traffic congestion will only get worse, unless careful planning is initiated. For instance, according to the Federal Highway Administration, currently nearly half of the California’s urban highways are congested
. It is expected that, between 2000 and 2025 in California, personal vehicle trips will be increased by 38 percent (CalTrans 2004), and the volume of containers moving in and out of the major California ports will be tripled (Mallon and Magaddino, 2001).

There are numerous ways to improve traffic congestion, and therefore reduce transport times associated with goods movements. Options include developing new and expanding current facilities, deploying advanced technologies, and improving operational characteristics and system management practices. It should be noted that the scarcity of land in major cities has made the option of developing new facilities if not infeasible significantly costly. 

Goods movements, in nature, are time-dependent and contain uncertainties. For instance, the customer demands, travel costs, and travel times are uncertain, time-dependent variables. In the transportation industry, it is widely expected that the deployment of advanced technologies such as the use of information technologies can reduce the level of uncertainties to a manageable level and makes the use of dynamic formulations and solutions feasible. These technologies include:

· Vehicle tracking, such as global-positioning-systems (GPS), which allow vehicle locations to be determined within a few meter level accuracy.

· Wireless communication, via satellite, cellular and paging networks, which enable 2-way communication with mobile fleets.

· Navigable map databases, from which point-to-point distances can be calculated.

· Real-time information services, which allow for dynamic calculation of travel speeds. 

Whereas in the past, it was difficult for a company to control or route vehicles once they left the terminal, these technologies make accurate dynamic real-time routing a possible reality.

The focus of this report is to investigate dynamic methods to improve the operational characteristics of goods movements by developing techniques that can be easily implemented using new but currently available computer and information technologies. The use of information technologies in goods movements can narrow the gap between highly uncertain systems in reality and the assumed known static systems in theory. It is known that for static systems, where the network parameters are known a priori, the well-established routing and scheduling algorithms lead to optimum solutions. On the other hand, in a highly uncertain and dynamic system, heuristic dispatching techniques work reasonably well. As recently observed by Powell et al. (2000), in the presence of high degree of uncertainties, it is widely expected that optimal solutions for goods movements will be outperformed, over time, by algorithms that are more local in nature.

Thus, on one end of the spectrum are route planning techniques when it is reasonable to assume the system is deterministic, and on the other end are dispatching heuristics when the system is highly dynamic and uncertain. There exists a gap in the literature for situations that are in between the two ends of the spectrum. The purpose of this study is to address this gap. The objective of this study is to identify the level of route planning in the freight transportation techniques. In these situations a technique that builds partial routes and has capabilities for dynamic adjustments in real-time may be the most suitable approach. 
In this report, we introduce the concept of partial routing to address the gap between routing in deterministic static networks and dispatching in dynamic stochastic networks. The length of the partial route indicates the suitable level of route planning that is needed to account for the uncertainties. We investigate the benefits as well as methods for generating partial routing techniques for goods movements in uncertain and dynamic environments. Furthermore, we develop a dynamic routing methodology, which has the capability for dynamic route adjustments by incorporating updated information of traffic conditions. 

The report is organized as follows. Section 2 is devoted to the literature review. In Section 3,the partial routing methodology for dynamic stochastic networks is developed. In this section, we first investigate methods to estimate traveling times on arcs and arriving times at nodes of the network. Then, these estimations are used to generate partial routes, which guarantee some level of service. Simulation experiments are discussed in Section 4. To evaluate the developed partial routing method and to compare this method with other methods three scenarios are developed and considered: deterministic network, stationary stochastic network, and dynamic stochastic network. Section 5 concludes this report and provides recommendations for future studies. Section 6 considers the wider implementations of this study.

Literature Review

Most developed techniques and models for planning, routing and scheduling assume ‘known’ static data as their input. For instance, in the Vehicle Routing Problem (VRP) the customer demands, travel costs, and travel times are known in advance. In this case, the fundamental problem is to determine the optimal route that minimizes a certain objective such as fleet size and travel distance (Laporte, 1992). The built-in assumption of these approaches is that there will be small deviations on the realization of the demand and travel times from the plan so that the pre-determined routes form a basis for either the pickup or delivery schedule. 

In the real world, however, operations in any traffic network contain a fairly high degree of uncertainties including variable waiting and travel times due to traffic congestion, arrival of new orders, and cancellation of existing orders. (e.g., see Powell et al., 1995; Powell, 1996). That is why human operators (dispatchers) still play a major role in route planning and vehicle scheduling in the trucking industry. Dispatchers assign drivers to cargoes and inform the drivers about traffic conditions and changes in customer requests in addition to assisting them in departure/arrival decisions and providing navigational information (Ng et al., 1995). Dispatchers currently obtain information about traffic conditions, mostly through radio traffic reports and through information relayed back by the drivers (Hall and Intihar, 1997).

Since route planning is a dynamic problem, any efficient algorithm should also be dynamic. Therefore, the dynamic route planning has emerged as an active and intense area of research, both due to industry needs, but also due to technological advances, including map databases, location determination technology (e.g., GPS), wireless communication and mobile computing. 

Probably the stochastic shortest path problem (SSPP) is the most researched problem among non-deterministic route-planning problems. Pattanamekar et al. (2003) examined the characteristics of the mean and variance of traveling time under uncertainties. They developed mathematical models for predicting the first and second order approximation of the mean and variance of the individual travel time in the future. The approximations were found using Taylor’s series expansions around the estimated arrival time.

Fu (2001) studied the shortest path problem in traffic networks in which travel times on links are random variables with known mean and standard deviation. In his paper, the realization of traveling time was assumed to be estimated in advance and made available to vehicle’s routing system. Fu proposed a close-loop adaptive routing rule (CAR) with the objective of identifying the immediate node instead of the whole path. The problem was formulated as a dynamic programming problem, and an approximate labeling algorithm was developed to solve the problem.

Hall (1996) showed that for a time-dependent stochastic network, standard path algorithms (e.g., Dijkstra’s algorithm) do not find the minimum expected cost path. He showed that the optimal choice is not a simple path but an adaptive decision rule (policy), and proposed using Dynamic Programming to find such a policy.

Kim et al. (2003) studied optimal vehicle routing in a non-stationary stochastic network. They developed decision making procedures based on a Markov decision process model for determining the optimal driver attendance time, optimal departure times, and optimal routing policies. The methodology was used to develop routing strategies in the stochastic shortest path problem. The authors concluded that the real-time traffic information combined with historical data can significantly reduce expected total costs and vehicle usage. They also noted that the implementation of historical data is easier than incorporating real-time information.

Bander and White (2002) also considered the non-stationary shortest path problem in which travel time along each arc is modeled as a random variable. The distribution of the random variable is dependent on the time that travel is begun. The paper presented an algorithm based on AO*. It demonstrated that AO* is significantly more computationally efficient than dynamic programming when lower bounds on the cost function is available. 

