

Improving the Estimation of Travel Demand for Traffic
Simulation: Part II

Final Report

Yao Wu
 Gary Davis

 David Levinson
Department of Civil Engineering

University of Minnesota

CTS 04-11

Technical Report Documentation Page
1. Report No. 2. 3. Recipients Accession No.

CTS 04-11
4. Title and Subtitle 5. Report Date

December 2004
6.

Improving the Estimation of Travel Demand for Traffic Simulation:
Part II

7. Author(s) 8. Performing Organization Report No.

Yao Wu, Gary Davis, David Levinson

9. Performing Organization Name and Address 10. Project/Task/Work Unit No.

11. Contract (C) or Grant (G) No.

University of Minnesota
Department of Civil Engineering
500 Pillsbury Drive S.E.
Minneapolis, MN 55455-0116

12. Sponsoring Organization Name and Address 13. Type of Report and Period Covered

Final Report

14. Sponsoring Agency Code

Intelligent Transportation Systems Institute
University of Minnesota Center for Transportation Studies
511 Washington Avenue SE, Suite 200
Minneapolis, MN 55455

15. Supplementary Notes

www.cts.umn.edu/pdf/CTS-04-11Part2.pdf
16. Abstract (Limit: 200 words)

This report examined several methods for estimating Origin-Destination (OD) matrices for
freeways using loop detector data. Least squares based methods were compared in terms of
both off-line and on-line estimation. Simulated data and observed data were used for
evaluating the static and recursive estimators. For off-line estimation, four fully constrained
least squares methods were compared. The results showed that the variations of a constrained
least squares approach produced more efficient estimates. For on-line estimation, two
recursive least squares algorithms were examined. The first method extends Kalman Filtering
to satisfy the natural constraints of the OD split parameters. The second was developed from
sequential quadratic programming. These algorithms showed different capabilities to capture
an abrupt change in the split parameters. Practical recommendations of the choice of different
algorithms are given.

17. Document Analysis/Descriptors 18.Availability Statement

Algorithms
Travel demand
Traffic simulation

Origin-Destination (OD)
Loop detector

No restrictions. Document available
from: National Technical Information
Services, Springfield, Virginia 22161

19. Security Class (this report) 20. Security Class (this page) 21. No. of Pages 22. Price

Unclassified Unclassified 95

Improving the Estimation of Travel Demand for Traffic
Simulation: Part II

Final Report

Prepared by:
Yao Wu

Gary Davis
David Levinson

Department of Civil Engineering
University of Minnesota

December 2004

Intelligent Transportation Systems Institute
University of Minnesota

CTS 04-11

Table of Contents

CHAPTER 1. INTRODUCTION...1
CHAPTER 2. ESTIMATING OD MATRICES FROM TRAFFIC COUNTS..........3
2.1 Introduction..3
2.2 Categorization..3
2.2.1 Under-specification..3
2.2.2 Over-specification..5
2.3 Review of Methodologies...5
2.3.1 Under-specification..5
2.3.2 Over-specification..6
2.4 Simulation and Optimization Method..8
2.4.1 Introduction..8
2.4.2 Methodology..8
2.4.3 A Simple Test Network..11
2.5 Advantage of the Linear Model...13
CHAPTER 3. OFF-LINE ESTIMATION..15
3.1 Introduction...15
3.2 Description of Least Squares Based Methods...15
3.2.1 Constrained Least Squares (CLS)..15
3.2.2 Weighted Constrained Least Squares (WCLS)..16
3.2.3 Constrained Least Squares With Time-Lagging (TCLS)...16
3.2.4 DelftOD..17
3.3 Description of data sets..18
3.3.1 A Simple 2x2 Network...18
3.3.2 Real Network..18
3.4 Evaluation Criteria...21
3.4.1 Measures of Bias and Comparative Efficiency...21
3.4.2 Measure of Forecast Uncertainty..22
3.5 Results..23
3.5.1 The 2 by 2 Network..23
3.5.2 TH-169...25
3.5.2.1 Data set 1...25
3.5.2.2 Data set 2...26
3.5.2.3 Data set 3...27
3.6 Conclusion...28

CHAPTER 4. ON-LINE ESTIMATION...29
4.1 Introduction..29
4.2 Description of Methodologies...29
4.2.1 Recursive Least Squares via Kalman Filtering..29
4.2.2 Recursive Sequential Quadratic Programming..32
4.3 Description of Data Sets..35
4.3.1 The Simple 2 by 2 Network...35
4.3.2 TH-169 Network..37
4.4 Results..38
4.4.1 The 2 by 2 Network..38
4.4.1.1 Kalman Filter Results..38
4.4.1.2 RSQP Results..38
4.4.1.3 Comparison with the off- line results...39
4.4.2 TH-169...40
4.4.2.1 Kalman Filter Results...40
4.4.2.2 RSQP Results...40
4.5 Conclusions..40
CHAPTER 5. CONCLUSIONS..41

REFERENCES ..42

APPENDIX A: OFF- LINE ESTIMATION RESULTS ...A-1

APPENDIX B ON -LINE ESTIMATION RESULTS ..B-1

APPENDIX C SOURCE CODE..C-1
A. CLS Matlab Script...C-1
B. Fortran Code of Data Generation for TCLS..C-4
C.Fortran Code for Recursive Least Squares via Kalman Filtering....................C-10
D. Matlab Script for Sequential Quadratic Programming......................................C-17

LIST OF FIGURES

Figure 2.1 A simple network...4
Figure 2.2 Flow diagram for simulation and optimization algorithm.................................10
Figure 2.3 A two-origin two-destination simulated network...11
Figure 2.4 Objective function values generated from AIMSUN...13
Figure 2.5 Objective function values using the linear model...14
Figure 3.1 Real network of TH-169...19
Figure 3.2 Geometry of the tested segment of TH-169..20
Figure 3.3 A simple network..22
Figure 4.1 Finite-dimensional linear system serving as signal model..................................29
Figure 4.2 Flow diagram for active set algorithm..35
Figure B.1 Results of RLS for the simulated network with data sets 1 and 3......................B-1
Figure B.2 Results of RLS for the simulated network with data sets 2 and 4......................B-2
Figure B.3 Results of SQP for the simulated network with data sets 1 and 3......................B-3
Figure B.4 Results of SQP for the simulated network with data sets 2 and 4......................B-4
Figure B.5 Results of RLS for TH- 169 with data set 1 (1)...B-5
Figure B.6 Results of RLS for TH- 169 with data set 1 (2)...B-6
Figure B.7 Results of RLS for TH- 169 with data set 2...B-7
Figure B.8 Results of RLS for TH- 169 with data set 4...B-8
Figure B.9 Results of SQP for TH- 169 on data set 1 (1)...B-9
Figure B.10 Results of SQP for TH- 169 on data set 1 (2)...B-10
Figure B.11 Results for SQP on TH- 169 with data set 2..B-11
Figure B.12 Results for SQP on TH- 169 with data set 4..B-12

LIST OF TABLES

Table 2.1 Two OD matrices..4
Table 2.2 OD estimates for the simulated network...12
Table 3.3.1 Assumed Flow-rates for origins...18
Table 3.2 An estimated OD matrix for the simple network..23
Table 3.3 Results of 2-origin 2-destination network...24
Table 3.4 Measures of bias and efficiency fo r data set 1...25
Table 3.5 Measures of forecast uncertainty for data set 1..26
Table 3.6 Measures of bias and efficiency for data set 2...26
Table 3.7 Measures of forecast uncertainty for data set 2..27
Table 3.8 Measures of efficiency for data set 3..27
Table 3.9 Measures of forecast uncertainty for data set 3..28
Table 4.1 Assumed OD matrix with an abrupt change for simulated network....................36
Table 4.2 Description of data sets..36
Table 4.3 Assumed OD matrix with an abrupt change for TH-169.....................................37
Table 4.4 Comparison of on- line and off- line estimates..39
Table A.1 Data set 1 (DelftOD)...A-1
Table A.2 Data set 1 (WCLS)..A-2
Table A.3 Data set 1 (CLS)..A-3
Table A.4 Data set 2 (DelftOD)...A-4
Table A.5 Data set 2 (TCLS)...A-5
Table A.6 Data set 2 (WCLS)..A-6
Table A.7 Data set 2 (CLS)..A-7
Table A.8 Data set 3 (DelftOD)...A-8
Table A.9 Data set 1 (TCLS)...A-9
Table A.10 Data set 3 (WCLS)..A-10
Table A.11 Data set 3 (CLS)..A-11

Executive Summary

This report examined several methods for estimating Origin-Destination (OD) matrices
for freeways using loop detector data. Least squares based methods were compared in
terms of both off- line and on- line estimation. Simulated data and observed data were used
for evaluating the static and recursive estimators. For off- line estimation, four fully
constrained least squares methods were compared. The results showed that the variations
of a constrained least squares approach produced more efficient estimates. For on- line
estimation, two recursive least squares algorithms were examined. The first method
extends Kalman Filtering to satisfy the natural constraints of the OD split parameters.
The second was developed from sequential quadratic programming. These algorithms
showed different capabilities to capture an abrupt change in the split parameters. Practical
recommendations of the choice of different algorithms are given.

 1

CHAPTER 1. INTRODUCTION
Traffic congestion is an increasingly serious problem for many of the world’s urban
areas. In the United States, the number of automobiles and light trucks grew by 86%
between 1970 and 1995, while the amount of passenger miles traveled grew by 49%, both
of which contributed to worsening congestion on metropolitan freeways (Bureau of
Transportation Statistics, 1997). The strategies for congestion relief generally fall under
two classifications: supply strategies and demand strategies.

Supply strategies add to the system capacity, including the development of new or
expanded infrastructure, so that the demand is better satisfied or the efficiency of the
existing system is improved. Demand strategies aim to reduce or at least redistribute the
travel demand. The measures in the category include increasing taxes and other
transportation expenses such as congestion pricing, parking pricing, and promoting car-
pooling and mass transit.

Intelligent Transportation Systems (ITS), which include Advanced Traffic
Management Systems (ATMS), Advanced Traveler Information Systems (ATIS), and
Automated Vehicle Control Systems (AVCS) are designed to make more efficient use of
existing highway capacity by managing and controlling traffic flow with real- time traffic
information. ITS strategies provide both supply and demand measures. The supply type
of ITS include optimized signal operation using real-time measures of demand, incident
detection and resolution, freeway management with ramp metering, and accident
avoidance with variable message signs warning of upcoming conditions. Demand-type
ITS measures include the provision of real-time traffic congestion information to support
informed individual travel decisions (Papacostas and Prevedouros, 2001).

The successful implementation of ITS strategies not only depends on the
availability of high-quality real-time information about traffic conditions, but also on
prediction models in order to anticipate the response to the proposed traffic management
actions. These practical models should be able to describe the interaction between travel
demand and traffic flow phenomena. Since most traffic models use an origin-destination
(O-D) matrix as the basic description of travel demand, it is necessary to generate
estimates of OD matrices. Travel demand estimation is an essential input for all traffic
management plans. Especially under emergency conditions such as accidents, travel
demands are indispensable information for deciding how to re-route traffic. The
advantage of using an OD matrix is that it not only indicates travel demand but also
provides information about the direction of demand. Accurate and fast O-D trip table
generation techniques are needed to implement on- line control strategies of ITS.

Traditional methods of acquiring OD matrices include license plate studies and a
combination of home interview and roadside surveys. However, because these
approaches are expensive, time-consuming, and labor demanding, they are excluded from
wide-range application. Another disadvantage of traditional methods is that the obtained
OD matrix is not dynamic and thus cannot be updated over time. This is not a desirable
feature for on- line control applications.

In the recent two decades, because of the availability of the data collected by
traffic surveillance systems, more attention has been given to estimating OD matrices
from traffic counts that are readily available. It is hoped that the availability of time-
series data of traffic counts will produce OD estimators that have desirable statistical

 2

properties such as consistency, efficiency, and the ability to track changes in the OD
patterns.

For general networks, because multiple routes connect each OD pair, the problem
of OD estimation can be complicated. However, the problem is simplified when one
considers linear networks, such as single intersections and freeway segments, where each
origin and destination are connected by, at most, one route. Since urban freeways carry a
large fraction of total urban travel, it is not surprising that estimation of freeway OD
patterns has been receiving increased attention. The OD pattern can be inferred from the
available time-series data of on-ramp, off-ramp, and mainline traffic counts (Yu and
Davis, 1994).

The rest of the report is organized as follows. Chapter 2 provides a literature
review of the existing OD estimation methods, followed by a description of a simulation
and optimization method and its initial application on a simple network. Chapter 3
compares the performances of four least squares-based off- line estimation algorithms.
Chapter 4 compares two on- line estimation methods. Chapter 5 then draws the
conclusions and makes practical recommendations.

 3

CHAPTER 2. Estimating OD matrices from traffic counts

2.1 Introduction

An Origin Destination (OD) matrix is a two dimensional array of elements whose values
represent the travel demand between each given origin and destination. Travelers select
routes connecting an origin to a destination and when they travel these routes, traffic
volumes are generated on links of the network, which can be measured by detectors. In
principle, traffic counts provide information about the underlying OD matrix that
generated them, and it should be possible to estimate the OD matrix from a suitably rich
set of counts.

The origins and destinations have somewhat different meanings under different
scenarios. For a general network such as an urban area, it is usual to subdivide it into
relatively homogeneous zones, using socioeconomic data and land use information.
Therefore, for an urban area, the origins and destinations of an OD matrix are the traffic
analysis zones. However, multiple routes exist from an origin zone to a destination zone
and travelers have to choose one route connecting the origin and the destination. In the
estimation procedure, this route choice has to be explicitly modeled, which complicates
the problem. However, for a simple linear network, such as a freeway segment, the
origins and destinations are the on-ramps and off-ramps respectively, and there is only
one route connecting each OD pair. Therefore, the estimation of OD matrices for
freeways is an especially simple case of the estimation for general networks. In this
report, we focus on the estimation of OD matrices for freeways.

2.2 Categorization

Depending on the data availability, the existing OD estimation methods generally
fall into two categories: under-specified and over-specified approaches.

2.2.1 Under-specification

This type of approach is most common when only one set of traffic counts is
available. A simple network with a single set of observed link volumes is illustrated in
Figure 2.1, in which zones 1 and 2 are origins and zones 3 and 4 are destinations. The
numbers on the links represent traffic counts. As shown in Table 2.1, either of the two
matrices can reproduce the observed link volumes, so the traffic volumes do not uniquely
determine the OD matrix.

 4

Figure 2.1 A simple network

O\D 3 4 O\D 3 4
1 0 100 1 50 50
2 100 100

2 50 150

 Table 2.1 Two OD matrices

The explanation for more than one solution for this network is that the number of
OD variables, which is four, is greater than the number of independent constraints, which
is only three, as shown in (2.1), where xij represents the traffic volume from origin i to
destination j. Therefore, the system is under-specified and there are actually many OD
matrices that can exactly reproduce the observed traffic counts.

x13 + x14 = 100

x23 + x24 = 200

x13 + x23 = 100









 (2.1)

For real networks such as the Twin Cities seven-county metropolitan area, similar
problems exist. The number of Transportation Analysis Zones (TAZ) is 1165. Therefore,
the dimension of the OD matrices to be estimated is 1165x1165, which is approximately
1.36 million. Unfortunately, the number of links is much smaller, of the order 104. A
single set of traffic counts simply cannot produce a unique solution so that methodologies
in this category need additional assumptions to find a solution. Generally, this involves
first selecting a prior estimate for the OD matrix and then selecting as an estimate the
matrix that reproduces the traffic counts while being closest in some sense to the prior
estimate.

5 6

3

4

1

2

100

100

200

100

100

100

 5

2.2.2 Over-specification

When time-series of traffic counts are available from automatic surveillance and
control systems, we can have constraints for each time slice. If we assume that the OD
parameters are strictly constant, then we can write equations such as (2.1) for each time
interval. When the number of equations is larger than the number of parameters, the
problem becomes over-determined, and generally no single matrix will exactly reproduce
the traffic counts. However, a unique solution can be obtained by choosing the one that
most closely matches the observations.

2.3 Review of Methodologies

2.3.1 Under-specification

The estimation of OD matrices from traffic counts dates back to the 1970s. The
earliest methodologies use traffic counts from a single observation period as the basic
information. However, as discussed above, since these counts are not sufficient to
determine the matrix of OD flows, additional assumptions and a priori information are
needed to lead to a unique solution. Willis and May (1981) give a review of these
methods.

Gur and Turnquist (1979) formulated OD estimation as a nonlinear programming
problem by trying to minimize the system travel time subject to constraints that observed
travel times and link volumes correspond to those consistent with Wardrop’s second
principle. An iterative algorithm gave a unique solution for this problem, given an initial
OD matrix and the travel time function for each link. However, in the absence of an
efficient cooperation mechanism and the symmetric information among drivers, the
assumption of the network equilibrium was dubious. In addition, the dependence on the
initial trip matrix may lead to poor estimates if the initial matrix was poor.

