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1 SUMMARY

This is the Final Report on a two year statistical analysis of the

data collected in the National Crash Severity Study. The analysis

presented is primarily concerned with the relationship between occupant

injury severity and the crash conditions. The goal of this work is to

further the development of techniques to estimate the benefits of

improved occupant protection systems. These techniques require a

statistical description of the national accident experience, and

statistical models relating the collision event to the subsequent

injuries.

The National Crash Severity Study (NCSS) was a major traffic

accident investigation study conducted by the National Center for

Statistics and Analysis (NCSA) of the National Highway Traffic Safety

Administration (NHTSA). Data collection was initiated January 1, 1977

and ended March 31, 1979. An important innovation initiated in this

study was the use of a computerized accident reconstruction algorithm

developed by R. McHenry1. The principal output of this program is an

estimate of the instantaneous change in velocity of each vehicle during

the impact phase of the collision, referred to as Delta V. The NCSS is

a precursor to the National Accident Sampling System.

Accidents were investigated in seven geographic areas within the

continental United States. These areas were not selected at random, but

rather were chosen because the NCSA judged that high-quality accident

investigation teams could be readily established in them. Within each

area, a stratified sampling plan was used to select accidents involving

passenger cars, light trucks, and vans which were severe enough to

require at least one of the vehicles to be towed from the scene.

Pedestrian accidents, and other accidents in which an eligible vehicle

did not have to be towed away, were excluded from this study. For the

selected accidents, a common set of detailed information on the

accident, the vehicles, the occupants and their injuries were collected.

1R. R. McHenry and J. P. Lynch, CRASH2 Users Manual , DOT/HS
802-106, November 1976.



Over the 27 month data collection period, 11,386 accidents involving

14,805 towed passenger cars and 24,976 occupants were investigated.

A complete summary of the work carried out is presented in this

section. An overview is provided in Section 1.1, including a list of

the resulting publications. Section 1.2 summarizes the results.

Implications for future work, in particular the NASS program, are

presented in Section 1.3. Finally, the organization of the remainder of

this report is described in the last subsection.

1.1. Overview

The work carried out is organized into the five basic tasks listed

below:

1. Develop statistical models relating the type and severity of
impact to the probability of injury.

2. Develop population statistics from the NCSS data.

3. Produce a booklet of NCSS statistics for general use.

4. Perform a clinical analysis of selected NCSS cases to enhance
current understanding of the occurrence of specific i n j u r i e s
and the associated injury mechanisms.

5. Review and evaluate existing accident analysis models.

The relationship of these basic tasks is illustrated in Figure 1.1.

Tasks 1 and 2 above were the major analysis tasks, and are shown in

the top-center of the figure. Issues addressed in Task 2 included

weighted analysis and the effect of the sample design on sampling

errors, missing data, and the development of national projections from

the NCSS data. A related task, Task 3, produced publications presenting

descriptive statistics on the, accident experience for the aggregate of

the seven NCSS areas. The titles of these publications are:

NCSS Statistics: Passenger Cars, June 1980. Report No. UM-
HSRI- 0- 6.

NCSS Statistics: Light Trucks and Vans, June 1980. Report No. U M-
HSRI-80-37.

Statistical models relating the crash conditions to the probability

of injury, Task 1, are referred to as "mechanistic models" in this
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report. This model development was carried out separately for occupants

of vehicles •wi-th-front as-opposed to--side-damage. Each of these subsets

was further partitioned depending on the occupant's seat location and a

more detailed location of the damage. The major independent variable is

the collision severity as estimated by Delta V, the instantaneous change

in velocity of the vehicle.

The development of the mechanistic models relating the probability

of injury to the crash conditions was approached from a deterministic

point of view. The goal of these models is to reflect the relationships

defined by the physical principles which govern the dynamic motion of

the vehicle and its occupants during the impact, and the resulting

injury mechanisms.

The fourth task addresses clinical studies. The importance of this

task comes primarily from the need to provide a sound physical basis for

the statistical development of the mechanistic models. Specific subsets

of the NCSS cases were reviewed by a team of experts in the areas of

biomechanics, dynamic testing, computer simulation of human surrogates,

anatomy, and accident data collection and analysis to study the

incidence of specific types of injuries and the relevant injury

mechanisms. For example, side impacts were reviewed and compared with

available side impact laboratory tests to determine if the actual

injuries were comparable with test results. The objective of this

review was to ensure that the statistical development of mechanistic

models paralleled existing knowledge of the injury mechanisms and

relevant variables.

The clinical studies resulted in several publications which are

listed below.

Anatomy, Injury Frequency, Biomechanics, and Human Tolerances, NCSS
Project Literature Review, May 1979. Report No. UM-HSRI-79-33.

Anatomy, Injury Frequency, Biomechanics, and Human Tolerances,
February 1980. SAE Paper No. 800098.

Analysis of NCSS Side Impact Cases, August 1979. Report NO. U M-
HSRI-79-50.

Side Impacts: A Comparison of Laboratory Experiments. and NCSS
Crashes, February 1980. SAE Paper No. 800176.
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Lower Extremity Injuries in Automobile Crashes (An Analysis of NCSS
Data), January 1980.. Report No. UM-HSRI-80-10.

Ocular Injuries in Automobile Crashes, May 1980. Report No. U M-
HSRI-80-22.

Cervical Injuries in Automobile Crashes, May 1980. Report No. UM-
HSRI-80-40.

A major goal of the NCSS was to further the development of

techniques to estimate the benefits of improved occupant protection

systems. Current programs which carry out this estimation are called

"accident analysis models." These models basically employ a statistical

description of the current accident experience, and statistical models

relating the probability of injury to the crash conditions, particularly

the collision severity. The last task listed, Task 5, is a review and

evaluation of current accident analysis models. This task is shown in

Figure 1.1 as basically an application of the findings of Tasks 1-4.

1.2 Summary Results

This subsection summarizes the results obtained for each of the

basic tasks. An important aspect of this work was the problem

formulation and identification of appropriate analytical techniques.

The reader is referred to Section 2 for a discussion of the conceptual

approach employed.

1 . 2 . 1 Mechanistic Models. The model used i n this analysis is t h e

logit model. The logit model is a frequently used statistical model

well suited to the analysis of frequency data. It uses the probability

of only a non-severe injury (two or less on the Abbreviated Injury

Scale2) as its dependent variable. Independent variables were both

continuous and categorical, and included factors such as collision

severity (Delta V) and Occupant Age. The critical aspect of the

development of these models is the model evaluation. Both the

Likelihood Ratio Statistic and the Goodness of Fit were examined. I n

particular, the predicted probability of injury was compared to the

actual injury for each case, thus identifying "correct" and "incorrect"

2The Abbreviated Injury Scale, (1976 Revision). American
Association for Automotive Medicine, Morton Grove, Illinois.
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predictions. The mispredictions so identified were then examined in a

manner similar to the residuals obtained in a regression analysis.

Potential variables for addition to the models were reviewed in terms of

their relationship to the mi spredi cti ons from the current model.

Distributions of the predicted probability for the severe and non-severe

injuries were also examined. This careful model evaluation procedure

not only guided the model development, but also provided insight as to

the limitations of the resulting models and the variables involved.

The NCSS data also provided an opportunity to evaluate the

stability over time of the relationships modelled. Initial model

development work was carried out with data from the first fifteen months

of NCSS (referred to as Phase 1 for our analysis purposes).

Subsequently, data for the last twelve months was received (Phase 2).

The Phase 1 models were applied to the Phase 2 data and their predictive

capability determined.

An important finding of this analysis is that the relationships

modelled appeared stable over time, as evaluated by comparing results

for the Phase 1 and Phase 2 data. The predictive capability of the

Phase 1 models did not vary markedly when they were applied to the

Phase 2 data. Furthermore, the predictive capability of comparable

Phase 2 models was not appreciably different either. Of course, Phase 2

was just the continuation of Phase I. There were no major perturbations

such as an energy crisis or the introduction of new occupant protection

systems. Nonetheless, this is the first data collection program of

sufficient depth and scope to allow this kind of evaluation, and the

results are encouraging. Subsequent statistical tests indicated no loss

of predictive capability in the combined data set. The final models,

which are presented in this summary, were all based on the combined data

set, which comprises the entire 27 months of NCSS data collection.

The basic approach in the development of mechanistic models was to

form subsets of the data which were expected to be more homogeneous with

regard to injury mechanisms. The variables used to define subsets

basically separated different collision types. Frontal-damage vehicles

.were modelled separately from side-impacted vehicles. In the frontal-

damage group, vehicles striking other vehicles (two-vehicle accidents)

6



were separated from vehicles which struck other objects (single-vehicle

accidents). In addition, center front impacts were distinguished from

off-center impacts, as were drivers and right-front passengers. All

side-impacted vehicles which were modelled were struck by other

vehicles. Side-impacts to the passenger compartment were separated from

non-passenger compartment impacts, as were occupants on the same side as

the impact (near-side), and those on the far-side. Other collision

types were not modelled.

Final models were developed for two subsets of side-impacted

vehicles and four subsets of frontal-damaged vehicles. These subsets

are listed below.

Side Impacts
1. Impacts involving damage to the passenger compartment and

occupants on the same side of the vehicle as the impact (Near
PCD).

2. All far-side occupants (seated opposite the impacted side) a nd
near-side occupants for impacts not damaging the passenger
compartment (Far Occ + Near NPCD).

Front Impacts
1. Sing e-vehicle accidents
2. Two-vehicle accidents with center impacts (CIA-2VEH)
3. Two-vehicle accidents with off-center impacts, drivers only

(OID-2VEH)
4. Two-vehicle accidents with off-center impacts, right front

passengers (OIP-2VEH)

The goodness of fit results for the two-variable models (Delta V

and Occupant Age) are shown in Table 1.1 for the two side-impact

subsets, and in Table 1.2 for the four front-impact subsets. Delta V is

the dominant variable in these models. Logistic curves are shown for

the first side-impact subset, Near PCD (near-side occupants of side

impact to the passenger compartment) in Figure 1.2, and for subset 3 of

the front impacts, OID-2Veh (drivers only, two-vehicle off-center

impacts) in Figure 1.3. Confidence intervals are also shown on these

figures. For convenience, the probability of severe injury is plotted.

The effect of Occupant Age is much less than that of Delta V. The

effect of Occupant Age is illustrated in Figure 1.4 for the first side-

impact subset, Near PCD.

7



TABLE 1.1

Goodness of Fit

Severity = F(Lateral Delta V, Age)

Phases 1 and 2 - Side Impacts

I Sample Size (Percent Correct Prediction
Subset I-----------------+--------------------------

INon-SeverelSeverelOverall INon-SeverelSevere
--------------------------------------------------------------------

I I I I I
1. Near PCD 434 216 I 75.2 1 91.9 141.7

I I I I I
2. Far 0cc + Near NPCDI 1162 1 131 I 91.7 1 98.6 1 30.5

TABLE 1.2

Goodness of Fit

Severity = F(Delta V, Age)

Phases 1 and 2 - Front Impacts

Sample Size (Percent Correct Prediction
Subset I-----------------+--------------------------

INon-SeverelSeverelOverall (Non-SeverelSevere
------------------+----------+------+--------+----------+------
1. Single-Vehiclel 1049 1 331 1 79.3 I 95.7 127.2
2. CIA-2VEH 1256 1 238 I 88.1 I 96.9 141.6
3. OID-2VEH I 1412 1176 I 92.4 1 98.4 144.3
4. OIP-2VEH I 566 I 90 I 88.3 I 98.2 125.6

These tables reveal the major problem encountered in the early

models; that is the relatively poor prediction of the occurrence of

severe injuries. Although the overall percentage of correct predictions

is about 90%, severe injuries are predicted correctly in only about 40%

of the cases. Histograms showing the predicted probability of the

injury being non-severe are shown in Figure 1.5 separately for those

cases in which the actual injury was, in fact, "non-severe," and for

8
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those cases in.which the actual injury was coded "severe." These

histograms illustrate the information summarized in Table 1.1 (Near

PCD).

A predicted probability greater than 0.5 was interpreted as a

"correct" prediction if the actual injury was "non-severe," and

"incorrect" if less than 0.5. Conversely, for the case where the actual

injury was "severe," a predicted probability less than 0.5 was

interpreted as a "correct" prediction. As shown in Figure 1.5, the

predicted probabilities of non-severe injury are clustered nicely near

1.0 for the cases in which the actual injury was "non-severe." For the

severe injury cases one would like to see predicted probabilities close

to 0.0. As was shown in Table 1.1, only about 42% of the cases with

severe injury were predicted correctly (predicted probability less than

0.5). The major thrust in the model development was improvement in the

capability to predict the severe injuries. These, after all, are the

cases one ultimately hopes to modify with improved occupant protection

systems.
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Body Region (of the injury) and Injury Type were found to be highly

correlated with the misprediction of severe injuries. Careful

incorporation of these variables, particularly Body Region, improved the

prediction of severe injuries substantially. The.final model for the

Near PCD subset predicted 67% of the severe injuries correctly and 89%

of the non-severe injuries correctly, for an overall percent correct

prediction of 81%. The improvement in predictive capability is apparent

in the histograms of predicted probability shown in Figure 1.6, (again

for the Near PCD subset). The effects of the various body region dummy

variables employed are illustrated in Figure 1.7. Notice that the three

dummy variables primarily involving extremities have approximately the

same effect. The "other body region" group is primarily missing data on

body region. This information is most likely to be missing in minor

injury cases. Hence, the lower probability of severe injury.

The use of these injury variables is problematic. The Abbreviated

Injury Scale is such that many injury types can only be assigned to one,

or possibly two, AIS levels. In turn, particular injury types are
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associated with particular body regions; concussion occurs in the head,

and fractures tend to occur in the extremities. Consequently,

specifying the body region and/or injury- type comes close in some
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instances to specifying the AIS level. From a practical standpoint,

inclusion of body region or injury type in the model is not useful

without knowing the factors which determine which body region is

injured, or what the type of injury will be.
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Other aspects of this problem seem to be inherent characteristics

of the AIS scale. Mi spredi cted cases were usually relatively low to

moderate collision severity (Delta V) impacts which resulted in severe

injuries (OAIS 3+). For example, a substantial group of mispredictions

in the front subsets were ankle dislocations. These receive an AIS 3

because of the joint involvement. Many factors were assimilated in

developing the AIS scale: threat-to-life, treatment period, probability

of permanent impairment, etc. Not all these factors are directly

related to the collision forces, especially when compari si ons involve

different body regions and/or injury types.

In the context of the above discussion, the dummy variables

corresponding to various categories of the body region variable were

found to substantially improve the predictive capability of the models.

This finding does not produce a satisfactory final model, since Body

Region is basically a response variable. This finding is important

because it clearly identifies the limitations of the current models, and

suggests what refinements will be necessary to improve these models.

This topic is pursued in Section 1.3, Implications for Future Work.

1.2.2 Population Statistics. One of the primary objectives of the

National Crash Severity Study was to provide national estimates of

totals and distributions of accident statistics for descriptive purposes

and, more specifically for input into the accident analysis models.

NCSS is a purposive sample of seven areas in the United States, chosen

to represent the 1970 U.S. population, within which accidents were

chosen using a stratified cluster sample. Since the seven areas were

not chosen randomly there is no probability-based estimate available for

national accident statistics. Adjustments to the NCSS data are

necessary to make the NCSS statistics reflective of the national

accident experience. The sample design will allow representative

estimates for the aggregate of the seven areas.

Elements in the sample design and data collection procedure can

have an effect on the reliability of accident statistics estimated. A

good estimate for the aggregate is only possible if complete data are

collected within each site. Missing data are of two types. If

accidents are missed in the sampling process, there will be an

13



undercoverage of the population of interest. Incomplete data on some

accidents is another potential source of missing data. Both of these

types of missing data may affect the magnitude of accident statistics

from NCSS.

One obstacle in the analysis of the NCSS data is the amount of

missing data on crash severity and injury severity. A subsample of

cases with incomplete data was obtained to evaluate possible biases

introduced by the missing data. Fatal occupants were also compared with

external sources to assess the magnitude of undercoverage in the fatal

occupant population.

Fatal occupants in NCSS were compared with fatal occupants in F ARS

and state police files. A census of all fatalities was specified in the

sample design and when matched with FARS'it is possible that as many as

20% of the fatalities reported in FARS were not investigated in NCSS.

This would result in an almost negligible effect on aggregate accident

statistics if non-fatal accidents are not similarly under-reported, but

would have a substantial effect when looking only at the fatal

population of NCSS.

Missing data for fatal and non-fatal occupants were investigated

separately. For the fatal occupants with incomplete data there was a

higher proportion of occupants with DAIS coded maximum injury and an

increase in the proportion of vehicles with fatal occupants at higher

categories of Delta V. For non-fatal occupants there was a substantial

difference in the proportion of minor injuries. When this information

was combined and the distribution of DAIS adjusted for missing data,

there was a substantial change in the proportions of no injury and minor

injury for the NCSS aggregate data.

One of the main products of this task was the production of two

publications of NCSS statistics. These publications are listed in

Section 1.1 The publications describe police-reported accidents

involving towed vehicles for the aggregate of the seven areas. In each

publication tables are generally presented in two complementary forms.

One page provides a frequency distribution of the factor under

consideration; the opposing page shows the corresponding injury rates.

Extensive graphical displays of the data are presented with the tables.

14



These graphical methods include histograms, bar graphs, pie graphs, line

graphs and three dimensional plots.

I n the publications of NCSS statistics, for completeness, missing

data counts have not been excluded in the calculation of distributions.

The focus of the missing data analysis was on differences between

vehicles or occupants with incomplete data and those for which complete

information was available. If no difference were apparent then the

distributions for NCSS statistics ignoring missing data would be judged

an appropriate description of the total population.

Even though sampling errors were not included in these

publications, sampling errors were calculated for selected statistics.

This investigation was done in order to assess the magnitude of the

effect of the cluster design on the variability of various NCSS

statistics. There were some statistics where the effect of the design

on the variance was important. For most accident statistics the

variances were two to three times larger than the variance calculated

under the assumption of simple random sampling. Some statistics

associated with injury severity actually had smaller variances then the

simple random sampling variance. In general, variances calculated based

on simple random sampling will underestimate the variability associated

with the NCSS statistics.

Use of the NCSS data to produce accident statistics that are

nationally representative involved the development of a procedure to

adjust NCSS statistics. This procedure uses the NCSS aggregate accident

statistics and demographic variables available for all areas in the

United States to produce a national projection. This national

projection method used the relationship observed with the NCSS

statistics and the demographic variables to predict accident statistics

for the unobserved areas of the country. These predicted values are

then combined with the NCSS statistics to form the national projection.

This method assumes that the relationship observed between the NCSS

statistics and the demographic variable under consideration is the same

relationship that exists in the unobserved areas.

The method to generate national projections was used for bivariate

distributions as well as simple statistics. Comparison of this method

15



with a commonly used ad hoc procedure indicated these ad hoc estimates

may underestimate the national level (or the national projection may

overestimate). The method was evaluated to see how sensitive the

national projection was to model choices. Empirically this procedure

works well as long as the correlation between the accident statistics

and demographic variables is high. This method does not produce stable

projections when looking at events with a low probability of occurrence

or with variables that have large amounts of missing data.

1.2.3 Clinical Analysis. This work complements the statistical

development of mechanistic models. Identification of the injury

mechanisms responsible for particular types of injuries guides the

sellection of variables and interpretation of outliers. As indicated in

the list of publications presented in the Overview, Section 1.1, the

clinical analysis was initiated with a review of the recent biomechanics

and automotive injury literature. In general, a substantial gap was

found between laboratory experiments and past medical studies of traffic

accident injuries. The initial topic area selected for clinical

analysis was the comparison of the NCSS side impact experience with

available laboratory side impact simulations. Further clinical analyses

addressed three specific body regions: the eye, the lower extremities,

and the neck. The results of this work are briefly summarized in the

following paragraphs.

The hard-copy file containing original coding forms and photographs

were obtained for NCSS cases involving side impact. These cases were

studied by the clinical team to compare the results of actual crashes

with the existing laboratory test data.

Of the approximately 90 cases studied, 51 were judged comparable to

the laboratory tests, which generally simulate a 900 impact angle using

an impact sled. The remaining cases usually involved cars struck at a

point remote from the passenger compartment. The resulting rotation

often appeared to influence the occupant's trajectory. Injuries for the

51 cases were tabulated by collision severity (Delta V). This result

was found to be comparable to observed laboratory test results at

slightly higher Delta V levels.
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The second clinical study focused on severe injuries (AIS 3 or

areater) to the lower extremities (pelvis, thigh, knee, leg, and ankle/

foot). The lower extremities are the second most frequent body region

receiving injuries at the AIS 3 or 4 level. The medical consequences of

these injuries may be extreme, including prolonged immobilization, long

recovery periods, and the potential for some degree of permanent

impairment.

The more severe lower extremity injuries are most often sustained

by unrestrained occupants impacting objects in front of them with the

lower instrument panel being the most frequent contact point. Fractures

are the most common type of injury in this study group.

Direct impact loading to any area of the lower extremities can

cause injuries in that body region. However, it was also found that

force transmission through bone to other lower extremity areas can cause

fractures and/or dislocations remote from the impact site. Compression

or twisting forces, especially at the ankle area, are believed to be the

main cause of severe injuries to the ankle/foot region.

A review of NCSS cases involving eye injury indicated that the

incidence of injuries to the eye is very low. There were 45 occupants

with a reported eye injury out of a weighted total of 62,026 passenger

car occupants in collisions severe enough to require the cars to be

towed. The injury actually involved the eyeball in only 14 of the 45

cases. The low incidence of eye injury in the United States may be due

to the use of "high penetration resistant" windshields. Tempered

windshields commonly used in Europe have been shown to be highly related

to ocular injuries3. About 50% of the eye injuries studied in the NCSS

data were still caused by glass.

The NCSS data have also provided, for the first time, information

on the frequency and severity of cervical injuries in traffic accidents.

Approximately 0.3% (or one in 300) occupants of towed passenger cars

received a severe cervical injury (AIS 3-6). However, among ejected

C

3M. Mackay, "Incidence of Trauma to the Eyes of Car Occupants."
Trans. Opthal. Soc. of the United Kingdom, Vol. XCV, Part II, pp
311-314, 1975.
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occupants, 7.2% (or one in 14) received serious cervical injuries. The

clinical study revealed that the neck is rarely fractured or dislocated

by direct impact to the cervical area. These injuries are usually the

result of forces transmitted through the cervical spine as a result of

head contact with the windshield, or other interior surface. The

anterior neck structures, however, are almost always injured by direct

blunt impacts.

1.3 Implications for Future Work

Using the NCSS data, this project integrated research in three

areas: modelling of injury severity, estimation of statistics that

describe the national population, and evaluation of current accident

analysis models. The intent of this subsection is to review crucial

areas identified i n this research effort. I n each of the following

subsections tasks requiring research are described and our

recommendations for further research are presented.

1.3.1 Modelling of Injury Severity. All models developed for

predicting injury severity used a dichotomized version of the DAIS

variable due to the amount of missing data on DAIS. This, in fact,

limits the direct applicability of these models to the accident analysis

models since these models require statistical models to predict the

entire DAIS distribution. The most important observation obtained from

the modelling of injury severity was that there were severe injuries

that resulted from accidents with a low crash severity. Further

investigation of this phenomena could be concentrated in two areas,

modification of variables and development of more sophisticated models.

In upgrading the variables to be used i n the modelling effort, t h e

most important point is that every attempt to minimize the amount of

missing data must be made. As indicated above there is evidence that

injury severity does not strictly increase with crash severity.

Variables other than Delta V, the only measure of crash severity in the

NCSS data, may prove helpful in developing models consistent with the

DAIS scale. Alternatively, additional work could be done with the DAIS

scale to make it a multi-dimensional injury severity variable. This new

variable may exhibit the expected association between injury and crash

severity.
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Further.investigation into a more general class of models is a

possible future activity that does not appear very promising for

modelling a dichotomous injury severity model. Models to predict the

entire DAIS distribution could eliminate the problem of predicted non-

severe injuries at low crash severities when in fact the injury was

severe. The most promising direction is to incorporate body region into

the initial partitioning of the occupants into similar accident

experiences when modelling injury severity.

Based on our experience with the NCSS modelling effort we would

recommend further research in the following areas:

1. Model adjustments to incorporate missing data.

2. Definition of additional measures of crash severity.

3. Model development on partitions of the data that include
collision type, seat position and body region.

4. Models developed to predict the OAIS distributions.

1.3.2 Estimation of the NCSS Statistics. NCSS statistics were

developed to serve two purposes. These statistics, or a modification of

them, were to be evaluated for use as basic input to the accident

analysis models. The modification of these NCSS statistics to reflect

the national accident experience was a primary task in this project.

The other purpose of these statistics was to provide the highway safety

research community a collection of accident statistics obtained in NCSS.

Each of these tasks involve analyzing the NCSS statistics to

develop estimates reflective of the national accident experience.

Models were developed using the NCSS statistics (as opposed to the raw

data) to adjust the these statistics. The production of publications

describing NCSS statistics pointed out problems that needed attention.

The sampling error associated with all estimates from NCSS is necessary

to evaluate the variability of the estimate. Missing data was

substantial for some variables collected in NCSS and ignoring the

missing data can distort the true distribution.

There are various recommendations we can make based on our

experience with the NCSS statistics:
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1. An imputation procedure be developed to adjust for missing
data.

2. Design effects be periodically evaluated to determine whether
they will provide a good summary for the effect of the design
on the sample variance.

3. Investigate statistical methodology for population statistics
and determine their relevance for statistical analysis in
causation, crashworthiness, time series, and accident analysis
models.

1.3.3 Accident Analysis Models. Two major points arise from this

brief review of accident analysis models in general. They are:

1. National estimates of the accident experience are required.

2. The estimation procedures will be valid only to the degree that
they reflect the actual physical principles and mechanisms
which govern the events being simulated.

National estimates are required, since it is the national accident

experience which is being projected. The important point here is that

statistically based national estimates (which will eventually be

available from NASS) carry with them estimates of their variance. If

this information were carried through the simulation process, one would

be in a much better position to evaluate the variability of the

resulting projections.

The second point embodies the essence of what we have described as

"mechanistic" models. For many applications, a statistical description

of the current situation is completely adequate. The situation is much

different, however, when one wishes to project the effect of proposed

changes in the system. Statistical correlations present before the

changes are introduced may be altered. Controlled experiments generally

cannot be conducted in a social system. The alternative is to ground

the statistical models in the physical principles and mechanisms which

govern the event being simulated. This is the critical issue in the

projection of the accident experience of the hypothetical vehicle

population, and also in projecting the injury response of the proposed

restraint systems.
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The,KRAESP4 model was reviewed in more detail. Specific

implications for the future use of this model follow.

In the crashworthiness area (the projection of in.iury response),

the subsets used by the KRAESP model are generally comparable with those

hich evolved from our work. The important observation here, is that

the prediction of severe injuries was correct only about 40% of the time

unless body region was included in the model. The implication is that

separate models should be developed for at least three or more

generalized body regions. Since not all injuries are coded for the NCSS

ata, separate injury distributions for each body region may be somewhat

underestimated.

Another important issue concerns the possibility of year-to-year

changes, or trends, in the national accident experience. Currently, the

RAESP model uses a single set of accident statistics. Only the total

number of accidents is adjusted to reflect estimated changes in total

vehicle use. If vehicle populations are hypothesized with appreciably

ifferent distributions of car size, then it might also be reasonable to

envision that the use of these vehicles may be different. Adjusting the

distributions in the national accident experience to reflect year-to-

ear changes is a subset of the larger problem of accident causation.

he current adjustments to the total number of accidents from year-to-

ear represent a simplified model of accident causation. The

implications of these assumptions need to be reviewed.

A final observation is that missing data will be a serious problem.

ither Delta V or OAIS are missing on 60% of the file. Our modelling

efforts only addressed the most promising front and side impact subsets.

lternative techniques will be needed where Delta V is not a suitable

easure of collision severity. Statistical techniques such as those

discussed in Section 4.1.4 or 7.5 will have to be employed to address

he missing data problem.
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4D.Redmond and K. Friedman, "Introduction to the Kinetic Research
Accident Environment Simulation and Projection Model," Prepared under
DOT Contract No. DOT-HS-9-02096, Kinetic Research Draft Report No. KRI-
TR-041, January 1980.
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1.4 Report Organization

The major tasks in this project are organized under the topical

headings, "mechanistic models" and "population statistics." This

material is presented in Sections 3 and 4 respectively. Development of

mechanistic models was pursued separately for vehicles with front qs

opposed to side damage. Preliminary model development for each was

carried out with a preliminary file containing data from the first

fifteen months of the NCSS. Final model development was based on data

from the entire twenty-seven month study. The subsections of Sectio n 3

reflect these divisions.

The initial subsections of Section 4, Population Statistics,

address the use of the sampling weights and the influence of the sample

design on the variance of NCSS estimates. Various approaches to the

problem of missing data are discussed in this section, as well as the

development of national projections from the NCSS data.

A review and evaluation of accident analysis models is presented in

Section 5. Section 6 summarizes the clinical studies which were

conducted. Finally, implications for future work and the analysis of

the NASS data are discussed in Section 7.

Appendices contain the NCSA algorithms for generating the "NEWOAIS"

variables, the data structure for variance computations, and tables of

estimated variances and design effects for selected statistics.
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2 CONCEPTUAL APPROACH

This section describes the overall conceptual approach which

underlies the work presented in this report. The uses of accident data

in highway safety research may be broadly divided into analysis of

accident causation and analysis of vehicle crashworthiness. T h i s

project is concerned with the crashworthiness, problem, which may be

defined as an evaluation of the ability of the vehicle to protect

occupants from injury, given that a crash occurs. The ultimate

objective is the evaluation of improved occupant protection systems. An

intermediate goal, the goal of this project, is simply the development

of basic analytical tools. The presentation of the conceptual approach

begins with a restatement of the study objectives. These objectives, in

turn, define the research areas to be addressed.

The primary objective of the NCSS study5 was to assemble a data

base to verify and/or refine procedures for estimating benefits of

potential countermeasures in the crashworthi ness area ( vehicle

structures and occupant protection). Current programs which carry out

this estimation procedure are called "accident analysis models." These

models, in turn, rely on a statistical description of the current

national accident experience, and statistical models relating the

collision event to the subsequent injuries.

The basic task statements are repeated here:

1. Develop statistical models relating the type and severity of
impact to the probability of injury.

2. Develop population statistics from the NCSS data.

3. Produce a booklet of NCSS statistics for general use.

4. Perform a clinical analysis of selected NCSS cases to enhance
current understanding of the occurrence of specific injuries
and the associated injury mechanisms.

5. Review and evaluate existing accident analysis models.

5C.J. Kahane, R.A. Smith, and K.J. Tharpe, The National Crash
Severity Study, Proceedings of the Sixth International Technical
Conference on Experimental Safety Vehicles



These tasks have been interpreted in the context of the overall

NCSS goal which is the evaluation of potential countermeasures in the

cra.shworthiness area. Accident analysis models embody current efforts

to bridge the gap between laboratory testing and the real-world accident

experience. Laboratory testing of vehicle crashworthiness is

necessarily limited because human test subjects cannot be used. For the

most part, field accident data is the only source of information on the

nature and consequences of severe impacts to humans. Of course, the

accident experience is also of interest because it is the target

population one is trying to modify.

The central function of an accident analysis model is the

estimation of the resulting injuries for a prototype occupant protection

system when implemented in the current collision environment. This

estimation can only come from a physical model of the injury mechanism

which relates the dynamic motion and forces of the impact to the

resulting injuries. Current accident analysis models derive these

physical models of the injury mechanism from existing accident data.

The primary objective of the statistical models listed in the first

task above is to fill this need. The major hurdle in using accident

data for this purpose stems from the fact that real accidents do not

occur under the same controlled circumstances as l aborat,ory impacts.

From an analysis point of view, it should be recognized at the outset

that accident data must be thought of as data from an unplanned

experiment. Most of the variables in the models are there as control

variables, rather than variables over which the vehicle designer has any

influence. Variables of interest will sometimes be correlated with one

another so that their effects are not readily distinguished. The most

important point is that the relationships observed cannot prove a cause

and effect relationship because the independent variables were not

deliberately manipulated. Any inferences of a causal nature must be

based on an understanding of the physical, mechanisms governing the

collision events. Such models are referred to as "mechanistic" models

in this report. This deterministic view provides the basis for the

development of these models.
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Accident analysis models also seek to project the change in the

overall accident experience due to the introduction of improved occupant

protection systems to a portion of the total vehicles and occupants

involved. In order to do this, a statistical description of the current

accident experience is required. This description includes various

totals, such as the total number of accidents, vehicles, occupants,

injuries, fatalities, etc. , as well as distributions for various

descriptive variables such as collision type, direction of principal

force, damaged area, collision severity, etc. Hence, the question of

developing population statistics from the NCSS data is the second major

task listed.

The final task brings the information gained in the preceding tasks

to bear on existing accident analysis models. The objective here is to

review and evaluate existing models, in particular the Kinetic Research

Accident Environment Simulation and Projection (KRAESP) Program 6, in

light of the findings of this study.

The organization of work carried out, and the organization of this

report, parallel the tasks which have just been outlined. In initiating

this work, the first step was the identification of suitable analytical

methods. This determination is primarily derived from the overall

problem formulation.

The remainder of this section describes the analytic approach that

was taken. The central objective of this study is the development of

statistical models relating the collision variables to the probability

of injury, and the use of these models to project the effects of

improved occupant protection systems to the national accident

experience. Current computer algorithms to carry out this projection

are called "accident analysis models." A conceptual overview of their

function is presented in Section 2.1. This overview forms a background

for the analytic approach presented in the remainder of this section.

6D. Redmond and K. Friedman, "Introduction to the Kinetic Research
Accident Environment Simulation and Projection Model," Prepared under
DOT Contract No. DOT-HS-9-02096, Kinetic Research Draft Report No. KRI-
TR-041, January 1980.
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Section 2.2 addresses the conceptual issues and available

analytical techniques in relation to the development of population

statistics from the NCSS data. A related issue involves the population

described by the NCSS Statistics tabulations prepared for the aggregate

of the NCSS sites, and the computation of variances for these results.

Section 2.3 describes the problem formulation and analytic

techniques employed in the development of mechanistic models relating

the collision variables to the probability of injury. As with the topic

of national estimates, this work was pursued primarily in liah t of the

application to accident analysis models. Hence, this approach follows

the discussion of the objectives of accident analysis models presented

in Section 2.1. This statistical development of models predicting the

probability of injury is complemented by the clinical review of hard-

copy NCSS cases. The objectives of the clinical reviews are summarized

in Section 2.4.

The final subsection, 2.5, provides a brief overview of the NCSS

data. In particular, the various data files used over the course of

this work are described and the sampling strata are briefly reviewed.

2.1 Accident Analysis Models

The objective of these models is to estimate the reduction in

deaths and injuries for future populations of vehicles with various

improved occupant protection systems. Projections are computed for each

calendar year for several future years (through 1990 in the KRAESP

model). Each year, the vehicle population is revised to include new

vehicles introduced and to drop older vehicles which are scrapped. The

estimated benefits of the improved occupant projection systems are then

presented as trends in the estimated total number of deaths and injuries

over several calendar years as the composition of the total vehicle

population includes more and more vehicles with improved occupant

protection systems. The remainder of this discussion will focus on t h e

estimation process for a single calendar year, since this same process

is simply repeated for each successive year.

In general,-these models..must synthesize the current information in

both the accident causation and the vehicle crashworthiness areas.
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Assumptions in the area of accident causation are necessary when the

number of vehicles (or their estimated annual mileage) in the future

vehicle population is appreciably different from the current one. In

this situation, the total number of accidents is adjusted accordingly.

A more complete discussion of accident analysis models is presented in

Section 5.

Focusing on the portions of accident analysis models dealing with

the crashworthiness area, one finds the need for two basic types of

information.

1. National estimates of the current accident experience, and

2. Mechanistic models relating the probability of injury to the
various collision variables,

Each of these information requirements will be briefly described.

The current national accident experience, adjusted to reflect no

use of available restraints, provides the baseline for projection of the

benefits of improved occupant protection systems. Various adjusted

population totals, such as the total number of accidents, deaths, and

injuries, are needed. This description of the national accident

experience must also be of sufficient detail to identify the individual

subsets of the total accident experience for application of the

mechanistic models. This description may take the form of a

multivariate distribution of the various categories of the variables

which define these subsets. Examples of these variables are:

1. Collision mode (single-vehicle, two-vehicle)

2. Vehicle damaged area (by clock direction)

3. Occupant seat position

In addition, distributions of closing speed are required for each

collision mode and damaged area, and distributions of AIS are required

for each five mile per hour increment of Delta V for each occupant seat

position.

The subsets essentially define the mechanistic models. Within each

subset, the probability of injury is presumed to be a function of only

the collision severity as measured by Delta V. Consequently, the
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"mechanistic model" is defined, for the baseline population of

uKXestrained occupants, by the distributions of AIS for each subset and

for each 5 mph increment of Delta V as contained in the current national

accident experience. A separate portion of the model estimates these

same distributions for the prototype occupant protection systems.

Total numbers of injuries and deaths are estimated from these

intermediate results. The projected vehicle population identifies which

occupants of which vehicles will be protected by the improved systems.

For these occupants, estimated distributions of AIS are substituted f or

the baseline (unrestrained) distributions. The estimated total numbers

of injuries and deaths are simply obtained by summi ng the estimated

numbers for each of the subsets.

In summary, the accident analysis models partition the overall

accident experience and associate a particular distribution of AIS with

each level of collision severity (5 mph increment of Delta V) within

each subset. The performance characteristics of prototype occupant

protection systems are quantified by associating revised distributions

of AIS with a given collision severity level and subset. This analysis

corresponds to the mechanistic models developed as part of this project.

In each case, a cause and effect relationship between the probability of

injury and the independent variables is assumed. The independent

variables are the collision severity and the variables which define the

subsets.

Two critical issues must be kept in mind when considering the use

of these mechanistic models in the accident analysis models. The

straight-forward issue is the evaluation of the predictive capability of

the mechanistic models in the NCSS data file (the file used to develop

the! models). The more difficult issue is the suitability of the models

for prediction of the injury experience beyond the NCSS file. This

issue ultimately comes down to a subjective assessment of the degree to

which the model reflects the physical mechanisms and principles which

govern the collision event, and, in turn, the degree to which the injury

mechanisms operating in the NCSS file will b.e appropriate to the

accident experience of vehicles equipped with different occupant

protection systems.
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The formulation of the mechanistic model development is presented

in Section 2.3, while Section 3 presents the results of this effort.

The statistical development of mechanistic models is complemented by the

clinical studies which attempted to identify injury mechanisms

associated with particular types of injury. The objectives of the

clinical studies are summarized in Section 2.4, and the results of this

work are presented in Section 6. The following subsection describes the

analytical approach followed in the area of population statistics.

2.2 Population Statistics

In order to assess the potential for injury reduction in the

national accident population using the accident analysis models, a good

description of the national accident experience is necessary. The best

description of the accident population involves a probability based

estimate of totals and distributions for vehicles and occupants involved

in accidents. Necessary distributions for vehicles include model year,

weight class, and Delta V. For occupants, distributions for seat

location, collision mode and severity and damage area are necessary. In

order to project injury reduction, national totals of vehicles and

occupants are required. All of these descriptive statistics of the

accident population and relationships between these population

statistics will be referred to as "population models." This requirement

of the accident analysis models led to the investigation of methods for

obtaining estimates from the NCSS data of the national accident

population.

As national, probability samples become more and more prevalent it

is becoming increasingly important to make a very clear distinction

between different types of "national estimates." A national estimate is

a number that is descriptive of some aspect of the national experience

(e.g. the total number of accidents involving a towed vehicle).

Estimates may be developed in more or less sophisticated ways, and, if

they predict totals for the U.S., can be called national estimates. One

possible estimation method combines available data (usually census-type

information), subjective information, and judgment. An example of this

method is to use gasoline tax receipts and estimated vehicle fuel
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consumption rates to estimate the total number of miles driven by t h e

U.S. population.

On the other hand, national estimates may be -generated using data

obtained from a national probability sample. Such data are obtained

following the specifications of a sample design. The design usually

includes information about the population sampled that helps to insure a

well-distributed sample. The most valuable characteristic of a

probability sample is that it is objective in its choice of sampled

elements. Any bias that results in the estimate is due to chance. A

national estimate generated using these procedures should be

acknowledged. An estimate based on a national probability sample will

carry along with it qualities that will increase it c r e d i b i l i t y . I n

addition all such probability-based national estimates will have a

sampling error associated with them that can aid in assessing the

reliability of the estimates.

The NCSS data provides probability-based estimates only for the

seven areas that were chosen for inclusion in NCSS. These estimates can

be aggregated to form statistics that describe the aggregate accident

experience for the seven areas chosen. The seven areas in NCSS were

chosen purposively, and therefore inference to the national population

is not possible within the context of the sample design.

Methods to enable the NCSS data to be used to produce projections

of the national accident experience were investigated. The technique

developed uses relationships between NCSS statistics and demographic

variables to predict accident statistics for those areas not

investigated. These predictions are then combined with the NCSS data to

form a national projection. As with all estimates of this type the

national projection is biased. However, the context within which the

national projection is developed provides a reasonable method for

obtaining estimates for the national population.

Vehicles and occupants with incomplete data pose a serious problem

in NCSS. For key variables there is a substantial amount of missing

data. This not only affects the estimates made for the aggregate of the

seven areas but also the national projections derived from these

variables. If the amount of missing data is small, less than 5%, most
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analysts would consider ignoring the missing data. With substantial

amounts of missing data, ignoring it may cause biases in the resulting

distributions. An alternative approach is to employ an adjustment

procedure. All of these imputations and reweighting procedures assume

that missing data is missing at random. This assumption is violated

when certain types of accidents, vehicles or occupants are

systematically excluded.

More information was needed in order to assess the alternative

approaches to the incomplete data problem. Investigation into the

biases introduced by the missing data was facilitated by a reevaluation

of hard-copy case material for a subset of the cases with missing data.

This approach provides information about possible bias introduced by

ignoring missing date and is essential in choosing a missing data

adjustment procedure.

To use the NCSS data as input to the accident analysis models,

adjustment must be made for missing data. The missing data on key

injury and crash severity variables is substantial enough to affect the

NCSS distributions. These distributions, adjusted for missing data, can

then be used to produce national projections. For this application, the

projection method was modified to incorporate adjustments for missing

data of various types to produce adjusted national projections.

There is no method available to assess how close any adjusted

estimates come to the true national level. For a national projection

without missing data, an estimate of its variability can be calculated.

With missing data, sensitivity analyses will give more information about

the variability inherent in the projection method and missing data

adjustments.

The variability of these estimates is also important. The result

of the accident analysis models is an assessment of potential injury

reduction. If the estimated distributions and totals are highly

variable then the result from the accident analysis models will be

subject to, at the least, the same amount of variability. If measures

of variability for statistics used as input into the model are

available, then work can be done to assess the effect of this

variability on the assessment of potential injury reduction.

31



A related but separate task in this project required the

organization and publication of accident statistics from the NCSS data.

These statistics are published for the aggregate of the seven NCSS

sites. In these publications no attempt was made to adjust for missing

data. Missing data was treated as a separate category and was not

excluded in the calculation of the distributions. No sampling errors

were included in these publications.

However, sampling errors for the NCSS statistics were evaluated.

Methods of summarizing sampling errors for use in publications such as

those produced for this task were examined. It i s important to note

that the NCSS design is a cluster design and hence the sampling errors

are likely to be larger than those under a simple random sample design.

2.3 Mechanistic Models

Mechanistic models have been defined in the context of accident

analysis models in Section 2.1. The objective is to develop statistical

models which reflect the physical principles which govern collision

events and injury mechanisms. These models provide a better

understanding of the factors which influence the resulting injuries, and

consequently lead to the development and evaluation of improved occupant

protection systems. For, thi s expectation to be realized, the

statistical models must reflect the governing physical principles. In

current practice, these considerations guide the selection of variables

and the formulation of the model.

One immediately observes that the consequences of automobile

accidents vary greatly. It is also clear that much of this variation

arises from differences in the type and severity of collisions as well

as the effects of other uncontrolled variables, rather than differences

in:vehicle crashworthiness. The underlying view is that there is a

physical model for the entire collision process up to and including the

actual injuries. This physical model provides a mathematical basis f o r

the models to be developed. Unfortunately, the actual expression of

such models is substantially beyond the current state-of-the-art.

However, some information is available on the variables which are likely

to be included and relationships between some of them. The starting

point is to assume that the physical model and the associated
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mathematical function exists. The dependent variable is injury

severity. The first step is to identify the independent variables. It

is convenient to group the independent variables as descriptors of the

collision, the vehicle, and the occupant, as shown in Table 2.1.

TABLE 2.1

Model Overview

Dependent I Independent
Variable Variables

-----------------------------------------------------------------------

Injury Severity I Collision

Vehicle

I Occupant

This grouping may be related to a simplified block diagram of the

collision event shown in Figure 2.1. The input is the collision itself:

the vehicles and objects involved, their speeds, orientation, etc. For

a particular vehi.cl e, this collision is an input to the vehicle

structure which ultimately transfers a deceleration pulse to the

occupant. In general, the deceleration time-history experienced by t he

occupant is not the same as that of the vehicle center of mass;

different occupants in the same vehicle may experience different pulses,

and different parts of the occupant's body will experience different

decelerations. The biomechanical characteristics of the occupant

determine the injuries which result from the decelerations experienced.

Laboratory simulations generally reproduce the collision input, control

the vehicle parameters, and observe the deceleration of test dummies, or

other human surrogates. Information on human tolerance to injury has

generally been collected by observing the injuries sustained by test

animals or cadavers under known deceleration levels.

Examples of independent variables in each of the three groups are

shown in Table 2.2. Perhaps the most important control variables are

those in the collision group. The collision variables are intended to
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specify all aspects of the collision which influence the resulting

injuries. They include the collision configuration, vehicle speeds,

orientations, etc. In general, this group of variables includes the

kinds of information an engineer would need to know in order to stage,

or reproduce, the impact with test vehicles.

TABLE 2.2

Independent Variables

Collision I Vehicle I Occupant
Variables I Variables I Variables

--------------------------------------------------------------------

Severity I Mass I Age
Delta-V I
CDC Extent I Car Size I Sex
Rotation I

I Restraint I Height
Mode (Type) I (Ejection) I

G.A.D. I I
Obi. Contacted Occupant Location
P.D.O.F I
Rural/Urban I I

-

The most important of the collision variables is the collision

severity. With all of the other collision variables held constant, one

would expect the potential for injury of the impact to increase with

increasing levels of collision severity. Several alternative measures

of collision severity are available. The primary measure is Delta V,

the velocity change during impact. However, this variable has

considerable (40%) missing data and is not defined for all collision

types (rollover, for example). The CDC extent number is a possible

alternative for these cases. Another alternative is the energy

absorbed, which may also be expressed as an "equivalent barrier speed."

This variable would have less missing data than Delta V because damage

information on only the vehicle of interest is required. However, the

effect of differing vehicle weights is not taken into account. While

some comparison of the relative utility of these variables as predictors

of injury severity is useful, in the end a single variable should be
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selected, since each basically quantifies the. same aspect of the

collision.

There are, however, other potential variables which address what

might be called second-order effects of collision severity. An example

of this type of variable is the change in angular velocity. The

influence of this variable is additive with Delta V. The magnitude of

this added factor is proportional to the product of the angular velocity

and the distance from the center of mass to the point of interest.

The remaining collision variables define collision types, or modes.

These variables are necessary because the occupant trajectories, contact

points, and injury mechanisms vary from one collision type to another.

This variation is expected to substantially alter the relationship of

injury severity to collision severity. The objective in defining

collision types is to form subsets where occupant trajectories, contact

points, etc. are sufficiently similar that a single model is expected

to be adequate. The limiting factor is that sample size must be

"adequate" within each collision type. Compromises must be made between

the "homogeneity" and the size of the subsets. Potential--subs_ets may be

evaluated by comparing the relationship of collision severity and injury

severity. For example, a scatterplot of the proportion of severe

injuries may be examined.

The first level of subsetting separates frontal-damage vehicles

from those with side damage. Within each of these groups, single-

vehicle accidents are separated from two-vehicle accidents. Additional

variables used to subset cases include the occupant's seat location and

a more specific damage location (center, off-center, near-side, far-

side).

The variables i n the vehicle group are intended to define a l l t h e

characteristics of the vehicle which influence the transmission of t h e

vehicle impact to the occupant. Included are such factors as the

vehicle's structural characteristics, occupant compartment space,

restraint systems, etc.. All of the variables amenable to modification

by the vehicle designer are in this group.
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The variables in the occupant group include those factors which

influence the occupant's injury thresholds. These include age, sex,

pre-existing medical conditions, etc.

As already mentioned, the initial models look only at collision

severity and injury severity as the selection of the variables defining

the collision type subsets is refined. Next, variables from the vehicle

and occupant groups were tried in an attempt to improve the predictive

power of the model.

Additional considerations to keep in mind while developing these

models are: the accuracy of measurement, or quantification, of the

variables, especially Delta V, the adequacy of the functional form of

the model, and the weighting, or distribution, of the cases across the

various levels of the independent variables. Systematic errors in the

estimation of Delta V are likely to be associated with car size and area

of damage (that is, front, side, etc.) if the assumed structural

stiffness is incorrect for some vehicles. A consistency check for this

particular type of systematic error could be made by comparing the peak

force computed by the CRASH2 program. The peak force should be

approximately the same for the two vehicles. Large deviations may

suggest problems with the assumed constants or input measurements for

the Delta V computation.

The logit model has been selected as most appropriate for this

work. The dependent variable, the probability of a non-severe injury

(DAIS 2 or less), is dichotomous. This model describes the situation

where the probability of injury varies systematically from case-to-case

with other independent variables which have been observed. A complete

description of this model is provided in Section 3.1.

The mechanistic model development was carried out in two phases

which correspond to the preliminary data sets which were received. The

initial work used a near-final version of the data collected during t he

first fifteen months of the NCSS study. Subsequently, data for the last

twelve months were received. This situation provided an opportunity to

"validate" the Phase 1 models.
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Validation of the Phase 1 models was carried out to assess the

apparent stability of the models over time. This is deemed to be a very

important test. If stability cannot be demonstrated, the models would

be of limited value. The NCSS study is the first data program of

sufficient depth to be maintained over a long enough period of time to

provide an opportunity for this kind of assessment. The test is carried

out by applying the Phase 1 models to the Phase 2 data and determining

their predictive capability. This result is compared to both the

original Phase 1 results and the comparable model in which the

coefficients are determined for the Phase 2 data.

Another consideration to be mentioned here is the weighting, or

distribution of cases among the various levels of the independent

variables. In general, the over-sampling of cases at higher injury

levels shifts the distribution of cases towards higher severity levels.

However, the objective of the mechanistic models is to approximate the

theoretical relationships. The higher severity levels are of particular

interest. Although an optimum design matrix is dependent on the

specific model chosen, it generally is desirable to have the data evenly

distributed among the various levels of the independent variables.

Currently the raw data is heavily skewed to the lower severity cases.

Weighting would aggravate this already uneven distribution. Therefore ,

the unweighted data are more appropriate for the development of

mechanistic models. In fact, further subsampling of cases to achieve a

more uniform distribution of cases across the levels of the independent

variables was also tried.

A final consideration is the influence of substantial missing data.

This subject is addressed in relation to population statistics in

Section 4. No efforts were made to incorporate adjustments for missing

data in the development of mechanistic models. If true physical

relationships are reflected by the models, then missing data should not

be a particular problem, unless specific regions of the domain of

interest are excluded.

Section 3 contains a complete presentation of the mechanistic model

development. Particular attention is devoted to the model evaluation

procedures. As a consequence, this effort provides a complete
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assessment of the problem of modelling the probability of injury. The

final subsections which follow describe the objectives of the clinical

work, and briefly describe the NCSS data files which were used.

2.4 Clinical Review

The clinical work complements the statistical development of

mechanistic models. This work was initiated with a review of the recent

biomechanics and automotive injury literature. The purpose was to

determine the existing knowledge relative to injury type, body region,

frequency, severity, and cause, and to identify gaps in the current

knowledge that might be addressed with the NCSS data. In general, a

substantial gap was encountered between laboratory experimentation and

actual accident experience. Typically, the laboratory testing is

precisely conducted with abundant data collection. In contrast, no

controls are associated with the real accident experience, and virtually

no information is available on the dynamics of the event. A major

innovation of the NCSS study is the use of computerized accident

reconstruction techniques which provide an estimate of the instantaneous

velocity change during impact. This information materially aids the

comparison of laboratory and actual accident experience. Selected side

impact cases were chosen because of the current interest in this area of

occupant protection. Other areas identified in the literature review

were injuries to eye, lower extremities, and the neck. These later

three areas were studied to identify the injury types and mechanisms

associated with the selected body region. This kind of information is

useful background for the development of mechanistic models.

2.5 NCSS Data

The NCSS data consists of accident data obtained from a probability

sample of accidents within seven purposively chosen areas. The

accidents were sampled from police-reported accidents that involved at

least one towed vehicle. During Phase 1, the first fifteen months

(January 1977 to March 1978) of NCSS data collection, a police-reported

accident was eligible for sampling only if it involved a towed passenger

car. In Phase 2 (April 1978 to March 1979) of NCSS data collection a

police-reported accident was eligible for sampling if it involved a

towed passenger car, light truck or van. Each accident was selected
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with a probability which varied with the severity of injury to an

occupant of a towed vehicle. Severe accidents were sampled at a higher

rate. The sample design within each area assured a random selection of

accidents. It guarded against intentional bias of particular types of

accidents and provides a probability-based sample of accidents within

areas.

The NCSS data structure is hierarchical in nature. For each

accident sampled, information was collected for all vehicles in the

accident and all occupants in towed vehicles only. Accident level

variables describe the environment in which the accident occurred. The

vehicle level variables describe the vehicle and the damage done to the

vehicle in the accident. Among these variables are the CDC variables

and Delta V. Delta V is calculated using CRASH program. Included with

Delta V are the longitudinal and lateral components. The occupant level

variables contain basic descriptive information about each

occupant. Injury information is contained in the Occupant Injury

Classifications (OIC) which have associated contact points. In Phase 1

up to three OIC's are coded for an occupant and i n Phase 2 this was

increased to six. Injury severity information is summarized in the

Overall Abbreviated Injury Scale (DAIS).

The missing data rates for the measure of crash severity and injury

severity were quite high. The missing data rate for OAIS is

approximately 30%. Other measures of injury severity had higher

missing data rates. DAIS has a high missing data rate because official

medical records were needed to code injury severity. A new variable to

represent injury severity was generated using an NCSA algorithm that is

documented in Appendix A. The new variable was created using all

available information on injury severity collected for NCSS. It

classified injuries into two categories: severe (OAIS greater than 2)

and non-severe (OAIS less than 3). The missing data rate for Delta V is

difficult to calculate. The use of CRASH is restricted to certain types

of collisions and missing data rates only apply to these crashes.

Information about the suitability of running CRASH for a particular

vehicle is not directly available. An estimate of the missing data rate
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for Delta V is 30%. The CDC variables have a slightly lower missing

.data rate.