Miller-Hooks and Mahmassani (2003) explored three measures for comparing time-varying, random path travel times: deterministic dominance, first-order stochastic dominance, and comparison via expected value. The measures were used for comparing paths at a single departure time and then it was generalized over multiple time intervals.

In contrast to the dynamic and stochastic shortest path problem (DSSPP), the research efforts on dynamic and stochastic vehicle routing problem (DSVRP) has been scant. Ichoua et al. (2003) investigated the time-dependent vehicle routing problem (TDVRP) with soft time-windows. They presented a time-dependent speed model to calculate the traveling times between each two nodes. In this model the horizon time was divided into time periods. In each time period the speeds of vehicles are assumed to be constant. A heuristic method known as Tabu Search was developed to find good routes for the TDVRP problem.

Bertsimas and Van Ryzin (1991) examined a model of the VRP problem, referred to as the Dynamic Traveling Repairman Problem (DTRP). In DTRP demands for service arrive in time; these demands are independent and uniformly distributed in a Euclidean service region. The problem is to find a policy for routing the service vehicle that minimizes the average time demands spent in the system (wait plus service). Hence, the problem is stochastic and dynamic in the sense that demands appear randomly in time and space.

Bertsimas and Van Ryzin (1993) extended their work of 1991 by considering m identical vehicles to serve customers in the DTRP. They investigated two cases: 1) vehicles with unlimited capacity, 2) vehicles that can serve at most q customers.

Partial Routing in Dynamic Stochastic Networks

In this section, we will develop the partial routing methodology in dynamic and stochastic transportation networks. 
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Figure 1: A typical transportation network.

Shown in Figure 1 is a typical transportation network. Let [image: image1.wmf]:(,)
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 be a transportation network (which is called a graph hereafter) with node set [image: image2.wmf]{
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. Solid lines in Figure 1 represent the direct connections (arcs) between two adjacent nodes and dashed lines are indirect connections, which consist of two or more direct connections. 

Given graph G, our proposed partial routing methodology consists of the following stages. 

1) Predicting traveling times on arcs: Given the time of the day as well as the historical and real-time data of the traveling time on arcs of graph G, we predict the future traveling times on the arcs, recursively.

2) Estimating arrival times at nodes: Given the departure time from one node together with the predicted traveling times on arcs of graph G (from stage 1), the arrival times at other nodes of the network are estimated.

3) Generating partial routes: Given the estimated arrival time at nodes of graph G (from stage 2), partial routes are generated which guarantee some service levels. 

4) Selecting the best route: Among all partial routes (from stage 3), we select the one that covers the most nodes at least cost. Nodes on the generated partial route will be visited next. 

In the following, each stage will be investigated and discussed in detail.

1.1 Predicting the Traveling Times on Arcs 

Here we assume that the historical data of traveling time on arcs of the network is available. These data can be obtained through observing and averaging the traveling time on each arc for a long period of time. In addition, we assume that the real-time information regarding the traveling time on arcs is also available. 

Let 

T be the length of the planning horizon, 

k be an index of time in this horizon T,
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 be the traveling time between nodes i and j at time k,
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 be the historical traveling time between nodes i and j at time k obtained from previous measurements on arc (i,j),
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 be the historical change in the traveling time between nodes i and j from time k to k+1, in other words 
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, and 
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 be the measured traveling time between nodes i and j at time k. 

We model the dynamic behavior of the traveling time on arc (i,j) as follows:
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 is the traveling time disturbance on arc (i,j) representing real-time changes in the traveling time at time k, which are not included in the historical data [image: image11.wmf](
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is the error in the measurements of traveling time on arc (i,j) which is introduced by sensing devices or human errors. 
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 are all mutually uncorrelated Gaussian random variables with the following specifications:
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and 
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In the following, we use a Kalman-Filtering corrector-predictor technique to estimate the future traveling times on the arcs of graph G. 

1.1.1 Single-Stage Predictor

In the single stage predictor case, given the measured traveling time 
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on arc (i,j) at time k, we would like to estimate the traveling time 
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on the arc at time k+1. From estimation theory results, we know that the estimator that minimizes the mean-squared error of the estimation error is given by
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where 
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. Using our dynamical model in 
(1)

, the predicted estimator  GOTOBUTTON ZEqnNum639782  \* MERGEFORMAT  can be generated as 
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where 
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 is the mean-squared filtered estimator of 
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 indicates that to calculate the predicted estimator  GOTOBUTTON ZEqnNum413052  \* MERGEFORMAT  the value of the filtered estimator 
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Let’s denote by 
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 the single-stage predictor error, which is defined as
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Note that since 
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 are joint Gaussian random variables, the estimator in (6)

 is unbiased [Mendel 1995], and we have, 
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Using (9)

, the error variance of the estimator is given by
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where 
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 can be simplified as,
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Equations 
(11)

 provide the mean and variance of the single-stage predictor error of the mean-squared predicted estimator of (9)

 and  GOTOBUTTON ZEqnNum645901  \* MERGEFORMAT given in (7)

.

1.1.2 mth-Stage Predictor

In this subsection, we extend the single-stage predictor to the mth-stage predictor, such that given the measured traveling time 
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 at time k on arc (i,j), we determine an unbiased estimate of traveling time on the arc at time k+m, where m(1. Similar to the single-stage predictor, we know that the estimator that minimizes the mean-squared estimation error is given by
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where 
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The mth-stage predictor error is defined as 
[image: image55.wmf](

)

(

)

(

)

ˆ

ijijij

xkmkxkmxkmk

+=+-+

%

. Similar to the single stage predictor case, since 
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 is unbiased, i.e., 
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The error variance of the mth-stage predictor is 
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Using 
(3)

, we know that (2)

 and  GOTOBUTTON ZEqnNum668974  \* MERGEFORMAT , 
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Equations 
(16)

 present the mean and variance of the mth-stage predictor error of the mean-squared predicted estimator of (14)

 and  GOTOBUTTON ZEqnNum724857  \* MERGEFORMAT  given in (16)

 indicates that as m, the number of stages of prediction, increases, the variance of the prediction error increases too. In other words, as m becomes larger, we face more uncertainties in estimating the traveling time on arc (i,j) using the current information at time k. 
(13)

. Equation 
1.1.3 State Filter

As seen from 
(13)

, the predicted estimate of traveling time(7)
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where for the dynamic model in 
(1)

  GOTOBUTTON ZEqnNum639782  \* MERGEFORMAT  is the measurement residual process of 
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and 
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 is the Kalman gain of arc (i,j) at time k which is specified by the following equations:
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and from (11)
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It is always possible that the value of 
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In particular, the Kalman gain 
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Therefore, at each time k and by using the mth-stage predictor in 
(13)

, the traveling time  GOTOBUTTON ZEqnNum371935  \* MERGEFORMAT  on each arc (i,j) at time k+m, can be predicted. 