Van Zuylen and Willumsen (1979) developed two procedures that are
representative of the under-specification methods: information minimization and entropy
maximization. The underlying rationale for the information minimization method is that
one should select a matrix by adding as little information as possible when the available
information from traffic counts is insufficient to determine the OD matrix. The entropy
maximization method is based on the assumption that the most likely OD trip matrix has
the greatest number of associated micro-states. For example, the number of ways to
choose an OD matrix Xij with a total number of trips N is:

∏

=

ij
ij

ij
X

NXW !}{ (2.2)

and the maximum entropy estimate maximizes W. Although the result of this method has
the same multi-proportional form as that of the information minimization method, the
entropy-maximization demanded less computational effort and appeared to produce

 6

estimates closer to the observed matrix. Instead of forcing the OD matrix to follow the
gravity pattern as in Gur et al. (1978), these two methodologies make full use of the
information contained in the traffic counts. They are particularly useful because no travel
behavior assumption is made in these approaches. However, the need for an additional
“prior” matrix to obtain reasonable results makes it necessary to collect a considerable
amount of data besides traffic counts. Furthermore, since the prior information tended to
dominate the results, the accuracy of the estimate depends on the choice of the initial
solution.

Maher (1983) suggested a method based on Bayesian statistical inference. Instead
of starting with a point estimate, he introduced a distribution over possible initial
estimates, in order to represent the degree belief in these prior possibilities. A posterior
distribution over the possibilities was then produced from the prior distribution and
observations using Bayes Theorem. Although this proposed method allows flexibility in
the degree of belief on the prior estimate, this value still needs to be chosen in practice. In
addition, the assumption of the multivariate normal distribution only holds when the
traffic volume is large enough, so that application to low-volume networks is limited.

Cascetta (1984) developed a generalized least squares estimator, or Atiken
estimator of the OD matrix from “director or model” estimators and traffic counts. The
director or model estimates here are essentially the same as the initial estimates in the
above methods, and the estimator minimizes the distance to the starting estimates. Similar
to the Bayes estimator proposed by Maher (1983), a dispersion matrix for the initial
estimate should be identified prior to the estimation, which determines the accuracy of
obtained estimates. However, the difference is that the Atiken estimator does not require
distribution assumptions. Hendrickson and McNeil (1984) described a similar least
squares estimator, but the dependence on initial estimates remained a problem.

2.3.2 Over-specified

In this section, the emphasis will be on static methods that are used for simple
linear networks, such as intersections and freeways. The first publication on this subject
was by Cremer and Keller (1983), and they used split parameters to represent an OD
matrix. As shown in (2.3), the split parameter bij is the probability that a vehicle entering
at origin i is destined for destination j. The linear traffic assignment model they proposed
was originally applied to intersections. However, it can also be applied to fr eeway
segments if the travel time for an OD pair ij is short compared to the duration of the
counting interval. The predicted off- ramp count can be produced as:

y$ j (t) = qi (t) * bij

i
∑ (2.3)

where)(ˆ ty j is the predicted traffic count at off-ramp j during time interval t, j=1, . . . ,n;

)(tqi is the observed traffic count at on-ramp i during time interval t, i=1, . . . , m;

 7

ijb is the probability that a vehicle entering at i is destined for exit j.

The split parameters bij are also subject to the inequality and equality constraints.

 10 ≤≤ ijb for all i, j (2.4a)

 1=∑
j

ijb for all i (2.4b)

A wide range of estimation techniques has been employed to solve this problem,
such as parameter optimization techniques like least squares and constrained optimization
and statistically based techniques like maximum likelihood estimation. Constrained Least
Squares was suggested by Cremer and Keller (1983) and Nihan and Davis (1987). To
illustrate this methodology, a freeway system is used as an example. It is assumed that
OD variables are time- invariant. Because traffic counts for multiple time slices are
available, the number of equations is greater than the number of variables. As a result, the
problem is identified as over-specified. CLS estimates can be obtained by minimizing the
sum of squared errors (2.5) subject to the constraints in equations (2.4a) and (2.4b).

f = [y$ j (t) − y j (t)]

2

j
∑

t
∑ (2.5)

The advantage of this method is that it leads to a unique solution that does not
depend on the initial solution. This is a great improvement over the under-determined
methodologies. However, it is not ideal for the estimation of OD matrices. Constrained
least squares estimation originated from estimating turning proportions at an intersection,
where an OD variable is equivalent to a turning proportion. In contrast, travel times
between freeway origins and destinations vary both as functions of the distance and
intervening traffic conditions, and can span several time intervals. As a result, off- ramp
counts are always a mixture of the on-ramp counts from different time slices because of
the platoon-dispersion effects.

Bell (1991) considered platoon dispersion effects. For a freeway, the exit volume
is a mixture of the entry volumes because of the platoon dispersion effect. If all the
vehicles can travel through the freeway in k intervals, then it is assumed that there are k
OD matrices according to the k time intervals. For example, if the fastest vehicle reaches
the exit within 1 interval and the slowest vehicle reaches the exit within k intervals, the
predicted off-ramp count can be specified as:

)1()1()(ˆ 21 ktqbtqbtqby iki
i

ij ijijij −+++−+= ∑ L (2.6)

 10 ≤≤
ijkb (2.7a)

 8

 1=∑∑
j k

kij
b (2.7b)

where b1, b2, . . . , bk are the split parameters for time interval t, t-1 and, . . . , t-k
respectively.

The objective function we want to minimize is the same as that in the constrained
least squares method except a discounting factor is taken into consideration. The
parameters to be estimated are k OD matrices with the constraints specified in equations
(2.7a) and (2.7b). Instead of estimating mn variables, Bell’s method estimates k*mn
variables.

2.4 Simulation and Optimization Method

2.4.1 Introduction

In practice, we may need to take into consideration travel time lags between OD
pairs on freeway segments. One possible solution is to replace the simple linear traffic
assignment model with a traffic flow simulator. A simulation and optimization method
was initially proposed by Yu and Davis (1994). This methodology contained two main
components: the simulator and the optimization routine. The simulator replaced the linear
traffic model (2.3), and the optimization routine was designed to find an optimal solution
that minimizes the objective function in equation (2.5). The simulator used in Yu and
Davis (1994) was the Stochastic Macroscopic Simulator (STOMAC) and the
optimization routine was a quasi-Newton optimization routine. In every iteration of the
optimization routine, STOMAC generated traffic counts that were used to calculate the
sum of squared errors. The optimization routine then changed the estimates so as to
reduce the objective function value. This process ran iteratively until a convergence
criterion was met. The performance of this Nonlinear Least Squares (NLS) method was
compared with the other three methodologies based on the linear model (Ordinary Least
Squares, Expectation-Maximization, and Constrained Approximate Maximum
Likelihood) and it was concluded that NLS was the best choice.

2.4.2 Methodology

In this study, the simulation and optimization methodology was implemented as a
first try. The focus is on estimating the OD split parameters for the freeway segments.
The simulator employed was AIMSUN, and the optimization routine was the Neld-Mead
Method.

AIMSUN (Advanced Interactive Microscopic Simulator for Urban and Non-
Urban Network) is a microscopic simulator that can deal with different traffic networks.
The behavior of each vehicle in the network is continuously modeled in the simulation
period according to a car-following and lane-changing model. The simulator serves as a
complicated traffic model, which can be used to predict the off- ramp counts, given a set

 9

of on-ramp counts and an OD matrix. The objective function (2.8) is the weighted sum of
the squared difference between the actual and simulated off-ramp counts. The weight
assigned to an off-ramp is the inverse of the standard deviation of the observed counts of
that off-ramp. Therefore, the off-ramps that have less traffic volumes are assigned larger
weights.

 ∑∑
= =

−=
m

i

n

j
ijiji yyf

1 1

2)ˆ(ω

(2.8)

The Nelder-Mead method or the downhill simplex method is a non-gradient
method for multidimensional minimization. It was employed to minimize the objective
function.

For these tests, the OD matrix was assumed to be constant over time. In order to
measure the effectiveness of the algorithm, a true OD matrix has to be available to be
compared with the estimates. Since the true OD matrix for a real network is usually
unknown, simulated data sets were used for the estimation.

The flow chart (Figure 2.2) describes the main steps of the implementation of this
method.

1. Starting with an initial estimate and the onramp counts, these are
converted to the trip table in a form that can be read by AIMSUN.

2. Then the AIMSUN console version is called to generate predicted off-
ramp counts and then the objective function value (2.8) is calculated.

3. This value is compared to that of the previous run and if the convergence
is achieved, then the solution of a locally optimal OD matrix is obtained.
Otherwise, the Nelder-Mead updating routine is called, the OD matrix is
updated, and the whole process is repeated .

 10

Figure 2.2 Flow diagram for simulation and optimization algorithm

Initial solution Onramp counts

Trip Table

Call Aimsun2 console version

Calculate F-value

Converge?

Y

N

O\D 1 2 … n
1 b11 b12 … b1n
2 0 b22 … b2n
… 0 0 … …
m 0 0 0 bmn

Estimated OD Matrix

Update OD
matrix estimate

 11

2.4.3 A Simple Test Network

Figure 2.3 A Two-Origin Two-Destination Simulated Network

As shown in Figure 2.3, the test network has two origins and two destinations. A
true OD matrix and three hours of five-minute on-ramp counts were assumed in advance,
and are shown in Table 2.2. The network was coded into AIMSUN and off-ramp counts
were generated using the assumed OD matrix and the on-ramp counts.

Like most numerical optimization methods, Nelder-Mead requires an initial
estimate to start; three initial solutions were tested for this simulated network.

1. The equally split matrix assumes that all the destinations attract the same
 proportion of traffic.
2. The proportional OD matrix assumes that the OD split parameter is

proportional to the traffic that the corresponding destination attracted.
3. The initial matrix is generated from an iterative method described in Willis

and May (1981). This method adjusts the OD matrix proportional to the row
and column sums alternatively until the inflows and outflows are balanced.

O2

O1

D1

D2

 12

 OD-1

True matrix 0.325 0.675
 0.25 0.75

F-value 0

Initial solution 1 0.5 0.5 Initial solution 1 0.3214 0.6786

Start 0.5 0.5 End 0.3214 0.6786
 F-value 1.799

Initial solution 2 0.3242 0.6758 Initial solution 2 0.3245 0.6755
Start 0.3242 0.6758 End 0.3245 0.6755

 F-value 3.317
Initial solution 3 0.3175 0.6825 Initial solution 3 0.3165 0.6835

Start 0.4923 0.5077 End 0.4913 0.5087
 F-value 1.571

Table 2.2 OD estimates for the simulated network

Table 2.2 shows the results for this simulated network. Three different initial
guesses of the matrix produced three different results. Although all the solutions have low
objective function values, none of them is close enough to the true matrix. It might be
explained by the possibility that the optimization method is not robust enough to locate
the global optimum. Figure 2.4 depicts the surface of objective function values in the
neighborhood of the true values of OD variables. The global optimum is hidden under
the random up-and-downs so that it is very likely that the search direction stops at one
local optimum.

 13

Figure 2.4 Objective Function Values Generated from AIMSUN

2.5 Advantage of the Linear Model

In the above section, we noticed that the irregularity of the objective function
surface produced by the AIMSUN simulator imposes difficulties on the searching process
for the global optimum. This results in the multiple local optimal solutions that
approximate the observed off-ramp counts. Instead of attempting to find the global
optimum from the simulation and optimization algorithm, an alternative would be to base
the estimation on a better-behaved problem. Since the complication of the problem is
introduced by the simulator, using the simple linear traffic model might turn out to be a
reasonable approach.

 14

Figure 2.5 Objective Function Values Using the Linear Model

Figure 2.5 shows the surface of the objective function values of the same data set
using least squares. This surface is smooth, so that the searching for the optimal point is
straightforward. From optimization theory, if the objective function is strictly convex and
the constraints set is convex, a unique solution exists for the optimization problem. Since
the objective function (2.5) is quadratic and the constraints (2.4a and 2.4b) form a convex
set, a unique OD estimate can be obtained for a given set of input and output counts.
Because of this desirable property, least squares-based methods using the linear model
should produce results that are easier to assess and we decided to choose them over the
simulation and optimization algorithm.

 15

CHAPTER 3. OFF-LINE ESTIMATION

3.1 Introduction

The off- line estimation of Origin-Destination matrices treats the matrices as
constant over time. This chapter aims to evaluate the performance of different methods
for estimating static OD matrices. As illustrated in Chapter 2, least squares-based
methods using the linear traffic model and simulation and optimization were initially
chosen as two candidates. However, unsuccessful experiments with the latter switched
our attention to least squares methods. The rest of this chapter describes quantitative
comparisons of four least squares-based methods using both simulated and actual data
sets.

3.2 Description of Least Squares-Based Methods

3.2.1 Constrained Least Squares (CLS)

Assuming the linear traffic model, as in (3.1), the constrained least squares
method solves the following nonlinear programming problem, where all the variables are
as defined in Chapter 2.

Linear model: ∑=
i

ijij btqty)()(ˆ (3.1)

Minimize: []∑∑ −=
t j

jj tytyf 2)()(ˆ (3.2)

Subject to: 10 ≤≤ ijb for all i, j (3.3a)

 1=∑
j

ijb for all i, j (3.3b)

Constrained least squares can be solved by standard optimization algorithms. In this
research, a Matlab built- in subroutine LSQLIN was used.

 16

3.2.2 Weighted Constrained Least Squares (WCLS)

Instead of using equation (3.2) as the objective function, (3.4) adds weights on the
squared errors. The weight of an off-ramp is the inverse of the square root of the average
observed flow at that ramp so that more weights are assigned to the off-ramps with lower
traffic volumes. Usually, traffic counts at the off-ramp are at least one order of magnitude
smaller than those of the mainline. Therefore, mainline counts tend to be the only
determining factor in measuring the closeness between the predicted and observed traffic
volumes. A poor match could occur at the off- ramps. Greater weights for the off-ramps
are expected to provide a closer match of traffic counts at all destinations.

 ∑∑ −=
i j

jjj tytywf 2)]()(ˆ[(3.4)

jj yw /1=

3.2.3 Constrained Least Squares with Time-Lagging (TCLS)

Since the simple linear traffic model ignores the potentially different travel times
between OD pairs, a more realistic model should allow for time- lagging. Instead of
calculating the predicted off-ramp counts from the on-ramp counts of the same time
interval, they are treated as a mixture of on-ramp counts from two earlier time intervals
when the exiting vehicles entered the freeway (Papageorgiou 1980).

 ∑ +−+−−=

i ijtiqijbijijtiqijbijtjy))1(**)(**)1(()(ˆ τβτβ (3.5)

1)/(+= TijttIntegerijτ

Tijttijij /−=τβ

where

ijtt is the travel time between OD pair ij;

ijτ is the number of time intervals ttij occupies;

T is the duration of a counting interval;

 17

ijβ is the proportion of traffic entering the freeway in the time interval

1+− ijt τ .

The implementation of this method requires travel times, which are usually
obtained from speed data. However, single loop detectors do not measure speeds directly,
but only lane occupancy and traffic flow. In this case, speeds can be estimated as follows.

The relationship between speed (V), density (K), and traffic flow (Q) is:

 KVQ = (3.6)

Density can be estimated from lane occupancy (O), which is defined as the
proportion of time a short section of a roadway is occupied by vehicles.

 KC)(L
H
C)/V(L

T
T

O ×+=
+

=
∆

= (3.7)

where T∆ is the duration of time that detector is occupied by vehicles;

 T is total study time;
 L is the average length of vehicles;
 C is the length of the detector;
 H is the vehicle headway.

Therefore, average speeds can be estimated as:

 C)/O(LQV +×= (3.8)

Coifman (2000) pointed out that in the condition of low flows, when the number
of vehicles in a sample is small, the average vehicle length L can be skewed by long
vehicles simply because they take longer to pass the detector. Under this condition, he
suggested that the speed should be fixed as the free flow speed rather than using the
above equation. Since the critical value of the occupancy is 0.10, if the lane occupancy
falls below this value, traffic can be considered to be in a free flow condition. This rule is
used in what follows.

3.2.4 DelftOD

DelftOD is a software package for dynamic OD matrix estimation, developed by
Nanne van der Zijpp (1996) at Delft University in the Netherlands. The core of this
method is a recursive least squares algorithm, which will be described in Chapter 4.
However, if we fix the covariance-variance matrix of the random changes in the split
parameters at zero, then this recursive algorithm is equivalent to an off- line algorithm, as
long as the estimation period is long enough to ensure the convergence.

 18

3.3 Description of data sets

3.3.1 A simple 2x2 network

As shown in Figure 2.3, the simple network has two origins and two destinations.
For this network, two data sets were generated.

