
  

 
 
 
 
 
 
 
 
 
 

Improving the Estimation of Travel Demand for Traffic 
Simulation: Part II 

 
Final Report 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Yao Wu 
 Gary Davis 

 David Levinson 
Department of Civil Engineering 

University of Minnesota 
 
 
 

CTS 04-11 
 
 

 



  

  

Technical Report Documentation Page 
1. Report No. 2. 3. Recipients Accession No. 

CTS 04-11   
4. Title and Subtitle 5. Report Date 

December 2004 
6. 

Improving the Estimation of Travel Demand for Traffic Simulation: 
Part II 

 
  

7. Author(s) 8. Performing Organization Report No. 

Yao Wu, Gary Davis, David Levinson 
 

 

9. Performing Organization Name and Address 10. Project/Task/Work Unit No. 

 
11. Contract (C)  or Grant (G) No. 

University of Minnesota 
Department of Civil Engineering 
500 Pillsbury Drive S.E. 
Minneapolis, MN  55455-0116 
 

 

12. Sponsoring Organization Name and Address 13. Type of Report and Period Covered 

Final Report  
 
14. Sponsoring Agency Code 

Intelligent Transportation Systems Institute
University of Minnesota Center for Transportation Studies
511 Washington Avenue SE, Suite 200 
Minneapolis, MN 55455  

15. Supplementary Notes 

www.cts.umn.edu/pdf/CTS-04-11Part2.pdf 
16. Abstract (Limit: 200 words) 

This report examined several methods for estimating Origin-Destination (OD) matrices for 
freeways using loop detector data. Least squares based methods were compared in terms of 
both off-line and on-line estimation. Simulated data and observed data were used for 
evaluating the static and recursive estimators. For off-line estimation, four fully constrained 
least squares methods were compared. The results showed that the variations of a constrained 
least squares approach produced more efficient estimates. For on-line estimation, two 
recursive least squares algorithms were examined. The first method extends Kalman Filtering 
to satisfy the natural constraints of the OD split parameters. The second was developed from 
sequential quadratic programming. These algorithms showed different capabilities to capture 
an abrupt change in the split parameters. Practical recommendations of the choice of different 
algorithms are given. 
 
 
17. Document Analysis/Descriptors 18.Availability Statement 

Algorithms 
Travel demand 
Traffic simulation 

Origin-Destination (OD) 
Loop detector 

No restrictions. Document available 
from: National Technical Information 
Services, Springfield, Virginia 22161 

19. Security Class (this report) 20. Security Class (this page) 21. No. of Pages 22. Price 

Unclassified Unclassified       95      



 
 

Improving the Estimation of Travel Demand for Traffic 
Simulation: Part II 

 
 

Final Report 
 
 
 
 
 
 
 

Prepared by: 
Yao Wu 

Gary Davis 
David Levinson 

Department of Civil Engineering 
University of Minnesota 

 
 
 
 
 

December 2004 
 
 
 
 
 
 
 
 
 

Intelligent Transportation Systems Institute 
University of Minnesota 

 
 
 

CTS 04-11 
 



  

Table of Contents 
  

CHAPTER 1. INTRODUCTION...................................................................................1 
CHAPTER 2. ESTIMATING OD MATRICES FROM TRAFFIC COUNTS..........3 
2.1 Introduction..............................................................................................................3 
2.2 Categorization..........................................................................................................3 
2.2.1 Under-specification....................................................................................................3 
2.2.2 Over-specification......................................................................................................5 
2.3 Review of Methodologies.....................................................................................5 
2.3.1 Under-specification....................................................................................................5 
2.3.2 Over-specification......................................................................................................6 
2.4 Simulation and Optimization Method................................................................8 
2.4.1 Introduction................................................................................................................8 
2.4.2 Methodology..............................................................................................................8 
2.4.3 A Simple Test Network............................................................................................11 
2.5 Advantage of the Linear Model.........................................................................13 
CHAPTER 3. OFF-LINE ESTIMATION....................................................................15 
3.1 Introduction.............................................................................................................15 
3.2 Description of Least Squares Based Methods...............................................15 
3.2.1 Constrained Least Squares (CLS)............................................................................15 
3.2.2 Weighted Constrained Least Squares (WCLS)........................................................16 
3.2.3 Constrained Least Squares With Time-Lagging (TCLS).........................................16 
3.2.4 DelftOD....................................................................................................................17 
3.3 Description of data sets........................................................................................18 
3.3.1 A Simple 2x2 Network.............................................................................................18 
3.3.2 Real Network............................................................................................................18 
3.4 Evaluation Criteria.................................................................................................21 
3.4.1 Measures of Bias and Comparative Efficiency.........................................................21 
3.4.2 Measure of Forecast Uncertainty..............................................................................22 
3.5 Results......................................................................................................................23 
3.5.1 The 2 by 2 Network..................................................................................................23 
3.5.2 TH-169.....................................................................................................................25 
3.5.2.1 Data set 1...............................................................................................................25 
3.5.2.2 Data set 2...............................................................................................................26 
3.5.2.3 Data set 3...............................................................................................................27 
3.6 Conclusion...............................................................................................................28 

 
 
 
 

 
 
 
 



  

CHAPTER 4. ON-LINE ESTIMATION...........................................................................29 
4.1 Introduction..................................................................................................................29 
4.2 Description of Methodologies.................................................................................29 
4.2.1 Recursive Least Squares via Kalman Filtering..............................................................29 
4.2.2 Recursive Sequential Quadratic Programming..............................................................32 
4.3 Description of Data Sets............................................................................................35 
4.3.1 The Simple 2 by 2 Network...........................................................................................35 
4.3.2 TH-169 Network............................................................................................................37 
4.4 Results............................................................................................................................38 
4.4.1 The 2 by 2 Network........................................................................................................38 
4.4.1.1 Kalman Filter Results..................................................................................................38 
4.4.1.2 RSQP Results..............................................................................................................38 
4.4.1.3 Comparison with the off- line results...........................................................................39 
4.4.2 TH-169...........................................................................................................................40 
4.4.2.1 Kalman Filter Results.................................................................................................40 
4.4.2.2 RSQP Results.............................................................................................................40 
4.5 Conclusions..................................................................................................................40 
CHAPTER 5. CONCLUSIONS..........................................................................................41 

 
REFERENCES ....................................................................................................................42 

 
APPENDIX A: OFF- LINE ESTIMATION RESULTS ...................................................A-1 

 
APPENDIX B ON -LINE ESTIMATION RESULTS ......................................................B-1 

 
APPENDIX C SOURCE CODE........................................................................................C-1 
A. CLS Matlab Script.....................................................................................................C-1 
B. Fortran Code of Data Generation for TCLS........................................................C-4 
C.Fortran Code for Recursive Least Squares via Kalman Filtering....................C-10 
D. Matlab Script for Sequential Quadratic Programming......................................C-17 

 

 

 

 

 

 



  

LIST OF FIGURES 

 
Figure 2.1 A simple network.................................................................................................4 
Figure 2.2 Flow diagram for simulation and optimization algorithm.................................10 
Figure 2.3 A two-origin two-destination simulated network...............................................11 
Figure 2.4 Objective function values generated from AIMSUN.........................................13 
Figure 2.5 Objective function values using the linear model...............................................14 
Figure 3.1 Real network of TH-169.....................................................................................19 
Figure 3.2 Geometry of the tested segment of TH-169........................................................20 
Figure 3.3 A simple network................................................................................................22 
Figure 4.1 Finite-dimensional linear system serving as signal model..................................29 
Figure 4.2 Flow diagram for active set algorithm................................................................35 
Figure B.1 Results of RLS for the simulated network with data sets 1 and 3......................B-1 
Figure B.2 Results of RLS for the simulated network with data sets 2 and 4......................B-2 
Figure B.3 Results of SQP for the simulated network with data sets 1 and 3......................B-3 
Figure B.4 Results of SQP for the simulated network with data sets 2 and 4......................B-4 
Figure B.5 Results of RLS for TH- 169 with data set 1 (1)...................................................B-5 
Figure B.6 Results of RLS for TH- 169 with data set 1 (2)...................................................B-6 
Figure B.7 Results of RLS for TH- 169 with data set 2.........................................................B-7 
Figure B.8 Results of RLS for TH- 169 with data set 4.........................................................B-8 
Figure B.9 Results of SQP for TH- 169 on data set 1 (1).......................................................B-9 
Figure B.10 Results of SQP for TH- 169 on data set 1 (2).....................................................B-10 
Figure B.11 Results for SQP on TH- 169  with data set 2......................................................B-11 
Figure B.12 Results for SQP on TH- 169  with data set 4......................................................B-12 

 
 

 

 

 

 

 

 

 



  

LIST OF TABLES 
  

Table 2.1 Two OD matrices..................................................................................................4 
Table 2.2 OD estimates for the simulated network.............................................................12 
Table 3.3.1 Assumed Flow-rates for origins.......................................................................18 
Table 3.2 An estimated OD matrix for the simple network................................................23 
Table 3.3 Results of 2-origin 2-destination network...........................................................24 
Table 3.4 Measures of bias and efficiency fo r data set 1.....................................................25 
Table 3.5 Measures of forecast uncertainty for data set 1....................................................26 
Table 3.6 Measures of bias and efficiency for data set 2.....................................................26 
Table 3.7 Measures of forecast uncertainty for data set 2....................................................27 
Table 3.8 Measures of efficiency for data set 3....................................................................27 
Table 3.9 Measures of forecast uncertainty for data set 3....................................................28 
Table 4.1 Assumed OD matrix with an abrupt change for simulated network....................36 
Table 4.2 Description of data sets........................................................................................36 
Table 4.3 Assumed OD matrix with an abrupt change for TH-169.....................................37 
Table 4.4 Comparison of on- line and off- line estimates......................................................39 
Table A.1 Data set 1 (DelftOD)...........................................................................................A-1 
Table A.2 Data set 1 (WCLS)..............................................................................................A-2 
Table A.3 Data set 1 (CLS)..................................................................................................A-3 
Table A.4 Data set 2 (DelftOD)...........................................................................................A-4 
Table A.5 Data set 2 (TCLS)...............................................................................................A-5 
Table A.6 Data set 2 (WCLS)..............................................................................................A-6 
Table A.7 Data set 2 (CLS)..................................................................................................A-7 
Table A.8 Data set 3 (DelftOD)...........................................................................................A-8 
Table A.9 Data set 1 (TCLS)...............................................................................................A-9 
Table A.10 Data set 3 (WCLS)............................................................................................A-10 
Table A.11 Data set 3 (CLS)................................................................................................A-11 

 
 
 
 
 
 
 
 
 
 
 



  

Executive Summary 
 
 

This report examined several methods for estimating Origin-Destination (OD) matrices 
for freeways using loop detector data. Least squares based methods were compared in 
terms of both off- line and on- line estimation. Simulated data and observed data were used 
for evaluating the static and recursive estimators. For off- line estimation, four fully 
constrained least squares methods were compared. The results showed that the variations 
of a constrained least squares approach produced more efficient estimates. For on- line 
estimation, two recursive least squares algorithms were examined. The first method 
extends Kalman Filtering to satisfy the natural constraints of the OD split parameters. 
The second was developed from sequential quadratic programming. These algorithms 
showed different capabilities to capture an abrupt change in the split parameters. Practical 
recommendations of the choice of different algorithms are given. 
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CHAPTER 1. INTRODUCTION 
Traffic congestion is an increasingly serious problem for many of the world’s urban 
areas. In the United States, the number of automobiles and light trucks grew by 86% 
between 1970 and 1995, while the amount of passenger miles traveled grew by 49%, both 
of which contributed to worsening congestion on metropolitan freeways (Bureau of 
Transportation Statistics, 1997). The strategies for congestion relief generally fall under 
two classifications: supply strategies and demand strategies.  

Supply strategies add to the system capacity, including the development of new or 
expanded infrastructure, so that the demand is better satisfied or the efficiency of the 
existing system is improved.  Demand strategies aim to reduce or at least redistribute the 
travel demand. The measures in the category include increasing taxes and other 
transportation expenses such as congestion pricing, parking pricing, and promoting car-
pooling and mass transit.  

Intelligent Transportation Systems (ITS), which include Advanced Traffic 
Management Systems (ATMS), Advanced Traveler Information Systems (ATIS), and 
Automated Vehicle Control Systems (AVCS) are designed to make more efficient use of 
existing highway capacity by managing and controlling traffic flow with real- time traffic 
information. ITS strategies provide both supply and demand measures. The supply type 
of ITS include optimized signal operation using real-time measures of demand, incident 
detection and resolution, freeway management with ramp metering, and accident 
avoidance with variable message signs warning of upcoming conditions. Demand-type 
ITS measures include the provision of real-time traffic congestion information to support 
informed individual travel decisions (Papacostas and Prevedouros, 2001). 

The successful implementation of ITS strategies not only depends on the 
availability of high-quality real-time information about traffic conditions, but also on 
prediction models in order to anticipate the response to the proposed traffic management 
actions. These practical models should be able to describe the interaction between travel 
demand and traffic flow phenomena. Since most traffic models use an origin-destination 
(O-D) matrix as the basic description of travel demand, it is necessary to generate 
estimates of OD matrices. Travel demand estimation is an essential input for all traffic 
management plans. Especially under emergency conditions such as accidents, travel 
demands are indispensable information for deciding how to re-route traffic. The 
advantage of using an OD matrix is that it not only indicates travel demand but also 
provides information about the direction of demand. Accurate and fast O-D trip table 
generation techniques are needed to implement on- line control strategies of ITS.   

Traditional methods of acquiring OD matrices include license plate studies and  a 
combination of home interview and roadside surveys. However, because these 
approaches are expensive, time-consuming, and labor demanding, they are excluded from 
wide-range application. Another disadvantage of traditional methods is that the obtained 
OD matrix is not dynamic and thus cannot be updated over time. This is not a desirable 
feature for on- line control applications.  

In the recent two decades, because of the availability of the data collected by 
traffic surveillance systems, more attention has been given to estimating OD matrices 
from traffic counts that are readily available.  It is hoped that the availability of time-
series data of traffic counts will produce OD estimators that have desirable statistical 
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properties such as consistency, efficiency, and the ability to track changes in the OD 
patterns.  

For general networks, because multiple routes connect each OD pair, the problem 
of OD estimation can be complicated.  However, the problem is simplified when one 
considers linear networks, such as single intersections and freeway segments, where each 
origin and destination are connected by, at most, one route. Since urban freeways carry a 
large fraction of total urban travel, it is not surprising that estimation of freeway OD 
patterns has been receiving increased attention. The OD pattern can be inferred from the 
available time-series data of on-ramp, off-ramp, and mainline traffic counts (Yu and 
Davis, 1994). 

The rest of the report is organized as follows. Chapter 2 provides a literature 
review of the existing OD estimation methods, followed by a description of a simulation 
and optimization method and its initial application on a simple network. Chapter 3 
compares the performances of four least squares-based off- line estimation algorithms. 
Chapter 4 compares two on- line estimation methods. Chapter 5 then draws the 
conclusions and makes practical recommendations. 
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CHAPTER 2. Estimating OD matrices from traffic counts 
 
2.1 Introduction 

An Origin Destination (OD) matrix is a two dimensional array of elements whose values 
represent the travel demand between each given origin and destination. Travelers select 
routes connecting an origin to a destination and when they travel these routes, traffic 
volumes are generated on links of the network, which can be measured by detectors. In 
principle, traffic counts provide information about the underlying OD matrix that 
generated them, and it should be possible to estimate the OD matrix from a suitably rich 
set of counts. 

The origins and destinations have somewhat different meanings under different 
scenarios. For a general network such as an urban area, it is usual to subdivide it into 
relatively homogeneous zones, using socioeconomic data and land use information. 
Therefore, for an urban area, the origins and destinations of an OD matrix are the traffic 
analysis zones. However, multiple routes exist from an origin zone to a destination zone 
and travelers have to choose one route connecting the origin and the destination. In the 
estimation procedure, this route choice has to be explicitly modeled, which complicates 
the problem. However, for a simple linear network, such as a freeway segment, the 
origins and destinations are the on-ramps and off-ramps respectively, and there is only 
one route connecting each OD pair. Therefore, the estimation of OD matrices for 
freeways is an especially simple case of the estimation for general networks. In this 
report, we focus on the estimation of OD matrices for freeways. 

 
2.2 Categorization 

Depending on the data availability, the existing OD estimation methods generally 
fall into two categories: under-specified and over-specified approaches.   

2.2.1 Under-specification  

This type of approach is most common when only one set of traffic counts is 
available. A simple network with a single set of observed link volumes is illustrated in 
Figure 2.1, in which zones 1 and 2 are origins and zones 3 and 4 are destinations. The 
numbers on the links represent traffic counts. As shown in Table 2.1, either of the two 
matrices can reproduce the observed link volumes, so the traffic volumes do not uniquely 
determine the OD matrix. 
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Figure 2.1 A simple network 

 

O\D 3 4 O\D 3 4 
1 0 100 1 50 50 
2 100 100 

  
2 50 150 

 Table 2.1 Two OD matrices 

 

The explanation for more than one solution for this network is that the number of 
OD variables, which is four, is greater than the number of independent constraints, which 
is only three, as shown in (2.1), where xij represents the traffic volume from origin i to 
destination j. Therefore, the system is under-specified and there are actually many OD 
matrices that can exactly reproduce the observed traffic counts.  