1.2 Estimating Arrival Times at Nodes 

In the previous section, we developed a methodology to predict the traveling times on arcs of a given transportation network. Available historical (offline) data are used for predicting the traveling times, and new measurements (online) were used to correct and update our prediction at each instant of time. In this section, we use the predicted traveling times on arcs to estimate the arrival times at each node of the network. 

Let’s consider graph G as shown in Figure 1, again. We define route r in graph G as a set of nodes visited in the specified order. Figure 2 shows a typical route [image: image102.wmf]{

}

1,2,..,,,..,

rijd

=

. Let also 
[image: image103.wmf]r

A

 be the arc set associated with route r which is defined as


 
[image: image104.wmf](

)

{

}

,,,and  is visited immidiately after 

r

Aijijrji

=Î


 MACROBUTTON MTPlaceRef \* MERGEFORMAT (24)

[image: image351.wmf]1

2

3

4

5

6

7

8

9

10

16

30

27

27

24

30

32

20

16

22

21

14

22

17

15

32

24

21

20

32

25

23

23

26

18

28

22

1

2

3

4

5

6

7

8

9

10

16

30

27

27

24

30

32

20

16

22

21

14

22

17

15

32

24

21

20

32

25

23

23

26

18

28

22

Figure 2: A typical route r in graph G.

We assume that the departure time from node {1} on route r, 
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, is given. We also assume that predicted traveling times on arcs of graph G are available using the developed methodology in Section 3.1. Given 
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, the departure time from node {1}, the arrival time at all other nodes on route r in Figure 2 can be determined using the following set of equations,
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where 
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where the floor function 
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 returns the largest integer equal to or less than its argument. In the sequel, we use traveling times 
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1.2.1 Estimating the arrival time at the second node

In this subsection, and for the purpose of route planning, we will estimate the arrival time at each node of route r in 
(25)

. Given the departure time from node {1},  GOTOBUTTON ZEqnNum294289  \* MERGEFORMAT , the mean-squared estimate of the arrival time at node {2}, the next node on route r, is 
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where 
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 is the discretizing function defined in 
(26)

 and  GOTOBUTTON ZEqnNum865853  \* MERGEFORMAT  is the mean-squared filtered estimate of traveling time on arc (1,2), 
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1.2.2 Estimating the arrival time at other nodes

Likewise, given [image: image149.wmf]1

r

z

, the mean-squared estimate of the arrival time at node {3} is 
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where 
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It should be noted that the estimator in 
(29)

 cannot be realized since the value of  GOTOBUTTON ZEqnNum906942  \* MERGEFORMAT  is not available at the time of route preplanning. To overcome the problem, we use the estimate 
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, instead of  GOTOBUTTON ZEqnNum395185  \* MERGEFORMAT  in (29)

 can be approximated by
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. Therefore, the estimator in 
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Later in this report, we will show that the error of estimation in 
(30)

 is negligible for appropriate selections of the sampling period  GOTOBUTTON ZEqnNum575086  \* MERGEFORMAT . Moreover, we will find a bound on the error variance of the estimator in (30)

. 

Now, let’s assume that node i precedes node j on route r. Let’s also assume that given 
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We denote by 
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 the error of estimation in 
(31)

 which is defined as  GOTOBUTTON ZEqnNum147141  \* MERGEFORMAT . In the following, we will show that if 
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where the error of the approximation goes to zero as the sampling period 
[image: image184.wmf]S

T

 becomes smaller.
Proof:
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where, without loss of generality, in 
(33)

 we assumed that  GOTOBUTTON ZEqnNum929282  \* MERGEFORMAT . The first term in (33)

 can be simplified as follows
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To compute the second term in (33)

, we use the fact that for any two random variables x and y, we have (Papoulis [1991]) 
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Using (33)

 can be written as
(35)

, the second term in 
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Since 
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, (36)

 can be simplified as follows
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Note that as the sampling period 
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 becomes smaller, the last term in (37)

 can be approximated by
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In other words, by appropriately selecting 
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 is obtained.((33)
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 and (33)

 becomes zero. Hence, using (36)

 the second term in (38)
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Since 
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 is an unbiased estimator of 
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, Equation (39)

 can be written as follows,
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 MACROBUTTON MTPlaceRef \* MERGEFORMAT (40)

where in deriving (13)

. As discussed, the mean-squared filtered estimate 
 is unbiased; i.e.,
(1)

 and (40)

, we use 
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Using Proposition 1 and Equations (40)

 can be simplified as follows,
(3)

, Equation (2)

 and 
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which indicates that our estimator in 
(31)

 is an unbiased estimator if  GOTOBUTTON ZEqnNum147141  \* MERGEFORMAT  is properly selected.(
In the following, we calculate the error variance of arrival time estimator 
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 in (31)

.

Proposition 3: Let route r start from node {1} and pass through nodes i and j, in that order. Let 
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where 
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 and 
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 are bounded functions for all 
[image: image223.wmf]1

r

kz

³

, then 
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where the error of the approximation goes to zero as the sampling period 
[image: image225.wmf]S

T

 becomes smaller.
Proof:

Using (43)

, we have 
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where in 
(45)

 we assumed that  GOTOBUTTON ZEqnNum110443  \* MERGEFORMAT .  The case 
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 will be discussed later. The first term in (45)

 can be simplified as follows
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In deriving (45)

 can be calculated as follows 
(35)

, the second term in (43)

. Using (46)

, we used 
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Since 
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 is bounded for all 
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, (47)

 can be computed as follows
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where in obtaining (44)

 is obtained.
(48)

, equation (47)

 and (46)

, (38)

 was applied here. Substituting (48)

 the same procedure used in 
Recall that in 
(45)

, we assumed  GOTOBUTTON ZEqnNum110443  \* MERGEFORMAT . We will show that 
(44)

 is also valid for the case  GOTOBUTTON ZEqnNum850331  \* MERGEFORMAT . When 
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 can be written as follows
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Repeating 
(49)

 is approximately zero for small (48)

, the second term in the last row of (47)

 and  GOTOBUTTON ZEqnNum832977  \* MERGEFORMAT , i.e.,
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The third term in (49)

 can be calculated as follows
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Using the same procedure in 
(38)

, and knowing that the random variables (37)

 and  GOTOBUTTON ZEqnNum310147  \* MERGEFORMAT  and 
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 are statistically uncorrelated for all 
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¹

, (51)

 can be written as 
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where in obtaining (44)

 is obtained.((52)

, Equation (46)

 through (38)

 is applied. By considering Equations (37)

 and (52)

 the same procedure in 
Proposition 4: Given the assumptions in proposition 3, we have 
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where 
[image: image246.wmf]ˆ
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 is the arrival time estimation error at node i on route r.