The first set was constructed so that the linear traffic model in equation (3.1)
gives the expected values of the off-ramp counts. In this case, the CLS estimates of the
OD matrix should be unbiased. This simulated data set was generated in two steps. First,
the arrival rates at the mainline and on-ramp were simulated as Poisson random
outcomes. Second, these arrival counts were then assigned to off-ramps as the outcomes
of binomial distributions, and these were then summed to produce the exit volumes. This
data generation procedure is consistent with the literature on this subject. Fifty days of
data were simulated, each containing 36 five-minute counts. The chosen flow rates are
3600veh/hour for mainline and 180 veh/hour for the on-ramp and no congestion was
observed during the whole simulation period on both the mainline and the on-ramp.

The second set uses AIMSUN to obtain exit counts. On-ramp counts were again
sampled from a Poisson distribution. However, they were not assigned to off-ramps as
binomial outcomes. The trip table was generated by multiplying the on-ramp counts with
the assumed OD matrix and this was used to map the on-ramp flows to the off-ramp
traffic. The exit counts were then generated by simulating traffic movement on the
freeway. For AIMSUN simulation, the constant headway model was chosen for vehicles
coming into the freeway, which minimizes the stochastic variations in the vehicle
generation so that we get the same result for multiple simulations with the same on-ramp
counts. Detectors were modeled at the on-ramps and off-ramps to collect the traffic
counts. Since these detector counts were the traffic flows that actually came into and
went out of the freeway during the simulation, they were used as the second data set. This
data set also contained fifty days of three-hour counts.

3.3.2 Real network

TH-169 was chosen as an example of a real- freeway section. The primary reason
for choosing it was that the network model was already built and calibrated for AIMSUN
simulation.

As shown in Figure 3.1, the Northbound test section starts at the intersection
between TH-169 and TH-55, and ends at 63rd Avenue. Figure 3.2 shows the detailed
geometry. This segment is about 10.5 kilometers long with 11 on-ramps and ten off-
ramps. Thus the OD matrix has 12 origins and 11 destinations. The number of nonzero
individual OD elements is 76 and, after accounting for the equality constraints, the
number of independent variables is 64.

Origin 1 2 3 4 5 6 7 8 9 10 11 12
Flow Rate (veh/hr) 2880 192 132 132 264 288 192 120 240 300 108 108

Table 3.1 Assumed Flow-rates for origins

 19

For TH-169, three data sets have been tested. The first data set was generated
from the linear traffic model assuming that the arrival counts are subject to Poisson
distributions and the turning movements are outcomes of a multinomial distribution. The
on-ramp counts were chosen such that the average for each origin was equal to the
observed average for the corresponding ramp. Table 3.1 shows the assumed on-ramp
flow rates. As with the two-origin two-destination case, the second data set was obtained
using AIMSUN. Since no congestion was observed during the simulation period, so that
queuing at on-ramps did not occur, the arrival volumes and entering volumes were the
same. The third data set tested consisted of real traffic counts collected by loop detectors.
The ramp counts were measured during the ramp-meter shutdown period on 23 weekdays
in October and November, 2000 (October: 16-20, 23-25, 27, 30, and 31; November: 1-3,
6-10, 13, and 20-22). Only the morning peaks (7:00-10:00) were used in this study.

Figure 3.1 Real network of TH-169

The test section

 20

Figure 3.2 Geometry of the tested segment of TH-169

 21

3.4 Evaluation Criteria

3.4.1 Measures of Bias and Comparative Efficiency

In statistics, a desirable estimator should have two properties: unbiased and
minimum variance or efficiency. In other words, we would like to select the estimator
that on average equals the true value and whose spread about this value is small. We are
able to check both properties using the simulated data sets. However, because of the
unavailability of the true OD matrix for the actual data, only efficiency can be evaluated.

 ())ˆ()(ˆ1 2

1

2
ijijij

D

t
ijij bVarbbbb

D
MSE +−=−= ∑

=

 (3.9)

where D is the number of days;

 ijb is the averaged value of the fifty estimates;

 ijb is the assumed true OD value;

 ijb̂ is the estimated OD split parameter;

 Var is the variance of an estimate and ∑
=

−=
D

t
ijtijij bb

D
bVar

1

2
,)ˆ(

1
)ˆ(.

Mean Squared Error (MSE) is used to measure the average squared distance

between the estimates and true values as shown in equation (3.9). The two terms on right-
hand side of (3.9) are the measure of bias and efficiency respectively. Based on them, the
following two criteria were developed.

 NbbRMSE
i j

ijij
bias ∑∑ −= 2)((3.10)

 NbVarRMSE
i j

ij
efficiencyecomparativ ∑∑=)ˆ((3.11)

where N is the total number of nonzero split parameters.
To evaluate the overall performance of an estimate, the bias and efficiency

measures were combined:

22)()(efficiencyecomparativbiasCombined RMSERMSERMSE += (3.12)

 22

3.4.2 Measure of forecast uncertainty

Davis (1993) proposed a measure of forecast uncertainty based on the linear
traffic model. The uncertainty of the predicted off-ramp counts contains two parts: one is
demand uncertainty—the random distribution of vehicles to off-ramps; the second is
parameter uncertainty—the variance due to uncertainty in the parameter estimates.

If we assume that the traffic is assigned as the outcome of a binomial distribution,
the variance of the off-ramp counts when the OD matrix is known exactly is given by:

 ∑ −=
i

iijijj tqbbBtqtyVar)()1(]),(|)([(3.13)

However, if the split parameters are estimated, they have their own variability
from the estimation procedure. If jQ denotes the covariance matrix of the estimates

T
mjj bb)ˆ,...,ˆ(1 , the squared forecast error is given by (3.14) where the second term on

the right-hand side of the equation evaluates parameter uncertainty.

)()()()ˆ1(ˆ)](ˆ)([22 tttqbbtytyE j
T

i
iijijjjj qQq+−=−= ∑σ (3.14)

From practical point of view, it is easier to interpret the results in the unit of
vehicles/hour, so the square roots of the two measures are taken as the evaluation criteria.










−

−

=
∑
∑

;)()ˆ1(ˆ

;)()1(

)(
unknownisiftqbb

knownisiftqbb

i
iijij

i
iijij

tjyUncertaintDemand
B

B

 (3.15)

)()()(tt j
TtjyUncertaintParameter qQq= (3.16)

In the report, the averaged values over time for the demand uncertainty and
parameter uncertainty measures are reported.

Figure 3.3 A simple network

2q

1q

2ŷ

1ŷ

 23

A simple example will clarify the physical meaning of these uncertainty
measures. Figure 3.3 shows a simple 2 by 2 network. To simplify the case, we only
consider one time interval. Assume the entry volume is 200 vehicles for mainline and 40
vehicles for the onramp during the time interval. The estimated OD parameters and their
standard deviations are displayed in Table 3.2.

Mean 1 2 S.D. 1 2

1 0.375 0.625 1 0.02 0.02
2 0.225 0.775 2 0.10 0.10

Table 3.2 An estimated OD matrix for the simple network

The demand uncertainty is the uncertainty in the process of traffic assignment.

For destination 1, it is equal to

veh840)225.01(225.0200)375.01(375.0 ≅−+− .

The parameter uncertainty is due to the uncertainty in the OD matrix estimation.

For destination 1, it is equal to [] veh23
40

200

10.00
002.040200 2

2
≅




















.

veh25238 22
1 =+=σ , which is the prediction error of counts at destination

1 when using the estimated OD matrix in Table 3.2. In this case, the parameter
uncertainty makes the larger contribution to it.

3.5 Results

3.5.1 The 2 by 2 network

Table 3.3 shows the results for the simple 2 by 2 simulated network. The assumed
true OD matrix is on the top. The table lists the averaged estimates and their standard
errors for the two fifty-day data sets.

As noted earlier, data set 1 was generated from the linear model so that the least
square methods should give an unbiased estimate of the OD matrix. Results show this is
the case, for both CLS and DelftOD. In all cases, approximate 95% confidence intervals,

computed by adding and subtracting 50/deviationstandard2 × to the averages
capture the true split parameters. It is observed that the standard deviations for origin 2
are an order of magnitude higher than those for origin 1. Note that traffic is assigned as
the outcome of a binomial distribution (n, p), and p is estimated as nyp /ˆ = , then

nppp /)1()ˆ(var −= . The standard deviation of an OD parameter will be roughly
inversely proportional to the square root of the number of entering vehicles
corresponding to that parameter. In this case, the onramp flow rate is only 1/20 of that of

 24

the mainline. Therefore, the standard deviation of mainline flow is anticipated to be much
lower.

Data set 2 was generated using the AIMSUN simulator. The results for this data
set show lower standard deviations than those from the first data set. The reason for less
uncertainty is mainly due to the different data generation procedures. Rather than treating
the OD flows as the outcomes of a binomial distribution, for AIMSUN, they were
computed as binomial expected values, which eliminates some of stochastic variations.

TRUE 1 2

1 0.375 0.625
2 0.225 0.775

 Data set 1
 CLS DelftOD

Average 1 2 Average 1 2
1 0.372 0.628 1 0.373 0.627
2 0.273 0.727 2 0.265 0.735

Standard Deviation 1 2 Standard Deviation 1 2
1 0.012 0.012 1 0.013 0.013
2 0.243 0.243 2 0.224 0.224

 Data set 2
 CLS DelftOD

Average 1 2 Average 1 2
1 0.375 0.625 1 0.375 0.625
2 0.254 0.746 2 0.242 0.758

Standard Deviation 1 2 Standard Deviation 1 2
1 0.006 0.006 1 0.007 0.007
2 0.116 0.116 2 0.13 0.13

Table 3.3 Results of 2-Origin 2-Destination Network

Since the results for WCLS and TCLS were very similar to those of CLS and
DelftOD, they were not reported. For this small network, the different algorithms do not
show much variation in their performances, so the evaluation criteria are saved for the
larger network.

 25

3.5.2 TH-169

3.5.2.1 Data set 1

Three methods were compared for data set 1: DelftOD, weight constrained least
squares (WCLS), and traditional constrained least squares (CLS). TCLS was not included
in the comparison because the travel time was not involved in the data generation
process. Tables A.1 to A.3 in Appendix A show the averages of the estimated split
parameters from the fifty data sets and their standard deviations for the three methods
respectively. All the estimates were approximately unbiased estimates for the true OD
parameters.

 Bias Comparative
Efficiency

Combined

DelftOD 0.065 0.137 0.151
WCLS 0.063 0.134 0.149
CLS 0.034 0.142 0.146

Table 3.4 Measures of Bias and Efficiency for Data Set 1

Table 3.4 shows aggregate measures of bias and efficiency for the data generated

using the linear traffic model. Estimates from CLS were on average closer to the true
values, but on average had higher variability. However, all three estimates are unbiased
and the magnitude of the difference in efficiency measures is small enough to be ignored.
Overall speaking, the performances of the three methods are almost equivalent on this
data set.

Table 3.5 shows the forecast uncertainty for the off-ramps. The covariance matrix
of the estimates is diagonal assuming no cross-variance among the split parameters. For

example,



















Λ
ΟΟΜ

ΜΟ
Λ

=

)(var00
0

)(var0
00)(var

1,12

1,2

1,1

1

b

b
b

Q .

Since the true OD matrix is known, equation (3.15) was used to calculate the

demand uncertainty for every time interval given the on-ramp counts. The average was
then computed and reported in Table 3.5. The parameter uncertainty was obtained from
equation (3.16). For the upstream off- ramps 1-3 demand uncertainty exceeds parameter
uncertainty, while for the remaining off-ramps the reverse is true. This is as expected
since more OD parameters contribute to the flows farther downstream. Note also that the
three estimation methods had similar level of parameter uncertainty.

 26

Demand Uncertainty Parameter Uncertainty (veh/hour)
Off-ramp

(veh/hour) DelftOD WCLS CLS
1 65 38 37 37
2 50 47 41 37
3 45 42 42 37
4 45 57 54 47
5 52 78 76 69
6 67 100 97 93
7 49 75 70 66
8 56 92 89 86
9 52 92 91 93
10 80 148 144 141
11 112 198 194 226

Table 3.5 Measures of Forecast Uncertainty for Data Set 1

3.5.2.2 Data Set 2

For this data set, the performances of all four methods were compared. The
estimated matrices with the standard deviations of its elements are shown in Tables A.4
through A.7 in Appendix A. The bold-face split parameters are values whose 95%
confidence intervals do not capture the true value. With a total of 76 parameters, an
unbiased estimate could be expected to produce about four elements that significantly
deviate from the true value at a confidence level of 95%. The numbers of bold-face
values for DelftOD, TCLS, WCLS, and CLS are 12, 11, 7, and 4 respectively. This
suggests that except for CLS, these methods tended to produce biased estimates.

 Bias Comparative
Efficiency

Combined

DelftOD 0.080 0.069 0.106
TCLS 0.101 0.068 0.122

 WCLS 0.072 0.081 0.109
CLS 0.069 0.122 0.140

Table 3.6 Measures of Bias and Efficiency for Data Set 2

As displayed in Table 3.6, a distinguishable difference can be noticed in the

measures of the performances on data set 2. The lowest deviation from the true values is
observed on the CLS estimates and the lowest score on the efficiency measure is
attributed to TCLS. The other three methods generated estimates that are more biased but
at the mean time more efficient.

Because the tested segment is 6.5 miles long, the longest travel time should be
more than one time interval—5 minutes. TCLS allows for the time-lagging, which is an

 27

effective way to reduce the variability of the estimates. As shown in Table 3.6, the
efficiency measure of DelftOD is as low as that of TCLS. For the overall measure of
performance, DelftOD has the best score.

Table 3.7 displays the forecast uncertainties for data set 2. The greatest difference
is at the mainline exit. Using the OD matrix estimated from TCLS compared to that from
CLS, the prediction error for the mainline is reduced by approximately 120 vehicles per
hour.

Demand Uncertainty Parameter Uncertainty (veh/hour)
Off-ramp

(veh/hour) DelftOD TCLS WCLS CLS
1 64 11 12 15 15
2 46 11 11 13 17
3 42 18 19 16 21
4 44 27 27 24 33
5 64 49 52 49 59
6 60 40 40 50 51
7 45 25 28 35 44
8 49 36 35 38 52
9 48 47 47 41 70
10 67 57 48 66 69
11 112 112 102 128 223

Table 3.7 Measures of forecast uncertainty for data set 2

3.5.2.3 Data set 3

Tables A.8 through A.11 show the estimates from the actual data. The estimated
split parameters have reasonable values. The mainline exit generally attracts the largest
share of the traffic from the same on-ramp.

 Comparative Efficiency

DelftOD 0.125
TCLS 0.135
WCLS 0.116
CLS 0.140

Table 3.8 Measures of efficiency for data set 3

Table 3.8 shows the measures of efficiency for data set 3. Since the true OD

matrix is not available for the real data, the bias of the estimates cannot be measured.
Consistent with data set 1 and 2, CLS result has more variation than those from other
methods.

Table 3.9 displays the forecast uncertainty for data set 3. The demand uncertainty
is essentially the same for all estimates. However, parameter uncertainty makes the
difference. For the mainline, CLS introduced an extra uncertainty of 100 vehicles/hour in
addition to approximately 180 vehicles/hour for the other methods.

 28

Demand Uncertainty (veh/hour) Parameter Uncertainty (veh/hour)
Off-ramp DelftOD TCLS WCLS CLS DelftOD TCLS WCLS CLS

1 28 28 28 28 50 43 36 35
2 30 30 30 30 54 62 45 44
3 17 17 17 17 43 55 51 51
4 14 13 14 14 80 76 67 65
5 18 17 17 18 98 106 96 91
6 12 12 12 13 66 73 59 62
7 23 23 23 24 93 104 74 70
8 14 14 14 14 62 73 82 77
9 18 18 18 18 82 81 84 92
10 13 13 13 13 72 76 68 78
11 84 83 86 87 180 184 174 276

Table 3.9 Measures of forecast uncertainty for data set 3

3.6 Conclusion

Using the simple linear traffic model, the least squares methods can produce a
unique solution for the OD estimation problem. With both the simple network and real
network, the estimates of all data sets are reasonable.

With the simple two-origin two-destination network, least squares-based methods
generally showed good performance. The unique solution of each simulated data set is an
unbiased estimate of the assumed true OD matrix. This result leads us to conclude that on
a small network when travel time can be ignored, least squares-based methods are good
approaches to estimate OD matrices. The lower standard errors in AIMSUN-generated
data suggest that the accuracy of estimating split parameters depends on the accuracy of
the data generation procedure.

With the larger real network TH-169, the results give us an insight in selecting the
right algorithm for various purposes of OD estimation and the availability of data. For
instance, with a large data set, if an unbiased matrix is desired, then the obvious choice
would be CLS, as it consistently is the method that produced the estimate with lowest
average bias. On the other hand, if the goal of OD estimation is to be used on ramp
control, then an estimator with low variability might be preferred. WCLS,TCLS, and
DelftOD are variations of CLS, but which allow for time- lagging or adding weights. The
choice can be made on convenience or availability since the results suggest that none
consistently outperformed the others.