 

                                             

  

x13 + x14 = 100

x23 + x24 = 200

x13 + x23 = 100









                                                            (2.1) 

For real networks such as the Twin Cities seven-county metropolitan area, similar 
problems exist. The number of Transportation Analysis Zones (TAZ) is 1165. Therefore, 
the dimension of the OD matrices to be estimated is 1165x1165, which is approximately 
1.36 million. Unfortunately, the number of links is much smaller, of the order 104. A 
single set of traffic counts simply cannot produce a unique solution so that methodologies 
in this category need additional assumptions to find a solution. Generally, this involves 
first selecting a prior estimate for the OD matrix and then selecting as an estimate the 
matrix that reproduces the traffic counts while being closest in some sense to the prior 
estimate. 
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2.2.2 Over-specification 

When time-series of traffic counts are available from automatic surveillance and 
control systems, we can have constraints for each time slice. If we assume that the OD 
parameters are strictly constant, then we can write equations such as (2.1) for each time 
interval. When the number of equations is larger than the number of parameters, the 
problem becomes over-determined, and generally no single matrix will exactly reproduce 
the traffic counts. However, a unique solution can be obtained by choosing the one that 
most closely matches the observations.  

 
 

2.3 Review of Methodologies 

2.3.1 Under-specification 

The estimation of OD matrices from traffic counts dates back to the 1970s. The 
earliest methodologies use traffic counts from a single observation period as the basic 
information. However, as discussed above, since these counts are not sufficient to 
determine the matrix of OD flows, additional assumptions and a priori information are 
needed to lead to a unique solution. Willis and May (1981) give a review of these 
methods.  

Gur and Turnquist (1979) formulated OD estimation as a nonlinear programming 
problem by trying to minimize the system travel time subject to constraints that observed 
travel times and link volumes correspond to those consistent with Wardrop’s second 
principle. An iterative algorithm gave a unique solution for this problem, given an initial 
OD matrix and the travel time function for each link. However, in the absence of an 
efficient cooperation mechanism and the symmetric information among drivers, the 
assumption of the network equilibrium was dubious. In addition, the dependence on the 
initial trip matrix may lead to poor estimates if the initial matrix was poor. 

Van Zuylen and Willumsen (1979) developed two procedures that are 
representative of the under-specification methods: information minimization and entropy 
maximization. The underlying rationale for the information minimization method is that 
one should select a matrix by adding as little information as possible when the available 
information from traffic counts is insufficient to determine the OD matrix. The entropy 
maximization method is based on the assumption that the most likely OD trip matrix has 
the greatest number of associated micro-states. For example, the number of ways to 
choose an OD matrix Xij with a total number of trips N is: 

                                                
∏

=

ij
ij

ij
X

NXW !}{                                                      (2.2) 

and the maximum entropy estimate maximizes W. Although the result of this method has 
the same multi-proportional form as that of the information minimization method, the 
entropy-maximization demanded less computational effort and appeared to produce 
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estimates closer to the observed matrix. Instead of forcing the OD matrix to follow the 
gravity pattern as in Gur et al. (1978), these two methodologies make full use of the 
information contained in the traffic counts. They are particularly useful because no travel 
behavior assumption is made in these approaches. However, the need for an additional 
“prior” matrix to obtain reasonable results makes it necessary to collect a considerable 
amount of data besides traffic counts. Furthermore, since the prior information tended to 
dominate the results, the accuracy of the estimate depends on the choice of the initial 
solution. 

Maher (1983) suggested a method based on Bayesian statistical inference. Instead 
of starting with a point estimate, he introduced a distribution over possible initial 
estimates, in order to represent the degree belief in these prior possibilities. A posterior 
distribution over the possibilities was then produced from the prior distribution and 
observations using Bayes Theorem. Although this proposed method allows flexibility in 
the degree of belief on the prior estimate, this value still needs to be chosen in practice. In 
addition, the assumption of the multivariate normal distribution only holds when the 
traffic volume is large enough, so that application to low-volume networks is limited. 

Cascetta (1984) developed a generalized least squares estimator, or Atiken 
estimator of the OD matrix from “director or model” estimators and traffic counts. The 
director or model estimates here are essentially the same as the initial estimates in the 
above methods, and the estimator minimizes the distance to the starting estimates. Similar 
to the Bayes estimator proposed by Maher (1983), a dispersion matrix for the initial 
estimate should be identified prior to the estimation, which determines the accuracy of 
obtained estimates. However, the difference is that the Atiken estimator does not require 
distribution assumptions. Hendrickson and McNeil (1984) described a similar least 
squares estimator, but the dependence on initial estimates remained a problem. 

 

2.3.2 Over-specified 

In this section, the emphasis will be on static methods that are used for simple 
linear networks, such as intersections and freeways. The first publication on this subject 
was by Cremer and Keller (1983), and they used split parameters to represent an OD 
matrix. As shown in (2.3), the split parameter bij is the probability that a vehicle entering 
at origin i is destined for destination j. The linear traffic assignment model they proposed 
was originally applied to intersections. However, it can also be applied to fr eeway 
segments if the travel time for an OD pair ij is short compared to the duration of the 
counting interval. The predicted off- ramp count can be produced as: 

 

                                                    
   
y$ j (t) = qi (t) * bij

i
∑                                                (2.3) 

where )(ˆ ty j is the predicted traffic count at off-ramp j during time interval t, j=1, . . . ,n; 

)(tqi  is the observed traffic count at on-ramp i during time interval t, i=1, . . . , m; 
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ijb is the probability that a vehicle entering at i is destined for exit j. 

The split parameters bij are also subject to the inequality and equality constraints. 

                                              10 ≤≤ ijb  for all i, j                                                 (2.4a) 

                                               1=∑
j

ijb  for all i                                                     (2.4b)                                             

A wide range of estimation techniques has been employed to solve this problem, 
such as parameter optimization techniques like least squares and constrained optimization 
and statistically based techniques like maximum likelihood estimation. Constrained Least 
Squares was suggested by Cremer and Keller (1983) and Nihan and Davis (1987). To 
illustrate this methodology, a freeway system is used as an example. It is assumed that 
OD variables are time- invariant. Because traffic counts for multiple time slices are 
available, the number of equations is greater than the number of variables. As a result, the 
problem is identified as over-specified. CLS estimates can be obtained by minimizing the 
sum of squared errors (2.5) subject to the constraints in equations (2.4a) and (2.4b). 

 

                                            
   
f = [ y$ j (t) − y j (t)]

2

j
∑

t
∑                                             (2.5) 

The advantage of this method is that it leads to a unique solution that does not 
depend on the initial solution. This is a great improvement over the under-determined 
methodologies. However, it is not ideal for the estimation of OD matrices. Constrained 
least squares estimation originated from estimating turning proportions at an intersection, 
where an OD variable  is equivalent to a turning proportion. In contrast, travel times 
between freeway origins and destinations vary both as functions of the distance and 
intervening traffic conditions, and can span several time intervals. As a result, off- ramp 
counts are always a mixture of the on-ramp counts from different time slices because of 
the platoon-dispersion effects.  

Bell (1991) considered platoon dispersion effects. For a freeway, the exit volume 
is a mixture of the entry volumes because of the platoon dispersion effect. If all the 
vehicles can travel through the freeway in k intervals, then it is assumed that there are k 
OD matrices according to the k time intervals. For example, if the fastest vehicle reaches 
the exit within 1 interval and the slowest vehicle reaches the exit within k intervals, the 
predicted off-ramp count can be specified as: 

 

                     )1()1()(ˆ 21 ktqbtqbtqby iki
i

ij ijijij −+++−+= ∑ L              (2.6) 

                                                      10 ≤≤
ijkb                                                            (2.7a) 
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                                                      1=∑∑
j k

kij
b                                                      (2.7b) 

where b1,  b2, . . . , bk are the split parameters for time interval t, t-1 and, . . . , t-k 
respectively. 

The objective function we want to minimize is the same as that in the constrained 
least squares method except a discounting factor is taken into consideration. The 
parameters to be estimated are k OD matrices with the constraints specified in equations 
(2.7a) and (2.7b). Instead of estimating mn variables, Bell’s method estimates k*mn 
variables.  

 

2.4 Simulation and Optimization Method 

2.4.1 Introduction 

In practice, we may need to take into consideration travel time lags between OD 
pairs on freeway segments. One possible solution is to replace the simple linear traffic 
assignment model with a traffic flow simulator. A simulation and optimization method 
was initially proposed by Yu and Davis (1994). This methodology contained two main 
components: the simulator and the optimization routine. The simulator replaced the linear 
traffic model (2.3), and the optimization routine was designed to find an optimal solution 
that minimizes the objective function in equation (2.5). The simulator used in Yu and 
Davis  (1994) was the Stochastic Macroscopic Simulator (STOMAC) and the 
optimization routine was a quasi-Newton optimization routine. In every iteration of the 
optimization routine, STOMAC generated traffic counts that were used to calculate the 
sum of squared errors. The optimization routine then changed the estimates so as to 
reduce the objective function value. This process ran iteratively until a convergence 
criterion was met. The performance of this Nonlinear Least Squares (NLS) method was 
compared with the other three methodologies based on the linear model (Ordinary Least 
Squares, Expectation-Maximization, and Constrained Approximate Maximum 
Likelihood) and it was concluded that NLS was the best choice.  

2.4.2 Methodology 

In this study, the simulation and optimization methodology was implemented as a 
first try. The focus is on estimating the OD split parameters for the freeway segments. 
The simulator employed was AIMSUN, and the optimization routine was the Neld-Mead 
Method. 

AIMSUN (Advanced Interactive Microscopic Simulator for Urban and Non-
Urban Network) is a microscopic simulator that can deal with different traffic networks. 
The behavior of each vehicle in the network is continuously modeled in the simulation 
period according to a car-following and lane-changing model. The simulator serves as a 
complicated traffic model, which can be used to predict the off- ramp counts, given a set 
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of on-ramp counts and an OD matrix. The objective function (2.8) is the weighted sum of 
the squared difference between the actual and simulated off-ramp counts. The weight 
assigned to an off-ramp is the inverse of the standard deviation of the observed counts of 
that off-ramp. Therefore, the off-ramps that have less traffic volumes are assigned larger 
weights. 

                                                       ∑∑
= =

−=
m

i

n

j
ijiji yyf

1 1

2)ˆ(ω                                       

(2.8) 

The Nelder-Mead method or the downhill simplex method is a non-gradient 
method for multidimensional minimization. It was employed to minimize the objective 
function.  

For these tests, the OD matrix was assumed to be constant over time. In order to 
measure the effectiveness of the algorithm, a true OD matrix has to be available to be 
compared with the estimates. Since the true OD matrix for a real network is usually 
unknown, simulated data sets were used for the estimation.  

The flow chart (Figure 2.2) describes the main steps of the implementation of this 
method.  

1. Starting with an initial estimate and the onramp counts, these are 
converted to the trip table in a form that can be read by AIMSUN.  

2. Then the AIMSUN console version is called to generate predicted off-
ramp counts and then the objective function value (2.8) is calculated. 

3. This value is compared to that of the previous run and if the convergence 
is achieved, then the solution of a locally optimal OD matrix is obtained.  
Otherwise, the Nelder-Mead updating routine is called, the OD matrix is 
updated, and the whole process is repeated . 
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Figure 2.2 Flow diagram for simulation and optimization algorithm 
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2.4.3 A Simple Test Network 

 

 

 

 

Figure 2.3 A Two-Origin Two-Destination Simulated Network 

As shown in Figure 2.3, the test network has two origins and two destinations. A 
true OD matrix and three hours of five-minute on-ramp counts were assumed in advance, 
and are shown in Table 2.2. The network was coded into AIMSUN and off-ramp counts 
were generated using the assumed OD matrix and the on-ramp counts.  

Like most numerical optimization methods, Nelder-Mead requires an initial 
estimate to start; three initial solutions were tested for this simulated network. 

1. The equally split matrix  assumes that all the destinations attract the same 
 proportion of traffic. 
2. The proportional OD matrix assumes that the OD split parameter is 

proportional to the traffic that the corresponding destination attracted.  
3. The initial matrix is generated from an iterative method described in Willis 

and May (1981). This method adjusts the OD matrix proportional to the row 
and column sums alternatively until the inflows and outflows are balanced.  

 
 
 

O2

O1

D1

D2



 12

 
 OD-1      

True matrix 0.325 0.675     
 0.25 0.75     

 
 

 

F-value 0 

 

   

       
Initial solution 1 0.5 0.5  Initial solution 1 0.3214 0.6786 

Start 0.5 0.5  End 0.3214 0.6786 
     F-value 1.799 

Initial solution 2 0.3242 0.6758  Initial solution 2 0.3245 0.6755 
Start 0.3242 0.6758  End 0.3245 0.6755 

     F-value 3.317 
Initial solution 3 0.3175 0.6825  Initial solution 3 0.3165 0.6835 

Start 0.4923 0.5077  End 0.4913 0.5087 
          F-value 1.571 

Table 2.2 OD estimates for the simulated network 

 

Table 2.2 shows the results for this simulated network. Three different initial 
guesses of the matrix produced three different results. Although all the solutions have low 
objective function values, none of them is close enough to the true matrix. It might be 
explained by the possibility that the optimization method is not robust enough to locate 
the global optimum. Figure 2.4 depicts the surface of objective function values in the 
neighborhood of the true values of OD variables.  The global optimum is hidden under 
the random up-and-downs so that  it is very likely that the search direction stops at one 
local optimum. 
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Figure 2.4 Objective Function Values Generated from AIMSUN 

 

2.5 Advantage of the Linear Model 

In the above section, we noticed that the irregularity of the objective function 
surface produced by the AIMSUN simulator imposes difficulties on the searching process 
for the global optimum. This results in the multiple local optimal solutions that 
approximate the observed off-ramp counts. Instead of attempting to find the global 
optimum from the simulation and optimization algorithm, an alternative would be to base 
the estimation on a better-behaved problem. Since the complication of the problem is 
introduced by the simulator, using the simple linear traffic model might turn out to be a 
reasonable approach. 
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Figure 2.5 Objective Function Values Using the Linear Model 

Figure 2.5 shows the surface of the objective function values of the same data set 
using least squares. This surface is smooth, so that the searching for the optimal point is 
straightforward. From optimization theory, if the objective function is strictly convex and 
the constraints set is convex, a unique solution exists for the optimization problem. Since 
the objective function (2.5) is quadratic and the constraints (2.4a and 2.4b) form a convex 
set, a unique OD estimate can be obtained for a given set of input and output counts. 
Because of this desirable property, least squares-based methods using the linear model 
should produce results that are easier to assess and we decided to choose them over the 
simulation and optimization algorithm. 
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CHAPTER 3. OFF-LINE ESTIMATION 

3.1 Introduction 

The off- line estimation of Origin-Destination matrices treats the matrices as 
constant over time. This chapter aims to evaluate the performance of different methods 
for estimating static OD matrices. As illustrated in Chapter 2, least squares-based 
methods using the linear traffic model and simulation and optimization were initially 
chosen as two candidates. However, unsuccessful experiments with the latter switched 
our attention to least squares methods. The rest of this chapter describes quantitative 
comparisons of four least squares-based methods using both simulated and actual data 
sets.  

 

3.2 Description of Least Squares-Based Methods 

3.2.1 Constrained Least Squares (CLS) 

Assuming the linear traffic model, as in (3.1), the constrained least squares 
method solves the following nonlinear programming problem, where all the variables are 
as defined in Chapter 2. 

Linear model:                             ∑=
i

ijij btqty )()(ˆ                                     (3.1)                       

Minimize:                           [ ]∑∑ −=
t j

jj tytyf 2)()(ˆ                              (3.2) 

Subject to:                            10 ≤≤ ijb for all i, j                                       (3.3a) 

                                                  1=∑
j

ijb  for all i, j                                          (3.3b) 

Constrained least squares can be solved by standard optimization algorithms. In this 
research, a Matlab built- in subroutine LSQLIN was used. 
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3.2.2 Weighted Constrained Least Squares (WCLS) 

Instead of using equation (3.2) as the objective function, (3.4) adds weights on the 
squared errors. The weight of an off-ramp is the inverse of the square root of the average 
observed flow at that ramp so that more weights are assigned to the off-ramps with lower 
traffic volumes. Usually, traffic counts at the off-ramp are at least one order of magnitude 
smaller than those of the mainline. Therefore, mainline counts tend to be the only 
determining factor in measuring the closeness between the predicted and observed traffic 
volumes. A poor match could occur at the off- ramps. Greater weights for the off-ramps 
are expected to provide a closer match of traffic counts at all destinations. 

 

                                              ∑∑ −=
i j

jjj tytywf 2)]()(ˆ[                                 (3.4) 

jj yw /1=  

3.2.3 Constrained Least Squares with Time-Lagging (TCLS)  

Since the simple linear traffic model ignores the potentially different travel times 
between OD pairs, a more realistic model should allow for time- lagging. Instead of 
calculating the predicted off-ramp counts from the on-ramp counts of the same time 
interval, they are treated as a mixture of on-ramp counts from two earlier time intervals 
when the exiting vehicles entered the freeway (Papageorgiou 1980). 