Proof:
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where in 
(54)

, and without loss of generality, we assumed  GOTOBUTTON ZEqnNum569785  \* MERGEFORMAT . Since 
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r

i

z

 is an unbiased estimate of the arrival time 
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i

z

, the first term in (54)

 is zero, i.e.,
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The second term in (54)

 can be calculated as follows
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Since 
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 is a bounded function for all 
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, we have 
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For small sampling period 
[image: image256.wmf]S

T

, (57)

 can be approximated by
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In other words, by appropriately selecting 
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, equations (53)

. ( 
(58)

 together result in (54)

 till 
Proposition 5: Let 
[image: image259.wmf]ˆ

r

i

z

 be an unbiased estimator of 
[image: image260.wmf]r

i

z

, with error variance equal to 
[image: image261.wmf](

)

var

r

i

z

%

. Then, with proper selection of the sampling period 
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, the error variance of estimator 
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 in (31)

 is bounded by
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Proof:

The error variance of the estimator in (31)

 is
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The second term in (60)

 can be written as 



[image: image266.wmf](

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

111

11

1

ˆ

111

111

11

11

ˆ

ˆ

var

ˆ

ˆ

var

ˆ

varvarvar

rrr

iii

rrr

rr

ii

rr

rr

ijiji

zzz

rrr

ijijijijij

kzkzkz

zz

rr

ijijij

kzkz

xxzz

xzukwkxzzk

xzzukwk

h

Q-Q-Q-

=Q=Q=Q

Q-Q-

=Q=Q

-QQ

æö

ç÷

@Q++-QQ-

ç÷

èø

æöæö

ç÷ç÷

=QQ++

ç÷ç÷

èøèø

ååå

åå

%


 MACROBUTTON MTPlaceRef \* MERGEFORMAT (61)

where in deriving (61)

 can be simplified as 
(3)

, (2)

 and (13)

. By using Proposition 3 and equations (1)

 and (61)

 we use 
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The last term in (60)

 can be calculated as follows
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Knowing that the estimator 
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, the second term on the right hand side of (63)

 is zero.  Therefore,
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where by using (13)

 we have
(1)

 and 
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Since 
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 are statistically uncorrelated and both are unbiased, the first and last terms in (65)

 can be calculated as follows
(3)

, the second and third terms in (2)

 and (65)

 are zero. Using Proposition 4 and equations 
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Therefore by substituting (64)

, we have 
(65)

, and subsequently in (67)

 in (66)

 and 
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Using (59)

.((31)

 can be obtained which is given by (68)

, the bound on error variance of the estimator in (62)

 and (60)

, 
In summary, in this section we have developed a methodology to estimate the arrival time at each node of a transportation network. More precisely, given 
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, departure time from node {1}, the arrival time at each node i on route r can be estimated using the developed arrival time estimator in (13)

, recursively, in the following order:
(31)

 and the predicted traveling times on arcs in 
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We have shown in Propositions 2 and 5 that by properly selecting the sampling period 
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, the arrival time estimator in (59)

, the bound on the error variance of the arrival time at each node j on route r can be also written as
(16)

 and (59)

. Note that by using Equations (31)

 is an unbiased estimator, and its error variance is bounded by 
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Note also that given 
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, the error variance of the departure time from node {1} is zero, i.e., 
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 initializes equations (70)

.  Hence, the bound of the error variance of the arrival time at each node j on route r can be calculated, recursively.
(21)

, and (16)

, 
As seen from 
(70)

, the bound on the error variance of the arrival time at each node j,  GOTOBUTTON ZEqnNum913314  \* MERGEFORMAT , depends on two elements: 1) the error variance of arrival time estimator at the previous node, 
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, and 2) the error variance of traveling time predictor on arc 
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. This fact indicates that the error variance increases sharply as we estimate the arrival time at the nodes further down on the route. It also implies that as we predict the traveling time in the distant future, the error variance in (70)

 increases abruptly. 

1.3 Partial Routing 

In the previous section, we developed a methodology to estimate the arrival times at nodes of a transportation network. In this section, we will use the estimated arrival times to plan partial routes. The routes are generated such that the error variance of the arrival time at each node of the route is guaranteed to be less than a desired level which is called the service level, hereafter.

Let’s consider graph G as shown in Figure 1, and let r be a route in graph G.

Definition (( efficient route): Let random variable 
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 denote the arrival time at node i taking route r. The route r is said to be ( efficient if the error variance of the arrival time estimator 
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 at all nodes i(r be less than or equal to an arbitrary positive real number (, i.e., 
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It should be noted that the value of 
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 represents the error in estimating the arrival time at each node i. Small values of 
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 implies more confidence in visiting node i at time 
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 taking route r. Therefore, by choosing ( in (71)

, we determine the desired confidence level in visiting node i. In the following, given a network, we use dynamic programming techniques to generate ( efficient partial routes.

1.3.1 Dynamic Programming

Let [image: image296.wmf]:(,)
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. Let the state (S,i) be defined as S(N is an unordered set of visited nodes, and i(S is the last visited node. Associated to each state (S,i) are:

1.  the estimated and error variance (denoted by 
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, respectively) of the arrival time at node i taking the path starting from node {1} passing through every node of S exactly once and ending at node i(S, and
2. a cost denoted by 
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, defined as the cost of traveling on the path described above. 

Definition (acceptable arc): Let the error variance of arrival time at node i(S meet the required service level, i.e., 
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. An arc (i,j)(A is said to be ‘acceptable’ if the error variance of arrival time at node j traveling on arc (i,j) also meets the required service level.

Definition (state extendibility): Let node i(S be the last visited node of the state (S,i). The state S is said to be expandable to node j, j(N and j({S}, if the arc (i,j)(A is ‘acceptable’. 

Having defined a state and state extendibility, we can now use a dynamic programming algorithm to generate partial routes as follows. Let’s assume that the state (S,i) has been generated, i.e., route S is ( efficient. At each state (S,i), the algorithm looks for uncovered nodes j(N and j({S}. Node j will be added to state S, if state S can be extended to node j. Associated with each (S,i) are 
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, the estimate and error variance of arrival time at node j are calculated using equations (70)

. The procedure continues until all ( efficient routes are generated. Note that, in general, a ( efficient route does not cover all nodes in N. That is why we called these routes partial routes.  We define max-desired-level as the maximum number of stops that we need to take into consideration in the plan.(31)

 and 
In order to reduce the computational time, the following elimination test is performed which is called state elimination test. Given generated states (S1,i) and (S2,i), where S1 and S2 cover the same set of nodes in N, state S2 is eliminated if 
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The following is the summary of the dynamic programming algorithm described above.
	Step 1

(Initialization):
	Level l=1, 
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For all extendable nodes i(N/{1} from node {1}:

             1) Generate (S,i): S={1,i}, 

             2) Compute 
[image: image311.wmf]ˆ

S

i

z

, 
[image: image312.wmf](

)

var

S

i

z

%

, 
[image: image313.wmf]S

i

C

 according to (70)

.(31)

 and 

	Step 2:

(During):
	Level l=l+1,

For all states (S,i) at level l-1, 

         Perform state elimination test
         For all extendable nodes j(N/{S} from state (S,i):
1) Generate (S({j},j)
2) Predict the traveling time 
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 using (16)

.(13)

 and 
3) Compute 
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 and 

	Step 3

(Termination):
	If l<max-desired-level and there are still some nodes left to be added to the states go to step 2. Otherwise exit the algorithm, all partial routes have been generated. 