For the most part, the data used i n the Phase 1 and Phase 2

analyses were preliminary versions of the data. These preliminary data

sets were missing less than one percent of the final number of NCSS

investigated accidents in each phase. The effect of this missing data

is thought to be negligible.

2.6 Summary

To briefly review the proceeding material, the mechanistic models

seek to describe variation in injury severity on a case-by-case basis in

terms of various independent variables. The basis for these models is

the physical principles and mechanisms that govern the collision event.

The objective is to reflect these relationships. Consequently, the

variables and functional form must be consistent with the existing

understanding of the physics and biomechanics of the event. In this

way, one attempts to choose variables and develop models which reflect

true cause and effect relationships.

Population models, on the other hand, seek to define the national

accident experience across the levels of various descriptive variables

such as collision type and severity. Here, the problem is to estimate

the distribution for a larger population from the sample data. No

physical models or cause and effect relationships are involved here.

Accident analysis models are a combination of the population and

mechanistic models. The objective of the accident analysis models is

the estimation of the potential benefit of improved occupant protection

systems. These models begin with the population distributions of

collision type and severity. The objective is the same here: to define

homogeneous subsets of the accident experience for the application of

mechanistic models. However, in the accident analysis models, the

mechanistic models are modified to reflect the expected effect of

improved restraint systems. Ideally, the control variables incorporated

,in-the mechanistic models developed from the accident data would be

incorporated in the mechanistic models used in the accident analysis

models.
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An important aspect of the overall relationship of the mechanistic,

population, and accident analysis models is the common and central role

played by the selection of the col 1 i si on types, or modes, and the

collision severity variable. The overall success of this effort is

measured in terms of the ability of the mechanistic models to predict

injury severity. The major difficulty arises from the fact that the

levels of the various independent variables were determined by an

ongoing social process rather than a deliberate experimental design.

Any inferences of cause and effect must be based on theoretical

knowledge of the physical principles and mechanisms governing the

collision event. The mechanistic models must reflect cause-and-effect

relationships if the accident analysis models are to succeed.
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3 MECHANISTIC MODELS

The topic of mechanistic models was introduced in Section 2. The

objective is to develop statistical models which reflect the physical

principles and mechanisms which govern the events of interest. In t his

case the events of interest are in the area of vehicle crashworthiness.

Given that a collision has occurred, the objective is to relate the

variables which describe the type and severity of impact, the vehicle,

and the occupant to the resulting occupant injuries. It is hoped that a

better understanding of the factors which influence the resulting

injuries will lead to the development of more crashworthy vehicles. For

this expectation to be feasible, the statistical models must reflect the

governing physical principles. In current practice, these

considerations guide the selection of variables and the formulation of

the model.

The basic approach is to subset the data into groups which are felt

to be relatively homogeneous with regard to the injury production

mechanisms. Model development is then carried out within each subset.

In this study, vehicles were initially split into those involved in

frontal impacts and those involved in side impacts. During the first

half of this study, a preliminary version of the data from the first

fifteen months (January 1977 through March 1978) of the NCSS study was

used. Subsequently, a final version of the data from the first fifteen

months, and a near-final version of the data from the last twelve months

(April 1978 through March 1979) were received. The preliminary version

of the data from the first fifteen months is referred to as the "Phase

1" data, while the data received for the last twelve months is referred

to as the "Phase 2" data. Contact codes were not available in the Phase

1 data. However, the final version of the data from the first fifteen

months and the "near-final" version of the data from the last twelve

months contained contact codes.

The first subsection presented discusses the analytical techniques

used and the logit model in particular. The development of mechanistic

models for side impacts is presented in Sections 3.2 and 3.3, the first

containing the results obtained with the Phase 1 data and the second

containing the Phase 2 and the final results. Modelling of frontal



impacts is covered in Sections 3.4 and 3.5. Again, the Phase 1 results

are presented in Section 3.4 and Phase 2 in 3.5. Finally, an overall

summary and discussion is provided in Section 3.6.

3.1 Analytical Technique - Logit Analysis

This subsection serves to document the analytical techniques used

in the development of models to describe injury severity as a function

of crash severity. A description and the use of the l ogi t model is

discussed first. Methods for model evaluation are then considered.

Finally the effects of sample design and measurement error on the logit

model are discussed.

3.1.1 Model Description.. This subsection describes the procedure

used to analyze specific subsets of the NCSS data set. In the analyses

the key dependent variable is a categorical variable with two levels.

The specific model that has been used is the logit model. This analysis

has been used in various areas of application and is discussed by many

authors. A brief discussion of logit analysis follows. For a more

detailed discussion see Cox7, Finney8, Hanushek and Jackson9, and

Haberman10. The statistical package used to compute the logit analysis

was the PROBIT function in MIDAS11. The PROBIT function uses the method

discussed by Aitchison and Silvey12 modified to include both the probit

and logit models.

7Cox, D.R. (1970), Analysis of Binary Data, Methuen, London.

8Finney, D.J.(1971), Probit Analysis, Third Edition, University
Press, Cambridge.

9Hanushek, Eric A. and Jackson, John E. (1977), Statistical
Methods for Social Scientists, Academic Press, New York.

10 Haberman, Shelley J.'(1978), Analysis of Qualitative Data, Volume
1, Academic Press, New York.

11Michigan,Interactive Data Analysis System (MIDAS), written by Dan
Fox and Ken Guire at the Statistical Research Laboratory at the
University of Michigan.

12Aitchison, J. and Silvey, S.D. (1957), "The generalization of
probit analysis to the case of multiple responses", Biometrika 44, pp
131-148.
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The logit model postulates a relationship between the probability

of observing a category and independent variables. This relationship

allows the prediction of the dependent variable given the levels of the

independent variables. Since, in this model, the dependent variable is

categorical its coded value has no meaning other than to describe which

category it is. The notion of prediction must be carefully defined.

It is more natural to think about predicting the probability of

observing one of the categories rather than the predicted value for t he

categorical variable. The data that is collected consists of

observations which count the number of times the category appears. This

data could be modelled by using the binomial distribution if the

probability of a category occurring was the same for all observations.

With some categorical variables there is reason to suspect that the

probability of a category (for example, injury with severity greater

than or equal to 3) is different for each observation. If it is

reasonable to believe that these probabilities vary systematically with

other variables that can be observed, a mathematical model can be

developed to describe this situation.

For example, in the models developed in this project the dependent

variable is a dichotomous variable. The two categories described by

this variable are non-severe and severe injury. This variable was

recoded from the NCSS data using an NCSA developed algorithm described

in Appendix A. The assumption is made that the probability of a non-

severe injury depends on crash severity and other variables such as

crash mode and occupant age. I f there is a model to predict the

probability of a non-severe injury, the probability of a severe injury

is known. The probability of a severe injury is one minus the

probability of a non-severe injury. The logit model was used because it

provided a general model for predicting the probability of non-severe

injury. This model constrains all predicted probabilities to l i e

between 0 and 1 and the predicted probabilities when graphed as a

function of Delta V produces an s-shaped curve increasing with

increasing Delta V.

More specifically, the logit model assumes that associated with the

dichotomous variable, D, that takes on values 0 and 1, is a continuous
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random variable Y. The distribution of Y is the logistic distribution,

F . F is assumed tohave-a mean -ofA-X-and a -variance of 1 where 9 i s

a kx1 vector of parameters and X is a kxl vector of independent

variables. Under these assumptions the probability that D is 0 can be

expressed as
*

P(D=OIX) = F (0)

= F[O - 9'X]

(3-1) P(D=OIX) = [1 + EXP -(0 - 9'X)]-1

where

0 is the threshold,

X represents the independent variables,

9 is the vector of unknown coefficients of X,

F is the logistic distribution with a mean of 0, a variance of 1,

and

EXP is the exponential function.

From Equation 3-1 it can be seen that the probability of Category 0 is a

distribution function, so the probability is just the cumulative

probabiltty_u.p t-o the thresho.l_d.,_adjusted for the mean, 9'X, of the

underlying distribution of Y. This is shown graphically in Figure 3.1.

f(Y)

#-f(9,n

FIGURE 3.1 The Logit Model Probabilities

The basic assumption is that each observation has a binomial

distribution with an unknown parameter, Pi, that is specific to each
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observation made. The natural logarithm of the likelihood, L-(O A), is

given by

(3-2) In L(O,9) _ >,D [In P + (1 - D)[ln (1 - Pi)]

where

D. is the value of the dichotomous random variable for the ith

observation,

Pi is the P(Di = 0) defined by Equation 3-1, and

n is the number of observations.

If all the observations were thought to have the same probability that

Category 0 would occur, the likelihood given in Equation 3-2 would

simplify to the ordinary binomial likelihood with one parameter, P.

This model formulation is slightly more general than the equivalent

empirical logit transformation 13 described by

In pi/(1-pi)

where pi is the estimated probability at Xi.

This transformation requires that for every value of Xi the proportion

in Category 0 be between 0 and 1. This means that there must be at

least 2 observations at each specific Xi value. This requirement is

unnecessary with the model specification described above.

Once the model is thus specified, maximum likelihood theory can be

used to estimate the parameters in the model and the variances of the

estimates of the unknown parameters. This method of estimation involves

an iterative procedure that finds estimates which maximize the binomial

likelihood in Equation 3-2 with probabilities as specified in Equation

3-1. It should be noted here that the output from the analysis yields

an estimated "regression" equation which when properly transformed

yields a prediction of the probability of Category 0 occurring. This

predicted probability is given by

(3-3) [1 + EXP -(0 - A'X)]-1

13Cox, D.R. (1970), Analysis of Binary Data, Methuen, London,
Chapter 3.
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where

is the estimated probability of Category 0 for the ith

observation,

0, and 0, are the maximum likelihood estimates of 0 and 9.

3.1.2 Model Development Various methods of exploratory data

analysis were used both in choosing subsets within which modelling

efforts were thought to be reasonable and in choosing independent

variables to use as predictor variables in the regression equation.

Those results will be discussed in more detail in the first and second

subsections of Sections 3.2 and 3.4. Various statistical tests and

measures were used to aid in the choice of the best fitting model.

Goodness of fit measures, to be discussed in the next subsection, along

with a statistical test of significance, were primarily used to assess

the "significance" of a particular variable in the prediction equation.

The test of significance used was a Likelihood Ratio Statistic 14

(LRS), that is generally used to test a null hypothesis that specifies

fewer parameters then the alternative. For example consider the

following hypothesis:

H0: Pi = F(O)

H1: Pi = F(0 - 91X1 - 92X2)

The null hypothesis states that the probability of Category 0 is

independent of X1 and X2. In general the LRS is defined by

(3•-4) LRS = -2[ln L(0,91H0) - In L(0,91H1)]

and this statistic has an asymptotic chi-square distribution with k

degrees of freedom, where k is the number of parameters estimated under

the alternative hypothesis minus the number of parameters estimated

under the null hypothesis. Thus, to test the hypothesis stated above,

the following Likelihood Ratio Statistic is used:

LRS = -2 [in L(0) - In L(0,91,92)]

which has a chi-square distribution with 2 df.

14Rao. C. R. (1965), Linear Statistical Inference and Its
Applications, John Wiley Sons, New York, pp 350-351.
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More generally this test can be used to test the additional effect

of one variable or group of variables on a model that may have several

variables already in it. This test becomes conditional on the variables

fixed in the model. That is, new variables that appear not to be

significant with one set of variables may appear to be significant wit h

a different set. This situation is similar to regression analysis.

Finally this test statistic, LRS, was used to decide whether the

Phase 1 data could be pooled with the Phase 2 data. In a similar

context, subsets were evaluated to see if combining data by collapsing

some of the subsets was reasonable. Combining data is only reasonable

when the model fit on the combined data does not significantly differ

from the models fit on the individual subsets. To illustrate the use of

the LRS to aid in this decision the problem of combining the Phase 1 and

Phase 2 data will be looked at in more detail.

The hypotheses involved in this problem are as follows:

HC: LO(0,9) = L1(0,9)'L2(0,9)

H1: L1(0,9) = L1(01,91)'L2(02,92)

where

L1(0,9) is the likelihood of the Phase 1 data under HO,

L2(0,9) is the likelihood of the Phase 2 data under H0,

L1(01,91) is the likelihood of the Phase 1 data under H1,

L2(02,92) is the likelihood of the Phase 2 data under H1,

(0,9) are the parameters associated with H09 and

(01,91,02,92) are the parameters associated with H1.

The estimates of (0,9) under the null hypothesis are obtained by fitting

the logit model on Phase 1 and Phase 2 data. There are only two

parameters estimated. These two parameters specify the regression

equation in the l ogi t model for the combined data. The l ogi t model is

then computed separately on the Phase 1 data and the Phase 2 data to get

the four estimates (011911023' 92),

The likelihood ratio statistic that tests the null hypothesis that

one model is sufficient to describe both the Phase 1 and Phase 2 data

sets is given by:
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LRS = -2 [In L0(0,9) - In L1(0,9)]

which, for the example above with only one independent variable, has an

asymptotic chi-square distribution with 2 df. For models with k

independent variables, the test would have k+1 degrees of freedom.

3.1.3 Goodness of Fit. The Likelihood Ratio Statistic described

in the preceding subsection does not tell how much the "regression

model" adds to the predictive aspect of the problem. In order to

evaluate how well the model predicts, it seems reasonable to calculate

for each observation, using the estimated logit model, the probability

of the event occurring. The estimate of the predicted probability

(predicting Category 0) was given in Equation 3-3. If this probability

is greater than one half then the model predicts Category 0 to occur,

and if the probability is less than one-half, the prediction would be

that Category 0 did not occur. Since the observed data tells which

category occurred for each observation, comparing the observed data with

the prediction from the model will give some idea about how well the

model is predicting. This can be quantified by using as a measure of

goodness of fit the percentage of correct predictions.

If the simple binomial model is assumed with a common parameter for

each observation, only one probability is estimated. This probability,

if it were less than one-half, would lead one to the prediction, for all

of the observations, that Category 0 would not occur. If the

nrobability was greater than one-half, the prediction for all

observations would be that Category 0 would occur. One simple measure

of the predictive power of the model would be to 1 ook at the percent

correctly predicted using the prediction equation as compared to the

percent correctly predicted assuming the regression equation was a

constant for all observations.

It was found that the overall percentage of correct predictions was

not sensitive enough to detect small changes in the predictive

capabilities. In the application of this method in the analysis of NCSS

data the percentage correct in the severe injury category was more

important than the overall percentage of correct prediction. I n

evaluating different independent variables for inclusion in the model a

significant increase in the percentage of correct predictions for the

50



severe category was used as a criterion for inclusion of the independent

variable in the model.

To define these measures of goodness of fit consider the

hypothetical contingency tables described by Figures 3.2 and 3.3.

Predicted
Probability

A.5
(Event Does Not Occur)

Predicted
Probability

).5
(Event Occurs)

Event Not
Observed

a c a+c

Event
Observed b d b+d

a+b c+d N

FIGURE 3.2 Contingency Table For Overall Goodness of Fit

The overall percentage of correct prediction is given by

(3-5) Percent Correct Prediction (Overall) = (a + d)/N

where a, d, and N are defined in Figure 3.2. The percentage of correct

predictions within categories is given by

(3-6) Percent Correct Prediction (Category 0) = (al + dl)/N1 and

Percent Correct Prediction (Category 1) = (a2 + d2)/N2

where al, a2, d1, d2, N1 and N2 are defined in Figure 3.3.

These measures are all based on the predicted probabilities. These

predicted probabilities are dichotomized based on the magnitude of the

predicted probability. These predicted probabilities are estimates of

the true probability for the observation and hence are variable
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CATEGORY 0 CATEGORY I

Predicted
Probability

1.5
(Event Does
Not Occur)

Predicted
Probability

>.5
(Event Occurs)

Predicted
Probability Predicted .

4.5 Probability
(Event Does ).5
Not Occur) (Event Occurs)

Event Not
Observed al cI aQ co

estimate of P(X) is given by substituting in Equation 3-7 maximum

likelihood estimates for 0 and 9.

A Taylor series approximation 15 method can be used to obtain

approximations to the expected value and variance of the estimates of

the probabilities generated by the logistic model. Using this technique

it can be shown that

(3-8) E p(X) = P(X)

The estimates, 0 and 9, are maximum likelihood estimates and are

therefore consistent. Thus, p(X) is also a consistent estimate of

P(X). The theoretical variance of a predicted probability at X is given

by

(3-9) Var P(X) = P(X)2 [1 - P(X)]2 Var [0 - 9'X]

where P(X) is defined as in Equation 3-7. The variance on the right

hand side of Equation 3-8 can be rewritten as

(3--10) Var [0 - 9'X] = Var 0 + X'Var(9)X - 2Cov (0,9' )X

where Var 0 and Var 9 are the theoretical variance and covariance

matrices of 0 and 9 respectively, and Cov ( 0 , 9 ' ) i s' a vector of true

covariances between the theoretical threshold and the coefficients of

the independent variables.

To estimate this fairly complicated expression for the variance,

the maximum likelihood estimates for the parameters that were obtained

in the model fitting procedure will be used. The resulting variance

estimate is given by



an approximate confidence interval can be formed around the prediction

at that X. Calculating these confidence intervals at many X values is

not equivalent to using techniques that produce simultaneous confidence

intervals. The resulting "confidence band" using this variance formula

will not be equivalent to a "simultaneous set of confidence intervals."

These derivations assume the most general situation for the logit

model in terms of the number and type of independent variables there are

in the model. At this point three special cases will be considered:

1) One independent variable that is continuous,

2) Two independent variables that are continuous, and

3) Dummy variables with continuous independent variables.

With only one continuous variable in the regression equation the

estimated variance of a predicted probability at X is given by

(3-12) Var p(X) p(X)2[1 - p(X)]2[Var 0 + X2 Var 9 - 2X Coy (0,9)].

Using this estimate of the variance the approximate 95% confidence

interval 16 for the true probability is given by

s

16This confidence interval is based on an estimated variance that
was obtained with an approximation. The method used to develop this
approximation involved expanding the functional form of the probability
(the logistic function) in a Taylor Series expansion. Only the 1 i near
term of the expansion was used to approximate the probability. This
linearized version of the logistic function was used to derive an
approximation to the variance of the probability. There are conditions
when this is not a good approximation. One specific case is when the
probability is extreme, close to 0 or 1. In this case the approximation
yields a large estimated variance and the confidence intervals may
exceed 0 and 1. For examples see Figures 3.18, 3.19, 3.34, 3.35, 3.51,
3.52, and 3.65. It should be noted that probabilities close to 0 or 1
imply almost all of the data is in one category or the other. T h i s
observation alone might indicate that the modelling of this data may be
unstable. An alternative method would be to cal cul ate a confidence
interval for the logarithm of the odds ratio which is exactly linear in
the independent variables. To get a confidence interval for the
probability a transformation needs to be done. This method constrains
any confidence interval between 0 and 1 and can be asymmetric. When the
probability is not extreme these methods provide approximately the same
confidence intervals.
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(3-13) p(X) ± 11. 96 VSr p(X).

Since there is only one independent variable, p(X) and its app roximat e

confidence interval can easily be graphically displayed.

When there are two independent continuous variables in the

regression model plotting p (X1 ,X2) and plotting the approximate

confidence interval around the predicted probability at (X1,X2) becomes

difficult because of the three dimensional nature of the problem. One

method to graphically represent p(X1,X2) and its variance is to use

contour plots to graphically represent p(X1,X2) and the Var P(X1,X2).

Although this type of representation of p(X1,X2) and its variance may be

informative, it would be difficult to associate p (Xi ,X2) , for a

particular value of X1 and X2, and its estimated variance.

An alternative method reduces the problem to the two dimensional

situation. Here the graphical representation used in the one continuous

variable case is also used but now a. series of graphs need to be

presented for each model. If one of the variables, X2, is fixed at a

particular value then p(X1,X2) can be graphed as a function of X alone

and its variance calculated by

(3-14) Var p"(X1X2) = p(XIX2)2 [1 - p(X1X2)J2[Var 0 + Xi Var 91

+ X2 Var 92 - 2X1 Coy (0,91) - 2X2 COOv(0,92)

+ 2X1X2 Coy (91,92)]

where

91 is the coefficient of X1 in the model and

92 is the coefficient of X2 in the model.

Now for each value of X2, an approximate confidence interval can be

formed similar to the one described in Equation 3-13 and indicated on

the graph of p(X1,X2) as a function of X1.

The only problem that remains is the choice of X2, that is, the

number of different values of X2 that are to be considered. This can

not be decided independently of the particular model under study.

Choices of X2 will depend on how sensitive the model is to X2. In some

situations, although probably few, evaluation of p(Xi,X2) only at some
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"average" value of X2 will be required. More likely than not, besides

an "average" value at X2, a value of both extremes will be deemed

necessary.

Dummy variables are usually incorporated into a model to represent

a categorical variable or several categorical variables. Usually there

are (1-1) dummy variables, each variable associated with one of the

levels of a categorical variable with I levels that are added to a

model. These dummy variables are coded 1 if the category occurs for

that individual and are zero otherwise. A typical model involving dummy

variables, W1, W2, and W3, would be

P(X,W1,W2,W3) = F(O - 91W1 - 02W2 - 93W3 -.04X)

where X is continuous, W1, W2, and W3 represent a categorical variable

(with 4 levels), and F is the logistic distribution. These dummy

variables, in effect, subtract the constant 91 if Category 1 occurs, the

constant 92 if Category 2 occurs, and 93 if category 3 occurs. This

model can be rewritten as three different models given that a particular

category occurs:

p(X1,W1,W2,W3) = F(O-91-94X) if Category 1 occurs,

p(X1,W1,W2,W3) = F(O-92-94X) if Category 2 occurs,

and 5(X13W1'W21W3) = F(O-93-94X) if Category 3 occurs.

These estimated probabilities, for each category, can be

araphically represented with the approximate confidence intervals. The

variance estimate is given by Equation 3-11 where 0 is replaced by the

estimate (0-9i) for each Category i.

Models involving dummy variables and one continuous variable will

involve two graphical representations for each dummy variable in the

model. If there are two continuous variables, for each, of these graphs

three or possibly more graphical representations will be required.

With models involving three or more continuous variables, graphical

representation becomes infeasible because of the number of different

possibilities one might have to consider. The general variance formula

is given by Equation 3-11 and for any specific point the estimated
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probability and its estimated variance can be calculated and an

approximate 95% confidence interval formed.

3.1.5 Measurement Errors. The model specification assumes that

the mean of the underlying continuous variable, Y, in the logit model is

A'X. The vector X is assumed to be a vector of constants, that is,,X is

not itself random. For most of the variables in NCSS this assumption

may be reasonable. There is one notable exception: Delta V and its

longitudinal and lateral components. This subsection investigates

analytically the effect of the coefficients in the logit model when the

independent variable is subject to error. This analysis is related to

work in progress by Smith 17

In the context of the model described in Section 3.1.1 suppose that

(3-15) Y = 9'X + 00X0 + e

where

e has a distribution function F with variance of 1,

X and X0 are independent variables observed without error, and

0,AO are unknown parameters.

Then as before

D = 0 if Y is less than 0

D = 1 if Y is greater than 0

so that

P(D = 0) = F [0]

(3-16) = F[0 - A'X - AOXO]

where F is a distribution function with mean 0 and variance 1. The

probabilities in Equation 3-16 were used in the binomial likelihood and

maximum likelihood estimates were obtained for (A,AO) and E 9 = 9 and

EA0 =: Q.

Now suppose that it is reasonable to assume that the measurement

error in X0 is such that it only adds variability to the true value of

X0. That is, the measurement process does not by nature produce a

17Smith, David W., Personal Communication, April 1980.
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biased measurement for X0. With measurement error, X wi 11 be the

observed value for X0 where

(3-17) X = X0 + f

where

XO is the "true value of the independent variable and

f is a random variable with mean 0 and variance s.

This measurement error model assumes that f is independent of e, the

error in Y. Using this model for the measurement error i n X0 we can

rewrite Equation 3-15 as

(3-18) Y = 9'X + 90(X - f) + e

= 9'X + 90X + e

where e* = e - 90f is a random variable with mean 0 and variance t2 =

(90s2 + 1). In estimating the probability of Category 0 with the

observed X , rather than the true X0, as a variable, we have

(3-19) P(D = OIX ) = F[(( - 9'X - 9OX )/t)

2
where t is (92s + 1)2.

When the probabilities given by Equation 3-19 are used in the

binomial likelihood to define the likelihood, the expected value of t he

estimates that are obtained are given by

E0=O(90s2+1)

E 9 = 9(92s2 + 1)-I, and

E 90 = 90(92s2 + 1)-i.

From these equations it can be seen that the maximum likelihood

estimates for a logit model where there is measurement error ( a random

error model) will be biased. The estimates will be unbiased only if the

variance specified by the model for measurement error is 0; that is when
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no measurement error is present. Since 02 and s2 will always be

positive the effect of this type of measurement error is to

underestimate the magnitude of the true value of all the coefficients in

the logit model by a factor related to the magnitude of the measurement

error.

3.1.6 Sampling Problems. In the development of mechanistic models

ideally it would be best to do a controlled experiment. Using this type

of design the attempt would be made to get observations over the

complete range of independent variables. Sample sizes could be

controlled to obtain nearly equal sample sizes within all of the cells

defined by the independent variables of interest.

The data obtained by NCSS were not equally balanced over key

independent variables. Even though severe accidents were oversampled,

many more accidents with low crash severity are included than accidents

with high crash severity. The distribution of occupants by age was

representative of the driving population and older occupants appeared

less frequently than younger drivers.

It was not known how sensitive the model would be to data that was

not fairly evenly distributed across the cells defined by the

independent variables. This was empirically investigated during the

analysis of the side impacts in the Phase 1 data. A model was chosen

with two continuous variables, the measure of crash severity, Delta V

and Occupants' Age. The side impacts were then categorized by Delta V

and Occupants' Age and equal samples were drawn from each category. The

model was then estimated using the "new" sample of data. The model

based on all side impacts and the "new" balanced sample model did not

differ substantially. The specific analysis is described in Section

3.2.3.

60



3.2 Preliminary Analytical Results for Phase 1 Data - Side Impacts

This section presents preliminary work to develop mechanistic

models for side impacts. The analysis reported in this section was

carried out on a preliminary version of the data from the first fifteen

months of NCSS (January 1977 through March 1978).

The dependent variable used in this analysis is an NCSA-generated

variable called NEWOAIS3. Basically, NEWOAIS3 is two-level categorical

variable that has the value 0 if the OAIS18 is 0-2, and is 1 if the OAIS

is 3 or greater. Other injury information in the file is used by the

NCSA algorithm, where possible, to generate a value for NEWOAIS3 when

OAIS is missing. As a result, NEWOAIS3 has less missing data than DAIS.

Throughout this presentation, injuries coded NEWOAIS3=0 (OAIS=O-2) will

be referred to as "non-severe," and injuries coded NEWOAIS3=1 (DAIS= 3+)

as "severe. 1119 The goal of this analysis is to predict the probability

of a non-severe injury as a function of various relevant variables. The

probability of a severe injury is simply one minus the probability of an

non-severe injury.

The initial modelling efforts were carried out separately for

several subsets of the side impacted vehicles. The selection of these

subsets is described in the first subsection. Examination of candidate

independent variables is covered in the second subsection. Model 1 i ng

results and model evaluation are presented in the third and fourth

subsections, while the last subsection describes the final models for

the Phase 1 data.

3.2.1 Defining Subsets. This analysis included only occupants of

case vehicles (towed due to crash damage) involved in two-vehicle

collisions. The subsetting of this group is primarily based on the

180AIS refers to the overall abbreviated injury score as defined in
The Abbreviated Injury Scale, (1976 Revision) American Association for
Automotive Medicine, Morton Grove, Illinois.

19For the algorithm used in creating NEWOAIS3 see Appendix A.
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Collision Deformation Classification20 variable. The third character of

this variable describes the General Area of Damage (GAD). A GAD of L

(Left) or R (Right) was used to define a side impact. For GAD=Left or

Right, injuries to occupants in two-vehicle collisions represent 71% of

the accidents while case vehicles account for 80% of the vehicles in the

file. Subsets at various levels of detail based essentially on Specific

Horizontal Area (SHL) and seat position, were examined with a view to

obtaining analytical cells which were sufficiently homogeneous and yet

contain adequate data to yield reasonable modelling results. It was

also essential for the subsetting to yield a common range of the key

variables under consideration so as to permit a meaningful comparison of

the modelling results. The following subletting was selected:

1. Passenger-compartment damage (SHL=D,P,Y,Z. and occupants on the
same side as the impact; to be referred to as Near PCD

2. Passenger-compartment damage and occupants on the opposite side
to the impact; to be referred to as Far PCD

3. No passenger-compartment damage (SHL=F+B. and occupants on t he
same side as the impact; to be referred to as Near NPCD

4. No passenger-compartment damage and occupants on the opposite
side to the impact; to be referred to as Far NPCD

5. SHL=F,B,D,P,Y,Z and occupants on the same side as the impact;
to be referred to as All Near

6. SHL=F,B,D,P,Y,Z and occupants on the opposite side to the
impact; to be referred to as All Far. Subsets 5 and 6 are made
up of subsets 1 and 3, and subsets 2 and 4 respectively.

"Occupants" refers to drivers and passengers in both the front and

the back seats. Table 3.1 shows the number of occupants for each

subset. Also shown is the number of cases with valid Delta V and CDC

Extent codes, and the number of severe and non-severe injuries.

3.2.2 Examination of Independent Variables. Some of the potential

independent variables which were initially investigated were:

1. Delta V

20. Collision Deformation Classification--SAE Recommended Practice
J224a," SAE Handbook, 1980 Ed. (Warrendale, Pa.: Society of Automotive
Engineers, 1980), pp. 34.109-34.113.
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TABLE 3.1

Number Of Cases Valid
For Specific Variables

Phase 1 Data - Side Impacts

------------------------------------------------------------------
I Near Far Near Far ALL ALL
I PCD PCD NPCD NPCD NEAR FAR

--------------+---------------------------------------------------

Total I 641 616 354 340 995 956

Non-Severe I 370 431 279 290 649 721

Severe I 140 55 16 7 156 62

Delta V 423 421 232 223 655 644

CDC Extent 1 641 616 354 340 995 956
------------------------------------------------------------------

2. Vertical Location of Damage (CDC).

3. Damage Distribution Type (CDC).

4. CDC Extent

5. Vehicle Weight

6. Object Contacted (CDC).

7. Principal Direction of Force (CDC).

Comparison of the six subsets over these independent variables

reveals the following:

Delta V. The range of Delta V. the mean and the standard

deviation within these six subsets are shown in Table 3.2. When the

examination of Delta V was based on each category of SHL, much higher

values of average Delta V were found to be associated with SHL=D

(Distributed).

Vertical Location of Damage (CDC). For the subsets

with passenger compartment damage, 85% of the cases are in "Below Glass"

category and some 12% in "All" category. For the subsets with no
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TABLE 3.2

Delta V For The Six Subsets

Phase 1 Data - Side Impacts

----------------------------------------------------------------------
I Range

Group I Sample Size Delta V Mean S.D.
--------------+-----------------------------------------------------

Near PCD 423 3-63 15.5 7.9
Far PCD 421 3-63 15.8 8.6
Near NPCD 232 2-42 9.7 5.9
Far NPCD I 223 2-36 9.8 5.6

ALL NEAR I 655 2-63 13.4 7.7
ALL FAR I 644 2-63 13.7 8.2

---------------------------------------------------------------------

passenger compartment damage, about 99% of cases are in the "Below

Glass."

Damage Distribution Type (CDC). For all subsets, the

most frequent damage distribution is "Wide", representing 90% or more of

the cases. For the subsets with passenger compartment damage,

"Sideswipe" represents 6% to 7% of the cases while for the no passenger

compartment damage subsets, "Corner" accounts for 7% of the cases.

CDC Extent. For all subsets, the distribution of CDC

extent codes are similar - CDC extent codes 2 and 3 represent 75% to 80%

of the cases. However, when the examination of CDC extent was based on

each category of SHL, the distribution of CDC extent codes for SHL=D was

found to be more widely distributed from one extreme to the other than

other categories; only 50% to 60% of the cases were made of CDC extent

codes 2 and 3.

Vehicle Weight. For all subsets, the distribution of

vehicle weights are similar with the common range being 1300 pounds to

4000 pounds.

Object Contacted (CDC). For all subsets, the most common

object contacted are another passenger car (over 80%), truck (11%) ,

tractor-trailer (2%) and train (1%).
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Direction of Principal Force. Because of the angular

velocity associated with the side collision, a new variable based on CDC

direction was created to be used in conjunction with Delta V in

explaining the occurrence of injury. This new variable is essentially a

measure of A, the angle between the Principal Direction of Force (CDC

Direction) and the lines parallel to the lateral axis of a vehicle. The

magnitude of this angle is one of the factors influencing the magnitude

of the induced angular velocity. This new variable was created by

collapsing the CDC Direction variable into five levels. These levels

were characterized by the values of 9 (the angle between the direction

of impact and the lines parallel to the lateral axis of a vehicle) and

the location of impact (whether impact is in the front half or the rear

half of a vehicle). The five levels were (1 o'clock and 11 o'clock), (2

o'clock and 10 o'clock), (3 o'clock and 9 o'clock), (4 o'clock and 8

o'clock) and (5 o'clock and 7 o'clock).

3.2.3 Model Estimation. The modelling technique used was the

logit regression, the technical aspect of which is discussed in Section

3.1. Univariate models are discussed in the first portion of this

section. Next, multivariate models are considered. A final subsection

describes the result of a subsampl i ng to achieve a more uniform

distribution of cases across the independent variables. Model

evaluation and examination of residuals is largely reserved for Section

3.2.4 which follows.

Univariate Models. The initial uni vari ate models

explored the relationship of Delta V (total), CDC Extent, and the

lateral component of Delta V with injury severity (as indicated by

NEWOAIS3). It was anticipated that, for the side collisions, the

Direction of Force might be significant in explaining injury severities,

especially when used in conjunction with Delta V. Actually, within the

six subsets previously defined, Delta V and the Direction of Force,

should take into account the effects, if any, of rotation of the vehicle

on injury. The subsets, based on Specific Horizontal Location (SHL),

signify the location of impact in terms of the distance from the

vehicle's lateral axis to the point of impact. The combination of D elt a

V and Direction of Force represents the component of Delta V that was
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parallel to the vehicle's lateral axis (Lateral Delta V). The induced

angular velocity of the impacted vehicle is a function of both Lateral

Delta V and the location of impact relative to the vehicle's central

axis.

The lateral component of Delta V has a magnitude which equals Delta

V x cosA where 8 is the angle between the direction of force and the

line parallel to the vehicle's lateral axis.

The modelling of injury severity by Lateral Delta V resulted in a

better goodness of fit than that of injury severity by Delta V. For the

six subsets, the results are shown in Table 3.3. These results clearly

indicate that Lateral Delta V is a better predictor of injury than Delta

V.

Two univariate models, one having Lateral Delta V as the

independent variable and the other having CDC Extent as the independent

variable may be compared. CDC Extent predicted injuries as well as

Lateral Delta V. Lateral Delta V and CDC Extent are expected to be

highly correlated; actually in the cause/effect context, CDC Extent can

be thought of as the "effect" of Delta V just as injury is an "effect"

of Delta V. The high correlation between Delta V (and therefore Lateral

Delta V) and CDC Extent should exclude one of them from the model.

Lateral Delta V was considered to be more the "cause" of injury than CDC

Extent. Therefore Lateral Delta V was retained as one of the

independent variables.

Other univariate models, each with injury-severity as the dependent

variable but with a different independent variable, were tested. Such

variables are:

Vehicle Variables: Vehicle Weight
Total Vehicle Weight
Object Contacted
Rural/Urban

Occupant Variables: Age
Height
Occupant Weight
Sex

The univariate models with each of the above-mentioned as the

individual variables did not yield meaningful estimated models of
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TABLE 3.3

Comparison of The Univariate Models with Lateral Delta V,
Delta V and CDC Extent as the Independent Variable

Phase 1 Data - Side Impacts

--------------------------------------------------------------------------------------
I Sample Size I Overall Non-Severe I Severe
I-------------I % Correct I % Correct % Correct

Subset I I I--------------------+--------------------+--------------------
I Non- ISeverel Lat. I ICDC i Lat. I ICDC I Lat. I ICDC
ISeverel IDelta VIDelta VIExt.IDelta VlDelta VIExt.IDelta VlDelta VlExt.

---------+------+------+-------+-------+----+-------+-------+----+-------+-------+----
Near PCD 1239 95 I 78 I 72 180 I 95 I 90 195 I 36 I 27 40
Far PCD 1287 38 91 I 90 191 I 98 I 97 198 I 42 l 37 135
Near NPCDI 183 9 I 96 I 96 195 1 100 I 100 1100 1 11 I 11 16
Far NPCDI 191 3 I 99 I 99 98 I 100 1 100 1100 I 0 1 0 1 0

I I I I I I I I I I
ALL NEAR 1414 104 1 83 I 79 1 83 97 1 94 193 I 26 I 25 140
ALL FAR 1478 41 I 94 I 93 193 I 99 I 98 199 I 39 I 27 116
--------------------------------------------------------------------------------------



reasonable goodness-of-fit measures. However, they were l i k e l y to be

more significant in, explaining injury severity in the presence of Delta

V.

Vertical Location of Damage (CDC) and Damage Distribution Type

(CDC) were not tested in the modelling because the data was found to be

highly concentrated in only one or sometimes two levels of those

variables.

Multivariate Models. The discussion so far has pointed

to a model which has Lateral Delta V as a primary independent variable

while other vehicle and/or occupant variables can be added into the

model to improve its predictive capability.

When the model incorporates more than one independent variable, the

significance of the additional independent variable may be determined as

follows:

1. A statistical test, based on a Likelihood Ratio Statistic (LRS)
which has a chi-square distribution, tests the effect of that
variable in the model.

2. The goodness of fit of the new model may be compared to that of
the existing model. The goodness of fit gives the percentage
of cases correctly predicted by the model for both the low-
severity injuries and the high-severity injuries.

The candidates for independent variables are given in Table 3.4.

Ideally, for an additional variable to be considered significant i n t h e

model, both criteria should be met. However, the first criterion can

only be met if the two data sets which were being compared are of the

same size. This requirement is not necessary for the second criterion.

Also, it is not uncommon for an additional variable to show a

significant LRS without improving the model's predictive capability at

all. Hence for any variables to be included in the model, improvement

in the goodness of fit of the model by such variables is necessary, not

just a significant value for the LRS.
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TABLE 3.4

Candidates For Independent Variables
----------------------------------------------------------

1 I Delta V
2. I Lateral Delta V
3. I CDC Extent
4. I Vehicle Weight
5. I Vehicle Weight + Occupant Weight + Cargo Weight
6. I Object Contacted
7. I Rural/Urban
8. I Age
9. I Occupant Height

10. I Occupant Weight
11. I Sex
12. I Intrusion Location
13. I Ejection
14. I Restraint Usage
15. I Injury Type
16. I Body Region
17. I Contact Point

The independent variables , which were found to be significant at

this stage were Lateral Delta V and Age. The estimated models for t h e

six subsets are as follows:
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+-•-------------------------------------------------------------+
I I
I Estimated Models with Lateral Delta V and Age

Near PCD (N=325, LRS=77.47, DF=2)
I I

(3-20) pi = F(2.2974 - 0.1090X, - 0.0124X2)

Far PCD (N=323, LRS=84.22, DF=2) I
I I

(3-21) F(3.4794 - 0.1199X1 - 0.0100X2)

Near NPCD (N=190, LRS=14.4, DF=2)

(3-22) pi = F(3.5238 - 0.0724X1 - 0.0278X2)

Far NPCD (N=193, LRS=4.73, DF=2)

(3-23) p'i = F(3.9014 - 0.1078X1 - 0.0123X2)

All Near (N=515, LRS=117.07, DF=2)
I I

(3-24) pi = F(2.5813 - 0.1150X1 - 0.0132X2)

I All Far (N=516, LRS=107.13, DF=2) I

(3-25) pi = F(3.6480 - 0.1246X1 - 0.0100X2)

I where I

pi is the estimated probability of a non-severe injury, i

I F is the logistic function, I

I X1 is Lateral Delta V,

X2 is Age, and I

I LRS is the Likelihood Ratio Statistic.
+--------------------------------------------------------------+

The goodness of fit for these bivariate models is shown for each subset

in Table 3.5. While the overall percent correct prediction is fairly

good, the percent correct prediction for the severe injuries is, at

best, not quite 50% for the Far PCD group and is much worse for the NPCD

(non-passenger compartment damage) groups. The histograms of pi for the

six subsets are shown in Figures 3.5 through 3.10. Each figure,

representing a model for each subset, consists of a pair of histograms,

one for the non-severe cases (or cases which had the OAIS codes of 0-2)

and the other for the severe cases (cases which had the OAIS codes of

3-6). Both histograms have the same axes, one representing the

70



estimated probabilities of non-severe injuries (pi) at the 0.05 interval

and the other the number of cases with the particular pi values. In all

subsets, while the histograms look quite reasonable for the non-severe

injuries, the histograms for the severe injuries clearly reflect the

relatively poor percent correct prediction of the severe cases.
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Figure 3.11 shows the logistic curves for the four subsets as given

by Equations 3-20 through 3-23. These curves show how the estimated

probability of a severe injury varies with Delta V values while Age is
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fixed at 30. The differences in the estimated probabilities of severe

injury for the four subsets are clearly shown. For convenience, the

probability of severe injury has been plotted. The probability of

severe injury is simply 1 - pi, where pi is the probability of non-

severe injury modelled by Equations 3-20 through 3-23. The figure shows

that the occupants of the Near PCD subset had higher probabilities of

receiving severe injuries than those of Far PCD, Far NPCD, or Near NPCD,

particularly when Lateral Delta V values were less than 35 mph. The
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occupants of the Far PCD subset in turn had higher probabilities of

severe injuries than those of the subsets with no damage to the

passenger compartments (i.e., Near NPCD and Far NPCD). For Lateral

Delta V greater than 30 mph, the probability of a severe injury for an

occupant of the Near PCD or Far PCD was close to unity; for an occupant

of Near NPCD or Far NPCD to have the probability of a severe injury

close to one, Lateral Delta V must be greater than 40 mph. The effect

of Age for each subset is shown in Figures 3.12 through 3.15. Each of
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these figures has three curves representing Age 20, 40 and 60. The

curves show for these ages how the probability of a severe injury varies

with Lateral Delta V. In each subset, older occupants have a higher

probability of severe injury at any given value of Lateral Delta V. The

magnitude of this effect is comparable for all except the Near NPCD

group, which shows a substantially larger effect. Figures 3.16 through

3.1.9 show the 95% confidence intervals for the estimated probability of

a severe injury (1-pi) which result from the variance of the

coefficients of the independent variables at age 30. Each of these

figures, representing a model of a particular subset, consists of three

curves. The top curve and the bottom curve indicate the upper bound and

the lower bound of the estimated probability of a severe injury

respectively while the middle curve is the locus of the estimated

probabilities. A narrow band of the confidence limits implies that

there is a good chance of reproducing similar modelling results when

analysing different sets of data and therefore is a desirable property

of a model. The confidence intervals are quite small for the PCD

(passenger compartment damage) subsets, but are considerably larger f o r

the NPCD (non-passenger compartment damage) subsets. This is the result

of the very small number of cases of the severe injuries (less than 5%

of total injuries and less than 10 cases) in each of the latter subsets,

which in turn may have made the models less creditable. Finally, Figure

3.20 shows the confidence intervals for both the Near and Far PCD groups

on the same graph. The confidence intervals for both subsets do not

overlap except when Lateral Delta V becomes quite large at which point

the probability of a severe injury approaches one. This implies that

the models for the Near PCD subset and the Far PCD subset were in fact

different. For Lateral Delta V values of less than 30 mph, near-side

occupants are expected to have higher probabilities of receiving severe

injuries than far-side passengers when there are damages to the

passenger compartment.

Subsampling of Cells. It was noted that there were

considerable discrepancies in the number of cases for each level of

Lateral Delta V and for each level of Age. That is the distributions of

Lateral Delta V and Age, on which the model for each subset was based,

were not uniform. To determine if the derived model for each subset was
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affected by these uneven cell sizes, subsampling of cells on Lateral

Delta V was carried out prior to the actual modelling to yield cells of

approximately equal size for each level of Lateral Delta V. The

comparison of the univariate models having Lateral Delta V as the

independent variable with and without subsampling of the independent

variables for the Near PCD subset is shown below:
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TABLE 3.5

Goodness of Fit

Severity = F (Lateral Delta V, Age)

Phase 1 Data - Side Impacts

Sample Size I I
I-----------------I Overall Non-Severe I Severe

Subset I Non- I I % Correct I % Correct I % Correct
I Severe I Severe I I I

-----------+--------+--------+-----------+------------+-----------
Near PCD - 230 95 I 78 I 95 I 36
Far PCD 286 37 i 93 I 98 I 49
Near NPCD I 181 9 I 96 I 100 I 11
Far NPCD I 190 3 I 99 100 I 0

ALL NEAR 411 104 I 83 I 97 I 27
ALL FAR. I 476 40 1 95 I 99 1 45

-------------------------------------------------------------------
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Without subsampling (Ratio of severe to non-severe = 0.41)

(3-26) pi = F(1.802-0.103X) , LRS=67.71, DF=1, N=326

With subsampling (Ratio of severe to non-severe = 0.54)

(3-27) pi = F(1.715-0.100X) , LRS=51.88, DF=1, N=190

The goodness of fit of the two models is shown in Table 3.6.

TABLE 3.6

Goodness of Fit
of Models With and Without Subsampling

Phase 1 Data - Side Impacts

-----------------------------------------------------------------------
Sample Size I % Correct Prediction

I ---------------------+-------------------------------
I Non-Severe Severe I Overall I Non-Severe I Severe

-----------------------------------------------------------------------
I I I I

Equation (3-26) 231 95 I 78 I 95 1 36
I I I I

Equation (3-27) I 123 67 I 76 I 91 I 48
-----------------------------------------------------------------------

Note the differences in sample sizes and the ratios of severe to non-

severe injuries of both models. The implication of the subsampl i ng of

the independent variables, based on the above example, was that while

the estimated parameters did not appear to be greatly influenced by the

distribution of the independent variable, the percentage correct

prediction of severe injuries did improve by 12% when the subsampl i ng

was carried out before the model estimation. The difference in sample

size (N) of the two models, however, makes it difficult to assess the

real merits of the cell subsampling on the model estimation.

3.2.4 Model Evaluation. The modelling results up to now indicated

a need for improvement in the prediction of severe injury cases. Note

that the severe injuries represent about 14% of the total injuries.

Table 3.5 indicated that a model with only Lateral Delta V and Age as

the independent variables was capable of predicting the non-severe cases

(OAIS 0-2) correctly almost 100% of the time, but the same model
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predicted the severe injury cases incorrectly most of the time (about

60%).

To improve the predictive capability of the model, attempts were

made to explain those "deviant" cases which had low to moderate Lateral

Delta V but OAIS greater than 2. The following analyses were carried

out.

For all subsets, the cases were grouped into two classes:

1. Those cases correctly predicted by the model as having low or
high injury severity.

2. Those cases incorrectly predicted by the model.

Two-way contingency tables were constructed in which one of t h e

variables was the above "correct/incorrect'.' variable and the other

variable was one of the variables such as Intrusion Location, Ejection,

Restraint Usage, Body Region, Injury Type, etc. The number of cases

correctly or incorrectly predicted by the model for each level of such

variables were therefore known.

Intrusion. A two-way contingency table of the "correct/

incorrect" variable and Intrusion Location indicated that the percentage

of incorrect prediction of injuries varied with the existence of

intrusion and the location of intrusion. For modelling purposes, two

analyses were tried.

1. Classification of all cases into intrusion and no-intrusion
classes, which were then coded as a dummy variable. A model
predicting injury severity was then estimated having Lateral
Delta V, Age and this dummy variable as the independent
variables. Improvement in the predictive capability of the
model was small.

2. Estimation of two separate models for the cases with no
intrusion and for the cases with intrusion. The model for
cases with no intrusion had only Lateral Delta V and Age as the
independent variables. For the model with intrusion, a set of
dummy variables was created, based on the levels of the
intrusion variable, to reflect intrusion on the sides of a
vehicle, on the steering/A-pillar area, on the side override or
the combination of these. Improvement in the predictive
capability of the resulting models detected was also small.

Ejection. A two-way contingency table of the "correct/

incorrect" variable and the degrees of ejection indicated that cases
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involving complete ejections tended to have a larger proportion of

injury misprediction than those with no-ejection, partial-ejection and

entrapment. Incorporation of ejection in the form of a set of dummy

variables into the model with Lateral Delta V and Age did not improve

the predictive capability of the model.

Restraint Usage. A two-way contingency table of the

"correct/incorrect" variable and Restraint Usage indicated that the

proportion of injury misprediction for those cases with no restraint

installed in the cars were much larger than those with some kinds of

restraints available. The model incorporating the Restraint Usage with

Lateral Delta V and Age improved the predictive capability more

substantially than those incorporating Ejection, but the improvement was

small (some 4% of the severe injuries or 3 cases out of 68 cases for the

Near PCD subset.)

Restraint Usage and Ejection. A three-way contingency

table of the "correct/incorrect" variable, Restraint Usage and Ejection

indicated that the proportions of injury misprediction for the various

degrees of ejection and entrapment within the no restraint cases did not

differ substantially. Incorporating both the Restraint Usage and

Ejection into the model did not improve the predictive capability of the

model appreciably.

Intrusion and CDC Extent. The CDC Extent was multiplied

by the "intrusion/no intrusion" dummy variable to form an interactive

variable which described the extent of crush when intrusion was present.

This interaction variable, when incorporated into the model with Lateral

Delta V and Age, did not improve the model's predictive capability.

Intrusion, CDC Extent and Lateral Delta V. For cases

with intrusion, a new variable was created which described the

interaction between CDC Extent and Lateral Delta V (CDC Ext. X

Lat. Delta V). This new variable, when incorporated into the model with

Lateral Delta V and Age, failed to improve the model's predictive

capability.

Lateral Delta V, Age and Injury Type. To determine the

effects of the injury type on the injury prediction, the Injury Type
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variable of Occupant Injury Classification for the first injury (which

is the most severe injury) was used in the analysis. The classification

of Injury Type in the NCSS file is as tollows:

1. laceration
2. contusion
3. abrasion
4. fracture
5. pain
6. concussion
7. hemorrhage
8. avulsion
9. rupture

10. sprain
11. dislocation
12. crushing
13. amputation
14. burn
15. other

The procedure to incorporate the Injury Type variable into the model is

as follows:

1. Determine, for each of the six subsets, the number of cases
correctly and incorrectly predicted by equations 3-20 through
3-25. Create a variable comprising these two classes and call
it a "correct/incorrect" variable.

2. For each subset, construct a two way contingency table of t h e
"correct/incorrect" variable and the Injury Type variable.
Calculate the percentage of mispredicted cases within each
level of the Injury Type.

3. Isolate those levels of Injury Type which indicated high
proportions of mispredicted cases. Create a set of dummy
variables of Injury Type corresponding to these isolated
levels. Incorporate these dummy variables into the model wit h
Lateral Delta V and Age.

The estimated models for the six subsets are shown below and their

goodness of fit is contained in Table 3.7.
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+----------------------------------------------------------------------+

Estimated Models with Lateral Delta V, Occupant's Age and
Injury Type

Near PCD (N=203, LRS=73.02, DF=5)

(3-28) pi = F(-0.539 - 0.087X1 - 0.007X2 + 1.677X3 - 2.161X4 -

2.146X5)

Far PCD (N=168, LRS=57.81, DF=5)

(3-29) pi = F(1.982 - 0.102X1 - 0.002X2 - 0.100X3 - 0.777X5 -

0.467X6)

Near NPCD (N=61, LRS=22.62, DF=5)

(3-30) pi T F(O.659 + 0.050X1 - 0.024X2 + 0.137X3 - 8.560X5 +

0.176X7)

Far NPCD (N=54, LRS=7.72, DF=4)

(3-31) pi = F(4.618 - 0.051X1 - 0.012X2 - 2.859X3 - 2.040X8)

All Near (N=264, LRS=78.55, DF=4)

(3-32) pi = F(-0.572 - 0.074X1 - 0.0049X2 + 1.539X3 - 4.050X5)

All Far (N=222, LRS=57.56, DF=3)

(3-33) pi = F(2.482 - 0.090X1 - 0.005X2 - 0.615X3)

Pi is the estimated probability of a non-severe injury,

F is the logistic function,

X1 is Lateral Delta V,

X2 is Age,

X3 is 1 if injury is a Fracture, -1 otherwise,

X4 is 1 if injury is a rupture, -1 otherwise,

X5 is 1 if injury is a Dislocation, -1 otherwise,

X6 is 1 if injury is a Sprain, -1 otherwise,

X7 is 1 if injury is a Laceration, -1 otherwise,

X8 is 1 if injury is a Contusion, -1 otherwise, and

I LRS is the Likelihood Ratio Statistic. I
+----------------------------------------------------------------------+
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TABLE 3.7

Goodness of Fit

Severity = F(Lateral Delta V, Age, Injury-Type)

Phase 1 Data - Side Impacts

i Sample Size % Correct Prediction
I ---------------------+---------------------------

Subset I I Non- I
I Non-Severe Severe I Overall I Severe I Severe

-----------+------------+--------+---------+--------+--------

Near PCD 122 I 81 I 72 I 80 I 61
Far PCD I 141 I 27 I 88 I 95 I 48
Near NPCD I 54 I 7 90 I 100 I 14
Far NPCD I 51 3 I 94 I 100 I 0

ALL NEAR 176 I 88 74 I 83 I 55
ALL FAR I 192 I 30 I 88 I 95 I 37

Note that the Injury Type variable incorporated into the models of

the four subsets as dummy variables differed from one subset to another,

as follows:

Near PCD The dummy variables were:
fracture
rupture
dislocation

Far PCD The dummy variables were:
fracture
sprain
dislocation

Near NPCD The dummy variables were:
laceration
fracture
dislocation

Far NPCD The dummy variables were:
contusion
fracture

All Near The dummy variables were:
fracture
dislocation

All Far The dummy variable was fracture

Lateral Delta V, Age and Body Region. Similar procedures

were used in bringing Body Region into the model. The model estimation
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results of the six subsets are shown below and their goodness of'fit are

contained in Table 3.8.