 
     ∑ +−+−−=

i ijtiqijbijijtiqijbijtjy ))1(**)(**)1(()(ˆ τβτβ         (3.5) 

1)/( += TijttIntegerijτ  

Tijttijij /−=τβ  

where  

ijtt is the travel time between OD pair ij; 

ijτ is the number of time intervals ttij occupies; 

T  is the duration of a counting interval; 
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ijβ is the proportion of traffic entering the freeway in the time interval 

1+− ijt τ . 

The implementation of this method requires travel times, which are usually 
obtained from speed data. However, single loop detectors do not measure speeds directly, 
but only lane occupancy and traffic flow. In this case, speeds can be estimated as follows.  

The relationship between speed (V), density (K), and traffic flow (Q) is: 

                                                           KVQ =                                                              (3.6) 

Density can be estimated from lane occupancy (O), which is defined as the 
proportion of time a short section of a roadway is occupied by vehicles. 

 

                               KC)(L
H
C)/V(L

T
T

O ×+=
+

=
∆

=                              (3.7) 

where  T∆ is the duration of time that detector is occupied by vehicles; 

            T  is total study time; 
            L is the average length of vehicles; 
            C is the length of the detector; 
            H is the vehicle headway.  

 
Therefore, average speeds can be estimated as: 

                                                      C)/O(LQV +×=                                                 (3.8) 

Coifman (2000) pointed out that in the condition of low flows, when the number 
of vehicles in a sample is small, the average vehicle length L can be skewed by long 
vehicles simply because they take longer to pass the detector. Under this condition, he 
suggested that the speed should be fixed as the free flow speed rather than using the 
above equation. Since the critical value of the occupancy is 0.10, if the lane occupancy 
falls below this value, traffic can be considered to be in a free flow condition. This rule is 
used in what follows.  

3.2.4 DelftOD 

DelftOD is a software package for dynamic OD matrix estimation, developed by 
Nanne van der Zijpp (1996) at Delft University in the Netherlands. The core of this 
method is a recursive least squares algorithm, which will be described in Chapter 4. 
However, if we fix the covariance-variance matrix of the random changes in the split 
parameters at zero, then this recursive algorithm is equivalent to an off- line algorithm, as 
long as the estimation period is long enough to ensure the convergence.   
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3.3 Description of data sets 

3.3.1 A simple 2x2 network 

As shown in Figure 2.3, the simple network has two origins and two destinations. 
For this network, two data sets were generated.  

The first set was constructed so that the linear traffic model in equation (3.1) 
gives the expected values of the off-ramp counts. In this case, the CLS estimates of the 
OD matrix should be unbiased. This simulated data set was generated in two steps. First, 
the arrival rates at the mainline and on-ramp were simulated as Poisson random 
outcomes. Second, these arrival counts were then assigned to off-ramps as the outcomes 
of binomial distributions, and these were then summed to produce the exit volumes. This 
data generation procedure is consistent with the literature on this subject. Fifty days of 
data were simulated, each containing 36 five-minute counts. The chosen flow rates are 
3600veh/hour for mainline and 180 veh/hour for the on-ramp and no congestion was 
observed during the whole simulation period on both the mainline and the on-ramp.  

The second set uses AIMSUN to obtain exit counts. On-ramp counts were again 
sampled from a Poisson distribution. However, they were not assigned to off-ramps as 
binomial outcomes. The trip table was generated by multiplying the on-ramp counts with 
the assumed OD matrix and this was used to map the on-ramp flows to the off-ramp 
traffic. The exit counts were then generated by simulating traffic movement on the 
freeway. For AIMSUN simulation, the constant headway model was chosen for vehicles 
coming into the freeway, which minimizes the stochastic variations in the vehicle 
generation so that we get the same result for multiple simulations with the same on-ramp 
counts. Detectors were modeled at the on-ramps and off-ramps to collect the traffic 
counts. Since these detector counts were the traffic flows that actually came into and 
went out of the freeway during the simulation, they were used as the second data set. This 
data set also contained fifty days of three-hour counts.  

3.3.2 Real network 

TH-169 was chosen as an example of a real- freeway section. The primary reason 
for choosing it was that the network model was already built and calibrated for AIMSUN 
simulation.  

As shown in Figure 3.1, the Northbound test section starts at the intersection 
between TH-169 and TH-55, and ends at 63rd Avenue. Figure 3.2 shows the detailed 
geometry. This segment is about 10.5 kilometers long with 11 on-ramps and ten off-
ramps. Thus the OD matrix has 12 origins and 11 destinations. The number of nonzero 
individual OD elements is 76 and, after accounting for the equality constraints, the 
number of independent variables is 64.  

             
Origin 1 2 3 4 5 6 7 8 9 10 11 12 
Flow Rate (veh/hr) 2880 192 132 132 264 288 192 120 240 300 108 108 

Table 3.1 Assumed Flow-rates for origins  
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For TH-169, three data sets have been tested. The first data set was generated 
from the linear traffic model assuming that the arrival counts are subject to Poisson 
distributions and the turning movements are outcomes of a multinomial distribution.  The 
on-ramp counts were chosen such that the average for each origin was equal to the 
observed average for the corresponding ramp. Table 3.1 shows the assumed on-ramp 
flow rates. As with the two-origin two-destination case, the second data set was obtained 
using AIMSUN. Since no congestion was observed during the simulation period, so that 
queuing at on-ramps did not occur, the arrival volumes and entering volumes were the 
same. The third data set tested consisted of real traffic counts collected by loop detectors. 
The ramp counts were measured during the ramp-meter shutdown period on 23 weekdays 
in October and November, 2000 (October: 16-20, 23-25, 27, 30, and 31; November: 1-3, 
6-10, 13, and 20-22). Only the morning peaks (7:00-10:00) were used in this study. 

 

 

 

 

Figure 3.1 Real network of TH-169 

 
 
 
 
 

The test section 
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Figure 3.2 Geometry of the tested segment of TH-169 
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3.4 Evaluation Criteria 

3.4.1 Measures of Bias and Comparative Efficiency 

In statistics, a desirable estimator should have two properties: unbiased and 
minimum variance or efficiency. In other words, we would like to select the estimator 
that on average equals the true value and whose spread about this value is small. We are 
able to check both properties using the simulated data sets. However, because of the 
unavailability of the true OD matrix for the actual data, only efficiency can be evaluated.  

                    ( ) )ˆ()(ˆ1 2

1

2
ijijij

D

t
ijij bVarbbbb

D
MSE +−=−= ∑

=

             (3.9) 

where D  is the number of days; 

           ijb is the averaged value of the fifty estimates; 

     ijb is the assumed true OD value; 

           ijb̂ is the estimated OD split parameter; 

    Var  is the variance of an estimate and ∑
=

−=
D

t
ijtijij bb

D
bVar

1

2
, )ˆ(

1
)ˆ( . 

 
Mean Squared Error (MSE) is used to measure the average squared distance 

between the estimates and true values as shown in equation (3.9). The two terms on right-
hand side of (3.9) are the measure of bias and efficiency respectively. Based on them, the 
following two criteria were developed. 

 

                    NbbRMSE
i j

ijij
bias ∑∑ −= 2)(                                      (3.10) 

      NbVarRMSE
i j

ij
efficiencyecomparativ ∑∑= )ˆ(                          (3.11) 

where N is the total number of nonzero split parameters. 
To evaluate the overall performance of an estimate, the bias and efficiency 

measures were combined: 
 

22 )()( efficiencyecomparativbiasCombined RMSERMSERMSE +=         (3.12) 
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3.4.2 Measure of forecast uncertainty 

Davis (1993) proposed a measure of forecast uncertainty based on the linear 
traffic model. The uncertainty of the predicted off-ramp counts contains two parts: one is 
demand uncertainty—the random distribution of vehicles to off-ramps; the second is 
parameter uncertainty—the variance due to uncertainty in the parameter estimates. 

If we assume that the traffic is assigned as the outcome of a binomial distribution, 
the variance of the off-ramp counts when the OD matrix is known exactly is given by: 

 

                        ∑ −=
i

iijijj tqbbBtqtyVar )()1(]),(|)([                               (3.13) 

However, if the split parameters are estimated, they have their own variability 
from the estimation procedure. If jQ  denotes the covariance matrix of the estimates 

T
mjj bb )ˆ,...,ˆ( 1 , the squared forecast error is given by (3.14) where the second term on 

the right-hand side of the equation evaluates parameter uncertainty. 

)()()()ˆ1(ˆ)](ˆ)([ 22 tttqbbtytyE j
T

i
iijijjjj qQq+−=−= ∑σ                (3.14) 

From practical point of view, it is easier to interpret the results in the unit of 
vehicles/hour, so the square roots of the two measures are taken as the evaluation criteria. 
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)()()( tt j
TtjyUncertaintParameter qQq=                              (3.16) 

In the report, the averaged values over time for the demand uncertainty and 
parameter uncertainty measures are reported.  

 

 

 

 

Figure 3.3 A simple network 
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A simple example will clarify the physical meaning of these uncertainty 
measures. Figure 3.3 shows a simple 2 by 2 network. To simplify the case, we only 
consider one time interval. Assume the entry volume is 200 vehicles for mainline and 40 
vehicles for the onramp during the time interval. The estimated OD parameters and their 
standard deviations are displayed in Table 3.2.  

 
Mean  1 2  S.D. 1 2 

1 0.375 0.625  1 0.02 0.02 
2 0.225 0.775  2 0.10 0.10 

Table 3.2 An estimated OD matrix for the simple network 

 
The demand uncertainty is the uncertainty in the process of traffic assignment. 

For destination 1, it is equal to  

veh840)225.01(225.0200)375.01(375.0 ≅−+− . 
 
The parameter uncertainty is due to the uncertainty in the OD matrix estimation. 

For destination 1, it is equal to [ ] veh23
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1 =+=σ , which is the prediction error of counts at destination 

1 when using the estimated OD matrix in Table 3.2. In this case, the parameter 
uncertainty makes the larger contribution to it.  

 

3.5 Results 

3.5.1 The 2 by 2 network 

Table 3.3 shows the results for the simple 2 by 2 simulated network. The assumed 
true OD matrix is on the top. The table lists the averaged estimates and their standard 
errors for the two fifty-day data sets.  

As noted earlier, data set 1 was generated from the linear model so that the least 
square methods should give an unbiased estimate of the OD matrix. Results show this is 
the case, for both CLS and DelftOD. In all cases, approximate 95% confidence intervals, 

computed by adding and subtracting 50/deviationstandard2 ×  to the averages 
capture the true split parameters. It is observed that the standard deviations for origin 2 
are an order of magnitude higher than those for origin 1. Note that traffic is assigned as 
the outcome of a binomial distribution (n, p), and p is estimated as nyp /ˆ = , then 

nppp /)1()ˆ(var −= . The standard deviation of an OD parameter will be roughly 
inversely proportional to the square root of the number of entering vehicles 
corresponding to that parameter. In this case, the onramp flow rate is only 1/20 of that of 
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the mainline. Therefore, the standard deviation of mainline flow is anticipated to be much 
lower.  

Data set 2 was generated using the AIMSUN simulator. The results for this data 
set show lower standard deviations than those from the first data set. The reason for less 
uncertainty is mainly due to the different data generation procedures. Rather than treating 
the OD flows as the outcomes of a binomial distribution, for AIMSUN, they were 
computed as binomial expected values, which eliminates some of stochastic variations.  

 
TRUE 1 2     

1 0.375 0.625     
2 0.225 0.775     
       
   Data set 1   
 CLS   DelftOD 

Average 1 2  Average 1 2 
1 0.372 0.628  1 0.373 0.627 
2 0.273 0.727  2 0.265 0.735 
       

Standard Deviation 1 2  Standard Deviation 1 2 
1 0.012 0.012  1 0.013 0.013 
2 0.243 0.243  2 0.224 0.224 
       
   Data set 2   
 CLS   DelftOD 

Average 1 2  Average 1 2 
1 0.375 0.625  1 0.375 0.625 
2 0.254 0.746  2 0.242 0.758 
       

Standard Deviation 1 2  Standard Deviation 1 2 
1 0.006 0.006  1 0.007 0.007 
2 0.116 0.116  2 0.13 0.13 

Table 3.3 Results of 2-Origin 2-Destination Network 

 
 

Since the results for WCLS and TCLS were very similar to those of CLS and 
DelftOD, they were not reported. For this small network, the different algorithms do not 
show much variation in their performances, so the evaluation criteria are saved for the 
larger network. 
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3.5.2 TH-169 

3.5.2.1 Data set 1 

Three methods were compared for data set 1: DelftOD, weight constrained least 
squares (WCLS), and traditional constrained least squares (CLS). TCLS was not included 
in the comparison because the travel time was not involved in the data generation 
process. Tables A.1 to A.3 in Appendix A show the averages of the estimated split 
parameters from the fifty data sets and their standard deviations for the three methods 
respectively. All the estimates were approximately unbiased estimates for the true OD 
parameters.  

 

  Bias Comparative 
Efficiency 

Combined 

DelftOD 0.065 0.137 0.151 
WCLS 0.063 0.134 0.149 
CLS 0.034 0.142 0.146 

Table 3.4 Measures of Bias and Efficiency for Data Set 1 

 
Table 3.4 shows aggregate measures of bias and efficiency for the data generated 

using the linear traffic model. Estimates from CLS were on average closer to the true 
values, but on average had higher variability. However, all three estimates are unbiased 
and the magnitude of the difference in efficiency measures is small enough to be ignored. 
Overall speaking, the performances of the three methods are almost equivalent on this 
data set.  

Table 3.5 shows the forecast uncertainty for the off-ramps. The covariance matrix 
of the estimates is diagonal assuming no cross-variance among the split parameters. For  
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Since the true OD matrix is known, equation (3.15) was used to calculate the 

demand uncertainty for every time interval given the on-ramp counts. The average was 
then computed and reported in Table 3.5. The parameter uncertainty was obtained from 
equation (3.16). For the upstream off- ramps 1-3 demand uncertainty exceeds parameter 
uncertainty, while for the remaining off-ramps the reverse is true. This is as expected 
since more OD parameters contribute to the flows farther downstream. Note also that the 
three estimation methods had similar level of parameter uncertainty.  
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Demand Uncertainty Parameter Uncertainty (veh/hour) 
Off-ramp 

(veh/hour) DelftOD WCLS CLS 
1 65 38 37 37 
2 50 47 41 37 
3 45 42 42 37 
4 45 57 54 47 
5 52 78 76 69 
6 67 100 97 93 
7 49 75 70 66 
8 56 92 89 86 
9 52 92 91 93 
10 80 148 144 141 
11 112 198 194 226 

Table 3.5 Measures of Forecast Uncertainty for Data Set 1 

 

3.5.2.2 Data Set 2 
 

For this data set, the performances of all four methods were compared. The 
estimated matrices with the standard deviations of its elements are shown in Tables A.4 
through A.7 in Appendix A. The bold-face split parameters are values whose 95% 
confidence intervals do not capture the true value. With a total of 76 parameters, an 
unbiased estimate could be expected to produce about four elements that significantly 
deviate from the true value at a confidence level of 95%. The numbers of bold-face 
values for DelftOD, TCLS, WCLS, and CLS are 12, 11, 7, and 4 respectively. This 
suggests that except for CLS, these methods tended to produce biased estimates. 

 

  Bias Comparative 
Efficiency 

Combined 

DelftOD 0.080 0.069 0.106 
TCLS 0.101 0.068 0.122 

 WCLS 0.072 0.081 0.109 
CLS 0.069 0.122 0.140 

Table 3.6 Measures of Bias and Efficiency for Data Set 2 

 
As displayed in Table 3.6, a distinguishable difference can be noticed in the 

measures of the performances on data set 2. The lowest deviation from the true values is 
observed on the CLS estimates and the lowest score on the efficiency measure is 
attributed to TCLS. The other three methods generated estimates that are more biased but 
at the mean time more efficient. 

Because the tested segment is 6.5 miles long, the longest travel time should be 
more than one time interval—5 minutes. TCLS allows for the time-lagging, which is an 



 27

effective way to reduce the variability of the estimates. As shown in Table 3.6, the 
efficiency measure of DelftOD is as low as that of TCLS. For the overall measure of 
performance, DelftOD has the best score.   

Table 3.7 displays the forecast uncertainties for data set 2. The greatest difference 
is at the mainline exit. Using the OD matrix estimated from TCLS compared to that from 
CLS, the prediction error for the mainline is reduced by approximately 120 vehicles per 
hour. 

 

Demand Uncertainty Parameter Uncertainty (veh/hour) 
Off-ramp 

(veh/hour) DelftOD TCLS WCLS CLS 
1 64 11 12 15 15 
2 46 11 11 13 17 
3 42 18 19 16 21 
4 44 27 27 24 33 
5 64 49 52 49 59 
6 60 40 40 50 51 
7 45 25 28 35 44 
8 49 36 35 38 52 
9 48 47 47 41 70 
10 67 57 48 66 69 
11 112 112 102 128 223 

Table 3.7 Measures of forecast uncertainty for data set 2 

3.5.2.3 Data set 3 

Tables A.8 through A.11 show the estimates from the actual data. The estimated 
split parameters have reasonable values. The mainline exit generally attracts the largest 
share of the traffic from the same on-ramp.  