1.4 Moving along the Best Route 

In the previous section, we used dynamic programming techniques to generate all partial routes in a given transportation network. The objective was to find routes for which the error variances of arrival times at their nodes are guaranteed to be less than or equal to a desired level. We called these routes ( efficient partial routes. Recall that to each partial route r, a cost is associated which represents the cost of traveling on the path starting from node {1} passing through every node of r exactly once, in the specified order, and ending at the last node in r. We denote by 
[image: image319.wmf]r

, the cardinality of route r, which indicates the number of nodes in that route. 

Among all ( efficient partial routes generated in Section 3.3, we select a good one to move along. It should be noted that in selecting a partial route, there are multiple, sometimes conflicting, criteria to be considered. For instance, minimum cost partial route could be a criterion. The other criterion could be maximum 
[image: image320.wmf]r

. Note, however, that in a typical network, the minimum cost route would be the one with least number of covered nodes. In other words, the more nodes we visit on a typical partial route, the more cost we endure. 
In this report, we select the partial route with the highest cardinality at least cost. More precisely, we sort all partial routes based on their cardinality. Among those with highest cardinality, we select the one with the lowest cost. Hereafter, this route is called the best partial route and is denoted by r*. The rational for adopting this selection method is to visit more nodes at least cost. 

Note that as we move along the best partial route, updated information of traffic conditions are becoming available. Thus, instead of visiting all nodes on the best partial route, r*, we will visit a predetermined number of nodes on r* before using the updated information. Later, in this report, we will investigate the sensitivity of the solutions to this predetermined number. 

As, we move along the partial routes, we will incorporate the newly available information of the traveling time on arcs and arrival time at nodes into the algorithm given in Section 3.3. That is, the updated information of traveling time is used to correct the filtered estimator in 3.3(13)

. As we reach the last node among the predetermined number of nodes on the best partial route, the updated information of arrival time at that node is used to update the estimate of arrival time and recalculate the error variance of arrival time at other nodes. And finally, a new ( efficient partial routes are generated based on the algorithm provided in Section (17)

 and, consequently, update the predictor in  GOTOBUTTON ZEqnNum646864  \* MERGEFORMAT . This procedure continues until all nodes in the network are visited.

Simulation Experiments

In this section, we perform a variety of simulation experiments on selected transportation networks to evaluate the efficiency of the developed partial routing algorithm and to compare the results of the developed algorithm with the solutions obtained by using the existing vehicle dispatching and routing policies. More precisely, we compare the Partial Routing Algorithm (PRA) with the Nearest Dispatching Algorithm (NDA) and Full Routing Algorithm (FRA). 

In NDA, the vehicle routing policy is very local. At each node, the vehicle is dispatched to the closest uncovered node. To determine the closest uncovered node, the dispatcher uses the most updated traveling costs between the current node and all remaining (not visited) nodes of the network. This algorithm continues until all nodes are visited.

In contrast to NDA, the FRA is a global routing algorithm. In fact, FRA searches for the global minimum. To find the optimal solution, the algorithm needs to have complete information about the traveling costs between all nodes of the network a priori. For a deterministic network, the FRA basically finds the solution for the Traveling Salesman Problem (TSP). The TSP is NP-hard; therefore, any full routing algorithm will be computationally very slow. The FRA, in this report, is developed based on dynamic programming method similar to that described in Section 3.3.1. It should be noted that, in FRA, once the route is planned any changes in the traveling costs would not alter the preplanned route. Therefore, although FDA leads to global minimum in deterministic static networks, the solution may not be a global minimum in dynamic stochastic networks. For dynamic stochastic networks in this report, we will use the expected costs between the nodes of the network in computing the route in FRA. 

In the following, the solutions obtained from NDA, FRA and PRA are evaluated and compared. All algorithms are coded in Matlab 6.5 developed by MathWorks, Inc., and tested on an Intel Pentium 4, 2.2 GHz.

1.5 Simulation scenario 1 (Deterministic routing) 

In this simulation scenario, a deterministic network is considered and the costs of the generated routes by NDA and FRA are compared. Note that PRA cannot be evaluated in deterministic network since equation (19)

 will be undefined. 

Let’s consider a simple transportation network as shown by graph G in Figure 3, which consists of 10 nodes. The solid lines in Figure 3 demonstrate the direct connection between nodes. Numbers adjacent to solid lines indicate the traveling times between each two connected nodes. For instance, the traveling time between nodes {2} and {4} is 24 minutes; and between nodes {3} and {6} is 32 minutes. We assume that graph G is fully connected. Nodes, which are not connected by solid lines, are assumed to be connected via intermediate nodes. Therefore, the traveling time between nodes {2} and {7} in Figure 3 is 42 minutes, which is the shortest traveling time between these two nodes passing through node {4}. 
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For the sake of simplicity, we assume that graph G is symmetric, i.e., the traveling time between nodes i and j is equal to the traveling time between nodes j and i. It should be noted that the proposed algorithm is general and it is not limited to symmetric networks.

Figure 3: Simple transportation network G used in the simulation experiments.

Without loss of generality, we assume that node {1} is the origin node. Table 1 shows the results of using NDA and FRA for finding the best route in the deterministic network illustrated in Figure 3. The cost of traveling on the best route found by each algorithm is given in column 3 in Table 1. We assume that the cost of each route is equal to the traveling time on that route in minutes. Table 1 column 4 presents the CPU time, which is the time in seconds used by each algorithm to obtain the best route. 

Table 1: Comparing NDA and FRA for deterministic networks.

	Algorithm
	Best route found
	Cost of the route [min]
	CPU time [sec]

	NDA
	r={1 2 3 4 7 8 10 9 6 5}
	180
	0.05

	FRA
	r={1 2 5 3 4 6 7 8 10 9}
	163
	90.4


Since the network is deterministic and all information is available in advance, the FRA has found the optimal route. As seen, the FRA is computationally slow since it is an exponential algorithm. Table 1 also shows that the NDA provides a local minimum solution in a very short amount of time.