TABLE 3.8

Goodness of Fit
Severity = F(Lateral Delta V, Age and Body Region)

Phase 1 Data - Side Impacts

------------------------------------------------------------------
I Sample Size I % Correct Prediction

Subset I---------------------+-------------------------------
I Non-Severe I Severe I Overall I Non-Severe I Severe

------------+------------+--------+---------+------------+--------

Near PCD I 123 I 83 1 75 I 92 I 49
Far PCD 140 I 28 I 89 I 96 I 54
Near NPCD* 54 I 7 I 90 I 96 I 43
Far NPCD I 51 I 3 I 94 I 100 I 0

ALL NEAR* 1 177 I 90 I 77 1 87 I 54
ALL FAR I 191 I 31 I 91 I 98 1 42

*Age was found to be not significant

The body region variable incorporated into the models of the four

subsets as dummy variables differed from one subset to another, as shown

below:

Near PCD The dummy variables were:
forearm
abdomen
lower extremities
ankle-foot

Far PCD The dummy variables were:
shoulder
chest
abdomen
pelvic-hip

Near NPCD The dummy variables were:
shoulder
elbow
chest
abdomen

Far NPCD The dummy variables were:
face
neck
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chest
All Near The dummy variables were:

shoulder
elbow/forearm
chest
abdomen
lower extremities, leg, ankle/foot

All Far The dummy variables were:
shoulder
chest
pelvic/hip

Equations 3-28, 3-29, 3-31, 3-32, and 3-33 for Near PCD, Far PCD, Far

NPCD, A l l Near, and All Far each appeared reasonable in terms of t h e

signs of the coefficients, that is the probability of a non-severe

injury increases as Lateral Delta V decreases and as Age decreases.

Equation 3-30 (Near NPCD) appeared to be an unreasonable model because

of the positive sign of the coefficient of Lateral Delta V, which

countered intuition. The Injury Type variable warrants some attention

here. The signs of all dummy variables in Equations 3-28 through 3-33,

with the exception of that of fracture, were negative as anticipated.

The fracture dummy variable, however, had negative coefficients for far-

sided passengers and positive coefficients for near-sided passengers.

This may be explained by the fact that fracture injuries could receive

DAIS of either 0-2 or 3-6, and that the overall number of fracture

injuries involve many body regions; such characteristics are generally

not true with the other injury types such as rupture and dislocation,

which are almost exclusively causes of OAIS 3 - 6 . I n predicting the

occurrence of a severe injury , fracture is a weaker explanatory

variable of severe injuries than, say, rupture or dislocation. The

models represented by Equations 3-28 to 3-33 showed mixed results as far

as the improvement in the models' predictive capability was concerned.

For Near PCD, the model (Equation 3-28) now predicted 61% of the severe

injury cases correctly, (an improvement of 25% for severe injuries)

while it now only predicted 80% of the non-severe injury cases

correctly, (a reduction of 15% of total non-severe injury cases). For

Far PCD, no improvement in prediction was accomplished by the new model

(Equation 3-29). For Near PCD, the improvement accomplished was

negligible. For Far NPCD,- no improvement was accomplished. For Al 1

Near, the gain in percentage correct prediction of the severe injury
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cases was 28% while the reduction in percentage correct prediction of

the non-severe injury cases was 14%. For All Far, there was no

improvement gained with Injury Type. Note that the models for the two

subsets with no damage to passenger compartments (Near NPCD and Far

NPCD) are likely to be less stable than those for other subsets due to

their very small numbers of severe injuries.
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------------------------------------------------------------ ----------+
I I

Estimated Model-s-with--L-ateral -Delta V, Age and Body Region I
I

Near PCD (N=206, LRS=56.44, DF=6) I

(3-34) p. = F(0.207 - 0.075X1 - 0.014X2 + 0.533X11 - 0.305X12 - I
.064X13 + 1.181X14)

Far PCD (N=168, LRS=54.65, DF=6) I

(3-35) p. = F(2.071 - 0.083X - 0.004X 0.165X + 0.286X I
2 12 150.317X16 - 0.784117)

I
Near NPCD* (N=61, LRS=21.63, DF=5) I

I
(3-36) p. = F(3.783 - 0.192X - 1.865X - 1.335X - 1.951X I

1 12 16 15- 1.667X18)

Far NPCD (N=54, LRS=7.26, DF=5) I
I

(3-37) pi = F(3.145 - 0.053X1 - 0.002X2 - 1.392X16 - 1.135X19 -

1.798X20) I

All Near* (N=267, LRS=78.90, DF=6) I
I

(3-38) p. = F(0.971 - 0.0697X + 0.555X + 0.137X - 0.356X16 -I15 21 I1.161X12 + 0.067X22)

All Far (N=222, LRS=56.38, DF=5)

(3-39) pi = F(2.220 - 0.089X1 - 0.004X2 + 0.381X15 - 0.309X16 - I

0.862X17)

where
X1 is Lateral Delta V,
X is Age,
X11 is 1 if it is Forearm, -1 otherwise,
X12 is 1 if it is Abdomen, -1 otherwise,
X is 1 if it is Lower Extremities, -1 otherwise,
X13 is 1 if it is ankle/foot, -1 otherwise,
X15 is 1 if it is Shoulder, -1 otherwise,
X is 1 if it is Chest, -1 otherwise,
X17 is 1 if it is Pelvis/Hip, -1 otherwise,

X18 is 1 if it is Elbow, -1 otherwise,
X19 is 1 if it is Face, -1 otherwise,
X20 is 1 if it is Neck, -1 otherwise,
X21 is 1 if it is Elbow/Forearm, -1 otherwise, and
X is 1 if it is Lower Extremities, Leg, Ankle/Foot, -1
otherwise.

*Age was not significant I

I

I

I
I

I
I
I

I
I

I
I
I

I

I

I
I

I
+----------------------------------------------------------------------+
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The models having Lateral Delta V, Age and Body Region as the

independent variables for the six subsets as shown in Equations 3-34 to

3-39 appeared reasonable in terms of the signs of the coefficients of

Lateral Delta V and Age. For Near NPCD and All Near, Age was found to

be not significant. The signs of the coefficients of the Body Region

dummy variables showed consistency--abdomen, chest, pelvis/hip, always

had negative coefficients, while ankle/foot, leg always had positive

coefficients with the exception of Near NPCD; elbow/forearm always had

positive coefficients. The implication of this was that an injury to

Abdomen or Chest or Pelvic/Hip is more likely to receive a severe injury

than an injury to Ankle/Foot or Leg or Elbow or Forearm. This in turn

was confirmed by the two-way contingency table of NEWOAIS3 and Body

Region, which indicated that the proportions of a severe injury to total

injuries were much higher for Abdomen and Chest than for Forearm, Elbow,

Ankle/Foot and Leg.

The models represented by Equations 3-34 to 3-39 showed mixed

results in terms of their improved predictive capability relative to the

models with only two continuous variables (Delta V and Age). For Near

PCD, the gain in percentage correct prediction of the severe injury

cases was 13% while the reduction in percentage correct prediction of

the non-severe injury cases was 3%. For Far PCD, the gain in percentage

correct prediction of the severe injury cases was 5% while the reduction

in percentage correct prediction of the non-severe injury cases was 2%.

For Near NPCD, the gain was 32% for severe injuries and the reduction

for non-severe injuries was 4%. For Far NPCD, no improvement resulted.

For All Near the gain was 27% for severe injuries and the reduction was

10% for cases with non-severe injuries; and for All Far, there was no

improvement. Again, the models for Near NPCD and Far NPCD are likely to

be less stable than those for other subsets due to their very small

numbers of cases of severe injuries.

Assessment of the Effects of Injury Type and Body Region.

The goodness of fit of the models represented by Equations 3-28 to 3-39

seemed to indicate that while Injury Type and Body Region appeared to

improve the models' predictive capability by better predicting the

severe injuries for near passengers, they did not do very much for the
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models involving far-side passengers. For Near PCD, the Injury Type

variable strongly influenced the prediction of severe injury cases

because:

1. Rupture and dislocation injuries in this subset almost
immediately implied NEWOAIS3 severe.

2. There were altogether 4 rupture injuries in Near PCD with valid
supplementary information, three of which had been mispredicted
by the two-variable model (i.e., model with Lateral Delta V and
Age); there were 6 dislocation injuries, four of which had been
mi. spredi cted.

3. There were altogether 68 fracture injuries in Near PCD, 38 of
which had been mispredicted. The probability of a severe
injury with fracture is about two thirds. Unlike rupture and
dislocation, the proportion of severe fracture injuries varied
with different body regions. For example, all fractured
forearms were associated with NEWOAIS3 severe, so were
fractured lower extremities, ankle-foot and neck; 70% of the
fractured faces also received NEWOAIS3 severe, and 65% of
fractured chest got NEWOAIS3 severe, etc.

The implication is that for Near PCD a Rupture, a Dislocation, or a

Fracture is prone to high injury severity, quite frequently regardless

of the associated values of Lateral Delta V. The mispredicted cases by

the two-variable model were frequently the severe injuries with low to

moderate values of Lateral Delta V.

For Far PCD, 10 cases out of the 24 fracture injuries had been

mispredicted, one out of the two dislocation injuries had been

mispredicted and 1 out of the 3 sprains had been mispredicted. These

three Injury Types could receive either NEWOAIS3 severe or non-severe

depending on the affected body regions. It appears that for a far-side

passenger to have received a severe injury the Lateral Delta V involved

would have had to be quite high. And therefore were likely to be

readily correctly predicted by the two-variable models (Lateral Delta V

and Age). Although there were some severe fractures, dislocations, and

sprains which had low Lateral Delta V and, therefore mispredicted by the

two-variable model, such cases occurred less frequently than in the

cases of near-side passengers. As a result, the injury-type variable

did not help to predict severe injuries as well for Far PCD as it did

for Near PCD. In fact for Far PCD the body region variable appeared to

be a better prediction variable than Injury Type.
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3.2.5 Final Models. For each subset, the dummy variables for

Injury Type and Body Region that had been created earlier were added to

Lateral Delta V and Age. The estimated models for the six subsets are

shown below. The estimated models for Near NPCD and Far NPCD appeared

unstable, the models did not converge and the constant term and the

coefficients of the logit function were extremely large. This was due

to their very small numbers of severe injuries.
+----------------------------------------------------------------------+

Estimated Models with Lateral Delta V, Age, Injury Type and Body
Region

Near PCD (N=203, LRS=104.12, DF=9)

(3-41) pi F2(-1.412 0.082X
+ 1.19X3 - 0.65^14 -02.85915)

Far PCD (N=167, LRS=72.41, DF=9)

(3-42) pi = F(1.414 - 0.094X1 - 0.0005X2 - 0.110X3 - 0.452X5 -

0.757X6 + 0.612X15 - 0.281X16 - 0.703X12 - 0..522X17)

Near NPCD (N = 61)
Unstab a**

Far NPCD (N = 54)
Unstable**

All Near* (N=264, LRS=140.86, DF=8)

(3-43) p. = F(-0.887 - 0.073X + 0.823X + 0.513X - 0.379X
16- 1.908X12 + 0.364122 + 1.373 - 4.026 5)

All Far (N=221, LRS=70.45, DF=6)

(3-44) p. = F(1.901 - 0.088X 0.003X 0.586X3 + 0.582X2 - 3 15 -0.192X - 1.176X 1)-
where X X ...122 are s ^ilarly defined as those in EquationsX
3-28 th^ougV 3-33

I *Age was not significant. I
I **Models did, not converge.
+----------------------------------------------------------------------+

Goodness of fit of the models are shown in Table 3.9. Considerable

improvement in the correct prediction of high-severity injuries were

noted for all subsets. These models predicted the high severity cases
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better than when the models had only either Injury Type or Body Region

in addition to Lateral Delta V and Age

Figures 3.21 and 3.22 show the histograms of pi for the Near PCD

and the Far PCD subsets. Each of these figures consists of two

histograms, one for non-severe injuries and the other for severe

injuries. Both histograms have the same axes, one designating the pi

values at the 0.05 interval and the other the number of cases with the

particular pi values. Comparisons of Figure 3.21 with Figure 3.5 and

Figure 3.22 with Figure 3.6 indicate that the additional independent

variables, namely, Injury Type and Body Region improved the models

predictive capability for severe injuries considerably for both subsets,

particularly for Near PCD.

FIGURE 3.21 Histograms of P, of Four-Variable Model (Lateral
Delta V, Age, Body Region land Injury Type) For Near PCD

Phase 1 Data - Side Impacts

The models for All Near (Equation 3-43) indicated that Age was not

significant. The difference in the models for near-side and far-side

passengers emerged somewhat more clearly from these models (Equations

3-41 to 3-44) as follows:

1. Fracture injuries for near-side passengers always had positive
coefficients whereas those for far-side passengers always had
negative coefficients.

2. The constant terms for near-side passenger were negative
quantities while those for far-side passenger were positive.
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Phase 1 Data - Side Impacts

TABLE 3.9

Goodness of Fit

Severity = F(Lateral Delta V, Age, Body Region, Injury Type)

Phase 1 Data - Side Impacts

I Sample Size I % Correct Prediction
Subset I---------------------+----------------------------------

I Non-Severe I Severe I Overall I Non-Severe I Severe
-----------+------------+--------+----------+------------+----------

I I I I I
Near PCD I 122 I 81 I 78 I 82 I 73
Far PCD I 140 I 27 I 90 I 95 I 63
Near NPCD I 54 I 7 I unstable I unstable I unstable
Far NPCD I 51 I 3 I unstable I unstable I unstable

ALL NEAR* I 176 I 88 I 83 I 89 I 72
ALL FAR I 191 I 30 I 91 I 97 I 53

*Age was redundant

3. The two-way contingency table between NEWOAIS3 and Injury Type
indicated that the chance of fracture injuries to be severe was
about 62% for near-side passengers and about 46% for far-side
passengers.
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4. It was also noted that for far-side passengers, both the injury
type and the body region, when incorporated into the models,
caused only a small reduction i n the correct prediction of t h e
low severity cases.

Near-side and far-side passengers displayed the following

imilarities:

1. Coefficients for Lateral Delta' V and Age of both were
comparable.

2. Dislocation injuries, chest and abdomen always had negative
coefficients. The two-way contingency table between NEWOAIS3
and dislocation indicated that dislocation resulted in severe
injuries to near-side passengers more often than far-side
passengers. Injuries to the chest and abdomen were more likely
to be severe for near-side passengers than for far-side
passengers.

s

By adding Injury Type and Body Region into the models, the sample

size (N) in the modelling of each subset was reduced considerably due to

the missing data of the injury-type and the body-region being excluded

from the. analysis. Table 3.10 shows the number of valid cases for each

subset. Table 3.11 shows the missing cases for Near PCD and Far PCD by

GALS by the Lateral Delta V values.

For Near PCD, the missing cases should not significantly affect the

modeling results. From the results of the earliest models (i . e. ,

NEWOAIS3 as a function of Lateral Delta V and Age) it was recognized

that the mispredictions of injuries occurred in the cases with low to

moderate Lateral Delta V but NEWOAIS3 severe. The absence of many of

such cases could discredit the modelling results when Injury Type and

Body Region entered the models. The absence of cases with low OAIS

(0--2) should not affect the subsequent modelling results in any way

because they were the cases which the earlier models could predict quite

accurately.

For Far PCD, however, by bringing Injury Type and Body Region into

the model, ten cases of injuries with low to moderate Lateral Delta V

and NEWOAIS3 severe became lost. This represented 50% of the originally

mispredicted cases which would have needed further investigation and

analyses.
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TABLE 3.11 

M iss ing  Cases by NEWOAIS3 Codes and L a t e r a l  D e l t a  V 

Phase 1 Data - S ide  Impacts 

................................................................................................ 
I No. o f  cases I No. o f  M i ss i ng  Cases 
I m i  sp red i  c t  ed by l--------------------------------------------------------- 
I e a r l  i e r  model I Non-Severe I Severe 

Subset I-------------------------+----------------------------+----------------------------  
I I I L a t e r a l  I L a t e r a l  I L a t e r a l  I L a t e r a l  
I Non-Severe I Severe I D e l t a  V I D e l t a  V I D e l t a  V 1 D e l t a  V 
I I 1 (0-20 mph) 1 (20+ mph) 1 (0-20 mph) 1 (20+ mph) 

------------+--------------+----------+--------------+-------------+--------------+------------- 
I I I I I I 

Near PCD I 11 1 6 1  I 107 I 1 I 7 I 7 
I 

Fa r  PCD I 



It is worth noting that the estimated models for different subsets,

which have Lateral Delta V, Age, Injury Type and Body Region as the

independent variables, all displayed one common characteristic. The

coefficients of the injury-type dummy variables and the body-region

dummy variables were considerably larger in magnitude than those of the

Lateral Delta V variable and Age. This seems to imply that given a side

impact accident the Injury Type and the affected body region combined

can, especially for the severe cases, almost predict the resulting

injury severity without information on crash severity. A cursory

examination of the three-way tables of NEWOAIS3, Injury Type and Body

Region confirmed this. Injury Type and Body Region are felt to be bad

choices for the independent variables because the combination of both

immediately reflects, for certain injury types and certain body regions,

the NEWOAIS3 coding. From the ideal model viewpoint the models should

use crash severity to predict injury severity, injury type and affected

body region. This leads to the question of whether Injury Type and Body

Region should be selected as the independent variables or whether other

more "causal" variables should be found to replace these two variables.

Intuitively, Lateral Delta V together with Contact Point and the

position of occupants relative to the impact would be expected to give

some information about the types of injuries suffered by particular body

regions. If such were the case, Contact Point might prove to be a more

desirable independent variable than both the Injury Type and Body Region

variables.

The development of mechanistic models for side impacts is continued

with the addition of the Phase 2 data in the next section.
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3.3 Final Analytical Results for Side Impacts

The mechanistic model development was continued when the Phase 2

data files were prepared. Perhaps the most critical task was the

validation of the Phase 1 models with the Phase 2 data as discussed in

Section 2. One would hope that the relationships developed with the

Phase 1 data would reflect the basic physical principles governing the

collision event, and, therefore, would be stable. Since Phase 2 is

simply a continuation of NCSS, it would indeed be disappointing if the

results of the modelling efforts were appreciably different for the two

Phases. The Phase 1 models are validated by determining their

predictive capability when applied to the Phase 2 data. The Phase 2

data is also used to re-estimate the coefficients of the Delta V and Age

models. These results form a basis for the combination of the Phase 1

and the Phase 2 data as described in Section 3.3.3. With the increased

sample size through combining the data of both phases, additional

variables are again considered for the models. Efforts are made to

combine the subsets also. Contact Point is reviewed, and the final

models are presented in Section 3.3.5. This section closes with a

discussion of the significant findings.

3.3.1 Validation of the Phase 1 Models. The estimated Phase 1

models as represented by Equations 3-20 to 3-25 were applied to the

Phase 2 data and a goodness of fit for the six subsets was obtained as

shown in Table 3.12.

Comparison of Table 3.12 with the goodness of fit of the Phase 1

data (Table 3.5) reveals that:

1. For each subset, the overall proportion of cases correctly

predicted by the models for the Phase 2 data was 5% to 8% lower

than for the Phase 1 data.

2. For Near PCD and All Near, the models actually predicted the

severe injury cases about 6% to 9% better for the Phase 2 data

than for the Phase 1 data. However, for these same subsets

the proportion of the correct prediction for non-severe

injuries was about 3% to 7% lower for the Phase 2 data than for

the Phase 1 data.
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TABLE 3.12

Goodness of Fit

Severity = F(Lateral Delta V, Age)

Phase 2 Data - Side Impacts

Sample Size I Percent Correct Prediction
1-----------------+--------------------------------

Subset I Non- I I I Non- I
Severe I Severe I Overall I Severe I Severe

-----------+--------+--------+-----------+----------+---------
Near PCD I 174 I 91 I 73.2 I 87.9 I 45.1
Far PCD 218 ( 41 I 86.9 I 98.2 I 26.8
Near NPCD 106 I 10 I 91.4 100.0 I 0
Far NPCD I 96 1 9 I 91.4 I 100.0 I 0

ALL NEAR I 280 I 101 I 77.4 I 93.6 I 32.7
ALL FAR I 314 I 50 I 88.2 I 99.0 I 20.0

3. For Far PCD and All Far, the models predicted the severe injury

cases i n the Phase 2 data only half as well as they did i n t h e

Phase 1 data. .The prediction of non-severe injuries for these

subsets, however, were identical in the Phase 2 data and the

Phase 1 data.

TABLE 3.13

Lateral Delta V

Phase 2 Data - Side Impacts

I Sample I I I
Subset I Size I Range I Mean I S.D.

---------------+------------+-----------+- -------+----------
Near PCD 1 330 I 2-42 I 13.14 I 6.93
Far PCD I 309 I 2-49 1 13.27 1 6.93
Near NPCD 1 135 I 2-24 I 8.64 I 4.05
Far NPCD 127 I 2-22 9.27 I 4.13
All Near I 465 I 2-42 1 11.83 1 6.14
All Far I 436 1 2-49 I 12.10 I 6.50

---------------------------------------------------------------
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3.3.2 Model Estimation - Phase 2 Data. Table 3.13 gives the

details on Lateral Delta V in the. Phase 2 data for the six subsets,

while Table 3.14 gives the proportions of severe and non-severe injuries

for the six subsets. The ranges of Lateral Delta V for near-side

occupants and far-side occupants were comparable. The ranges for cases

with passenger compartment damage, however, were much larger than for

cases with non-passenger compartment damage. Near-side occupants in

vehicles with passenger compartment damage were far more likely to

sustain high severity injuries than either far-side occupants or

occupants of vehicles with non-passenger compartment damage. The ranges

of Lateral Delta V and the proportions of severe injuries to total

injuries of the subsets in the Phase 2 data were comparable with t h o s e

in the Phase 1 data.

TABLE 3.14

Injury Proportion

Phase 2 Data - Side Impacts

------------------------------------------------------------------------
I Sample I Percent of Non- I Percent of

Subset I Size I Severe Injuries I Severe Injuries
--------------+------------+---------------------+---------------------

Near PCD 445 I 67.6 32.4
Far PCD 421 85.5 I 14.5
Near NPCD I 194 I 93.8 I 6.2
Far NPCD I 176 93.2 I 6.8
All Near I 639 I 75.6 I 24.4
All Far I 597 I 87.8 I 12.2

-----------------------------------------------------------------------

-

-

The goodness of fit results contained in Table 3.12 were based on

fitting the Phase 1 data models to the Phase 2 data. It is envision

that still better goodness of fit would be obtained if the estimation

was based on the Phase 2 data. Since Lateral Delta V and Age appeared

to be significant explanatory variables of injury severity in the

Phase 1 models, the coefficients of these two independent variables

therefore should be estimated using the Phase 2 data. The goodness of

fit of these new models should then be determined and compared with that

contained in Table 3.5 and Table 3.12.
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The model estimation results of the Phase 2 data with Lateral Delta

V and Age as the independent variables are as follows:
+----------------------------------------------------+

Estimated Models with Lateral Delta V and Age

Near PCD (N=265, LRS=52.19, DF=2) I

(3-45) pi = F(2.0218 - 0.0781X1 - 0.0166X2)

Far PCD (N=259, LRS=46.62, DF=2)

(3-46) pi = F(2.6633 - 0.0897X1 - 0.0097X2)

Near NPCD (N=116, LRS=19.59, DF=2)

(3-47) p'i = F(4.2348 - 0.1509X1 - 0.0301X2)

Far NPCD (N=105, LRS=19.12, DF=2)

(3-48) pi = F(3.5252 - 0.1844X1 - 0.0019X2)

All Near (N=381, LRS=86.39, DF=2)

(3-49) p'i = F(2.4584 - 0.0975X1 - 0.0174X2)

All Far (N=364, LRS=65.48, DF=2)

(3-50) pi = F(2.7960 - 0.0988X1 - 0.0095X2)

I where I

I pi is the probability of a non-severe injury, I

F is the logistic distribution, I

I X1 is Lateral Delta V, I

X2 is Age, and I

LRS is the Likelihood Ratio Statistic. I
+-----------------------------------------------------+

The goodness of fit of the models represented by Equations 3-45 to

3-50 is shown in Table 3.15.

Comparison of the goodness of fit results of the Phase 2 data 2-

variable models (Lateral Delta V and Age) as shown in Table 3.15 with

those of the Phase 1 data 2-variable models (Table 3.5) reveals that:

1 . The percent overall correct prediction of the Phase 2 d a t a

models was lower than that of the Phase 1 data models, about
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TABLE 3.15

Goodness of Fit

Injury Severity = F(Lateral Delta V, Age)

Phase 2 Data - Side Impacts

I Sample Size I Percent Correct Prediction
Subset I---------------------+---------------------------------

I Non-Severe I Severe I Overall I Non-Severe I Severe
-----------+------------+--------+----------+------------+--------

Near PCD I 174 I 91 I 75-.1 I 90.8 I 45.1
Far PCD 218 I 41 I 86.5 I 97.7 I 26.8
Near NPCD I 106 I 10 I 92.2 I 99.1 I 20.0
Far NPCD I 96 I 9 I 92.4 I 97.9 I 33.3
All Near I 280 I 101 I 80.1 I 94.6 I 39.6
All Far I 314 I 50 I 87.9 I 98.4 I 22.0

------------------------------------------------------------------

3-4% lower for near-side occupants, and about 6-7% for far-

side occupants.

2. For near-side occupants, the percent correct prediction of

severe injuries of the Phase 2 models was some 10% higher than

that of the Phase 1 models, the percent correct prediction for

non-severe injuries of the Phase 2 data models was about 4%

lower. For far-side occupants, the Phase 2 models predicted

severe injuries absent 20% worse than the Phase 1 models but

they predicted non-severe injuries just as well.

Comparison of the goodness of fit measures for the Phase 2 models

in Table 3.15 and the goodness of fit measures of the Phase 1 models

applied to the Phase 2 data in Table 3.12 reveals that:

1. The percent overall correct prediction was only slightly

higher when the Phase 2 models were actually estimated than

when applying the Phase 1 models to the Phase 2 data.

2. The percent correct prediction for severe and non-severe

injuries, with the exception of Near NPCD and Far NPCD, were

not significantly different when the Phase 2 data models were

actually estimated and when directly applying the Phase 1

models to the Phase 2 data.
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Figures 3.23 to 3.26 show the histograms of the probability, pi, of

the occurrence of a non-severe injury as a function of Lateral Delta V

and Age for Near PCD, Far PCD, Near NPCD and Far NPCD based on Equations

3-45 to 3-48. Each figure consists of two histograms, one for non-

severe injuries and the other for severe injuries. Both histograms have

the same axes, one represents the estimated probability of a non-severe

injury and the other the number of cases with the particular pi values.

A Fii value greater than 0.5 would imply the occurrence of a non-severe

injury while a value less than 0.5 would imply the occurrence of a

severe injury. For Near PCD, Far PCD, Near NPCD and Far NPCD, the

prediction of non-severe injuries was indeed very good, that is the

models were predicting correctly almost all of the time. For severe

injuries, however, the models were not doing quite as well, the Near PCD

model was only predicting correctly on the average of about 45% of the

time, the models for the other three subsets were correct about 20 to

30% of the time.
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FIGURE 3.23 Histograms of P. of Two-Variable
Model (Lateral Delta V, Ag^) For Near PCD

Phase 2 Data - Side Impacts

The estimated logistic curves for each of these four subsets are

shown in Figure 3.27. The logistic curves shows the estimated

probability of an occupant receiving a severe injury (1-pi) as a

function of Lateral Delta V alone; Age was fixed at 30 for these curves.

It appears that of the two main subsets, Near PCD and Far PCD, the

probability of a severe injury was higher in Near PCD for Lateral
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Delta V values smaller than 40 mph. As Lateral Delta V becomes 1 arger

than 40 mph the probability of a severe injury predicted by either model

approaches one. The Near PCD model would predict a severe injury for

Lateral Delta V greater than 20 mph and vice versa. The Far PCD model

would predict a severe injury for Lateral Delta V greater than 28 mph

and vice versa. Comparison of Figure 3.27 with Figure 3.11 (the Phase 1

logistic curves for the same subsets) indicated the similarities between

the Near PCD models and the Far PCD models of the two phases. The

111



NEWORISS. NOT SEVERE NEWORISS. SEVERE
M 2^

35

m

25
Y

z z
20 W

W W

15

to

0 M m m ® 0
0. .1 .2 .3 .11 .5 .B .7 .8 .9 1 0. .1 .2 .3 Y .5 .9 .7 .8

PREDICTED PROBABILITY PREDICTED PROBABILITY
OF NON-SEVERE INJURY OF NON-SEVERE INJURY

FIGURE 3.26 Histograms of P. of Two-Variable
Model (Lateral Delta V, Agl) For Far NPCD

Phase 2 Data - Side Impacts

1.00
NEAR PCO

00.90
FAR PCD

!0. 60
NEAR NPCO

=0.70
W

-liii,.- FAR NPCO
00.60

00.50

,>-0.40

-"•0.30

M
00.20

S.0.10

0.0
1 7 13 19 25 31 37 93 49 55 61

4 10 16 22 26 34 40 46 52 56
LATERAL DELTA V

FIGURE 3.27 Logistic Curves of Two-Variable Model
(Lateral Delta V, Age) For Side-Impact Subsets

Phase 2 Data - Side Impacts

differences in the Near NPCD models of the two phases and the Far NP CD

models of the two phases were considerable. These differences were not

unexpected since the numbers of severe injuries in these subsets were
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very small in both phases. The models of these subsets consequently had

very wide confidence intervals. The effect of Age is illustrated for

each subset in Figures 3.28 to 3.31. Each figure, representing a model

for a particular subset, consists of three curves for Age of 20, 40 and

60. The curves are the plots of the probability of a severe injury (1-

pi) as a function of Lateral Delta V. The effect of Age is comparable

for the Near PCD, Near NPCD, and Far PCD, but negligible in the Far NPCD

subset. The Age-Effect plots show, with the exception of Far NPCD, that

given any value of Lateral Delta V an older occupant is expected to have

a higher probability of a severe injury than a younger occupant. The

confidence limits for each subset are illustrated in Figures 3.32 to

3.35. Each figure, representing a model for a particular subset,

consists of three curves designating the upper bound, the lower bound

and the estimated probability of a severe injury (1-pi). In general,

the confidence limits are tighter for the PCD (passenger compartment

damage) subsets. The narrower band of confidence limits -indicates that

the model has a smaller variance in predicting the probabilities of

113



1.00
r AGE 20
00.90

----- AGE 40
!o.eo

............ AGE 60

v :0.60

00.50

X0.40

_J 0.30
C
00.20
C
6.0.10

0.0
1 7 13 19 25 31 37 43 49 55 61

4 10 16 22 26 34 40 46 52 56
LRTERAL DELTR V

FIGURE 3.29 The Age Effect of Two-Variable
Model (Lateral Delta V, Age) For Far PCD

Phase 2 - Side Impacts

injury severity and therefore has a better chance of producing the

similar results when different sets of data are analysed. Such

repeatability is a desirable quality of a model. For the Near PCD and

the Far PCD models, the largest variance in prediction occurs for the

range of Lateral Delta V about 25 to 35 mph. For the models of the

subsets with no passenger compartment damage the variances in prediction

are very large, a result of a very small number of severe injuries in

the samples (about 10% of total injuries). Their very large confidence

limits are indicative of the models' inherent lack of stability. The

Near and Far PCD subsets are compared in Figure 3.36. Substantial

over-lap in the confidence limits is seen as Lateral Delta V values

become larger (greater than 25 mph). The difference between the two

models in prediction is more considerable at low or moderate Lateral

Delta V than at higher Lateral Delta V. The Near PCD model predicted a

higher probability of a severe injury than the Far PCD model for a given

value of Lateral Delta V.
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Tables 3.16 to 3.17 summarizes the "outliers" by Body Region and

Injury Type. Comparison of the "outliers" by Body Region in the Phase 1

and the Phase 2 data revealed that the body regions which tended to

result in injury misprediction in both phases were comparable; such body

regions were Chest, Abdomen, Forearm, and to a lesser extent Pelvic/Hip

and the lower limbs. Injury Types which tended to result in injury

misprediction were also comparable in both phases. These Injury Types

were Rupture, Dislocation and Fracture. In both phases, fractures

appeared to have occurred far more frequently than ruptures or

dislocation. Table 3.18 summaries the outliers by Body Region for

fractures only. Table 3.16 and Table 3.18 can be used together to give

more information about the mi spredi cti on of fractures of specific body

regions. For example, one can see that the majority of the mispredicted

chest (34 out of 39) and pelvic-hip/thigh (12 out of 14) injuries in

Table 3.16 were fractures. The analysis of the outliers in both Phase 1

and Phase 2 data indicated that the data could be pooled.
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The Phase 1 two-variable (Lateral Delta V and Age) models predicted

injury severity almost as well when applied to the Phase 2 data.

Furthermore, the Phase 1 models and the Phase 2 models did not yield

appreciably dissimilar goodness of fit results. In general, the

prediction of non-severe injuries in both phases was comparable. The

prediction of severe injuries was also comparable for near-side

occupants while that for far-side occupants showed somewhat more

variability, which could be attributed to the relatively smaller sample

size of the severe injuries of far-side occupants and/or to the fact

that prediction of severe injuries had generally been, at least to date,

tenuous. This seems to imply that the Phase 1 data and the Phase 2 data

were similar so that they could be combined.
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TABLE 3.16

List of Body Regions Associated with
Large Percent of Outliers

Phase 2 Data - Side Impacts

Body Regions* That I
Subset I Yield Large Percent of I Total Number I Number of

Misprediction I of Cases I Misprediction
---------------+------------------------+--------------+---------------
Near PCD Forearm 6 I 5

I Abdomen I 13 I 8
1 Chest I 38 I 17
1 Pelvic/Hip,Thigh I 27 I 11
I ------------------------+--------------+---------------

Far PCD I Abdomen 8 I 5
I Chest I 27 I 14
i------------------------+--------------+---------------

Near NPCD I Lower Leg/Ankle I 2 I 2
6I Chest 9 I

I ------------------------+--------------+---------------
Far NPCD Chest I 3 I 2

I ------------------------+--------------+---------------
All the I Forearms I 9 6
Above Subsets I Abdomen 22 I 13
Together, I Chest I 76 I 39

I Pelvic/Hip,Thigh I 38 I 14

*Body regions were ranked within subsets by the larger magnitude

of misprediction proportions.
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TABLE 3.17

List of Injury Types Associated with
Large Percent of Outliers

Phase 2 Data - Side Impacts

Injury Types Which I Number
Subset I Yield Large Percent I Total Number I of

{ of Misprediction I of Cases I Mispredictions
---------------+---------------------+--------------+----------------
Near PCD I Crushing I 3 2

I Fracture 71 I 37
Rupture 2 1
Dislocation 2 I 1

I ---------------------+--------------+----------------
Far PCD I Rupture I 3 2

Fracture I 34 I 20
Dislocation I 2 I 1

I ---------------------+--------------+----------------
Near NPCD I Fracture 11 8

---------------------+--------------+----------------
Far NPCD Abrasion I 2 1

---------------------+--------------+----------------
All the I Crushing I 3 I 2
Above Subsets I Rupture I 5 I 3
Together I Fracture I 128 I 69

I Dislocation I 5 2

*Injury Types were ranked within subsets by the higher percent

of misprediction.
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TABLE 3.18

Fractures Only
List of Body Regions Associated with

Large Percent of Outliers

Phase 2 Data - Side Impacts

---.-----------------------------------------------------------------
Body Regions* Which I I

Subset I Yield Large Percent Total Number I Number of
I of Misprediction I of Cases Misprediction

----------------+---------------------+--------------+---------------
Near PCD Neck I 3 I 3

Forearm I 6 I 5
I Chest I 25 I 14

Thigh I 6 I 3
Face I 2 I 1
Pelvic/Hip I 16 I 7

I ---------------------+--------------+---------------
Far PCD I Chest I 17 I 13

I Pelvic/Hip,Thigh 2 I 1
I Neck I 2 I 1
I Face I 2 I 1
I ---------------------+--------------+---------------

Near NPCD I Lower Leg,Ankle I 2 I 2
Chest I 6 I 5

---------------------+--------------+---------------
Far NPCD I Chest I 3 I 2

Neck I 2 I 1
I ---------------------+--------------+---------------

All the I Forearm I 8 6
Above Subsets I Neck I 7 I 5
Together I Chest I 51 I 34

Face I 5 I 3
Pelvic/Hip,Thigh I 26 I 12

I Ankle/Foot I 2 I 1
---------------------------------------------------------------------

*Body regions were ranked within subsets by the large percent

of mi spredi ct i on.
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3.3..3 Combining Phase 1 and Phase 2 Data. The modelling results

of the Phase 1 data and the Phase 2 data on the side collisions had

indicated, in general, the Phase 1 two-variable models predicted the

Phase 2 data nearly as well; they also predicted the Phase 2 data

similarly to the estimated Phase 2 two-variable models. This was

further confirmed by the similarity in the "outliers" based on the

models of both phases in terms of injury types and body regions and by

the similarity in the histograms of the pi values of both phases for all

subsets. Combining of the data from both phases was therefore further

investigated statistically and the statistical results are shown in

Table 3.19. Details of this aspect of combining the data can be found

in Section 3.1. In brief, the null hypothesis, HO, is that one model

will adequately describe the Phase 1 and Phase 2 data. The alternative

hypothesis, H1, is that two independent models are required to describe

the different phases. The statistical test used is the Likelihood Ratio

Statistic which is discussed in more detail in Section 3.1.2. The

results in Table 3.19 indicate that the Phase 1 and Phase 2 data can be

combined for all the side-collision subsets.

TABLE 3.19

Statistical Results In
Combining Phase 1 and Phase 2 Data

Side Impacts

-------------------------------------------------------------------
Subset -2Log Loa I -2Log L 1 b I LRSc I df

---------------+---------------+---------------+----------+--------

Near PCD I 679.04 I 676.24 I 2.80 I 3
Far PCD I 378.90 I 375.84 I 3.06 3
Near NPCD 124.17 121.42 I 2.75 I 3
Far NPCD I 97.13 I 92.86 I 4.27 I 3

ALL NEAR 849.45 I 847.52 I 1.93 I 3
ALL FAR I 477.55 I 473.28 I 4.27 I 3

-------------------------------------------------------------------

aL0 is the likelihood of the data under the null hypothesis

b L 1 is the likelihood of the data under the alternative

hypothesis

cLRS is asymptotically chi-square with df specified
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Table 3.20 shows the number of cases of the combined Phase 1 a n d

Phase 2 data with valid NEWOAIS3 codes, Lateral Delta V and Age.

TABLE 3.20

Descriptive Statistics for Key Variables
in the Side Impact Subsets

Phases 1 and 2 - Side Impacts

I (Proportions of ILateral Delta VI Age
Subset ISamplelSevere Injuriesl---------------+---------------

I Size I (%) IRangelMeanlS.D.IRangelMeanlS.D.
---------+------+---------------+-----+----+----+-----+----+----

I I I I I I I I
Near PCD 1883 I 35.6 12-57 113.217.4 10-90 1 31 118.8
Far PCD 870 1 17.4 11-52 113.617.8 10-98 1 31 118.5
Near NPCDI 419 I 6.2 11-36 1 8.314.4 10-85 133 118.5
Far NPCD 1 416 1 5.8 11-28 1 8.614.4 10-85 1 32 118.6

Figure 3.37 shows the cumulative distribution of Lateral Delta V

for all subsets. The cumulative curves of Lateral Delta V for Near PCD

and Far PCD are almost identical. They are different from those for

Near NPCD and Far NPCD, whose range of Lateral Delta V was considerably

smaller. The results of the model estimation for the combined Phase 1

and Phase 2 data are shown in Equations 3-51 to 3-56.
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+•-------------------------------------------------------+
1 I

Estimated Models with Lateral Delta V and Age I

Near PCD (N=650, LRS=147.51, DF=2)

(3-51) pi = F(2.1426 - 0.0926X1 - 0.0152X2)

Far PCD (N=639, LRS=154.86, DF=2)

(3-52) F(3.1356 - 0.1079X1 - 0.0124X2)

Near NPCD (N=329, LRS=32.03, DF=2)

(3-53) pi = F(3.5282 - 0.1014X1 - 0.0248X2)

Far NPCD (N=325, LRS=30.43, DF=2) I

(3-54) F(3.6222-- 0.1401X1 - 0.0111X2)

Near All (N=979, LRS=234.24, DF=2)

(3-55) pi = F(2.5262 - 0.1074X1 - 0.0158X2)

Far All (N=964, LRS=206.93, DF=2)
I I
I where

pi is the probability of a non-severe injury, I

I F is the logistic distribution, I

X1 is Lateral Delta V, I

X2 is Age, and I

I LRS is the Likelihood Ratio Statistic.
---------------------------------------------------------

The goodness of fit results of the estimated models for the

combined data are shown in Table 3.21.

Figures 3.38 to 3.43 show the histograms of the pi values of the

six subsets based on Equations 3-51 to 3-56. Each figure, representing

each model for a particular subset, consists of a pair of histograms ,

one for non-severe injuries and the other for severe injuries. The axes

of both histograms are identical, one representing the estimated

probability of a non-severe injury (pi) at a 0.05 interval and the other

the number of cases with particular pi values. The Phase 1 and Phase 2

combined two-variable (Lateral Delta V and Age) models indicated that,

in general, the models for far-side occupants tended to predict overall
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TABLE 3.21

Goodness of Fit

Severity = F(Lateral Delta V, Age)

Phases 1 and 2 - Side Impacts

------------------------------------------------------------------
I Sample Size I Percent Correct Prediction

Subset I---------------------+--------------------------------
I Non-Severe I Severe I Overall I Non-Severe I Severe

-----------+------------+--------+----------+------------+--------

Near PCD 1 434 1 216 1 75.2 1 91.9 1 41.7
Far PCD 1 545 I 94 I 89.1 I 97.6 I 39.4
Near NPCD 1 308 I 21 1 93.3 1 99.4 1 4.8
Far NPCD I 309 I 16 I 94.8 I 99.4 I 6.3

ALL FAR 1 742 I 237 I 80.7 I 95.7 I 33.8
ALL NEAR I 854 1 110 I 91.0 I 98.2 I 34.5

injury severity better than those for near-side occupants. Of the f our

independent subsets, Near PCD, Far PCD, Near NPCD and Far NPCD, the

first subset had the lowest overall percent correct prediction (75%

compared to 90% or over for the other three subsets). This is due to

the near-perfect prediction of non-severe cases in the other three

subsets. As with the Phases 1 and Phases 2 models, the prediction of

non-severe injuries is very good for all subsets. The prediction of

severe injuries, however, remains somewhat unsatisfactory.

The estimated logistic curves for the four subsets Near PCD, Far

PCD, Near NPCD, and Far NPCD are shown in Figure 3.44. These curves

show the effect of Lateral Delta V on the predicted probability of a

severe injury (1-pi) when Age is held fixed at 30. The Near PCD curve

looks quite different from the other three curves, particularly at the

lower range of Lateral Delta V values. The curves suggest that

occupants of the Near PCD subset had considerably higher estimated

probabilities of severe injures than those in the other three subsets.

The logistic curves of the other three subsets - Far PCD, Far NPCD, and

Near NPCD look very similar to one another. The effect of Age is shown

in Figures 3.45 to 3.48. All four subsets now show comparable effects
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of Age. Each of the Age-Effect figures consists of three curves for Age

at 20, 40 and 60. The age effect tends to be move pronounced for the

Far PCD and the Near PCD models than for the models involving no

passenger compartment damage. Furthermore, in the former two subsets,

the age effect is most prominent at moderate Lateral Delta V values

(about 10 to 30 mph). For all subsets, older occupants are expected to

show less resistance to severe injuries than the younger counterparts.

Confidence limits as a function of Delta V are shown in Figures 3.49 -
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3.52. Each figure, representing a model for a particular subset,

consists of three curves which are the upper bound, the lower bound and

the estimated probability of a severe injury (1-pi). For the Near PCD

model, the confidence interval approaches zero as Lateral Delta V

approaches a value of about 50 mph. For Far PCD, Near NPCD, and Far

NPCD the confidence intervals approach zero as Lateral Delta V becomes

very small or very large. The confidence limits of the Near PCD and the

Far PCD models are considerably smaller than those of the Near NPCD and
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.9 1

the Far NPCD models. This is due to the much smaller number of severe

injuries in Near NPCD and Far NPCD (less than 10% of total injuries).

Figure 3.53 compares the Near and Far PCD subsets. The figure shows

that the difference between the Near PCD model and the Far PCD models is

the prediction of severity is more considerable when Lateral Delta V

values are low or moderate (up to 30mph). A small overlap of the two

confidence intervals occurs at Lateral Delta V of greater than 25 mph,

the range at which the estimated probability of a severe injury is
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approaching a value of one. Figure 3.53 indicates that the Near PCD and

the Far PCD models are dissimilar.
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FIGURE 3.44 Logistic Curves of Two-Variable Models
(Lateral Delta V, Age) For Side-Impact Subsets

Phases 1 and 2 - Side Impacts

. The modelling results so far from the combined data suggested that

the non-passenger compartment damage subsets (i.e., Near NPCD and Far

NPCD) were not very different. Furthermore, these two subsets appeared

to be far more similar to Far PCD than to Near PCD both i n terms of

model estimation and goodness of fit results. In fact, further

statistical investigation of the two-variable models of these four

independent subsets revealed that the combined Phase 1 and Phase 2 data

can be pooled across the subsets as shown by the statistical results in

Tables 3.22 and 3.23. Collapsing of the individual subsets in this

manner was indeed desirable since it would increase the sample size of

severe injuries and therefore make the subsequent models more stable.

In addition, by combining Far PCD with Far NPCD and Near NPCD to form

one subset while retaining Near PCD as another subset, the ranges of the

key independent variable, especially Lateral Delta V, became more
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FIGURE 3.45 The Age Effect of Two-Variable Model
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Phases 1 and 2 - Side Impacts

comparable across these two new subsets. Comparison of the models for

different subsets now would become more meaningful.

Therefore the final subsets used i n the combined Phase 1 and

Phase 2 were:

1. Near PCD which refers to near-side occupants with passenger

compartment damage.
2. Far 0cc + Near NPCD which includes all far side occupants and

near-side occupants with non-passenger compartment damage.

The modelling results of the new subsets which have Lateral Delta V

and Age as the independent variables are shown below.
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+-------------------------------------------------------------------+

(Estimated Models of the New Subsets with Lateral Delta V and Age i

Near PCD (N=650, LRS=147.51 , DF=2)

1(3-57) "pi = F(2.1426 - 0.0926X1 - 0.0152X2)

Far OCC. + Near NPCD (N=1293, LRS=242.14, DF=2)

1(3-58) Pi = F(3.2672 - 0.1104X1 - 0.0146X2) I

I where

p. is the estimated probability of a non-severe injury,
I F1is the logistic distribution,

X1 is Lateral Delta V,
X is Age, and
L^S is the Likelihood Ratio Statistic.

+-------------------------------------------------------------------+

The goodness of fit results of Equations 3-57 and 3-58 are shown in

Table 3.24 and Figures 3.54 and 3.55 show the histograms of the pi

values for the Near PCD model and the (Far 0cc + Near NPCD models)
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Phases 1 and 2 - Side Impacts

respectively. Again, the models predicted non-severe injuries almost

perfectly but the prediction of severe injuries was somewhat

unsatisfactory.

The estimated logit curves for the combined subsets are shown in

Figure 3.56. Confidence intervals are shown on this plot. The

confidence intervals of both models are quite tight, particularly at

either very low or very high values of Lateral Delta V. The difference

in the Near PCD model and the (Far 0cc + Near NPCD) model in predicting

the severity is that the former will, given a value of Lateral Delta V,

result in a higher probability of a severe injury almost all of the

time. This is especially true for Lateral Delta V less than about 30

mph. Comparison of Figure 3.57 and 3.58 illustrates that the effect of

Age is very similar in the two final subsets. Each figure, consisting

of three curves for Age of 20, 40 and 60, indicates that older

occupants, in general, show higher probabilities of severe injuries than

younger occupants. Confidence limits are shown separately for each

subset in Figures 3.59 and 3.60.
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TABLE 3.22

Statistical Results
Combining Far PCD, Far NPCD and Near NPCD

Phases 1 and 2 Side Impacts

Hypothesis I -2Log L I df.
---------------------+-----------------------------+---------------

I
H0 605.97 I 3

I
H1 I 600.20 9

I-----------------------------+---------------
i

Chi-Square = 5.77 I 6

here H0: 3 subsets have the same model

H1: 3 subsets have different models
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TABLE 3.23

Statistical Results
Combining Near PCD, Far PCD, Near NPCD

Phases I and 2 Side Impacts

---------------------------------------------------------------------
Hypothesis I -2Log L I df.

---------------------------------------------------------------------

H0 1219.40 3

H1 I 1285.04 6
I ------------------------------+---------------
I
I Chi-square = 34.36 I 3

---------------------------------------------------------------------

where H0: All subsets follow the same model

Ni: Near PCD is different from 3 subsets combined under a

fit with the same model.

TABLE 3.24

Goodness of Fit

Severity = F(Lateral Delta V, Age)

Phases 1 and 2 - Side Impacts

----------------------------------------------------------------
I Sample Size (Percent Correct Prediction

Subset I-----------------+--------------------------
INon-SeverelSeverel0verall INon-SeverelSevere

-------------------+----------+------+--------+----------+------
I I I I I

Near PCD I 434 1216 I 75.2 I 91.9 141.7
I I I I I

Far 0cc + Near NPCDI 1162 1 131 I 91.7 I 98.6 130.5
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3.3.4 Model Estimation - Phases 1 and 2 Combined. In order to

improve the predictive capability of Equation 3-57 and 3-58,

particularly in predicting severe injuries, other potential independent

variables were investigated. They were:

Vehicle Weight
Object Contacted
Rural/Urban
Vehicle Model Year
Ejection
Restraint Usage
Contact Point
Body Region
Injury Type

Each of these variables was examined with a view to introducing it into

the model where Lateral Delta V and Age were present. Results from

these analyses are given below.

Object Contacted. Object contacted was incorporated into

the modelling as a dummy variable. This variable was coded 0 i f the

object contacted was a passenger car and 1 otherwise. This dummy

variable, when incorporated into the model in the presence of Lateral

Delta V and Age, was found to be significant in the Near PCD subset but

not in the other subset. The estimated model is as follows:
+----------------------------------------------------------------------+

I Estimated Model with Lateral Delta V, Age and Object Contacted I
I

Near PCD (N=650, LRS=171.87, DF=3) I

(3-59) pi = F(2.2692 - 0.0919X1 - 0.0154X2 - 0.6458X3)

where I

"pi is the probability of a non-severe injury,

F is the logistic distribution,

X1 is Lateral Delta V, I

X2 is Age, I

X3 is 0 if Object Contacted was a passenger car and 1 otherwise.I

I
I

I

I

I

+----------------------------------------------------------------------+

The goodness of fit of Equation 3-59 is as follows:

Overall percent correct prediction is 75.7%

Percent correct prediction of non-severe injuries is 90.1%
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Percent correct prediction of severe injuries is 46.8%

It can be seen that object contacted did improve the predictive

capability of the Near PCD model, particularly it improved the predicted

severe injuries by 5% (or 11 cases). Severe injuries had been the target

for the improvement.

Rural/Urban. Rural/Urban was incorporated i nto the

modelling in the presence of Lateral Delta V and Age. It did not appear

to be a statistically significant variable; nor did it improve the

models' predictive capability.

Vehicle-Year. Vehicle-Year was recoded as a 3 level

variable with the levels defined as pre-1968, 1968-1973, and 1974-1978.

This three level categorical variable was incorporated into the model as

2 dummy variables. It was found that Vehicle-Year did not appear to be

a significant independent variable.

Ejection. The majority of occupants (about 90% or more)

were not associated with either ejection or entrapment. Table 3.25

shows the number of occupants ejected and otherwise for cases with valid

NEWOAIS3 Code, Lateral Delta V and Age; the proportions of severe

injuries are also shown.

TABLE 3.25

Number of Ejection with Valid
OAIS Code, Lateral Delta V and Age

I Near PCD I Far 0cc. + Near NPCD
--------------------------+--------------------------

Ejection INumberl Percentage INumberl Percentage
I of I of I of I of
(Cases (Severe Injuries (%)ICases (Severe Injuries (%)

-----------+------+-------------------+------+-------------------
No Ejection) 563 I 28.2 11217 I 7.7
Ejection I 32 I 43.8 I 25 I 36.0
Entrapment 23 ( 73.9 I 6 I 50.0
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'Table 3.25 indicated that Entrapment in general would result in the

highest proportion of a severe injury (50% or over), Ejection would

result in a higher probability of a severe injury (slightly lower than

50%) than when No Ejection was involved. Near-side occupants appeared

to have higher rates of Entrapment and Ejection than far-side occupants;

their ejection/entrapment was also more likely to result in a severe

injury.

Ejection, however, when incorporated into the modelling in the

presence of Lateral Delta V and Age, did not appear to be a significant

variable. This could be attributable to the much smaller sample sizes

of cases with Entrapment or Ejection and/or the fact that Ejection might

be correlated with Lateral Delta V.

Restraint Usage. The majority of occupants were found

not using any kind of restraint devices. Only a handful used Torso and

Lap restraints or Lap-Only restraints. Table 3.26 shows the number of

occupants with and without restraint for cases with valid HIS Codes,

Lateral Delta V and Age and the associated proportion of severe

injuries. For Near PCD, an occupant without a restraint or not u s i n g

restraint appeared to be more prone to a severe injury than when some

kind of restraint was used. This, however, was not obvious with the

(Far Occ + Near NPCD) subset.

Restraint usage, when brought into the modelling in the presence of

Lateral Delta V and Age, did not appear to be statistically significant.

In summary, the model estimation results are described by Equations

3-58 and 3-59. The Near PCD the model contained Lateral Delta V, Age

and Object Contacted. The model for the Far Occupants + Near NPCD

subset included only Lateral Delta V and Age.
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TABLE 3.26

Number of Occupants With and Without Restraints

Phases 1 and 2 - Side Impacts

------------------------------------------------------------------------------------------------------
Near PCD I Far Occ + Near NPCD

I ------------------------------------------+------------------------------------------
I Number I Percentage Mean I Number I Percentage I Mean
i of I of I Lateral I of I of I Lateral
I Cases I Severe Injuries I Delta V I Cases I Severe Injuries i Delta V

------------------------------------------------------------------------------------------------------
Not Used I 568 I 33.6 I 12.9 I 1108 I 10.3 10.9
Lap/Torso I 16 I 25.0 I 12.1 I 41 I 9.8 I 9.2
Lap Only I 12 I 8.3 I 9.0 I 40 I 5.0 I 9.3
Others I 1 I 0 I - I 4 25.0 I -
No Restraint I 23 I 43.5 I 13.1 I 38 I 10.5 I 11.4

------------------------------------------------------------------------------------------------------



3.3.5 Model Evaluation - Phase 1 and Phase 2 Combined. Tables

3.27 and 3.28 list the injury types and the body regions which were

associated with relatively high proportions of severe injuries to total

injuries. These severe injuries were frequently being mispredicted by

the models represented by Equations 3-58 and 3-59. Tables 3.29 and 3.30

cross-tabulate the injury types and the affected body regions associated

with the injuries which the established models predicted incorrectly

more frequently than not. Only the combinations of Injury Types and

body region which resulted in high proportions of severe injuries to

total injuries were included in the tables. For each of these

combinations, the associated values of Lateral Delta V, Age and the

Contact Point were also indicated.

The injury types which had large proportions of severe injuries and

large proportions of severe injuries being mispredicted by the models

were Rupture, Dislocation and Fracture. The body regions which often

suffered severe injuries and the severe injuries of which were

frequently mispredicted by the models were Abdomen, Chest, and, to a

lesser extent, Forearm, Pelvic/Hip and the Lower Limbs. These cases

were all associated with low to moderate values of Lateral Delta V (and

therefore low to moderate Delta V). Correct prediction of these cases

would require variables in addition to Lateral Delta V, Age and Object

Contacted.