 
 Comparative Efficiency 

DelftOD 0.125 
TCLS 0.135 
WCLS 0.116 
CLS 0.140 

Table 3.8 Measures of efficiency for data set 3 

 
Table 3.8 shows the measures of efficiency for data set 3. Since the true OD 

matrix is not available for the real data, the bias of the estimates cannot be measured. 
Consistent with data set 1 and 2, CLS result has more variation than those from other 
methods.  

Table 3.9 displays the forecast uncertainty for data set 3. The demand uncertainty 
is essentially the same for all estimates. However, parameter uncertainty makes the 
difference. For the mainline, CLS introduced an extra uncertainty of 100 vehicles/hour in 
addition to approximately 180 vehicles/hour for the other methods. 
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Demand Uncertainty (veh/hour) Parameter Uncertainty (veh/hour) 
Off-ramp DelftOD TCLS WCLS CLS DelftOD TCLS WCLS CLS 

1 28 28 28 28 50 43 36 35 
2 30 30 30 30 54 62 45 44 
3 17 17 17 17 43 55 51 51 
4 14 13 14 14 80 76 67 65 
5 18 17 17 18 98 106 96 91 
6 12 12 12 13 66 73 59 62 
7 23 23 23 24 93 104 74 70 
8 14 14 14 14 62 73 82 77 
9 18 18 18 18 82 81 84 92 
10 13 13 13 13 72 76 68 78 
11 84 83 86 87 180 184 174 276 

 

Table 3.9 Measures of forecast uncertainty for data set 3 

 

3.6 Conclusion 

Using the simple linear traffic model, the least squares methods can produce a 
unique solution for the OD estimation problem. With both the simple network and real 
network, the estimates of all data sets are reasonable.  

With the simple two-origin two-destination network, least squares-based methods 
generally showed good performance. The unique solution of each simulated data set is an 
unbiased estimate of the assumed true OD matrix. This result leads us to conclude that on 
a small network when travel time can be ignored, least squares-based methods are good 
approaches to estimate OD matrices. The lower standard errors in AIMSUN-generated 
data suggest that the accuracy of estimating split parameters depends on the accuracy of 
the data generation procedure. 

With the larger real network TH-169, the results give us an insight in selecting the 
right algorithm for various purposes of OD estimation and the availability of data. For 
instance, with a large data set, if an unbiased matrix is desired, then the obvious choice 
would be CLS, as it consistently is the method that produced the estimate with lowest 
average bias. On the other hand, if the goal of OD estimation is to be used on ramp 
control, then an estimator with low variability might be preferred. WCLS,TCLS, and 
DelftOD are variations of CLS, but which allow for time- lagging or adding weights. The 
choice can be made on convenience or availability since the results suggest that none 
consistently outperformed the others.  
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CHAPTER 4. ON-LINE ESTIMATION 

4.1 Introduction 

In the previous chapter, time- invariant OD matrices were estimated from off- line 
estimation methodologies. This approach ignored the possibility of temporal variation in 
the OD parameters. The transportation system is dynamic. For instance, on the same 
freeway, the OD pattern in the morning can be significantly different from that in the 
afternoon. When the assumption of constant OD matrices no longer holds, detecting and 
responding to changes in OD matrices may be necessary. This chapter examines two 
methods for dynamic estimation of OD matrices, Recursive Least Squares via Kalman 
Filtering, and Recursive Sequential Quadratic Programming.  

 

4.2 Description of methodologies 

4.2.1 Recursive Least Squares via Kalman Filtering 

 

 

 

 

 

 

 

 

Figure 4.1 Finite-dimensional linear system serving as signal model 

The theory of Kalman filtering was developed in the context of signal processing in 
the late 1950s and early 1960s. As depicted in figure 4.1, this finite-dimensional linear 
system is the prototype of the discrete-time systems (Anderson and Moore, 1979). This 
system can be described by a state evolution equation 

                                    kkkk wxFx +=+1                                                        (4.1) 

and an observation equation 

                                     kkkkkk vxHvyz +=+= '                                        (4.2) 
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where  kx  is the system state at time k; 

      ky  is the system output; 

      kz  is the measured observation; 

      kF   is the state transition matrix; 

      k'H  is the measurement matrix; 

      kw  and kv are zero-mean noise. 
 
A model for an OD matrix subject to random perturbations can be specified in the 

form of state-space equations. 
 

                                     )()()1( ttt jjj wbb +=+                                              (4.3) 

                                      )()()()( tvttty jj
T

j += bq                                           (4.4) 

 
Suppose the variance covariance matrices for state variables and measurement 

error are R and r respectively. The optimal estimate of )(tjb given the sequence of 

observations )1(,),1(),( jytjytjy L−  and )1(,),1(),( qtqtq L−  can be 

computed recursively via the Kalman filter.  
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As noted in Chapter 3, OD parameters should satisfy the equality and inequality 
constraints.  

10 ≤≤ ijb  

1=∑
j

ijb  

However, the satisfaction of the constraints are not guaranteed in Kalman filter (4.6). 
Therefore, we need some modifications for the traditional Kalman filter.  
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In literature, Nihan and Davis (1987) proposed normalization and projection 
procedures to impose the equality constraints. Van der Zijpp (1996) suggested another 
approach for constraint satisfaction, where the equality constraints are used as additional 
measurements in the Kalman filter. In our research, both procedures were adopted and 
combined in three steps for the constraint satisfaction.  

1. Projection. Since the equality constraints are linear functions of the OD 
parameters, the additional measurement equation can be specified as follows. 

 
                                                          )(' tbbE1 =                                                   (4.7) 
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If a zero matrix is assumed for the variance-covariance matrix of the measurement noise 
(i.e., the measurements are “perfect”), a Kalman Filter recursion can be applied to project 
the OD matrix onto the set satisfying the equality constraints.  The estimates from (4.5) to 
(4.6) are updated as follows. 
 

  )](ˆ')[()(ˆ)(ˆ * tttt bbE1Kbbbb −+=  

                                      1])('[)()( −= EPEEPK ttt                                                   (4.8) 

          )('])('[)()()( 1* ttttt PEEPEEPPP −−=  

where *)(tbb  is the updated estimates that satisfy the equality constraints.  

2. Truncation. When the elements of *)(ˆ tbb  violate the inequality constraints, we use 
a truncation approach.  

 



 32

  0)(ˆ0)(ˆ *** <= tbIftb ijij  

                                        1)(ˆ1)(ˆ *** >= tbIftb ijij                                          (4.9) 

3. Normalization. Since truncation can then lead to the violation of the equality 
constraints, a normalization procedure proposed by Nihan and Davis (1987) was used to 

adjust the values of **)(ˆ tbij . 

                                           ∑=
j

ijijij tbtbtb ******* )(ˆ/)(ˆ)(ˆ                            (4.10) 

***)(tbij  is the final estimated of the split parameter for OD pair ij at time interval t.  

After the three steps, the constraints are guaranteed to be satisfied for all OD 
parameters.  

In order to implement the Kalman filter algorithm, the choice of the variance-
covariance matrices for error terms must be addressed. These matrices are assumed to be 
known in advance, but this is not the case in practice. In our experiments, the following 
values were used.  

)()( tytr jj = , IR 0001.0=  

where )(ty j  is the average of observed counts at off-ramp j. 

 

4.2.2 Recursive Sequential Quadratic Programming 
 
For the comparison, another recursive estimator of the OD matrix was developed based 
on the quadratic programming method used to solve the CLS problem in Chapter 3. A 
generic quadratic programming problem can be specified as  

                          

dAx

xcHxx

≤

+=

tosubject

fMinimize TT
2
1

                                    (4.11) 

where  x  is a column vector of decision variables;  
H  is a positive definite matrix; 
c  is the first-derivative vector with respect to x; 
A  is a matrix of constraint coefficients; 
d  is a vector specifying the bounds of the constraints. 
For the problem of OD estimation, the variables for optimization are the split 

parameters. With a change of notation, (4.11) can be rewritten as 
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The algorithm for solving CLS in Chapter 3 is called the “active set method.”  

The ith constraint is said to be active if i
T

i d=xA and its inactive if i
T

i d<xA . The 

constraint is said to be satisfied if it is active or inactive. If i
T

i d>xA , the constraint is 
said to be violated. The active set includes all the constraints that are active.  

Let k denote the iteration number, kt  denote the number of constraints in the 

working set, and kI  denote the set of indices of these constraints. kA , will denote the 

sub-matrix, containing the set of coefficients of the active constraints, while kz  denotes 

a basis for the subspace of vectors orthogonal to the rows of kA  (Gill, Murray and 
Wright, 1981).    

The steps for solving off- line CLS problem (4.11) are illustrated in Figure 4.2: 
1. If the conditions for optimality are satisfied at kx , the algorithm 

terminates with kx as the solution. The conditions for optimality are 

*
k

T
k ?Ac =  and 0* ≥k? , where ? is the vector of Lagrange multipliers.  

2. Decide whether to continue minimizing in the current subspace or whether 
to delete a constraint from the working set. If a constraint is to be deleted go to 
step 6. If  the same working set is retained, go on to step 3. 
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3. Compute the search direction )()( 1 czHzzzp T
kk

T
k

T
kk −= − . 

4. Compute the maximum non-negative feasible step kα along kp towards 

the nearest constraint. nconi
d
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where ncon is the number of constraints in the active set kA . 

5. If 1≤kα , kkkk pxx α+=+1 , add the constraint to the working set.  

6. Otherwise, let 1=kα , kkkk pxx α+=+1 . Choose a constraint that is 
not satisfied to be deleted from the working set. 
7. Go back to step 1. 
The algorithm described above is designed for off- line estimation. However, with 

some modifications, it can be employed for on- line estimation. Let each iteration stand 
for a time interval, the recursive version of this algorithm updates H  and c  at every time 
interval using the observed volumes for the very time interval instead of using on-ramp 
counts and off-ramp counts of all time intervals. The recursion is realized by the 
following equations: 

               )]1()()([1)1()( −−+−= ttt
t

tt T HqqHH                                    (4.13) 

              )]1()()([1)1()( −−+−= ttt
t

tt T cyqcc                                       (4.14) 

If )(tH  and )(tc  are substituted for the corresponding values of the OD matrix 
problem as specified in (4.12), at each time interval, the OD parameters are updated as in 
step 6 and a dynamic OD matrix can be obtained.  

This recursive version of Sequential Quadratic Programming algorithm has the 
property that constraints are satisfied automatically at each iteration. Its performance on 
OD estimation will be compared with that of the recursive least squares via Kalman filter 
approach. 
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Figure 4.2 Flow diagram for active set algorithm 

 

4.3 Description of data sets 

4.3.1 The simple 2 by 2 network 

For dynamic estimation, the ability of tracking the change in the OD matrix is the 
determining factor in evaluation of alternative algorithms. An OD matrix with an abrupt 
change was designed for this network. As shown in Table 4.1, a total period of six hours 
was assumed, with a jump happening at the beginning of the second three-hour period.  

 

Compute search direction pk 

Compute the feasible step 
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First three hours  Second three hours 
  1 2    1 2 
1 0.375 0.625  1 0.225 0.775 
2 0.225 0.775  2 0.375 0.625 

Table 4.1 Assumed OD matrix with an abrupt change for simulated network 

 

Similar to the off- line estimation, two data sets of five-minute on-ramp and off-
ramp counts were generated. In addition to these, another two sets of one-minute counts 
were generated, denoted as data sets 3 and 4. The procedure of data generation was the 
same, and the only difference is the length of time interval. Table 4.2 summarizes the 
generation of these data sets. 

 
Data Set  

1 5-minute data from linear traffic model 
2 5-minute data from AIMSUN 
3 1-minute data from linear traffic model 
4 1-minute data from AIMSUN 

Table 4.2 Description of data sets 
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4.3.2 TH-169 network 

     First three hours     
 1 2 3 4 5 6 7 8 9 10 11 

1 0.14 0.07 0.05 0.05 0.07 0.11 0.05 0.06 0.04 0.14 0.25 
2 0.09 0.10 0.04 0.04 0.06 0.12 0.05 0.02 0.04 0.11 0.35 
3 0.00 0.13 0.07 0.03 0.06 0.07 0.04 0.06 0.03 0.12 0.40 
4 0.00 0.00 0.08 0.08 0.10 0.08 0.07 0.07 0.05 0.13 0.35 
5 0.00 0.00 0.00 0.10 0.05 0.08 0.04 0.05 0.05 0.09 0.55 
6 0.00 0.00 0.00 0.00 0.07 0.07 0.06 0.09 0.06 0.15 0.50 
7 0.00 0.00 0.00 0.00 0.00 0.12 0.07 0.07 0.05 0.08 0.62 
8 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.10 0.05 0.20 0.60 
9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.05 0.05 0.85 

10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.10 0.70 
11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.90 
12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 

            
     Second three hours     
 1 2 3 4 5 6 7 8 9 10 11 

1 0.06 0.07 0.05 0.05 0.07 0.11 0.05 0.06 0.04 0.06 0.40 
2 0.09 0.10 0.04 0.04 0.06 0.12 0.05 0.02 0.04 0.11 0.35 
3 0.00 0.13 0.07 0.03 0.06 0.27 0.04 0.06 0.03 0.12 0.20 
4 0.00 0.00 0.08 0.08 0.10 0.08 0.07 0.07 0.05 0.13 0.35 
5 0.00 0.00 0.00 0.30 0.05 0.08 0.04 0.05 0.05 0.09 0.35 
6 0.00 0.00 0.00 0.00 0.07 0.07 0.06 0.09 0.06 0.15 0.50 
7 0.00 0.00 0.00 0.00 0.00 0.12 0.37 0.07 0.05 0.08 0.42 
8 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.10 0.05 0.00 0.80 
9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.05 0.05 0.85 

10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.10 0.70 
11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.90 
12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 

Table 4.3 Assumed OD matrix with an abrupt change for TH-169 

 
 

Similar to the simulated network, both the five-minute and one-minute time 
counts were generated for the segment of TH-169. Table 4.3 shows the assumed OD 
matrix for generating the data. The abrupt change takes place at the end of the first three 
hours. The bold-face numbers are the variables that change. A total of 11 cell values 
change, three of which are for flows coming from the mainline. 
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4.4 Results 

4.4.1 The 2 by 2 network 

4.4.1.1 Kalman filter results 
 

Figure B.1 in Appendix B shows the results of Kalman filtering for the data 
generated from the linear traffic model. A time-series of estimated values and their 95% 
confidence intervals versus the true OD matrix are displayed. Data set 1 contains the five-
minute data, and data set 3 has the corresponding one-minute data. Only the plots for b1,1 

and b2,1 are presented, since the equality constraints determining the other two parameters 
once b1,1 and b2,1 are fixed.  

As shown in Figure B.1 (a), for OD flows originated from the mainline, this 
algorithm detects the jump at the time interval 37, the estimated values decrease at a 
roughly quadratic rate and then converges to the true value after about 15 time intervals. 
However, for the flows from the on-ramp, the algorithm is not able to track the abrupt 
change. As in Figure B.1 (b), the estimated values remain at 0.35. Since the supposed on-
ramp flow rate is 180 vehicles/hour, which is only 1/20 of the mainline, it appears that 72 
data points do not provide enough information for the algorithm to detect the change.   

In order to add data points, we generated the one-minute data so that the number 
of data points increases to 360. Figures B.1 (c) and (d) depict the results for the one-
minute data. For flows from the mainline, the jump is well captured and the confidence 
interval is tightened. In the last time interval, the range between upper and lower bound is 
reduced from 0.04 to 0.02. For the on-ramp flows, the estimates also have tighter 
confidence intervals. In addition to that, the algorithm also shows a tendency to detect the 
change. As shown in Figure B.1 (d), the second half of the estimated values slowly 
converge to the true value, although the rate of convergence is still not as fast as that of 
b1,1.  

AIMSUN-generated data sets were examined as well. The results are displayed in 
Figure B.2. Similar to the linear traffic model, the jump in the OD parameters for the 
mainline origin is detected and again, because of the low volume on the on-ramp, the 
performance of the algorithm on those parameters is not desirable. In contrast with data 
set 3, changing to one-minute intervals in data set 4 does not help to track the abrupt 
change, although the confidence interval captures the true value. The one-minute data set 
includes more information at the expense of introducing more variability due to the 
reduced number of vehicles in one time interval. In this case, the presence of more 
information doesn’t compensate the additional variability.  
 

4.4.1.2 RSQP results 
 

Figures B.3 and B.4 show the results of Recursive Sequential Quadratic 
Programming on data sets 1 through 4. Overall, they have the same pattern as the results 
for the Kalman filtering. For the parameter b1,1, the algorithm is able to detect the change 
with all data sets. The introduction of one-minute data helps to get more reliable 
estimates but does not significantly improve the tracking behavior of the algorithm.  
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The RSQP algorithm differs from the Kalman filtering in that, instead of 
converging at approximately a quadratic rate once the jump was detected, it converges as 
an approximately linear rate.  The rate of convergence is so slow that the confidence 
interval of estimates fails to capture the true value in the second half of the estimation 
period. This property of linear convergence reduces its ability to detect abrupt changes, 
compared to the Kalman filtering.  