1.6 Simulation Scenario 2 (Stationary stochastic routing) 

In this simulation scenario, we consider a stationary stochastic network. It is stationary in the sense that the characteristics of the network given by Equations 
(4)

 are independent of time k. Without loss of generality, we assume that the historical changes in the traveling time between nodes i and j, (2)

 to  GOTOBUTTON ZEqnNum668974  \* MERGEFORMAT , at any time is zero. Given the above assumptions, the network characteristics in Equations (4)

 can be rewritten as follows(2)

 to 
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Note that Equations 
(1)

 necessitate the mean traveling time between each two nodes i and j be constant in time equal to its initial value (73)

 together with the dynamic model in (72)

 and  GOTOBUTTON ZEqnNum941631  \* MERGEFORMAT , i.e.,
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Let’s consider graph G given in Figure 3 again, where the numbers adjacent to solid lines are assumed to be the initial value of traveling times, i.e., at time zero. According to (75)

, the mean traveling times at any time k>0 would be equal to its initial value. 
In this simulation experiment, we vary the uncertainties in the transportation network given in Figure 3 to evaluate and compare the impact of increasing uncertainties on the cost of the routes generated by the three routing methodologies: NDA, FRA, and PRA. To measure the uncertainty of the network, we use the concept of coefficient of variation (COV) of each arc. The COV of arc (i,j) is defined by
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Let’s assume that the ratios 
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 for all arcs (i,j) of the network G are constants. Consequently, the COV of all the arcs of the network given by (76)

 are equal which, hereafter, referred to as the COV of the network for the sake of simplicity. 

Table 2 shows the costs of routes generated by the NDA, FRA and PRA when the COV of the stationary stochastic network G in Figure 3 varies. We assume that the cost of each route is equal to the traveling time on that route in minutes. For each simulation experiment, we change the uncertainty (COV) of network G by altering the values of 
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, as shown in Table 2 columns 2, 3, and 4, respectively. 

For each simulation experiment, the network in Figure 3 was generated 25 times using a Guassian random number generator with parameters given by Table 2(75)

. (72)

 to  GOTOBUTTON ZEqnNum941631  \* MERGEFORMAT  shows the average (mean) and the standard deviation (STD) of routing costs based on the results of the 25 trials. Table 2 also compares the CPU time needed by each methodology to generate the best route. 

As discussed earlier, the FRA is an offline preplanning routing algorithm. In this report, the mean travel times on arcs of the network is used for advance routing. Recall from Figure 3(75)

 that we assumed the mean traveling times would be equal to its initial value given in  GOTOBUTTON ZEqnNum588792  \* MERGEFORMAT . Therefore, the best route generated by the FRA for the simulation scenario 1 would be the best route for the simulation scenario 2, too. Thus, the route generated in simulation scenario 1 and given in Table 1 is used here. Given by Table 2 columns 9 and 10 are the mean and STD of the costs of the preplanned route evaluated using the data of the 25 generated simulation trials. Note that, the CPU-time needed to generate the best route for the FRA is the same as that in simulation experiment 1 in Table 1 (i.e., 90.4). Hence, it is not repeated in Table 2.

Table 2 columns 11 and 12 present the mean and standard deviation (STD) of the costs of routes generated by the PRA based on the results of the 25 trials. We assumed the following specifications for the PRA. The sampling time is 5 minutes, the maximum level of route planning is 5; and the maximum number of nodes visited on each partial route is 2.  The maximum level of route planning represents the number of stops that we need to take into consideration in the plan. The maximum number of nodes visited on each partial route is the maximum number of stops the vehicle visits before the route is updated. The last column of Table 2 shows the value of parameter ( in (71)

 used in each simulation experiment. Note that as the COV of the network increases, the error variance of arrival time at each node of the network increases too. Thus, to find good partial routes, we increase the parameter ( as the COV of the network increases.
Table 2: Comparing different routing algorithms in a stationary stochastic network.
	
	
	
	
	NDA
	FRA
	PRA

	
	
	
	
	cost
	CPU time
	cost
	Cost
	CPU time
	

	COV
	 %
	q %
	r %
	Mean
	STD
	Mean
	STD
	Mean
	STD
	Mean
	STD
	Mean
	STD
	

	0.5
	0.25
	0.25
	0.5
	180
	0.19
	0.05
	0.01
	162.9
	0.21
	173
	0.21
	60.7
	0.2
	2

	1
	0.5
	0.5
	1
	180
	0.37
	0.05
	0.01
	163
	0.29
	173
	0.38
	59.1
	1.48
	3

	2
	1
	1
	1
	180.1
	0.72
	0.05
	0.01
	163
	0.95
	172.8
	0.97
	58.9
	0.21
	6

	5
	2.5
	2.5
	1
	180.6
	2.52
	0.05
	0.01
	163
	2.43
	172.5
	2.44
	59.0
	0.1
	15

	10
	5
	5
	2
	179.6
	5.53
	0.05
	0.01
	162.7
	4.95
	170.4
	4.59
	59.1
	0.07
	30

	20
	10
	10
	2
	176
	9.94
	0.05
	0.01
	161.5
	7.2
	168.9
	6.85
	54.4
	0.1
	50

	50
	30
	20
	5
	161.6
	11.96
	0.05
	0.01
	164
	16.9
	159.8
	14.2
	45.2
	0.21
	100

	75
	40
	3.5
	5
	137.8
	24.4
	0.05
	0.01
	163.6
	32.5
	132.8
	21.0
	37.4
	0.75
	125


Table 2 indicates that when the uncertainty (COV) in network G is relatively low (e.g., COV(20), the FRA generates the best route in average. However, as the COV of the network increases other routing methods outperform the FRA. The results in Table 2 signify that for networks with high level of uncertainties (e.g., COV>20) the routes obtained by PRA is the least-cost routes in average. Interestingly, under high level of uncertainties, routes generated by NDA, which is a very local algorithm, excel the optimal solution of the FRA in average. 

Table 2 shows that the NDA provides a route in a very short amount of time, and that the mean CPU time for the PRA to find the best route declines as the COV of the network increases. We have observed that the quality of the solution and the CPU time to find the solution by PRA is very much dependent on the PRA parameters including (. A detailed sensitivity analysis to study the effect of the variation of these parameters on the cost of solution and the CPU time is conducted and presented in the following simulation scenario. 
1.7 Simulation scenario 3 (Sensitivity analysis) 

In this simulation scenario, we investigate the sensitivity of the cost of solutions and CPU time to generate these solutions by the PRA to the changes of its parameters. We consider the Simulation Scenario 2 with a COV of 50. 

Table 3 presents the average cost of routes generated by the PRA when the parameter ( varies from 40 to 160. The table also shows the average CPU-time needed to generate these routes. We still assume that the sampling time is 5 minutes; the maximum level of route planning is 5; and the maximum number of nodes visited on each partial route is 2. Table 3 shows the average of the results of the 25 trials.

Table 3: Sensitivity of the PRA to changes of parameter (.