Tables 3.29 and 3.30 indicated the various combinations of body

regions and the subsequent injury types in which further investigation

would be required if the models' predictive capability were to be

considerably improved. Examination of such cases revealed that

1. All cases had low to moderate values of Lateral Delta V.

2. The majority of these cases involved the occupants coming into
contact with the side interior of the vehicles and/or the
steering assembly. Other contact points tended to be much less
common although not insignificant. For example, there were two
cases in which the near-side occupants came into contact with
the A-pillar with Lateral Delta V of only 3 to 5 mph and both
resulted in severe head/skull injuries.

It seemed intuitively reasonable from Tables 3-29 and 3-30 to

expect that Contact Points coupled with Body Region might enhance the
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prediction of injury severity in the presence of Lateral Delta V and

Age.

TABLE 3.27

List of Injury Types with Large Proportions
of Severe Injuries and Misprediction

Phases 1 and 2 - Side Impacts

I I I I Number of
I Total I Number of I Mispredicted

Subset I Injury Type* I Number I Severe I Severe
I of Cases I Injuries I Injuries

-----------+--------------+----------+-----------+--------------
I I I I

Near PCD I Rupture I 7 I 7 I 5
I Crushing I 6 I 6 2
I Dislocation I 9 I 8 I 5
( Hemorrhage I 4 3 2
I Fracture I 160 I 102 I 64
--------------+----------+-----------+--------------

I I I I
Far 0cc + Rupture I 7 7 1 2
Near NPCD i Fracture I 119 1 65 56

I Dislocation I 7 I 3 I 3

*Injury Type was ranked by the larger proportion of severe

injuries.

Contact Point. For cases with valid Delta V and Age, the

majority of occupants for Near PCD were linked with the side-interior

(37%), window-glass (11%), steering (9%), armrest (9%) and no-contact

(8%). The proportions of severe injuries to total injuries resulting

from these contact points were:

side-interior 57%
window-glass 8%
steering assembly 48%
armrest 70%
no-contact 23%

For Far 0cc + Near NPCD, the majority of the occupants were found

Ito be linked with side-interior (13%), front-panel (14%), steering

(13%), windshield (8%), mirror (7%), window-glass (8%), front-seatback
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TABLE 3.28

List of Body Region with Large Proportions
of Severe Injuries and Misprediction

Phases 1 and 2 - Side Impacts

-------------------------------------------------------------------
I I I I Number of

I Total I Number of I Mispredicted
Subset I Body Region* I Number I Severe I Severe

I I of Cases I Injuries I Injuries
-----------+-----------------+----------+-----------+--------------

I I I I
Near PCD I Abdomen I 32 I 30 I 23

( Chest I 98 ( 70 I 32
( Forearm I 12 I 9 I 6

Low Ext,Low Leg I I I
( Ankle/Foot I 17 I 8 I 5
( Pelvic/Hip I I I
I and Thigh I 47 I 18 I 15
I Head/Skull I 92 I 24 I 9
(-----------------+----------+-----------+--------------
I I I I

Far 0cc + I Abdomen I 23 I 12 I 8
Near NPCD I Chest I 96 I 49 I 38

*Subject was ranked by the larger proportion of the severe

injuries

(5%) and no-contact (12%). The proportions of severe injuries to total

injuries resulted from these contact points were:
side-interior 22%
-F-^nt-panel 20%

_,dri ng 33%
windshield 6%
mirror 0%
window-glass 0%
front-seatback 26%
.no-contact 13%

The Contact Point variable contained a considerable number of

missing data. When this variable was incorporated into the modelling in

the presence of Lateral Delta V and Age, the number of valid cases was

reduced from 650 to 326 for Near PCD and from 1293 to 387 for Far 0cc +

Near NPCD. Moreover, the number of severe injuries for Near PCD was

reduced from 216 to 135 and for the other subset from 131 to 64 cases.
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TABLE 3.29 

Combi n a t i o n  o f  I n j u r y  Type and Body Region w i t h  Large P r o p o r t i o n s  
o f  Severe i n j u r y  and i t i s p r e a i c t i o n  f o r  i i ea r  PCO 

Phases 1 and 2 - S ide  Impacts 

'-----------------------------------------------------------2--------------------------------------------------------------------------- 
I I Percent  I I I I 
I I percent1  I severe  I Number o f  I D e l t a  V o f  I Age o f  I 

I n j u r y  I Body I Severe I I n j u r y  I Severe I Mis- I Mis-  I Contac t  
TY pe I Region I I n j u r y  I Mis-  I I n j u r i e s  I p r e d i c t e d  I p r e d i c t e d  I P o i n t  

I I I p r e d i c t e d  I I Cases I Cases I 
-----------------+----------------f----------------+---------------+---------------+----------------+---------------+-------

I I I I I I I 3 I I I I I I I s i d e  i n t e r i o r  , 
Rupture I Abdomen 1 100 I 7 1 I 7 I 6-12 1 18-30 1 s t e e r i n g  

I I I I I I I 
D i s l o c a t i o n  I Neck 1 100 I 5 0 I 4 I 5-19 1 13-17 1 no  c o n t a c t  

I P e l v i c / H i p  1 100 I 100 I 1 I 14 I 21 1 s i d e  i n t e r i o r  
I I I I I I I 

F r a c t u r e  I Neck 1 100 I 6 7 I 9 I 8-16 1 16-55 1 no  c o n t a c t  
I Chest I 78 I 53 I 49 I 4-19 1 22-84 1 s i d e  i n t e r i o r  
I I I I I I I s i d e  i n t e r i o r ,  
I Forearm I 9 0 I 6 7 I 9 I 9-18 I 7-57 I s t e e r i n g  
I I I I I I I s i d e  i n t e r i o r ,  
I Face I 6 7 I 8 3 I 6 I 2-15 1 14-43 1 g l a s s  
I L.Ext. 1 100 I 100 I 2 I 9-14 1 19-21 I - 
I L.Leg I 57 I 50 I 4 1 14-15 1 20-27 I s i d e  i n t e r i o r  
I Th igh 1 5 6 I 8 0 I 5 I 6-17 I 9-22 1 s i d e  i n t e r i o r  
I Ank le /Foot  I 5 0 I 100 I 1 I 12 I 40 1 s i d e ' i n t e r i o r  
I P e l v i c / H i p  I 4 4 I 82 I 11 1 11-19 1 15-55 1 s i d e  i n t e r i o r  
I I I I I I I 

Hemorrhage I Abdomen 1 100 I 100 I 1 I 2 0 I 18 I s i d e  i n t e r i o r  
I Chest 1 100 I 100 I 1 I 12 I 53 1 - 
I I I I I I I 

Crushing I Head/Skul l  1 100 I 67 I 3 I 3-5 I 16 I A - p i l l a r  
I I I I I I I s i d e  i n t e r i o r ,  

L a c e r a t i o n  I Abdomen 1 100 I 50 I 6 1 12-15 1 16-62 1 s t e e r i n g  
I I I I I I I s i d e  i n t e r i o r ,  

Contusion I Abdomen I 88 I 9 3 I 14 1 12-20 1 11-34 1 f r o n t  panel  

-------------- 

'percent severe i n j u r y  i s  d e f i n e d  ds a  r a t i o , o f  severe  i n j u r i e s  t o  t o t a l  i n j u r i e s .  

2 ~ e r c e n t  severe i n j u r y  m isp red i c ted  i s  d e f i n e d  as a  r a t i o  o f  t h e  severe  i n j u r i e s  t h a t  a r e  m i s p r e d i c t e d  by t h e  models t o  t o t a l  

severe  i n j u r i e s .  

3 ~ i d e  I n t e r i o r  i n c l u d e s  s i d e  i n t e r i o r  and armrests  



TABLE 3.30

Combination of Injury Type and Body Region with Large Proportions
of Severe Injury and Misprediction for Far 0cc + Near NPCD

Phases 1 and 2 - Side Impacts

----------------------------------------------------------- -----------------------------------------------------------
I Percent ----^----------
I Percent I Severe I Number of I Delta V of I Age of I

Injury I Body Region I Severe Injury I Severe I Mis- Mis- I Contact
Type I Injury I Mis- Injuries I predicted I predicted Points

I I predicted I I Cases I Cases I
-----------------+-----------------+--------------+---------------+---------------+----------------+---------------+--------------

I I I I I I
Rupture Abdomen I 100 I 33 I 6 I 8-25 I 25-29 I side interior3

I I I I I
Dislocation I Neck I 100 I 100 1 I 10 I 56 no contact

Elbow I 100 I 100 1 I 8 I 40 I -
I Pelvic/Hip 100 I 100 1 I 18 I 46 I -
I I I I I I I

Fracture I Neck 90 I 67 I 9 12-25 23-57 I no contact
I 1 I I I I side interior,
I I I I I I front panel
I Chest I 80 I 88 I 40 I 4-25 I 8-94 I steering
I I I I side interior,
I Shoulder 38 I 100 I 5 I 5-15 I 16-77 I front panel
I I I I I I I

Laceration I Abdomen I 100 I 100 I 2 I 11-21 I 29-51 I side interior

Contusion I Abdomen 40 I 100 I 4 I 13-24 I 19-44 I steering

1Percent severe injury is defined as a ratio of severe injuries to total injuries.

2Percent severe injury mispredicted is defined as a ratio of the severe injuries that are mispredicted by the models to total

severe injuries.

3Side interior includes side interior and armrests.



Contact Point was also found to be somewhat correlated with Body Region.

This only allowed either Contact Point or Body Region to be included in

the models but not both. Tables 3.29 and 3.30 suggested that Body

Region was likely to be a better independent variable than Contact Point

because a body region seemed to immediately suggest a high probability

of a certain contact point. Furthermore, Contact Point had the larger

number of missing data.

Body Region. For cases with valid Lateral Delta V and

Age of the Near PCD subset, most body regions (except head/skull and

face) came into contact essentially with only one or at most two contact

points, namely, the side interior, the side interior and the armrest, or

the side interior and the steering. Neck injuries were mostly "no-

contact" injuries.

For Far 0cc + Near NPCD, the distribution of Body Region by Contact

Point was slightly different from Near PCD. Side Interior, Front Panel

and Steering were the more common contact points recorded. Neck and

Back. injuries were essentially "no-contact" injuries.
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3.3.6 Final Models - Phase 1 and Phase 2 Combined. Based on the

distribution of Contact Point of each Body Region and the proportion of

severe injuries to total injuries of each Body Region, a set of dummy

variables was created for Body Region as follows. The Body Region

variable was first grouped into six classes:

Head/Skull and Neck
Upper Extremities, Elbow and Forearm
Chest and Abdomen
Pelvic/Hip, Lower Extremities and Thigh
Lower Leg and Ankle/Foot
Others including Missing Data

The above classes of Body Region were then coded as six (0,1) dummy

variables. The first five dummy variable were incorporated into the

model. When Body Region was incorporated into the modelling it was

found that the percent correct prediction of the severe injuries of both

Near PCD and Far Occ + Near NPCD increased considerably. For both

subsets Body Region showed statistically significant coefficients. The

models are shown below:
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+----------------------------------------------------------------------+

Final Estimated Models for Phases 1 and 2

Near PCD (N=649, LRS=306.25, DF=8)

(3-60) 'p. = F(2.6498 - 0.0905X 0.0041X 0.9043X 0.5492X
4- 1.1180X5 - 1.8471X6 -10.9347X7 -20.8553X8) 3

Far Occ + Near NPCD (N=1291, LRS=341.63, DF=7)

(3-61) p. = F(3.4437 - 0.1001X - 0.0093X - 0.5422X - 0.4324X
2 4 5115676X6 - 0.7767X7 - 012132X8)

I where

1 pi is the probability of a non-severe injury,

F is the logistic distribution,

X1 is Lateral Delta V

X2 is Age,

X3 is 0 if Object Contacted was a passenger car and 1 otherwise,

X4 is 1 if the head or neck was injured and 0 otherwise,

X5 is 1 if the upper extremities, elbow or forearm was injured

and 0 otherwise,

X6 is 1 if the chest or abdomen was injured and 0 otherwise,

X7 is 1 if the pelvic/hip, thigh, or lower extremities were

injured and 0 otherwise, and

X8 is 1 if the lower leg or ankle/foot was injured and 0

otherwise.

1

)

1

-------------------------------------------------------------------------

The goodness of fit results of these 2 models are shown in Table

3.31

Figures 3.61 and 3.62 show the histograms of the Pi values of both

models. The inclusion of Body Region in the Near PCD model in the

presence of Lateral Delta V, Age and Object Contacted markedly improved

the model's predictive capability. The percent correct prediction of

severe injuries increased from 46.8% to 66.5% and the overall correct

prediction of both non-severe and severe injuries increased from 75.7%

too 81.3%. For (Far Occ + Near NPCD) the percent correct prediction of

severe injuries increased from 30.5% to 42.7% and the overall correct
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TABLE 3.31

Goodness of Fit

Phases 1 and 2 - Side Impacts

-----------------------------------------------------------------------------------------------
I I Sample Size I Percent Correct Prediction

Subset I Model I---------------------+--------------------------------
I Non-Severe I Severe I Overall Non-Severe I Severe

----------+----------------------------+------------+--------+----------+------------+--------
I I I I I

Near PCD I p'. = F(Lateral Delta V I I I I
1 Aje, Body Region, I 434 I 215 1 81.3 I 88.7 66.5
I Object Contacted) I I I I I
1----------------------------+------------+--------+----------+------------+--------

I
Far Occ + I p. = F(Lateral I I I I I
Near NPCD I Delta V, Age, Body Region) I 1160 I 131 I 92.3 I 97.9 I 42.7

-

-----------------------------------------------------------------------------------------------



prediction of both non-severe and severe injuries increased from 91.7%

to 92.3%.
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Figures 3.63 shows the estimated confidence limits for the final

Near PCD model. Where X5 is given a value of 1 (i.e., an injury to

Upper Extremities or Elbow or Forearm) and X4, X6, X7, X8 are zero. The

three curves represent, when an injury is to Upper Extremities or Elbow

or Forearm, and the estimated probability of a severe injury (1-pi) as a

function of Lateral Delta V fixing Age at 30. The six logistic curves

FIGURE 3.61 Histograms of P. of Four-Variable Model (Lateral
Delta V, Age, Object Contacted, Body Region) For Near PCD

Phases 1 and 2 - Side Impacts
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FIGURE 3.63 Confidence Interval of of Four-Variable Model (Lateral
Delta V, Age, Object Contacted, Body Region) at Age 30 For Near PCD

Phases 1 and 2 - Side Impacts

in Figure 3.64 shows the effects of the five levels of the Body Region

dummy variable. The six curves are plots of Equation 3-60 to represent

the following situations:

.when the suffered body region was either head/skull or neck

.when the suffered body region was either upper extremities,
elbow or forearm

.when the suffered body region was either chest or abdomen

.when the suffered body region was either pelvic/hip, thigh
or lower extremities,

.when the suffered body region was either ankle/foot or lower
leg, and
.when the body region was none of the above or no body region
was considered.

The figure shows that Chest and Abdomen are far more likely to sustain a

severe injury than any other body regions even at Delta V as low as 10

mph. Injuries in Upper Extremities, Elbow, Forearm, Pelvic/Hip, Lower

Extremities, Thigh, Ankle/Foot and Lower Leg are comparable in that they

are likely to be severe for Delta V exceeding 20 mph. Head and Neck are

likely to sustain a severe injury when Delta V exceeds 22 mph. When
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F:[GURE 3.64 The Effect of Five Levels of Body Region of Four-Variable
Model (Lateral Delta V, Age, Object Contacted, Body Region)

For Near PCD Phases 1 and 2 - Side Impacts

injuries are in other body regions not mentioned above or when no body

region are specified, they are likely to be severe when Delta V exceeds

27 mph.

Figure 3.65 shows the estimated confidence levels for the final

(Occ + Near NPCD) model for the situation where the injury is to Upper

Extremities or Elbow or Forearm. Figure 3.66 shows the effects of the

five levels of the Body Region dummy variable to represent

.when the injury was to head/skull or neck

.when the injury was to upper extremities, elbow or forearm

.when the injury was to chest or abdomen

.when the injury was pelvic/hip or thigh or lower extremities

.when the injury was to ankle/foot or lower leg

.when the injury was to none of the above or when no body
region was considered.

The figure indicates that an injury to either chest or abdomen were

far more likely to result in a severe injury that that to other body

regions even at Delta V as low as 15 mph. Pelvic/Hip, Lower Extremities

and Thigh were susceptible to a severe injury when Delta V exceeds 23
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FIGURE 3.65 Confidence Interval of Pi of Three-Variable Model (Lateral
Delta V, Age, Body Region) at Age 30 For (Far 0cc. + Near NPCD)

Phases 1 and 2 - Side Impacts

mph. Delta V greater than 25 mph is likely to produce a severe injury

in Head or Neck or Upper Extremities or Elbow or Forearm. Ankle/Foot

and Lower Leg are likely to sustain a severe injury as Delta V exceeds

28 mph. Injuries to other body regions or where no body regions are

specified are likely to be severe as Delta V exceeds 31 mph.

3.3.7 Significant Results. The analysis of the Phase 1 and the

Phase 2 data suggested that for the purpose of model estimation the data

from both phases should be combined. The model estimation and the model

evaluation results also suggested the partitioning of the combined

Phases 1 and 2 data into two homogeneous groups (or subsets). These

are:

1. those occupants on the same side as the impact which produced
passenger compartment damage (Near PCD), and

2. other occupants which includes all occupants on the opposite
side to the impact plus those on the same side as the impact
which produced no passenger compartment damage (Far 0cc + Near
NP CD) .
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Earlier modelling work revealed that Lateral Delta V (or the

lateral compartment of Total Delta V) was found to be the most single

important independent variable in predicting the individual injury

severity. Occupant Age was another factor affecting the injury

severity. The estimated logit models representing the heuristic

relationship between injury severity (non-severe) and Lateral Delta V

and Age are as follows:
+--•---------------------------------------------------+

Near PCD I

1(3•-57) pi = F(2.1426 - 0.0926X1 - 0.0152X2)

I Far 0cc + Near NPCD

1(3.-58) pi = F(3.2672 - 0.1104X1 - 0.0146X2)

(where
pi is the probability of a non-severe injury, I

I F is the logistic distribution,
X1 is Lateral Delta V, and
X2 is Age. i

+------------------------------------------------------+
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Equations 3-57 and 3-58 state that the estimated probability of a

non-severe injury (NEWOAIS3 = 0), Pi, is a function of Lateral Delta V

and Age alone. This probability is bounded by a value of zero and one.

A pi value of one predicts that the injury will certainly.be non-severe

and a pi value of zero predicts that the injury will certainly be

severe. A pi value greater than 0.5 will predict a non-severe injury

while a pi less than 0.5 will predict a severe injury. Interpretation of

the models may be easier if Equations 3-57 and 3-58 are restated in

terms of the probability of a severe injury, which is simply (1-'pi ).

The models imply the following:

1. As Lateral Delta V increases, so does the probability of a
severe injury. For an occupant age 30 in Near PCD an increase
in Lateral Delta V from 15 to 25 mph will take the probability
of a severe injury from 0.37 to 0.76.

2. As Age increases, so does the probability of a severe injury.
For Near PCD, with Lateral Delta V of 25 mph, a 20-year-old
occupant will have the probability of a severe injury of 0.69
and a 40-year-old occupant the probability of 0.81.

3. An occupant in the Near PCD subset is more likely to receive a
severe injury than that in the Far 0cc + Near NPCD subset given
a Lateral Delta V value. For example, for Lateral Delta V of
25 mph and a 30 year old occupant, the probability of a severe
injury is 0.76 for an occupant of the Near PCD subset and 0.48
for the Far 0cc + Near NPCD subset.

The models as represented by Equations 3-57 and 3-58 predicted the

overall injuries fairly well. A closer examination of their predictive

capability revealed that when a injury was observed to be non-severe,

the models would be correct almost all of the time, but that when an

injury was observed to be severe, the models would be correct only 30%

to 40% of the time. Although non-severe injuries occurred much more

frequently than severe injuries, it is more crucial to be able to

reasonably predict the injuries with high severity. One of the reasons

for the model to preform somewhat unsatisfactorily in cases of severe

injuries is that severe injuries occurred at all ranges of Delta V

values, depending upon numerous other factors.

In order to try to improve the predictive capability of the models

for a better prediction of severe injuries, a range of other variables

were investigated. Restraint Usage and Ejection were examined but the
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relatively very small sample size of occupants using restraints or

having been ejected or trapped made these variables of little value in

modelling. About 90% of the occupants did not use any form of restraint

and over 90% were not ejected or trapped in the side impacts.

Object Contacted was investigated and was found significant for the

Near PCD subset. This variable implied that for Near PCD occupants, a

striking vehicle which was bigger than a passenger car would increase

the probability of the injury being severe. Object Contacted was not

significant for the Far Occ + Near NPCD subset. Detailed analysis of the

mispredicted cases or outliers indicated that injuries involving certain

body regions tended to result in severe injuries regardless of Delta V

values. There were also certain injury types which occurred at

relatively low Delta V values and resulted in severe injuries. Most, if

not all, the severe injuries that were being mispredicted by the two-

variable models (Later Delta V and Age) had low to moderate Lateral

Delta V values and the injuries were the results of certain body regions

coming into contact with certain interiors of the vehicle at the impact.

The most common contact point(s) seemed to be side interior and/or

steering for chest, abdomen, pelvic/hip, forearm and the lower limbs.

The less common contact points were A-pillar for head/skull injuries or

no contact for neck injuries. It was thought that with Lateral Delta V,

Age, Contact Point and Body Region in the models, the occurrence of

injury severity would become more explainable. Lateral Delta V is a

proxy for the force exerted on the occupant at the impact, c a u s i n g t h e

occupant to move from his/her original position and causes a body region

to come into contact with the interior of the vehicle. The occupant age

could give rise to the different resistance to or the tendency for a

certain type of injury.

However, the contact point variable did impose some serious

problems in modelling. First, the missing data on Contact Point for

both severe and non-severe injuries was to the extent that the number of

valid cases for modelling would drop by about 50% for severe injuries

and over 50% for non-severe injuries. Second, Contact Point showed a

correlation with Body Region. It was found that between Contact Point

and Body Region, the latter appeared to be a better independent
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variable. A body region, with the exception of Head and Face, tended to

be associated with either only one or probab.ly two major contact points.

A contact point, one the other hand, could imply many different body

regions.

That a body region almost immediately implies a certain contact

point seemed to justify its inclusion in the model even without another

variable such as Contact Point. In fact, the final model for Near PCD

with Lateral Delta V, Age Object Contacted, and Body Region as the

independent variables showed most considerable improvement in the

model's predictive capability; such a model now predicted non-severe

injuries correctly 89% of the time and it predicted severe injuries

correctly 67% of the time. The Far Occ + Near NPCD model, with Lateral

Delta V, Age and Body Region as the independent variables, now correctly

predicted non-severe injuries 98% of the time and correctly predicted

severe injuries 43% of the time. The influence of the Body Region

variable in predicting the injury severity can be illustrated in the

following case, where a passenger car was hit by a truck and which

involved a Lateral Delta V of 15 mph and an abdominal rupture to a Near

PCD occupant age 30. The two-variable model (Lateral Delta V and Age)

will predict the probability of a severe injury of 0.37 (i.e. , a non-

severe injury) while the model with Lateral Delta V, Age, Object

contacted and Body Region will predict the probability of severe injury

of 0.95 (i.e., a severe injury).
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3.4 Preliminary Analytical Results for Frontal Impacts - Phase I Data

This section presents preliminary work to develop mechanistic

models for frontal impacts. The analysis reported in this section was

carried out on a preliminary version of the data from the first fifteen

months of NCSS (January 1977 through March 1978).

The initial modelling efforts were carried out separately for

several subsets of the frontal impacted vehicles. The selection of

these subsets is described in the first subsection. Examination of

candidate independent variables is covered in the second subsection.

Modelling results and model evaluation are presented in the third and

fourth subsections, while the last subsection summarizes the resulting

logit models and their-associated confidence limits.

3.4.1 Defining Subsets. Frontal collisions comprise principally

two-vehicle accidents and one-vehicle accidents. Multiple vehicle

collisions are much less common. The number of cases which involved

occupants of towed vehicles with valid NEWOAIS3 coding for these

accident categories are shown below:

One-vehicle accidents 1491 cases (25.5%)
Two-vehicle accidents 3705 cases (63.4%)
Three-vehicle accidents 537 cases (9.2%)
Multiple-vehicle accidents 110 cases (1.9%)

Occupants of towed vehicles (or case vehicles) represented about 90% of

all the cases.

For the occupants of case vehicles, the distribution of occupants

among the seat positions is shown in Table 3.32. Occupants on the back

seats represented about 11% of the total occupants and they were not

included in the analysis. For the occupants of case vehicles, the

following proportions of occupants by specific Horizontal Location of

Deformation (CDC) were observed:

Center plus distributed 2545 (34.8%) Vehicles
Left plus left-side center 2662 (36.5%) Vehicles
Right plus right-side center 2092 (28.7% Vehicles

Subsetting to obtain homogeneous analytical cells for the modelling

was carried out by examining variables such as:



TABLE 3.32

Number of Occupants by Seat Position

Phase 1 Data - Front Impacts

----------------------------------------------------------------------
Seat Position I Number of Occupants

--------------------------------------------------------------------

Drivers 4488 (62.6%)
Front right I 1585 (22.1%)
Front center 305 (4.3%)
Back left I 299 (4.2%)
Back right I 338 (4.7%)
Back center I 155 (2.1%)

--

(a) Proportio2lof severe and non-severe injuries (based on
NEWOAIS3) to total injuries.

(b) The location of deformation and damage distribution type
variables of the CDC

(c) Direction of Force (CDC)
(d) Delta V
(e) Injury Type and Body Region
(f) Seat Position
(g) Number of Vehicles

Ideally, the subsets should be dissimilar as regards the injury

severity proportion and the proportion of various injury types from one

subset to another, but similar in the ranges and the distributions of

the potential independent variables, such as the collision severity

variables and the occupant variables. It is also essential for the

subsets to contain adequate data to permit reliable modelling results.

Various subsettings were closely examined. The one which, at this

stage, appeared most reasonable comprised the following subsets:

1. One-vehicle accidents, distributed and center damages (SHL=D
and C) and front-seat occupants; to be referred to as CIA-1VEH
(Center Impacts, All Occupants-1 Vehicle).

2. One-vehicle accidents, left and right damages (SHL=L+R+Y+Z) and
drivers; to be referred to as OID-1VEH (Off-center Impacts,
Drivers only-1 Vehicle).

21OAIS refers to the overall abbreviated injury score as defined in
The Abbreviated Injury Scale, (1976 Revision), American Association for
Automotive Medicine, Norton Grove, Illinois.
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3. One-vehicle accidents, left and right damages (SHL=L+R+Y+Z) and
front seat passengers; to be referred to as OIP-1VEH (Off-
center Impacts, Passengers only-1 Vehicle).

4. Two-vehicle collision (SHL=D and C) and front seat occupants;
to be referred to as CIA-2VEH.

5. Two-vehicle collision (SHL=L+R+Y+Z) and drivers; to be referred
to as OID-2VEH.

6. Two-vehicle collision (SHL=L+R+Y+Z) and front seat passengers;
to be referred to as OIP-2VEH.

The number of cases in each of these six subsets is shown in Table

3.33 together with the number of cases where NEWOAIS3 codes and Delta V

are valid.

TABLE 3.33
Number of Cases Valid for Specified Variables

Phase 1 Data - Front Impacts

Number I
-------------------------------------I Percentage

Subset I Valid I Valid I Valid I Severe
I Non-Severe I Severe I Delta V I Injuries

-----------+--------------+----------+-----------+--------------

CIA-1VEH 289 I 104 I 308 I 26.5
OID-1VEH 514 I 116 1 548 I 18.4
OIP-1VEH I 231 I 43 I 242 I 15.7
CIA-2VEH I 957 I 185 I 1062 16.2
OID-2VEH ► 1310 154 1247 I 10.6
OIP-2VEH 532 I 70 I 539 I 12.1

-

--_-.....MMOMM---------------------------------------------------

Table 3.33 also shows the proportion of the severe injuries to total

injuries for the six subsets. The first three subsets were occupants of

single-vehicle accidents while the other three subsets were occupants of

occupants of two-vehicle accidents. Occupants of single-vehicle

accidents appeared to have a higher proportion of severe injuries than

those of two-car accidents. For both single-vehicle and two-vehicle

collisions, center impacts were also found to have higher proportions of

severe injuries than off-center impacts.
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3.4.2 Examination of the Independent Variables. It was envisioned

that the variables listed below should be investigated with a view to

identifying the influences on the prediction of injury severity:

1. Accident Level Variable
Rural/Urban

2. Vehicle Level Variables
Delta V
Direction of Force (CDC)
Vertical Location of Deformation (CDC)
Damage Distribution Type (CDC)
CDC Extent
Object Contacted
Vehicle Weight
Contact Point
Intrusion Location

3. Occupant Level Variables
Age
Sex
Height
Occupant Weight
Restraint Usage
Ejection

The following section briefly describes these key independent

variables across the six subsets.

Delta V. The range of Delta V for the six subsets are

shown in Table 3.34. Figure 3.67 shows the cumulative distribution

plots of Delta V for the six subsets. For the three single-vehicle

subsets, CIA-1VEH, OID-1VEH and OIP-1VEH, the cumulative curves were

close together. For the three two-vehicle subsets, the curve for

CIA-2VEH appeared to lie somewhat to the right of those for OID-2VEH and

OIP-2VEH. Overall, the six subsets did not show marked differences in

the cumulative distributions of Delta V.

Principal Direction of Force. The two-way tables of

injury severity (NEWOAIS3) and Principal Direction of Force for the six

subsets indicated that for the accidents involving single cars the

proportions of severe injuries to total injuries were found to be higher

with a twelve-o'clock direction than with other directions of force.

For two-vehicle collisions, the proportions of severe injuries to total

injuries were higher with a twelve-o'clock, a one-o'clock, and a eleven-
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TABLE 3.34
Comparison of Delta V Amongst the Subsets

Phase 1 Data - Front Impacts

I I Delta V I
Subset I Range I Mean I S.D.

------------------+---------------+-----------------+--------------

CIA-1VEH I 4-97 I 18.4 I 12.3
OID-1VEH I 1-75 16.9 I 10.8
OIP-1VEH I 2-68 I 16.6 I 10.7
CIA-2VEH I 2-99 I 18.3 10.4
OID-2VEH I 2-61 14.0 I 8.7
OIP-2VEH I 2-56 I 14.6 I 9.6

1.00

CIA -I VEH

O I D- I VEH
I- --- OIP-I VEH

0.50
------ CIA-2 VEH

••••-•••.-.-••OID-2 VEH

------- OIP-2 VEH

0.0
40 97

DELTA V

FIGURE 3.67 Cumulative Distributions of
Delta V For The Front-Impact Subsets

Phase 1 Data - Front Impacts

o'clock direction than with other directions. When Delta V was held

constant, however, the differences appeared much less apparent. Within

each direction of force, a higher proportion of severe injuries to total

injuries was also noted when vehicles were hit in the center than when
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the impact was to the right or to the left. Accidents involving single

vehicles displayed higher proportions of severe injuries to total

injuries than those involving two vehicles. Table 3.35 summarizes the

number of cases by Principal Direction of Force for occupants of one-car

and two-car accidents with valid NEWOAIS3 codes.

TABLE 3.35
Number of Occupants by CDC Direction

Phase 1 Data - Front Impacts

I CDC Direction
{-------------------------------------------------
i 12 1 1 I 11 I 2 I 10

O'clock I O'clock I O'clock I O'clock I O'clock
-----------+---------+---------+---------+---------+---------

I I I I I
One-car 1 984 I 152 I 108 I 14 I 5
accidents (77.9%) I (12.0%) I (8.6%) I (1.0%) I (0.4%)

I I I I I
Two-car I 1583 I 631 I 838 134 I 144
accidents I (47.5%) I (19.0%) I (25.2%) I (4.0%) I (4.3%)

Finally, although there did not appear to be a distinct

relationship between Principal Direction of Force and-Delta V, it was

noted that Delta V's greater than 40 mph were associated with only 12

o'clock, 11 o'clock, and 1 o'clock directions.

Vertical Location of Deformation. For occupants in

accidents involving single vehicles and with center impacts, "below-

glass" accounted for 91% of the cases and "low" another 8%. For

occupants in single-vehicle accidents with off-center impacts, about 93%

were "below glass," 3% "low," and 3% "all." For occupants in two-

vehicle collisions, about 91% of the cases were "below glass," 6%

"middle," and 3% "all." For all subsets proportions of severe injuries

to total injuries with the exception of "all" were similar. For "all"

the proportion was more than twice as high as the other levels.

Damage Distribution Type. For occupants in single-

vehicle accidents with center impacts, 65% of the cases were of "wide"
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damage distribution and the other 35% were of "narrow" damage

distribution. For occupants in single-vehicle accidents with off-center

impacts, 48% were "wide," 27% were "narrow," and another 24% were

"corner." For occupants in two-vehicle accidents with center-

collisions, 97% of the cases were "wide;" while those with off-center

impacts, 77% were "wide" and 20% were "corner."

Proportions of severe injuries to total injuries, with the

exception of "corner" for the two-vehicle collisions, were not that much

different for all levels. With the "corner" damage in two-vehicle

accidents, such proportion appeared much higher.

Object Contacted. For occupants in single-vehicle

accidents, the accidents as shown in Table 3.36 were observed.

TABLE 3.36

Object Contacted by Impact Location
for Single-Vehicle Accidents

Phase 1 Data - Front Impacts

Percentage for I Percentage for Off-
Object Contacted I Center Impact Center Impact

-----------------------------------------------------------------------

Utility Poles 24 I 33
Trees 20 I 31
Culvert Curbs 12 I 6
Embankment

Abutment 15 6
Guard Rails

Bridge Rails 15 I 8
Non-moving Objects 2 6

For occupants in two-vehicle collisions, the accidents as shown in

Table 3.37 were observed.

For occupants in single-vehicle accidents, the proportions of

severe injuries to total injuries appeared to be slightly higher for

trees, culvert curbs, abutments, embankments and buildings. Thi s was

also true when Delta V was held constant. For two-vehi cl a acci dents ,
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TABLE 3.37

Object Contacted by Impact Location
of Two-Vehicle Accidents

Phase 1 Data - Front Impacts

----------------------------------------------------------------------
Percentage for Percentage for Off-

Object Contacted Center Impact I Center Impact
---------------------------------------------------------------------

Passenger cars 76 77
Trucks 13 13
Tractor-trailers I 3 I 2
Unknown vehicles 4 1 4

such proportions were higher when the striking vehicles were larger in

size.

Vehicle Weight. The range of vehicle weights and their

distributions for all subsets were similar. The variation of the

proportions of severe injuries to total injuries with vehicle weights

when Delta V was held constant was not apparent for either single

vehicle or two vehicle accidents. The scatter plots of Delta V and

Vehicle Weights did not reveal an easily detectable relationship.

Rural/Urban. For occupants in single-vehicle accidents,

about 60% of the cases were associated with accidents occurring in urban

areas. This proportion was much higher (about 75%) for two-vehicle

accidents. The proportion of severe injuries to total injuries in the

rural and the urban areas for the six subsets are shown in Table 3.38.

When Delta V was held constant,the rural accidents also had slightly

higher proportions of severe injuries to total injuries than the urban

accidents.

Intrusion Location. For occupants in single-vehicle

accidents, about 60% of the- cases had no intrusion, about 6% had

intrusion involving steering column and/or A-pillars, about 3% involving

roofs, and about 2% involving sides and about 30% involving other

combinations. For two-vehicle accidents, these proportions were found to

be somewhat different. No intrusion represented about 75% of the cases,
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TABLE 3.38
Proportion of Severe Injuries to Total Injuries by Rural/Urban

Phase 1 Data - Front Impacts

--------------------------------------------------------------------
Rural I Urban

I-------------------------+-------------------------
Subset I Percentage I Percentage I Percentage I Percentage

Non-Severe I Severe I Non-Severe I Severe
----------------+------------+------------+------------+------------

SINGLE VEHICLE I I I I
CIA-1VEH I 71 29 I 76 24
OID-1VEH I 77 I 23 I 84 16
OIP-1VEH 78 22 I 89 I 11

TWO VEHICLE I I I I
CIA-2VEH 1 68 32 I 90 I 10
OID-2VEH I 74 26 I 94 6
OIP-2VEH 79 I 21 1 91 1 9

intrusion involving steering columns and/or A-pillars was about 5%,

those involving roofs was about 1%, and those involving other

combinations about 15%.

Proportion of severe injuries to total injuries varied greatly

across the locations of intrusion. This proportion was found to be the

highest (at least 40%) when the intrusion included steering columns and/

or A-pillars; this was followed by the combination of intrusions and

roof intrusion. Such proportion was found to be relatively low for

cases with no intrusion (5 to 13%).

The scatter plot of Delta V and the various intrusion levels

indicated that the Delta V's associated with intrusions of side, side-

override and roof tended to be lower than those associated with

intrusions of other kinds.

Restraint Usage. In all subsets the majority of the

occupants did not use any kind of restraint (about 87%); about 4 to 9%

did not have restraint devices; about 3% used lap-and-torso

restraints;and about 3% used lap-only restraints; usage of other forms

of restraints was relatively rare.
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Cursory examination of proportions of severe injuries to total

injuries by restraint usage indicated that with the exception of the

single vehicle, off-center and drivers subset, the proportion was much

lower when lap-torso restraints were used than when no restraints were

used or when lap-only restraints were used.

Ejection. The majority of the occupants were associated

with no-ejection accidents (well over 90%). It was noted that the

proportion of the occupants being ejected and trapped was higher for

single-vehicle accidents than for two-vehicle accidents. The proportion

of severe injuries to total injuries, in all the subsets,was

considerably lower for no-ejection cases than for cases with ejection or

entrapment.

A2e . There were very little differences in the ranges

and the distributions of the Age between occupants in single-vehicle

accidents and those in two-vehicle accidents. Small differences did

exist between drivers and non-drivers subsets in that there were no

drivers under a certain age.

The proportion of severe injuries to total injuries, when Delta V

was held constant, indicated that occupants over 30 years old tended to

be associated with higher proportions of severe injury.

The scatter plot of Delta V by Age indicated that almost all

occupants less than 12 years old and over 65 had Delta V of less than 30

mph, and that occupants between the ages of 18 to 30 years old had the

largest range of Delta V values (1 to 98 mph).

3.4.3 Model Estimation. The multivariate logit model described in

Section 3.1 was used in the analysis of frontal impacts. Initially,

univariate models with Delta V or CDC Extent were tried. The

development of multivariate models was described later in this section.

Univariate Models. Univariate models were used to

compare the predictive capability of Delta V and CDC Extent in each of

the six frontal subsets. Other independent variables, on their own, are

not likely to be as good explanatory variables as the above mentioned.

They will be significant in explaining injury severity when they are

present in the models with either'Delta V or CDC extent. Comparisons of
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the results of these two models revealed that Delta V was a far better

explanatory variable of injury severity than the CDC extent variable

(crush measurement). Because Delta V and CDC Extent are highly

correlated, the presence of one variable in the model excludes the

other. The estimated models for the six subsets with Delta V as the

independent variable are shown below and their goodness of fit results

in Table 3.39.

TABLE 3.39
Goodness of Fit

Severity = F(Delta V)

Phase 1 Data - Front Impacts

-----------------------------------------------------------------
Sample Size Percentages Correct Prediction

I -----------------+------------------------------------
Subset Non- I Non-

I Severe I Severe Overall Severe Severe
----------+--------+--------+------------+-----------+-----------

I I I
CIA-1VEH I 172 I 73 I 75.5 I 94.2 31.5
OID-1VEH I 346 I 92 I 80.1 I 96.8 17.4
OIP-1VEH I 166 I 28 I 86.6 98.8 I 14.3
CIA-2VEH I 728 I 126 I 89.3 I 98.4 I 37.3
010-2VEH I 932 I 110 92.2 1 98.5 1 39.1
OIP-2VEH I 371 I 53 1 88.9 1 98.4 1 22.6

-----------------------------------------------------------------
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+-------------------------------------------------------------------+

I Estimated Models with Delta V

CIA-1VEH (N=245, LRS=39.23, DF=1)

(3-62) pi = F(1.3595 - 0.0452X1)

OID-1VEH (N=438, LRS=63.04, DF=1)

(3-63) pi = F(1.6351 - 0.0481X1)

OIP-1VEH (N=194, LRS=19.44, DF=1)

(3-64) pi = F(1.7488 - 0.0398X1)

CIA-2VEH (N=854, LRS=237.34, DF=1)

(3-65) `pi = F(2.9144 - 0.0881X1)

OID-2VEH (N=1042, LRS=262.62, DF=1)

(3-66) pi = F(2.9683 - 0.0969X1)

OIP-2VEH (N=424, LRS=65.85, DF=1)

(3•-67) pi = F(2.1711 - 0.0602X1)

where
p. is the estimated probability of a non-severe injury,
F1is the logistic distribution,
X is Delta V, and
LiS is the Likelihood Ratio Statistic.

I
I

{
I

+-------------------------------------------------------------------+

Multivariate Models

A large number of multivariate models were tried. At least some

mention is made of nearly all the variables tried regardless of whether

they were useful or not. The sub-headings indicate the independent

variables.

Principal Direction of Force was brought into the modelling in two

ways--as an independent variable in the presence of Delta V and by

replacing Delta V by Longitudinal Delta V. Neither of these approaches,

however, resulted in significant improvement in the predictive

capability of the models represented by Equations 3-62 to 3-67.

I
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When Age was incorporated into the model in the presence of

Delta V, the following estimation results were obtained for the six

subsets:
+------------------------------------------------------------------+

I Estimated Models with Delta V and Age

CIA-1VEH (N=244, LRS=41.54, DF=2)

I (3-68') pi = F(1.6189 - 0.0461X1 - 0.0084X2)

OID-1VEH (N=434, LRS=71.07, DF=2)

I (3-69) pi = F(2.1335 - 0.0522X1 - 0.0132X2)

OIP-1VEH (N=189, LRS=26.6, DF=2)

I (3-70) pi = F(2.4287 - 0.0443X1 - 0.0220X2)

CIA-2VEH (N=849, LRS=253.72, DF=2)

I (3-71) pi = F(3.5671 - 0.0932X1 - 0.0154X2)

OID-2VEH (N=1033, LRS=283.86, DF=2)

I (3-72) pi = F(3.9390 - 0.1076X1 - 0.0208X2)

OIP-2VEH (N=415, LRS=84.92, DF=2)

(3-73) pi = F(3.0447 - 0.0668X1 0.0227X2)

I where

I

I pi is the probability of a non-severe injury,

I F is the logistic distribution, I

I X1 is Delta V, I

X2 is Age, and I

LRS is the Likelihood Ratio Statistic. I
+------------------------------------------------------------------+

The goodness of fit of these models is shown in Table 3.40. By

having Age in the models, the predictive capability of the univariate

models, particularly in predicting the severe injuries, improved.

Figures 3.68 - 3.73 show the histograms of pi for the six subsets.

Each figure, representing a model for a particular subset, consists of a

part of histograms, one for non-severe injuries and the other for severe

injuries. The axes of both histograms are identical with one axis
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TABLE 3.40
Goodness of Fit

Injury Severity = F(Delta V, Age)

Phase 1 Data - Front Impacts

I Sample Size I Percent Correct Prediction
I-----------------+--------------------------------

Subset I Non- I I I Non- I
I Severe I Severe I Overall I Severe I Severe

----------+--------+--------+-----------+----------+---------
I I I I I

CIA-1VEH I 171 I 73 I 75.8 I 94.2 I 32.9
OID-1VEH I 342 1 92 I 80.9 I 96.5 I 22.8
OIP-1VEH I 161 I 28 I 85.7 98.1 I 14.3
CIA-2VEH I 723 I 126 I 89.2 I 97.5 I 42.1
OID-2VEH I 923 I 110 I 92.8 I 98.6 I 44.5
OIP-2VEH I 363 I 52 I 88.9 I 98.1 I 25.0

representing the estimated probability of a non-severe injury, pi, at a

0.05 interval and the other the number of cases with particular values

of pi. Again, the relatively poor prediction of severe injuries is

evident while the prediction of non-severe injuries was very good for

all six subsets. The estimated logistic curves for the six subsets a re

plotted in Figure 3.74 to illustrate how the probability of a severe

injury, 1-pi, varies with Delta V when Age is fixed at 30. Note the

marked difference between the single vehicle and two-vehicle subsets.

For Delta V less than about 25 to 30 mph, single-vehicle accidents were

more likely to result in severe injuries than two-vehicle accidents.

For higher Delta V values, however, two-vehicle accidents were more

likely to give rise to severe injuries given the same Delta V values.

The effect of Age is shown in Figure 3.75 for the OID-1VEH subset and in

Figure 3.76 for the OID-2VEH subset. Each of these figures consists of

three curves for Age of 20, 40 and 60. The curves show the variation of

the estimated probability of a severe injury (1-pi) with Delta V. Both

figures indicate that in general older occupants are expected to have

higher probabilities of severe injuries than younger occupants for any

given Delta V value although the effect of Age is most pronounced when

Delta V values are about 25 to 30 mph. The age effect also appears
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I

somewhat more pronounced in the two-vehicle subset. Figures 3.77 - 3.80

show the confidence intervals as a function of Delta V for subsets

CIA-1VEH, OID-1VEH, CIA-2VEH, and OID-2VEH. In general, the confidence

limits for the two-vehicle subsets are much smaller than for the single-

vehicle subsets. This implies that if different sets of data were

analysed similar modelling results would be more likely to be repeated

for the two-vehicle models than for the single-vehicle models. The

analyses of the Phase 2 data in Section 3.5 confirmed this. The

confidence intervals for the two-vehicle subsets approach zero as

Delta V values become either very small or very large; this is not so

with the single-vehicle subsets. Finally, the 0ID-1VEH and OID-2VEH

subsets are compared on Figure 3.15. The figure indicates that for high

Delta V values (over about 30 mph), the occupants in a two-vehicle

accident have higher probability of severe injuries than those in a

single-vehicle accident given the same Delta V values. The reverse is

true for lower Delta V values (less than 20 mph).
NENORISS. NOT SEVERE NENOOISS. SEVERE

SO t0 _

4S 0

40 8

15 7

s. 50 ^ 8u uz
25 W S

a 0
20 s 4

15 4

t0 2

S t

0 0
0. .1 .2 .S .4 S .6 .7 .8 .9 t. 0. .1 .2 .3 .4 S .8 .7 .8 .9 1.

PREDICTED PROBABILITY PREDICTED PROBABILITY
OF NON-SEVERE INJURY OF NON-SEVERE INJURY

FIGURE 3.68 Histograms of p. of Two-Variable
Model (Delta V, Age) Fbr CIA-IVEH
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Rural/Urban was incorporated into the model in the form of a dummy

variable which gave the value of 1 to rural and 0 to urban. The

modelling results indicated that for single vehicle accidents the rural/

urban variable was not significant but that it appeared to improve t h e

models' predictive capability for the subsets representing two-vehicle

accidents.
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+------------------------------------------------------------------+

Estimated Models with Delta V, Age and Rural/Urban I

CIA-1VEH (N=244, LRS=41.5, DF=2) I

(3-74) *pi = F(1.6189 - 0.0461X1 - 0.0084X2)

OID-1VEH (N=434, LRS=71.1, DF=2)

(3-75) *p'i = F(2.1335 - 0.0522X1 - 0.0132X2)

OIP-1VEH (N=189, LRS=26.6, DF=2)

(3-76) *pi = F(2.4287 - 0.0443X1 - 0.0220X2)

CIA-2VEH (N=849, LRS=257.0, DF=3)

(3-77) pi = F(3.5721 - 0.0885X1 - 0.0154X2 - 0.2545X3)

OID-2VEH (N=1033, LRS=290.3, DF=3)

(3-78) pi = F(4.0248 - 0.1037X1 - 0.0214X2 - 0.3837X3)

OIP-2VEH (N=415, LRS=87.8, DF=3) I

(3-79) pi = F(3.1127 - 0.0643X1 - 0.0228X2 - 0.3512X3)

where I
p. is the estimated probability of a severe injury,
F^is the logistic distribution, I
X is Delta V. I
X2 is Age, and
X is 1 if Rural and zero otherwise and I
LRS is the Likelihood Ratio Statistic.

*The Rural/Urban variable was not significant. I

I

I
+---•---------------------------------------------------------------+

The goodness of fit of these models is shown in Table 3.41. Rural/

Urban marginally improved the percent correct prediction of severe

injuries of the models with Delta V and Age.

Vehicle Weight, when incorporated into the model in the presence of

Delta V, was not statistically significant. Neither did it improve the

predictive capability of the existing model.

Object. Contacted was incorporated into the model in the form of a

set of dummy variables. The variable did not appear to significantly

improve the model's predictive capability.
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TABLE 3.41
Goodness of Fit

Single-Vehicle: Severity = F(Delta V, Age)
Two-Vehicle: Severity = F(Delta V, Age, Rural/Urban)

Phase 1 Data - Front Impacts

--------------------------------------------------------------
Sample Size I Percent Correct Prediction

I -----------------+--------------------------------
Subset I Non- I i I Non- I

Severe I Severe I Overall I Severe I Severe
----------+--------+--------+-----------+----------+---------

CIA-1VEH* 171 I 73 I 75.8 94.2 I 32.9
OID-1VEH* I 342 92 I 80.9 I 96.5 I 22.8
OIP-1VEH* I 161 I 28 I 85.7 I 98.1 I 14.3
CIA-2VEH I 723 I 126 I 89.2 I 97.6 I 44.4
OID-2VEH I 923 I 110 I 92.8 98.6 44.5
OIP-2VEH I 363 I 52 I 89.2 I 98.1 I 26.9

-

*The rural/urban variable was not significant.

Damage distribution was brought into the model in the form of dummy

variables. It did not appear to be a significant variable.

Height was brought into the model but it did not appear to be a

significant explanatory variable of injury severity. Occupant Weight

was brought into the model but it was not a significant explanatory

variable of injury severity. Sex also appeared to be an insignificant

explanatory variable of injury severity.

The modelling results so far had indicated that the estimated

models for single-vehicle accidents and two-vehicle accidents differed

in that for the former Delta V and Age were found to be significant

explanatory variables of injury severity, while, for the latter Delta V,

Age and Rural/Urban were found to be significant. The estimated model

had enabled us to correctly predict the low severity injuries well above

95% of the time and to correctly predict the high severity injuries at

best about 45% of the. time. The next step was to examine the outliers

(mispredictions) by investigating variables such as Intrusion, Restraint

Usage, Ejection, Injury Type and Body Region with a view to bringing
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about ways and means of improving the existing model's predictive

capability, particularly for the high severity injuries.

Restraint Usage was brought into the model in two ways:

1. As one variable with several levels.

2. As a dummy variable with two levels, namely, No Restraint Usage
and Restraint Usage.

This variable did not improve the models' predictive capability.

The Ejection Variable was brought into the model in two ways:

1. As a dummy variable with three levels - no ejection, trapped,
and others.

2. As a two-level dummy variable - trapped and others.

No significant improvement in the model predictive capability was

noted although the two-level dummy, as indicated by the likelihood ratio

statistic (LRS), appeared to be statistically significant.

Intrusion. Intrusion was brought into the model in two

ways:

1. as a three-level variable, i.e., no- intrusion; intrusion
including steering column, roof,and combination of intrusions;
and the rest. Such regrouping of the levels of the intrusion
variable was based on combining the levels to form one class
for no intrusion, one class for cases with intrusion which
poorly predicted by existing models, and one class for cases
with intrusion which were correctly predicted by the existing
models.

2. as a two-level dummy variable, i.e., no intrusion had a value
of 1 and intrusion had a value of 0.

Both methods indicated that intrusion appeared to be a significant

explanatory variable of injury severity. The improvement in the model

predictive capability was comparable for both methods: small. As a

result, the two-level dummy variable form was chosen because of its

simple form.

3.4.4 Final Models The results of the model estimation having

Delta V, Age, Rural/Urban and the two-level Intrusion as the independent

variables are shown below:
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+----------------------------------------------------------------------+
I•

Estimated Models with Delta V, Age, Rural/Urban, No I
Intrusion/Intrusion

CIA-1VEH (N=241, LRS=59.5, DF=3) I

(3-80) pi = F(0.8501 - 0.0284X1 - 0.0090X2 + 0.8274X4)

OID-1VEH (N=434, LRS=101.6, DF=3)

(3-81) pi = F(1.4601 - 0.0329X1 - 0.0149X2 + 0.9772X4)

OIP-1VEH (N=187, LRS=33.4, DF=3)

(3-82) pi = F(1.9959 - 0.0321X1 - 0.0253X2 + 0.8392X4)

CIA-2VEH (N=841, LRS=277.7, DF=4)

(3-83) pi = F(2.8134 - 0.0723X1 - 0.0170X2 - 0.1993X3 + 0.7133X4)1

OID-2VEH (N=1020, LRS=313.0, DF=4)

(3-84) pi = F(3.1038 - 0.0811X1 - 0.0225X2 - 0.2478X3 + 0.8600X4)

OIP-2VEH (N=412, LRS=92.8, DF=4)

(3-85) pi = F(2.5358 - 0.0501X1 - 0.0236X2 - 0.2704X3 + 0.5613X4)1

I where
J pi is the estimated probability of a severe injury, I

F is the logistic distribution,
I X1 is Delta V, I
J X2 is Age, I

X3 is 1 if Rural zero otherwise, and I
X is 1 if no intrusion and zero otherwise, and I

J LiS is the Likelihood Ratio Statistic. I
+----------------------------------------------------------------------+

The goodness of fit of these models is shown in Table 3.42. By

having Intrusion in the model, the predictive capability of the models,

particularly in predicting severe injuries, improved considerably.

The estimated logistic curves are shown in Figure 3.82. These

curves show how the probability of a severe injury varies with Delta V

values holding Age fixed at 30 and no intrusion was involved. N o t i c e

the difference between this figure and Figure 3.74 which are based on

the models with Delta V, Age, No Intrusion/Intrusion and Rural/Urban and

the models with Delta V and Age respectively. The "No Intrusion" is

such that it lowers the probability of a severe injury for both single-
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TABLE 3.42
Goodness of Fit

Single-Vehicle: Severity = F(Delta V, Age, Intrusion)
Two-Vehicle: Severity = F(Delta V, Age, Rural/Urban, Intrusion)

Phase 1 Data - Front Impacts

----------------------------------------------- --------------
I Sample Size I Percent Correct Prediction
I-----------------+--------------------------------

Subset Non- I I I Non- I
Severe I Severe I Overall I Severe I Severe

----------+--------+--------+-----------+----------+---------
I I I I I

CIA-1VEH I 169 I 72 I 78.8 I 91.1 I 50.0
OID-1VEH 342 I 92 I 81.6 I 95.0 I 31.5
OIP-IVEH 1 159 1 28 1 87.2 I 98.7 I 21.4
CIA-2VEH I 716 I 125 1 90.2 I 96.8 I 52.8
OID-2VEH I 910 I 110 I 93.0 I 98.1 I 50.9
OIP-2VEH I 360 I 52 I 89.3 1 97.2 I 34.6

-------------------------------------------------------------

vehicle and two-vehicle subsets for all values of Delta V. The effect

of Age is shown in Figure 3.83 for the OID-1VEH subset and in Figure

3.84 for the OID-2VEH subset. Each figure consists of three curves

representing Age 20, 40 and 60. The curves show how the estimated

probability of a severe injury (1-pi) varies with Delta V. For both

subsets the Age effect is such that an older occupant is expected to

have a higher probability of a severe injury than a younger occupant.