4.4.1.3 Comparison with the off- line results 

  Linear model      AIMSUN    
  Off-line Estimation       Off-line Estimation   
Average 1 2 S.D. 1 2   Average 1 2 S.D. 1 2 

1 0.372 0.628 1 0.012 0.012   1 0.375 0.625 1 0.006 0.006 
2 0.273 0.727 2 0.243 0.243   2 0.254 0.746 2 0.116 0.116 
                          
    Kalman Filter           Kalman Filter     
  Data set 1        Data set 2    

Average 1 2 S.D. 1 2   Average 1 2 S.D. 1 2 

1 0.368 0.632 1 0.012 0.012   1 0.374 0.626 1 0.007 0.007 
2 0.355 0.645 2 0.213 0.213   2 0.243 0.757 2 0.127 0.127 
  Data set 3        Data set 4   

Average 1 2 S.D. 1 2   Average 1 2 S.D. 1 2 

1 0.375 0.625 1 0.009 0.009   1 0.375 0.625 1 0.006 0.006 
2 0.207 0.793 2 0.108 0.108   2 0.256 0.744 2 0.071 0.071 

                          
  RSQP       RSQP   

    Data set 1            Data set 2      
Average 1 2 S.D. 1 2   Average 1 2 S.D. 1 2 

1 0.373 0.627 1 0.013 0.013   1 0.375 0.625 1 0.007 0.007 
2 0.268 0.732 2 0.248 0.248   2 0.238 0.762 2 0.129 0.129 
  Data set 3        Data set 4   

Average 1 2 S.D. 1 2   Average 1 2 S.D. 1 2 

1 0.376 0.624 1 0.006 0.006   1 0.375 0.625 1 0.005 0.005 
2 0.190 0.810 2 0.117 0.117   2 0.296 0.704 2 0.087 0.087 

Table 4.4 Comparison of on-line and off-line estimates 

 
The estimates of the recursive algorithms at the end of the first three hours were 

compared with those from off- line CLS. As shown in Table 4.4, for all data sets, the 
recursive methods produced estimates that were not significantly different from the off-
line estimates. They were able to converge to the off- line solution. Using one-minute data 
improved the reliability of estimates, as the standard deviation is reduced roughly by a 
half. 
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4.4.2 TH-169 
 

Same experiments were carried using the TH-169 network. This segment of 
freeway is 6.5 miles long, so when generating one-minute data using the linear traffic 
model, the assumption that all vehicles can traverse the freeway in one time interval is 
unrealistic. Therefore, the one-minute data was only  generated using AIMSUN.  
 

4.4.2.1 Kalman filter results 
 

Figures B.5 and B.6 show the results from Kalman filter with the five-minute data 
generated by the linear traffic model. All the 11 values that have been changed are 
graphed. The algorithm generally captures the change pattern for the parameters that 
representing the mainline incoming flows. However, for the other parameters, it only 
manages to show a slight trend to follow the patterns but not able to track it.  

For the AIMSUN simulated data sets, only the results of six jumped parameters 
that have the typical behavior are shown. Results for the five-minute data generated using 
AIMSUN are almost the same. If the one-minute data is used, the confidence interval is 
tightened but for the lower-volume incoming flows, the detection of jump is still a 
problem. In addition to that, using the one-minute data appeared to introduce some 
systematic biases into the estimation. As for the parameter b1,11, the estimated values are 
constantly higher than the values that generated the data. Since the travel time from the 
first origin to the last destination on this network is larger than one minute, time- lagging 
should be taken into consideration. Not allowing for time lags in the one-minute data is 
the most likely source that introduced the bias.  

4.4.2.2 RSQP results 
 

Figures B.9 through B.12 display the time-series plots for the RSQP estimation. 
This algorithm shows some ability to track an abrupt change, and generally the estimates 
are following the right direction. However, in terms of the proximity to the true value and 
the reliability of the estimates, the Kalman filter outperforms RSQP.  
 
4.5 Conclusions 

Recursive algorithms are able to detect the abrupt changes in the split parameters 
of mainline but not those with lower traffic volumes. Both Kalman Filter and RSQP 
performed well on the parameters origin in the mainline. The estimates from on- line 
algorithms converge to the off- line estimates as indicated by the results from the 2 by 2 
network.  

RLS via Kalman Filtering outperforms RSQP because of a faster convergence 
rate. The Kalman filter converges at an approximately quadratic rate. In contrast, RSQP 
has an approximately linear rate.  

Additional information from reducing the length of the counting interval does not 
necessarily improve the estimates because of the additional biases introduced. 
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CHAPTER 5. CONCLUSIONS 

This report describes research on estimating OD matrices for freeways from time-
series on-ramp and off-ramp traffic counts. The simulation and optimization method was 
initially selected. However, when using AIMSUN as the prediction engine, the surface of 
objective function values is irregular, which poses difficulties for the optimization routine 
in locating the global optimal. The linear traffic model is then adopted to replace 
AIMSUN because of the tractable optimization problem it produces. Least squares-based 
methods using the linear model are able to generate unique estimates of the OD 
parameters and the results are easy to assess. Therefore, they are chosen over the 
simulation and optimization methods.  

The performances of four least squares-based methods on estimating a static OD 
matrix are compared using both the simple two-origin two-destination network and the 
real TH-169 network. For the simple network, least squares-based methods produced 
unbiased estimate of the assumed true OD matrix. With the larger real network TH-169, 
traditional CLS consistently had the lowest bias but worst efficiency measure. In contrast, 
the other three methods generated slightly more biased but also more reliable estimates. 
The choice of the algorithm depends on the availability of data. For instance, with a large 
data set, if an unbiased estimate is desired, then the choice would be CLS. However, 
when the size of the data set is limited and the reliable OD estimator is desired, then one 
of the alternative variations of CLS (WCLS,TCLS, or DelftOD) should be chosen.  

Recursive Least Squares via Kalman Filter and Recursive Sequential Quadratic 
Programming were tested for the on-line estimation of dynamic OD matrix. Both of them 
were able to detect the abrupt changes in the split parameters with high traffic volumes 
but not those with lower volumes. The Kalman Filter estimator converged at an 
approximately quadratic rate, which was faster than RSQP. One-minute data was tested 
in addition to five-minute data. The additional information from reducing the length of 
the counting interval tightens the confidence interval of the estimates, but does not 
necessarily improve the ability to respond to changes. 

Travel time laggings were not accounted for in the on-line estimation methods. 
From our results, the additional information from using a shorter time interval introduced 
a bias when travel time lags became important. By taking into account the travel time, the 
additional information could be better utilized. The way to implement this would be to 
replace the measurement equation in Kalman Filter with an equation equivalent to that in 
TCLS.  

The sequential quadratic programming approach showed an approximately linear 
convergence rate. The possibility of achieving a faster convergence rate should be 
investigated to refine this method.  

In this report, we focused on freeways. In order to expand the methods to general 
networks, route-choice has to be considered. For on- line applications, the dynamic traffic 
assignment model would have to be incorporated into the estimation process.  
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APPENDIX A: OFF-LINE ESTIMATION RESULTS  

Table A.1 Data set 1 (DelftOD) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

S.D. 1 2 3 4 5 6 7 8 9 10 11 
1 0.010 0.013 0.010 0.014 0.021 0.023 0.018 0.021 0.020 0.035 0.048 
2 0.149 0.124 0.087 0.095 0.148 0.132 0.100 0.104 0.121 0.111 0.204 
3 0 0.176 0.139 0.083 0.154 0.126 0.068 0.116 0.117 0.184 0.215 
4 0 0 0.133 0.141 0.119 0.137 0.128 0.172 0.126 0.203 0.183 
5 0 0 0 0.102 0.095 0.095 0.102 0.065 0.079 0.160 0.229 
6 0 0 0 0 0.090 0.129 0.088 0.101 0.096 0.147 0.203 
7 0 0 0 0 0 0.193 0.088 0.126 0.106 0.173 0.257 
8 0 0 0 0 0 0 0.134 0.145 0.150 0.232 0.233 
9 0 0 0 0 0 0 0 0.106 0.103 0.134 0.183 
10 0 0 0 0 0 0 0 0 0.123 0.148 0.177 
11 0 0 0 0 0 0 0 0 0 0.214 0.214 
12 0 0 0 0 0 0 0 0 0 0 0.000 

          
Mean 1 2 3 4 5 6 7 8 9 10 11 

1 0.133 0.065 0.047 0.039 0.054 0.098 0.039 0.045 0.023 0.121 0.336 
2 0.114 0.100 0.043 0.068 0.106 0.093 0.084 0.077 0.085 0.082 0.149 
3 0 0.139 0.108 0.047 0.126 0.086 0.042 0.086 0.066 0.139 0.162 
4 0 0 0.109 0.141 0.105 0.094 0.087 0.130 0.077 0.142 0.117 
5 0 0 0 0.090 0.075 0.077 0.082 0.055 0.067 0.109 0.447 
6 0 0 0 0 0.090 0.093 0.082 0.093 0.079 0.158 0.405 
7 0 0 0 0 0 0.201 0.058 0.108 0.088 0.121 0.423 
8 0 0 0 0 0 0 0.088 0.111 0.105 0.236 0.460 
9 0 0 0 0 0 0 0 0.091 0.079 0.089 0.741 
10 0 0 0 0 0 0 0 0 0.206 0.107 0.686 
11 0 0 0 0 0 0 0 0 0 0.173 0.827 
12 0 0 0 0 0 0 0 0 0 0 1.000 
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Table A.2 Data set 1 (WCLS) 
 

          
Mean 1 2 3 4 5 6 7 8 9 10 11 

1 0.133 0.065 0.047 0.039 0.053 0.098 0.040 0.046 0.025 0.121 0.332 
2 0.111 0.095 0.043 0.069 0.106 0.089 0.082 0.073 0.087 0.092 0.153 
3 0 0.137 0.115 0.047 0.125 0.088 0.036 0.084 0.065 0.139 0.165 
4 0 0 0.102 0.140 0.113 0.108 0.079 0.123 0.073 0.130 0.130 
5 0 0 0 0.089 0.072 0.073 0.080 0.056 0.061 0.113 0.455 
6 0 0 0 0 0.103 0.094 0.079 0.086 0.073 0.162 0.403 
7 0 0 0 0 0 0.191 0.060 0.105 0.091 0.115 0.439 
8 0 0 0 0 0 0 0.086 0.111 0.112 0.234 0.457 
9 0 0 0 0 0 0 0 0.090 0.084 0.088 0.738 
10 0 0 0 0 0 0 0 0 0.197 0.103 0.700 
11 0 0 0 0 0 0 0 0 0 0.170 0.830 
12 0 0 0 0 0 0 0 0 0 0 1.000 

 
 

            
S.D. 1 2 3 4 5 6 7 8 9 10 11 

1 0.010 0.011 0.010 0.013 0.020 0.022 0.016 0.020 0.020 0.034 0.046 
2 0.147 0.115 0.085 0.093 0.145 0.133 0.100 0.101 0.126 0.118 0.196 
3 0 0.168 0.142 0.075 0.157 0.125 0.063 0.106 0.113 0.180 0.210 
4 0 0 0.125 0.146 0.127 0.149 0.111 0.161 0.117 0.197 0.188 
5 0 0 0 0.096 0.098 0.086 0.102 0.073 0.073 0.163 0.243 
6 0 0 0 0 0.097 0.123 0.088 0.097 0.089 0.155 0.206 
7 0 0 0 0 0 0.191 0.089 0.126 0.110 0.163 0.262 
8 0 0 0 0 0 0 0.123 0.142 0.148 0.226 0.225 
9 0 0 0 0 0 0 0 0.110 0.108 0.133 0.178 
10 0 0 0 0 0 0 0 0 0.114 0.142 0.164 
11 0 0 0 0 0 0 0 0 0 0.207 0.207 
12 0 0 0 0 0 0 0 0 0 0 0.000 
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Table A.3 Data set 1 (CLS) 

 
          

Mean 1 2 3 4 5 6 7 8 9 10 11 
1 0.133 0.068 0.050 0.046 0.059 0.102 0.046 0.053 0.031 0.121 0.290 
2 0.103 0.078 0.038 0.049 0.096 0.087 0.064 0.066 0.065 0.101 0.254 
3 0 0.098 0.085 0.026 0.097 0.083 0.028 0.062 0.052 0.150 0.320 
4 0 0 0.073 0.094 0.089 0.102 0.064 0.100 0.062 0.131 0.285 
5 0 0 0 0.065 0.059 0.065 0.067 0.045 0.050 0.112 0.537 
6 0 0 0 0 0.091 0.086 0.064 0.075 0.066 0.154 0.465 
7 0 0 0 0 0 0.164 0.046 0.072 0.075 0.105 0.538 
8 0 0 0 0 0 0 0.080 0.093 0.094 0.216 0.517 
9 0 0 0 0 0 0 0 0.097 0.068 0.078 0.757 
10 0 0 0 0 0 0 0 0 0.205 0.117 0.679 
11 0 0 0 0 0 0 0 0 0 0.181 0.819 
12 0 0 0 0 0 0 0 0 0 0 1.000 

 
S.D. 1 2 3 4 5 6 7 8 9 10 11 

1 0.010 0.010 0.009 0.011 0.018 0.021 0.015 0.019 0.021 0.034 0.052 
2 0.144 0.109 0.071 0.079 0.130 0.133 0.091 0.086 0.099 0.123 0.264 
3 0 0.138 0.132 0.053 0.133 0.120 0.060 0.097 0.103 0.195 0.330 
4 0 0 0.112 0.135 0.115 0.149 0.099 0.142 0.113 0.182 0.288 
5 0 0 0 0.081 0.086 0.083 0.102 0.064 0.084 0.152 0.261 
6 0 0 0 0 0.093 0.119 0.084 0.102 0.093 0.153 0.269 
7 0 0 0 0 0 0.177 0.087 0.126 0.106 0.145 0.302 
8 0 0 0 0 0 0 0.121 0.141 0.127 0.215 0.262 
9 0 0 0 0 0 0 0 0.112 0.105 0.119 0.187 
10 0 0 0 0 0 0 0 0 0.133 0.142 0.198 
11 0 0 0 0 0 0 0 0 0 0.225 0.225 
12 0 0 0 0 0 0 0 0 0 0 0.000 
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Table A.4 Data set 2 (DelftOD) 

 
Mean    AIMSUN-DelftOD      

 1 2 3 4 5 6 7 8 9 10 11 
1 0.130 0.061 0.046 0.043 0.076 0.094 0.044 0.049 0.025 0.100 0.330 
2 0.025 0.020 0.036 0.024 0.064 0.042 0.034 0.032 0.036 0.073 0.615 
3 0 0.027 0.031 0.038 0.058 0.042 0.032 0.038 0.045 0.070 0.619 
4 0 0 0.083 0.257 0.193 0.036 0.033 0.054 0.029 0.075 0.240 
5 0 0 0 0.017 0.132 0.020 0.021 0.047 0.038 0.076 0.649 
6 0 0 0 0 0.423 0.027 0.018 0.021 0.017 0.039 0.453 
7 0 0 0 0 0 0.112 0.088 0.041 0.104 0.064 0.591 
8 0 0 0 0 0 0 0.031 0.046 0.038 0.069 0.815 
9 0 0 0 0 0 0 0 0.044 0.039 0.052 0.866 
10 0 0 0 0 0 0 0 0 0.309 0.048 0.642 
11 0 0 0 0 0 0 0 0 0 0.104 0.896 
12 0 0 0 0 0 0 0 0 0 0 1.000 

 
 

S.D. 1 2 3 4 5 6 7 8 9 10 11 
1 0.003 0.003 0.005 0.007 0.012 0.010 0.005 0.008 0.011 0.013 0.026 
2 0.037 0.034 0.034 0.036 0.070 0.041 0.038 0.038 0.043 0.067 0.134 
3 0 0.031 0.035 0.050 0.055 0.054 0.036 0.040 0.060 0.072 0.142 
4 0 0 0.057 0.088 0.132 0.060 0.051 0.076 0.048 0.090 0.187 
5 0 0 0 0.034 0.079 0.032 0.029 0.047 0.048 0.072 0.152 
6 0 0 0 0 0.059 0.035 0.023 0.022 0.023 0.048 0.086 
7 0 0 0 0 0 0.082 0.056 0.045 0.075 0.057 0.153 
8 0 0 0 0 0 0 0.045 0.065 0.050 0.095 0.148 
9 0 0 0 0 0 0 0 0.049 0.058 0.066 0.124 
10 0 0 0 0 0 0 0 0 0.047 0.050 0.064 
11 0 0 0 0 0 0 0 0 0 0.101 0.101 
12 0 0 0 0 0 0 0 0 0 0 0.000 
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Table A.5 Data set 2 (TCLS) 

 
          

Mean            
1 0.130 0.062 0.047 0.042 0.067 0.097 0.047 0.057 0.028 0.121 0.301 
2 0.022 0.016 0.027 0.021 0.062 0.024 0.028 0.026 0.021 0.032 0.720 
3 0 0.019 0.024 0.044 0.033 0.032 0.022 0.028 0.035 0.038 0.724 
4 0 0 0.076 0.281 0.199 0.036 0.028 0.041 0.040 0.034 0.265 
5 0 0 0 0.014 0.146 0.012 0.015 0.026 0.034 0.035 0.718 
6 0 0 0 0 0.497 0.019 0.014 0.013 0.010 0.015 0.432 
7 0 0 0 0 0 0.099 0.073 0.027 0.107 0.028 0.666 
8 0 0 0 0 0 0 0.022 0.041 0.038 0.050 0.849 
9 0 0 0 0 0 0 0 0.020 0.028 0.024 0.928 
10 0 0 0 0 0 0 0 0 0.305 0.021 0.674 
11 0 0 0 0 0 0 0 0 0 0.064 0.936 
12 0 0 0 0 0 0 0 0 0 0 1.000 