 29

CHAPTER 4. ON-LINE ESTIMATION

4.1 Introduction

In the previous chapter, time- invariant OD matrices were estimated from off- line
estimation methodologies. This approach ignored the possibility of temporal variation in
the OD parameters. The transportation system is dynamic. For instance, on the same
freeway, the OD pattern in the morning can be significantly different from that in the
afternoon. When the assumption of constant OD matrices no longer holds, detecting and
responding to changes in OD matrices may be necessary. This chapter examines two
methods for dynamic estimation of OD matrices, Recursive Least Squares via Kalman
Filtering, and Recursive Sequential Quadratic Programming.

4.2 Description of methodologies

4.2.1 Recursive Least Squares via Kalman Filtering

Figure 4.1 Finite-dimensional linear system serving as signal model

The theory of Kalman filtering was developed in the context of signal processing in
the late 1950s and early 1960s. As depicted in figure 4.1, this finite-dimensional linear
system is the prototype of the discrete-time systems (Anderson and Moore, 1979). This
system can be described by a state evolution equation

 kkkk wxFx +=+1 (4.1)

and an observation equation

 kkkkkk vxHvyz +=+= ' (4.2)

kv

1+kx

kz

∑ Delay
kx ky

∑
+

+

kF

+

+
'
kHkw

 30

where kx is the system state at time k;

 ky is the system output;

 kz is the measured observation;

 kF is the state transition matrix;

 k'H is the measurement matrix;

 kw and kv are zero-mean noise.

A model for an OD matrix subject to random perturbations can be specified in the

form of state-space equations.

)()()1(ttt jjj wbb +=+ (4.3)

)()()()(tvttty jj
T

j += bq (4.4)

Suppose the variance covariance matrices for state variables and measurement

error are R and r respectively. The optimal estimate of)(tjb given the sequence of

observations)1(,),1(),(jytjytjy L− and)1(,),1(),(qtqtq L− can be

computed recursively via the Kalman filter.

)]1(ˆ)()()[()1(ˆ)(ˆ −−+−= tttyttt j
T

jjjj bqKbb (4.5)

)()1()()(

)1()()()1(
)1()(

)()1()()(

)()1(
)(

ttttr

tttt
tt

ttttr

tt
t

j
T

j

j
T

j
jjj

j
T

j

j
j

qPq

PqqP
RPP

qPq

qP
K

−+

−−
−+−=

−+

−
=

 (4.6)

As noted in Chapter 3, OD parameters should satisfy the equality and inequality
constraints.

10 ≤≤ ijb

1=∑
j

ijb

However, the satisfaction of the constraints are not guaranteed in Kalman filter (4.6).
Therefore, we need some modifications for the traditional Kalman filter.

 31

In literature, Nihan and Davis (1987) proposed normalization and projection
procedures to impose the equality constraints. Van der Zijpp (1996) suggested another
approach for constraint satisfaction, where the equality constraints are used as additional
measurements in the Kalman filter. In our research, both procedures were adopted and
combined in three steps for the constraint satisfaction.

1. Projection. Since the equality constraints are linear functions of the OD
parameters, the additional measurement equation can be specified as follows.

)(' tbbE1 = (4.7)

where

11

1
1

×


















=

m

M
1 ;

mnm×



















ΛΛΛΛ
ΟΜΟΜΟΜΟΜ

ΛΛΛΛ

ΛΛΛΛ

=

100100100100

010010010010

001001001001

'E

;

[]
mn

tbtbtbtbtbtbt mnnnm ×
=

1
)()()()()()()(' 2112111 LLLbb

.

If a zero matrix is assumed for the variance-covariance matrix of the measurement noise
(i.e., the measurements are “perfect”), a Kalman Filter recursion can be applied to project
the OD matrix onto the set satisfying the equality constraints. The estimates from (4.5) to
(4.6) are updated as follows.

)](ˆ')[()(ˆ)(ˆ * tttt bbE1Kbbbb −+=

 1])('[)()(−= EPEEPK ttt (4.8)

)('])('[)()()(1* ttttt PEEPEEPPP −−=

where *)(tbb is the updated estimates that satisfy the equality constraints.

2. Truncation. When the elements of *)(ˆ tbb violate the inequality constraints, we use
a truncation approach.

 32

 0)(ˆ0)(ˆ *** <= tbIftb ijij

 1)(ˆ1)(ˆ *** >= tbIftb ijij (4.9)

3. Normalization. Since truncation can then lead to the violation of the equality
constraints, a normalization procedure proposed by Nihan and Davis (1987) was used to

adjust the values of **)(ˆ tbij .

 ∑=
j

ijijij tbtbtb *******)(ˆ/)(ˆ)(ˆ (4.10)

***)(tbij is the final estimated of the split parameter for OD pair ij at time interval t.

After the three steps, the constraints are guaranteed to be satisfied for all OD
parameters.

In order to implement the Kalman filter algorithm, the choice of the variance-
covariance matrices for error terms must be addressed. These matrices are assumed to be
known in advance, but this is not the case in practice. In our experiments, the following
values were used.

)()(tytr jj = , IR 0001.0=

where)(ty j is the average of observed counts at off-ramp j.

4.2.2 Recursive Sequential Quadratic Programming

For the comparison, another recursive estimator of the OD matrix was developed based
on the quadratic programming method used to solve the CLS problem in Chapter 3. A
generic quadratic programming problem can be specified as

dAx

xcHxx

≤

+=

tosubject

fMinimize TT
2
1

 (4.11)

where x is a column vector of decision variables;
H is a positive definite matrix;
c is the first-derivative vector with respect to x;
A is a matrix of constraint coefficients;
d is a vector specifying the bounds of the constraints.
For the problem of OD estimation, the variables for optimization are the split

parameters. With a change of notation, (4.11) can be rewritten as

 33

1;1;1;1

)()(
2
1

−≤−≤−≤−≤

−=

∑∑ ijij
j

ij
j

ij

TTT

bbbbtosubject

fMinimize bbQybbQQbb
 (4.12)

where







































ΛΛ
ΛΟΛ

ΛΛΛ
ΛΛΛ

ΛΛΛΛΛ
ΛΛΛΛΛ
ΛΛ
ΛΟΛ

ΛΛΛ
ΛΛΛ

=

)()(00
0000

0)()(00
000)()(

)1()1(00
0000
00)1()1(00
000)1()1(

1

1

1

1

1

1

tqtq

tqtq
tqtq

qq

qq
qq

m

m

m

m

m

m

Q

The algorithm for solving CLS in Chapter 3 is called the “active set method.”

The ith constraint is said to be active if i
T

i d=xA and its inactive if i
T

i d<xA . The

constraint is said to be satisfied if it is active or inactive. If i
T

i d>xA , the constraint is
said to be violated. The active set includes all the constraints that are active.

Let k denote the iteration number, kt denote the number of constraints in the

working set, and kI denote the set of indices of these constraints. kA , will denote the

sub-matrix, containing the set of coefficients of the active constraints, while kz denotes

a basis for the subspace of vectors orthogonal to the rows of kA (Gill, Murray and
Wright, 1981).

The steps for solving off- line CLS problem (4.11) are illustrated in Figure 4.2:
1. If the conditions for optimality are satisfied at kx , the algorithm

terminates with kx as the solution. The conditions for optimality are

*
k

T
k ?Ac = and 0* ≥k? , where ? is the vector of Lagrange multipliers.

2. Decide whether to continue minimizing in the current subspace or whether
to delete a constraint from the working set. If a constraint is to be deleted go to
step 6. If the same working set is retained, go on to step 3.

 34

3. Compute the search direction)()(1 czHzzzp T
kk

T
k

T
kk −= − .

4. Compute the maximum non-negative feasible step kα along kp towards

the nearest constraint. nconi
d

abs
kik

ikik

i
k ,,1,)(min

,

, L=










 −

=
pA

xA
α

where ncon is the number of constraints in the active set kA .

5. If 1≤kα , kkkk pxx α+=+1 , add the constraint to the working set.

6. Otherwise, let 1=kα , kkkk pxx α+=+1 . Choose a constraint that is
not satisfied to be deleted from the working set.
7. Go back to step 1.
The algorithm described above is designed for off- line estimation. However, with

some modifications, it can be employed for on- line estimation. Let each iteration stand
for a time interval, the recursive version of this algorithm updates H and c at every time
interval using the observed volumes for the very time interval instead of using on-ramp
counts and off-ramp counts of all time intervals. The recursion is realized by the
following equations:

)]1()()([1)1()(−−+−= ttt
t

tt T HqqHH (4.13)

)]1()()([1)1()(−−+−= ttt
t

tt T cyqcc (4.14)

If)(tH and)(tc are substituted for the corresponding values of the OD matrix
problem as specified in (4.12), at each time interval, the OD parameters are updated as in
step 6 and a dynamic OD matrix can be obtained.

This recursive version of Sequential Quadratic Programming algorithm has the
property that constraints are satisfied automatically at each iteration. Its performance on
OD estimation will be compared with that of the recursive least squares via Kalman filter
approach.

 35

Figure 4.2 Flow diagram for active set algorithm

4.3 Description of data sets

4.3.1 The simple 2 by 2 network

For dynamic estimation, the ability of tracking the change in the OD matrix is the
determining factor in evaluation of alternative algorithms. An OD matrix with an abrupt
change was designed for this network. As shown in Table 4.1, a total period of six hours
was assumed, with a jump happening at the beginning of the second three-hour period.

Compute search direction pk

Compute the feasible step

?1≤kIs α Add a constraint to
the active set

1=kα

Are optimality conditions satisfied ?

Y

N

k=k+1

Solution found

Delete the constraints
that do not satisfy
optimality conditions
from the active set

N

Y

 36

First three hours Second three hours
 1 2 1 2
1 0.375 0.625 1 0.225 0.775
2 0.225 0.775 2 0.375 0.625

Table 4.1 Assumed OD matrix with an abrupt change for simulated network

Similar to the off- line estimation, two data sets of five-minute on-ramp and off-
ramp counts were generated. In addition to these, another two sets of one-minute counts
were generated, denoted as data sets 3 and 4. The procedure of data generation was the
same, and the only difference is the length of time interval. Table 4.2 summarizes the
generation of these data sets.

Data Set

1 5-minute data from linear traffic model
2 5-minute data from AIMSUN
3 1-minute data from linear traffic model
4 1-minute data from AIMSUN

Table 4.2 Description of data sets

 37

4.3.2 TH-169 network

 First three hours
 1 2 3 4 5 6 7 8 9 10 11

1 0.14 0.07 0.05 0.05 0.07 0.11 0.05 0.06 0.04 0.14 0.25
2 0.09 0.10 0.04 0.04 0.06 0.12 0.05 0.02 0.04 0.11 0.35
3 0.00 0.13 0.07 0.03 0.06 0.07 0.04 0.06 0.03 0.12 0.40
4 0.00 0.00 0.08 0.08 0.10 0.08 0.07 0.07 0.05 0.13 0.35
5 0.00 0.00 0.00 0.10 0.05 0.08 0.04 0.05 0.05 0.09 0.55
6 0.00 0.00 0.00 0.00 0.07 0.07 0.06 0.09 0.06 0.15 0.50
7 0.00 0.00 0.00 0.00 0.00 0.12 0.07 0.07 0.05 0.08 0.62
8 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.10 0.05 0.20 0.60
9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.05 0.05 0.85

10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.10 0.70
11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.90
12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

 Second three hours
 1 2 3 4 5 6 7 8 9 10 11

1 0.06 0.07 0.05 0.05 0.07 0.11 0.05 0.06 0.04 0.06 0.40
2 0.09 0.10 0.04 0.04 0.06 0.12 0.05 0.02 0.04 0.11 0.35
3 0.00 0.13 0.07 0.03 0.06 0.27 0.04 0.06 0.03 0.12 0.20
4 0.00 0.00 0.08 0.08 0.10 0.08 0.07 0.07 0.05 0.13 0.35
5 0.00 0.00 0.00 0.30 0.05 0.08 0.04 0.05 0.05 0.09 0.35
6 0.00 0.00 0.00 0.00 0.07 0.07 0.06 0.09 0.06 0.15 0.50
7 0.00 0.00 0.00 0.00 0.00 0.12 0.37 0.07 0.05 0.08 0.42
8 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.10 0.05 0.00 0.80
9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.05 0.05 0.85

10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.10 0.70
11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.90
12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

Table 4.3 Assumed OD matrix with an abrupt change for TH-169

Similar to the simulated network, both the five-minute and one-minute time
counts were generated for the segment of TH-169. Table 4.3 shows the assumed OD
matrix for generating the data. The abrupt change takes place at the end of the first three
hours. The bold-face numbers are the variables that change. A total of 11 cell values
change, three of which are for flows coming from the mainline.

 38

4.4 Results

4.4.1 The 2 by 2 network

4.4.1.1 Kalman filter results

Figure B.1 in Appendix B shows the results of Kalman filtering for the data
generated from the linear traffic model. A time-series of estimated values and their 95%
confidence intervals versus the true OD matrix are displayed. Data set 1 contains the five-
minute data, and data set 3 has the corresponding one-minute data. Only the plots for b1,1

and b2,1 are presented, since the equality constraints determining the other two parameters
once b1,1 and b2,1 are fixed.

As shown in Figure B.1 (a), for OD flows originated from the mainline, this
algorithm detects the jump at the time interval 37, the estimated values decrease at a
roughly quadratic rate and then converges to the true value after about 15 time intervals.
However, for the flows from the on-ramp, the algorithm is not able to track the abrupt
change. As in Figure B.1 (b), the estimated values remain at 0.35. Since the supposed on-
ramp flow rate is 180 vehicles/hour, which is only 1/20 of the mainline, it appears that 72
data points do not provide enough information for the algorithm to detect the change.

In order to add data points, we generated the one-minute data so that the number
of data points increases to 360. Figures B.1 (c) and (d) depict the results for the one-
minute data. For flows from the mainline, the jump is well captured and the confidence
interval is tightened. In the last time interval, the range between upper and lower bound is
reduced from 0.04 to 0.02. For the on-ramp flows, the estimates also have tighter
confidence intervals. In addition to that, the algorithm also shows a tendency to detect the
change. As shown in Figure B.1 (d), the second half of the estimated values slowly
converge to the true value, although the rate of convergence is still not as fast as that of
b1,1.

AIMSUN-generated data sets were examined as well. The results are displayed in
Figure B.2. Similar to the linear traffic model, the jump in the OD parameters for the
mainline origin is detected and again, because of the low volume on the on-ramp, the
performance of the algorithm on those parameters is not desirable. In contrast with data
set 3, changing to one-minute intervals in data set 4 does not help to track the abrupt
change, although the confidence interval captures the true value. The one-minute data set
includes more information at the expense of introducing more variability due to the
reduced number of vehicles in one time interval. In this case, the presence of more
information doesn’t compensate the additional variability.

4.4.1.2 RSQP results

Figures B.3 and B.4 show the results of Recursive Sequential Quadratic
Programming on data sets 1 through 4. Overall, they have the same pattern as the results
for the Kalman filtering. For the parameter b1,1, the algorithm is able to detect the change
with all data sets. The introduction of one-minute data helps to get more reliable
estimates but does not significantly improve the tracking behavior of the algorithm.

 39

The RSQP algorithm differs from the Kalman filtering in that, instead of
converging at approximately a quadratic rate once the jump was detected, it converges as
an approximately linear rate. The rate of convergence is so slow that the confidence
interval of estimates fails to capture the true value in the second half of the estimation
period. This property of linear convergence reduces its ability to detect abrupt changes,
compared to the Kalman filtering.

4.4.1.3 Comparison with the off- line results

 Linear model AIMSUN
 Off-line Estimation Off-line Estimation
Average 1 2 S.D. 1 2 Average 1 2 S.D. 1 2

1 0.372 0.628 1 0.012 0.012 1 0.375 0.625 1 0.006 0.006
2 0.273 0.727 2 0.243 0.243 2 0.254 0.746 2 0.116 0.116

 Kalman Filter Kalman Filter
 Data set 1 Data set 2

Average 1 2 S.D. 1 2 Average 1 2 S.D. 1 2

1 0.368 0.632 1 0.012 0.012 1 0.374 0.626 1 0.007 0.007
2 0.355 0.645 2 0.213 0.213 2 0.243 0.757 2 0.127 0.127
 Data set 3 Data set 4

Average 1 2 S.D. 1 2 Average 1 2 S.D. 1 2

1 0.375 0.625 1 0.009 0.009 1 0.375 0.625 1 0.006 0.006
2 0.207 0.793 2 0.108 0.108 2 0.256 0.744 2 0.071 0.071

 RSQP RSQP

 Data set 1 Data set 2
Average 1 2 S.D. 1 2 Average 1 2 S.D. 1 2

1 0.373 0.627 1 0.013 0.013 1 0.375 0.625 1 0.007 0.007
2 0.268 0.732 2 0.248 0.248 2 0.238 0.762 2 0.129 0.129
 Data set 3 Data set 4

Average 1 2 S.D. 1 2 Average 1 2 S.D. 1 2

1 0.376 0.624 1 0.006 0.006 1 0.375 0.625 1 0.005 0.005
2 0.190 0.810 2 0.117 0.117 2 0.296 0.704 2 0.087 0.087

Table 4.4 Comparison of on-line and off-line estimates

The estimates of the recursive algorithms at the end of the first three hours were

compared with those from off- line CLS. As shown in Table 4.4, for all data sets, the
recursive methods produced estimates that were not significantly different from the off-
line estimates. They were able to converge to the off- line solution. Using one-minute data
improved the reliability of estimates, as the standard deviation is reduced roughly by a
half.