For the two-vehicle subset, the Age effect approaches zero as Age

becomes either very small or very large. This is not necessarily so

with the single-vehicle subset. The Rural/Urban effect at Age 30 is

illustrated in Figure 3.85 for the OID-2VEH subset. This effect is

relatively small. Figures 3.86 and 3.87 show the effect of Intrusion

for the OID-1VEH and OID-2VEH subsets respectively. A' large intrusion

effect was estimated for the single-vehicle subset, while this effect is

quite small in the two-vehicle subset. Finally, confidence limits are

shown as a function of Delta V for the CIA-1VEH, OID-1VEH, CIA-2VEH, and

OID•-2VEH subsets in Figures 3.88 - 3.91, respectively. The confidence

limits are large for the single-vehicle subsets while those for the two-

vehicle subsets are relatively narrow and approach zero for very small

or large values of Delta V. Figure 3.92 compares the confidence limits
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of the 0ID-1VEH and the OID-2VEH models. An occupant in a two-vehicle

accident is expected to have a much higher probability of a severe

injury than an occupant in a single-vehicle accident when Delta V values

are greater than 30 mph. The narrower confidence limits of the two-

vehicle subset also implies that the prediction by the two-vehicle model

is likely to be more reliable than that by the single-vehicle model.

1.0

0.9

i ----- CIR-2VEH
'o.a
z 010-2VEH

0.7
W 01P-2VEH

X0.6
CIA- I V E MW

0.5 ....... 0I 0-1 VEH

DIP-1VEH

0.0
7 19 19 2S 31 37 49 49 55 61

4 10 16 22 26 34 40 46 52 56
DELTA V

FIGURE 3.82 Logistic Curves of Four-Variable Models (Delta V, Age,
Rural/Urban and No Intrusion/Intrusion) For Front-Impact Subsets

Phase 1 Data - Front Impacts

Interaction Effects. The modelling results could be

summarized as follows:

Single-vehicle

Severity = F(Delta V, Age, Dummy [No Intrusion/Intrusion])

Two-vehicle

Severity = F(Delta V, Age, Dummy [Rural/Urban], Dummy [No
Intrusion/Intrusion])

The presence of dummy variables in the above mentioned forms

changed the constant terms of the estimated models but not the estimated
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FIGURE 3.83 The Age Effect of Four-Variable Model (Delta V, Age,
Rural/Urban and No Intrusion/Intrusion) For OID-1VEH

Phase 1 Data - Front Impacts

coefficients of Delta V and Age. Interaction effects of the dummy

intrusion variable in the.models were examined as follows.

1. Instead of the dummy variable as before, an interaction
variable involving the dummy variable and Delta V was
introduced into the modelling. The resultant goodness of f i t
did not improve although the interaction term showed
statistical significance.

2. Both the dummy variable and the interaction variable were
included in the modelling. The resultant goodness of fit, by
and large, decreased and neither the dummy terms nor the
interactive terms were statistically significant.

3. A similar procedure was repeated but this time the interaction
variable was in the form of the dummy variable multiplied by
CDC Extent. Similar conclusions as above were reached.
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3.4.5 Model Evaluation. As indicated by Table 3.42, the estimated

models represented by Equations 3-80 to 3-85.were capable of predicting

the non-severe injuries very well but they were mispredicting the severe

injuries 40% to 80% of the time. For each subset, the pi values were

calculated and two histograms of these pi values were plotted, one for

the non-severe injuries and the other for the severe injuries (Figures

3.93 to 3.98). Ideally, a good model should display, for non-severe

cases,the pi values greater than 0.5 and clustering around 0.9 to 1.0;

and for severe cases, the pi values smaller than 0.5 and close to zero.

Figures 3.93 to 3.98 show that the estimated models are almost perfect

for non-severe injuries but much less so for severe injuries. For the

latter, about 26% of the pi values of CIA-1VEH, 0ID-1VEH, CIA-2VEH and

OID-2VEH and about 45% of the "pi values of 0IP-1VEH and OIP-2VEH, which

should have been less than 0.5, were greater than 0.75. These outliers

were those cases where Delta V values were low to moderate but the

resultant injuries were coded severe. This seems to imply that certain

injury types could have been severe and/or certain body regions could

have sustained severe injuries even though Delta V (i.e., the crash

severity) was relatively low.

NENORISSi SEVERE
w

NENORISSi NOT SEVERE
10_

M 0

10

E --mommod I1%
0. .1 .2 .3 .4 .5 .6 .7 B .9 0. .1 .2 .3 .4 .5 .6 .7 .B .9

PREDICTED PROBRBILITY PREDICTED PROBABILITY

OF NON-SEVERE INJURT OF NON-SEVERE INJURY

FIGURE 3.93 Histograms of "p. of The Four-Variable Model (Delta V,
Age, Rural/Urban and No Intrusion/Intrusion) For CIA-1VEH

Phase 1 Data - Front Impacts

Further investigation on NEWOAIS3 coding in relation to the

incurred injury types and body regions revealed the following:
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FIGURE 3.95 Histograms of p. of Four-Variable Model (Delta V,
Age, Rural/Urban and No Intrusion/Intrusion) For OIP-1VEH

Phase 1 Data - Front Impacts

1. The injury types which had high proportions of severe injuries
to total injuries were rupture, dislocation, crushing,
-Fracture, and. hemorrhage. The first two, when they occurred,
had nearly 100% severe injuries. crushing had a greater than
80% severe injuries, and for the last two about 50%.

2. The body regions which were associated with high proportions of
severe injuries to total injuries were abdomen, lower
extremities, chest, pelvic/hip, and knee.

On a subset-by-subset basis, the following were observed:
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CIA-1VEH:

1. Ruptures immediately implied severe injuries and abdominal

injuries only.

2. Severe dislocation injuries were more common than non-severe

dislocations; the former involved pelvic/hip,ankle/foot and

elbow while the latter involved wrist/hand.
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3. Fractures had a 50-50 chance of severe injuries.

4. Injuries involving abdomens, lower extremities immediately

implied severe injuries.

OID-1VEH:

1. Ruptures and dislocations immediately implied severe injuries;

the former involved only abdomens while the latter involved

pelvic/hip, ankle/foot and wrist/hand.

2. Fracture had a 50-50 chance of severe injuries.

0IP-1VEH:

1. Ruptures immediately implied abdominal severe injuries.

2. Severe dislocations were far more common than non-severe

dislocations, the former involved pelvic/hip and elbow while

the latter involved ankle/foot.

3. Severe fractures were less common than non-severe fractures.

4. Abdomen and Lower extremities immediately implied severe

i njuri es.

CIA-2VEH:
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1. Ruptures, dislocations and hemorrhages immediately implied

severe injuries.

2. Fractures had a 50-50 chance of being severe injuries.

3. Abdominal injuries were highly likely to be severe.

OID-2VEH:

1. Ruptures and hemorrhages immediately implied severe injuries.

Dislocations were highly likely to be severe.

2. Fractures had a slightly higher than 50-50 chance of being

severe.

3. Abdominal injuries had about a 70% chance of being severe.

OIP-2VEH:

1. Ruptures and dislocations immediately implied severe injuries.

2. Fractures and hemorrhages had a 50-50 chance of being severe.

3. Chest were more likely to be severe injuries than those to

other body types.

It was also noted that hemorrhages appeared to have occurred much

more frequently in two-vehicle accidents than in single-vehicle

accidents.

The two-way tables of outliers and injury type and of outliers and

body region were examined. Listed here are those injury types and body

regions in which the proportions of outliers to total cases were high.

Of particular interest from the point of view of trying to improve the

prediction of the outliers were the injury types and the body regions

which were ranked consistently high within the six subsets in Table

3.43. Such injury types appeared to be Dislocation, Rupture and

Fracture, and to the lesser extent, Hemorrhage and Crushing; and the

body regions were Lower Extremities, Abdomen, Chest, Pelvic/Hip and

Forearm.
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The development of mechanistic models for front impacts of the

Phase 1 data had resulted in, for single-vehicle accidents, the models

having Delta V, Age and No Intrusion/Intrusion as the independent

variables and for two-vehicle accidents the models with Delta V, Age, No

Intrusion/Intrusion and Rural/Urban. Further analyses of front impacts

are continued with the addition of the Phase 2 data in Section 3.5.
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TABLE 3.43
Injury Types And Body Regions with High Percentage of Misprediction

Phase 1 Data - Front Impacts

------------------------------------------------------------------------
I Injury Types Which I Body Regions Which

Subset I Were Highly Mispredicted* I Were Highly Mispredicted*
------------+-----------------------------+-----------------------------

CIA-1VEH Dislocation Lower Extremities
Rupture Abdomen
Sprain Pelvic/Hip
Crushing Lower Leg/Thigh
Avulsion Chest
Fracture Neck

OID-1VEH Dislocation Lower Leg
Rupture Pelvic/Hip
Fracture Abdomen

Forearm
Chest
Ankle/Foot

OIP-1VEH I Rupture Abdomen
Dislocation Lower Extremities
Avulsion Upper Extremities

I Fracture Back
Pelvic/Hip

CIA-2VEH I Hemorrhage Upper Extremities
Dislocation Lower Extremities
Rupture Abdomen

I Fracture Chest
Pelvic/Hip
Thigh

OID-2VEH I Hemorrhage I Lower Extremities
Rupture I Abdomen

I Dislocation I Pelvic/Hip
I Fracture I Ankle/Foot

OIP-2VEH I Rupture I Chest
Hemorrhage I Abdomen
Dislocation I Forearm/Arm

i Fracture I Back/Shoulder
I Pelvic/Hip

i I Thigh
I I Ankle/Foot

------------------------------------------------------------------------

*Injury Types and body regions were ranked within subsets by the larger

magnitude of misprediction proportions.
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3.5 Final Analytical Results for Front Impacts

The development of mechanistic models for front impacts was

continued with the Phase 2 data. Again, the first consideration was the

validation of the Phase 1 models with the Phase 2 data. As with the

side impacts, the initial subsections deal with the combination of the

Phase 1 and Phase 2 data and with the combination of subsets. Several

variables are reviewed for addition to the models using the combined

data, including contact point. The final models incorporate body region

as in the side impact models.

3.5.1 Validation of Phase 1 Models. The estimated models as

represented by Equations 3.80 to 3.85 were applied to the Phase 2

data22, and the following goodness of fit measures for the six subsets

were obtained and are shown in Table 3.44.

Comparison of Table 3.42 and Table 3.44 revealed when the Phase 1

estimated models (Delta V, Age, No Intrusion/Intrusion, Rural/Urban)

were applied to the Phase 2 data file:

1. For all subsets the overall proportion of cases correctly

predicted by the Phase 1 models for the Phase 2 data was only

1% to 6% lower than for the Phase 1 data.

2 . With the exceptions of the non-driver-only subsets (O I P -1 V E H

and OIP-2VEH), the models predicted severe injuries as well in

the Phase 2 data as in the Phase 1 data. For the non-driver-

only subsets, the models predicted severe injuries only half as

well in the Phase 2 data.

Because Delta V and to the lesser extent Age had been known to

generally exert strong influence on injury severity, it was considered

worthwhile to attempt to fit the Phase 2 data with the Phase 1 models

that only had Delta V and Age as the independent variables and to

compare the goodness of fit measures with those obtained from models

22The Phase 2 data file gives a slightly different version of
intrusion information from that contained in the Phase 1 data. This had
an effect in the creation of the intrusion dummy variable, that was used
in determining the results contained in Table 3.44. The variable
created from the Phase 2 data has a numerical value of zero if an
intrusion was specified and a value of one otherwise.
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TABLE 3.44

Goodness of Fit

Single Vehicle - Severity = F(Delta V, Age, Intrusion)
Two Vehicle - Severity = F(Delta V, Age, Intrusion, Rural/Urban)

Phase 2 Data - Front Impacts

-------------------------------------------------------------
I Sample Size I Percent Correct Prediction
I -----------------+--------------------------------

Subset I Non- I I Non- I
I Severe I Severe I Overall I Severe I Severe

----------+--------+--------+-----------+----------+---------
I

CIA-1VEH I 82
I
I 41 I 77.2

I
87.8

I
56.1

I I I I
OID-1VEH 1 188 I 66 77.6 95.2 27.3

I
OIP-1VEH I 96

I
1 23

I
I 81.5

I
I 100.0

I
4.3

I
CIA-2VEH I 517

I
1 103

I
88.2

I
96.5

I
I 46.6

I I I I
OID-2VEH I 498 I 65 92.7 I 98.2 I 50.8

I
OIP-2VEH I 194

I
I 35

I
I 87.3

I
I

I
99.5 I 20.0

-------------------------------------------------------------

described by Equations 3.68 to 3.73. Table 3.45 shows the proportion of

cases correctly predicted by such models.

Comparison of Table 3.44 and Table 3.45 reveals that by bringing

the two variables (Intrusion/No Intrusion and Rural/Urban) into the

models, the overall goodness of fit only marginally improved. However,

the additional variable(s), with the exception of the non-driver-only

subsets, brought about a marked improvement in the prediction of the

severe injuries. Such improvement was accompanied by a slight reduction

in the proportion of non-severe injuries that had already been correctly

predicted by the two-variable models.

Comparison of Table 3.40 and Table 3.45 reveals that the goodness

of fit results of applying the Phase 1 models (Delta V and Age) to the

Phase 2 data were almost as good as those of the Phase 1 data.
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TABLE 3.45

Goodness of Fit

Severity = F(Delta V, Age)

Phase 2 Data - Front Impacts

-------------------------------------------------------------
I Sample Size I Percent Correct Prediction
-----------------+--------------------------------

Subset I Non- I I I Non- I
I Severe I Severe I Overall I Severe I Severe

----------+--------+--------+-----------+----------+---------
I

CIA-1VEH I 82
I
I 41

I
I 73.2

I
90.2

I
I 39.0

I
OID-1VEH 188

I
I 66

I
I 76.4

I
I 96.3

I
I 19.7

I
OIP-1VEH 96

I
23

I
I 81.5

I
I 100.0

I
I 4.3

I
CIA-2VEH I 517

I
I 103

I
I 87.9

I
I 98.1

I
I 36.9

OID-2VEH 498
I

65
I
I 91.5

I
I 98.2

I
I 40.0

I
OIP-2VEH 1 194 I 35

I
1 86.9

I
I 99.5

I
I 17.1

-------------------------------------------------------------

3.5.2 Model Estimation - Phase 2 Data. Table 3.46 contains the

number of cases with valid Delta V. The proportion of severe injuries

to total injuries are also shown for all subsets.

The basic finding was that when the estimated Phase 1 models (that

had Delta V, Age, Intrusion and Rural/Urban) were applied to the Phase 2

data, the models predicted the occurrence of severe and non-severe

injuries in the Phase 2 data nearly as well as they did in the Phase 1

data. Such a finding was somewhat unanticipated. Rather, it had been

expected that the models would provide a mediocre fit to the Phase 2

data because they had been estimated using solely the Phase 1 data.

This finding immediately suggested that a still better prediction

of injury severity in the Phase 2 data might indeed be possible. One

approach was to take these four variables (Delta V, Age, Intrusion and

Rural/Urban) as being the most significant independent variables and to

estimate new coefficients using only the Phase 2 data.
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TABLE 3.46

Range of Delta V For The Six Subsets

Phase 2 Data - Front Impacts

Delta V I
Subset I-----------------------------------I Percentage of

I Sample Size I Range I Mean I S.D. I Severe Injuries
----------+-------------+-------+------+------+-----------------

I I I I I
CIA-1VEH I 159 13-97 21.0 113.1 28.1

I I I I I
OID-1VEH I 324 12-62 118.2 I 9.2 I 25.3

I
OIP-1VEH I 158

I I I I
13-44 1 17.0 I 8.4 I 23.1

I I I I I
CIA-2VEH I 763 13-81 118.1 110.3 I 17.5

0ID-2VEH
{

699
I
1 2-65

I
14.7

I I
9.2 I 12.0

I I I I I
OIP-2VEH { 305 12-57 15.3 I 8.6 I 14.0

--=-------------------------------------------------------------

Estimation of the coefficients of these independent variables using

the Phase 2 data was done. The Intrusion/No Intrusion and Rural/Urban

variables were found not to be significant in the presence of Delta V

and Age. Neither did they significantly improve the predictive

capability of the models with only Delta V and Age (Equations 3-86 to

3-91). Note that the information on intrusion was recorded differently

inthe Phase 1 and Phase 2 data. Such difference might have

contributed to the dissimilar influences of intrusion on the injury

severity, i.e., intrusion was found to be quite significant in

explaining the probability of injury in the Phase 1 data but was found

insignificant in the Phase 2 data. Rural/Urban was included in the

Phase 1 models because it enhanced the prediction although its influence

was much weaker than Intrusion and Age. The models chosen to describe

front impacts of the Phase 2 data are as follows:

226



+---------------------------------------------------------------+

Estimated Models with Delta V and Age: Phase 2:

CIA-1VEH (N=123, LRS=32.13, DF=2)

(3-86) pi = F(2.0731 - 0.0531X1 - 0:0168X2)

OID-1VEH (N=254, LRS=47.86, DF=2)

(3-87) pi = F(2.3284 - 0.0483X1 - 0.0261X2)

0IP-1VEH (N=122, LRS=18.17, DF=2)
I I

(3-88) pi = F(2.0483 - 0.0693X1)

CIA-2VEH (N=620, LRS=217.29, DF=2)

(3-89) pi = F(3.7973 - 0.0992X1 - 0.0222X2)

OID-2VEH (N=563, LRS=165.81, DF=2)

(3-90) F(3.8990 - 0.1137X1 - 0.0173X2)

OIP-2VEH (N=229, LRS=51.11, DF=2)

(3-91) pi = F(3.0408 - 0.0887X1 - 0.0165X2)

I where
I
I pi is the estimated probability of a non-severe injury, I

F is the logistic function,

X1 is Delta V,

X2 is Age, and

LRS is the Likelihood Ratio Statistic.
+---------------------------------------------------------------

I

I

I
+

Histograms of the estimated probability of a non-severe injury, pi,

are presented in Figures 3.99 to 3.104. Each figure, representing a

model of a particular subset, has two histograms, one for non-severe

cases and the other for severe cases. The two histograms have the same

axes, one represents the values of pi at a 0.05 interval and the other

the number of cases with the particular values of pi. The figures

indicate that the models predicted non-severe injuries very well for all

subsets but they did only half as well for severe injuries. The

estimated logistic curves for the six subsets are shown on Figure 3.105.

These curves show how the probability of a severe injury (1-pi) varies
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with Delta V values with Age fixed at 30. As in the Phase 1 data, the

main difference is between the single-vehicle- and the two-vehicle

subsets. The effect of Age is illustrated for the 0ID-1VEH and OID-2VEH

subsets in Figures 3.106 and 3.107, respectively. The figures.each

contains three curves representing Age 20, 40 and 60. The curves show

for these ages the probability of a severe injury (1-pi) as a function

of Delta V. Both figures show that older occupants in general can be

expected to have higher probabilities of severe injuries than the

younger counterparts. The age effect is large in the single-vehicle

subset. Confidence limits as a function of Delta V are shown in Figures

3.108 to 3.111 for subsets CIA-1VEH, OID-1VEH, CIA-2VEH, and O I D- 2VEH

respectively. Each figure consists of three curves representing the

upper bound, the lower bound and the estimated probability of a severe

injury (1-pi) for each subset. The single-vehicle subsets have larger

confidence intervals; the confidence intervals for the two-vehicle

subsets are reasonably small and approach zero as Delta V values become

very small or very large. Figure 3.112 compares the confidence

intervals of the OID-1VEH and OID-2VEH subsets. The figure indicates

that for Delta V less than 25 mph, single-vehicle accidents are likely

to have higher probabilities of severe injuries than two-vehicle

accidents but that for Delta V greater than 30 mph the, reverse is true.
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The goodness of fit of the models represented by Equations 3-86 to

3-91 is contained in Table 3.47. Comparison of these goodness of fit

results with those of the two-variable models (Delta V and Age) based on

the Phase 1 data (Table 3.40) revealed that:

1. Their overall percentages of correct prediction were quite

similar.
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2. The Phase 2 data two-variable models gave higher percentages of

correct prediction of severe injuries but slightly lower

percentages of correct prediction of non-severe injuries t h a n

the Phase 1 data two-variable models.

Comparison of the goodness of fit results in Table 3.47 with those

in Tables 3.44 and 3.45 indicate that:
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1. The Phase 2 data two-variable models represented by Equations

3-86 to 3-91 were predicting almost as well as when applying
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the Phase 1 four-variable models (Delta V, Age, No Intrusion/

Intrusion, Rural/Urban) to the Phase 2 data.

2. The Phase 2 data two-variable models represented by Equations

3-86 to 3-91 were predicting the severe injuries, better than

when applying the Phase 1 two-variable models (Delta V, Age) to

the Phase 2 data. The prediction of the overall injuries of

these Phase 1 and Phase 2 models were not appreciably

different.

The foregoing analyses indicated that, in general, the Phase 1

models (either the two-variable models or the four-variable models)

predicted injury severity in the Phase 2 data nearly as well for both

non-severe and severe injuries. The estimated two-variable models of

both phases produced the goodness of fit results quite similarly. As

with the side impact models, they showed slightly more variability in

predicting the severe injuries than in predicting the non-severe

injuries. But this could be caused by the fact that the sample sizes of
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former were relatively smaller than the latter and that prediction of

severe injuries had been, to date, somewhat tenuous. The modelling

results of the Phase 1 and the Phase 2 data strongly implied that both

sets of data could be combined.
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TABLE 3.47

Goodness of Fit

Injury Severity = F(Delta V, Age)

Phase 2 Data - Front Impacts

---------------------------------------------------------------------
I Sample Size I Percentage Correct Prediction

Subset I---------------------+-----------------------------------
Non-Severe I Severe Overall I Non-Severe I Severe

-----------+------------+--------+-----------+-------------+---------

CIA-1VEH I 82 I 41 I 75.6 I 90.2 I 46.3

OID-1VEH I 188 I 66 78.3 I 93.6 I 34.8
I I I I I

OIP-1VEH* I 98 I 24 I 81.1 I 96.9 I 16.7
I i I I I

CIA-2VEH I 517 I 103 I 88.1 96.9 I 43.7
i I I I I

OID-2VEH I 498 I 65 92.4 I 98.4 I 46.2
I I I I I

OIP-2VEH I 194 I 35 I 86.0 I 97.4 I 22.9

*Age is not significant
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3.5.3 Combining Phase 1 and Phase 2 Data. Further statistical

investigation was carried out in order to test the plausibility of

combining the Phase 1 and Phase 2 data. Th-e' statistical tests and

results based on the Delta and Age models are shown in Table 3.48. The

null hypothesis, HO, is that one model will adequately describe both the

Phase 1 and Phase 2 data. The alternative hypothesis, His is that two

independent models are required to describe the different phases. The

statistical test used is the Likelihood Ratio Statistic which is

discussed in more detail in Section 3.1.2. The results in Table 3.48

indicate that the Phase 1 and Phase 2 data can be combined for all

frontal subsets.

TABLE 3.48

Statistical Results
Combining Phase 1 and Phase 2 Data

------------------------- a -------------- ---------------------
Subset 1 -2logL0 I -2logLI I LRSC I df

----------------------------------------------------------------
CIA-1VEH I 377.73 I 376.71 I 1.02 I 3
OID-1VEH I 641.85 I 637.77 I 4.08 I 3
OIP-1VEH I 241.60 I 236.08 I 5.52 I 3
CIA-2VEH 1 843.39 I 840.21 I 3.18 I 3
OID-2VEH 1 655.67 1 655.21 I 0.46 I 3
OIP-2VEH 1 388.90 I 384.97 1 3.93 1 3

aLO is the likelihood of the data under the null
hypothesis.

bL is the likelihood of the data under the alternative
Qothesis.

cLRS is asymptotically chi-square with df specified.

Table 3.49 shows the proportion of severe injuries to total

injuries, valid Delta V and valid Age of the six subsets for the

combined data. It suggests that single-vehicle accidents are likely f o

result in higher proportions of severe injuries than two-vehicle

accidents. Center impacts, in general, yield higher severe injury

proportions than off-center impacts.
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TABLE 3.49

Descriptive Statistics for Key Variables

Phases 1 and 2 - Front Impacts

------------------------------------------------------------------------

I Delta V I Age*
Subset I Percent I ---------------------+---------------------

I Severe Injuries I Range I Mean I S.D. I Range I Mean I S.D.
-----------+-----------------+-------+------+------+-------+------+------

CIA-1VEH I 27.2 1 3-97 119.2 112.5 10-80 128.1 1 14.9
0ID-1VEH I 21.7 11-75 117.4 110.3 113-88 129.3 114.4
OIP-1VEH 1 19.1 1 2-68 116.8 1 9.8 0-87 1 23.1 1 14.5
CIA-2VEH 17.0 1 2-93 118.2 110.3 1 0-86 1 31.0 117.0
OID-2VEH I 11.3 1 2-65 114.3 I 9.0 11-90 133.5 116.1
OIP-2VEH 12.9 1 2-57 1 14.9 1 9.2 10-90 128.0 1 18.9

*A zero code represents an occupant less than one year old.

Figure 3.113 shows the cumulative distribution of Delta V for t h e

six subsets. This figure is quite similar to the cumulative

distribution of Delta V for the Phase 1 data (Figure 3.67). The

cumulative curves for the six subsets are quite similar.

242



.9 is

8 CIA -I VEH
. i•

OID- I VEH

-- OIP- I VEH

-- CIA-2 VEH
w

......•• OID-2 VEH
U_ 6
0 ------ OIP - 2 VEH
z i^
0 .5 :i

V

m 9
yFE .4

Co
0

.3 s
w

.2
J

0
U

0
J

1.0 20.8 40.6 60.4 80.2 100
DELTA V

FIGURE 3.113 Cumulative Distributions of
Delta V For Front-Impact Subsets
Phases 1 and 2 - Front Impacts

01

243



3.5.4 Model Estimation - Phase 1 and Phase 2 Combined. The

results of the modelling estimation for the combined Phase 1 and Phase 2

with Delta V and Age as the independent variables are shown in Equation

3-92 to 3-97.
+-----------------------------------------------------------------+

Estimated Models with Delta V and Age: Phases 1 and 2

CIA-1VEH (N=366, LRS=76.92, DF=2)

(3-92) pi = F(1.8051 - 0.0511X1 - 0.0111X2)

OID-1VEH (N=701, LRS=125.98, DF=2)

(3-93) pi = F(2.2274 - 0.0531X1 - 0.0179X2)

OIP-1VEH (N=313, LRS=44.42, DF=2)

(3-94) pi = F(2.1913 - 0.0483X1 - 0.0158X2)

CIA-2VEH (N=1494, LRS=469.68, DF=2)

(3-95) pi = F(3.5174 - 0.0912X1 - 0.0177X2)

OID-2VEH (N=1588, LRS=450.64, DF=2)

(3-96) pi = F(3.8541 - 0.1090X1 - 0.0186X2)

OIP-2VEH (N=656, LRS=138.91, DF=2)

(3-97) pi = F(2.9543 - 0.0725X1 - 0.0197X2)

I where

I pi is the estimated probability of a non-severe injury, I

F is the logistic distribution,
I X1 is Delta V,

X2 is Age, and I

LRS is the Likelihood Ratio Statistic.
+-----------------------------------------------------------------+

The logistic curves estimated by these equations are shown in

Figure 3.114 for the six subsets. The curves show how the estimated

probability of a severe injury (1-pi) varies with Delta V values holding

Age fixed at 30. The three curves pertaining to the three single-

vehicle subsets have similar curves which are different from the other

three curves of the two-vehicle subsets. The results are similar to the

Phase 1 and the Phase 2 results presented earlier. The effect of Age is
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shown in Figure 3.115 and 3.116 for the OID-1VEH and OID-2VEH subsets.

Each of these figures consists of three curves representing Age 20, 40

and 60. Each curve shows the variation of the estimated probability of

a severe injury (1-pi) with Delta V values. I n both subsets, older

occupants show higher probabilities of receiving severe injursies than

younger occupants for a given Delta V value. In the two-vehicle subset,

the age effect approaches zero as Delta V values become very small or

very large. This, however, is not quite so with the single-vehicle

subset. Confidence limits for the CIA-1VEH, OID-1VEH, CIA-2VEH, and

OID-2VEH subsets are shown in Figures 3.117 to 3.120. The confidence

intervals were plotted holding Age fixed at 30. The bands of the two-

vehicle subsets are much narrower than those of the single-vehicle

subsets. For the two-vehicle subsets the confidence intervals approach

zero as Delta V values become very small or very large. This is not so

with the single-vehicle subsets. Comparing these with the same figures

for the Phase 2 data (Figures 3.108 to 3.111) illustrates the narrowing

of the confidence limits with increased sample size. Finally, the

OID-1VEH and OID-2VEH subsets are shown on the same graph with their

-confidence limits in Figure 3.121. The figure indicates that for

Delta V less than 25 mph the single-vehicle subset has higher

probabilities of severe injuries than the two-vehicle subset; the

reverse is true, however, for Delta V greater than 35 mph.

-
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3.5.5 Model Evaluation - Phase 1 and Phase 2 Combined. The

goodness of fit of the models represented by Equations 3-92 to 3-97 is

shown in Table 3.50. The histograms of the pi values for the six

subsets are shown in Figures 3.122 to 3.127. The combined Phase 1 and

Phase 2 two-variable models predicted the non-severe, injuries most

satisfactorily and consistently across all subsets. The percent correct

prediction of severe injuries by these models was much lower and with

more variability. The implication was that Delta V and Age alone were

not quite adequate in describing a severe injury with a low or moderate

value of Delta V. Other variables were needed to be investigated in

order to improve the models' predictive capability, particularly those

that might help describe the severe injuries. The first step was to

examine variables such as Restraint Usage, Ejection, Body Region and

Injury Type for the mispredicted cases.

TABLE 3.50

Goodness of Fit

Severity = F(Delta V, Age)

Phases 1 and 2 - Front Impacts

-----------------------------------------------------------------
I Sample Size I Percent Correct Prediction

Subset I---------------------+--------------------------------
I Non-Severe I Severe I Overall I Non-Severe Severe

----------+------------+--------+----------+------------+--------
CIA-1VEH I 252 I 114 I 74.8 92.5 I 36.0
OID-1VEH I 536 I 165 I 79.9 I 95.9 27.9
OIP-1VEH I 261 52 84.3 98.1 I 15.4
CIA-2VEH I 1256 I 238 I 88.1 I 96.9 41.6
OID-2VEH I 1412 I 176 I 92.4 I 98.4 I 44.3
OIP-2VEH I 566 I 90 I 88.3 98.2 25.6

Restraint Usage. The majority of the occupants were

reported not using any forms of occupant restraints. A small percentage

of occupants did not have restraints while another handful used either

"lap and torso" or "lap only" restraint. For the six subsets, the

number of occupants using/not using restraints for cases with valid

Delta V and Age is shown in Table 3.51. From Table 3.51 it could be
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determined that the proportions of severe injuries to total injuries for

the above four classes of restraint usage differed only slightly from

one another (17% for not-used, 14% for no-restraint and 12% for'lap/

torso and lap only).

Table 3.52 shows the misprediction rates of severe and non-severe

injuries by Restraint Usage for cases with valid Delta V and Age. Of

particular interest would have been how much the rates varied within

each subset across the classes of Restraint Usage for severe injuries.

Unfortunately, the very small sample size of occupants using restraints

tended to reduce the merits of the results shown.

Ejection. The majority of occupants were associated with

no ejection or no entrapment while another handful of occupants were

found either trapped or ejected or partially ejected and trapped. These

proportions of occupants are shown in Table 3.53, which also reveals

that the proportions of severe injuries to total injuries were

appreciably higher in the presence of ejection and/or entrapment. From

Table 3.53 it could be determined that for no ejection the proportion of

severe injuries to total injuries was 13% while those with ejection was

63% and those with entrapment was 82%.

Table 3.54 shows the misprediction rates of severe and non-severe

injuries by ejection types. For severe injuries; the proportion of

cases mispredicted when the injuries involved ejection and entrapment

appeared lower than when no ejection/entrapment was involved. Again,

the rather small sample size of occupants with ejection/entrapment might

reduce: the merits of the results shown somewhat.

Table 3.55 lists the injury types which yielded the misprediction

of severe injuries most frequently as well as the frequency of such

misprediction for all subsets. Rupture, dislocation, hemorrhage and

fracture were consistently found to be major sources of misprediction.

Table 3.56 lists the affected body regions found to be associated with

most frequent injury misprediction. The more common body regions in all

six subsets appeared to be abdomen, chest, pelvic/hip and lower limbs.

Tables 3.58 and 3.59 cross tabulate the injury types and the affected

body regions for single-vehicle and two-vehicle accidents. AT so

tabulated were the proportion of a severe injury, the chance of it being
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- TABLE 3.51 

Propor t ion  o f  Res t ra in t  Usage f o r  
Severe and Non-Severe I n j u  r i es 

............................................................................................... 
I Severe I n j u  ri es I I Non-Severe I n j u r i e s  
I------------------------------------------[ I------------------------------------------ 

Subset jSarnple [Not Usedl No R e s t r a i n t  I Lap/TorsolLap l [Sample (Not Usedl No R e s t r a i n t  lLap/TorsolLap 
I Size I (%) I (%I  I (%) I (%)  I I Size I (%) I (%) I I(%) 

- - - - - - - - + - - - - - - + - - - - - - - - + - - - - - - - - - - - - + - - +  I I ------+--------+------------+---------+--- 
CIA-1VEHI 110 1 87 1 9 1 2 1 2 1 1  2 4 8 1  92 I 3 1 3 1 2  
OID-1VEHI 159 1 94 1 3 I 1 1111 5 1 8 1  89 I 5 I 3 1 3  
OIP-1VEHI 51 1 90 1 8 I 0 1 2 1 1  2 5 1 1  88 1 9 1 2 1 1  
CIA-2VEHI 227 1 92 1 3 ( 
OID-2VEHI171 1 93 1 1 1 

3 
2 

1 2 1 1 1 2 1 2 1  89 1 4 I 
1 3 1 1 1 3 2 7 1  88 1 3 I 

4 
5 

1 3  
1 5  

OIP-2VEHI 88 1 92 1 6 I 
I------+--------+------------+---------+---[ 

1 I 1 1 1  5 4 9 1  88 I 9 I 
]------+--------+------------+---------+--- 

1 1 2  

TOTAL 1 8 0 6  1 92 1 4 1 2 1 2 1 1 4 1 0 5 1  88 1 5 1 3 1 3  ............................................................................................... 

lu 
rn 
+ 
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TABLE 3.53 

P ropo r t i on  o f  E ject ionIEntrapment  f o r
Severe and Non-Severe I n j u  ri es 

Phases 1 and 2 - Front  Impacts 

 

- -  - -- ..................................................................................................... 
I Severe I n  j u  ri es I I Non-Severe I n j u r i e s  
I - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  I--------------------------------------------- 

Subset I I I I E jec t  i on /  1 I I I I I E j e c t i o n / l  
l  Sampl e 1 No E j e c t i o n  1 E j e c t  i on 1 Trapped 1 Trapped l l Sampl e l No E j e c t i o n  l E j e c t  i o n  l Trap ed l Trapped 
I Size I (%) I (%) I (%) I (%) I I Size I (%) I (%) I (%y I (%)  

- - - - - - - - + - - - - - - + - - - - - - - - - - - + - - - - - - - - + - - - +  I I ------+-----------+--------+---------+------- 
CIA-1VEHI 107 1 78 1 5 1 N A ~  1 1 7  1 1 2 5 1 1  97 I 2 1  NA I 1 
OID-1VEHI 154 1 77 1 8 1  1 1 14 1 1  527 1 98 I 1 1  NA I 1 
OIP-1VEHI 49 1 72 1 14 1 NA 1 14 1 1 257 1 98 NA I 1 I b I  CIA-2VEHI 215 1 83 1 3 1 NA 1 14 1 1  1251 1 99 I L.T.1 I NA I L.T.1 
OID-2VEHI 159 1 78 1 3 1  1 1 18 1 1  1 3 9 8 1  99 I  L.T.l I NA I L.T.l 
OIP-2VEHI 86 1 94 1 2 1 NA 1 4 1 1  5 6 0 1  99 I L.T.1 I NA I L.T.1 

I - - - - - - + - - - - - - - - - - - + - - - - - - - - + - - - - - - - - - + -  I I ------+-----------+--------+---------+------- 
TOTAL 1 7 7 0  1 8 1  1 5 1  0 1 14 1 1  4244 1 99 I L.T.l I NA 1 L.T.l 

a~~ means no cases were recorded. 

b~.~.l means l e s s  than 1. 



TABLE 3.54 

Mispred ic t  i o n  Rate By E jec t  ion/Entrapment f o r  
Severe and Non-Severe I n j u r i e s  

Phases 1 and 2 - Front  Impacts 

I Severe I n j u r i e s  I I Non-Severe I n j u r i  es 
I---------------------------------------------l I--------------------------------------------- 

Subset I I I IE jec t i on /  l I I I I I E jec t i on /  l 
ISamplelNo E j e c t i o n l E j e c t i o n l  Trapped ITrappedl ISamplelNo E j e c t i o n l E j e c t i o n l  Trapped ITrapped 
I Size I (%> I (%> I (%I I (%> I I  s i z e  I ( % I  I (%> I (%I I ( % I  

- - - - - - - - + - - - - - - + - - - - - - - - - - - + - - - - - - - - + - - - +  I I ------+-----------+--------+---------+------- 
CIA-1VEHI 107 1 74 1 25 1 NA* 1 5 0  1 1  2 5 1 1  7 1 2 5 1 N A  1 0
OID-1VEHI 154 1 82 1 69 1 100 1 19 1 1  527 1 3 1 25 1 NA 1 33 
OIP-1VEHI 49 1 94 1 43 1 NA 1 86 1 1  257 1 2, I O I N A  I 0
CIA-2VEHI 215 1 71 I 0 I NA 1 23 1 1 1 2 5 1 1  3 1 75 1 NA 1 2 0  
OID-2VEHI 159 1 66 1 40 1 0 1 29 1 1  1398 1 2 I O I N A  I 0
OIP-2VEHI 86 1 78 1 50 1 NA 

I - - - - - - + - - - - - - - - - - - + - - - - - - - - + - - - - - - - - - + -  
1 33 1 1  560 1 2 I O I N A  

I------+-----------+--------+---------+------- 
I 0

TOTAL 1 7 7 0  1 75 1 42 1 50 1 33 1 1  4244 1 2 ( 22 1 NA 1 13 
- -  - - - 

 

*NA means no cases were recorded. 

 

 
 



mispredicted, the associated Delta V values, the occupants' age and t h e

corresponding contact points. The combinations of body regions and

injury types in Tables 3.58 and 3.59 generally showed low to medium

Delta V values. The injuries listed were usually those in which the

occupants tended to come into contact with front-panels or steering

assemblies of the vehicles. Other contact points were much less common

although by no means insignificant. For example, injuries to Ankle/Foot

were often caused by Floor/Floor Controls, and injuries to Neck were

often caused by No Contact.

Further investigation on the modelling results and the outliers of

the combined Phase 1 and Phase 2 data indicated that the six subsets

could be combined. Based on the models with Delta V and Age as the

independent variables, it was found that the three subsets of the

single-vehicle accidents could be combined to form one subset and that

the three subsets of the two-vehicle accidents did not appear

combinable. The statistical tests for collapsing the subsets are shown

in Table 3.60 and Table 3.61.

The models for these four newly defined subsets which had Delta V

(X1) and Age (X2) as the independent variables are as follows:

Single-Vehicle Accidents (N=1380, LRS=250.29, DF=2)

(3-98) 5i = F(2.1130 - 0.0518X1 - 0.0160X2)

Two-Vehicle Accidents (See Equations 3-95 to 3-97)

The goodness of fit results of these four models are shown in Table

3.62.

The estimated logistic curve given by Equation 3-98 for the

combined single-vehicle subset is shown in Figure 3.128. The figure

consists of three logistic curves, each is plotted with Age being held

fixed at 30. The three curves represent the upper bound, the lower

bound and the estimated probabilities of severe injuries (1-pi) of the

single-vehicle subset. The confidence intervals do not approach zero

when Delta V values become very small or very large although they all

are somewhat reduced due to the increased sample size from the

combination of three subsets. The effect of Age in this new subset is

illustrated in Figure 3.129. The figure indicates that older occupants
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TABLE 3.55

List of Injury Types Which Yielded A
Large Proportion of Misprediction

Phases 1 and 2 - Front Impacts

-------------------------------------------------------------------
I I I I Number of

Subset !Injury Type*ITotal Number! Number of I Mispredicted
I I of Cases ISevere InjurieslSevere Injuries

-.-------+------------+------------+---------------+---------------
CIA-1VEHI Rupture I 6 I 6 I 4

I Dislocation) 9 1 8 I 3
I Fracture I 79 I 39 I 34
1------------+------------+---------------+---------------

OID-1VEHI Hemorrhage I 2 I 2 I 2
1 Dislocation( 16 I 14 12
1 Rupture I 7 I 7 I 5
( Fracture I 131 I 65 I 50
I ------------+------------+---------------+---------------

OIP-1VEHI Rupture 1 2 1 2 I 2
I Dislocationl 6 I 4 _4
I Fracture I 74 I 33 I 28
I ------------+------------+---------------+---------------

CIA-2VEHI Hemorrhage I 2 I 2 I 2
I Rupture I 5 1 5 3
I Dislocation! 15 I 13 I 10
i Fracture I 202 I 102 I 77
1------------+------------+---------------+---------------

OID-2VEHI Rupture I 6 I 6 I 5
I Hemorrhage I 1 I 1 I 1
I Dislocationl 21 I 19 13
I Fracture I 132 I 72 I 48
1------------+------------+---------------+---------------

OIP-2VEHI Hemorrhage I 2 I 2 I 2
Rupture I 3 I 3 I 2

( Dislocation! 8 I 8 I 7
( Fracture ( 102 I 50 I 40

*Subject was ranked within each subset by the larger

proportion of severe injuries.

have higher probabilities of receiving severe injuries than younger

occupants.

Based on the new four subsets defined above, further modelling was

carried out by adding the following independent variables to the models

with Delta V and Age:
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TABLE 3.56

List of Body Regions Which Yielded
a Large Proportion of Misprediction

Phases 1 and 2 - Front Impacts
Single-Vehicle Subsets

---------------------------------------=----------------------------
I I Total (Number oflNumber of Mispredicted

Subset I Body Region* I Number I Severe I Severe
{ lof Casesllnjuries I Injuries

--------+-----------------+--------+---------+----------------------
CIA-iVEHiPelvic/Hip I 6 I 6 I 3

Neck I 5 5 4
ILower Leg I 4 I 4 I 3
ILower Extremities) 2 I 2 2
(Abdomen I 15 1 14 1 9
(Chest I 32 I 25 I 19,
IThigh I 3 2 1
)Forearm I 5 3 I 3
(Ankle/Foot I 11 I 4 I 4
1-----------------+--------+---------+----------------------

OID-IVEHIAbdomen I 20 I 15 13
(Pelvic/Hip I 14 I 10 8
(Chest
(Upper Arm/F

I
orearml

52
20 I

37
10

{ 29
8

(Ankle/Foot I 22 I 11 I 9
(Lower Leg I 9 I 4 I 3
IThigh I 18 I 9 5
I-----------------+--------+---------+----------------------

OIP-1VEHIAbdomen 1 6 6 6
ILower Extremities) 2 I 2 I 2
(Upper Extremities) 2 I 2 I 2
(Pelvic/Hip 1 6 1 4 4
IThigh I 11 I 5 I 5
(Neck I 8 1 4 1 3
(Forearm 1 6 I 3 2

--------------------------------------------------------------------

*Body Regions were ranked within each subset by the larger

proportion of severe injuries.

Direction of Principal Force
Vehicle Weight
Vehicle Model Year
Object Contacted
Rural/Urban
Ejection
Restraint Usage
Contact Point, and
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TABLE 3.57
List of Body Regions Which Yielded

a Larger Proportion of Misprediction
Two-Vehicle Subsets

Phases 1 and 2 - Front Impacts

I I Total (Number oflNumber of Mispredicted
Subset (Body Region*I Number I Severe I Severe

I lof Casesllnjuries I Injuries
--------+------------+--------+---------+----------------------
CIA-2VEHI Abdomen I 24 I 22 I 13

i Pelvic/Hip
Chest

I
I

15
101

I
I

10
64

I
I

7
40

I Thigh
Forearm

I
I

19
18

I 10
7

I
I

7
5

I ------------+--------+---------+----------------------
OID-2VEHI Abdomen I 27 I 19 I 14

Pelvic/Hip I 16 12 I 8
I Ankle/Foot I 18 I 8 I 6

Chest I 75 I 39 24
I Forearm I 19 I 7 I 4
I ------------+--------+---------+----------------------

OIP-2VEHI Abdomen I 6 I 5 I 3

I
Pelvic/Hip
Chest

I
I

12
22

I
I

7
16

I
I

6
13

I
Thigh
Forearm

I
I

12
13

I
I

7
8

I
I

6
5

I Upper Arm I 9 I 3 I 3

*Body Regions were ranked by the percentage of severe

injuries to total injuries: The largest percentage ranked

first.

Body Region

Principal Direction of Force. Principal Direction of

Force was brought into the model as a set of dummy variables in the

presence of Delta V and Age. It did not appear to, be statistically

significant, nor did it appear to significantly improve the existing

models predictive capability.

Vehicle Weight. Vehicle Weight was brought into the

modelling in the presence of Delta V. It did not appear to be

statistically significant.
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TABLE 3.58

Combination of Injury Types and Body Regions Incurring Severe Injuries
Which Were Not Correctly Predicted By The Models

(Single-Vehicle Accidents)

Phases 1 and 2 - Front Impacts

------=---------------------------------------------------------------------------------------------------------------------------------------
I I Chance I Chance of I I
I I of I Severe Injury I Number I Delta V of Age of

Injury I Body Severe I Being of I Mis- I Mis- Contact
Type I Region Injury I Mispredicted I Severe predicted I predicted- I Point

I (%) I (%) Injuries Cases Cases
-----------------+-------------------+------------+-------------------+--------------+----------------+---------------+-----------------------

I I steering,
Rupture Abdomen 100 69 13 I 14-32 I 15-65 I front-panel*

Chest 100 I 100 2 I 17-24 I 22-32 steering

Hemorrhage I Chest 1 100 100 I 2 I 3-28 I 23-38 steering

steering,
Dislocation I Pelvic/Hip I 100 I 71 14 13-26 I 17-50 front-panel

steering,
1 Wrist I 100 I 100 2 10-20 I 25-26 I front-panel
I I I I floor/foot

Ankle/Foot I 86 I 83 6 6-27 I 17-32 I controls

Fracture Neck 100 I 67 6 I 15-20 21-62 none, steering
I U.Ext/Elbow I 100 I 100 4 14-29 I 18-30
I I steering,

Chest 75 I 90 I 30 7-26 I front-panel
1 L.Extremities I 100 100 I 4 23-30 I 1-28

I I I I front-panel,
L.Leg 92 I 64 I 11 21-27 16-59 1 floor

I I I I I steering,
Pelvic/Hip I 60 83 6 13-28 I 15-40 1 front-panel

I I I I I floor/foot
I Ankle/Foot 50 I 92 I 12 9-24 I 13-57 I controls
I Knee I 70 86 I 7 8-28 I 16-37 I front-panel

I I I I front-panel,
I Thigh I 53 69 16 8-33 I 15-43 steering

I I instrument panel,
I Forearm I 71 I 75 I 12 10-25 I 14-63 I steering

Laceration
I

Abdomen 1 100
I
I 87

I
I 15 I 4-29

I
I 18-57 I

instrument panel
steering

I I I I I
Contusion Abdomen I 60 I 83 1 6 11-30 I 16-25 1 steering

*Front-panel includes instrument panel and glove compartment.



TABLE 3.59

Combination of Injury Types and Body Regions Incurring Severe Injuries
Which Were Not Correctly Predicted By The Models

(Two-Vehicle Accidents)

Phases 1 and 2 - Front Impacts

------------------------------------------------------------------------------------------------------------------------------------------------
I I I Chance of I

Chance of I Severe I Delta V of I Age of
Injury I Rody Severe I Injury I Number of Mis- I Mis- I Contact
Type I Region I Injury Being I Severe I predicted I predicted I Point

I (%) I Mispredicted I Injuries I Cases Cases I
I I I (%) I I I f

--------------- -+-------------------+---------------+------------------+---------------+----------------+---------------+----------------------
I I I I I I steering,

Rupture Abdomen I 100 I 75, I 12 I 11-28 I 17-67 I front-panel*
I I I I steering,
I Chest I 100 I 50 I 21 I 28 46 front-panel

I I I I I I steering,
Dislocation I Pelvic/Hip I 100 I 71 I 21 I 17-35 I 18-66 I front-panel

I Neck I 100 80 5 I 12-26 I 17-64 I none
I I I I I I I floor/foot
I Ankle/Foot I 67 88 I 8 6-31 I 17-73 I controls
I Wrist/Hand I 100 100 I 2 8-10 I 21-24 I -

Hemorrhage I Chest I 100 I 100 3 I 9-20 I 21-66 I steering

I I I I I I I none,
Fracture I Neck 94 I 59 I 17 I 10-31 I 15-69 I instrument-panel

I I I I I I steering,
I I I 1 front-panel,

I Chest I 73 86 I 65 I 3-33 I 16-83 I side
I I I I I front-panel,
I Thigh I 62 I 65 I 23 12-37 I 2-63 1 steering
1 Lower Leg I 63 I 84 I 19 I 16-23 I 2-45 I front-panel
I L.Extremities 100 60 I 5 I 26-27 I 14-51 I instrument panel
I I I I I I front-panel,
I Forearm I 61 I 64 I 22 I 15-33 I 16-86 I steering
I U.Extremities I 100 I 100 I 2 23-31 I 18-27 I instrument panel
I Upper Arm I 75 I 83 I 6 9-25 I 8-69 I -

I I I I steering,
Laceration I Abdomen 100 1 56 I 25 1 15-32 I 17-60 I front-panel

I I I I I
Contusion I Abdomen I 54 I 86 I 7 I 14-32 I 17-69 I steering

-

*Front-panel includes instrument panel and glove compartment.



TABLE 3.60

Statistical Results
Combining CIA-1VEH, OID-1VEH and OIP-1VEH

Phases 1 and 2 - Front Impacts

-------------------------------------------------------------------
Hypothesis -2 Log L I df

-------------------------------------------------------------------
I I

H0 I 1270.20 I 3

H1 I 1261.28 I 9
I-----------------------------+--------------
i

Chi-square = 8.92 I 6
-------------------------------------------------------------------

where H0 :the subsets have the same model

H1 :the subsets have different models

TABLE 3.61

Statistical Results
Combining CIA-2VEH, OID-2VEH and OIP-2VEH

Phases 1 and 2 - Front Impacts

Hypothesis I -2 Log L I df
--------------------------------------------------------------------

H0 1909.90 3

H1 1887.96 I 9
I------------------------------+--------------
I
I Chi-square = 21.94 I 6

--------------------------------------------------------------------

H0 :the subsets have the same model

H1 :the subsets have different models

Object Contacted. Object contacted was brought into t h e

modelling in two forms: a set of dummy variables and a set of
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interaction terms with Delta V. Neither form of Object Contacted was

statistically significant in the presence of Delta V and Age. Both

slightly improved the prediction of the severe injury cases .

Rural/Urban. Rural/Urban was brought into the modelling

as a dummy variable. While it appeared to be a statistically

significant independent variable for all the subsets, it failed to

significantly improve the existing models' predictive capability.

Restraint Usage. Restraint Usage was brought into the

model as a set of dummy variables; Not Used, No Restraint (older model

cars), Lap/Torso and Lap Only. It did not appear to be a statistically

significant independent variable.

Ejection. Ejection was brought into the models, i n t h e

presence of Delta V and Age, in the following manner:

pi = F(Delta V, Age,_ Ejection Dummy, and Ejection-Dummy X
Delta V)

The Ejection dummy variables were coded as follows:
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(

TABLE 3.62

Goodness of Fit

Severity = F(Delta V, Age)

Phases 1 and 2 - Front Impacts

-----------------------------------------------------------------------
I Sample Size I Percent Correct Prediction

Subset I---------------------+--------------------------------
I Non-Severe I Severe I Overall I Non-Severe I Severe

----------------+------------+--------+----------+------------+--------
SINGLE-VEHICLE I 1049 I 331 I 79.3 I 95.7 I 27.2
CIA-2VEH I 1256 I 238 88.1 I 96.9 I 41.6
OID-2VEH I 1412 I 176 92.4 I 98.4 44.3
OIP-2VEH I 566 90 88.3 I 98.2 I 25.6

el = 1 if entrapped
0 otherwise

e2 = 1 if ejected, partially ejected, ejected unknown
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degree, ejected/trapped
0 otherwise

e3 = 1 no entrapment, no ejection
0 otherwise

Ejection and the interaction of Ejection with Delta V appeared to

be a significant variable in the single-vehicle subset. The model can

be expressed as:

Single-Vehicle (N=1345, LRS=294.55, DF=6)

(3-99) p. = F(2.2102 - 0.0482X 0.0181X 2.1774X
3

- 1.8628X4 + 0 1 0333X5 + 0?0836X6)

where
X1 is Delta V,

X2 is Age,

X3 is equal to 1 if there was entrapment and 0 otherwise,

X4 is 1 if there was ejection and 0 otherwise,

X5 is X3 times Delta V,

X6 is X4 times Delta V,

pi is the estimated probability of a non-severe injury, and

F is the logistic distribution function.

The goodness of fit of Equation 3-99 was:

Overall percent correct prediction = 81.0%
Non-Severe injury percent correct prediction = 95.1%
Severe injury percent correct prediction = 34.2%

For the two-vehicle subsets, however, ejection appeared not

significant. Neither did it improve the models' predictive capability.

That Ejection appeared to be a significant variable as the sample s i z e

had considerably increased reflects the underlying influence of this

variable on injury prediction. In the situation where there are

sufficient data, particularly on those being ejected or trapped the

extent of the influence of this variable may be more meritoriously

determined.

Contact Point. In frontal collisions, the contact points

which occurred with any significant frequency were:

Instrument Panel
Glove Compartment
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Steering Assembly
Windshield
Hardware
A-Pillar
Side Interior Surface
Floor
Foot Controls

Table 3.63 shows the number of cases with valid and missing contact

point information with valid Delta V, Age and OAIS Code. If Contact

Point were to be put in the modelling the number of valid cases would be

reduced by more than 50%. Table 3.64 shows the proportion of severe

injuries to total injuries by various contact points.