 
 

S.D.            
1 0.003 0.003 0.005 0.006 0.012 0.010 0.006 0.008 0.011 0.012 0.023 
2 0.047 0.035 0.041 0.041 0.080 0.050 0.039 0.047 0.042 0.059 0.133 
3 0 0.028 0.045 0.065 0.058 0.065 0.036 0.046 0.064 0.070 0.169 
4 0 0 0.058 0.106 0.135 0.061 0.052 0.057 0.061 0.068 0.186 
5 0 0 0 0.028 0.085 0.027 0.026 0.044 0.041 0.049 0.121 
6 0 0 0 0 0.072 0.034 0.031 0.026 0.019 0.038 0.096 
7 0 0 0 0 0 0.081 0.061 0.048 0.082 0.043 0.149 
8 0 0 0 0 0 0 0.035 0.060 0.059 0.086 0.120 
9 0 0 0 0 0 0 0 0.038 0.045 0.044 0.084 
10 0 0 0 0 0 0 0 0 0.055 0.043 0.072 
11 0 0 0 0 0 0 0 0 0 0.096 0.096 
12 0 0 0 0 0 0 0 0 0 0 0.000 

 



 A-6

Table A.6 Data set 2 (WCLS) 

           
Mean 1 2 3 4 5 6 7 8 9 10 11 

1 0.131 0.062 0.047 0.042 0.065 0.077 0.036 0.043 0.026 0.085 0.387 
2 0.036 0.022 0.030 0.049 0.084 0.069 0.056 0.065 0.031 0.091 0.466 
3 0 0.038 0.042 0.065 0.102 0.073 0.048 0.058 0.056 0.094 0.425 
4 0 0 0.075 0.186 0.090 0.074 0.046 0.054 0.048 0.094 0.332 
5 0 0 0 0.031 0.175 0.062 0.035 0.046 0.033 0.095 0.522 
6 0 0 0 0 0.499 0.062 0.029 0.035 0.028 0.061 0.286 
7 0 0 0 0 0 0.182 0.112 0.053 0.066 0.095 0.491 
8 0 0 0 0 0 0 0.054 0.070 0.053 0.127 0.696 
9 0 0 0 0 0 0 0 0.049 0.046 0.091 0.814 
10 0 0 0 0 0 0 0 0 0.293 0.049 0.659 
11 0 0 0 0 0 0 0 0 0 0.099 0.901 
12 0 0 0 0 0 0 0 0 0 0 1.000 

 
 

S.D. 1 2 3 4 5 6 7 8 9 10 11 
1 0.004 0.003 0.004 0.005 0.012 0.012 0.008 0.008 0.009 0.014 0.027 
2 0.057 0.043 0.030 0.059 0.067 0.071 0.051 0.068 0.042 0.099 0.188 
3 0 0.043 0.047 0.062 0.082 0.072 0.046 0.064 0.072 0.075 0.209 
4 0 0 0.053 0.072 0.079 0.069 0.062 0.069 0.058 0.093 0.206 
5 0 0 0 0.034 0.078 0.056 0.039 0.042 0.042 0.078 0.161 
6 0 0 0 0 0.075 0.054 0.034 0.038 0.039 0.064 0.126 
7 0 0 0 0 0 0.097 0.066 0.048 0.052 0.087 0.209 
8 0 0 0 0 0 0 0.063 0.070 0.065 0.123 0.185 
9 0 0 0 0 0 0 0 0.043 0.047 0.077 0.121 
10 0 0 0 0 0 0 0 0 0.046 0.059 0.082 
11 0 0 0 0 0 0 0 0 0 0.099 0.099 
12 0 0 0 0 0 0 0 0 0 0 0.000 
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Table A.7 Data set 2 (CLS) 

           
Mean 1 2 3 4 5 6 7 8 9 10 11 

1 0.131 0.060 0.046 0.042 0.069 0.081 0.036 0.043 0.033 0.089 0.370 
2 0.036 0.026 0.026 0.044 0.075 0.066 0.048 0.058 0.041 0.074 0.505 
3 0 0.063 0.073 0.086 0.097 0.073 0.067 0.064 0.066 0.093 0.317 
4 0 0 0.069 0.155 0.081 0.056 0.039 0.043 0.048 0.082 0.427 
5 0 0 0 0.046 0.170 0.066 0.044 0.050 0.050 0.091 0.483 
6 0 0 0 0 0.470 0.050 0.022 0.025 0.024 0.050 0.359 
7 0 0 0 0 0 0.156 0.090 0.040 0.062 0.076 0.576 
8 0 0 0 0 0 0 0.080 0.088 0.083 0.127 0.622 
9 0 0 0 0 0 0 0 0.076 0.077 0.103 0.744 
10 0 0 0 0 0 0 0 0 0.170 0.025 0.806 
11 0 0 0 0 0 0 0 0 0 0.152 0.848 
12 0 0 0 0 0 0 0 0 0 0 1.000 

 
 

S.D. 1 2 3 4 5 6 7 8 9 10 11 
1 0.004 0.004 0.005 0.007 0.014 0.012 0.010 0.012 0.015 0.014 0.048 
2 0.059 0.049 0.037 0.067 0.076 0.070 0.058 0.064 0.063 0.088 0.307 
3 0 0.069 0.068 0.081 0.080 0.074 0.058 0.064 0.081 0.080 0.324 
4 0 0 0.076 0.104 0.080 0.059 0.058 0.056 0.066 0.094 0.344 
5 0 0 0 0.058 0.096 0.058 0.049 0.051 0.055 0.085 0.306 
6 0 0 0 0 0.111 0.058 0.039 0.044 0.046 0.056 0.220 
7 0 0 0 0 0 0.100 0.086 0.054 0.080 0.077 0.294 
8 0 0 0 0 0 0 0.095 0.095 0.090 0.127 0.315 
9 0 0 0 0 0 0 0 0.087 0.092 0.107 0.259 
10 0 0 0 0 0 0 0 0 0.128 0.053 0.162 
11 0 0 0 0 0 0 0 0 0 0.178 0.178 
12 0 0 0 0 0 0 0 0 0 0 0.000 
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Table A.8 Data set 3 (DelftOD) 

           
Mean 1 2 3 4 5 6 7 8 9 10 11 

1 0.131 0.135 0.061 0.029 0.046 0.022 0.063 0.030 0.037 0.007 0.439 
2 0.114 0.207 0.091 0.024 0.158 0.094 0.043 0.078 0.069 0.028 0.096 
3 0 0.038 0.099 0.121 0.161 0.301 0.000 0.110 0.000 0.000 0.167 
4 0 0 0.194 0.124 0.103 0.224 0.013 0.142 0.030 0.026 0.141 
5 0 0 0 0.361 0.072 0.068 0.056 0.094 0.011 0.039 0.298 
6 0 0 0 0 0.074 0.026 0.201 0.046 0.128 0.080 0.444 
7 0 0 0 0 0 0.000 0.371 0.030 0.101 0.199 0.301 
8 0 0 0 0 0 0 0.006 0.057 0.000 0.036 0.901 
9 0 0 0 0 0 0 0 0.014 0.118 0.085 0.783 
10 0 0 0 0 0 0 0 0 0.114 0.212 0.674 
11 0 0 0 0 0 0 0 0 0 0.021 0.979 
12 0 0 0 0 0 0 0 0 0 0 1.000 

 
 

S.D. 1 2 3 4 5 6 7 8 9 10 11 
1 0.013 0.013 0.010 0.018 0.027 0.015 0.021 0.012 0.016 0.011 0.038 
2 0.174 0.171 0.075 0.047 0.164 0.115 0.070 0.107 0.100 0.052 0.172 
3 0 0.163 0.129 0.126 0.177 0.189 0.000 0.096 0.000 0.000 0.213 
4 0 0 0.167 0.165 0.170 0.220 0.042 0.127 0.066 0.076 0.177 
5 0 0 0 0.211 0.110 0.075 0.070 0.123 0.023 0.084 0.261 
6 0 0 0 0 0.106 0.047 0.178 0.075 0.102 0.084 0.252 
7 0 0 0 0 0 0.000 0.224 0.049 0.120 0.143 0.294 
8 0 0 0 0 0 0 0.024 0.095 0.000 0.084 0.129 
9 0 0 0 0 0 0 0 0.042 0.162 0.113 0.183 
10 0 0 0 0 0 0 0 0 0.109 0.114 0.177 
11 0 0 0 0 0 0 0 0 0 0.050 0.050 
12 0 0 0 0 0 0 0 0 0 0 0.000 
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Table A.9 Data set 1 (TCLS) 

Mean 1 2 3 4 5 6 7 8 9 10 11 
1 0.131 0.135 0.061 0.025 0.046 0.017 0.062 0.026 0.041 0.007 0.450 
2 0.094 0.195 0.104 0.043 0.127 0.102 0.041 0.103 0.084 0.008 0.099 
3 0 0.026 0.112 0.135 0.168 0.333 0.005 0.116 0.001 0.003 0.100 
4 0 0 0.151 0.09 0.078 0.249 0.033 0.124 0.031 0.038 0.207 
5 0 0 0 0.418 0.08 0.084 0.043 0.083 0.012 0.036 0.243 
6 0 0 0 0 0.09 0.024 0.25 0.066 0.107 0.09 0.372 
7 0 0 0 0 0 0 0.319 0.059 0.086 0.215 0.321 
8 0 0 0 0 0 0 0.033 0.055 0.003 0.022 0.886 
9 0 0 0 0 0 0 0 0.012 0.097 0.079 0.812 
10 0 0 0 0 0 0 0 0 0.114 0.223 0.663 
11 0 0 0 0 0 0 0 0 0 0.022 0.978 
12 0 0 0 0 0 0 0 0 0 0 1 

 
 

S.D. 1 2 3 4 5 6 7 8 9 10 11 
1 0.011 0.015 0.013 0.016 0.029 0.013 0.024 0.015 0.014 0.008 0.038 
2 0.152 0.218 0.14 0.093 0.179 0.142 0.093 0.121 0.165 0.028 0.170 
3 0 0.108 0.132 0.168 0.211 0.212 0.018 0.144 0.003 0.015 0.193 
4 0 0 0.182 0.137 0.157 0.277 0.096 0.133 0.089 0.079 0.279 
5 0 0 0 0.199 0.11 0.108 0.068 0.111 0.027 0.076 0.210 
6 0 0 0 0 0.124 0.044 0.206 0.105 0.123 0.108 0.299 
7 0 0 0 0 0 0 0.221 0.105 0.115 0.169 0.295 
8 0 0 0 0 0 0 0.076 0.071 0.01 0.056 0.127 
9 0 0 0 0 0 0 0 0.038 0.132 0.129 0.181 
10 0 0 0 0 0 0 0 0 0.108 0.129 0.193 
11 0 0 0 0 0 0 0 0 0 0.057 0.057 
12 0 0 0 0 0 0 0 0 0 0 0 
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Table A.10 Data set 3 (WCLS) 

           
Mean 1 2 3 4 5 6 7 8 9 10 11 

1 0.134 0.141 0.061 0.029 0.051 0.020 0.065 0.021 0.042 0.008 0.428 
2 0.076 0.128 0.101 0.046 0.079 0.113 0.018 0.081 0.042 0.027 0.289 
3 0 0.014 0.111 0.107 0.157 0.245 0.001 0.150 0.031 0.019 0.165 
4 0 0 0.162 0.105 0.095 0.187 0.006 0.117 0.023 0.018 0.288 
5 0 0 0 0.375 0.060 0.103 0.034 0.087 0.015 0.030 0.297 
6 0 0 0 0 0.076 0.036 0.214 0.068 0.105 0.113 0.389 
7 0 0 0 0 0 0.000 0.345 0.069 0.064 0.217 0.306 
8 0 0 0 0 0 0 0.066 0.098 0.014 0.012 0.810 
9 0 0 0 0 0 0 0 0.028 0.099 0.065 0.808 
10 0 0 0 0 0 0 0 0 0.130 0.196 0.674 
11 0 0 0 0 0 0 0 0 0 0.008 0.992 
12 0 0 0 0 0 0 0 0 0 0 1.000 

 
 

S.D. 1 2 3 4 5 6 7 8 9 10 11 
1 0.010 0.011 0.013 0.012 0.028 0.011 0.018 0.020 0.020 0.011 0.041 
2 0.118 0.169 0.105 0.064 0.119 0.120 0.065 0.115 0.082 0.065 0.264 
3 0 0.045 0.121 0.109 0.169 0.189 0.005 0.149 0.089 0.041 0.204 
4 0 0 0.173 0.160 0.102 0.176 0.018 0.147 0.045 0.047 0.244 
5 0 0 0 0.194 0.104 0.098 0.048 0.111 0.029 0.053 0.215 
6 0 0 0 0 0.108 0.043 0.124 0.092 0.121 0.131 0.218 
7 0 0 0 0 0 0.000 0.166 0.092 0.084 0.118 0.208 
8 0 0 0 0 0 0 0.094 0.103 0.037 0.036 0.172 
9 0 0 0 0 0 0 0 0.048 0.127 0.082 0.152 
10 0 0 0 0 0 0 0 0 0.101 0.103 0.149 
11 0 0 0 0 0 0 0 0 0 0.016 0.016 
12 0 0 0 0 0 0 0 0 0 0 0.000 
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Table A.11 Data set 3 (CLS) 

            
Mean 1 2 3 4 5 6 7 8 9 10 11 

1 0.134 0.142 0.068 0.038 0.062 0.032 0.071 0.031 0.045 0.011 0.367 
2 0.064 0.110 0.081 0.016 0.057 0.097 0.012 0.071 0.029 0.015 0.446 
3 0 0.008 0.041 0.045 0.063 0.082 0.002 0.061 0.006 0.009 0.684 
4 0 0 0.103 0.058 0.017 0.098 0.004 0.038 0.019 0.009 0.654 
5 0 0 0 0.344 0.046 0.086 0.033 0.066 0.010 0.027 0.388 
6 0 0 0 0 0.076 0.056 0.199 0.059 0.103 0.100 0.407 
7 0 0 0 0 0 0.001 0.298 0.049 0.041 0.143 0.469 
8 0 0 0 0 0 0 0.059 0.110 0.015 0.031 0.786 
9 0 0 0 0 0 0 0 0.047 0.089 0.073 0.791 
10 0 0 0 0 0 0 0 0 0.147 0.226 0.626 
11 0 0 0 0 0 0 0 0 0 0.026 0.974 
12 0 0 0 0 0 0 0 0 0 0 1.000 

 
 

S.D. 1 2 3 4 5 6 7 8 9 10 11 
1 0.010 0.011 0.013 0.014 0.028 0.013 0.016 0.019 0.021 0.013 0.067 
2 0.108 0.158 0.120 0.033 0.090 0.123 0.039 0.101 0.092 0.037 0.282 
3 0 0.022 0.071 0.070 0.133 0.111 0.008 0.122 0.025 0.030 0.312 
4 0 0 0.187 0.141 0.051 0.154 0.019 0.073 0.065 0.027 0.439 
5 0 0 0 0.180 0.080 0.112 0.055 0.100 0.030 0.060 0.290 
6 0 0 0 0 0.112 0.073 0.118 0.071 0.117 0.116 0.311 
7 0 0 0 0 0 0.005 0.181 0.083 0.060 0.126 0.334 
8 0 0 0 0 0 0 0.081 0.158 0.042 0.066 0.263 
9 0 0 0 0 0 0 0 0.083 0.161 0.136 0.336 
10 0 0 0 0 0 0 0 0 0.139 0.122 0.247 
11 0 0 0 0 0 0 0 0 0 0.096 0.096 
12 0 0 0 0 0 0 0 0 0 0 0.000 
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APPENDIX B ON-LINE ESTIMATION RESULTS 

 
(a) Time-series plot of b1,1 for data set 1                                   (b) Time-series plot of b2,1 for data set 1 

 
(c) Time-series plot of b1,1 for data set 3                                   (d) Time-series plot of b2,1 for data set 3 

Figure B.1 Results of RLS for the simulated network with data sets 1 and 3 
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                 (a) Time-series plot of b1,1 for data set 2                                   (b) Time-series plot of b2,1 for data set 2 

 
                 (c) Time-series plot of b1,1 for data set 4                                   (d) Time-series plot of b2,1 for data set 4 

Figure B.2 Results of RLS for the simulated network with data sets 2 and 4 
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                 (a) Time-series plot of b1,1 for data set 1                                   (b) Time-series plot of b2,1 for data set 1 

 
                 (c) Time-series plot of b1,1 for data set 3                                   (d) Time-series plot of b2,1 for data set 3 

Figure B.3 Results of SQP for the simulated network with data sets 1 and 3 
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                 (a) Time-series plot of b1,1 for data set 2                                   (b) Time-series plot of b2,1 for data set 2 