 40

4.4.2 TH-169

Same experiments were carried using the TH-169 network. This segment of
freeway is 6.5 miles long, so when generating one-minute data using the linear traffic
model, the assumption that all vehicles can traverse the freeway in one time interval is
unrealistic. Therefore, the one-minute data was only generated using AIMSUN.

4.4.2.1 Kalman filter results

Figures B.5 and B.6 show the results from Kalman filter with the five-minute data
generated by the linear traffic model. All the 11 values that have been changed are
graphed. The algorithm generally captures the change pattern for the parameters that
representing the mainline incoming flows. However, for the other parameters, it only
manages to show a slight trend to follow the patterns but not able to track it.

For the AIMSUN simulated data sets, only the results of six jumped parameters
that have the typical behavior are shown. Results for the five-minute data generated using
AIMSUN are almost the same. If the one-minute data is used, the confidence interval is
tightened but for the lower-volume incoming flows, the detection of jump is still a
problem. In addition to that, using the one-minute data appeared to introduce some
systematic biases into the estimation. As for the parameter b1,11, the estimated values are
constantly higher than the values that generated the data. Since the travel time from the
first origin to the last destination on this network is larger than one minute, time- lagging
should be taken into consideration. Not allowing for time lags in the one-minute data is
the most likely source that introduced the bias.

4.4.2.2 RSQP results

Figures B.9 through B.12 display the time-series plots for the RSQP estimation.
This algorithm shows some ability to track an abrupt change, and generally the estimates
are following the right direction. However, in terms of the proximity to the true value and
the reliability of the estimates, the Kalman filter outperforms RSQP.

4.5 Conclusions

Recursive algorithms are able to detect the abrupt changes in the split parameters
of mainline but not those with lower traffic volumes. Both Kalman Filter and RSQP
performed well on the parameters origin in the mainline. The estimates from on- line
algorithms converge to the off- line estimates as indicated by the results from the 2 by 2
network.

RLS via Kalman Filtering outperforms RSQP because of a faster convergence
rate. The Kalman filter converges at an approximately quadratic rate. In contrast, RSQP
has an approximately linear rate.

Additional information from reducing the length of the counting interval does not
necessarily improve the estimates because of the additional biases introduced.

 41

CHAPTER 5. CONCLUSIONS

This report describes research on estimating OD matrices for freeways from time-
series on-ramp and off-ramp traffic counts. The simulation and optimization method was
initially selected. However, when using AIMSUN as the prediction engine, the surface of
objective function values is irregular, which poses difficulties for the optimization routine
in locating the global optimal. The linear traffic model is then adopted to replace
AIMSUN because of the tractable optimization problem it produces. Least squares-based
methods using the linear model are able to generate unique estimates of the OD
parameters and the results are easy to assess. Therefore, they are chosen over the
simulation and optimization methods.

The performances of four least squares-based methods on estimating a static OD
matrix are compared using both the simple two-origin two-destination network and the
real TH-169 network. For the simple network, least squares-based methods produced
unbiased estimate of the assumed true OD matrix. With the larger real network TH-169,
traditional CLS consistently had the lowest bias but worst efficiency measure. In contrast,
the other three methods generated slightly more biased but also more reliable estimates.
The choice of the algorithm depends on the availability of data. For instance, with a large
data set, if an unbiased estimate is desired, then the choice would be CLS. However,
when the size of the data set is limited and the reliable OD estimator is desired, then one
of the alternative variations of CLS (WCLS,TCLS, or DelftOD) should be chosen.

Recursive Least Squares via Kalman Filter and Recursive Sequential Quadratic
Programming were tested for the on-line estimation of dynamic OD matrix. Both of them
were able to detect the abrupt changes in the split parameters with high traffic volumes
but not those with lower volumes. The Kalman Filter estimator converged at an
approximately quadratic rate, which was faster than RSQP. One-minute data was tested
in addition to five-minute data. The additional information from reducing the length of
the counting interval tightens the confidence interval of the estimates, but does not
necessarily improve the ability to respond to changes.

Travel time laggings were not accounted for in the on-line estimation methods.
From our results, the additional information from using a shorter time interval introduced
a bias when travel time lags became important. By taking into account the travel time, the
additional information could be better utilized. The way to implement this would be to
replace the measurement equation in Kalman Filter with an equation equivalent to that in
TCLS.

The sequential quadratic programming approach showed an approximately linear
convergence rate. The possibility of achieving a faster convergence rate should be
investigated to refine this method.

In this report, we focused on freeways. In order to expand the methods to general
networks, route-choice has to be considered. For on- line applications, the dynamic traffic
assignment model would have to be incorporated into the estimation process.

 42

References
1. Anderson B.D.O. and Moore J.B. (1979) Optimal Filtering.
2. Ashok K. (1996) Estimation and Prediction of Time-Dependent Origin-Destination

Flow. Ph.D. Thesis, Massachusetts Institute of Technology.
3. Bell M. G.H. (1991) The real time estimation of origin-destination flows in the

presence of platoon dispersion Transportation Research B., Vol 25B, Nos. 2/3, pp.
115-125.

4. Bureau of Transportation Statistics, Transportation Statistics Annual Report 1997,
BTS97-S-01, U.S. DOT, 1997.

5. Cascetta E. (1984) Estimation of trip matrices from traffic counts and survey data : a
generalized least squares estimator. Transportation Research Part B, v. 18B, no. 4/5,
pp. 289-299.

6. Cascetta E., Inaudi D. and Marquis G. (1993) Dynamic estimators of origin-
destination matrices using traffic counts. Transportation Science, Vol.27, No.4.

7. Chang G. and Wu J. (1994) Recursive Estimation of Time-varying Origin-Destination
Flows from Traffic Counts in Freeway Corridors. Transportation Research B, Vol.
28B, No.2, pp. 141-160.

8. Cremer M. (1983) Dynamic identification of flows from traffic counts at complex
intersections. Proceedings of the eighth International Symposium on Transportation
and Traffic Theory (V. F. Hurdle et al., Eds.). University of Toronto Press, Toronto,
pp. 121-142.

9. Cremer, M. and Keller, H. (1987) A new class of dynamic methods for identification
of Origin-Destination flows. Transportation Research Part B, Vol. 21B, No.2, 1987,
pp. 117-132.

10. Davis, G. (1993) Estimating the freeway demand patterns and impact of uncertainty
on ramp controls. Journal of Transportation Engineering, Vol. 119 No. 4,
July/August 1993, pp. 489-503.

11. Davis, G. (1993) A statistical theory for estimation of origin-destination parameters
from time-series of traffic counts. Transportation and Traffic Theory C.F Daganzo
(Editor), 1993.

12. Gill P.E., Murray W. and Wright M.H. (1981) Practical Optimization.
13. Hendrickson C. and McNeil S. (1984) Estimation of origin-destination matrices with

constrained regression. Transportation Research Record, 976, pp. 25-32.
14. Kang J. (1995) Esimation of destination-specific traffic densities and identification of

parameters on urban freeways using Markov models of traffic flow. Ph.D. Thesis,
University of Minnesota.

15. Ljung L. and Söderström T. (1983) Theory and Pratic of Recursive Identification.
MIT Press, Cambridge, MA.

16. Maher M.J. (1983) Inferences on trip matrices from observations on link volumes : a
Bayesian statistical approach. Transportation Research Part B, v. 17B, no. 6, pp.
435-447.

17. May, D, A. and Willis E, A. (1981) Deriving Origin-Destination information from
routinely collected traffic counts – Vol. I, research report UCB-ITS-RR-81-8.

 43

18. Nihan, L. N. and Davis, G. (1987) Recursive estimation of Origin-Destination
matrices from input/output counts. Transportation Research Part B, Vol. 21B, No.2,
1987, pp. 149-163.

19. Nihan, L, N. and Davis, G. (1991) Stochastic process approach to the estimation of
Origin-Destination parameters from time-series of traffic counts, Transportation
Research Record 1328, pp. 36-42.

20. Papacostas C.S. and Prevedouros P.D. (2001) Transportation Engineering &
Planning.

21. Papageorgiou M. (1980) A new approach to time-of-day control based on a dynamic
freeway traffic model, Transportation Research Part B, v. 14B, no. 4, pp. 349-360.

22. Press, W, H. Teukolsky, S, A. Vetterling, W, T. Flannery, B, P. Numerical Recipes in
FORTRAN. Second Edition. Cambridge University Press, 1994.

23. Turnquist, M. and Gur, Y. (1979) Estimation of trip tables from observed link
volumes, Transportation Research Record, 730.

24. Van der Zijpp N. (1996) Dynamic origin-destination matrix estimation on motorway
networks. Ph.D. Thesis, Delft University of Technology.

25. Van Zuylen H. J. and Willumsen L.G. (1979) The most likely trip matrix estimate
from traffic counts. Transportation Res. B, Vol. 14B, pp. 281-293.

26. Yu P. and Davis G.A. (1994) Estimating freeway origin-destination patterns using
automation traffic counts. Transportation Research Board, 1457.

 A-1

APPENDIX A: OFF-LINE ESTIMATION RESULTS

Table A.1 Data set 1 (DelftOD)

S.D. 1 2 3 4 5 6 7 8 9 10 11
1 0.010 0.013 0.010 0.014 0.021 0.023 0.018 0.021 0.020 0.035 0.048
2 0.149 0.124 0.087 0.095 0.148 0.132 0.100 0.104 0.121 0.111 0.204
3 0 0.176 0.139 0.083 0.154 0.126 0.068 0.116 0.117 0.184 0.215
4 0 0 0.133 0.141 0.119 0.137 0.128 0.172 0.126 0.203 0.183
5 0 0 0 0.102 0.095 0.095 0.102 0.065 0.079 0.160 0.229
6 0 0 0 0 0.090 0.129 0.088 0.101 0.096 0.147 0.203
7 0 0 0 0 0 0.193 0.088 0.126 0.106 0.173 0.257
8 0 0 0 0 0 0 0.134 0.145 0.150 0.232 0.233
9 0 0 0 0 0 0 0 0.106 0.103 0.134 0.183
10 0 0 0 0 0 0 0 0 0.123 0.148 0.177
11 0 0 0 0 0 0 0 0 0 0.214 0.214
12 0 0 0 0 0 0 0 0 0 0 0.000

Mean 1 2 3 4 5 6 7 8 9 10 11

1 0.133 0.065 0.047 0.039 0.054 0.098 0.039 0.045 0.023 0.121 0.336
2 0.114 0.100 0.043 0.068 0.106 0.093 0.084 0.077 0.085 0.082 0.149
3 0 0.139 0.108 0.047 0.126 0.086 0.042 0.086 0.066 0.139 0.162
4 0 0 0.109 0.141 0.105 0.094 0.087 0.130 0.077 0.142 0.117
5 0 0 0 0.090 0.075 0.077 0.082 0.055 0.067 0.109 0.447
6 0 0 0 0 0.090 0.093 0.082 0.093 0.079 0.158 0.405
7 0 0 0 0 0 0.201 0.058 0.108 0.088 0.121 0.423
8 0 0 0 0 0 0 0.088 0.111 0.105 0.236 0.460
9 0 0 0 0 0 0 0 0.091 0.079 0.089 0.741
10 0 0 0 0 0 0 0 0 0.206 0.107 0.686
11 0 0 0 0 0 0 0 0 0 0.173 0.827
12 0 0 0 0 0 0 0 0 0 0 1.000

 A-2

Table A.2 Data set 1 (WCLS)

Mean 1 2 3 4 5 6 7 8 9 10 11

1 0.133 0.065 0.047 0.039 0.053 0.098 0.040 0.046 0.025 0.121 0.332
2 0.111 0.095 0.043 0.069 0.106 0.089 0.082 0.073 0.087 0.092 0.153
3 0 0.137 0.115 0.047 0.125 0.088 0.036 0.084 0.065 0.139 0.165
4 0 0 0.102 0.140 0.113 0.108 0.079 0.123 0.073 0.130 0.130
5 0 0 0 0.089 0.072 0.073 0.080 0.056 0.061 0.113 0.455
6 0 0 0 0 0.103 0.094 0.079 0.086 0.073 0.162 0.403
7 0 0 0 0 0 0.191 0.060 0.105 0.091 0.115 0.439
8 0 0 0 0 0 0 0.086 0.111 0.112 0.234 0.457
9 0 0 0 0 0 0 0 0.090 0.084 0.088 0.738
10 0 0 0 0 0 0 0 0 0.197 0.103 0.700
11 0 0 0 0 0 0 0 0 0 0.170 0.830
12 0 0 0 0 0 0 0 0 0 0 1.000

S.D. 1 2 3 4 5 6 7 8 9 10 11

1 0.010 0.011 0.010 0.013 0.020 0.022 0.016 0.020 0.020 0.034 0.046
2 0.147 0.115 0.085 0.093 0.145 0.133 0.100 0.101 0.126 0.118 0.196
3 0 0.168 0.142 0.075 0.157 0.125 0.063 0.106 0.113 0.180 0.210
4 0 0 0.125 0.146 0.127 0.149 0.111 0.161 0.117 0.197 0.188
5 0 0 0 0.096 0.098 0.086 0.102 0.073 0.073 0.163 0.243
6 0 0 0 0 0.097 0.123 0.088 0.097 0.089 0.155 0.206
7 0 0 0 0 0 0.191 0.089 0.126 0.110 0.163 0.262
8 0 0 0 0 0 0 0.123 0.142 0.148 0.226 0.225
9 0 0 0 0 0 0 0 0.110 0.108 0.133 0.178
10 0 0 0 0 0 0 0 0 0.114 0.142 0.164
11 0 0 0 0 0 0 0 0 0 0.207 0.207
12 0 0 0 0 0 0 0 0 0 0 0.000

 A-3

Table A.3 Data set 1 (CLS)

Mean 1 2 3 4 5 6 7 8 9 10 11
1 0.133 0.068 0.050 0.046 0.059 0.102 0.046 0.053 0.031 0.121 0.290
2 0.103 0.078 0.038 0.049 0.096 0.087 0.064 0.066 0.065 0.101 0.254
3 0 0.098 0.085 0.026 0.097 0.083 0.028 0.062 0.052 0.150 0.320
4 0 0 0.073 0.094 0.089 0.102 0.064 0.100 0.062 0.131 0.285
5 0 0 0 0.065 0.059 0.065 0.067 0.045 0.050 0.112 0.537
6 0 0 0 0 0.091 0.086 0.064 0.075 0.066 0.154 0.465
7 0 0 0 0 0 0.164 0.046 0.072 0.075 0.105 0.538
8 0 0 0 0 0 0 0.080 0.093 0.094 0.216 0.517
9 0 0 0 0 0 0 0 0.097 0.068 0.078 0.757
10 0 0 0 0 0 0 0 0 0.205 0.117 0.679
11 0 0 0 0 0 0 0 0 0 0.181 0.819
12 0 0 0 0 0 0 0 0 0 0 1.000

S.D. 1 2 3 4 5 6 7 8 9 10 11

1 0.010 0.010 0.009 0.011 0.018 0.021 0.015 0.019 0.021 0.034 0.052
2 0.144 0.109 0.071 0.079 0.130 0.133 0.091 0.086 0.099 0.123 0.264
3 0 0.138 0.132 0.053 0.133 0.120 0.060 0.097 0.103 0.195 0.330
4 0 0 0.112 0.135 0.115 0.149 0.099 0.142 0.113 0.182 0.288
5 0 0 0 0.081 0.086 0.083 0.102 0.064 0.084 0.152 0.261
6 0 0 0 0 0.093 0.119 0.084 0.102 0.093 0.153 0.269
7 0 0 0 0 0 0.177 0.087 0.126 0.106 0.145 0.302
8 0 0 0 0 0 0 0.121 0.141 0.127 0.215 0.262
9 0 0 0 0 0 0 0 0.112 0.105 0.119 0.187
10 0 0 0 0 0 0 0 0 0.133 0.142 0.198
11 0 0 0 0 0 0 0 0 0 0.225 0.225
12 0 0 0 0 0 0 0 0 0 0 0.000

 A-4

Table A.4 Data set 2 (DelftOD)