TABLE 3.63

Number of Valid and Missing Cases of
Contact Point

Phases 1 and 2 - Front Impacts

Subset I Sample Size I Missing Cases
----------------------------------------------------------------------

I I
SINGLE-VEHICLE 663 I 714
CIA-2VEH I 682 I 800
OID-2VEH I 536 I 1052
OIP-2VEH I 287 I 363

The contact point variable was brought into the modelling in two

forms; a set of dummy variables and the interaction terms of contact

point and Delta V. The Contact Point dummy variables were coded as

follows:

d1 = 1 if instrument panel or glove compartment
0 otherwise

d2 = 1 if steering assembly
0 otherwise

d3 = 1 if side interior or A-pillar
0 otherwise

d4 = 1 if floor or floor control
0 otherwise
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TABLE 3.64

Proportion of Severe Injuries by
Contact Point

Phases 1 and 2 - Front Impacts

Single-Vehicle I Two-Vehicle
I---------------------------------------------

Contact Point ISamplel Proportion of ISamplel Proportion of
Size ISevere Injuries) Size ISevere Injuries

-------------------------------------------------------------------
Instrument Panel 1182 I 30.8 1393 I 30.3
Glove Compartment I 55 43.6 1108 I 32.4
Steering 1318 I 39.3 1520 I 30.2
Windshield 1271 I 5.9 1531 I 5.1
Hardware I 12 33.3 I 27 I 22.2
A-Pillar I 17 I 17.6 I 52 I 25.0
Side Interior Surfacel 13 30.8 1 44 I 36.4
Floor I 34 I 52.9 I 37 I 21.6
Foot Controls I 17 I 52.9 I 27 I 22.2
No Contact I 43 I 32.6 1 145 I 14.5

d5 = 1 if other contact point
0 otherwise

d6 = 1 if no contact injury source
0 otherwise

Although the contact points variable (in either form) seemed to have

improved the percent correct prediction of severe i n j u r i e s

significantly, the marked reduction in the sample size (over 50%) made

the variable less desirable.

A close examination of Tables 3.58 and 3.59 revealed that for one

combination of Body Region and Injury Type only one or sometimes two

contact points were major causes of the injury. This seemed to suggest

that Contact Point and Body Region should be good explanatory variables

of injury severity in the presence of Delta V and Age. But since

Contact Point was correlated with Body Region, only one of them could be

included in the models. Body Region was likely to be a better variable

than Contact Point because, from Tables 3.58 and 3.59, a Body Region

seemed to readily suggest a certain contact point whereas a contact

point could very well imply numerous different body regions.
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3.5.7 Final Models. Based on the contact point distribution

within each body region and the probability of the severe injury of each

body region, the body region variable was structured to have the

following levels:

1. Head/Skull, Neck
2. Upper Extremities, Elbow, Forearm and Wrist/Hand
3. Chest and Abdomen
4. Pelvic/Hip, Lower Extremities, Thigh and Knee
5. Ankle/Foot, Lower Leg
6. Other

A set of dummy variables was created for the above levels of Body

Region and this was incorporated into the modelling in the presence of

Delta V and Age. The following modelling results were obtained:
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+------- -----+

I I
I Final Estimated Models for Front Impacts: Phases 1 and 2

I Single-Vehicle Accidents (N = 1380 LRS = 493.9) I

I (3-100) p" = F(2.5013 - 0.0460X - 0.0135X - 0.6385X I
- 1.1439X4 - 1.63;4X 5 - 1.40219X6 - 1.073X7)

I CIA-2VEH (N = 1492 LRS = 622.1) I

I (3-101) p. = F(3.6405 - 0.0841X - 0.0092X - 0.6376X
- 0.8305X4 - 1.7610X5 - 1.4793X 6 - 0.727X7)

OID-2VEH (N = 1587 LRS = 565.4)

I (3-102) p. = F(3.9327 - 0.0998X - 0.0119X - 0.3985X
- 0.6505X4 - 1.6436X5 - 1.531X6 - 0.734X7)

OIP-2VEH (N = 656 LRS = 205.3)
I I
I (3-103) p. = F(3.1374 - 0.0622X - 0.0184X - 0.2414X I

1.1911X4 - 1.8419X5 - 1.4 20X6 - 0.3409X7)

I where
X1 is Delta V, I

I X2 is Age, I

X3 is 1 if a neck or head/skull injury and 0 otherwise, I

X4 is 1 if the injury is in the upper extremities, elbow, I

I forearm, and 0 otherwise, I

I X5 is 1 if injury is in the chest or abdomen and 0 otherwise, I

X6 is 1 if the injury is in the pelvic/hip area, lower

I extremities or thigh and 0 otherwise,

X7 is 1 if the injury is in the ankle/foot or lower leg and 0 I

i otherwise,

I pi is the estimated probability of a non-severe injury, and I

F is the logistic distribution. I
+----------------------------------------------------------------------+

Table 3.65 shows the goodness of fit of the models represented by

Equations 3-100 to 3-103. Figures 3.130 to 3.133 show the histograms of

the pi values for the four subsets. Each figure, representing a model

of a particular subset, consists of two histograms, one for non-severe

injuries and the other for severe injuries. By having body Region in
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TABLE 3.65

Goodness of Fit

Severity = F(Delta V, Age, Body Region)

Phases 1 and 2 - Front Impacts

-----------------------------------------------------------------------------------------------------
I Sample Size I Percent Correct Prediction

Subset I-----------------------------+--------------------------------------------
I Non-Severe I Severe I Overall I Non-Severe I Severe

-----------------------------------------------------------------------------------------------------
SINGLE-VEHICLE 1049 I 331 I 83.4 I 92.4 I 55.0
CIA-2VEH I 1254 I 238 I 90.8 I 96.8 I 59.2
OID-2VEH, Driver 1411 I 176 I 93.4 I 97.7 I 59.1
OIP-2VEH, Non-Driver I 566 1 90 I 90.7 I 97.0 I 51.1



the models, the percent correct prediction of severe injuries improved

most considerable.
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The estimated logistic curves of the final models for the single-'

vehicle accident subset and CIA-2VEH are shown in Figures 3.134 and

3.135. Each figure consists of three logistic curves representing the

upper bound, the lower bound and the estimated probability of a severe

injury (1-pi) in Upper Extremities or Elbow or Forearm as a function of

Delta V with Age fixed at 30. Figure 3.135 indicates the 95% confidence

280



YFYeRI 1. NnT SFVFRF NEN10919S. SEVERE
1000 22.

900 20

Boo 18

16
700

14
600

U
z

500
O to

400 W
U.

HW
6

200
4

100

0 0VA mil LLdbdLJh

0. .1 .2 .3 .4 .5 .8 .7 .8 .9 1. 0. .1 .2 .3 .4 .5 .6 .7 .8 .9 1.

PREDICTED PROBABILITY PREDICTED PROBABILITY
OF NON-SEVERE INJURY OF NON-SEVERE INJURY

FIGURE 3.132 Histograms of p. of Three-Variable Model
(Delta V, Age, Body Re^ion) For OID-2VEH

Phases 1 and 2 - Front Impacts

RE
NENDRISS. NOT SEVERE NENOAIS3. SEVERE

0

NM 7

175 11
ISO

Z 125 z
W W 4

100 I
^s

W
o c
^ _3

75

50 2

25 1

0 0
0. .1 .2 .3 .4 .S .6 .7 .8 .9 1. 0. 1 .2 .3 .4 .5 .6 .7 .8 .9 1.

PREDICTED PROBABILITY PREDICTED PROBABILITT
OF NON-SEVERE INJURY OF NON-SEVERE INJURY

FIGURE 3.133 Histograms of p. of Three-Variable Model
(Delta V, Age, Body Region) For OIP-2VEH

Phases 1 and 2 - Front Impacts

interval of the CIA-2VEH subset approaching zero as Delta V values

become increasingly small or large; this is not so with the single-

vehicle subset (Figure 3.134). The effects of the five levels of the

Body Region dummy variable are illustrated in Figures 3.136 and 3.137

for the single-vehicle accident model and the CIA-2VEH respectively.

For the single-vehicle model (Figure 3.136), the curve on the extreme

right represents either the situation in which no body regions were

specified as being injured or the injuries to the body regions were
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other than those specified in the model; either of these tended to be

associated with low proportions of severe injuries. This figure

indicates that when chest or abdomen is injured the probability of a

severe injury is quite high even when Delta V is low (about 10 mph).

Pelvic/Hip and Lower Extremities are also likely to sustain severe

injuries at the low to moderate values of Delta V (about 20 mph). Upper

Extremities, Forearm, Elbow and Ankle/Foot, Lower Leg are more likely to

result in severe injuries when Delta V values are greater than 25 mph.

Head and Neck are prone to a severe injury when Delta V values exceed 35

mph. Injuries to other body regions or to body regions not specified

are likely to be severe when Delta V values are greater than 45 mph.

For the CIA-2VEH model (Figure 3.137) the curve on the extreme

right represents either the situation in which no body regions were

specified as being injured or the injury to the body regions other t h a n

those specified in the model; both tended to have low proportions of

severe injuries. Like the single-vehicle subset, Chest or Abdomen,

Pelvic/Hip, Lower Extremities are more likely to suffer a severe injury

than other body regions. The Limbs, Head and Neck show similar

probabilities of receiving severe injuries. Chest and Abdomen are

likely to be severely injured when Delta V exceeds 20 mph. Injuries in

Pelvic/Hip, Lower Extremities and Thigh are likely to be severe for

Delta V exceeding 22 mph. Upper Extremities, Elbow, Forearm, Ankle/

Foot, Lower Leg, Head and Neck are likely to sustain severe injuries

when Delta V exceeds 30 mph. Other body regions not mentioned above

will not be likely to sustain severe injuries until Delta V is greater

than 40 mph.
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3.5.8 Significant Results. The analysis of the Phase 2 data

indicated that it was not different from the Phase 1 data, and that data

from both phases could be combined. The Phase 1 two-variable models

(Delta V and Age) fitted the Phase 2 data almost as well. Moreover, the

Phase 1 two-variable models and the Phase 2 two-variable models fitted

the respective data with no appreciable differences. While in the Phase

1 data the occurrence of intrusion appeared quite significant in

explaining injury severity when Delta V and Age were both in the model,

its influence in the Phase 2 models was almost negligible. Intrusion

information in the Phase 1 and Phase 2 data was recorded quite

differently. It was possible that this might have caused the

discrepancy in the effect of the intrusion variable. Rural/Urban, which

had shown tenuous influence in predicting injury severity in the Phase 1

data, turned out to be not significant in the Phase 2 models.

The data of both phases were combined and the six frontal impact

subsets of the combined data were collapsed to form the following four

independent subsets:

1. single-vehicle accidents

2. two-vehicle accidents with center impacts (CIA-2VEH)

3. two-vehicle accidents, off-center impacts, and drivers only
(OID-2VEH)

4. two-vehicle accidents, off-center impacts, and right-front
passengers (OIP-2VEH).

The model estimation results for the combined data with Delta V and

Age as the independent variables are as follows:
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0

--------------------- ----------------------------------------------+

Single-Vehicle Accident

(3.98) pi = F(2.1130 - 0.0518X1 - 0.0160X2)

CIA-2VEH

(3.95) F(3.5174 - 0.0912X1 - 0.0177X2)

OID-2VEH

(3.96) pi = F(3.8541 - 0.1090X1 - 0.0186X2)

OIP-2VEH

(3.97) F(2.9543 - 0.0725X1 - 0.0197X2)

I where
I p. is the estimated probability of a non-severe injury, I

F'is the Logistic distribution function, I
I X1 is Delta V, and I
I 2 is Age. I
+------------------------------------------------------------------+

Equations 3-98, 3-95, 3-96 and 3-97 state that the estimated

probability of a non-severe injury, pi, is a function of Delta V and Age

above. Pi is bounded by a value of zero and one. A pi will certainly

be severe and a value of one predicts a certainty of a non-severe

injury. A pi value greater than 0.5 will predict a non-severe injury

while that less than 0.5 a severe injury.

The interpretation of these models may be simpler if Equations

3-98, 3-95, 3-96 and 3-97 are restated in terms of the estimated

probability of a severe injury, which is simply 1-pi. The models imply

that:

1. The estimated probability of a severe injury (1-p.) increases
as Delta V increases. A change of a Delta V value from 15 mph to
30 mph for a 30 year old occupant in the CIA-2VEH subset will
result in the probability of a severe injury increasing from 0.05
to 0.39.

2. The estimated probability of a severe injury (1-p) increases
with Age. For the CIA-2VEH subset with Delta V of 30^mph, a change
in Age from 30 to 60 will increase this probability from 0.39 to
0.62.
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The models as represented by Equations 3-95 to 3-98 predicted

overall injuries quite well. A closer examination of the prediction

results revealed that if an injury was observed to be non-severe the

models would be correct in the prediction well over 95% of the time, but

if an injury was reported severe the models would only be correct in the

prediction about 20% to 40% of the time. Although the number of non-

severe injuries in front impacts outnumbered severe injuries by a ratio

of 4 to 1 or more, it is important to be able to predict severe injuries

reasonably well. Most, if not all, of the severe injuries which were

mispredicted were those with low to medium Delta V values. These cases

represented about 10% of total injuries and their severities depend,

among other things, on the body regions being injured and what these

body regions came into contact with at the impact.

In order to improve the predictive capability of the models,

particularly in predicting severe injuries, many other variables were

investigated with a view to incorporating them into the models. Some of

these variables were Restraint Usage, Ejection, Body Region, Injury Type

and Contact Point. It was found that over 95% of the occupants did not

use or have restraints. This coupled with the likelihood that Restraint

Usage were somewhat correlated with Age and/or Delta V made this

variable of little value in the modelling. Ejection was found to be a

slightly better variable than Restraint Usage. Over 75% of the

occupants were not ejected or trapped. Ejection was found to be

significant only when both the dummy terms and the interaction terms

with Delta V were included in the model and only when the sample size

was large. Ejection improved the predictive capability of the single-

vehicle subset of the combined Phases 1 and 2 data by increasing the

percent correct prediction of severe injuries by 7%.

The majority of the mispredictions were found to be associated with

injury types such as rupture, dislocation, fracture, and hemorrhage,or

with body regions such as abdomen, chest, pelvic/hip, and the lower

limbs. These mispredicted cases were also found to be associated with

the accidents where the occupants had come into contact with the front

panels and/or the steering assembly of the vehicles. A couple of

notable exceptions were severe ankle/foot injuries (fractures and
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dislocations) and severe neck fractures. With the former, the contact

points usua_Lly__we-re__f_1_o_or_a.nd/_or___foot controls, while the latter did not

appear to be caused by contact with any particular item.

It was thought that with Delta V, Age, Contact Point and Body

Region in the models, the occurrence of injury severity would become

more explainable. Delta V is a proxy for the force exerted on the

occupant at the impact, causing the occupant to move from his/her

original position and causes a body region to come into contact with the

interior of the vehicle. The occupant's age could give rise to the

resistance to or the tendency for a certain injury type.

However, the contact point variable did impose some serious

problems in modelling. First, the missing data on Contact Point for

both severe and non-severe injuries was to the extent that the number of

valid cases for modelling would drop by about 50% for severe injuries

and over 50% for non-severe injuries. Second, Contact Point showed a

correlation with Body Region. Between Contact Point and Body Region,

the latter appeared to be a better independent variable because a body

region, with the exception of Head and Face, tended to be associated

with either one or at most two major contact points. A contact point,

on the other hand, could imply many different body regions.

That a body region almost immediately implies a certain contact

point justifies its inclusion in the model even without another variable

such as Contact Point. In fact, the final model for all subsets with

Delta V, Age, and Body Region as the independent variables showed most

considerable improvement in the model's predictive capability in that

the percent correct prediction of severe injuries had considerably

increased. The influence of the Body Region variable on the injury

prediction can be seen from the following numerical example. In a two-

car frontal accident with Delta V of 20 mph, an abdominal rupture to a

30 year old occupant (or the CIA-2VEH) will be predicted to have the

probability of a severe injury of 0.11 (i.e., a non-severe injury) by

the two-variable model (Delta V and Age). This same injury to the same

occupant will be predicted by the model with Delta V, Age and Body

Region to have the probability of a severe injury of 0.54 (i . e. , a

severe injury).
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3.6 Summary

This section presented statistical models describing the

relationship of injury severity to variables describing the occupant and

the type and severity of the impact. In Section 2, these models were

described as "mechanistic." The selection of independent variables a n d

the form of the model were guided, to the degree possible, by

consideration of the physical principles and mechanisms involved. The

objective is to develop insight as to the significant variables

influencing the probability of injury and their effects. Ultimately,

such models are expected to be useful for evaluating modifications

intended to improve vehicle crashworthiness.

This summary is organized under two headings: Analysis Techniques

and Results. The salient proced+ires and methods used are briefly

reviewed in the first subsection, while the second summarizes the

results.

3.6.1 Analysis Techniques. The specific model used in this

analysis is the logit model. The dependent variable, Injury Severity,

is categorical. The logit model postulates that the probability of

observing a particular category varies systematically with other

variables that can be observed. For this analysis, the dependent

variable, Injury Severity, was dichotomized into non-severe and severe.

The initial step in the model development was a subsetting of the

data set with the objective of forming groups of occupants with similar

injury production mechanisms. Single-vehicle accidents were separated

from two-vehicle accidents. Vehicles in frontal impacts were separated

from those in side impacts (other impact types were not studied).

Occupants were separated based on seat location. In addition, occupant

seat locations were sometimes identified as to whether they were "near"

the impact point or "far" from the impact point. For example, in side

impacts "near-side" occupants are separated from "far-side" occupants.

The initial model development was carried out within the subsets.

A very important part of the model development process is the

evaluation of the model. The Likelihood Ratio Statistic was used to

test the significance of any particular model or to compare two models.
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This statistic is influenced by sample size, so that it is somewhat

difficult to compare results from subsets with different sample sizes.

To complement this test, a goodness of fit was also computed. Having

estimated the parameters for a particular model, a predicted probability

of observing a non-severe injury can be computed for each case

(occupant). The prediction is taken to be "correct" if the predicted

probability is greater than 0.5 and the observed injury is, in fact non-

severe, and so on. In this way, the number of correct and incorrect

predictions is determined, and the goodness of fit is then measured as

the percentage of correct predictions. This procedure identifies

mispredictions which may be viewed as being similar to the residuals in

a regression analysis. Studying the mispredictions is then a valuable

tool in model development. Histograms of the predicted probabilities

were presented for the non-severe and severe injuries separately. These

histograms were central to the analysis procedure because they revealed

that the models did not predict the occurrence of the severe injuries

nearly as well as the occurrence of non-severe injuries. Models having

an overall percentage of correct prediction of 80% or better were found

to predict only 30% or so of the severe injuries correctly. Similarly,

addition of a variable to the model would sometimes result in a

significant Likelihood Ratio Statistic without improving the predictive

capability appreciably. Model evaluation became the critical step in

the model development procedure.

In the later stages of the model development, "outliers" were

identified as the cases predicted incorrectly by the current model.

These outliers were divided into non-severe injury cases incorrectly

predicted and severe injury cases incorrectly predicted. Candidate

variables for inclusion in the model were then studied in terms of their

relationship to the outliers. For example, for a categorical variable,

a two-way table of the variable levels versus the correct/incorrect

prediction variable would be prepared in order to determine if certain

levels of the candidate variable were correlated with the cases

currently predicted incorrectly. This strategy frequently guided the

subsequent grouping of the levels of a candidate variable before

inclusion in the model. This procedure was used, in particular, for the
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body region, injury type; contact point, restraint usage 'and ejection

variables.

The final phase in the model development procedure was the plotting

of the estimated logistic curves and their confidence intervals.

Because Delta V was the dominant variable in these models, the predicted

probability of a severe injury was plotted versus Delta V. Confidence

limits on the predicted probability as a function of Delta V were also

computed and plotted. The expressions for the variance were developed

from a Taylor Series expansion and reflect the variance at a particular

value of each of the independent variables, rather than the simultaneous

confidence intervals which may be computed for a regression analysis.

Comparing the logit curves for different models, or for different values

of the independent variables in a particular model, is a convenient way

to assess the differences between models or the magnitude of the effect

of the independent variables. Such curves were produced in the final

phase of the model evaluation process.

This subsection has summarized the analysis techniques used and, in

particular, the model evaluation procedures. Model evaluation was the

critical phase of the model development procedure. The next subsection

summarizes the results of the development of mechanistic models.

3.6.2 Results. As expected, Delta V is the dominant variable in

all of the models developed; the side impact models use the lateral

component of Delta V. Age is the second variable which is common to

nearly all of the models. In general, the Delta V and Age models

correctly predict the injury severity 80-90% of the time.

A very important finding is that the Phase 1 models predicted

injury in the Phase 2 data virtually as well as in the data set used to

estimate the coefficients (the Phase 1 data). Even though Phase 2 is

just a continuation of the original study, this stability is very

reassuring. NCSS is the first study of sufficient scope to provide t h e

opportunity for this kind of observation. Consequently, statistical

tests indicated that it was appropriate to combine the Phase 1 and Phase

2 data. The resulting increase in sample size enhanced our ability to

evaluate candidate variables.
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The major problem in the model development was the prediction of

severe injuries. Although the models developed in the early stages

predicted injury quite well overall, the prediction of severe injuries

was correct less than 40% of the time. Credit for the ability to make

this distinction belongs with the careful model evaluation procedures

used. The major thrust in the model development was the improvement of

the prediction of severe injuries.

Body Region (of the injury) and Injury Type were found to be highly

correlated with the misprediction of severe injuries. Careful

incorporation of these variables into the models improved the predictive

capability for severe injuries by as much as 30%. However, there are

conceptual problems with including these variables. The Abbreviated

Injury Scale is such that many injury types can only be assigned to one

or possibly two AIS levels. In turn, particular injury types are

associated with particular body regions; concussion only occurs in the

head, and fractures tend to occur in the extremities. Consequently,

specifying the body region and/or injury type comes close in many

instances to specifying the AIS level. This is cheating. From the

practical standpoint, inclusion of body region or injury type in the

model is not useful without knowing the factors that determine which

body region is injured, or what-the type of injury will be.

Variables such as Principal Direction of Force and Contact Point

were candidates to provide this kind of link. Attempts to incorporate

these variables were fraught with problems. The first simply did not

help the prediction at all. Missing data on Contact Point is over 50%.

In addition, Contact Point tended to be associated with Body Region.

However, the contact point did not discriminate as well as the body

region. A given contact point was associated with several body regions.

However, a given body region tended to be associated with only one, or

possibly two, contact points. The association between the two variables

was such that attempts to include both in the models produced anomalous

results. Body Region also has less missing data than Contact Point.

Consequently, the final models include the Body Region variable. The

interpretation, or justification, for inclusion of this variable is that
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it reflects both the contact point and the body region in a more

effective manner than the current Contact Point allows on its own.

Statistical tests indicated that some of the original subsets could

be combined without loss of significance. The final models were

developed for two subsets of the side impacts and four subsets of the

frontal impacts. These subsets are listed below:

Side Impacts
1. Impacts involving damage to the passenger compartment and

occupants on the same side of the vehicle as the impact.
2. All far-side occupants (seated opposite the impacted side) and

near-side occupants of impacts not damaging the passenger
compartment.

Front Impacts
1. Single-vehicle accidents
2. Two-vehicle accidents with center impacts
3. Two-vehicle accidents with off-center impacts, drivers only
4. Two-vehicle accidents with off-center impacts, right front

passengers

The models for side impacts which have Lateral Delta V and Age as

the independent variables are shown in Section 3.3.3 (Equations 3-57 and

3-58) and that goodness of fit it Table 3.24. The side-impact models

which include two additional variables, Object Contacted and Body Region

are shown in Section 3.3.4 (Equations 3-60 and 3-61) and their goodness

of fit results are shown in Table 3.31.

The models for front impacts which have Delta V and Age as the

independent variables are shown in Section 3.5.5 (Equations 3-95 to

3-98) and their goodness of fit results are shown in Table 3.62. The

front-impact model with Delta V, Age and Body Region are shown in

Section 3.5.7 (Equations 3-100 to 3-103) and their goodness of fit in

Table 3.65.

Several dummy variables were used to bring in the various

categories of Body Region. These models predicted non-severe injuries

correctly about 90% of the time and severe injuries correctly from 43%

to 67% of the time.

An alternative approach which now appears attractive is to develop

separate models for each Body Region. In effect, one would be studying

the crashworthiness of vehicles separately for heads, chests,

295



extremities, etc. This approach requires that injury information be

collected for each body region of interest. I n particular, the

occurrence of no injury to a particular body region would have to be

recorded. Since all injuries were not recorded in the NCSS study, only

the first six, one cannot be sure that a given body region was not

injured just because none is recorded. However, making such an

assumption may not be too unreasonable. This approach would seem to

merit further work.

A final area worth noting concerns the use of that Abbreviated

Injury Scale (and even a simple dichotomy of this variable) as the

dependent variable. Virtually all of the outliers (mi spredi ct i ons) were

relatively low collision severity (Delta V) impacts which resulted in

severe injuries (OAIS 3+). A case-by-case examination of these

indicated that the problem seems to lie in the quantification of injury.

Many factors were assimilated in developing the AIS Scale: threat-to-

life, treatment period, probability of permanent impairment, etc. Not

all of these factors are directly related to the collision forces. For

example, a substantial group of outliers in the frontal models were

ankle/foot dislocations or fractures. These injuries receive an AIS 3.

However, the forces which produce these injuries would not seem to be

particularly high. Often it would seem that a simple broken bone or

contusion might result. The critical factor is probably the specific

point. and direction of force application. This kind of problem will

hamper further development of mechanistic models.

There are probably several approaches to this problem. Developing

separate models for each Body Region will somewhat extend the usefulness

of the AIS scale, since particular injury types are usually associated

with a given body region. However, the number of possible AIS levels is

usually reduced to 2 or 3 in this situation. A more difficult

alternative is to continue the original philosophy advanced by the the

developers of the AIS scale23; that is, to develop several scales, each

addressing the different dimensions of injury severity. I n this way

injuries would be rated on separate scales for threat-to-life, treatment

23The Abbreviated Injury Scale (1976 revision). (Morton Grove,
Ill.:, American Association for Automotive Medicine, 1976).

296



period (or even cost), likelihood of permanent impairment, energy

required to produce the injury, etc. A multi -dimensional dependent

variable would then be available.

297



4 POPULATION STATISTICS

One of the major uses of the NCSS data is to provide nationally

representative accident statistics for the U.S. population. This

subsection describes the analyses used to accomplish this task. The

NCSS data provides estimates for the aggregate of the seven areas chosen

for NCSS. The methodology used to produce these estimates is discussed

in Section 4.1. These statistics were organized for publication, and

the books of NCSS statistics produced are discussed in Section 4.3. The

sampling errors for selected statistics were calculated and these

results are presented in Section 4.4.

Missing data will affect all of the statistics calculated using the

NCSS data. The two major sources of missing data are missing accidents

in the collection of the data and incomplete information on those

accidents collected. In Section 4.2 possible sources for missing

accidents are discussed and the effect on the NCSS statistics is

evaluated. The effect of missing data on DAIS and Delta V distributions

is discussed in Section 4.5.

A method of modifying the NCSS data to provide nationally

representative estimates is used in Section 4.6 and some selected

national projections are presented. In Section 4.2 the areas included

in NCSS are compared to the nation in an attempt to ascertain the

representativeness of the NCSS areas.

This section is organized in the following manner. Section 4.1

presents all theoretical foundations for work done in subsequent

subsections. Sections 4.2 to 4.6 present the analytic work done in each

of the areas described in Section 4.1. Section 4.7 provides a summary

of the main results from the analysis described in this section.

4.1 Analytical Technique - Weighted Analysis

This subsection is intended to document estimation procedures and

sampling error procedures used in the analysis of the NCSS data. Also

included here is a discussion of alternative approaches for presenting

sampling errors for large scale surveys. Procedures for missing data

adjustments are reviewed and the rationale for the chosen missing data

analysis is presented. Finally the issue of estimating "nationally



representative" statistics is discussed and a procedure developed to

produce national projections.

4.1.1 Sample Design. The National Crash Severity Study was a data

collection effort oriented towards collecting data to relate injury

severity to crash severity. The origin of the NCSS design is described

in a paper by Kahane, Smith, and Tharp.24 The study design consisted

of the purposive selection of seven areas, chosen to represent the

United States population distribution. These seven areas include 41

counties, 2 partial counties, and 3 police districts in the city of Los

Angeles.

Within each area a sample design was specified for the sampling of

accidents for that area. An accident was eligible for sampling if it

included a towed passenger car (this definition was extended in Phase 2

of the study to include passenger cars, light trucks and vans) and if

the most severe injury to any occupant in the accident was to an

occupant of a towed vehicle.

There were two basic sample designs used. I n two of the seven

areas accidents were selected with probabilities related to the severity

of injury in the accident. Those accidents that involved a fatality or

someone who was transported to the hospital and kept overnight were

selected with certainty (Stratum 1). Accidents that had at least one

occupant of a towed vehicle transported to the hospital but not kept

were selected at a rate of 25 percent (Stratum 2). Those accidents

where none of the occupants were transported to the hospital (those with

minor injuries and those with no injury) were selected at a rate of 10

percent (Stratum 3). This sample design was used by the Highway Safety

Research Institute and Southwest Research Institute.

Accidents in the other five areas were sampled using two

independent systematic samples of days to sample accidents that did not

involve transportation to a hospital (Stratum 3) and accidents that

required transportation to the hospital but not hospitalization (Stratum

24C. J. Kahane, R. A. Smith, and K. J. Tharpe (sic), "The National
Crash Severity Study," International Technical Conference on
Experimental Safet Vehicles. Sixth Report (Washington, D.C.: National
Highway Traffic Safety ministration, 19/8), pp. 493-516.
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2). Within each of the areas every accident involving a fatality or an

occupant transported and kept overnight at the hospital was investigated

(Stratum 1). A systematic sample of days choosing every tenth day

starting with a randomly chosen day was used in Stratum 2 and all

accidents involving minor or no injury to an occupant that occurred on

that day were sampled. An exception was Los Angeles which used a

systematic sample choosing every five days and gave each accident with

minor injury that occurred on that day an equal probability of being

included or excluded in the study. A systematic sample of days choosing

every fourth day starting with a randomly chosen day was used to sample

accidents in Stratum 3--those involving an occupant who was transported

to the hospital and released. Again every accident of this type that

occurred on the sampled day was investigated.

NCSS data was collected in two phases. Phase 1, the first fifteen

months, included in the population only passenger cars that were towed

from the scene of the accident for damage. Phase 2 of the study involved

data collection for the following twelve months. In this phase the

population was extended to include all light trucks and vans that were

towed from scene of the accident for damage. In Phase 2, Southwest

Research Institute, which had been sampling accidents with probabilities

related to the severity of injury in the accident, changed the rate of

sampling accidents that involved minor injuries in Stratum 3. These

accidents were sampled at a rate of 5 percent.

It was not always the case that the same systematic sample was

used for each stratum within a particular study area. Some teams chose

different starting days for their systematic sample of days depending on

county. A term was needed to identify within each study area the group

of counties in which the sampling procedure was identical. The term we

have chosen is "design group." A summary of the sample designs for each

design group within each stratum is given in Table 4.1. This table

defines 10 design groups.

4.1.2 Estimation Methodology. The sample designs described in the

preceding subsection allow the development of estimates of statistics

related to accidents within each of the areas chosen. These estimates

have certain statistical properties characteristic of good estimates.
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TABLE 4.1

Description of Sample Designs
within the NCSS Sites

-------------------------------------------------------------------------
I Stage I

Design Group ISampling Unitl Stratum 3 I Stratum 2
-----•---------+-------------+---------------------+---------------------

I I
Calspan I Days 110% Systematic Sample125% Systematic Sample

I Istarting Jan. 7, 1977Istarting Jan. 1, 1977
I I

Highway Saf etyl Accidents (Equal probability of (Equal probability of
Research Inst.! Iselection (p=.10) Iselection (p=.25)

I I I
Southwest I Accidents (January 77 - March 78IEqual probability
Research Inst.! (Equal probability lof selection (p=.25)

I lof selection (p=.10) I
I I I

IArI 78 - March 79 !
I IEqua probability
I lof selection (p=.05) I
I I i

Miami I Days 110% Systematic Sample125% Systematic Sample
I Istarting Jan. 3, 19771starting Jan. 4, 1977
I I

Indianan I Days 110% Systematic Sample125% Systematic Sample
Group A I Istarting Jan. 3, 19771starting Jan. 3, 1977

I I
Indianab I Days 110% Systematic Sample125% Systematic Sample
Group B I Istarting Jan. 4, 19771 starting Jan. 4, 1977
------------------------------------------------------------------------

aIncludes counties of Bartholomew, Brown, Daviess, Dubois, Gibson,

Lawrence, Martin, Monroe, and Pike.

bIncludes counties of Greene, Jackson, Knox, Owen, Perry, Posey,

Spencer, and Warrick.
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TABLE 4.1 (Continued)

I First Stage I I
Design GrouplSampling Unitl Stratum 3 Stratum 2
------------+-------------+-----------------------+---------------------

I I
Los Angelesl Days 120% Systematic Sample 125% Systematic Sample

I (starting Jan. 2, 1977 (starting Jan. 4, 1977
(with an equal
(probability sample of

( laccidents
I Ion a chosen day (p=.50)1
I I I

Kentuckya J Days 110% Systematic Sample 125% Systematic Sample
Group A I (starting Jan. 1, 1977 Istarting Jan. 1, 1977

I I I
Kentucky b I Days 110% Systematic Sample 125% Systematic Sample
Group B I (starting Jan. 2, 1977 (starting Jan. 2, 1977

I I I
Kentuckyc I Days 110% Systematic Sample 125% Systematic Sample
Group C (starting Jan. 3, 1977 Istarting Jan. 3, 1977

aIncludes counties of Clark, Jessamine, and Madison.

bIncludes counties of Woodford, Scott, and Bourbon.

cIncludes Fayette county.
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Since the areas were chosen purposively these accident statistics

generalize only to the specific areas chosen. Extrapolation of

estimates for areas observed to areas unobserved, generating a national

projection that describes the national acci dent experience, will be

presented and discussed in Section 4.6.

Of particular interest is the estimation of proportions of certai n

categories for variables that are collected in NCSS. Estimates of t h i s

type were used to produce the various statistics for the publications

describing the NCSS statistics. These publications will be discussed in

Section 4.3. The estimates can also be used to develop models,

categorical models or linear models, that describe relationships between

the estimates of the population totals or proportions. These models are

described in Section 4.7. For each of these tasks the estimation

procedure for means and proportions is the same. The estimation

procedure used to estimate means and proportions for accident, vehicle,

and occupant level statistics is presented and discussed below.

All of the sample designs described in Table 4.1 involve cluster

sampling. A cluster is defined by either an accident (for Highway

Safety Research Institute and Southwest Research Institute) or a day

(for all other teams). Within each accident or day selected all

vehicles that were towed were chosen for further investigation (except

for Los Angeles where only half of the accidents involving a towed

vehicle were selected in Stratum 3). Within each chosen vehicle all

occupants in that vehicle were investigated. So there are three basic

sets of variables.; the accident variables, the vehicle variables and the

occupant variables. The accident variables describe the acci dent

environment at the time of the crash. The vehicle variables describe

the vehicle's status at the time of the accident and also include

information about the damage induced by the collision. The occupant

variables describe the occupant and the resulting injuries the occupant

sustained in the accident. So for each cluster a total or a count can

be obtained for all accidents, vehicles or occupants represented in the

cluster. When sampling clusters, the clusters become the basic unit of

observation and cluster totals are used as a basis for estimates and are

used in the calculation of the variance of these estimates.
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In order to estimate means and proportions it is necessary to view

these statistics as a ratio of two sums. The sum in the numerator is

the estimate of the total for a variable or the count of the number of

items in a particular category. The sum i n the denominator is the

estimate of the number of items used in the calculation of the numerator

statistics. More specifically, let M be an estimate of a population

mean involving accidents (or vehicles or occupants). The mean of the

variable, X, to be estimated is given by

(4-1) M = X/N

where

(4-2)
X = 12: xik/pi'

i=1 k=1

3 ml

(4-3) N = 2:2: nik/pi,
i=1 k=1

and

xik is the variable total for the accidents (or vehicles or

occupants) in the kth cluster in the ith stratum, (i=1,2,3),

nik is the number of accidents (or vehicles or occupants) in the

kth cluster in the ith stratum,

pi is the probability of selection in the ith stratum, and

mi is the number of clusters in the ith stratum.

The estimate of a population proportion25 of Category A, P(A), is given

by,

(4-4) p = T/N

where

3 mi

(4-5)
T = 2:7 tik/pi'

i=1 k=1

3 mi

(4-6) N = nik/pi'
i=1 k=1

25In the following notation reference to category A will be
suppressed, the estimate of P(A) will be written is then the
estimated proportion of category A.
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and

tik is the number of accidents (or vehicles or occupants) of Type A

in the kth cluster in the ith stratum, (i=1,2,3)

nik is the number of accidents (or vehicles or occupants) in the

kth cluster in the ith stratum,

pi is the probability of selection in the ith stratum, and

m i is the number of clusters in the ith stratum.

It should be noted that in calculating accident level statistics

for a sample of accidents each cluster represents only one accident.

So, in Equation 4-3 and Equation 4-6, N simplifies to

3

(4-7) N
mi/pi

i=1

where pi and mi are as defined for Equations 4-1 to 4-3.

For those teams using a systematic sample of days, this estimation

process ignores the additional fact that the selected clusters were

obtained systematically. Estimation procedures specifically derived for

systematic sample designs involve intracorrelations. Information about

the magnitude of these intracorrelations is not known. Therefore as an

approximation the systematic sample of days was treated as a simple

random sample of days.

Under the assumption of simple random sampling, M defined by

Equation 4-1 and defined by Equation 4-4 are approximately unbiased

estimates of the true mean or proportion. Since the mean and the

proportion are ratios of two variables, the expected value calculated

for the ratio is the expected value of the Taylor Series approximation

to the ratio. This method of approximation is discussed in Cochran.26

It implies that, on the average, over repeated independent samples, the

ratio estimate will be a good approximation to the true population mean

or proportion. For cluster designs there is no exactly unbiased

estimate of the population mean or proportion.

26William G. Cochran, Sampling Techniques, 3rd ed. (New York: J oh n
Wiley & Sons, 1977), p. 319.
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4.1.3 Estimation of Variance. For every estimate an associated

variance or standard error can be estimated. These variance estimates

depend on the particular design used to select the primary units. In

general, the variances decrease as the number of primary units increase.

Since the NCSS design has well defined sampling designs within each

area, it is possible to calculate an estimated variance for estimates of

means and proportions for a given area. Since areas were chosen

independently, these individual variance estimates can be used to obtain

an overall estimate of variance for the aggregate of the areas.

It is important to calculate the sampling errors associated with

the statistics calculated. These sampling errors give a direct measure

for the reliability of the estimate calculated. If the standard error

is high, then a fair amount of uncertainty can be associated with the

estimate. On the other hand, if the variance is quite small compared

with the magnitude of the estimate, then the reliability of the estimate

is enhanced.

In this Section attention will center on estimated variances for

proportions estimated. The formulae used are exactly the same if the

estimated variance of a mean is required.

The estimation of the variance of a proportion is specific to the

design of the sample. In NCSS, accident level statistics for HSRI and

SwRI are calculated differently than vehicle or occupant level

statistics. The variance for the latter calculation is exactly the same

as the variance calculation for those teams sampling days. Therefore

the exception will be discussed first and following that the more

general calculation of variance.

When the cluster in the sample design is accidents and concern

centers on accident statistics, the estimate is given by Equation 4-4.

As noted in the previous discussion in this special situation there is

only one accident per cluster. This implies that there is no variability

in the number of accidents in a cluster. I n doing the actual sampling

the total number of accidents was not recorded so that the estimated

number of accidents given by Equation 4-7 must be assumed to be known

without variability. Rewrite the numerator and denominator of the

proportion, Equations 4-5 and 4-6, as
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3 -
(4-8) T = ti/pi,

^=t

3
(4-9) N = ni/pi,

^=t

where

ti is the total number of accidents of Type A in the i th stratum,

n i is the total number of accidents in the ith stratum and

pi is the probability of selection of clusters in the i th stratum.

The variance of the ratio of T to N is given by

(4-10) Var T/N = [Var T]/N2

since the denominator, N , i s assumed to be known. The variance of t h e

numerator is given by

-
1,7

(4-11) Var T = [Var t2]/p2 + [Var t3]/p3

since t1 has no variance (sampled at 100°6).

In order to estimate this variance an unbiased estimate (or

approximately unbiased estimate) i s used i n Equation 4-11 and the

estimated variance is given by

(4-12) Var T = [Var t2]/p2 + [Var t3]/p3

where Var t2 and Var t3 are the simple estimated variances of the

cluster totals within strata defined in Equation 4-15. Variance

calculations for means are completely analogous.

In all other situations, estimated means and proportions are ratios

of two random variables, the numerator sum and the denominator sum. The

estimated variance of the ratio of two random variables is customarily

approximated by

T Var T Var N C 8 T N(4-13) TVar N P [- + R2 -2
TN
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The estimated variances in Equation 4-13 are given by:

(4-14). Var T = [Var t2]/p2 + [Var t3]/p3

where

'e;

(4-15) Var ti = I (tik - ti)2/(mi-1) i=2,3
k=1

and

Mi

ti = tik/mi i=2,3;
k=1

(4-16) Var N = [Var n2]/P2 + [Var n3]/P3

where

(4-17) Var ni = (nik - ni)2/(mi-1) i=2,3
k=1

and

(4-18) ni = j nik/mi i=2,3;
k=1

finally

(4-19) Cov [T,N] = Cov[t2,n2]/p2 + Cov[t3,n3]/p3

where

m;
(4-20) Cov[ti,ni] = 2:(t A - ti)(nik - ni)/(m i -1)

k=1

Using Equation 4-13 an approximation to the variance of the estimate can

be obtained. Variance calculations for the mean are done in a similar

manner.
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The finite population correction factor has been eliminated from

the variance formulae discussed above. The effect of this is to

slightly over-estimate the variances if the model of simple random

sampling is the appropriate model. The sample design was not based on a

simple random sample of days. Therefore these formulae are

approximations and omitting the finite population correction factor

seemed justified.

Treatment of sampling errors for a large-scale survey where many

different variables are collected can be difficult, both in the

calculation and presentation. Currently there are two ways of

presenting sampling errors. One method graphically presents estimators

and their variances. So from the calculated value of the estimate alone

an approximation of the sampling error can be interpolated from the

graph.

Another method of summarizing the effect of the design on the

variance of an estimate is given by the quantity called the design

effect. The design effect is discussed by Kish 27 and is defined by

(4-21) Design Effect = Var (XlDesign)/Var (XISRS)

where

Var (XlDesign) is the variance of X under the given design and

Var (XISRS)is the variance of X if simple random sampling is
assumed, and X is the estimated mean or proportion.

In general, for cluster sampling, variables will have design effects

greater than one. Design effects for variables obtained from a

stratified simple random sample will generally be less than one. When

stratification and cluster sampling are used together the design effects

will depend on how stratification and clustering interact for the

particular variable being estimated.

4.1.4 Missing Data Adjustments. In most large-scale data

collection projects the problem of missing data needs to be seriously

27
Leslie Kish, Survey Sampling (New York: John Wiley & Sons, 1965),

pp. 257-259.
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addressed. The problem of nonresponse is complex because of the many

kinds of nonresponse possible. This discussion will focus on two

particular types of nonresponse, unit and item nonresponse. Unit

nonresponse occurs when no information can be obtained about the chosen

accident, vehicle, or occupant. The only information available is that

data should have been obtained but was not collected. Item nonresponse

involves nonresponse to a few of the variables collected but full

information on the remaining variables. So there is always some

information for the particular case. A third type of non response,

considered in Section 4.2, is undercoverage of accidents.

There are two major types of adjustments for nonresponse. The

first type involves a rewei ghti ng of the data to adjust for the missing

data. These procedures are generally useful for unit nonresponse

problems. Alternatively there are imputation techniques that impute for

the missing data a "best" predicted value. Chapman28 summarizes most of

these techniques and they will be briefly outlined here.

Reweighting procedures involve a rewei ghti ng of the means of

different classes within the data set. Stratification of the data with

a reweighting inversely proportional to the response rate within each

stratum is an example of this type called "weighting class adjustments."

Here the stratification) is chosen such that the strata are homogeneous

and have different response rates within each stratum. Raking ratio

estimates involve using external data and iterative proportional fitting

to adjust for missing data. Double sampling procedures view the

population as two populations, the responding population and the

nonresponding population. The first sample gives information about the

responding population and the nonresponding population is again sampled

to try to obtain an estimate for the nonresponding population. The

resulting estimate for the sample is a weighted average of these two

means.

28David W. Chapman, "A Survey of Nonresponse Imputation
Procedures," American Statistical Association Proceedings of the Social
Statistics Section, 1976: Part I (Washington, D.C.: American Statistical
Association, 1976), pp. 245-25-1-.
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Imputation procedures, on the other hand, are techniques to

substitute a value for a missing data item. The "hot deck" procedure 29

is used widely. Cells are defined by variables with no missing'dat a to

form homogeneous groups. . Then cases with a missing item draw their

value from one of the cases in the cell in which the case falls. How

the case is chosen determines variations on this procedure. Statistical

matching can also be used to find the "nearest neighbor" and the value

is then imputed based on the match. The EM algorithm 30 is another

method of imputation that imputes a value for a missing data item.

All of the procedures currently used make an assumption about the

nonresponding units. Technically, the items need to be "missing at

random."31 What this means is that the nonresponding population is not

"special" in any way. To be missing at random does not preclude a

different distribution of cases across a certain variable but does

exclude the case where all extreme values fall into the nonresponding

population. The basic assumption is that the nonrespondents must be

like the respondents.

A double sampling approach was chosen in this investigation of the

NCSS missing data. The assumption of "missing at random" is a crucial

assumption in all imputation procedures and a double sample allows an

investigation into possible deviations from this assumption. This

approach allows for estimation of the sample distributions in the

missing and non-missing subpopulations and makes possible the comparison

of these two sample distributions. This approach does not lead to

aggregate estimates for the NCSS population since the proportion of the

aggregate that belongs to each subpopulation is not known. The result

29Innis G. Sande, "Hot Deck Imputation Procedures," Symposium on
Incomplete Data: Preliminary Proceedings (Washington, D.C., Social
Security Administration, December, 1979), pp. 484-507.

30A. P. Demster, N. M. Laird, and D. B. Rubin, "Maximum Likelihood
from Incomplete Data Via the EM Algorithm," Journal of the Royal
Statistical Society, ser. B, 39:1 (1977), 1-38.

31D. B. Rubin, "Multiple Imputations in Sample Surveys--A
Phenomenological Bayesian Approach to Nonresponse," Imputation and
Editing of Faulty or Missing Survey Data (Washington, D.C.:
U. S. Department of Commerce, Bureau of the Census, 1978).
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on this analysis is an estimate of the distribution of each

subpopulation for the data sampled and an adjusted total for the data

collected. The subsampling procedure is discussed in Section 4.5.1 and

4.5.3 and the results of the analyses can be found in Sections 4.5.2,

4.5.4, and 4.5.5.

4.1.5 Inference to the National Population. NCSS fails to satisfy

the requirements of a national probability sample. The NCSS study

design involved choosing seven areas in the United States to collect

accident data for a study of the relationship of injury severity to

crash severity. This choice depended on the availability and

willingness of an investigating team to perform the necessary data

collection. The areas covered by the teams were chosen in such a way

that the percentage of residents in urban areas was approximately the

same for the chosen areas as for the U.S. population as a whole. Within

each area a sampling plan was used to select a sample of accidents.

These sample designs varied from stratified random samples to cluster

samples of days where all or some subsample of accidents were chosen.

Since the choice of the primary unit, the area, was not specified

b y a sample design, there i s no single universally accepted method f o r

producing national estimates from NCSS. The method developed for

national estimates (which'might more properly be called "national

projections") uses the data collected in the chosen areas together with

with demographic information available for all areas in the United

States. The technique is based on the assumption that an observed

relationship between accident statistics and demographic variables in

the NCSS areas is appropriate for and adequately describes the

relationship in the areas that have not been observed. The bias in the

national projection is investigated, and an estimate of the variability

of the national projection is produced.

The development of a national estimate from the NCSS design

requires that certain assumptions be made concerning the population and

the study design. The population is to be thought of in terms of a

aroup of smaller subpopulations. For the United States these could be

states, counties, or enumeration districts. Once the subpopulation is
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specified, the total for the population can be defined i n terms of t h e

sum of the totals for each subpopulation.

The following procedure makes use of relationships between two

croups of statistics collected for each specific subpopulation. In the

first group, statistics may come from a complete census of each

subpopulation or a physical description of the subpopulation. For

example, FARS (Fatal Accident Reporting System) and the County and City

Data Book 32 provide census-type statistics by county for all counties in

the United States. It is essential for this procedure that there is at

least one statistic that is known for every subpopulation in the

population. These statistics form a group of statistics which have

values for every subpopulation.

The second group of statistics that need to be expanded nationally,

are known for only some of the subpopulations in the population. It is

necessary that these statistics be unbiased estimates for their

subpopulation totals and that an estimate of the variance of the total

be obtainable using the sample design. NCSS provides accident

statistics for 43 of the 3112 counties. These statistics are unbiased

and a variance can be calculated for each accident statistic. This is

possible because there is a specified sampling plan for NCSS data

collection.

Finally it is assumed that any relationship between statistics in

the two groups for the observed subpopulations will adequately describe

the relationship in the entire population. More specifically, the

prediction at a given value based on the observed data will be close to

the prediction for that value if all the data were available.

Now, for the general framework, let Y=(Y1,...,YN) be the population

totals for the N subpopulations which together form the population.

From an independent source X=(X1,...XN) is available and represents

population totals on related variables of interest. X is known and

available for every subpopulation. If the subpopulation totals, Yi,

32U. S. Bureau*of the Census, County and City Data Book, 1977: A
Statistical Abstract Supplement (Washington, D.C.: Government Printing
Office;
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were known, investigation of the relationship between Y and X could be

investigated directly and functions fit to the data to describe the

relationship in the data for the population. With complete data about

the target population, there may be many possible functions that might

describe the relationship. The objective is to define a function that

closely approximates the data and is still a simple function. Without

complete data, past experience or some investigation will be necessary

to specify a possible functional relationship. Once the function, f(X),

is specified every subpopulation can be described by the following:

(4-22) Yi = f(Xi) + ei

where f(Xi) is the value of the function at X. and ei is the deviation

of the subpopulation total from its functional value. Note that by

specifying different functions it is possible to modify the magnitude of

the ei 's.

Consider the following example. Let Yi be the number of accidents

in the ith county and Xi be the retail gas sales in the same county.

Suppose it is reasonable to assume that

(4-23) f(Xi;a,b) = a + b (Xi-R) i=1,.... N

where R is the population mean of X. That is, the number of accidents

Der county is a linear function of the retail gas sales of the county.

The least squares estimates for a and b are given by,

N

(4-24) a = ly i/N

N

y Yi(Xi-X)

(4-25) b = '_J N

(Xi_X)2

Once a and b have been defined, the number of accidents in each sub

population can be expressed as Yi = a + b(Xi-R) + ei where a + b(Xi-X)

represents that part of Yi described by the function, and ei measures

the deviation from the regression line. With this definition of a and b
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the sum of the ei for the population is zero so that the population

total is equal to the sum of a + b(Xi-X) for all counties.

The model specified above describes all of the elements in a Oven

population. If complete information on Y and X were known the entire

population could be described and modelled with complete certainty. The

problem of making national projections presents itself because complete

data on Y is not available. The ultimate goal is to estimate a

population total with the data available.

The population projection is defined to be an estimate of the

expected value of the population total given the sample, 9(s). The

expected value of the population total given the sample can be expressed

as

N

(4-26) 9(s) = E(lYi ► sample)
i=t

= l Yi + E(YiIsample)
ifs ifs

where the index of summation is means summation over all chosen

counties and is means summation over all counties not chosen. So that,

theoretically, 9(s) is equal to the sum of the subpopulation totals f or

chosen counties plus the sum of the expected value given the sample

(which may depend on the sample) for all counties not chosen.

The estimates of the population totals for the counties chosen are

relatively straightforward. The assumption has been made that within

each county there is an unbiased estimate for the county population

total. Let t=(t1,...,tn), where n is the number of counties chosen, be

the unbiased estimates for totals of the chosen counties. So that the

sum of the ti's for the observed counties is an unbiased estimate of the

sum of the true populations for the observed counties.

.A national projection can be obtained if an estimate of the

population total for each county can be defined for those counties that

were not observed. This estimate for the expected value of an

unobserved county is a bit more arbitrary. Based on the population
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model described above, if the function i s chosen w e l l , the ei may be

small enough so that a + b(Xi - R) may be a rea5o.nable approximation for

Y 1..

The data from the counties observed is all the information

available about the relationship implicit in the population. T h i s

information is used to estimate the expected value in an unobserved

county. 'Consider, as an estimate of the expectation of the total of a

county not observed, the estimate, a + b(Xi where a and b are

chosen to minimize

(4-27) 2:[t1 - a - b(Xi -R) ]2
its

The estimates a and 6 are given by

(4-28) a =It /ni
iEs

ti(Xi -xs)

(4-29) b = iEs

(Xi xs) 2
its

where xs i s the mean of X for the units observed. I n the previous

example X would be retail gas sales. The national projection, in the

linear case, will be defined by the following statistic:

(4-30) 8(s ) = ti +1[a + 6(Xi - Xs )]
its ifs

Taking the expectation of 9(s), the national projection, over all

possible samples within each county for each county observed, it follows

that,

N

(4-31) Ee(s) _ 1 Yi Yei+^(N-n)(X-xs)+2[(Ea-a)+(ES-s)(Xi-xs
i=1 its ifs

It can be seen from Equation 4-31 that the national projection is not

unbiased. The bias, in the linear case, is a function of three

quantities:
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1. the difference between a + b(Xi-xs), the prediction at X. of a

model based on the whole population, and Ea + E6(Xi-s), the prediction

at Xi of a model based on the expected value of the totals observed,

2. the difference between the mean value of X for the whole

population and the mean value of X for observed counties, and

3. the deviations of the sampled counties from the true linear

function.

One of the basic assumptions of the procedure i s that the first

quantity is zero. The other two terms that contribute to the bias are

both functions of the particular counties observed. Since X is known

for all counties, the difference (X - xs) can be calculated. Although b

is still unknown, some. information concerning this part of the bias can

be obtained by using the estimate of 6.

The bias due to the sum of the true deviations for the observed

units is more difficult to assess. The sum of the theoretical

deviations for the observed subpopulations may be large or small,

positive or negative. The magnitude of this sum, if it is large, may be

due to data which does not exhibit a strong relationship or it might

result from an unfortunate choice of "deviant" units. There is no

method at this time to assess the magnitude of this part of the bias.