 

 
                 (c) Time-series plot of b1,1 for data set 4                                   (d) Time-series plot of b2,1 for data set 4 

Figure B.4 Results of SQP for the simulated network with data sets 2 and 4 
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Figure B.5 Results of RLS for TH-169 with data set 1 (1) 
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Figure B.6 Results of RLS for TH-169 with data set 1 (2) 
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Figure B.7 Results of RLS for TH-169 with data set 2 
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Figure B.8 Results of RLS for TH-169 with data set 4 
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Figure B.9 Results of SQP for TH-169 on data set 1 (1) 
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Figure B.10 Results of SQP for TH-169 on data set 1 (2) 
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Figure B.11 Results for SQP on TH-169  with data set 2 
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Figure B.12 Results for SQP on TH-169  with data set 4 
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APPENDIX C SOURCE CODE 

A. CLS Matlab Script 

clear; 
load 'Q.dat';   
load 'D.dat'; 
load 'aeq.dat';  
load 'beq.dat';  
load 'lb.dat'; 
load 'ub.dat';  
load 'ini.dat';  
ntime=36; 
nor=12; 
ndes=11; 
nday=23; 
for i=1:nor*ndes 
   sumx(i)=0; 
   sumxx(i)=0; 
end 
 
   fid1=fopen('X.dat','w'); 
   for t=1:nday 
      for i=1:ntime*ndes 
         for j=1:nor*ndes  
            onr(i,j)=0; 
         end  
      end  
       
    for k=1:ntime 
         n=1; 
         for i=(k-1)*ndes+1:k*ndes 
            m=1; 
            for j=(n-1)*nor+1:n*nor 
              onr(i,j)=Q(k+(t-1)*ntime,m); 
              m=m+1; 
            end  
            n=n+1; 
         end  
      end     
           for i=1:ntime*ndes 
              off(i,1)=D(i+(t-1)*ntime*ndes,1); 
           end 
           
           for j=1:ndes 
              sumoff(j)=0; 
              average(j)=0; 
              for i=1:ntime 
                 sumoff(j)=sumoff(j)+off((i-1)*ndes+j); 
              end 
              average(j)=sumoff(j)/ntime; 
           end 
            
           for i=1:ndes 
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              for j=1:ntime 
                weight((j-1)*ndes+i,(j-1)*ndes+i)=1/sqrt(average(i));  
              end 
           end 
            
          on=onr; 
          y=off; 
A=[]; 
b=[]; 
[nineqcstr,numberOfVariables]=size(A); 
[neqcstr,numberOfVariableseq]=size(aeq); 
ncstr = nineqcstr + neqcstr;  
X0=ini; 
verbosity = 1; 
caller = 'lsqlin'; 
 
[x,lambdaqp,exitflag,output]= ... 
   qpsub(full(on),y,[full(aeq);full(A)],[beq;b],lb,ub,X0,neqcstr,verbosity,caller,ncstr,numberOfVariables);  
            
for i=1:nor 
    fprintf(fid1,'%6.3f %6.3f %6.3f %6.3f %6.3f %6.3f %6.3f %6.3f %6.3f 
%6.3f%6.3f\n',x(i),x(i+nor),x(i+nor*2),x(i+nor*3),x(i+nor*4),x(i+nor*5),x(i+nor*6),x(i+nor*7),x(i+nor*8),x(i
+nor*9),x(i+nor*10)); 
end 
        
           for i=1:nor*ndes 
              sumx(i)=sumx(i)+x(i);  
              sumxx(i)=sumxx(i)+x(i).^2; 
           end            
   end 
         
for i=1:132 
   avg(i)=sumx(i)/nday; 
   std(i)=sqrt((-nday*avg(i).^2+sumxx(i))/nday);  
end 
fprintf(fid1,'average \n'); 
for i=1:nor 
   fprintf(fid1, '%6.3f %6.3f %6.3f %6.3f %6.3f %6.3f %6.3f %6.3f %6.3f 
%6.3f%6.3f\n',avg(i),avg(i+nor),avg(i+nor*2),avg(i+nor*3),avg(i+nor*4),avg(i+nor*5),avg(i+nor*6),avg(i+nor
*7),avg(i+nor*8),avg(i+nor*9),avg(i+nor*10)); 
           end 
fprintf(fid1,'std \n'); 
           for i=1:nor 
              fprintf(fid1,'%6.3f %6.3f %6.3f %6.3f %6.3f %6.3f %6.3f %6.3f %6.3f %6.3f 
%6.3f\n',std(i),std(i+nor),std(i+nor*2),std(i+nor*3),std(i+nor*4),std(i+nor*5),std(i+nor*6),std(i+nor*7),std(i+n
or*8),std(i+nor*9),std(i+nor*10)); 
           end 
fclose(fid1); 
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Inputs: 

Qntime*m is the onramp counts in the matrix form, where ntime is number of time intervals and 

m is the number of origins; 

D1*(ntime*n) is the offramp counts in a column vector form, where n is the number of 

destinations; 

aeq is the matrix that specifies the equality constraints, for TH-169 segment 

4444444444 34444444444 21
mn

maeq





























ΛΟΛ
ΟΜΟΟΜ

ΜΟΜ
ΛΟΛ

=

100100
00

1010
001001

 

beq is a vector showing the equality constraints. 

mbeq





























=

1

1
1

M
 

lb is the lower bound for the inequality constraints; 

ub is the upper bound for the inequality constraints. 
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B. Fortran code of data generation for TCLS 

      Program station 
      implicit none 
      integer num 
      parameter(num=26) 
      integer i,j,k,n,tor(12,11,37),triptable(37*11,12*11),tt 
      double precision occu(num*288),speed(num*288),vol(num*288),detecto 
     &r(num*288,4),id(num*288),count(num*288),length(21),zero,staspeed(2 
     &5,288),statspeed(25,288),section(21,288),time(21,288),odtime(12,11 
     &,288),t(12,11,39),beta(12,11,37),onramp(3744,3),qq(12,39),q(12,11, 
     &37),offramp(2880,3),off(11,37),offramp1(864,3),predict(407,1),pred 
     &ictoff(11,37),det(num*23*288,4) 
 
      character*80 detfile,outfile,lfile,onfile,offfile,offfile1,ofile 
      parameter(detfile='station.dat') 
      parameter(outfile='outs.dat') 
      parameter(lfile='length.dat') 
      parameter(onfile='onramp.dat') 
      parameter(offfile='offramp.dat') 
      open(unit=1,file=detfile,status='old') 
      open(unit=2,file=outfile,status='old') 
      open(unit=3,file=lfile,status='old') 
 
      call fread(num*288*23,4,det,1) 
      call fread(21,1,length,3) 
      zero=1.0d-8 
 
      do tt=1,23 
        do i=1,num*288  
           do j=1,4 
               detector(i,j)=det(i+num*288*(tt-1),j) 
           end do 
        end do 
 
      do i=1,num*288 
         id(i)=detector(i,1) 
         count(i)=detector(i,2) 
         occu(i)=detector(i,3) 
         speed(i)=detector(i,4) 
      end do 
      close(1) 
      close(3) 
 
      do i=1,num-1,2 
         do j=1,288 
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            if(count((i-1)*288+j)+count(i*288+j).gt.zero) then 
            staspeed(i,j)=(count((i-1)*288+j)*speed((i-1)*288+j)+count(i 
     &*288+j)*speed(i*288+j))/(count((i-1)*288+j)+count(i*288+j)) 
            else 
                staspeed(i,j)=60*1.609/3.6 
            endif 
         end do 
      end do 
 
      do j=1,288 
         statspeed(1,j)=staspeed(1,j) 
         statspeed(3,j)=staspeed(25,j) 
         statspeed(5,j)=staspeed(23,j) 
         statspeed(7,j)=staspeed(21,j) 
         statspeed(9,j)=staspeed(19,j) 
         statspeed(11,j)=staspeed(17,j) 
         statspeed(13,j)=staspeed(15,j) 
         statspeed(15,j)=staspeed(3,j) 
         statspeed(17,j)=staspeed(13,j) 
         statspeed(19,j)=staspeed(11,j) 
         statspeed(21,j)=staspeed(9,j) 
         statspeed(23,j)=staspeed(7,j)  
         statspeed(25,j)=staspeed(5,j) 
      end do 
      k=0 
      do i=1,num-1,2 
         k=k+1 
         do j=1,288 
            statspeed(k,j)=statspeed(i,j) 
         end do 
      end do 
       
      do j=1,288 
        section(1,j)=statspeed(1,j) 
        section(2,j)=statspeed(1,j) 
        section(3,j)=(statspeed(1,j)+statspeed(2,j))/2 
        section(4,j)=statspeed(2,j) 
        section(5,j)=statspeed(3,j) 
        section(6,j)=statspeed(4,j) 
        section(7,j)=statspeed(5,j) 
        section(8,j)=statspeed(6,j) 
        section(9,j)=(statspeed(6,j)+statspeed(7,j))/2 
        section(10,j)=statspeed(7,j) 
        section(11,j)=(statspeed(7,j)+statspeed(8,j))/2 
        section(12,j)=statspeed(8,j) 
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        section(13,j)=(statspeed(8,j)+statspeed(9,j))/2 
        section(14,j)=statspeed(9,j) 
        section(15,j)=statspeed(10,j) 
        section(16,j)=statspeed(11,j)          
        section(17,j)=(statspeed(11,j)+statspeed(12,j))/2 
        section(18,j)=(statspeed(11,j)+statspeed(12,j))/2 
        section(19,j)=statspeed(12,j) 
        section(20,j)=statspeed(13,j) 
        section(21,j)=statspeed(13,j) 
      end do 
 
      do i=1,21 
         do j=1,288 
          time(i,j)=length(i)/section(i,j) 
         end do 
      end do 
 
      do i=1,12 
        do j=1,11 
          do k=1,288 
            odtime(i,j,k)=0 
          end do 
        end do 
      end do 
 
      do k=1,288 
         odtime(1,1,k)=time(1,k) 
         odtime(2,1,k)=time(1,k) 
      end do 
 
      do j=2,11 
         do k=1,288             
            odtime(1,j,k)=time(2*j-2,k)+time(2*j-1,k)+odtime(1,j-1,k) 
            odtime(2,j,k)=time(2*j-2,k)+time(2*j-1,k)+odtime(2,j-1,k) 
         end do 
      end do 
       
      do i=3,12 
         do k=1,288 
            odtime(i,i-1,k)=time(2*i-3,k) 
         end do 
      end do 
 
      do i=3,12 
         do j=i,11 
             do k=1,288 



 C-7

               odtime(i,j,k)=time(2*j-1,k)+time(2*j-2,k)+odtime(i,j-1,k) 
             end do 
         end do 
      end do 
 
      do i=1,12 
        do j=1,11 
             n=1 
          do k=1,288                
            if((k.ge.82).and.(k.le.120)) then 
               t(i,j,n)=odtime(i,j,k) 
               n=n+1 
            endif 
          end do 
        end do 
      end do 
             
      do i=1,12 
        do j=1,11             
          do k=3,39 
            tor(i,j,k-2)=int(t(i,j,k)/300)+1 
            beta(i,j,k-2)=tor(i,j,k-2)-t(i,j,k)/300 
           end do 
         end do 
      end do 
c 
c     onramp counts 
c 
      open(unit=4,file=onfile,status='old') 
      call fread(3744,3,onramp,4) 
      k=1 
         do j=1,288 
             if((j.ge.82).and.(j.le.120)) then 
                qq(1,k)=onramp(j,2)+onramp(j+288,2) 
                k=k+1 
             endif 
         end do 
      
         do i=2,12 
            k=1 
            do j=i*288+1,(i+1)*288 
               if(((j- i*288).ge.82).and.((j- i*288).le.120)) then 
                 qq(i,k)=onramp(j,2) 
                k=k+1 
               endif 
            end do 
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         end do  
  
c 
c     calculate the matrix of onramp counts for time-varying CLS   
c    
      do i=1,12 
         do j=1,11 
            do k=1,37 
              q(i,j,k)=(1-beta(i,j,k))*qq(i,(k+2-tor(i,j,k)))+beta(i,j,k 
     &)*qq(i,(k+2-tor(i,j,k)+1)) 
            end do 
         end do 
      end do 
 
      do k=1,37 
         do j=1,11 
            do i=1,12 
              triptable((k-1)*11+j,(j-1)*12+i)=int(q(i,j,k)) 
            end do 
         end do 
      end do  
c 
c     offramp counts 
c 
          do i=1,10 
            k=1 
            do j=(i-1)*288+1,i*288 
               if(((j-(i-1)*288).ge.84).and.((j-(i-1)*288).le.120)) then 
                 off(i,k)=offramp(j,2) 
                k=k+1 
               endif 
            end do 
         end do    
c 
c     calculate the vector of offramp counts for time-varying CLS   
c       
      open(unit=6,file=offfile1,status='old') 
      call fread(864,3,offramp1,6)  
      k=1 
      do j=1,288 
             if((j.ge.84).and.(j.le.120)) then   
                off(11,k)=offramp1(j,2)+offramp1(j+288,2)+offramp1(j+288 
     &*2,2) 
                k=k+1      
              endif 
      end do 
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      do i=2,37 
        write(2,"(36f6.0)") (off(j,i),j=1,11) 
      end do  
      end do 
      end 
 
      subroutine fread(row,col,matrix,fnum) 
      integer row,col,fnum 
      double precision matrix(row,col),xirtam(col,row) 
      read(fnum,*) xirtam 
      call transp(xirtam,col,row,matrix)      
      end 
 
      subroutine transp(x,col,row,y) 
      integer row,col,i,j 
      double precision x(col,row), y(row,col) 
      do  i=1,row 
         do  j=1,col 
            y(i,j) = x(j,i) 
      end do 
      end do 
      end 
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C.Fortran code for Recursive Least Squares via Kalman Filtering 

      Program Kalman 
      implicit none 
      integer i,j,ii,jj,s,t,nor,ntime,ndes,kk,m,n,ttt,nday 
      parameter (nor=12,ndes=11,ntime=36,nday=50) 
      integer index(nor) 
      double precision onramp(ntime,nor),offramp(ntime,ndes) 
      double precision a(ndes,ndes),aa(ndes,ndes),c(ndes,1),cc(ndes,1),f 
     &tol,R(nor*ndes,nor*ndes),sum(ndes) 
      double precision b(nor,ndes),k(nor*ndes,ndes),p(nor*ndes,nor*ndes)      
      double precision bb(nor*ndes,1),bbt(1,nor*ndes),q(nor*ndes,ndes),q 
     &t(ndes,nor*ndes),p0q(nor*ndes,ndes),qtp0(ndes,nor*ndes),pq(ndes,nd 
     &es),rr(nor*ndes,nor*ndes),kc(nor*ndes,1),y(ntime,ndes) 
      double precision onra(ntime*ndes,nor*ndes),ft(nor,nor*ndes) 
      double precision kplus(nor*ndes,nor),f(nor*ndes,nor),ftp(nor,nor*n 
     &des),ftpf(nor,nor),fpp(nor*ndes,nor),pp(nor,nor),rrplus(nor*ndes,n 
     &or*ndes),ftbb(nor,1),kcplus(nor*ndes,1),onrampt(ntime*nday,nor),of 
     &frampt(ntime*nday,ndes),average(nor,ndes,ntime),std(nor,ndes,ntime 
     &),sumbb(nor,ndes,ntime),sumsquarebb(nor,ndes,ntime),offrampp(ntime 
     &,ndes),sumerror(nday) 
      character (40)  offile,onfile,outfile,inifile,eqfile 
      parameter       (outfile='out.dat') 
      parameter       (inifile='matrix169.dat') 
      parameter       (offile='offramp.dat') 
      parameter       (onfile='onramp.dat') 
      parameter       (eqfile='aeq169.dat') 
 
      open(unit=3,file=outfile,status='old') 
      open(unit=1,file=offile,status='old') 
      open(unit=2,file=onfile,status='old') 
      open(unit=5,file=eqfile,status='old') 
      call fread(ntime*nday,nor,onrampt,2) 
      call fread(ntime*nday,ndes,offrampt,1) 
      call fread(nor,nor*ndes,ft,5) 
      close (2) 
      close (1) 
      close(5) 
 
      do i=1,nor 
         do j=1,ndes 
            do t=1,ntime 
               sumbb(i,j,t)=0.d+0 
               sumsquarebb(i,j,t)=0.d+0 
            end do 
          end do 
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      end do 
      ftol=1.d-8 
      do i=1,nor*ndes 
          do j=1,nor 
             f(i,j)=ft(j,i) 
          end do 
      end do 
 
      do ttt=1,nday 
      open(unit=4,file=inifile,status='old') 
      call fread(nor,ndes,b,4) 
      close(4) 
         do i=1,ntime 
            do j=1,nor 
               onramp(i,j)=onrampt(ntime*(ttt-1)+i,j) 
            end do 
            do j=1,ndes 
               offramp(i,j)=offrampt(ntime*(ttt-1)+i,j) 
            end do 
          end do 
 
      do i=1,ntime*ndes 
         do j=1,nor*ndes 
            onra(i,j)=0.d+0 
         end do 
      end do 
 