Mean AIMSUN-DelftOD

 1 2 3 4 5 6 7 8 9 10 11
1 0.130 0.061 0.046 0.043 0.076 0.094 0.044 0.049 0.025 0.100 0.330
2 0.025 0.020 0.036 0.024 0.064 0.042 0.034 0.032 0.036 0.073 0.615
3 0 0.027 0.031 0.038 0.058 0.042 0.032 0.038 0.045 0.070 0.619
4 0 0 0.083 0.257 0.193 0.036 0.033 0.054 0.029 0.075 0.240
5 0 0 0 0.017 0.132 0.020 0.021 0.047 0.038 0.076 0.649
6 0 0 0 0 0.423 0.027 0.018 0.021 0.017 0.039 0.453
7 0 0 0 0 0 0.112 0.088 0.041 0.104 0.064 0.591
8 0 0 0 0 0 0 0.031 0.046 0.038 0.069 0.815
9 0 0 0 0 0 0 0 0.044 0.039 0.052 0.866
10 0 0 0 0 0 0 0 0 0.309 0.048 0.642
11 0 0 0 0 0 0 0 0 0 0.104 0.896
12 0 0 0 0 0 0 0 0 0 0 1.000

S.D. 1 2 3 4 5 6 7 8 9 10 11
1 0.003 0.003 0.005 0.007 0.012 0.010 0.005 0.008 0.011 0.013 0.026
2 0.037 0.034 0.034 0.036 0.070 0.041 0.038 0.038 0.043 0.067 0.134
3 0 0.031 0.035 0.050 0.055 0.054 0.036 0.040 0.060 0.072 0.142
4 0 0 0.057 0.088 0.132 0.060 0.051 0.076 0.048 0.090 0.187
5 0 0 0 0.034 0.079 0.032 0.029 0.047 0.048 0.072 0.152
6 0 0 0 0 0.059 0.035 0.023 0.022 0.023 0.048 0.086
7 0 0 0 0 0 0.082 0.056 0.045 0.075 0.057 0.153
8 0 0 0 0 0 0 0.045 0.065 0.050 0.095 0.148
9 0 0 0 0 0 0 0 0.049 0.058 0.066 0.124
10 0 0 0 0 0 0 0 0 0.047 0.050 0.064
11 0 0 0 0 0 0 0 0 0 0.101 0.101
12 0 0 0 0 0 0 0 0 0 0 0.000

 A-5

Table A.5 Data set 2 (TCLS)

Mean
1 0.130 0.062 0.047 0.042 0.067 0.097 0.047 0.057 0.028 0.121 0.301
2 0.022 0.016 0.027 0.021 0.062 0.024 0.028 0.026 0.021 0.032 0.720
3 0 0.019 0.024 0.044 0.033 0.032 0.022 0.028 0.035 0.038 0.724
4 0 0 0.076 0.281 0.199 0.036 0.028 0.041 0.040 0.034 0.265
5 0 0 0 0.014 0.146 0.012 0.015 0.026 0.034 0.035 0.718
6 0 0 0 0 0.497 0.019 0.014 0.013 0.010 0.015 0.432
7 0 0 0 0 0 0.099 0.073 0.027 0.107 0.028 0.666
8 0 0 0 0 0 0 0.022 0.041 0.038 0.050 0.849
9 0 0 0 0 0 0 0 0.020 0.028 0.024 0.928
10 0 0 0 0 0 0 0 0 0.305 0.021 0.674
11 0 0 0 0 0 0 0 0 0 0.064 0.936
12 0 0 0 0 0 0 0 0 0 0 1.000

S.D.
1 0.003 0.003 0.005 0.006 0.012 0.010 0.006 0.008 0.011 0.012 0.023
2 0.047 0.035 0.041 0.041 0.080 0.050 0.039 0.047 0.042 0.059 0.133
3 0 0.028 0.045 0.065 0.058 0.065 0.036 0.046 0.064 0.070 0.169
4 0 0 0.058 0.106 0.135 0.061 0.052 0.057 0.061 0.068 0.186
5 0 0 0 0.028 0.085 0.027 0.026 0.044 0.041 0.049 0.121
6 0 0 0 0 0.072 0.034 0.031 0.026 0.019 0.038 0.096
7 0 0 0 0 0 0.081 0.061 0.048 0.082 0.043 0.149
8 0 0 0 0 0 0 0.035 0.060 0.059 0.086 0.120
9 0 0 0 0 0 0 0 0.038 0.045 0.044 0.084
10 0 0 0 0 0 0 0 0 0.055 0.043 0.072
11 0 0 0 0 0 0 0 0 0 0.096 0.096
12 0 0 0 0 0 0 0 0 0 0 0.000

 A-6

Table A.6 Data set 2 (WCLS)

Mean 1 2 3 4 5 6 7 8 9 10 11

1 0.131 0.062 0.047 0.042 0.065 0.077 0.036 0.043 0.026 0.085 0.387
2 0.036 0.022 0.030 0.049 0.084 0.069 0.056 0.065 0.031 0.091 0.466
3 0 0.038 0.042 0.065 0.102 0.073 0.048 0.058 0.056 0.094 0.425
4 0 0 0.075 0.186 0.090 0.074 0.046 0.054 0.048 0.094 0.332
5 0 0 0 0.031 0.175 0.062 0.035 0.046 0.033 0.095 0.522
6 0 0 0 0 0.499 0.062 0.029 0.035 0.028 0.061 0.286
7 0 0 0 0 0 0.182 0.112 0.053 0.066 0.095 0.491
8 0 0 0 0 0 0 0.054 0.070 0.053 0.127 0.696
9 0 0 0 0 0 0 0 0.049 0.046 0.091 0.814
10 0 0 0 0 0 0 0 0 0.293 0.049 0.659
11 0 0 0 0 0 0 0 0 0 0.099 0.901
12 0 0 0 0 0 0 0 0 0 0 1.000

S.D. 1 2 3 4 5 6 7 8 9 10 11
1 0.004 0.003 0.004 0.005 0.012 0.012 0.008 0.008 0.009 0.014 0.027
2 0.057 0.043 0.030 0.059 0.067 0.071 0.051 0.068 0.042 0.099 0.188
3 0 0.043 0.047 0.062 0.082 0.072 0.046 0.064 0.072 0.075 0.209
4 0 0 0.053 0.072 0.079 0.069 0.062 0.069 0.058 0.093 0.206
5 0 0 0 0.034 0.078 0.056 0.039 0.042 0.042 0.078 0.161
6 0 0 0 0 0.075 0.054 0.034 0.038 0.039 0.064 0.126
7 0 0 0 0 0 0.097 0.066 0.048 0.052 0.087 0.209
8 0 0 0 0 0 0 0.063 0.070 0.065 0.123 0.185
9 0 0 0 0 0 0 0 0.043 0.047 0.077 0.121
10 0 0 0 0 0 0 0 0 0.046 0.059 0.082
11 0 0 0 0 0 0 0 0 0 0.099 0.099
12 0 0 0 0 0 0 0 0 0 0 0.000

 A-7

Table A.7 Data set 2 (CLS)

Mean 1 2 3 4 5 6 7 8 9 10 11

1 0.131 0.060 0.046 0.042 0.069 0.081 0.036 0.043 0.033 0.089 0.370
2 0.036 0.026 0.026 0.044 0.075 0.066 0.048 0.058 0.041 0.074 0.505
3 0 0.063 0.073 0.086 0.097 0.073 0.067 0.064 0.066 0.093 0.317
4 0 0 0.069 0.155 0.081 0.056 0.039 0.043 0.048 0.082 0.427
5 0 0 0 0.046 0.170 0.066 0.044 0.050 0.050 0.091 0.483
6 0 0 0 0 0.470 0.050 0.022 0.025 0.024 0.050 0.359
7 0 0 0 0 0 0.156 0.090 0.040 0.062 0.076 0.576
8 0 0 0 0 0 0 0.080 0.088 0.083 0.127 0.622
9 0 0 0 0 0 0 0 0.076 0.077 0.103 0.744
10 0 0 0 0 0 0 0 0 0.170 0.025 0.806
11 0 0 0 0 0 0 0 0 0 0.152 0.848
12 0 0 0 0 0 0 0 0 0 0 1.000

S.D. 1 2 3 4 5 6 7 8 9 10 11
1 0.004 0.004 0.005 0.007 0.014 0.012 0.010 0.012 0.015 0.014 0.048
2 0.059 0.049 0.037 0.067 0.076 0.070 0.058 0.064 0.063 0.088 0.307
3 0 0.069 0.068 0.081 0.080 0.074 0.058 0.064 0.081 0.080 0.324
4 0 0 0.076 0.104 0.080 0.059 0.058 0.056 0.066 0.094 0.344
5 0 0 0 0.058 0.096 0.058 0.049 0.051 0.055 0.085 0.306
6 0 0 0 0 0.111 0.058 0.039 0.044 0.046 0.056 0.220
7 0 0 0 0 0 0.100 0.086 0.054 0.080 0.077 0.294
8 0 0 0 0 0 0 0.095 0.095 0.090 0.127 0.315
9 0 0 0 0 0 0 0 0.087 0.092 0.107 0.259
10 0 0 0 0 0 0 0 0 0.128 0.053 0.162
11 0 0 0 0 0 0 0 0 0 0.178 0.178
12 0 0 0 0 0 0 0 0 0 0 0.000

 A-8

Table A.8 Data set 3 (DelftOD)

Mean 1 2 3 4 5 6 7 8 9 10 11

1 0.131 0.135 0.061 0.029 0.046 0.022 0.063 0.030 0.037 0.007 0.439
2 0.114 0.207 0.091 0.024 0.158 0.094 0.043 0.078 0.069 0.028 0.096
3 0 0.038 0.099 0.121 0.161 0.301 0.000 0.110 0.000 0.000 0.167
4 0 0 0.194 0.124 0.103 0.224 0.013 0.142 0.030 0.026 0.141
5 0 0 0 0.361 0.072 0.068 0.056 0.094 0.011 0.039 0.298
6 0 0 0 0 0.074 0.026 0.201 0.046 0.128 0.080 0.444
7 0 0 0 0 0 0.000 0.371 0.030 0.101 0.199 0.301
8 0 0 0 0 0 0 0.006 0.057 0.000 0.036 0.901
9 0 0 0 0 0 0 0 0.014 0.118 0.085 0.783
10 0 0 0 0 0 0 0 0 0.114 0.212 0.674
11 0 0 0 0 0 0 0 0 0 0.021 0.979
12 0 0 0 0 0 0 0 0 0 0 1.000

S.D. 1 2 3 4 5 6 7 8 9 10 11
1 0.013 0.013 0.010 0.018 0.027 0.015 0.021 0.012 0.016 0.011 0.038
2 0.174 0.171 0.075 0.047 0.164 0.115 0.070 0.107 0.100 0.052 0.172
3 0 0.163 0.129 0.126 0.177 0.189 0.000 0.096 0.000 0.000 0.213
4 0 0 0.167 0.165 0.170 0.220 0.042 0.127 0.066 0.076 0.177
5 0 0 0 0.211 0.110 0.075 0.070 0.123 0.023 0.084 0.261
6 0 0 0 0 0.106 0.047 0.178 0.075 0.102 0.084 0.252
7 0 0 0 0 0 0.000 0.224 0.049 0.120 0.143 0.294
8 0 0 0 0 0 0 0.024 0.095 0.000 0.084 0.129
9 0 0 0 0 0 0 0 0.042 0.162 0.113 0.183
10 0 0 0 0 0 0 0 0 0.109 0.114 0.177
11 0 0 0 0 0 0 0 0 0 0.050 0.050
12 0 0 0 0 0 0 0 0 0 0 0.000

 A-9

Table A.9 Data set 1 (TCLS)

Mean 1 2 3 4 5 6 7 8 9 10 11
1 0.131 0.135 0.061 0.025 0.046 0.017 0.062 0.026 0.041 0.007 0.450
2 0.094 0.195 0.104 0.043 0.127 0.102 0.041 0.103 0.084 0.008 0.099
3 0 0.026 0.112 0.135 0.168 0.333 0.005 0.116 0.001 0.003 0.100
4 0 0 0.151 0.09 0.078 0.249 0.033 0.124 0.031 0.038 0.207
5 0 0 0 0.418 0.08 0.084 0.043 0.083 0.012 0.036 0.243
6 0 0 0 0 0.09 0.024 0.25 0.066 0.107 0.09 0.372
7 0 0 0 0 0 0 0.319 0.059 0.086 0.215 0.321
8 0 0 0 0 0 0 0.033 0.055 0.003 0.022 0.886
9 0 0 0 0 0 0 0 0.012 0.097 0.079 0.812
10 0 0 0 0 0 0 0 0 0.114 0.223 0.663
11 0 0 0 0 0 0 0 0 0 0.022 0.978
12 0 0 0 0 0 0 0 0 0 0 1

S.D. 1 2 3 4 5 6 7 8 9 10 11
1 0.011 0.015 0.013 0.016 0.029 0.013 0.024 0.015 0.014 0.008 0.038
2 0.152 0.218 0.14 0.093 0.179 0.142 0.093 0.121 0.165 0.028 0.170
3 0 0.108 0.132 0.168 0.211 0.212 0.018 0.144 0.003 0.015 0.193
4 0 0 0.182 0.137 0.157 0.277 0.096 0.133 0.089 0.079 0.279
5 0 0 0 0.199 0.11 0.108 0.068 0.111 0.027 0.076 0.210
6 0 0 0 0 0.124 0.044 0.206 0.105 0.123 0.108 0.299
7 0 0 0 0 0 0 0.221 0.105 0.115 0.169 0.295
8 0 0 0 0 0 0 0.076 0.071 0.01 0.056 0.127
9 0 0 0 0 0 0 0 0.038 0.132 0.129 0.181
10 0 0 0 0 0 0 0 0 0.108 0.129 0.193
11 0 0 0 0 0 0 0 0 0 0.057 0.057
12 0 0 0 0 0 0 0 0 0 0 0

 A-10

Table A.10 Data set 3 (WCLS)

Mean 1 2 3 4 5 6 7 8 9 10 11

1 0.134 0.141 0.061 0.029 0.051 0.020 0.065 0.021 0.042 0.008 0.428
2 0.076 0.128 0.101 0.046 0.079 0.113 0.018 0.081 0.042 0.027 0.289
3 0 0.014 0.111 0.107 0.157 0.245 0.001 0.150 0.031 0.019 0.165
4 0 0 0.162 0.105 0.095 0.187 0.006 0.117 0.023 0.018 0.288
5 0 0 0 0.375 0.060 0.103 0.034 0.087 0.015 0.030 0.297
6 0 0 0 0 0.076 0.036 0.214 0.068 0.105 0.113 0.389
7 0 0 0 0 0 0.000 0.345 0.069 0.064 0.217 0.306
8 0 0 0 0 0 0 0.066 0.098 0.014 0.012 0.810
9 0 0 0 0 0 0 0 0.028 0.099 0.065 0.808
10 0 0 0 0 0 0 0 0 0.130 0.196 0.674
11 0 0 0 0 0 0 0 0 0 0.008 0.992
12 0 0 0 0 0 0 0 0 0 0 1.000

S.D. 1 2 3 4 5 6 7 8 9 10 11
1 0.010 0.011 0.013 0.012 0.028 0.011 0.018 0.020 0.020 0.011 0.041
2 0.118 0.169 0.105 0.064 0.119 0.120 0.065 0.115 0.082 0.065 0.264
3 0 0.045 0.121 0.109 0.169 0.189 0.005 0.149 0.089 0.041 0.204
4 0 0 0.173 0.160 0.102 0.176 0.018 0.147 0.045 0.047 0.244
5 0 0 0 0.194 0.104 0.098 0.048 0.111 0.029 0.053 0.215
6 0 0 0 0 0.108 0.043 0.124 0.092 0.121 0.131 0.218
7 0 0 0 0 0 0.000 0.166 0.092 0.084 0.118 0.208
8 0 0 0 0 0 0 0.094 0.103 0.037 0.036 0.172
9 0 0 0 0 0 0 0 0.048 0.127 0.082 0.152
10 0 0 0 0 0 0 0 0 0.101 0.103 0.149
11 0 0 0 0 0 0 0 0 0 0.016 0.016
12 0 0 0 0 0 0 0 0 0 0 0.000

 A-11

Table A.11 Data set 3 (CLS)

Mean 1 2 3 4 5 6 7 8 9 10 11

1 0.134 0.142 0.068 0.038 0.062 0.032 0.071 0.031 0.045 0.011 0.367
2 0.064 0.110 0.081 0.016 0.057 0.097 0.012 0.071 0.029 0.015 0.446
3 0 0.008 0.041 0.045 0.063 0.082 0.002 0.061 0.006 0.009 0.684
4 0 0 0.103 0.058 0.017 0.098 0.004 0.038 0.019 0.009 0.654
5 0 0 0 0.344 0.046 0.086 0.033 0.066 0.010 0.027 0.388
6 0 0 0 0 0.076 0.056 0.199 0.059 0.103 0.100 0.407
7 0 0 0 0 0 0.001 0.298 0.049 0.041 0.143 0.469
8 0 0 0 0 0 0 0.059 0.110 0.015 0.031 0.786
9 0 0 0 0 0 0 0 0.047 0.089 0.073 0.791
10 0 0 0 0 0 0 0 0 0.147 0.226 0.626
11 0 0 0 0 0 0 0 0 0 0.026 0.974
12 0 0 0 0 0 0 0 0 0 0 1.000