However if enough is known about the relationship and the population, it

may be possible to minimize this term in the decision stage by the right

choice of subpopulations.

The assumption has been made that the relationship between

statistics in the chosen counties also holds for those counties not

observed. Whether this is justified or not cannot be evaluated

directly. An assessment of whether it is reasonable must be made for

every national projection that is developed. Until there is evidence to

support the position that the assumption is not valid it provides a

useful framework to develop an estimate which may closely approximate

the national total.

The variance of the national projection is given by the following

formula:
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[ (Xi-xs)]2(4-32)
2 i¢s (Xi-X5 )2 2(Xi-X5)

V0(s) = N IVti + _
n2 iES 2] + Vti

[I(Xi -XS ) i(S I(Xk-xs ) 2 n
iES kEs

where Vt is the variance of the estimate of the subpopulation total in
i

the it" chosen area. One method of obtaining an unbiased estimate of

VA(s) is to substitute an unbiased estimate for the Vti. Since it was

assumed that there was a sampling plan defined within each chosen

county, an unbiased (or approximately unbiased) estimate can be

obtained.
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4.2 Sample Design Implications

In this subsection the relevance of the sample design is discussed

in terms of its effect on the modelling effort and the estimation of

accident statistics. Modelling requires a broad range of data so that

models developed will be applicable fairly generally. Various

proportions based on demographic variables for the NCSS area are

compared with the national proportions. The characteristics of the

areas with respect to urbanization and region of the country are

examined.

The estimation of accident statistics requires a strict adherence

to the sample design specified for accident collection. Only if all the

data are obtained can it be expected that good reliable estimates will

be produced. Here various sources of undercoverage are considered that

may cause the NCSS statistics to be underestimates of the true value.

4.2.1 Sample Representativeness. A discussion of the background

for the purposive selection of areas is given by Kahane, Smith, and

Tharp33. Since a nationally representative sample of accidents was not

feasible, areas were chosen to facilitate the development of models to

predict injury severity from crash severity. In the development of

these models it is necessary to obtain data that reflects the spectrum

of accident experience of areas throughout the country. A model is only

"representative" if it is applicable and predicts well for a wide range

of areas with different environments. The areas chosen for NCSS were

chosen to reflect some diversity in both urbanization and region of the

country. Table 4.2 shows which areas represent different levels of

urbanization and different regions of the country.

There is very little census information that is directly applicable

to evaluating areas in terms of their accident populations. Measures

like traffic density, number of registered vehicles, or drivers or miles

of interstate highway are not readily available for all of the NCSS

areas. The task is confounded by the fact that characteristics of the

33C. J. Kahane, R. A. Smith, and K. J. Tharpe (sic), "The National
Crash Severity Study," International Technical Conference on
Experimental Safety Vehicles. Sixth Report (Washington, D.C.: National
Highway Traffic Safety Administration, 1978), pp. 493-516.
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TABLE 4.2

Distribution of Sites by Region
and Degree of Urbanization

----------------------------------------------------------------------
I North North I

Area I East I Central I South I West
-----------------+---------+---------+--------------+-----------------

i I I I
Central Citiesa I Miami I Dynamic Science

Suburbsb I Calspan I I
I I

Other SMSA'sc I I I SwRI(Urban)
I I

Non SMSA's oG I I I
Small SMSA's I HSRI I Kentucky

I I Indiana SwRI:(Rural)
----------------------------------------------------------------------

aCentral cities of Standard Metropolitan Statistical Areas

(SMSA's) containing more than 1,000,000 persons

bSuburbs of SMSA's with more than 1,000,000 persons

cSMSA's with more than 250,000 persons but less than 1,000,000

persons

dSMSA's with fewer than 250,000 persons

people who live in the area of investigation may not represent the

characteristics of the people who have accidents in that area. Thus the

fact that areas exhibit similarities based on the characteristics of

their residents may not imply that the areas do indeed have similar

accident populations.

The County and City Data Book was used to obtain the following data

on the areas chosen for NCSS. The data are presented in Tables 4.3 to

4.5. Table 4.3 gives general demographic information. Table 4.4 qives

data on the persons living in the seven areas. Table 4.5 contains

information that might have some correlation with the number of drivers

in that area.

In viewing the tables it can be seen that for some characteristics

the area percentages for all areas are quite comparable to the

322



TABLE 4.3

Site Characteristics - Demographic
Based on 1970 U. S. Population

-------------------------------------------------------------------------------------------------------

Team
------------------

I
I

---
Area

-----------

Population
Density

------------------

Death
Rate

------------

Percent
Farm

--------------

Percent
Urban

--------------

Percent
Rural

-------------

Calspan 1016.7 640.00 7.4 1.0 79.0 19.8

HS RI 1464.0 215.65 6.8 5.1 68.5 26.5

U of Indiana 7165.0 69.77 10.2 10.5 39.8 49.6

U Miami 34.3 9769.00 13.9 0.0 100.0 0.0

U of Kentucky 1939.0 154.12 8.4 8.6 73.8 17.6

SwRI 13263 79.83 8.1 2.8 85.7 11.4

Dynamic
Sci ence
L.A. County

-
19.5

-----------
40300.70*

-----------------
9.3

-------------
0.0

--------------
100.0*

--------------
0.0

-------------

U.S. I 57.46 9.5 4.1 73.5 22.4
-------------------------------------------------------------------------------------------------------

*Based on 1977 population of the three police districts covered by Dynamic Sciences, Inc.



TAB- L 4.4

Site Characteristics - Population

----------------------------------------------------------------------------------------------------------
Based on 1970 U.S. Population (Based on 1970 Civilian)

(-------------------------------------------------------I Labor Force (Based on 1970
Team Percent Percent Percent) ---------------------- I Labor Force

(Percent Percent Percent Percent Under 5 Over 16 Over 651 Percent Percent I Percent
(Female Negro Spanish White Years Years Years Female Unemployed (White Collar

----------------------------------------------------------------------------------------------------------
I I

Calspan I 51.1 0.7 0.29 98.8 8.5 63.2 7.8 I 35.0 3.8 I 64.2
I I I

HSRI I 50.7 5.9 1.85 93.3 8.6 68.1 6.7 I 41.5 5.1 I 55.6

U of Indiana I 51.1 0.5 0.17 99.0 8.4 66.0 10.6 1 36.2 4.6 I 38.7
I I I

U of Miami I 53.3 22.8 45.3 76.7 6.3 74.6 14.5 I 46.1 4.3 40.9
I I I

U of Kentucky( 51.6 10.5 0.28 85.5 8.4 67.8 8.7 1 40.0 3.3 I 49.1
I I

SwRI I 50.8 6.2 42.8 93.1 9.1 62.7 8.7 38.7 4.0 I 49.8

Dynamic I I
Science I I I
L.A. County 124.3* 16.6* 41.1* 31.2* 8.2 68.3 9.5 I 39.4 6.4 55.8

I--------------------------------------------------------------------------------------------
I I I

U.S. 51.3. 11.0 4.6 87.6 8.4 65.6 9.9 1 38.1 4.4 I 48.3
----------------------------------------------------------------------------------------------------------

*All four percentages based on 1977 population of the three police districts covered by Dynamic

Sciences, Inc.



TABLE 4.5

Site Characteristics - Automotive Related

----------------------------------------------------------------------------------------------------
Based on 1970 I Based on 1970 (Based on Total 1970 I

U.S. Households Employed Civilian I Retail Sales I
I-----------------I Labor Force I--------------------(Based on Total(

I ---------------------- I 11970 Receipts I Percent
Team I Percent Percent) Percent Percent (Percent Percent I Percent from ISpent on*

(with more Low I Use work outside( from from Gas ands Auto Repair (Highways
I than Income I Public county of I Auto Service I Service
lone Auto ITransport residence IDealers Stations I I

-------------+-----------------+----------------------+--------------------+--------------+---------
I I I I I

Calspan I 92.1 4.1 I 4.8 5.6 118.7 7.1 I 10.4 I 7.8
I I I I

HSRI I 91.4 5.6 I 2.3 13.0 J 19.8 7.3 I 9.1 I 8.4
I I I I

U of Indiana I 86.1 10.0 I 0.8 20.4 119.2 7.8 I 3.5 1 11.2
I I I I

U Miami I 71.5 16.4 I 17.1 2.3 117.6 4.8 I 10.1 I 5.4
I I I I

U of Kentucky( 84.0 12.6 1 3.5 13.7 1 18.3 8.9 1 10.6 I 3.4
I I I I I

SwRI I 85.6 17.2 I 4.8 6.8 120.7 8.7 I 11.1 I 6.2
I I I I

Dynamic I I I I
Science I I I I I
L.A. County I 83.4 8.7 I 6.7 2.5 117.8 7.0 I 9.1 I 7.0

-----------------+----------------------+--------------------+--------------+---------
I I I I I

U.S. I 82.5 10.7 8.9 17.8 1 17.9 7.9 I 11.6 I 7.6
----------------------------------------------------------------------------------------------------

Local government finance, direct general expenditures.



percentage for the U.S. population, for example, the percentage female

or the percentage unemployed. But, there are examples to the contrary.

The percentage of Spanish population for the aggregate of the areas will

be larger than the proportion in the total population. The proportion

of the population that is White seems to be slightly overrepresented in

the aggregate of the seven areas. The differences in these percentages

may affect different phenomena differently. These differences may

influence, for example, different crash types, in that a particular

crash type may be over or under represented. There is noway to

guarantee that the NCSS data is "nationally representative" but the data

presented in Tables 4.3 to 4.5 suggest that on the average the areas

when aggregated appear close to the national description for most

variables considered.

4.2.2 Sources of Missing Data. There are three basic types of

missing data that can occur in the NCSS data structure. An entire

accident can be missed by the sampling system. This type of missing

data is discussed in this subsection. If complete information about a

vehicle or occupant is missing that will be referred to as unit non-

response. Item non-response will refer to partial missing data. These

latter two types of missing data are discussed together in Section 4.5.

There are three situations that cause accidents to be omitted from

the sampling system. The first situation where accidents will be

missing will only occur in the Phase 1 data relative to the Phase 2

sample design. I n Phase 2 the definition of.the population of accidents

that were being sampled changed. The definition was expanded to include

light trucks and vans. In the NCSS design there is a restriction on

accidents that can be sampled. An accident is eligible to be in the

sample only if the most severe injury occurred in a case vehicle. With

this restriction it is possible that accidents which did not qualify in

Phase 1 might have qualified for inclusion in Phase 2.

When combining the data from Phases 1 and 2 the population of

accidents to described must be defined. The NCSS Statistics34

34Leda Ricci, ed., NCSS Statistics: Passenger Cars, Report No. UM-
HSRI-80-36. Sponsored y t e National Highway Traffic Safety
Administration, Department of Transportation, Washington, D.C., under
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publication describes 27 months of accidents involving a towed passenger

car. This task required effort to obtai n the right subset of the

Phase 2 data to be combined with the Phase 1 data. Simple aggregation

of the 27 months of data will produce an underestimate of accidents

involving towed passenger cars, light trucks and vans and an

overestimate of accidents involving only passenger cars.

Accidents can also be lost at the time of collection, that is, some

accidents may have been overlooked. It is also possible that accidents

were collected on an incorrect day therefore losing the accidents that

legitimately belonged in the sample. There is no way the data can be

checked to see if all appropriate accidents were sampled. But due to

random error some discrepancies may occur. I n the process of

calculating sampling errors it was found that for those teams sampling

days and investigating all accidents on that day there were errors made.

Accidents were included in the data that did not occur on legitimate

sampling days. Table 4.6 summarizes the number of accidents found

sampled incorrectly. Relatively, these are only a few cases but it does

indicate that there is some variability due to collecting the

appropriate accidents.

The most significant evidence of missing accidents was obtained in

a comparison of NCSS, FARS, and various state files containing police-

reported accidents. In this investigation, subsets from these files

were created including only fatal occupants of passenger cars in NCSS

areas. This analysis was done only on the Phase 1 data. The matching

criteria used were subjective. Comparisons between cases were based on

the date of the crash, county, age and sex of the fatality, time of the

accident, and the total number killed in the accident. If information

on one or two of the variables listed above was different in the N CS S ,

FARS, or state file, and the discrepancy was not serious the cases were

matched. If the discrepancy was serious, such as the dates differing by

a couple of weeks, the vehicle makes of the passenger cars involved in

the crash were compared to make sure it was the same case. Cases with

serious reporting discrepancies were matched. For example, in Michigan

Contract No. DOT-HS-8-01944 (Ann Arbor: Highway Safety Research
Institute, The University of Michigan, June 1980).
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TABLE 4.6

Ineligible Accidents Sampled

Number of Accidents
-----------------------------------------------

Team I January 19773 April 1978b
I March 1978 I March 1979

----------------------+------------------------+----------------------

Calspan 5 11

Indiana I 6 I 4

Kentucky I 6 I 0

Miami I 3 I 2

Los Angeles I 11 I 9
I ------------------------+----------------------

Total
I
I 31 I 26

aCalspan.has verified that these accidents were sampled on the

wrong day.

bThese accidents have not been verified by Calspan. They may

include some cases that have an error in coding the date of the

accident.

a fatality had two reported dates differing b y 16 days. I n t h i s case,

all other variables were consistent between NCSS and FARS so the case

was considered matched.

A mis-match was defined to be any case listed in one file that was

not listed in the other. In Michigan and Texas a mis-match was a case

listed in only one of the three comparison files. It should be noted

that the populations described by NCSS and FARS are not totally

compatible. Inclusion in NCSS was determined by the worst injury in a

towed vehicle. FARS includes all fatalities independent of whether the

vehicle was towed. Accidents where a fatality occurred after the crash

but where the accident was not the cause of death are also included in

FARS, and these cannot be excluded from analysis. These
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incompatibilities suggest that there may be fatal cases in FARS that by

definition should not be in NCSS.

The results of this analysis are presented in Table 4.7. These

figures indicate that there were fatalities missed in both the NCSS data

collection and the FARS data collection. Of the total number of

fatalities found 93.4% were represented in"FARS and 81.9% were found in

NCSS. This gives an approximation to how extensive the problem of

under-coverage of fatalities is in NCSS. Again, this number is only

approximate since the total number of fatalities found may include

fatalities not eligible for inclusion under the NCSS design.

TABLE 4.7

Undercoverage of Fatal Accidents
Phase 1

------------------------------------------------------------------------
Total Fatalities Fatalities

Team I Fatalities Found in Found in Matched
Found NCSS FARS Fatalities

------------+-----------------------------------------------------------

Calspan 61 53 61 52

Kentucky I 55 49 52 46

Miami I 31 21 29 19

HSRI I 62 51 58 46

Indiana I 110 101 99 90

SwRI I 179 133 172 130

LA* I 19 19

Total I 498 408 470 383
------------------------------------------------------------------------

*In Los Angeles all fatalities in NCSS were found in FARS. The

fatalities for the specific part of Los Angeles could not be determined

in FARS.
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4.2.3 Summary. In general the areas chosen for inclusion in NCSS

appear quite similar to the U.S. population distribution. There are

some characteristics that appear to be overrepresented in the NCSS areas

that may indirectly result in the overrepresentation of an accident

related characteristic. The distributions presented do not address

directly whether the accident population in the NCSS areas is comparable

with the U.S. accident population. Information for such an analysis is

not available. These seven areas appear to give a firm base to the

modelling efforts described in Section 3. -

In analyzing the Phase 1 and Phase 2 data together it should be

noted that the data was obtained sampling two different acci dent

populations. Phase 1 data represents accidents involving a towed

passenger car. The Phase 2 data expands the accident population to all

accidents involving a towed passenger car, light truck or van. The

result is that the number of accidents involving a towed vehicle sampled

in Phase 1 is less than the number of accidents involving a towed

vehicle that would have been required under the Phase 2 design. The key

observation is that the Phase 1 and Phase 2 data are samples from

different accident populations.

The estimation of statistics for the aggregate depends on accurate

collection of all accidents sampled under the sample design. It is

expected that a slight variability is present due to the sampling

process. A more serious source of undercoverage was found in the the

number of fatalities investigated. A census of all fatalities was

required by the sample design and by matching these fatalities with FARS

it is possible that as much as 20% of the fatalities were not

investigated.

For most estimated accident statistics for the NCSS areas,

adjustment for missing fatal data will not change the estimate

appreciably. One important exception is the distribution of OAIS. The

frequencies at the more severe end of the OAIS scale would be

underestimated due to the missing fatal data. If the assumption that

the distribution of OAIS for the unobserved fatals is the same as for

the fatals observed is reasonable, an adjustment to the number of

fatalities in each OAIS category can be made. This adjustment inflates
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the totals by the response rate, that is, the rate of observing non-

missing fatal occupants. These adjusted totals will provide a modified

distribution for OAIS. This estimated distribution will be sensitive to

the estimate of the number of fatals missing.

Missing data due to missing accidents from the sample is the

hardest problem to address statistically since there is usually no

information about these accidents or an exact count of the number

missing. The solution to the problem is a dedicated effort to make sure

every accident that is designated to be in the sample is represented in

the data collected.
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4.3 NCSS Statistics

During this project four publications were produced to present

summary statistics from NCSS. These four reports are:
1. NCSS Statistics: January 1977-March 1978, October 197935

2. NCSS ^ atistics: Light Trucks and Vans (Preliminary), December
1979 -

3. NCSS Statistics: Passenger Cars, June 198037

4. NCSS Statistics: Light Trucks and Vans, June 198038

These publications present in a concise form accident statistics

for accident, vehicle, and occupant variables collected in NCSS. Each

publication is organized into five major sections. The first presents a

aeneral overview of the accidents described by the particular

publication. In the second section, statistics on the accidents are

presented. The third and fourth sections provide information on the

vehicles and occupants respectively. The last section presents various

collision severity (Delta V) distributions. The first publication

describes Phase 1 data (January 1977 to March 1978). The remaining

publications describe the Phase 2 data (April 1978 to March 1979). The

35Leda Ricci, ed., NCSS Statistics: January 1977-March 1978, Report
No.'UM-HSRI-79-80. Sponsored by the National Highway Traffic Safety
Administration, Department of Transportation, Washington, D.C., under
Contract No. DOT-HS-8-01944 (Ann Arbor: Highway Safety Research
Institute, The University of Michigan, October 1979).

36Leda Ricci, ed. , NCSS Statistics: Light Trucks and Vans
(Preliminary), Report No. UM-HSRI-79-95. Sponsored by the National
Highway Traffic Safety Administration, Department of Transportation,
Washington, D.C., under Contract No. DOT-HS-8-01944 (Ann Arbor: High way
Safety Research Institute, The University of Michigan, December 1979).

37Leda Ricci, ed., NCSS Statistics: Passenger Cars, Report No. UM-
HSRI-80-36. Sponsored by the National Highway Traffic Safety
Administration, Department of Transportation, Washington, D . C . , under
Contract No. DOT-HS-8-01944 (Ann Arbor: Highway Safety Research
Institute, The University of Michigan, June 1980).

38Leda Ricci, ed., NCSS Statistics: Light Trucks and Vans, Report
No. UM-HSRI-80-37. Sponsored by the National Highway Traffic Safety
Administration, Department of Transportation, Washington, D . C . , under
Contract No. DOT-HS-8-01944 (Ann Arbor: Highway Safety Research
Institute, The University of Michigan, June 1980).
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second publication listed is a preliminary version of the fourth

publication listed.

In each publication, for the most part, tables are presented in two

complementary forms. One page provides a frequency distribution of the

factor under consideration; the opposing page shows the corresponding

injury rates. In each case the columns of these tables show the number

of occupants in each of several injury categories. These categories

were defined by the NCSA generated variables NEWOAIS2 and NEWOAIS3.39

These variables are defined using information from various injury

variables, including the Abbreviated Injury Scale40 (AIS) and have less

missing data than the Overall AIS.

In the publications that describe passenger cars there was

extensive graphical displays of the data presented in the tables.

Graphical methods include histogram, bar graphs, pie graphs, line

graphs, and three dimensional plots. The method of graphical display

was chosen to complement the data presented in the table.

All of the statistics were developed using the estimation methods

described in Section 4.1.2. Sampling errors were not included in any of

these publications. In Section 4.4 the problem of presentation of

sampling errors for a. large scale data collection effort is discussed.

The sampling errors associated with selected accident, vehicle and

occupant level accident statistics are also presented there.

For passenger cars Phase 1 data represents a smaller accident

population that the Phase 2 data. It should be noted that in order to

produce a publication that describes the combination of the Phase 1 and

Phase 2 data the Phase 2 data need to be subset. This subsetting

procedure will now be described.

The requirement here was to eliminate those accidents that would

have been excluded in the last twelve months of NCSS under the criteria

of the first fifteen months of the study. During the first fifteen

39These derived variables are documented in Appendix A.

40The Abbreviated Injury Scale (Morton Grove, Il l .: American
Association for Automotive Medicine, 1976).

334



months only passenger cars were eligible for selection as case vehicles.

Each accident had to include at least one case vehicle and no accident

could be selected unless the most serious injury in the accident

occurred in a case vehicle. In the last twelve months of the study,

however, light trucks and vans could be case vehicles.

The hierarchy of seriousness of injury was based on the "NCSS

Classification":

Most Serious: Fatal injuries and overnight hospitalization.

Next Most Serious: Transported to hospital and released.

Least. Serious: Any other treatment.

If all the necessary data had been complete one simple algorithm

would have sufficed for the production of the passenger-car subset:

Identify all accidents in which the most serious injury
(NCSS Classification) occurred in a passenger car.

This would involve identifying for each case vehicle the most serious

injury to an occupant and then identifying within each accident the

vehicle with the most serious injury. If the vehicle with the most

serious injury were a passenger car, or injuries of equal severity

occurred in a passenger car and a light truck or van, then the accident

would be included. If the most serious injury occurred in a light truck

or van the accident would be excluded.

This procedure was followed and a total of 4669 accidents (out of

an original total of 5305) were identified for inclusion in the subset.

However there were 34 vehicles missing the body-type variable. It

was decided to count these vehicles as passenger cars. This resulted in

an additional 27 accidents identified for inclusion.

Finally there was the problem of missing data on injury severity.

If the data was missing for any occupant of a vehicle it was impossible

to calculate the most severe injury in a vehicle and therefore in the

accident concerned. But if an accident involved no case vehicle light

trucks or vans then that accident should be included in the subset

anyway. This procedure identified a further 7 appropriate accidents,

resulting in a grand total of 4703 accidents in the subset.
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The procedure could also have been reversed so that first accidents

involving no case vehicle light trucks or vans would have been

identified, and second, accidents where the most serious injury was in a

passenger car. Under this procedure 4400 accidents would have fallen in

the first category, 303 in the second, thus once again resulting in 4703

selected accidents.

The procedure for producing the appropriate vehicle, occupant, case

vehicle and case vehicle occupant files was essentially the same as that

used in subsetting the truck accidents, involving a match on the

accident ID's between the newly created subset and the full vehicle or

occupant files.

The final step was to combine the files (which now contained only a

limited number of variables) with the corresponding file from the first

fifteen months of the study, producing five datasets, each covering t he

full 27 months.

The publication of the statistics for light trucks and vans

depended on subsetting the Phase 2 data to obtain the appropriate set of

accidents. This was accomplished in the following manner.

The goal in producing the truck subset was to include only those

accidents from the last twelve months of NCSS that involved a towed

light truck or van. An applicable vehicle, towed from the scene of an

accident, is called a "case vehicle" in the study. During the first

fifteen months of the data collection only passenger cars were

applicable vehicles, but for the last twelve months light trucks and

vans (passenger vans, cargo vans, pickups etc.) were also counted as

applicable vehicles.

The first requirement was to identify the appropriate accidents.

This was done by matching the vehicle file with the accident file. A

variable was created in the accident file that identified all accidents

involving towed light trucks or vans. A new accident file was then

created including only the appropriate accidents. There were 905 cases

in this file.

A match was then performed between the newly created accident file

and the full vehicle file to identify all the vehicles in the
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appropriate accidents. 1563 vehicles were identified and a new vehicle

subset was produced, containing both accident and vehicle variables.

A similar match was made with the full occupant file and a subset

of occupants was produced. This new file contained 2514 occupants.

Finally a vehicle file that included only towed light trucks and

vans (a case vehicle file) and a file for occupants of those vehicles (a

case vehicle occupant file) was produced. These last two datasets

contained 951 and 1608 cases respectively.

In summary, there are some key points to be made concerning these

publications. NCSS fails to satisfy the requirements of a national

probability sample. The areas chosen for data collection were not

selected randomly. They were chosen to be geographically diverse. The

areas were also selected so that the distribution across urbanization

types for these areas was approximately the same as the

U.S. distribution. A method for generating "national projections" is

described in Section 4.1.5 and is used for various NCSS statistics in

Section 4.5. The statistics in these publications describe police-

reported accidents involving towed appropriate vehicles for the

aggregate of the seven areas.

For many variables there are substantial portions of missing data.

Missing data counts and percentages. are shown for all row variables.

Adjustment for missing data is discussed in Sections 4.1.4 and 4.5. It

should be noted that missing data counts and percentages have not been

excluded in the calculation of column percentages and, consequently, the

percentages shown may be slightly underestimated.

The total number of light trucks and vans described by the light

truck and van publication is only about 5% of that for the passenger

cars represented in the final two publications. The data collection for

the passenger car publication covered 27 months while data collection

for light trucks and vans covered only the last 12 months of that

period. The light trucks and vans are distributed among the seven areas

far less uniformly than the passenger car accidents. This factor

suggests that the accident experience of light trucks and vans in the
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aggregate of the seven areas is not described nearly as well as the

accident experience of passenger cars.

In general, the tow-away accident population for light trucks and

vans is not directly comparable with that of the passenger cars. In

particular, the light truck and van accidents tend to occur at greater

crash severities. The proportion of light truck and van accidents

occurring in rural areas is about 76% greater than that of passenger

cars. Even the "tow-away" threshold is likely to be different for

trucks as compared to passenger cars.
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4.4 Precision of Estimates

In this subsection sampling errors are discussed for accident,

vehicle, and occupant level NCSS proportions. These sampling errors are

calculated according to the NCSS sample design which is basically a

.stratified cluster sample within each area chosen. No attempt was made

to calculate all possible sampling errors but 19 proportions were chosen

to be representative and sampling errors were calculated for these

proportions.

These sampling errors are summarized using two techniques. In t h e

first, estimated proportions are graphed as a function of the estimated

sampling errors. In the second, variables with the same design effect

are grouped to give a description of variables that have the same

adjustment to the simple variance to account for the NCSS design.

Design effects for NCSS proportions are described in this subsection.

These design effects are helpful in summarizing the magnitude of the

sampling errors for specific types of statistics when data is collected

from the same design over a long period of time.

4.4.1 Variance Estimation. Proportions and variances of

proportions were calculated for nineteen statistics. These nineteen

statistics were calculated separately for each design group.41 The

nineteen proportions were broken down as follows:

3 Accident Proportions:
Proportion of rural accidents
Proportion of accidents during rush hour
Proportion of accidents on dry roads

8 Vehicle Proportions:
Proportion of vehicles with front CDC
Proportion of vehicles with right CDC
Proportion of vehicles with back CDC
Proportion of vehicles which underwent intrusion
Proportion of vehicles which did not undergo intrusion
Proportion of vehicles with low Delta V
Proportion of vehicles with high Delta V
Proportion of vehicles which hit another car

41Design groups are defined in Section 4.1. Some areas used
different systematic samples for specific counties within the area. The
ten design groups are described in Table 4.1.
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8 Occupant Proportions:
Proportion of occupants aged 16 and under
Proportion of occupants aged 17 through 30
Proportion of occupants aged 31 through 45
Proportion of occupants aged 46 and over
Proportion of occupants not wearing a seat belt
Proportion of occupants wearing a seat belt
Proportion of occupants with OAIS 0 through 2
Proportion of occupants with DAIS 3 through 6

The last two proportions were taken from the variable NEWOAIS3.

This variable is calculated with an NCSA designed algorithm and is an

attempt to overcome some of the missing data problems with AIS.

Documentation on this algorithm is presented in Appendix A.

The proportions were selected in the expectation that some of them

might show quite large effects from the cluster design, but others would

be less susceptible.

The estimated probabilities and variances that were calculated a re

presented in Tables 1 to 3 of Appendix C. For those design groups using

a cluster design (i.e., all proportions except those for HSRI and SwRI

at the accident level) the estimated probabilities were calculated using

Equation 4-4. The estimated variance of these proportions is given by

Equation 4-13. The probabilities and variances of the accident

proportions for the two design groups that sampled accidents were

calculated using Equations 4-4 and 4-10.

All of the sample designs used in the NCSS involve a cluster

sample, either accident or day. When sampling clusters, the clusters

become the basic unit of observation and cluster totals are used in the

calculation of the variance of statistics estimated. The variance

estimation formulae are presented and discussed in Section 4.1.3. To

use these formulae either a program must be written to calculate the

appropriate variance or a new data structure can be created. Once this

data structure is created the variance estimation procedure becomes

straight forward. An algorithm for creating the new data structure

representing cluster totals is given in Appendix B.

An overview of the estimated variances of the proportions is

presented in Table 4.8. In this table, as in most of those that follow,

the accident-level proportions for HSRI and SwRI are not included as
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they were not sampled using a cluster design and are therefore

irrelevant to a discussion of how the estimates are affected by cluster

designs. Where these proportions are included, this wi 1 1 be noted.

Table 4.8 gives the mean estimated variance for the proportions

calculated by variable type. For example, the three, accident

proportions for each of the 10 design groups have a mean estimated

variance of .001911. The largest estimated variance for these 30

proportions was .00707. The standard deviation of these 30 estimated

variances is .00171.

TABLE 4.8

Overview of Estimated Variance of Proportions

Proportion I Sample I I I I Standard
Type I Size I Minimum I Maximum I Mean I Deviation

-------------+--------+----------+---------+---------+-----------
I I I I I

Accident I I I I I
Proportions I 30 I .0000159 I .00707 I .001911 I .001710

I I I I I
Vehicle I I I I I
Proportions I 80 I .0000315 I .00275 I .000621 I .000615

I I I I I
Occupant I I I I I
Proportions I 80 I .0000017 I .00202 I .000346 1 .000393

Table 4.8 shows that, as might be expected, the estimated variances

are highest overall for the accident proportions, followed i n turn by

the vehicle and occupant proportions. The accident proportions are more

susceptible to the effects of clustering since only a few accidents were

available for selection by each design group on each sampling day.

Frequently no accidents at all, or merely one or two accidents, were

selected by a particular design group in the 25% or 10% sampling strata.

The high estimated variances resulting indicate the instability of t h e

probabilities estimated from a design where only a few cases per cluster

are available. This was much less of a problem at the vehicle and

occupant levels where the much larger number of cases made the problem

of producing stable estimates less acute.
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A further indication of the increasing stability of the estimates

with the increase in the number of cases is given by the decline in the

standard error of the estimated variance, from accident to vehicle to

occupant proportions, as shown in the right-most column of Table 4.8.

Not only did the estimated variance of the estimated proportion decline,

but these variances became consistently smaller. This means that at the

occupant level the variances were generally small, while at the accident

level they were large overall, but not consistently so.

In the discussion thus far only one source of error has been dealt

with. This source of error resulted from the variance of a proportion

within design groups. There is however a further source of error which

occurs when averaging proportions to produce estimates of proportions

for the aggregate, averaging over all design groups. Such a proportion

is produced when an estimate is made of the-overall proportion of rural

accidents in all the study areas. This further source of error is the

variance between design groups. A rough approximation of the overall

between-design group error is given in the first two columns of Table

4.9. These between-design group errors were calculated as simple

variances of a given proportion across design groups. In calculating

these figures and all the others in the table, the accident-level

proportions for HSRI and SwRI were included.

The two right-hand columns present the simple mean of the within-

design group estimated variances calculated across the two or eight

appropriate design groups. Looking at these two right-hand columns

first, the mean variance for the two design groups that sampled by

accident is invariably lower than the mean estimated variance for the

eight design groups that sampled by day. The proportions calculated

using a sample of accidents are considerably more stable estimates than

the proportions calculated using a sample of days.

The between errors are, not surprisingly, greater at the accident

level, where environmental factors such as local climate or degree of

urbanization are more likely to influence the proportions. There is no

discernible pattern to the size of the between error by sample design,

nor should one be expected. Error is not invariably larger between the

design groups that sampled by day than it is between the groups that
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TABLE 4.9

Between and Within Design Group Variance
by Sample Design

---------------------------------------------------------------------------------------------------
I I Variance of Proportions I Mean Variance of
I I Between Design I Proportion Within
I I Groups i Design Groups

Proportion I Proportion I-------------------------------+-------------------------------
Type I I 2 Groups 8 Groups I 2 Groups I 8 Groups

I I Sampling by I Sampling by I Sampling by Sampling by
I I Accident I Day I Accident I Day

--------------+--------------------+---------------+---------------+---------------+---------------
Accident I Rural I .039000 1 .097000 1 .000360 I .001100

I Rush Hour 1 .000000 .026000 1 .000400 I .001400
I Dry Road I .041000 I .021000 I .000400 .003100

Vehicle I Front CDC I .000730 I .006400 I .000280 I .000990
I Right CDC .000006 I .000550 I .000140 I .000310

Back CDC I .000037 .000130 I .000043 I .000260
I Intruded I .000440 I .006600 I .000190 .000600

Not Intruded I .000006 I .007200 I .000290 .000970
I Low Delta V I ,.000950 I .005800 1 .000380 I .000740
1 High Delta V I .002900 I .008200 . 1 .000240 I .000710
I Hit a Car I .004600 I .011000 I .000430 .001100

Occupant I Aged 16 or Under I .001300 1 .002000 I .000210 I .000440
1 Aged 17 to 30 .001900 I .001400 I .000370 I .000830
I Aged 31 to 45 I .000093 I .001200 I .000110 I .000240

Aged 46 and Over I .000032 I .001600 1 .000170 I .000480
Unbelted I .002500 1 .013000 1 .000280 1 .000720

1 With OAIS 0-2 I .001700 I .015000 I .000180 I .000240
I With OAIS 3-6 I .000001 I .000360 I .000004 I .000025

---------------------------------------------------------------------------------------------------



sampled by accident. Between error represents real differences 'between

design groups and is not a function of the design.

For some proportions at least, between error is larger than within

error. Examples of this are rural accidents, dry road accidents, front

CDC and Delta V proportions and OAIS between 0 and 2. Thus if only

within errors are taken into account (as they are below in calculating

the design effects) the true variance of a proportion will be

underestimated. This underestimation will sometimes be considerable if

the omitted variance is larger than the included variance.

4.4.2 Graphical Presentation of Estimated Variances. It was

desirable to obtain an idea of how the variances of the estimated

proportions were related to the estimated proportion. Such

relationships could be used in predicting the variances for other

proportions beyond those calculated here. For this purpose, plots, one

for each design group, were made to show the distribution of the

estimated variance of the estimated probability against the estimated

probability. Such a distribution should be parabolic. Small and large

proportions normally have small variances, while as the proportion

approaches .5 the variance should increase to its maximum. Indeed the

aeneral distribution for each design group did follow the expected

pattern. Two of the distributions are presented in Figures 4.1 and 4.2.

In both cases a line approximating a parabola could be drawn in such a

way as to minimize deviations from it, leaving one two proportions as

outliers.

Perhaps of more general use are the distributions shown in Figures

4.3 through 4.5. Here the mean of the estimated proportions for each

proportion across design groups is plotted against the mean of the

estimated variance of the proportion across design groups. Each

distribution follows the expected parabolic curve, though this should

become more apparent if further points on the graphs were calculated.

These distributions could be used to predict, for any proportion, the

approximate size of the average within-design group variance. Thus an

estimate of this source of error could be made for any proportion
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FIGURE 4.1 Estimated Probabilities and
Estimated Variances for Indiana B

calculated for NCSS Statistics: January 1977 - March 1978.42 The

Darticular distribution referred to for the estimate would depend on

whether the proportion was coded at the accident, vehicle or occupant

level.

4.4.3 Design Effects. Design effects were calculated for all 190

design group proportions for which proportions and variances had been

estimated. Design effects are defined in Section 4.1.3. No finite

population correction factors were included and the denominator used was

a simple random sample variance of unweighted cases that included the

cases sampled with certainty.

The design effect shows the increase (or decrease) in variance

compared to a simple random sample variance and in the case of this

42Leda Ricci, ed., NCSS Statistics: January 1977-March 1978, Report
No. UM-HSRI-79-80. Sponsored by the National Highway Traffic Safety
Administration, Department of Transportation, Washington, D.C., under
Contract No. DOT-HS-8-01944 (Ann Arbor: Highway Safety Research
Institute, The University of Michigan, October 1979).
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study this increase is the effect of both stratification and clustering.

The 190 design effects are presented in Tables 4 to 6 of Appendix C but

they are summarized in Table 4.10. This table does not include the

accident-level proportions for HSRI and SwRI. Table 4.10 gives the mean

estimated design effect for proportions estimated by variable type. For

example, the eight vehicle proportions for each of the 10 design groups

have an mean estimated design effect of 1.836. The smallest estimated

design effect for these 80 proportions is .584. The standard error of

these 80 estimated design effects is 1.275.

Clearly the estimated design effects for the accident proportions

.were considerably larger than those for the vehicle and occupant

proportions. The extreme case, with a design effect of 21 was the

proportion of dry road accidents for the Miami data collection area. It

should be borne in mind that the design effect represents a ratio of

variances: the ratio of standard deviations is the square root of the

design effect. The proportion of dry road accidents in Miami has a

variance that is 21 times that it would have been from a simple random
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sample of equal size. But the standard deviation and hence the

confidence interval is 4.6 times what it would have been from a simple

random sample, though this is still a very large factor.

Table 4.10 would appear to indicate once again that accident

variables are far more susceptible to the influence of environmental

factors than vehicle and occupant variables. The mean accident-level

design effect is about twice as large as the mean vehicle- or occupant-

level design effect.

Table 4.11 indicates which proportion, of those computed, is most

responsible for the high mean design effect at the accident l e v e l. I t

is the proportion of accidents on dry roads, a statistic for which one

would expect there to be a large clustering effect. On a particular day

the weather is likely to be dry or wet for the whole day, so that all

the accidents will occur on dry roads or wet roads as the case may be.

Table 4.11 also shows how the sample design influences the design

effects. At the accident level the two groups that sampled by accident

had design effects that were consistently smaller than the effects for
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the groups that sampled by day. This is particularly so for the

proportion of accidents on dry roads. Overall, the mean design effect

for the accident proportions was 1.623 for the groups that sampled by

accident and 3.846 for the groups that sampled by day.

At the vehicle and occupant levels no such consistent pattern can

be discerned. Back CDC stands out for having a much greater design

effect when sampled by day. Other proportions would appear to show a

clustering effect by accident (in reality more likely by vehicle) rather

than by day.

Interestingly the smallest estimated design effects of all are

those for the proportion of occupants with serious injuries (OAIS 3-6).

The variable used to define the sampling strata is highly correlated

with injury level. It is the NCSS treatment category of the occupant in

the accident with the most "serious" treatment. So the very small

design effects here show the benefits of sampling usin4 a design that

stratifies on a variable of interest, or one that is highly correlated

with a variable that is being studied. It is striking that the design
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TABLE 4.10

Overview of Design Effects

--------------------------------------------------------------
Proportion I Sample I I I I Standard

Type I Size I Minimum I Maximum I Mean I Deviation
-------------+--------+---------+---------+-------+-----------

Accident I
Proportions I 30

I
.970

I
21.142

I I
13.846 I 4.187

Vehicle I
Proportions I 80

I
I .584

I
11.296

I I
11.836 I 1.275

Occupant I
Proportions I

---------------
80

------

I
I

---
.049

-------

I

---
7.154

-------

I I
1 2.238 I

------------
1.287

---------

effects for the proportion of occupants with minor injuries (OAIS 0-2)

have not been similarly affected. A possible explanation is that in

accidents where one occupant receives severe injuries the other
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TABLE 4.11

Design Effects by Proportion and Sample Design

-------------------------------------------------------------------------
I I Mean Design Effect

Proportion I I---------------------------------------
Type Proportion 12 Groups Sampling 18 Groups Sampling

I I by Accident I by Day
------------+-------------------+-------------------+-------------------

Accident I Rural I 1.293 I 1.994
Rush Hour 1.816 I 2.168

I
Dry Road 1.758 7.143

Vehicle I Front CDC I 1.401 1.681
Right CDC
Back CDC

I
I

1.563
1.638

I
I

1.359
3.059

I Intruded I 0.958 I 1.040
Not Intruded I 1.414 I 1.738

I Low Delta V I 2.996 I 2.571
I
I

High Delta V
Hit a Car

I 1.435
2.045

I 1.434
2.115

I I I
Occupant I

I

Aged 16 and Under
Aged 17 to 30
Aged 31 to 45
Aged 46 and Over
Unbelted

I
I
I
I
I

2.895
2.921
1.966
2.494
3.116

I
I
I
I
I

2.698
2.641
1.738
2.614
3.839

Belted I 3.033 I 3.036
With OAIS 0-2 I 1.470 I 1.183

I With OAIS 3-6 I 0.102 0.137
---.----------------- ----------------------------------------------------

occupants are just as likely to receive minor injuries as they are in

accidents where, no occupant is severely injured.

The overall mean of design effect at the vehicle and occupant

levels are roughly the same for the two sample designs. The vehicle-

level mean design effect is 1.681 for the sample of accidents and 1.875

for the sample of days. The mean design effect at the occupant-1 evel

are 2.250 and 2.236 respectively.

A visual representation of all the design effects calculated is

given in Figures 4.6 through 4.9. From Figure 4.6 it can be seen how

each individual design group statistic contributed to the high mean

design effect shown for the proportion of accidents on dry roads in

Table 4.11. The proportion for Miami has a design effect of 21.142.
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Only the design groups that sampled by accident (HSRI and SwRI) have

design effects lower than 2 for this proportion. Among the design group

vehicle proportions, the proportion of vehicles with Back CDC for

Indiana B stands out with a design effect of 11.296. Of the design

aroup occupant proportions the most prominent is the proportion of

occupants not wearing seat belts for Miami with a design effect of

7.154.

The clustering effect for Back CDC would appear to be explained in

Dart by the correlation of Back CDC with accidents on non-dry roads

(that is, on roads which are wet, snow-covered, or icy). In Stratum 3

(the 10% stratum) there was a correlation of .42 between the proportion

of vehicles in the Calspan area with Back CDC and proportion of

accidents on non-dry roads. The same correlation for the Kentucky B

area was .47. The explanation would appear to be that there are more

rear-end collisions on wet roads.

Finally, a graphical representation of the confidence intervals

that resulted from the actual sample design as compared with those that

would have resulted from a simple random sample of equal size is given

in Figure 4.10. For the accident-level proportion shown (which had a

design effect of 7.913) the 95% confidence interval stretches all the

way from a proportion of .28 to one of .55. The 95% confidence interval

from a simple random sample of equal size would have ranged from .38 to

.47. For the vehicle and occupant proportions shown the difference in

the confidence intervals between the two types of samples is negligible.

In the case of the vehicle proportion the confidence interval from the

stratified sample of days is actually reduced compared to that from the

simple random sample.

It should be noted that the design effects presented in this

section and the confidence intervals displayed in Figure 4.10 are for

individual design group proportions. They are not for proportions

aggregated across'design groups to make totals for the whole study area.

Such totals are affected by the further source of variance discussed in

Section 4.4.1, the between design group variance which for some

proportions was larger than the mean within design group variance. The
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FIGURE 4.7 Accident Design Effects by Design Group and Proportion
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FIGURE 4.8 Vehicle Design Effects by Design Group and Proportion
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FIGURE 4.9 Occupant Design Effects by Design Group and Proportion

true confidence intervals for any proportion representing the total area

will be much larger than those calculated here.

4.4.4 Summary. The estimated variances and the design effects

calculated indicate that some of the proportions have high variances due

to the sample design associated with them. The vehicle and occupant

level proportions are generally immune to very large clustering effects

and for some of them, in particular the injury severity variables, the

variances are lower than they would have been from a simple random

sample. There the gains from the pre-sampling stratification can be

seen. However the variance associated with some accident-level

proportions is large. The 95% confidence intervals may be two or three

times as large as they would have been from a simple random sample.
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Three Confidence Intervals for Calspan at the .05 Level

P (DRY ROAD ACCIDENTS)

.............................
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FIGURE 4.10 95% Confidence Intervals for
Selected Accident Proportions for Calspan

355



4.5 Missing Data Analysis

This subsection summarizes the analytical results and problems

associated with missing data in the NCSS data. The discussion centers

on the key variables, DAIS and Delta V. Section 4.5.1 looks at missing

data rates for DAIS and Delta V. The analysis of DAIS is an occupant

level analysis and is relatively straightforward. The analysis of

Delta V is more complicated. Delta V is a vehicle variable and is only

defined for vehicles involved in certain collisions. This makes the

calculation of missing data rates and adjusted distributions much more

complicated. The bivariate distribution of DAIS and Delta V is done

with occupant-level data. In the bivariate case the procedures are

similar but Delta V brings along with it its complexities.

Missing data were analyzed separately for fatal and non-fatal

occupants. The fatalities were chosen with certainty and were

relatively few in number. A complete review of all fatalities was done.

A brief description of this subset is given in Section 4.5.2. The three

distributions discussed above are then examined for the fatal occupants

and those results are presented in Section 4.5.3. The non-fatal

occupants with missing data were sampled to obtain 388 non-fatal

occupants with missing data on Delta V or OAIS. This sample design is

described in Section 4.5.4. For the non-fatals the DAIS distribution

was the only distribution studied in-depth and this is described in

Section 4.5.5. For all occupants, bivariate distributions involving

DAIS were calculated to see what effect missing data adjustments had on

the cell proportions and marginal distributions. These distributions

are presented in Section 4.5.6. Finally the main results from these

analyses are summarized in Section 4.5.7.

4.5.1 Extent of Missing Data. There were only a small number of

variables in the NCSS data that had substantial missing data.

Unfortunately, among these variables were the key variables needed in

the modelling task of this project. Delta V. the only variable recorded

to measure crash severity, and the CDC variables had substantial missing

data. All of the variables that measured injury severity (since

information had to come from an official medical, source) had missing

data in a large proportion of the cases.
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Table 4.12 shows the missing data rates for OAIS and Delta V i n

Phase 1 and Phase 2 for al l case vehicle occupants i n the NCSS file.

The rate at which Delta V and OAIS are both missing is about 15%

(unweighted). Since most data analysis packages require data on all

variables, 63.6% of the occupants will be excluded from the analyses in

Phase 1 and 68.2% in Phase 2. There is a missing data rate of about 30%

for OAIS.

TABLE 4.12

Missing Data Rates for Delta V and OAIS
Case Vehicle Occupants

Category . I Weighted I Unweighted
---------------------I Distribution I Distribution

I (In percent) I (In percent)
OAIS DELTA V I-------- *-----------+--------*-----------

I Phase 1 Phase 2 I Phase 1 Phase 2
-------------•--------+--------------------+--------------------

Miss Miss I 16.54 16.39 I 15.14 15.00

Miss Not Miss I 16.42 12.05 I 17.10 12.44

Not Miss Miss I 34.65 43.69 I 31.18 40.73

Not Miss Not Miss I 32.38 27.87 36.38 31.83
I--------------------+--------------------

Total 62439 49668 14652 12111
----------------------------------------------------------------

The official version of the Phase 1 data.

In considering the missing data rate for Delta V, the rate should

actually be calculated based only on those vehicles (or occupants) in

collisions where Delta V was appropriate to compute. There is no

vehicle variable in the NCSS file that indicates for each vehicle

whether it would have been appropriate to calculate a Delta V. There is

an accident level variable (Crash Reconstruction) which indicates for

the accident whether Delta V had been computed. Table 4.13 is similar

to Table 4.12 but is restricted to those case vehicle occupants in

accidents where a Delta V was calculated. The rate at which data is
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missing on both variables is now less than 1% (unweighted) since this

now includes only accidents where Delta V was'cal cu l ated. With this

subset of occupants approximately 33% of the occupants will be lost due

to missing data on OAIS when doing model estimation.

TABLE 4.13

Missing Data Rates for Delta V and OAIS
Case Vehicle Occupants in an Accident where Delta V was Calculated

Category Weighted I Unweighted
---------------------I Distribution I Distribution

(In percent) I (In percent)
OAIS DELTA V I--------------------+--------------------

Phase 1 Phase 2 I Phase 1 Phase 2
---------------------+--------------------+--------------------

Miss Miss 1.22 .78 I .98 .87
I

Miss Not Miss I 33.09 25.69 I 30.89 27.19
I

Not Miss Miss I 2.14 1.68 I 2.02 2.35

Not Miss Not Miss I 63.45 71.90 I 66.11 69.59
I --------------------+--------------------

Total I 31250 23422 I 8089 5535

The official version of the Phase 1 data.

To look more closely at the missing data on Delta V for case

vehicles, the rate of missing data on Delta V within each category of

General Area of Damage for all case vehicles was calculated. Damage in

the front, right, back, and left might be a good indirect measure of

those situations where the calculation of Delta V might be applicable.

Within these categories only approximately 60-72% have a Delta V

calculated. All vehicles missing the General Area of Damage had no

Delta V calculated. Top and Undercarriage damage would not be

applicable for Delta V computation and the missing data rate is

.predictably high at 95%. If the calculation of the missing data rate

for Delta V is based on the four general areas of damage, front, right,
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left and rear, 32.4% of these vehicles in Phase 1 and 41.9% of these

vehicles in Phase 2 had Delta V missing.

TABLE 4.14

Missing Data Rates for Delta V Within
Types of General Area of Damage

Case Vehicles

Delta V
---------------- T

Area I Phase 1 Phase 2
of Damage I---------------------------------------------------

Percent Percent
I Total Missing Total Missing

-----------------------------------------------------------------------

Missing I 1378 99.1 1341 99.6

Front I 4532 30.3 3621 40.0

Right I 1019 35.2 750 43.3

Back 358 28.6 247 38.9

Left I 1014 40.0 .791 49.7

Top 322 95.3 355 96.1

Undercarriage I 85 89.4 46 97.8

Official version of the Phase 1 data.

4.5.2 Fatal Supplemental Data. In an early version of the Phase 1

data all fatal cases in the NCSS file were chosen to be further

evaluated. This evaluation involved obtaining the hard copy cases and

coding as much information about occupant injury, vehicle damage, and

crash severity as was possible. This investigation involved 333 fatal

occupants. Each fatal occupant was recoded independently from the N CSS

codes if present.

More specifically, the information recorded included up to 12 OIC's

and an OAIS for each fatality. For each of the injuries and the OAIS

the assurance level associated with what was coded was indicated by the
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coder and the source in the hard copy that was used to get this

information. For each body region the number of injuries received in

that body region was recorded. For each of the twelve OIC's the contact'

that produced the injury was recorded along with the assurance factor

and the source of information for each contact recorded. For each

vehicle that was involved in the collision that produced the fatality,

CDC's were coded and a Delta V was calculated with information that was

available in the hard copy. As with the injuries, an assurance factor

and an information source was qi ven for each Delta V. The coding

instructions for coding DAIS and Delta V instructed the coder to use the

unknown code as sparingly as possible. The object of qoi ng back over

the hard copy cases was to use all the information available in the hard

copy and to use experienced subjective judgement to "guess" at values

for missing data on OAI.S and Delta V. All of the injury coding for

these fatals where done by a single coder so the assurance factor is a

direct measure of the relative reliability of the OAIS variable.

Another coder was responsible for all the crash severity coding.

The option of coding up to twelve OIC's was chosen to allow

detailed and complete injury information on fatalities. The average

number of injuries to a occupant who received a fatal injury in t h i s

file is 7.8. The minimum number of injuries is 1 and the maximum is 37.

The median number of injuries is 5. These statistics were developed

from a count of the number of injuries to each body region.

4.5.3 Fatal Distributions Adjusted for M i s s i n g Data. I n this

subsection the univariate distributions for OAIS and Delta V are

compared for two classes of fatally injured occupants: those with coded

data and those with missing data. The data used to obtain the

distributions for fatals with missing data was obtained from the

supplement described in Section 4.5.2. Once these marginal

distributions are considered the bivariate distributions of DAIS and

Delta V are compared for these two subsets of the NCSS fatal data.

4.5.3.1 Uni vari ate Distribution of OAIS Adjusted for Missing

Data. In the final version of the Phase 1 data of NCSS there were 500
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fatalities. Of the 500 fatalities, there were 327 413N fatalities reviewed

by HSRI. Of these 327, there were 213 fatal occupants that did not have

an DAIS.

There are two ways to modify the distribution for the 500

fatalities to incorporate this additional information:

1. For any fatal occupant missing OAIS use the HSRI recoded value

and the original NCSS value for all others.

2. Use a compromise value for those fatal occupants that have both

a NCSS OAIS and an HSRI OAIS. For fatal occupants missing OAIS, use t he

value obtained by the HSRI review.

This subsection, and the following subsections, will only consider

the first method mentioned above. The nature of the coding at HSRI of

DAIS allows examination of modifications to two versions of the OAIS

distribution, the usual distribution of OAIS and the distribution of

NEWOAIS3. Table 4.15 shows these distributions for OAIS. The first

distribution is the OAIS distribution obtained from the Official Phase 1

Version of the NCSS data. The second distribution is the distribution

of al l the data recoded by HSRI . The third distribution is the

distribution for the missing data in NCSS based on the HSRI recode. The

fourth distribution is the adjusted distribution of OATS incorporating

the data available in the NCSS file and the recoded information from the

HSRI recode of the supplemental data. Table 4.16 shows the same

distributions for NEWOAIS3.

The addition of missing data information to the distribution

modifies the OAIS distribution. The largest change in the distribution

of the OAIS appears in the proportion of fatal i ti with an f at a l i t i e s

with an OAIS of 5 before and after the missing data adjustment. In t he

distribution of NEWOAIS3 the shift is from "injured, severity unknown"

to injury at OAIS level 3 or more.

At best, looking at the NEWOAIS3 distribution there is still a 7%

missing data rate on the severity of the injury of the fatality. The

43Some cases coded fatal in the preliminary version of the Phase 1
data were subsequently edited and were not present in the Official
Version of the Phase 1 file that this analysis is based on.
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TABLE 4.15

Distribution of OAIS
Missing Data Adjustments

Fatal Occupants

II OAIS (Injured I I
Distribution II -------------------------- ISeverityl No (Total

II 1 3 4 5 6 (Unknown Ilnformationl
-----------------11--------------------------+--------+-----------+-----

II I I
II 1 6 21 110 1121 250 I 0 1 250

NCSS 11 .4% 2.4% 8.4% 44% 44.8%I I 1100%
II I I I

HSRI Coded II 1 5 6 39 2101 72 1 166 1 334
Supplemental Data1I0.4% 1.9% 2.3% 14.9% 80.2%I 1 1100%

II I I I
NCSS Missing 11 1 2 1 8 1361 0 I 186 148
(HSRI Recoded) II .7% 1.4% .7% 5.4% 91.9%1 I 1100%

II I I
Adjustment for 11 2 8 22 118 2481 102 1 0 1 500
Missing Data II .4% 1.6% 4.4% 23.5% 49.6%1 20.4% 1 1100%

TABLE 4.16

Distribution of NEWOAIS3
Missing Data Adjustments

Fatal Occupants

----------------------------------------------------------------
I1 OAIS I I 1

Distribution II ---------- I Injured I No ITotal
110-2 3-6 (Severity Unknownllnformationi

----------------- II----------+----------------+-----------+-----
II I I I
11 7 2431 250 I 0 1 500

NCSS 112.8% 97.2%I I 1100%
II I I I

HSRI Recoded 11 7 3261 1 1 166 1 334
Supplemental Data!12.1% 97.9%I I 1100%

II I I I
NCSS Missing 11 4 2091 0 1 102 1 213
(HSRI Recoded) 111.9% 98.1%I I 1100%

II I I I
Adjustment for 11 11 4521 37 1 0 1 500
Missing Data 1I2.2% 90.4%I 7.4% 1 1100%
----------------------=-----------------------------------------
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situation with OAIS is worse at a 20% missing data rate. T h i s

difference in missing.data rate is due to coding conventions that were

allowed when coding OAIS in the HSRI project. If necessary a choice

could be made as to whether the case fell into the OAIS 0-2 category or

not, so that a bit more information is available for NEWOAIS3. Table

4.17 compares the injury codes assigned to these occupants.