      do kk=1,ntime 
         n=1 
         do i=(kk-1)*ndes+1,kk*ndes 
            m=1 
            do j=(n-1)*nor+1,n*nor 
              onra(i,j)=onramp(kk,m) 
              m=m+1 
            end do 
            n=n+1 
         end do 
      end do 
      
      do i=1,ntime 
         do j=1,ndes 
            y(i,j)=offramp(i,j) 
         end do 
      end do 
      do t=1,ntime 
         do i=1,ndes 
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            do j=1,nor*ndes 
               q(j,i)=onra((t-1)*ndes+i,j)                
               qt(i,j)=onra((t-1)*ndes+i,j) 
            end do 
         end do 
 
               do i=1,nor 
                  bb(i+(j-1)*nor,1)=b(i,j) 
                  bbt(1,i+(j-1)*nor)=b(i,j) 
               end do      
c initial p 
 
      if(t.eq.1) then 
      do ii=1,nor*ndes 
         do jj=1,nor*ndes 
            p(ii,jj)=0. 
            r(ii,jj)=0. 
            if(ii.eq.jj) p(ii,jj)=1.d+0 
            if(ii.eq.jj) r(ii,jj)=1.d-4 
         end do 
      end do 
      endif    
  
            call multiply(p,q,p0q,nor*ndes,nor*ndes,ndes) 
            call multiply(qt,p,qtp0,ndes,nor*ndes,nor*ndes) 
            call multiply(qtp0,q,pq,ndes,nor*ndes,ndes) 
            do i=1,ndes 
               do j=1,ndes 
                  if(i.eq.j) then 
                   a(i,j)=pq(i,j)+1.d+0 
                  else 
                  a(i,j)=pq(i,j) 
                  endif 
               end do 
            end do 
 
            call inv(ndes,a,aa) 
            call multiply(p0q,aa,k,nor*ndes,ndes,ndes) 
            call multiply(k,qtp0,rr,nor*ndes,ndes,nor*ndes)               
            do i=1,nor*ndes 
               do j=1,nor*ndes 
                  p(i,j)=p(i,j)-rr(i,j)+r(i,j) 
               end do 
            end do 
 
            call multiply(qt,bb,cc,ndes,nor*ndes,1) 
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            do j=1,ndes 
             c(j,1)=y(t,j)-cc(j,1) 
            end do 
 
            call multiply(k,c,kc,nor*ndes,ndes,1)                         
             do i=1,nor*ndes 
                 bb(i,1)=bb(i,1)+kc(i,1) 
             end do 
 
            call multiply(ft,p,ftp,nor,nor*ndes,nor*ndes) 
            call multiply(ftp,f,ftpf,nor,ndes*nor,nor)   
            call INV(nor,ftpf,pp) 
            call multiply(f,pp,fpp,nor*ndes,nor,nor) 
            call multiply(p,fpp,kplus,nor*ndes,nor*ndes,nor) 
            call multiply(kplus,ftp,rrplus,nor*ndes,nor,nor*ndes)       
            call multiply(ft,bb,ftbb,nor,nor*ndes,1)         
            do i=1,nor 
               ftbb(i,1)=1.d+0-ftbb(i,1) 
            end do 
             
            call multiply(kplus,ftbb,kcplus,nor*ndes,nor,1) 
              do i=1,nor*ndes 
                 bb(i,1)=bb(i,1)+kcplus(i,1) 
             end do 
             
            do i=1,nor*ndes 
               do j=1,nor*ndes 
                  p(i,j)=p(i,j)-rrplus(i,j) 
               end do 
            end do 
 
             do j=1,ndes 
                do i=1,j+1 
                    b(i,j)=bb((j-1)*nor+i,1) 
                    if(b(i,j).lt.(0.d+0)) b(i,j)=0.d+0 
                    if(b(i,j).gt.1.) b(i,j)=1.  
                end do 
             end do 
 
            do i=1,nor 
            sum(i)=0. 
               do j=1,ndes 
                 sum(i)=sum(i)+b(i,j) 
               end do 
            if(sum(i).eq.0) then 
               do j=i-1,ndes 
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                  b(i,j)=1.0d+0/(2+ndes- i) 
               end do 
               else 
               if(abs(sum(i)-1).gt.ftol) then 
                  if(i.gt.1) then 
                  do j=i-1,ndes 
                    b(i,j)=b(i,j)/sum(i) 
                  end do 
                  else 
                  do j=1,ndes 
                    b(i,j)=b(i,j)/sum(i) 
                  end do 
                  endif 
               endif   
             endif       
           end do 
               b(nor,ndes)=1. 
             do i=1,nor 
               do j=1,ndes 
                  sumbb(i,j,t)=sumbb(i,j,t)+b(i,j) 
                  sumsquarebb(i,j,t)=sumsquarebb(i,j,t)+b(i,j)**2 
               end do                 
             end do         
        end do 
 
         call multiply(onramp,b,offrampp,ntime,nor,ndes) 
         do i=1,ntime 
            do j=1,ndes 
              sumerror(ttt)=sumerror(ttt)+((offramp(i,j)-offrampp(i,j))**2) 
            end do 
         end do 
        end do 
      do i=1,nor 
         do j=1,ndes 
            do t=1,ntime 
            if((j+2).gt.i) then 
               average(i,j,t)=sumbb(i,j,t)/nday 
               std(i,j,t)=sqrt((sumsquarebb(i,j,t)-nday*(average(i,j,t)* 
     &*2))/nday) 
            else  
                average(i,j,t)=0.d+0 
                std(i,j,t)=0.d+0 
            endif 
         end do 
        end do 
      end do 
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      do i=1,nor 
        do t=1,ntime    
            write(3,"(11f8.4)") (average(i,j,t),j=1,ndes) 
        end do 
      write(3,*) '' 
      end do 
 
      do i=1,nor 
        do t=1,ntime 
            write(3,"(11f8.4)") (std(i,j,t),j=1,ndes) 
        end do 
       write(3,*) '' 
      end do 
      close(3)                  
      end 
 
      SUBROUTINE multiply(A,B,C,m,n,p) 
      implicit none 
      integer m,n,p,i,j,k   
      double precision A(m,n),B(n,p),C(m,p) 
 
      do i=1,m 
         do k=1,p 
               C(i,k)=0.d+0 
            do j=1,n 
               C(i,k)=C(i,k)+A(i,j)*B(j,k) 
            end do 
         end do 
      end do  
      end 
 
        SUBROUTINE INV(K,A,C)                                            
        Implicit none  
        INTEGER K,I,J,L,K2                                     
        double precision A(K,K),C(K,K),B(K,2*K),PIVOT,AIL 
                                     
        DO 5 J=1,K                                                       
        DO 6 I=1,K                                                       
    6   B(I,J)=A(I,J)                                                    
    5   CONTINUE                                                         
        K2=K*2                                                           
        DO 7 J=1,K                                                       
        DO 8 I=1,K                                                       
        B(I,K+J)=0.0D+00                                                 
        IF(I.EQ.J) B(I,K+J)=1.0D+00                                      
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    8   CONTINUE                                                       
    7   CONTINUE                                                         
C       THE PIVOT OPERATION STARTS HERE                                 
        DO 9 L=1,K                                                       
        PIVOT=B(L,L)                                                     
        DO 13 J=L,K2                                                     
   13   B(L,J)=B(L,J)/PIVOT                                              
C       TO IMPROVE THE ROWS                                              
        DO 14 I=1,K                                                   
        IF(I.EQ.L) GO TO 14                                              
        AIL=B(I,L)                                                       
        DO 15 J=L,K2                                                     
   15   B(I,J)=B(I,J)-AIL*B(L,J)                                         
   14   CONTINUE                                                         
    9   CONTINUE                                                         
        DO 45 I=1,K                                                      
        DO 46 J=1,K                                                      
   46   C(I,J)=B(I,K+J)                                                  
   45   CONTINUE                                                         
        RETURN                                                           
        END                     
C 
C  fread - routine that reads the 2-d array from a file 
C      
      subroutine fread(row,col,matrix,fnum) 
      integer row,col,fnum 
      double precision matrix(row,col),xirtam(col,row) 
       
      read(fnum,*) xirtam 
      call transp(xirtam,col,row,matrix)      
      end 
C 
C transp - returns the tranpose of a matrix. 
C 
      subroutine transp(x,col,row,y) 
      integer row,col,i,j 
      double precision x(col,row), y(row,col) 
  
      do  i=1,row 
         do  j=1,col 
            y(i,j) = x(j,i) 
      end do 
      end do 
      end   
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D. Matlab Script for Sequential Quadratic Programming 

clear; 
load 'Q.dat';  
load 'D.dat';  
load 'A.dat';  
load 'B.dat';  
load 'aeq.dat';  
load 'beq.dat';  
load 'lb.dat'; 
load 'ub.dat';  
load 'ini.dat';  
fid1=fopen('X.dat','w'); 
ntime=36; 
nday=23; 
nor=12; 
ndes=11; 
 
NewtonStep = 'Newton'; 
for i=1:nor 
   for j=1:ndes 
      sumbb(i,j)=0.; 
      sumsquarebb(i,j)=0.;  
      sumbb1(i,j)=0.; 
      sumsquarebb1(i,j)=0.; 
      for t=1:ntime 
         sumbbx(i,j,t)=0; 
         sumsquarebbx(i,j,t)=0.; 
      end 
   end 
end 
 
for ttt=1:nday 
   fprintf(fid1, '%s %4d \n','ttt=',ttt); 
[nineqcstr,numberOfVariables]=size(A); 
[neqcstr,numberOfVariableseq]=size(aeq); 
ncstr = nineqcstr + neqcstr;  
eqix = 1:neqcstr; 
lambda=zeros(ncstr,1); 
aix=lambda; 
indepInd = 1:ncstr;  
A=[full(aeq);full(A)]; 
B=[beq;B]; 
 
normA = ones(ncstr,1); 
normf=1; 
 
errnorm = 0.01*sqrt(eps);  
tolDep = 100*numberOfVariables*eps;   
ACTSET=A(eqix,:); 
ACTIND=eqix; 
ACTCNT=neqcstr;  
CIND=neqcstr+1; 
neq=diag(ones(132,1),0); 
X=ini; 
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simplex_iter=1; 
cstr=A*X-B; 
 
[QQ R]=qr((ACTSET)'); 
Z = QQ(:,neqcstr+1:numberOfVariables); 
         
       for i=1:ntime 
            for j=1:nor 
               onramp(i,j)=Q(ntime*(ttt-1)+i,j); 
            end                                    
       end  
 
       for i=1:ntime*ndes 
         for j=1:nor*ndes  
            onra(i,j)=0.d+0; 
         end  
       end  
 
      for kk=1:ntime 
         n=1; 
         for i=(kk-1)*ndes+1:kk*ndes 
            m=1; 
            for j=(n-1)*nor+1:n*nor 
              onra(i,j)=onramp(kk,m); 
              m=m+1; 
            end  
            n=n+1; 
         end  
      end  
 
%INITIAL H,c 
for t=1:ntime 
   q=onra((t-1)*ndes+1:(t-1)*ndes+ndes,:);  
   y=D((ttt-1)*ntime*ndes+(t-1)*ndes+1:(ttt-1)*ntime*ndes+(t-1)*ndes+ndes); 
   if t==1 
      sum=q'*q; 
      f=q'*y; 
   else 
      sum=sum+(1/t)*(q'*q-sum); 
      f=f+(1/t)*(q'*y-f); 
   end 
    
   if det(sum)~=0  
      break; 
   end 
end 
 
t0=t; 
H=sum;  
oldind=0; 
 
%MAIN ITERATION 
while t < ntime 
   t=t+1;   
   q=onra((t-1)*ndes+1:(t-1)*ndes+ndes,:);  
   y=D((ttt-1)*ntime*ndes+(t-1)*ndes+1:(ttt-1)*ntime*ndes+(t-1)*ndes+ndes); 
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  f=f+(1/t)*(q'*y-f); 
  H=H+(1/t)*(q'*q-H); 
  c=-f; 
   %from qpsub 
    gf=H*X+c; 
     %SD=-Z*((Z'*H*Z)\(Z'*gf)); 
     [SD, dirType] = compdir(Z,H,gf,numberOfVariables,c);  
     GSD=A*SD; 
     indf = find((GSD > errnorm * norm(SD))  &  ~aix);   
   if isempty(indf) % No constraints to hit 
      STEPMIN=1e16; 
      dist=[]; ind2=[]; ind=[]; 
   else % Find distance to the nearest constraint 
      dist = abs(cstr(indf)./GSD(indf));  
      [STEPMIN,ind2] =  min(dist); 
      ind2 = find(dist == STEPMIN); 
      ind=indf(min(ind2)); 
   end       
     
   delete_constr = 0;    
   if ~isempty(indf)& isfinite(STEPMIN) % Hit a constraint 
         if STEPMIN > 1  % Overstepped minimum; reset STEPMIN 
            STEPMIN = 1; 
            delete_constr = 1; 
            ind=[]; 
         end 
         X= X+STEPMIN*SD; 
          
   else  
      % did not hit a constraint 
         STEPMIN = 1;   % Exact distance to the solution. Now delete constr. 
         X = X + SD; 
         delete_constr = 1; 
    end  
 
if delete_constr 
      % Note: only reach here if a minimum in the current subspace found 
         rlambda = -R\(QQ'*(H*X+c)); 
         actlambda = rlambda;                 
         actlambda(eqix) = abs(rlambda(eqix));  
         indlam = find(actlambda < 0); 
          
         if length(indlam) 
         % Remove constraint 
         lind = find(ACTIND == min(ACTIND(indlam))); 
         lind=lind(1); 
         ACTSET(lind,:) = []; 
         aix(ACTIND(lind)) = 0; 
         [QQ,R]=qrdelete(QQ,R,lind);  
         ACTIND(lind) = []; 
         ACTCNT = ACTCNT - 2; 
                  simplex_iter = 0; 
                  ind = 0; 
                  delete_constr = 0; 
               else 
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                  ACTCNT=ACTCNT-1; 
         end  
   end 
   
   % Calculate gradient w.r.t objective at this point 
   gf=H*X+c; 
   % Update X and calculate constraints  
   cstr = A*X-B; 
   cstr(eqix) = abs(cstr(eqix)); 
 
   if ind % Hit a constraint 
      aix(ind)=1; 
      ACTSET(CIND,:)=A(ind,:);  
      ACTIND(CIND)=ind; 
    %  CIND=CIND+1; 
      [m,n]=size(ACTSET); 
      [QQ,R] = qrinsert(QQ,R,CIND,A(ind,:)');  
   end 
    
   [m,n]=size(ACTSET); 
   Z = QQ(:,m+1:n); 
   [QQ,R] = qr(ACTSET');  
     ACTCNT=ACTCNT+1; 
     CIND=ACTCNT+1; 
   if oldind  
      aix(oldind) = 0;  
   end    
    
     for i=1:nor 
          for j=1:ndes 
             xx(i,j)=X((j-1)*nor+i); 
          end 
     end 
        
           for i=1:nor 
               for j=1:ndes 
                  sumbbx(i,j,t)=sumbbx(i,j,t)+xx(i,j);  
                  sumsquarebbx(i,j,t)=sumsquarebbx(i,j,t)+xx(i,j).^2; 
                end                  
            end  
   end %while t  
    
        for i=1:nor 
          for j=1:ndes 
             xx(i,j)=X((j-1)*nor+i); 
           end 
        end                    
           for i=1:nor 
               for j=1:ndes 
                  sumbb(i,j)=sumbb(i,j)+xx(i,j); 
                  sumsquarebb(i,j)=sumsquarebb(i,j)+xx(i,j).^2; 
                  end                  
            end  
    end %ttt 
 
      for i=1:nor 
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         for j=1:ndes 
               average1(i,j)=sumbb1(i,j)/nday; 
               std1(i,j)=sqrt((sumsquarebb1(i,j)-nday*(average1(i,j).^2))/nday); 
               for t=1:ntime 
                  avg(i,j,t)=sumbbx(i,j,t)/nday; 
                  std(i,j,t)=sqrt((sumsquarebbx(i,j,t)-nday*(avg(i,j,t).^2))/nday); 
               end 
        end  
      end  
 
         for i=1:nor 
              for t=1:ntime 
                  fprintf(fid1, ' %6.3f %6.3f %6.3f %6.3f %6.3f %6.3f %6.3f %6.3f %6.3f %6.3f %6.3f 
\n',avg(i,1,t),avg(i,2,t),avg(i,3,t),avg(i,4,t),avg(i,5,t),avg(i,6,t),avg(i,7,t),avg(i,8,t),avg(i,9,t),avg(i,10,t),avg(i,11,t
)); 
               end 
               fprintf(fid1, '\n'); 
            end 
             
         for i=1:nor  
         for t=1:ntime          
            fprintf(fid1, ' %6.3f %6.3f %6.3f %6.3f %6.3f %6.3f %6.3f %6.3f %6.3f %6.3f %6.3f 
\n',std(i,1,t),std(i,2,t),std(i,3,t),std(i,4,t),std(i,5,t),std(i,6,t),std(i,7,t),std(i,8,t),std(i,9,t),std(i,10,t),std(i,11,t));  
         end 
         fprintf(fid1, '\n'); 
         end 
          fclose(fid1); 
 
 
 
 
 
 
 
 
 
 
 
 
 
 