S.D. 1 2 3 4 5 6 7 8 9 10 11
1 0.010 0.011 0.013 0.014 0.028 0.013 0.016 0.019 0.021 0.013 0.067
2 0.108 0.158 0.120 0.033 0.090 0.123 0.039 0.101 0.092 0.037 0.282
3 0 0.022 0.071 0.070 0.133 0.111 0.008 0.122 0.025 0.030 0.312
4 0 0 0.187 0.141 0.051 0.154 0.019 0.073 0.065 0.027 0.439
5 0 0 0 0.180 0.080 0.112 0.055 0.100 0.030 0.060 0.290
6 0 0 0 0 0.112 0.073 0.118 0.071 0.117 0.116 0.311
7 0 0 0 0 0 0.005 0.181 0.083 0.060 0.126 0.334
8 0 0 0 0 0 0 0.081 0.158 0.042 0.066 0.263
9 0 0 0 0 0 0 0 0.083 0.161 0.136 0.336
10 0 0 0 0 0 0 0 0 0.139 0.122 0.247
11 0 0 0 0 0 0 0 0 0 0.096 0.096
12 0 0 0 0 0 0 0 0 0 0 0.000

 B-1

APPENDIX B ON-LINE ESTIMATION RESULTS

(a) Time-series plot of b1,1 for data set 1 (b) Time-series plot of b2,1 for data set 1

(c) Time-series plot of b1,1 for data set 3 (d) Time-series plot of b2,1 for data set 3

Figure B.1 Results of RLS for the simulated network with data sets 1 and 3

 B-2

 (a) Time-series plot of b1,1 for data set 2 (b) Time-series plot of b2,1 for data set 2

 (c) Time-series plot of b1,1 for data set 4 (d) Time-series plot of b2,1 for data set 4

Figure B.2 Results of RLS for the simulated network with data sets 2 and 4

 B-3

 (a) Time-series plot of b1,1 for data set 1 (b) Time-series plot of b2,1 for data set 1

 (c) Time-series plot of b1,1 for data set 3 (d) Time-series plot of b2,1 for data set 3

Figure B.3 Results of SQP for the simulated network with data sets 1 and 3

 B-4

 (a) Time-series plot of b1,1 for data set 2 (b) Time-series plot of b2,1 for data set 2

 (c) Time-series plot of b1,1 for data set 4 (d) Time-series plot of b2,1 for data set 4

Figure B.4 Results of SQP for the simulated network with data sets 2 and 4

 B-5

Figure B.5 Results of RLS for TH-169 with data set 1 (1)

 B-6

Figure B.6 Results of RLS for TH-169 with data set 1 (2)

 B-7

Figure B.7 Results of RLS for TH-169 with data set 2

 B-8

Figure B.8 Results of RLS for TH-169 with data set 4

 B-9

Figure B.9 Results of SQP for TH-169 on data set 1 (1)

 B-10

Figure B.10 Results of SQP for TH-169 on data set 1 (2)

 B-11

Figure B.11 Results for SQP on TH-169 with data set 2

 B-12

Figure B.12 Results for SQP on TH-169 with data set 4

 C-1

APPENDIX C SOURCE CODE

A. CLS Matlab Script

clear;
load 'Q.dat';
load 'D.dat';
load 'aeq.dat';
load 'beq.dat';
load 'lb.dat';
load 'ub.dat';
load 'ini.dat';
ntime=36;
nor=12;
ndes=11;
nday=23;
for i=1:nor*ndes
 sumx(i)=0;
 sumxx(i)=0;
end

 fid1=fopen('X.dat','w');
 for t=1:nday
 for i=1:ntime*ndes
 for j=1:nor*ndes
 onr(i,j)=0;
 end
 end

 for k=1:ntime
 n=1;
 for i=(k-1)*ndes+1:k*ndes
 m=1;
 for j=(n-1)*nor+1:n*nor
 onr(i,j)=Q(k+(t-1)*ntime,m);
 m=m+1;
 end
 n=n+1;
 end
 end
 for i=1:ntime*ndes
 off(i,1)=D(i+(t-1)*ntime*ndes,1);
 end

 for j=1:ndes
 sumoff(j)=0;
 average(j)=0;
 for i=1:ntime
 sumoff(j)=sumoff(j)+off((i-1)*ndes+j);
 end
 average(j)=sumoff(j)/ntime;
 end

 for i=1:ndes

 C-2

 for j=1:ntime
 weight((j-1)*ndes+i,(j-1)*ndes+i)=1/sqrt(average(i));
 end
 end

 on=onr;
 y=off;
A=[];
b=[];
[nineqcstr,numberOfVariables]=size(A);
[neqcstr,numberOfVariableseq]=size(aeq);
ncstr = nineqcstr + neqcstr;
X0=ini;
verbosity = 1;
caller = 'lsqlin';

[x,lambdaqp,exitflag,output]= ...
 qpsub(full(on),y,[full(aeq);full(A)],[beq;b],lb,ub,X0,neqcstr,verbosity,caller,ncstr,numberOfVariables);

for i=1:nor
 fprintf(fid1,'%6.3f %6.3f %6.3f %6.3f %6.3f %6.3f %6.3f %6.3f %6.3f
%6.3f%6.3f\n',x(i),x(i+nor),x(i+nor*2),x(i+nor*3),x(i+nor*4),x(i+nor*5),x(i+nor*6),x(i+nor*7),x(i+nor*8),x(i
+nor*9),x(i+nor*10));
end

 for i=1:nor*ndes
 sumx(i)=sumx(i)+x(i);
 sumxx(i)=sumxx(i)+x(i).^2;
 end
 end

for i=1:132
 avg(i)=sumx(i)/nday;
 std(i)=sqrt((-nday*avg(i).^2+sumxx(i))/nday);
end
fprintf(fid1,'average \n');
for i=1:nor
 fprintf(fid1, '%6.3f %6.3f %6.3f %6.3f %6.3f %6.3f %6.3f %6.3f %6.3f
%6.3f%6.3f\n',avg(i),avg(i+nor),avg(i+nor*2),avg(i+nor*3),avg(i+nor*4),avg(i+nor*5),avg(i+nor*6),avg(i+nor
*7),avg(i+nor*8),avg(i+nor*9),avg(i+nor*10));
 end
fprintf(fid1,'std \n');
 for i=1:nor
 fprintf(fid1,'%6.3f %6.3f %6.3f %6.3f %6.3f %6.3f %6.3f %6.3f %6.3f %6.3f
%6.3f\n',std(i),std(i+nor),std(i+nor*2),std(i+nor*3),std(i+nor*4),std(i+nor*5),std(i+nor*6),std(i+nor*7),std(i+n
or*8),std(i+nor*9),std(i+nor*10));
 end
fclose(fid1);

 C-3

Inputs:

Qntime*m is the onramp counts in the matrix form, where ntime is number of time intervals and

m is the number of origins;

D1*(ntime*n) is the offramp counts in a column vector form, where n is the number of

destinations;

aeq is the matrix that specifies the equality constraints, for TH-169 segment

4444444444 34444444444 21
mn

maeq





























ΛΟΛ
ΟΜΟΟΜ

ΜΟΜ
ΛΟΛ

=

100100
00

1010
001001

beq is a vector showing the equality constraints.

mbeq





























=

1

1
1

M

lb is the lower bound for the inequality constraints;

ub is the upper bound for the inequality constraints.

 C-4

B. Fortran code of data generation for TCLS

 Program station
 implicit none
 integer num
 parameter(num=26)
 integer i,j,k,n,tor(12,11,37),triptable(37*11,12*11),tt
 double precision occu(num*288),speed(num*288),vol(num*288),detecto
 &r(num*288,4),id(num*288),count(num*288),length(21),zero,staspeed(2
 &5,288),statspeed(25,288),section(21,288),time(21,288),odtime(12,11
 &,288),t(12,11,39),beta(12,11,37),onramp(3744,3),qq(12,39),q(12,11,
 &37),offramp(2880,3),off(11,37),offramp1(864,3),predict(407,1),pred
 &ictoff(11,37),det(num*23*288,4)

 character*80 detfile,outfile,lfile,onfile,offfile,offfile1,ofile
 parameter(detfile='station.dat')
 parameter(outfile='outs.dat')
 parameter(lfile='length.dat')
 parameter(onfile='onramp.dat')
 parameter(offfile='offramp.dat')
 open(unit=1,file=detfile,status='old')
 open(unit=2,file=outfile,status='old')
 open(unit=3,file=lfile,status='old')

 call fread(num*288*23,4,det,1)
 call fread(21,1,length,3)
 zero=1.0d-8

 do tt=1,23
 do i=1,num*288
 do j=1,4
 detector(i,j)=det(i+num*288*(tt-1),j)
 end do
 end do

 do i=1,num*288
 id(i)=detector(i,1)
 count(i)=detector(i,2)
 occu(i)=detector(i,3)
 speed(i)=detector(i,4)
 end do
 close(1)
 close(3)

 do i=1,num-1,2
 do j=1,288

 C-5

 if(count((i-1)*288+j)+count(i*288+j).gt.zero) then
 staspeed(i,j)=(count((i-1)*288+j)*speed((i-1)*288+j)+count(i
 &*288+j)*speed(i*288+j))/(count((i-1)*288+j)+count(i*288+j))
 else
 staspeed(i,j)=60*1.609/3.6
 endif
 end do
 end do

 do j=1,288
 statspeed(1,j)=staspeed(1,j)
 statspeed(3,j)=staspeed(25,j)
 statspeed(5,j)=staspeed(23,j)
 statspeed(7,j)=staspeed(21,j)
 statspeed(9,j)=staspeed(19,j)
 statspeed(11,j)=staspeed(17,j)
 statspeed(13,j)=staspeed(15,j)
 statspeed(15,j)=staspeed(3,j)
 statspeed(17,j)=staspeed(13,j)
 statspeed(19,j)=staspeed(11,j)
 statspeed(21,j)=staspeed(9,j)
 statspeed(23,j)=staspeed(7,j)
 statspeed(25,j)=staspeed(5,j)
 end do
 k=0
 do i=1,num-1,2
 k=k+1
 do j=1,288
 statspeed(k,j)=statspeed(i,j)
 end do
 end do

 do j=1,288
 section(1,j)=statspeed(1,j)
 section(2,j)=statspeed(1,j)
 section(3,j)=(statspeed(1,j)+statspeed(2,j))/2
 section(4,j)=statspeed(2,j)
 section(5,j)=statspeed(3,j)
 section(6,j)=statspeed(4,j)
 section(7,j)=statspeed(5,j)
 section(8,j)=statspeed(6,j)
 section(9,j)=(statspeed(6,j)+statspeed(7,j))/2
 section(10,j)=statspeed(7,j)
 section(11,j)=(statspeed(7,j)+statspeed(8,j))/2
 section(12,j)=statspeed(8,j)

 C-6

 section(13,j)=(statspeed(8,j)+statspeed(9,j))/2
 section(14,j)=statspeed(9,j)
 section(15,j)=statspeed(10,j)
 section(16,j)=statspeed(11,j)
 section(17,j)=(statspeed(11,j)+statspeed(12,j))/2
 section(18,j)=(statspeed(11,j)+statspeed(12,j))/2
 section(19,j)=statspeed(12,j)
 section(20,j)=statspeed(13,j)
 section(21,j)=statspeed(13,j)
 end do

 do i=1,21
 do j=1,288
 time(i,j)=length(i)/section(i,j)
 end do
 end do

 do i=1,12
 do j=1,11
 do k=1,288
 odtime(i,j,k)=0
 end do
 end do
 end do

 do k=1,288
 odtime(1,1,k)=time(1,k)
 odtime(2,1,k)=time(1,k)
 end do

 do j=2,11
 do k=1,288
 odtime(1,j,k)=time(2*j-2,k)+time(2*j-1,k)+odtime(1,j-1,k)
 odtime(2,j,k)=time(2*j-2,k)+time(2*j-1,k)+odtime(2,j-1,k)
 end do
 end do

 do i=3,12
 do k=1,288
 odtime(i,i-1,k)=time(2*i-3,k)
 end do
 end do

 do i=3,12
 do j=i,11
 do k=1,288

 C-7

 odtime(i,j,k)=time(2*j-1,k)+time(2*j-2,k)+odtime(i,j-1,k)
 end do
 end do
 end do

 do i=1,12
 do j=1,11
 n=1
 do k=1,288
 if((k.ge.82).and.(k.le.120)) then
 t(i,j,n)=odtime(i,j,k)
 n=n+1
 endif
 end do
 end do
 end do

 do i=1,12
 do j=1,11
 do k=3,39
 tor(i,j,k-2)=int(t(i,j,k)/300)+1
 beta(i,j,k-2)=tor(i,j,k-2)-t(i,j,k)/300
 end do
 end do
 end do
c
c onramp counts
c
 open(unit=4,file=onfile,status='old')
 call fread(3744,3,onramp,4)
 k=1
 do j=1,288
 if((j.ge.82).and.(j.le.120)) then
 qq(1,k)=onramp(j,2)+onramp(j+288,2)
 k=k+1
 endif
 end do

 do i=2,12
 k=1
 do j=i*288+1,(i+1)*288
 if(((j- i*288).ge.82).and.((j- i*288).le.120)) then
 qq(i,k)=onramp(j,2)
 k=k+1
 endif
 end do

 C-8

 end do

c
c calculate the matrix of onramp counts for time-varying CLS
c
 do i=1,12
 do j=1,11
 do k=1,37
 q(i,j,k)=(1-beta(i,j,k))*qq(i,(k+2-tor(i,j,k)))+beta(i,j,k
 &)*qq(i,(k+2-tor(i,j,k)+1))
 end do
 end do
 end do

 do k=1,37
 do j=1,11
 do i=1,12
 triptable((k-1)*11+j,(j-1)*12+i)=int(q(i,j,k))
 end do
 end do
 end do
c
c offramp counts
c
 do i=1,10
 k=1
 do j=(i-1)*288+1,i*288
 if(((j-(i-1)*288).ge.84).and.((j-(i-1)*288).le.120)) then
 off(i,k)=offramp(j,2)
 k=k+1
 endif
 end do
 end do
c
c calculate the vector of offramp counts for time-varying CLS
c
 open(unit=6,file=offfile1,status='old')
 call fread(864,3,offramp1,6)
 k=1
 do j=1,288
 if((j.ge.84).and.(j.le.120)) then
 off(11,k)=offramp1(j,2)+offramp1(j+288,2)+offramp1(j+288
 &*2,2)
 k=k+1
 endif
 end do

 C-9

 do i=2,37
 write(2,"(36f6.0)") (off(j,i),j=1,11)
 end do
 end do
 end

 subroutine fread(row,col,matrix,fnum)
 integer row,col,fnum
 double precision matrix(row,col),xirtam(col,row)
 read(fnum,*) xirtam
 call transp(xirtam,col,row,matrix)
 end

 subroutine transp(x,col,row,y)
 integer row,col,i,j
 double precision x(col,row), y(row,col)
 do i=1,row
 do j=1,col
 y(i,j) = x(j,i)
 end do
 end do
 end

 C-10

C.Fortran code for Recursive Least Squares via Kalman Filtering

 Program Kalman
 implicit none
 integer i,j,ii,jj,s,t,nor,ntime,ndes,kk,m,n,ttt,nday
 parameter (nor=12,ndes=11,ntime=36,nday=50)
 integer index(nor)
 double precision onramp(ntime,nor),offramp(ntime,ndes)
 double precision a(ndes,ndes),aa(ndes,ndes),c(ndes,1),cc(ndes,1),f
 &tol,R(nor*ndes,nor*ndes),sum(ndes)
 double precision b(nor,ndes),k(nor*ndes,ndes),p(nor*ndes,nor*ndes)
 double precision bb(nor*ndes,1),bbt(1,nor*ndes),q(nor*ndes,ndes),q
 &t(ndes,nor*ndes),p0q(nor*ndes,ndes),qtp0(ndes,nor*ndes),pq(ndes,nd
 &es),rr(nor*ndes,nor*ndes),kc(nor*ndes,1),y(ntime,ndes)
 double precision onra(ntime*ndes,nor*ndes),ft(nor,nor*ndes)
 double precision kplus(nor*ndes,nor),f(nor*ndes,nor),ftp(nor,nor*n
 &des),ftpf(nor,nor),fpp(nor*ndes,nor),pp(nor,nor),rrplus(nor*ndes,n
 &or*ndes),ftbb(nor,1),kcplus(nor*ndes,1),onrampt(ntime*nday,nor),of
 &frampt(ntime*nday,ndes),average(nor,ndes,ntime),std(nor,ndes,ntime
 &),sumbb(nor,ndes,ntime),sumsquarebb(nor,ndes,ntime),offrampp(ntime
 &,ndes),sumerror(nday)
 character (40) offile,onfile,outfile,inifile,eqfile
 parameter (outfile='out.dat')
 parameter (inifile='matrix169.dat')
 parameter (offile='offramp.dat')
 parameter (onfile='onramp.dat')
 parameter (eqfile='aeq169.dat')

 open(unit=3,file=outfile,status='old')
 open(unit=1,file=offile,status='old')
 open(unit=2,file=onfile,status='old')
 open(unit=5,file=eqfile,status='old')
 call fread(ntime*nday,nor,onrampt,2)
 call fread(ntime*nday,ndes,offrampt,1)
 call fread(nor,nor*ndes,ft,5)
 close (2)
 close (1)
 close(5)

 do i=1,nor
 do j=1,ndes
 do t=1,ntime
 sumbb(i,j,t)=0.d+0
 sumsquarebb(i,j,t)=0.d+0
 end do
 end do