	
	Cost
	CPU time

	
	Mean
	STD
	Mean
	STD

	40
	160.5
	12.9
	11.9
	0.55

	55
	160.4
	14.7
	17.2
	0.68

	70
	158.7
	16.0
	27.7
	0.60

	85
	158.4
	14.9
	37.0
	0.45

	100
	151.4
	15.1
	43.9
	0.35

	115
	150.1
	15.3
	50.1
	0.28

	130
	150
	15.3
	54.5
	0.42

	145
	150
	15.3
	56.9
	0.35

	160
	150
	15.3
	58.2
	0.26


The results in Table 3 indicate that as parameter ( increases, the PRA generates better routes in average, however, at the cost of increasing CPU-time. Note that, for relatively small value of ( many good routes may be discarded due to (71)

 and will be considered for being selected as a final solution. 
(71)

. As ( increases, more routes satisfy the ( efficiency test in 
As seen from Table 3, having fixed all other parameters of the PRA, there exits a (* which increasing the parameter ( beyond that level, will not improve the quality of the result found for a specific graph G. For the Simulation Scenario 2 with COV=50 and the specified specifications, the (* is about 115.

Table 4 shows the sensitivity analysis of solutions generated by the PRA versus the changes in the maximum level of route planning. In this simulation experiment the maximum level of routing is varied between 2 to 9. We assume that the sampling time is 5 minutes; the maximum number of nodes visited on each partial route is 2; and the parameter ( is 100. Table 4 shows the average of the results of the 25 trials.
Table 4: Sensitivity of the PRA to the changes of the maximum level of routing (MLV).
	
	Cost
	CPU time

	MLV
	Mean
	STD
	Mean
	STD

	2
	160.6
	14.7
	1.8
	0.05

	3
	162.1
	13.2
	7.9
	0.04

	4
	160.2
	15.7
	13.3
	0.07

	5
	151.4
	15.1
	44.2
	0.34

	6
	152
	14.7
	48.9
	0.71

	7
	1152
	14.7
	48.9
	0.72

	8
	152
	14.7
	48.9
	0.72

	9
	152
	14.7
	48.9
	0.73


Table 4 indicates that as the maximum level of route planning increases, the PRA generates better routes in average. With an increment in maximum level, the algorithm, in fact, looks further down the road. In other words, the algorithm behaves more globally than locally, which in turn improves the quality of the obtained solutions. However, this benefit is obtained at the price of dramatically increasing the CPU-time. 

Table 5 presents the impact of changes in the maximum number of nodes visited on each partial route on the quality of the generated routes by the PRA. Here, the maximum number of nodes visited is changed from 1 to 5. We assume that the sampling time is 5 minutes; the maximum level of route planning is 5; and the parameter ( is 100. Table 5 shows the average of the results of the 25 trials.

Table 5: Sensitivity of the PRA to changes in the maximum number of nodes visited on partial route (MN).
	
	Cost
	CPU time

	MN
	Mean
	STD
	Mean
	STD

	1
	150.9
	18.1
	67.2
	0.5

	2
	151.4
	15.1
	44.2
	0.33

	3
	157.4
	16.0
	37.6
	0.11

	4
	160.8
	14.8
	35.0
	0.08

	5
	168.5
	18.6
	34.0
	0.07


As indicated by the results in Table 5, as the maximum number of visited nodes decreases, the PRA generates better routes in average. Note that, with a decrement in this number, the algorithm will look for new routes more frequently, thus correcting and updating the generated solutions based on updated information obtained from the transportation network. Therefore, as the maximum number of visited nodes increases, the CPU-time decreases. 

1.8 Simulation Scenario 4 (Dynamic stochastic routing)

In this simulation scenario, we consider a dynamic stochastic network in order to evaluate the efficiency of the developed algorithm and to compare the solutions generated by the NDA, FRA and PRA when the characteristics of the network change in time. 

Let’s consider graph G shown in Figure 3. We assume that the numbers adjacent to arc (i,j) are the initial value of traveling times on that arc, i.e., 
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 is selected in such a way that the traveling time on arc (i,j) has a sinusoidal-like wave form as shown in  GOTOBUTTON ZEqnNum668974  \* MERGEFORMAT . To measure the dynamism of the network, we use the concept of degree of dynamism (DOD) of each arc. For the sinusoidal-like mean travel time given in Figure 4, the DOD of arc (i,j) when 
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We assume that the DOD of all arcs of the network G are equal which, hereafter, referred to as the DOD of the network. In Figure 4 the DOD of the network G is denoted by (. 
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Figure 4: The assumed mean travel time on arc (i,j) when (ij(k) and qij(k) are zero. 

In this simulation scenario, after determining the values of 
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, we consider the following characteristics for the network parameters. We assume that the ratios 
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 are constants. These ratios are denoted by (, q, and r, respectively, hereafter. 
In this simulation scenario, we vary the uncertainties (i.e., (, q, and r) and the degree of dynamism (i.e., ( in Figure 4) in the transportation network given in Figure 3 to evaluate and compare the cost of the solutions generated by the three routing methodologies: NDA, FRA, and PRA. Table 6 summarizes and compares the cost of the routes generated by the NDA, FRA and PRA for the dynamic stochastic network G in Figure 3. For each simulation experiment, the network in Figure 3 was generated 25 times using a Guassian random number generator. Note that the cost of the routes presented in Table 6 is equal to the traveling time on those routes in minutes. Table 6 also compares the CPU time needed by each methodology to generate the best route. 

To generate the best route using FRA, the initial traveling times and the mean historical traveling times on arcs are used. These parameters are both available offline. Table 6 column 11 shows the CPU-time needed to generate the best route for the FRA when ( is varied. Note that, the FRA is an offline algorithm. Therefore, once the best route was generated it was used for all 25 experimental trials, and, thus, column 12 is left blank. 

The “actual” traveling time for a FRA generated route was, however, evaluated at every simulation trial. Table 6 columns 9 and 10 show the mean and standard deviation (STD) of the costs of the preplanned route evaluated using the data of the 25 generated simulation trials. 

Table 6 columns 13 and 14 present the mean and STD of the costs of the routes generated by the PRA based on the results of the 25 trials. We assumed that the sampling time is 5 minutes; the maximum level of route planning is 5; and the maximum number of nodes visited on each partial route is 2. The last column in Table 6 shows the value of parameter ( in (71)

 assumed in each simulation experiment.
Table 6: Comparing different routing algorithms in a dynamic stochastic network.
	