 C-11

 end do
 ftol=1.d-8
 do i=1,nor*ndes
 do j=1,nor
 f(i,j)=ft(j,i)
 end do
 end do

 do ttt=1,nday
 open(unit=4,file=inifile,status='old')
 call fread(nor,ndes,b,4)
 close(4)
 do i=1,ntime
 do j=1,nor
 onramp(i,j)=onrampt(ntime*(ttt-1)+i,j)
 end do
 do j=1,ndes
 offramp(i,j)=offrampt(ntime*(ttt-1)+i,j)
 end do
 end do

 do i=1,ntime*ndes
 do j=1,nor*ndes
 onra(i,j)=0.d+0
 end do
 end do

 do kk=1,ntime
 n=1
 do i=(kk-1)*ndes+1,kk*ndes
 m=1
 do j=(n-1)*nor+1,n*nor
 onra(i,j)=onramp(kk,m)
 m=m+1
 end do
 n=n+1
 end do
 end do

 do i=1,ntime
 do j=1,ndes
 y(i,j)=offramp(i,j)
 end do
 end do
 do t=1,ntime
 do i=1,ndes

 C-12

 do j=1,nor*ndes
 q(j,i)=onra((t-1)*ndes+i,j)
 qt(i,j)=onra((t-1)*ndes+i,j)
 end do
 end do

 do i=1,nor
 bb(i+(j-1)*nor,1)=b(i,j)
 bbt(1,i+(j-1)*nor)=b(i,j)
 end do
c initial p

 if(t.eq.1) then
 do ii=1,nor*ndes
 do jj=1,nor*ndes
 p(ii,jj)=0.
 r(ii,jj)=0.
 if(ii.eq.jj) p(ii,jj)=1.d+0
 if(ii.eq.jj) r(ii,jj)=1.d-4
 end do
 end do
 endif

 call multiply(p,q,p0q,nor*ndes,nor*ndes,ndes)
 call multiply(qt,p,qtp0,ndes,nor*ndes,nor*ndes)
 call multiply(qtp0,q,pq,ndes,nor*ndes,ndes)
 do i=1,ndes
 do j=1,ndes
 if(i.eq.j) then
 a(i,j)=pq(i,j)+1.d+0
 else
 a(i,j)=pq(i,j)
 endif
 end do
 end do

 call inv(ndes,a,aa)
 call multiply(p0q,aa,k,nor*ndes,ndes,ndes)
 call multiply(k,qtp0,rr,nor*ndes,ndes,nor*ndes)
 do i=1,nor*ndes
 do j=1,nor*ndes
 p(i,j)=p(i,j)-rr(i,j)+r(i,j)
 end do
 end do

 call multiply(qt,bb,cc,ndes,nor*ndes,1)

 C-13

 do j=1,ndes
 c(j,1)=y(t,j)-cc(j,1)
 end do

 call multiply(k,c,kc,nor*ndes,ndes,1)
 do i=1,nor*ndes
 bb(i,1)=bb(i,1)+kc(i,1)
 end do

 call multiply(ft,p,ftp,nor,nor*ndes,nor*ndes)
 call multiply(ftp,f,ftpf,nor,ndes*nor,nor)
 call INV(nor,ftpf,pp)
 call multiply(f,pp,fpp,nor*ndes,nor,nor)
 call multiply(p,fpp,kplus,nor*ndes,nor*ndes,nor)
 call multiply(kplus,ftp,rrplus,nor*ndes,nor,nor*ndes)
 call multiply(ft,bb,ftbb,nor,nor*ndes,1)
 do i=1,nor
 ftbb(i,1)=1.d+0-ftbb(i,1)
 end do

 call multiply(kplus,ftbb,kcplus,nor*ndes,nor,1)
 do i=1,nor*ndes
 bb(i,1)=bb(i,1)+kcplus(i,1)
 end do

 do i=1,nor*ndes
 do j=1,nor*ndes
 p(i,j)=p(i,j)-rrplus(i,j)
 end do
 end do

 do j=1,ndes
 do i=1,j+1
 b(i,j)=bb((j-1)*nor+i,1)
 if(b(i,j).lt.(0.d+0)) b(i,j)=0.d+0
 if(b(i,j).gt.1.) b(i,j)=1.
 end do
 end do

 do i=1,nor
 sum(i)=0.
 do j=1,ndes
 sum(i)=sum(i)+b(i,j)
 end do
 if(sum(i).eq.0) then
 do j=i-1,ndes

 C-14

 b(i,j)=1.0d+0/(2+ndes- i)
 end do
 else
 if(abs(sum(i)-1).gt.ftol) then
 if(i.gt.1) then
 do j=i-1,ndes
 b(i,j)=b(i,j)/sum(i)
 end do
 else
 do j=1,ndes
 b(i,j)=b(i,j)/sum(i)
 end do
 endif
 endif
 endif
 end do
 b(nor,ndes)=1.
 do i=1,nor
 do j=1,ndes
 sumbb(i,j,t)=sumbb(i,j,t)+b(i,j)
 sumsquarebb(i,j,t)=sumsquarebb(i,j,t)+b(i,j)**2
 end do
 end do
 end do

 call multiply(onramp,b,offrampp,ntime,nor,ndes)
 do i=1,ntime
 do j=1,ndes
 sumerror(ttt)=sumerror(ttt)+((offramp(i,j)-offrampp(i,j))**2)
 end do
 end do
 end do
 do i=1,nor
 do j=1,ndes
 do t=1,ntime
 if((j+2).gt.i) then
 average(i,j,t)=sumbb(i,j,t)/nday
 std(i,j,t)=sqrt((sumsquarebb(i,j,t)-nday*(average(i,j,t)*
 &*2))/nday)
 else
 average(i,j,t)=0.d+0
 std(i,j,t)=0.d+0
 endif
 end do
 end do
 end do

 C-15

 do i=1,nor
 do t=1,ntime
 write(3,"(11f8.4)") (average(i,j,t),j=1,ndes)
 end do
 write(3,*) ''
 end do

 do i=1,nor
 do t=1,ntime
 write(3,"(11f8.4)") (std(i,j,t),j=1,ndes)
 end do
 write(3,*) ''
 end do
 close(3)
 end

 SUBROUTINE multiply(A,B,C,m,n,p)
 implicit none
 integer m,n,p,i,j,k
 double precision A(m,n),B(n,p),C(m,p)

 do i=1,m
 do k=1,p
 C(i,k)=0.d+0
 do j=1,n
 C(i,k)=C(i,k)+A(i,j)*B(j,k)
 end do
 end do
 end do
 end

 SUBROUTINE INV(K,A,C)
 Implicit none
 INTEGER K,I,J,L,K2
 double precision A(K,K),C(K,K),B(K,2*K),PIVOT,AIL

 DO 5 J=1,K
 DO 6 I=1,K
 6 B(I,J)=A(I,J)
 5 CONTINUE
 K2=K*2
 DO 7 J=1,K
 DO 8 I=1,K
 B(I,K+J)=0.0D+00
 IF(I.EQ.J) B(I,K+J)=1.0D+00

 C-16

 8 CONTINUE
 7 CONTINUE
C THE PIVOT OPERATION STARTS HERE
 DO 9 L=1,K
 PIVOT=B(L,L)
 DO 13 J=L,K2
 13 B(L,J)=B(L,J)/PIVOT
C TO IMPROVE THE ROWS
 DO 14 I=1,K
 IF(I.EQ.L) GO TO 14
 AIL=B(I,L)
 DO 15 J=L,K2
 15 B(I,J)=B(I,J)-AIL*B(L,J)
 14 CONTINUE
 9 CONTINUE
 DO 45 I=1,K
 DO 46 J=1,K
 46 C(I,J)=B(I,K+J)
 45 CONTINUE
 RETURN
 END
C
C fread - routine that reads the 2-d array from a file
C
 subroutine fread(row,col,matrix,fnum)
 integer row,col,fnum
 double precision matrix(row,col),xirtam(col,row)

 read(fnum,*) xirtam
 call transp(xirtam,col,row,matrix)
 end
C
C transp - returns the tranpose of a matrix.
C
 subroutine transp(x,col,row,y)
 integer row,col,i,j
 double precision x(col,row), y(row,col)

 do i=1,row
 do j=1,col
 y(i,j) = x(j,i)
 end do
 end do
 end

 C-17

D. Matlab Script for Sequential Quadratic Programming

clear;
load 'Q.dat';
load 'D.dat';
load 'A.dat';
load 'B.dat';
load 'aeq.dat';
load 'beq.dat';
load 'lb.dat';
load 'ub.dat';
load 'ini.dat';
fid1=fopen('X.dat','w');
ntime=36;
nday=23;
nor=12;
ndes=11;

NewtonStep = 'Newton';
for i=1:nor
 for j=1:ndes
 sumbb(i,j)=0.;
 sumsquarebb(i,j)=0.;
 sumbb1(i,j)=0.;
 sumsquarebb1(i,j)=0.;
 for t=1:ntime
 sumbbx(i,j,t)=0;
 sumsquarebbx(i,j,t)=0.;
 end
 end
end

for ttt=1:nday
 fprintf(fid1, '%s %4d \n','ttt=',ttt);
[nineqcstr,numberOfVariables]=size(A);
[neqcstr,numberOfVariableseq]=size(aeq);
ncstr = nineqcstr + neqcstr;
eqix = 1:neqcstr;
lambda=zeros(ncstr,1);
aix=lambda;
indepInd = 1:ncstr;
A=[full(aeq);full(A)];
B=[beq;B];

normA = ones(ncstr,1);
normf=1;

errnorm = 0.01*sqrt(eps);
tolDep = 100*numberOfVariables*eps;
ACTSET=A(eqix,:);
ACTIND=eqix;
ACTCNT=neqcstr;
CIND=neqcstr+1;
neq=diag(ones(132,1),0);
X=ini;

 C-18

simplex_iter=1;
cstr=A*X-B;

[QQ R]=qr((ACTSET)');
Z = QQ(:,neqcstr+1:numberOfVariables);

 for i=1:ntime
 for j=1:nor
 onramp(i,j)=Q(ntime*(ttt-1)+i,j);
 end
 end

 for i=1:ntime*ndes
 for j=1:nor*ndes
 onra(i,j)=0.d+0;
 end
 end

 for kk=1:ntime
 n=1;
 for i=(kk-1)*ndes+1:kk*ndes
 m=1;
 for j=(n-1)*nor+1:n*nor
 onra(i,j)=onramp(kk,m);
 m=m+1;
 end
 n=n+1;
 end
 end

%INITIAL H,c
for t=1:ntime
 q=onra((t-1)*ndes+1:(t-1)*ndes+ndes,:);
 y=D((ttt-1)*ntime*ndes+(t-1)*ndes+1:(ttt-1)*ntime*ndes+(t-1)*ndes+ndes);
 if t==1
 sum=q'*q;
 f=q'*y;
 else
 sum=sum+(1/t)*(q'*q-sum);
 f=f+(1/t)*(q'*y-f);
 end

 if det(sum)~=0
 break;
 end
end

t0=t;
H=sum;
oldind=0;

%MAIN ITERATION
while t < ntime
 t=t+1;
 q=onra((t-1)*ndes+1:(t-1)*ndes+ndes,:);
 y=D((ttt-1)*ntime*ndes+(t-1)*ndes+1:(ttt-1)*ntime*ndes+(t-1)*ndes+ndes);

 C-19

 f=f+(1/t)*(q'*y-f);
 H=H+(1/t)*(q'*q-H);
 c=-f;
 %from qpsub
 gf=H*X+c;
 %SD=-Z*((Z'*H*Z)\(Z'*gf));
 [SD, dirType] = compdir(Z,H,gf,numberOfVariables,c);
 GSD=A*SD;
 indf = find((GSD > errnorm * norm(SD)) & ~aix);
 if isempty(indf) % No constraints to hit
 STEPMIN=1e16;
 dist=[]; ind2=[]; ind=[];
 else % Find distance to the nearest constraint
 dist = abs(cstr(indf)./GSD(indf));
 [STEPMIN,ind2] = min(dist);
 ind2 = find(dist == STEPMIN);
 ind=indf(min(ind2));
 end

 delete_constr = 0;
 if ~isempty(indf)& isfinite(STEPMIN) % Hit a constraint
 if STEPMIN > 1 % Overstepped minimum; reset STEPMIN
 STEPMIN = 1;
 delete_constr = 1;
 ind=[];
 end
 X= X+STEPMIN*SD;

 else
 % did not hit a constraint
 STEPMIN = 1; % Exact distance to the solution. Now delete constr.
 X = X + SD;
 delete_constr = 1;
 end

if delete_constr
 % Note: only reach here if a minimum in the current subspace found
 rlambda = -R\(QQ'*(H*X+c));
 actlambda = rlambda;
 actlambda(eqix) = abs(rlambda(eqix));
 indlam = find(actlambda < 0);

 if length(indlam)
 % Remove constraint
 lind = find(ACTIND == min(ACTIND(indlam)));
 lind=lind(1);
 ACTSET(lind,:) = [];
 aix(ACTIND(lind)) = 0;
 [QQ,R]=qrdelete(QQ,R,lind);
 ACTIND(lind) = [];
 ACTCNT = ACTCNT - 2;
 simplex_iter = 0;
 ind = 0;
 delete_constr = 0;
 else

 C-20

 ACTCNT=ACTCNT-1;
 end
 end

 % Calculate gradient w.r.t objective at this point
 gf=H*X+c;
 % Update X and calculate constraints
 cstr = A*X-B;
 cstr(eqix) = abs(cstr(eqix));

 if ind % Hit a constraint
 aix(ind)=1;
 ACTSET(CIND,:)=A(ind,:);
 ACTIND(CIND)=ind;
 % CIND=CIND+1;
 [m,n]=size(ACTSET);
 [QQ,R] = qrinsert(QQ,R,CIND,A(ind,:)');
 end

 [m,n]=size(ACTSET);
 Z = QQ(:,m+1:n);
 [QQ,R] = qr(ACTSET');
 ACTCNT=ACTCNT+1;
 CIND=ACTCNT+1;
 if oldind
 aix(oldind) = 0;
 end

 for i=1:nor
 for j=1:ndes
 xx(i,j)=X((j-1)*nor+i);
 end
 end

 for i=1:nor
 for j=1:ndes
 sumbbx(i,j,t)=sumbbx(i,j,t)+xx(i,j);
 sumsquarebbx(i,j,t)=sumsquarebbx(i,j,t)+xx(i,j).^2;
 end
 end
 end %while t

 for i=1:nor
 for j=1:ndes
 xx(i,j)=X((j-1)*nor+i);
 end
 end
 for i=1:nor
 for j=1:ndes
 sumbb(i,j)=sumbb(i,j)+xx(i,j);
 sumsquarebb(i,j)=sumsquarebb(i,j)+xx(i,j).^2;
 end
 end
 end %ttt

 for i=1:nor

 C-21

 for j=1:ndes
 average1(i,j)=sumbb1(i,j)/nday;
 std1(i,j)=sqrt((sumsquarebb1(i,j)-nday*(average1(i,j).^2))/nday);
 for t=1:ntime
 avg(i,j,t)=sumbbx(i,j,t)/nday;
 std(i,j,t)=sqrt((sumsquarebbx(i,j,t)-nday*(avg(i,j,t).^2))/nday);
 end
 end
 end

 for i=1:nor
 for t=1:ntime
 fprintf(fid1, ' %6.3f %6.3f %6.3f %6.3f %6.3f %6.3f %6.3f %6.3f %6.3f %6.3f %6.3f
\n',avg(i,1,t),avg(i,2,t),avg(i,3,t),avg(i,4,t),avg(i,5,t),avg(i,6,t),avg(i,7,t),avg(i,8,t),avg(i,9,t),avg(i,10,t),avg(i,11,t
));
 end
 fprintf(fid1, '\n');
 end

 for i=1:nor
 for t=1:ntime
 fprintf(fid1, ' %6.3f %6.3f %6.3f %6.3f %6.3f %6.3f %6.3f %6.3f %6.3f %6.3f %6.3f
\n',std(i,1,t),std(i,2,t),std(i,3,t),std(i,4,t),std(i,5,t),std(i,6,t),std(i,7,t),std(i,8,t),std(i,9,t),std(i,10,t),std(i,11,t));
 end
 fprintf(fid1, '\n');
 end
 fclose(fid1);