	
	
	
	NDA
	FRA
	PRA

	
	
	
	
	cost
	CPU time
	cost
	CPU time
	cost
	CPU time
	

	
	 %
	q %
	r %
	Mean
	STD
	Mean
	STD
	Mean
	STD
	Mean
	STD
	Mean
	STD
	Mean
	STD
	

	0
	0.1
	0.1
	0.1
	180
	0.06
	0.05
	0.01
	163
	0.07
	94.8
	(
	173
	0.06
	60.3
	0.38
	2

	0
	1
	1
	1
	180.1
	0.43
	0.05
	0.01
	163.1
	0.51
	92.7
	(
	173.1
	0.47
	60.1
	0.37
	6

	0
	10
	10
	2
	178.9
	6.7
	0.05
	0.01
	163.4
	5.3
	93.1
	(
	171.4
	4.6
	60.5
	0.11
	50

	0
	20
	20
	5
	171
	13
	0.05
	0.01
	163.7
	14.2
	92.6
	(
	165.6
	7.71
	60.3
	0.06
	100

	0
	40
	40
	5
	158.6
	17.6
	0.05
	0.01
	162.8
	16
	92.8
	(
	148.6
	14.7
	58.9
	0.07
	125

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	5
	0.1
	0.1
	0.1
	183.1
	0.05
	0.05
	0.01
	166.3
	0.05
	94.1
	(
	176.5
	0.05
	65.9
	8.7
	2

	5
	1
	1
	1
	183.2
	0.5
	0.05
	0.01
	166.2
	0.7
	93.2
	(
	176.3
	0.6
	62.7
	0.3
	6

	5
	10
	10
	2
	185.1
	6
	0.05
	0.01
	167.9
	5.4
	93.1
	(
	174.3
	5.3
	62.3
	0.5
	50

	5
	20
	20
	5
	172.5
	10.6
	0.05
	0.01
	167.5
	9.6
	92.6
	(
	170.2
	8.6
	61.8
	0.1
	100

	5
	40
	40
	5
	160.2
	21
	0.05
	0.01
	162
	23.3
	92.5
	(
	149.4
	13.3
	52.8
	0.11
	125

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	10
	0.1
	0.1
	0.1
	186.1
	0.04
	0.05
	0.01
	169.4
	0.04
	92.3
	(
	179.5
	0.05
	62.5
	0.41
	2

	10
	1
	1
	1
	186.2
	0.4
	0.05
	0.01
	169.7
	0.5
	92.6
	(
	179.6
	0.6
	62.5
	0.7
	6

	10
	10
	10
	2
	186.2
	9.03
	0.05
	0.01
	169.3
	6.65
	92.7
	(
	177
	3.7
	59.2
	0.05
	50

	10
	20
	20
	5
	176.4
	11.3
	0.05
	0.01
	171.5
	11.5
	92.7
	(
	169
	9.5
	59.3
	0.5
	100

	10
	40
	40
	5
	166.8
	15.7
	0.05
	0.01
	172.2
	23.3
	92.3
	(
	161.8
	16.3
	45.4
	0.3
	125

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	25
	0.1
	0.1
	0.1
	192.2
	0.07
	0.05
	0.01
	176.2
	0.07
	92.8
	(
	186.2
	0.05
	62.1
	0.21
	5

	25
	1
	1
	1
	192
	0.6
	0.05
	0.01
	176.2
	0.5
	92.2
	(
	186.3
	0.4
	60.4
	1.3
	15

	25
	10
	10
	2
	193.2
	6.6
	0.05
	0.01
	176.7
	6.3
	92.3
	(
	185.4
	6.1
	55.1
	0.1
	75

	25
	20
	20
	5
	187.2
	10.2
	0.05
	0.01
	170.8
	12.1
	92.2
	(
	174.9
	11.03
	54.6
	0.13
	150

	25
	40
	40
	5
	172.7
	22.8
	0.05
	0.01
	175.9
	22.8
	92.1
	(
	165.2
	18.2
	46.3
	0.2
	250

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	50
	0.1
	0.1
	0.1
	199.1
	0.06
	0.05
	0.01
	183.6
	0.06
	91.7
	(
	194.2
	0.06
	61.1
	0.3
	5

	50
	1
	1
	1
	199.1
	0.6
	0.05
	0.01
	183.7
	0.75
	91.5
	(
	194.3
	0.6
	52.7
	0.18
	15

	50
	10
	10
	2
	197.5
	6.7
	0.05
	0.01
	181.9
	6.1
	91.5
	(
	190.3
	8.8
	41.2
	0.1
	75

	50
	20
	20
	5
	187.3
	14.5
	0.05
	0.01
	180.5
	9.03
	91.3
	(
	184.4
	10.8
	40.2
	0.15
	150

	50
	40
	40
	5
	177.8
	22.6
	0.05
	0.01
	192.1
	31.1
	91.1
	(
	170.1
	5.8
	39.9
	0.4
	300


Table 6 shows that for dynamic networks when the uncertainty is relatively low, the FRA generates the best route, whereas when the uncertainty is high, the routes obtained by PRA outperform other routes in average. As seen from Table 6, for networks with high dynamism and uncertainties, the variation in the best route (STD) found by the PRA is relatively low compared to routes generated by the NDA and FDA. In other words, not only do the routes generated by the PRA cost less, in average, but also we have more confidence in taking these routes. 

Results in Table 6 also indicate that for high dynamic networks, the quality of solutions generated by PRA is significantly sensitive to the parameters (. To obtain better solutions, we had to increase the parameter ( for the last two sets of simulation experiments (i.e., (=25% and (=50%). Similar to Table 2, we can see that computationally the NDA obtains  the solution in a very short amount of time, and that CPU time for the PRA to find the best route declines as the uncertainties and degree of dynamisms of the network increases. 

Conclusions and Recommendations

The transportation industry, like many others, has undergone significant change in the last few years through the introduction of information technologies. Whereas in the past, it was difficult for a company to control or route vehicles once they left the terminal, these technologies make accurate dynamic real-time routing a very real possibility. Most of the existing routing strategies operate under one of the two modes: (1) pre-planned full routes when the level of uncertainty is low, and (2) local dispatching strategy when the level of uncertainty is high. There is lack of approaches for addressing the routing when the level of uncertainty is in between the two ends of the spectrum. To address this gap, we developed a partial routing strategy that preplans a portion of the demand and makes adjustments in real-time. Experimental results demonstrated the benefits of the partial routing strategy over the other two methods for a wide variety of scenarios.  

Two factors that control the effectiveness of the partial routing strategy are (1) the maximum level of route planning which represents the number of stops that we need to take into consideration in the plan, and (2) the maximum number of nodes visited on each partial route which is the number of stops the vehicle visits before the route is updated. Future research can focus on developing models to optimize these two variables. 

Implementation

Most of the hardware components required for the developed partial routing algorithms are already available in the market place. They include wireless communication devices used for dispatching vehicles, automatic vehicle locator for monitoring the vehicles, traveler information system to provide actual road conditions, a server to continuously run the algorithm, and mobile data terminals in the vehicles so that route data can be automatically sent via a data dispatcher to the vehicles. In terms of the software, the partial routing algorithm needs to be coded as a module in existing vehicle routing software. The algorithm will need to access the data collected from the vehicles regarding location and system status regarding actual road conditions. 
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� Federal Highway Administration defines congestion as when an Interstate highway exceeds 13,000 vehicles per-lane-mile daily, or 5,000 vehicles per-lane-mile on principal arteries.
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