TABLE 4.17

OAIS Recode Comparison for
Fatal Occupants

II NCSS OAIS I
---------------------------------------

H SRI OAIS II Injured I Total
II 3 4 5 6 Severity I
II Unknown I

-------------------- II---------------------------------------+---------
II I

1 II 1 I 1
II i

3 II 1 2 3
II I

4 II 1 3 1 I 5
II I

5 II 1 27 3 8 I 39
II i
II 5 14 53 136 208
II I

Injured II 2 1 2 1 65 71
Severity Unknown II I

II ---------------------------------------+---------
II

Total II 3 10 44 57 213 I 327

From the table it can be seen that the largest discrepancy comes

from 14 cases coded 5 in NCSS and 6 at HSRI. This may suggest sliqhtly

different methods of coding OAIS at the two locations and may serve as a

caution in reviewing some of these results.

It should be noted here that there is information for the 65 cases

shown in the table as being coded "injured, severity unknown" i n NCSS

obtained from in the HSRI review. Here, 1 of the 65 was thought to have
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an OAIS less than 4 and the other 64 fatals were thought to have an OAIS

greater than 3. This information will be used in considering the

distribution of NEWOAIS3.

4.5.3.2 Univariate Distribution of Delta V Adjusted for

Missing Data. The distribution of Delta V for vehicles in which at

least one fatality occurred are discussed in this subsection. There are

426 vehicles involving the 500 fatal occupants that occurred in Phase 1.

HSRI recalculated a Delta V for a subset of these 426 vehicles. The 213

vehicles that were recoded contained vehicles that could have a valid

Delta V as well as those where a Delta V computation was not applicable.

Delta V presents a situation that is relatively uncommon. There

are collisions where Delta V cannot be calculated. The Delta V

algorithm requires certain hypotheses (e.g. planar crashes) and makes

sense only when these assumptions are satisfied. It is necessary to

take this into account when calculating the missing data rate for D elt a

V and making comparisons of various distributions of Delta V.

Calculation of missing data rates and distributions for Delta V should

involve only those vehicles where Delta V can be calculated. V ehicles

involved in collisions where Delta V cannot be calculated will be

considered vehicles where Delta V is not applicable.

The discussion here will focus on Delta V only. Of the 426

vehicles involving a fatality there were 28.1% with unknown Delta V. Of

these vehicles an additional 20% were such that the calculation of

Delta V was not appropriate. (Based on the.Crash Reconstruction

variable.) Excluding these 20%, 35.2% of the vehicles where Delta V

could be calculated and had a Delta V missing.

The HSRI review supplied information for 84 vehicles of the 120

vehicles where Delta V was coded in NCSS as unknown. For these 84

vehicles it was thought calculation of Delta V was appropriate. Table

4.18 presents the distribution of Delta V in NCSS, the distribution of

Delta V for all cases recoded by HSRI, the distribution of the Delta V

for all cases missing in NCSS but coded by HSRI and finally a

distribution of Delta V modified to use both sources of data.
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TABLE 4.18

Distribution of Delta V
Adjusted for Missing Data

Fatal Occupants

--------------------------------------------------------------------------------------------------------
Delta V I I

I ----------------------------------------------------------------- I Sub- I Not I
Distribution I I Over Itotal IApplicablelTotal

IMissingll-5 6-10 11-15 16-20 21-25 26-30 31-35 36-40 41-45 45 I I I
--------------------------------------------------------------------------------------------------------

I I I I I
NCSS I 120 I 2 8 10 28 24 34 36 21 13 451 2211 85 1 426

I 10.9% 3.6% 4.5% 12.7% 10.9% 15.4% 16.3% 9.5% 5.9% 20.4%1100.0%1
I I I I I

HSRI coded I 0 I 0 8 17 18 26 25 28 25 14 521 2131 72 1 284
Supplemental I I I I I
data I 10.0% 3.8% 8.0% 8.5% 12.2% 11.7% 13.1% 11.7% 6.6% 24.4%1100.0%1

I I I I I
NCSS Missing I 36 I 0 3 3 6 10 7 11 9 5 301 841 0 1 124
(HSRI Recoded)I 10.0% 3.6% 3.6% 7.1% 11.9% 8.3% 13.1% 10.7% 5.9% 35.7%1100.0%I

I I I I I
NCSS Adjusted I I I I I
for I 30 I 2 13 17 36 37 44 49 31 19 781 3261 70 1 426
Missing data 1 10.6% 4.0% 5.2% 11.0% 11.3% 13.5% 15.0% 9.5% 5.8% 23.9%1100.0%1 1
--------------------------------------------------------------------------------------------------------



The last distribution, referred to as "NCSS Adjusted for Missing

Data," was obtained.by using the value that was recoded at HSRI for any

case where Delta V was not present in the NCSS data set. This procedure

did change the number of vehicles considered "not applicable." Upon

review it seemed appropriate to calculate a Delta V for some cases where

the crash reconstruction code indicated calculation of Delta V was

inappropriate.

From Table 4.18 it can be seen that:

1) The NCSS distribution of Delta V differs from the "NCSS

Missing" distribution. cases. The proportion of cases at the

highest level of Delta V appears to be higher in the missing

cases than the proportion in the non-missing in NCSS.

2) Comparison of the NCSS distribution and the HSRI supplemental

data distribution indicate some differences, but there seems to

be no clear pattern.

3) The "Adjusted" distribution when compared to the NCSS

distribution has a smaller missing data rate. The modification

for missing data increases the proportion of greater than 45

mph cases slightly.

4.5.3.3 Bivariate Distribution of OAIS and Delta V Adjusted

for Missing Data. In this subsection the joint distribution of OAIS and

Delta V for the fatalities in the NCSS data in Phase 1 (Official

version) is adjusted for missing data. Ideally we would like to find

the distribution of OAIS and Delta V for only those occupants in a towed

vehicle where the collision characteristics were such that a Delta V

could have been calculated. Because of the presence of missing data on

Delta V the subset of occupants defined by Delta V non-missing may give

an incomplete subset of occupants. An occupant was included if either

NCSS or HSRI determined that calculation of Delta V was possible for the

occupant's vehicle. There were 383 fatalities used in this

analysis. Table 4.19 shows the distribution of these fatalities by

Delta V source. Approximately one third of the fatalities had a Delta V

calculated by both HSRI and NCSS. Another third had a Delta V

calculated only by NCSS. (These were vehicles that were not in the
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subset reviewed by HSRI). The remaining third had a Delta V coded by

only HSRI. The variable used from NCSS to determine where Delta V could

be calculated was Crash Reconstruction while HSRI made this judgement

di rectly.

TABLE 4.19

Fatalities
Included in the

Bivariate Distribution

I NCSS HSRI I Number
Category Valid Delta V Valid Delta V I of Occupants

------------+-----------------------------------+----------------

1 I Yes Yes i 129
2 I Yes No I 3
3 I Yes Unk 128
4 I No Yes I 22
5 No No I 0
6 No Unk I 0
7 I Unk Yes I 101
8 I Unk No I 0
9 Unk Unk I 0

Total 1 I 383

Table 4.20 presents the NCSS distribution of OAIS by Delta V for

these 383 occupants recoded into 6 categories. The categories for

Delta V are defined by 1-4, 5-9, 10-14, 15-19, 20-24, and over 25. The

percentages under the counts are the row percentages. The percentages

and totals in parentheses exclude all missing data.

Table 4.21 is the distribution of OAIS by Delta V categorized the

same as above for the 127 fatalities in Table 4.20 with missing Delta V.

This distribution is based on the missing data coded by HSRI in the

missing data supplement.

Table 4.22 is the NCSS distribution of DAIS and Delta V

supplemented with additional information about the missing data. The

missing data rate has now been reduced to less than 1%. Both the injury

variable, OAIS, and Delta V were adjusted for missing data. This
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TABLE 4.20

Distribution of Delta V and OAIS
NCSS Distribution
Fatal Occupants

I Delta V
I ------------------------------------------------------ I

DAIS I Over ITotal
IMissing 1-4 5-9 10-14 15-19 20-24 25 1

-------+------------------------- ---------------------------+-----

1. I 0 0 1 0 0 0 01 1
I 100% I
1 (100%) (1)

3. 2 0 1 1 0 0 01 4
50.0% 25.0% 25.0%

(50.0%) (50.0%) (2)

4. 5 0 3 2 4 1 11 16
31.3% 18.8% 12.5% 25.0% 6.3% 6.3%I

(27.3%) (18.2%) (36.4%) (9.0%) (9.0%)I (11)

5. 28 3 8 13 23 8 91 92
130.4% 3.3% 8.7% 14.1% 25.0% 8.7% 9.8%I

(4.7%) (12.5%) (20.3%) (39.1%) (12.5%) (14.1%)I (64)

6. I 31 3 10 12 12 9 81 85
136.5% 3.5% 11.8% 14.1% 14.1% 10.6% 9.4%I
I (5.6%) (18.5%) (22.2%) (22.2%) (16.7%) (14.8%)I (54)

Unknown) 61 4 12 31 34 17 261 185
133.0% 2.2% 6.5% 16.8% 18.4% 9.2% 14.1%I

(3.2%) (9.7%) (25.0%) (27.4%) (13.7%) (21.0%)1(124)

Total 127 10 35 59 73 35 441 383
133.2% 2.6% 9.1% 15.4% 19.1% 9.1% 11.5%I
I (3.4%) (13.7%) (23.0%) (28.5%) (13.7%) (17.2%)I(256)

adjustment procedure simply replaced a missing value (or unknown for

OAIS) in NCSS with the HSRI coded value if it exists, otherwise it is

left missing.

Table 4.23 presents the marginal distribution of OAIS for these 383

fatalities. These fatalities represent a special subpopulation of the

total population; that is, occupants of vehicles where the vehicle

dynamics were such that a Delta V could be calculated.

369



TABLE 4.21

Distribution of Delta V and OAIS
HSRI Coded Supplemental Data

Fatal Occupants

I Delta V I
I ------------------------------------------ I

OAIS I Over ITotal
IMissing 1-4 5-9 10-14 15-19 20-24 25 I

-------+-------------------------------------------+-----
I

Missingl 1 0 0 0 0 0 01 1
1100% I

4. 0 0 2 1 0 0 11 4
1 50 . 0% 25 . 0% 2 5 . 0% 1

5. I 1 0 2 6 2 5 51 21
14.8% 9.5% 28.6% 9.5% 23.8% 23.8%I

6. 1 4 8 11 26 10 201 80
1 1.2% 5.0% 10.0% 13.8% 32.5% 12.5% 25%1

Unk 1 0 0 2 7 5 2 51 21
9.5% 33.3% 23.8% 9.5% 23.8%1

Total I 3 4 14 25 33 17 311 127
12.4% 3.1% 11.0% 19.7% 26.0% 13.4% 24.4%I

From these tables the following observations can be made:

1) The adjusted row percentages in Table 4.22 are close to the

NCSS percentages ignoring the missing data in Table 4.20. The

percentage in the Delta V category "over 25" is consistently

lower for all AIS levels in the NCSS data (excluding missing

data). The NCSS percentage (excluding missing data) is lower

for some of the AIS categories when Delta V is between 20 and

24. There appears to be no other clearly consistent trends.

Comparing the modified distribution in Table 4.23 with the NCSS

distribution (excluding missing data) from Table 4.20 it can be

seen that the NCSS distribution (excluding missing data)

underestimates the percentage of fatalities with an HIS of 6

and overestimates the number of fatalities with an OAIS of 5.
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TABLE 4.22

Distribution of OAIS and Delta V
Adjusted for Missing Data

Fatal Occupants

---------------------------------------------------------
I Delta V
I ------------------------------------------- I

Missing) Over (Total
IMissing 1-4 5-9 10-14 15-19 20-24 25 I

-------+-------------------------------------------+-----
I I

Missing) 1 1 2 3 3 2 71 19

1. I 0 0 1 0 0 0 01 1
100% I

3. I 0 0 2 2 1 0 11 6
33 . 3% 3 3. 3% 16.7% 16.7%I

4. I 0 1 5 3 4 1 31 17
5 . 9% 29 . 4% 17 .6% 23. 5% 5.9% 17.6%1

5. I 2 4 12 24 31 14 121 99
12.0% 4.0% 12.1% 24.2% 31.3% 14.1% 12.1%I

6. I 0 7 24 38 54 27 441 194
3 . 6 % 12 . 4% 1 9.6% 27.8% 13.9% 22.7%1

Unk I 0 1 3 14 13 8 81 47
2.1% 6.4% 29.8% 27.7% 17.0% 17.0%1

Total I 3 14 49 84 106 52 751 383
10.8% 3.7% 12.8%% 21.9% 27.7% 13.6% 19.6%1

It should be noted here that the coding rules of DAIS were

different for the NCSS and HSRI coders. The objective was to

aet information not originally coded to see how the NCSS

distribution might possibly change if all the data had been

obtained originally.
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TABLE 4.23

Marginal Distribution of
OAIS for Occupants in

Vehicles Where Delta V Could Be Calculated

IMissing 1. 3. 4. 5. 6. ITotal
-----------------+---------------------------------+-----

I I
NCSS Distribution( 185 1 4 16 92 851 383
(including M.D.) 148.3% .3% 1.0% 4.2% 24.0% 22.2%I

I I
NCSS Distribution) 1 2 11 64 541 132
(excluding M.D.) I 8% 1.5% 8.3% 48.5% 40.9%I

I I
Missing Data I 22 4 21 801 127
HSRI Coded 117.3% 3.1% 16.5% 6.3%I

1
Modified 66 1 6 17 99 1941 383
Distribution 117.2% .3% 1.6% 4.4% 25.8% 50.7%I
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4.5.4 Non-fatal Supplemental Data I n the NCSS data, a large

percentage of non-fatal occupants investigated have missing data on

either Delta V or OAIS or both. This subsection describes the procedure

by which a subsample of these occupants was obtained. Each case was

examined to get values for Delta V and OAIS or information about why the

information was unobtainable. This information will be used to

investigate missing data biases in NCSS.

A sample was taken of all occupants in the Phase 1 NCSS occupant

file (N=14491 case vehicle occupants) who were not fatally injured and

for which either or both of the values for Delta V and OAIS were

missing. There were 9035 such occupants, distributed as shown in Table

4.24 where the percent (shown in parentheses) is the percent of all

"missing data" cases. Note that of the 9035 cases in al l which have

either OAIS, Delta V, or both, missing 21.8% of these cases were

missing both elements.

TABLE 4.24

Frequency of Missing Data
on OAIS and Delta V

Case Vehicle Occupants

OAIS I
Delta V I ----------------------------------- I Total

I Missing I Not Missing I
-------------------+---------------+-------------------+-------------

I I I
Missing
Not Missing

I

I

2186
2335

I
I
I

4514
I
I

6700
2335

Total I 4521 I 4514 I 9035

Since partial information on Delta V and OAIS is available for some

occupants, the frame was divided into three groups:

Group 1 - Occupants where Delta V and OAIS were missing

Group 2 - Occupants where only Delta V was missing

Group 3 - Occupants where only OAIS was missing
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The sampling design for the sample of Groups 2 and 3 used the

information about Delta V or OAIS, when available, in the stratification

of the occupants.

Stratification for the occupants in Group 1 was based on team, age,

and NCSS class. Age was coded into two groups: less than or equal to 35

and greater than 35. NCSS class was recoded into four groups:

hospitalized (NCSS class code 4), transported (NCSS class code 5),

unknown treatment (NCSS class codes 6,7,9) and no treatment (NCSS class

code 8). The distribution of occupants in Group 1 by age and NCSS class

is given in the Table 4.25 below.

TABLE 4.25

Stratification of Occupants in Group 1
by NCSS Class and Age

-----------------------------------------------------------------
NCSS Class

--------------------------------------------
Age I Unknown No All

(Hospitalized Transported Treatment Treatment
---------------+-------------------------------------------------

I
Less than 36 .1 201 453 443 343 1530

I
Greater than 351 107 154 265 130 656

All . . . . . .I 398 607 708 473 2186
-----------------------------------------------------------------

This final stratification, by team, age, and NCSS class, had 56 strata

(7x2x4), the largest stratum with 139 occupants and the smallest with 2

occupants.

Group 2 was, in addition to team and age, stratified by OAIS since

all occupants have an OAIS coded. Age was recoded as defined above and

OAIS was recoded into four groups: uninjured (OAIS code 0), minor (O AIS

code 1), moderate (OAIS code 2) and more than moderate (OAIS codes 3-5).

The distribution of occupants is given in Table 4.26. The final

stratification by OAIS, age, and team, had 56 strata (4x2x7), the

largest stratum with 380 occupants and the smallest with 4 occupants.
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TABLE 4.26

Stratification of Occupants in Group 2 by Age and DAIS

-----------------------------------------------------------------
Age I Uninjured Minor Moderate Severe Total

-----------------+-----------------------------------------------
I

Less than 36 . I 1598 965 338 283 3184

Greater than 35 I 665 362 143 160 1330

Total . . . . . I 2263 1327 481 443 4514

Finally in Group 3 the stratification variables were age, team,

Delta V, and General Area of Damage. Age was recoded as previously

stated, General Area of Damage was recoded into 2 groups (front versus

elsewhere), and Delta V was recoded into 3 groups (less than 10, 10-19,

and 20+). The distribution of occupants in Group 3 is given below in

Table 4.27. The final stratification by team, age, Delta V, and General

Area of Damage had 84 strata (7x2x3x2), the largest stratum with 203

occupants. There was 1 stratum which was empty and two strata with only

one occupant.

TABLE 4.27

Stratification of Group 3 by Age, Delta V, and
General Area of Damage

General Area of Damage
----------------------------------------------------

Delta V I Age less than 36 Age greater than 35
----------------------------------------------------

Front Other Front Other
----------------+----------------------------------------------------

Less than 10
10-19 . . .

I
I
I

254
563

179
315

140
215

99
149

Over 20 . .
All . . . .

I
I

251
1068

86
580

64
419

20
268
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The sampling, for all three groups, was a simple random sample

without replacement of two occupants within each stratum. For all

strata with less than 3 occupants a complete census of occupants in

those strata was made. A total of 388 occupants are in the sample.

4.5.5 Non-fatal Distributions Adjusted for Missing Data. The

previous subsection described the sampling plan by which a sample of

non-fatal occupants'missing either Delta V or OAIS was chosen. In this

subsection the distribution of OAIS for occupants with missing data

based on the supplemental data on non-fatals is examined. It should be

noted that in this subsection "missing data" refers to missing data on

either OAIS or Delta V.

For this discussion the NCSS sample can be separated into

S1: All non-fatal occupants with complete data on OAIS and

Delta V , and

S2: All non-fatal occupants with missing data on either HIS or

Delta V or both.

This discussion will focus on differences between the occupants in S1

and S2.

There are three distributions presented in Table 4.28. The

unweighted distribution from NCSS for occupants with no missing data is

the distribution of S1 in Phases 1 and 2. The distribution from the

supplemental data is the estimated distribution for the occupants in the

sample that belong to S2. Associated with the estimated distribution

for S2 are the standard errors for the proportions.

From Table 4.28 it can be seen that the distributions across

categories differ for the occupants representing S1 and S2. The

estimated distribution of S2 has a higher proportion with a minor

injury. The distribution of S1 has a higher proportion of occupants

with no injury. Looking at the cumulative proportion of injury with

severity less than OAIS 3 makes the distributions more comparable. The

proportion of injuries less than OAIS 3 is 87.7% for S1 From the

estimated distribution of S2 it can be seen that 92.70% of these

occupants have injuries less than OAIS 3. The most significant

difference between the distribution of S1 and the estimated distribution
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TABLE 4.28

DISTRIBUTION OF OAIS

Non-fatal Occupants

---------------------------------------------------
Unweighted a I Supplemental Data
Distribution I (Weighted)

I (In percent) I (In percent)
OAIS Category I------------------------+---------------------------

I I Estimated Standard
I Phase 1c Phase 2 I Proportion Error

----------------------------------------------------------------------

O.No Injury 1 37.5 31.4 22.48 2.21

1.Minor I 36.8 37.0 42.8 2.55

Moderate I 13.4 16.6 12.3 2.24

3.Severe I 8.6 10.5 1 6.72 .92

4.Serious I 2.6 3.5 I 1.37 0.4

5-Critical 1 1.12 0.8 1 0.33 0.24

9.Unknown I 1.60 .38

0.-i. I 1 9.86 2.49

0.-2.

Sample Size

1 3.26 1.04
1------------------------+---------------------------
I
I 14153 11587

alncludes all non-fatal occupants with no missing data on OAIS.

bEstimate of a distribution for non-fatal occupants with missing

data on either OAIS or Delta V missing.

cThe official version of the Phase 1 data.

of S2 is the increase in the percentage of minor injury. The reason for

this is inherent in the NCSS coding instructions for OAIS. OAIS can

only be coded if there is an official medical source for the injury

information. Therefore minor injuries are most likely to be coded

missing data due to the lack of medical records. When looking at severe
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versus non-s-evere i-njury the distribution of this dichotomy does not

appear to be significantly different.

In order to get an estimate of the distribution for the sample a

weighted average of the two estimated distributions in Table 4.28 can be

used. The weights are the proportions of the sample in S1 and S2. Note

that this is not an estimate for the aggregate of the NCSS areas but

only for the sample. In order to approximate a distribution for the

aggregate it would be necessary to know the proportions in the aggregate

.that belong to each subpopulation.

4.5.6 Bivariate DAIS Distributions Adjusted for Missing Data. As

in. the preceding subsection the discussion here will focus on

differences between the occupants (fatal and non-fatal) completely coded

on OAIS and Delta V, S1, and the occupants (fatal and non-fatal) with

missing data for at. least one of the two variables, S2. The objective

is to evaluate the differences in the observed and unobserved occupants.

Bivariate distributions involving DAIS are. investigated in this

subsection. When comparing bivariate distributions for S1 and S 2 t h e

change in the association between the variables in important. When

missing data is excluded any association represented in the observed

table is used as an estimate for the population. The presence of

information about the missing data could change the association in the

table substantially.

Four bivariate tables were investigated. The variables related to

OAIS were seat position, sex, urbanization, and restraint usage. The

estimates in this subsection were obtained using information on missing

data for both fatal and non-fatal occupants. A direct substitution was

made for all fatals where there was supplemental information available.

The frequencies in the contingency table for S2 were obtained using the

weights resulting from the sample design described in Section 4.5.4.

The distribution of S1 is determined from all occupants in the sample

with complete information on OAIS and Delta V. Cell proportions were

then calculated to allow comparisons to be made between the distribution

of S1 and the estimated distribution of S2-
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Tables 4.29 and 4.30 show the results for the bivariate

distributions of OATS with Restraint Usage and Urbanization. The

bivariate tables of OAIS and urbanization showed the most difference of

all of the tables calculated. Bivariate distributions of OATS and

Restraint Usage was typical of the distributions calculated. In the

tables there are two distributions, the distribution (unweighted) from

the NCSS for complete data cases and the distribution estimated for the

missing data occupants.

Again it can be seen that the marginal distribution of OAIS is

different for those occupants not observed. The major change is t h e

increase of the probability of minor injury. The marginal distribution

of urbanization changes slightly and the marginal distribution of

Restraint usage stays fairly constant. Notable is the changes of the

proportions within each cell. In both tables the cell associated with

lower levels of OAIS change noticeably over levels of the other

variable.
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TABLE 4.29

Distributions of
the Degree of Urbanization and OAIS

I NCSS Distribution II Estimated Distribution
Non-missing Data II for Missing Data

OAIS I Unweighted percents II Weighted Percents
I ------------------------- II----------------------------
I Urban Rural Total II Urban Rural Total

----------+------------------------- II----------------------------
I II

0 I 9.46 32.11 41.57 II 6.52 22.44 28.96
I II

1 9.91 21.65 31.56 II 10.52 28.54 39.06
I II

2 I 4.29 7.10 11.41 II 3.76 7.63 11.39
i II

3 3.44 4.22 7.66 II 3.43 3.94 7.37
I II

4 I 1.05 1.32 2.37 II 0.95 0.93 1.88
I II

5 I 0.96 1.05 2.11 II 0.66 0.72 1.38
II

15 I 1.55 0.85 2.40 II 1.07 0.59 1.66
I II

Injured I 0.71 0.28 .99 II 1.79 6.50 8.29
I ------------------------- II----------------------------
I II

Total I 31.40 68.60 II 28.71 71.29
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TABLE 4.30

Distributions of
Restraint Usage by OAIS

Adjusted for Missing Data

NCSS Distribution 11 Estimated Distribution
I Non-missing Data II for Missing Data

OAIS I Unweighted Percents 11 Weighted Percents
1-------------------------11-------------------------
I No Yes Unknown Totalll No Yes Unknown Total

-------+------------------------- II-------------------------
I II

0 129.47 5.42 6.67 41.561120.57 3.80 4.59 28.96
I II

1 125.76 3.26 2.55 31.561130.58 5.53 2.95 39.06,
I II

2 1 9.66 0.96 0.79 11.4111 9.30 1.45 0.65 11.39

3
I
16.52 0.65 0.49

II
7.6611 6.06 0.82 0.48 7.37

II
4 12.08 0.16 0.14 2.3711 1.64 0.11 0.13 1.88

I II
5 11.63 0.21 0.17 2.1111 1.12 0.15 0.12 1.38

I II
6 11.85 0.29 0.27 2.4011 1.27 0.20 0.19 1.66

I II
Injured) 0.84 0.09 0.06 0.9911 5.72 0.45 2.12 8.29

------------------------ II-------------------------
I II

Total 177.81 11.04 11.14 1176.27 12.50 11.22
------------------------------------------------------------
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4.5.7 Summary The analysis presented in Section 4.5 on missing

data adjustments is just the beginning of serious work on the problem of

missing data. The analysis presented restricts itself to very simple

methods of adjustment and concentrates on differences between the

"missing" and "non-missing" segments of the sample observed.

The two key NCSS variables, OAIS and Delta V, have exceptionally

high missing data rates. The OAIS missing data rates for all occupants

is approximately 30%. For Delta V the missing data rate, based on the

General Area of Damage, is approximately 34% in Phase 1 and 41.7% in

Phase 2. When the joint distribution of Delta V and OAIS is considered

for all occupants, 72% in Phase 1 and 68.2% in Phase 2 one or more of

these two variables are missing.

The results from the adjustment of distributions involving

fatalities show that the proportion of occupants with maximum injury

(OAIS-6) is higher after adjustment and the proportion of fatalities at

higher Delta V is slightly higher after adjustment. The bivariate

distribution is consistent with these results. The distribution appears

shifted slightly to higher DAIS levels.

Examination of the non-fatal missing data occupants shows a

significant increase in the probability of a minor injury (OAIS 1). The

bivariate distributions for all occupants involving DAIS change both'

marginal distributions, the distribution of OAIS changing the most

obviously. Cell proportions also show differences between missing and

non-missing data.

From these analyses it appears that the missing data population has

a different distribution for OAIS and Delta V than the non-missing

population has. The adjusted distributions calculated indicate that for

some categories the proportion represented by the NCSS data (e xc l u d i n g

missing data) are reasonable estimates. But there are some categories

that the NCSS proportions will over-estimate or under-estimate without

adjustments for missing data. It appears that the dichotomous variable

based on OAIS is less sensitive to missing data.

Based on these analyses it is recommended that an imputation

procedure procedure be developed for the NCSS data. The imputation
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procedure can be chosen in such a way that the distributions of OAIS and

Delta V are modified in a manner consistent with the distribution of the

non-missing data on OAIS and.Delta V. These imputation procedures are

alternatives to just excluding missing data and can produce adjusted

distributions more representative of the population. Choice of which

particular imputation method is best is a subject for further

investigation.
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4.6 National Projections

In this subsection nationally representative statistics using the

NCSS data are discussed and some national projections are given for

selected NCSS variables. The procedure to generate national projections

is demonstrated for simple accident statistics and for more com^licat ed

contingency tables. Methods for adjusting these national projections

for missing data are developed. Application of this methodology will

depend on the particular missing data adjustment technique selected.

Finally these national projection are evaluated to see how sensitive

they are to assumptions made in the development of the estimation

procedure.

Some of the national projections developed in Section 4.6.1 are

compared with estimates obtained using other methods. These methods use

an inflation factor applied to the aggregate NCSS estimate. There is no

way to decide which method yields a better nationally representative

estimate. A choice between the methods depends on the reasonableness of

the assumptions underlying method.

4.6.1 NCSS National Projections. The NCSS design called for a

sample of accidents (police reported accidents involving at least one

towed vehicle) within each area chosen. Even though the sample design

differed between areas, the design was such that the sample design

within each area ensured a proper sample within each county. For the

purpose of producing national projections, counties were chosen to

represent the unit of observation. This choice was made because of the

size of the geographical unit, the well-defined structure of the county,

and the availability of demographic data for each county. Another

possible choice would have been the areas themselves. Since this choice

would have reduced the number of observations on which the regression

model could have been developed, it was not considered further.

The seven areas chosen for NCSS are composed of 41 counties and

three partial counties. The three partial counties are defined by Miami

city, Erie county (omitting the city of Buffalo), and three police

districts in Los Angeles city. In the following analysis 43

observations are used. These are the 41 counties, Miami city, and Erie

county (omitting Buffalo). The Los Angeles data were not used in this
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analysis because very few demographic data were available for those

three police districts in Los Angeles. It is advisable if possible to

use all NCSS data from all seven areas when making NCSS projections. in

the development. It was possible to calculate all the demographic

statistics for the two partial counties because data were available for

Erie county and also for Miami and Buffalo so that these two areas were

included. Similar data were not available for the three Los Angeles

police districts so they were excluded.

Three traffic accident totals were chosen to be estimated. These

statistics are defined by:

ACCIDENTS = the number of accidents which involve
a towed passenger car (NCSS accidents),

VEHICLES = the number of towed passenger cars
in NCSS accidents for which Delta V could
be calculated (this excludes vehicles in
rollovers, sideswipes, underrides,
overrides,
accidents with vaulting, and collisions with
yielding fixed objects),

OCCUPANTS = the number of occupants in towed passenger
cars where Delta V could be calculated.

In the NCSS data set the information on the above quantities is

essentially complete44; that is, every accident investigated, along with

all towed vehicles and their occupants, is represented in the file. It

is assumed that all eligible accident reports were sampled and no

accidents were "lost" in the process of obtaining accident reports.

Violation of this assumption will clearly affect the accuracy of the

national projections, the end result being that any national projection

using the NCSS data will likely underestimate the actual national total.

Within each of the 43 observed counties an unbiased estimate for

the county total of ACCIDENTS, VEHICLES, and OCCUPANTS was produced.

The county estimates for ACCIDENTS, VEHICLES, and OCCUPANTS are given by

the following formula:

44The version of the NCSS data used in this analysis was a
preliminary version and was missing 55 accidents.
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3
(4-33)

tk = I tikfpi
i=1

where

tk is the total for the kth county,

tik is the total for the kth county represented in the ith stratum,

and

pi is the probability of selection for the i th stratum.

These statistics were then meraed with a data file which contains

demographic information for each county.

For this analysis, twenty demographic variables were chosen out of

the County and City Data Book45 that were thought to be related to these

traffic accident statistics. Correlations were done initially to narrow

the search to demographic variables where a linear model fit well.

Table 4.31 gives the correlations for five demographic variables

investigated to show the range of correlations possible.

TABLE 4.31

Correlation Analysis

------------------------------------------------------------------
Variable Accidents Vehicles Occupants

------------------------------------------------------------------

AUTO DEALERSa .9935 .9860 .9880
GAS STATI2NS .9689 .9511 .9556
LAND AREA .1206 .0993 .1062
POPULATJONU .9463 .9251 .9315
DENSITY .5476 .6028 .5904

------------------------------------------------------------------

aRetail sales by automotive dealers
Retail sales by gasoline service stations.

dArea in square miles.
The 1975 population total estimate.

eThe ratio of 1975 population to land area.

45U. S. Bureau of the Census, County and City Data Book, 1977: A
Statistical Abstract Supplement (Washington, D.C.: Government Printing
Office, 1978).

I
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The three demographic variables, AUTODEALERS, GAS STATIONS, and

POPULATION were chosen to investigate further. Scatter plots were

obtained to check for nonl i neari ties in the data. Because of its high

correlation with all three accident statistics of interest, AUTODEALERS

was chosen to use to develop the model from which the value for the

unobserved counties woulol be predicted. (Accidents are plotted against

retail sales by autodealer in Figure 4.11. Plots for vehicles and

occupants look similar.) Linear and quadratic models using AUTODEALERS

were fit to each of the three accident variables. Table 4.32 presents

the results from these regression analyses. The linear fit explained

over 97% of the variability in each of the three accident statistics.

The addition of the quadratic term did not seem justified. The final

predictive equations to be used to predict for the three accident

statistics in counties not observed are given by the following

equations:

ACCIDENTS = 35.298 + .026396 AUTODEALERS

(4-34) VEHICLES = 16.580 + .021520 AUTODEALERS

OCCUPANTS = 6.770 + .033348 AUTODEALERS

TABLE 4.32

Regression Analysis Summary

-------------------------- -------------2R Standard Error
Variables -------------------------------------------------

Linear Quadratic Linear Quadratic

ACCIDENTS .987 .988 244 238
VEHICLES .972 .973 293 294
OCCUPANTS .976 .976 420 424

The national projection is composed of the sum of the estimates for

each of the observed counties and the sum of the predictions, given by

the equations above, for each of the unobserved counties. Table 4.33

shows the estimate for observed counties (excluding the two partial
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counties), the prediction for all unobserved counties (including Erie

and Dade counties), and the national projection.

TABLE 4.33

National Projections of the
Accident Statistics

January 1977 through March 1978

Variables

Projected
Total for
Unobserved

Counties
(N=3071)

Estimated
Total for
Observed
Counties

(N=41)

National
Projections

ACCIDENTS 2,420,353 26,729 2,447,082

VEHICLES 1,833,962 19,908 1,853,870

OCCUPANTS 2,900,039 31,754 2,931,793
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The selection of the forty-three counties included in NCSS

contributes to the bias in the national projection. As seen from

Equation 4-31 in Section 4.1, one source of bias in the national

projection is b(N-n)(X-xs). For AUTODEALERS the difference (X-xs) is

-7360. So part of the bias is given by -7360b(N-n). If the true value

of b were known, some adjustment could be made to the national

projection, but since b is an unknown parameter, the information about

the exact magnitude of this source of bias is incomplete. If 6 is the

true value for b, then the contribution toward the bias from this term

would be about 596,617. The confidence interval for 6 is (.02545,

.02734). Using this information the bias might be in the range -617,863

to -575,235. If this were the only contribution to the bias the

national projection for accidents would be an underestimate of the

national total of accidents involving towed vehicles.

The second source of bias comes from the sum of each of the

theoretical deviations of the totals from the true population linear

model, that is, the sum of ei = Yi - a - bXi ei=1,...,n. There is no

direct way to estimate the ei from the data. If all of the ei are close

to zero then any subset of counties should produce approximately the

same regression line and the variability of the projections for

different subsets should be small. On the other hand, if all of the ei

are large, then great variability should show up both in the model's fit

and the projections. If only a small number of the ei are large, then

the results of the regression modelling and the predictions should be

sensitive to whether those counties with large ei are included i n the

chosen set. But for any particular subset there is no way to know for

sure which situation fits reality.

The method of national projections can be applied to contingency

tables. The summary statistics (for the aggregate) in a contingency

table can be adjusted to be better representative of the associated

contingency table for the population. This is accomplished by

calculating a national projection for each frequency count in the

contingency table. To demonstrate this technique the national

projection for the bivariate distribution of case vehicle occupants by

the NCSS classification and the general area of damage from the CDC was
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used. The NCSS classification was re-categorized into four groups,

fatal hospitalized, treatment and no treatment. The definition of

these categories is give in Table 4.34. Occupants are restricted to

those whose vehicles had front, right, rear or left damage.

A national projection for this contingency table involves sixteen

national projections, one for each cell frequency. For this analysis

there are sixteen variables for which a good prediction equation from

demographic data must be found. Twenty variables from the census data

were chosen and correlations were examined. It was decided to use 1975

population as the independent variable in all sixteen regressions. The

1975 population had high correlations with all variables. Correlations

of the sixteen frequencies with 1975 population ranged from .988 to

.581. The regressions were done and the results from the regression

analysis are presented in Table 4.34. In most of the regressions the

estimated intercepts were quite small. But there appeared to be quite a

bit of variability in the estimated slopes. The largest estimate for

the slope was .0048 and the smallest estimated slope was .0000012.

These regression equations were then used to predict each of the sixteen

frequencies for all of the counties not chosen in NCSS. These national

projections are given in Table 4.35.

One important question to consider is whether the distribution

based on the NCSS aggregate frequencies differs from the d i s t r i b u t i o n

based on the national projection frequencies. The distribution based on

the NCSS aggregate, the distribution based on predictions for the

unobserved counties obtained using the regression models and the

distribution based on the national projections were compared. These

three distributions are given in Tables 4.36 to 4.38. The distribution

of the NCSS aggregate does not differ much from the distribution of the

national projections. It should be noted that. the distribution of the

national projection is closer to the distribution based on the

predictions for the unobserved counties. This is due to the fact that

only 43 of the 3112 counties were observed in NCSS. The national

projection is more heavily weighted. by the predictions for the

unobserved counties.
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TABLE 4.34

Regression Analysis Summary
for the National Projections of the

Distribution of Occupants by NCSS Class and General Area of Damage

----------------------------------------------------------------
Regression Statistics

Dependent I--------------------------------------------------
Variable I Estimated 2 Standard

I Intercept Estimated Slope R Error
---------

FRONT-FAT a
-+------------------------- -, 2.1178 0.35228 A 10-4

-----------
0.90974

----------
1.97

FRONT-HOSb 7.7916 0.39593 X 10-3 0.96837 12.73
FRONT-TRTc 20.372 0.14992 X 10-2 0.87128 102.50
FRONT-NTRTd 1.0145 0.47566 X 10-? 0.97631 131.80
RIGHT-FAT 0.60184 0.19715 X 10-4 0.81081 1.69
RIGHT-HOS 2.0586 0.95013 X 10- 0.87406 6.42
RIGHT-TRT 4.9504 0.32372 X 10-3 0.77785 30.77
RIGHT-NTRT 5.9745 0.10022 X 10- 2 0.89386 61.41
BACK-FAT -0.028479 0.12409 X 10-5 0.41694 0.26
BACK-HOS
BACK-TRT

0.22552
2.2825

0.17125 X 10-3
30.15416 X 10-

0.33712
0.73424

4.27
16.50

BACK-NTRT 0.40072 0.39616 X 104 0.90238 23.178
LEFT-FAT 0.25263 0.20307 X 104 0.78767 1.88
LEFT-HOS 1.9517 0.87846 X 10- 0.85888 6.33
LEFT-TRT 2.5514 0.36577 X 10-3 0.72496 40.08
LEFT-NTRT -3.7712 0.13053 X 10-2 0.96711 42.82

----------------------------------------------------------------

aNCSS classification coded 1, 2, or 3.

bNCSS classification coded 4.

cNCSS classification coded 6.

dNCSS classification coded 8.

4.6.2 Evaluation of the Model. The effect of specific counties

was investigated to analyze how sensitive the national projection is to

the choice of a particular county. One of the traffic accident

statistics, ACCIDENTS, was chosen for this investigation. This analysis

consisted of using 42 counties (one less than the total number

available) to produce a national projection. This procedure was done-43

times. Each time the analysis was done a different county was excluded.

Varying the particular counties used in fitting the model, on which the

predictions for the unobserved counties are based, does change the value
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TABLE 4.35

Frequency Distribution
NCSS Classification and General Area of Damage

National Projections
January 1977 to March 1978

--------------------------------------------------------------------
I NCSS Class

General i--------------------------------------------------------
Area of I Treatment/ No
Damage I Fatal Hospitalized Not Hosp. Treatment

-----------+--------------------------------------------------------
Front I 14,046 108,102 380,316 1,010,512
Right I 6,052 26,502 83,799 230,856
Back 176 4,310 39,679 85,113
Left 5,088 24,655 85,145 264,688

--------------------------------------------------------------------

TABLE 4.36

Distribution of
NCSS Classification and General Area of Damage

NCSS Aggregate
January 1977 to March 1978

--------------------------------------------------------------------
I NCSS Class

General I---------------------------------------------------------
Area of I Treatment/ No
Damage I Fatal Hospitalized Not Hosp. Treatment

-----------+--------------------------------------------------------
Front I 0.0067 0.0500 0.1499 0.4188
Right I 0.0030 0.0112 0.0317 0.1031
Back I 0.0001 0.0012 0.0152 0.0358
Left 0.0024 0.0105 0.0277 0.1127

of the projection. Figure 4.12 is a histogram of 43 national

projections obtained in this investigation and descriptive statistics

can be found in Table 4.39.

From the histogram and the descriptive measures it can be seen that

the national projections do vary as different counties are excluded from

the analysis. There is no way to tell which of these national

projections is closer to "true" population total. The minimum and
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TABLE 4.37

Distribution of
NCSS Classification and General Area of Damage

Predictions for Unobserved Counties
January 1977 to March 1978

---------------------------------------------------------------------
NCSS Class

General --------------------------------------------------------
Area of I Treatment/ No
Damage Fatal Hospitalized Not Hosp. Treatment

------------+--------------------------------------------------------
Front I 0.0059 0.0456 0.1606 0.4264
Right I 0.0025 0.0112 0.0354 0.0974
Back I 0.0001 0.0018 0.0168 0.0359
Left I 0.0021 0.0104 0.0360 0.1117

TABLE 4.38

Distribution of
NCSS Classification and General Area of Damage

National Projections
January 1977 to March 1978

--------------------------------------------------------------------
I NCSS Class

General I------=----------------- --------------------------------
Area of Treatment/ No
Damage I Fatal Hospitalized Not Hosp. Treatment

-----------+--------------------------------------------------------
Front I 0.0059 0.0456 0.1605 0.4265
Right I 0.0026 0.0112 0.0354 0.0974
Back I 0.0001 0.0018 0.0167 0.0359
Left I 0.0021 0.0104 0.0359 0.1117

maximum national projections presented in Table 4.39 might be thought of

as upper and lower bounds for the national projection i f only 42 of t h e

counties originally selected were observed. This discussion is not an

analysis of the sampling variance of the national projection which must

take into account the uncertainly in the estimates of the population

totals for each observed county. Rather it is an evaluation of how t he

choice of observed units might have affected the national projection.
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TABLE 4.39
Descriptive Statistics for the

County Selection Sensitivity Analysis

------------------------------------------------------------------------
Estimate

Parameter (N=43)
------------------------------------------------------------------------

Mean 2,448,969
Standard Deviation 138,565
Minimum 2,397,501
Maximum 2,527,067

------------------------------------------------- ----------------------

One final question deserves a bit of attention. That is, how

important is the choice of the demographic variable that is used in the

prediction equation,. in this estimation process. A sensitivity analysis

was done to investigate this problem. After a thorough review of the

County and City Data Book twenty demographic variables were found for
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use in this sensitivity analysis. Each of the twenty demographic

variables was used to develop national projections for the number of

towed vehicles (not restricted to those vehicles where Delta V can be

calculated). Table 4.40 gives some descriptive information obtained

from this analysis. For the twenty different demographic variables the

national projections ranged from approximately 1.86 mi l l i on to 4.05

million. This information suggests that the choice of the demographic

variable can substantially change the projection of the number of towed

vehicles.

TABLE 4.40

Descriptive Statistics for the
Demographic Variable Sensitivity Analysis

-------------------------------------------------------------------------
Estimate

Parameter (N=20)
-------------------------------------------------------------------------

Mean 2,719,800
Standard Deviation 463,310
Minimum 1,859,000
Maximum 4 ,047 ,400

To further investigate this variability, the national projection

was plotted as a function of R2 from the regression producing the

prediction equation developed to make the national projection. This

plot is shown in Figure 4.13. From this, plot it can be seen that the

extreme national projection are associated with regressions that have

low R2. The variability of the national projection appears to decrease

slightly as R2 increases, but in general the projections all lie within

2;,292,300 and 3,244,200 when demographic variables whose R2 are greater

than .6 are used in developing the national projections. There does not

appear to be a "true value" for the number of towed vehicles appearing

as R2 approaches 1. It is clear from this analysis that the demographic

variable to choose is one where the association between it a,-. , the

accident statistic of interest is the highest.
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4.6.3 Modification for Missing Data. All of the examples in the

previous subsections use variables that have no missing data. If the

proportion of missing data is small (perhaps less than 5%), some

analysts would ignore missing data and proceed with the analysis under

the assumption that the small percentage of missing data would not alter

their analysis significantly. In the NCSS data many of the variables

have much more than 5% of the cases for which the information is

missing.

An assumption underlying the national projection technique was the

-availability of unbiased estimates for the population totals for the

units observed. The technique can be modified to adjust for missing

data, in the case where data were not available for certain units or

were lost in the sampling procedure. The adjustment involves obtaining

new estimates for county totals that are adjusted for missing data. The

method of adjustment of county totals is usually based on subjective

knowledge or from a re-sampling of cases with missing data in a further

attempt to obtain the data. Missing data procedures in general are
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discussed in Section 4.1.4. In Section 4.5 the character of the missing

data of key NCSS variables is examined.

The adjusted county total is then used to develop the predictive

models for the unobserved units. This estimate of the population total

within a county, if an imputation method were used to adjust for missing

data, can be expressed for each county as

(4-35)
t^ = ti + ui

where

ti is the adjusted estimate of the ith county total,

ti is the observed total in the ith county, and

ui is the imputed total for the data missing in the ith county.

If a reweighting procedure is used to adjust for missing data, the

adjusted estimated county total can be expressed for each county as

(4-36) ti = uiti

where

t* is the adjusted estimate of the ith county total,

ti is the observed total in the ith county, and

ui is the reweighted adjustment factor for the ith county.

These adjusted ti are used in place of ti and the best fitting linear

regression model with one independent variable is obtained by choosing

a and 6 to minimize

(4-37) a -bx i)2
iEs

as in Equation 4-27.

If an imputation method is used and ti is given by Equation 4-35

the estimate of the national projection is given by

(4-38) 8(s) = Y(ti + wi) +
Ca l + 61 (Xi - xs )]

If$ ifs

where al and 61 are given by

(4-39) a1 = I ti + wi)/n
ifs
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-(ti+wi) XS)
( X i

b1 = its(4-40)

(Xi-xs) 2
ifs

If a reweighting procedure is used then the estimate of the national

projection is given by

(4-41) a(s) =Y tiwi + Y .[a 2 + 62(Xi - xs) ]
ifs ifs

where a2 and 62 are given by

(4-42) a2 = ItiwiA
Its

x(tiui) (Xi-xs)
(4-43) b2 = _

,(Xi-xs 2
Its

Due to the nature of imputation methods at the present time there

is no method that can be used to calculate the variance of the estimate.

Rubin46 advocates the use of multiple imputations, or multiple weight

adjustments, to calculate the variability in an- estimate due to the

imputation procedure. This method will assess the sensitivity of the

national projection to the imputation procedure but does not incorporate

the variability of the county totals due to sampling.

4.6.4 Alternative Methods. I n this subsection the national

projections presented in Section 4.6.1 are compared to a method commonly

in use to generate nationally representative numbers from the NCSS data.

This method involves applying an inflation factor to a NCSS aggregate

total. The inflation factor is the ratio of a population statistic to

the comparable NCSS aggregate statistic.

46D. B. Rubin, "Multiple Imputations in Sample Surveys--A
Phenomenological Bayesian Approach to Nonresponse," Imputation and
Editing of Faulty or Missing Survey Data (Washington, D.C.: Department
of Commerce, Bureau of the Census, 19/8).
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Kahane47 and O'Day and Kaplan48 have both used variations of this

method. Kahane used, to form the inflation factor, the ratio of U.S.

fatalities to the total number of fatalities in NCSS. O'Day and Kaplan

based the inflation factor on the ratio of 1970 U.S. population to the

population represented by the NCSS areas obtained from the County and

City Data Book49. In Table 4.41 the actual inflation factors are

cresented. There are three inflation factors based on fatalities

presented in this table. In Kahane's paper a preliminary version of the

NCSS file was used. This data is referred to as Version 1. A near

complete version of the NCSS data, that had approximately 55 accidents

missing and that was used to produce the national projections in this

report, is referred to as Version.2. The third inflation factor in the

table is based on the number of fatalities in the officially released

version of the 15 month NCSS file. The total number of fatalites for

the 15 months of NCSS was obtained from the 1977 and 1978 FARS fi 1 es.

There were a total of 30,562 fatalities in towed passenger cars for t he

15 month period of NCSS. There were 25,471 fatalities in 1977 and 5,091

fatalities in the first three months of 1978.

A national projection for the total number of accidents involving a

towed passenger car is presented in Table 4.33. The inflation factors

were applied to the estimate for the NCSS aggregate of the number of

accidents involving a towed passenger car (31,86750). These inflated

numbers are presented in Table 4.41.

47C. J. Kahane, An Evaluation of Standard 214. Technical Re ort
(Washington, D.C.: National Highway Traffic Safety ministration,
September 1979), Report No. DOT-HS-804-858.

48J. O'Day and R. Kaplan, The FARS Data and Side-Im act Collisions
(Warrendale, Pa.: Society of Automotive Engineers, 1979), Report No.
SAE 790736.

49U. S. Bureau of the Census, County and City Data Book, 1977: A
Statistical Abstract Supplement (Washington, D.C..: Government Printing
Office, 1978).

50Leda Ricci, ed., NCSS Statistics: January 1977-March 1978, Report
No. UM-HSRI-79-80. Sponsored by the National Highway Traffic Safety
Administration, Department Of Transportation, Washington, D . C . , under
Contract No. DOT-HS-8-01944 (Ann Arbor:Highway Safety Research
Institute, The University of Michigan, October 1979).
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The estimate produced using the inflation factor based on

population gives the most conservative number of accidents. The

estimates based on NCSS fatalities (Versions 2 and 3) are approximately

the same. But these estimates are about 20% less than the estimate

using the projection method. The very early inflation factor (Version

1) predicts a higher number of accidents than the national projection.

The inflation factor method uniformly inflates all areas at the same

rate. Rural and urban differences are ignored. The aggregate of all

the NCSS areas is assumed to be perfectly representative of the entire

U.S. The national project method uses a different inflation factor for

each county so that the mix of urban and rural counties has less of an

effect on the national projection.

There is no way to tell which of the methods is closer to the true

population totals. When there is enough data (excluding rare events)

the method of national projections seems to intuitively give better

estimates. These estimates are more complicated to calculate and

possibly the inflation factor method is useful in giving quick numbers

that may be reasonable. Care must be taken when u s i n g the i n f l a t i o n

method to use the most accurate data available to form the inflation

factor as the estimate can vary quite substantially as seen in Table

4.41.

4.6.5 Summary. An estir;.^ion procedure, called a national

projection, has been proposed for use in producing nationally

representative statistics from the NCSS data. In spite of the fact that

this estimate is biased, it has an intuitive appeal. The national

projection combines the estimated total for the observed part of the

population with a prediction about the magnitude of total for the

unobserved part of the population. The prediction makes use of

auxiliary information available for the entire population. It involves

developing a model to predict from the auxiliary information the

unobserved total of the statistic of interest. This model is developed

using the data of the observed portion of the population and then it is

used to predict the value of the statistic for the unobserved

population.
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TABLE 4.41
Comparison of Different Methods to

Adjust NCSS to Obtain
Nationally Representative Statistics

January 1977 to March 1978

I Number of
Method I Fatalities Ratio ACCIDENTS

I Represented
--------------------------------------------------------------------

NCSS I
Fatal Occupants I
Version 1 I 300 101.87 3,246,291

NCSS I
Fatal Occupants I
Version 2 I 485 63.01 2,079,397

NCSS I
Fatal Occupants I
Version 3 I 500 61.12 1,947,711

1970 I
Population I 51.09 1,628,085

National I
Projection 1 2,447,082

---------------------------------------------------------------------

If the relationship in the selected areas between the accident

statistic and the auxiliary information is the same as the relationship

in the unobserved areas is a reasonable assumption, then there are two

remaining main sources of bias. One term represents the degree to which

the data fit the theoretical population model. The second involves t he

slope of the linear model, the number of unobserved counties, and t h e

difference between the population mean and sample mean of the auxiliary

variable used in the prediction model. With the NCSS design it appears

that the second source of bias may cause an underestimate of the

copulation total. Investigation of the choice of counties indicates

that exclusion of any one of the selected counties causes the national

projection to vary by no more than 4.5%.
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Underlying the production of a national projection is the

development of a model, based on the observed data, to predict the

accident statistic. The sensitivity of the national projection on t h e

choice of the auxiliary variable to be used for the projection was

investigated. The national projections calculated separately for twenty

auxiliary variables varied by about 17%. For variables with high R2

there seemed to be less variability but no consistent trend. Excluding

regressions with R2 less than .6 the national projections varied by

about 9.4%. Extreme predictions occurred when R2 was low.

The national projections are compared with an alternative commonly

used method that uses an inflation factor. These methods differ

markedly. The use of an inflation factor produces an estimate

consistently lower than the national projection. An exception is the

early version of the NCSS file where 40% of the fatalities were not in

the data file. The inflation factor method based on fatalities produces

estimates approximately 15% less than the national projection.

Based on the analyses presented in this subsection the inflation

factor method using fatalities will provide a quick method to produce

nationally representative numbers. These may underestimate the national

level somewhat. If what is needed is a good assessment of a national

accident statistic the national projection method, although more

difficult to develop, is appropriate. In summary, modifying the NCSS

aggregate data using the national projection method takes more effort

and as a consequence will yield a good estimate of the national

experience. The inflation factor method will provide a quick method to

aet nationally representative statistics but appears to be sensitive to

the ratio used in the inflation.
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4.7 Significant Results. The NCSS design specified a purposive

sample of seven areas. Within each area a stratified cluster-sample of

accidents was taken, except in two areas where a simple random sample of

accidents was taken. For vehicles and occupants all within-area sample

designs are clustered by accidents. Estimates for the aggregate of t he

NCSS areas were calculated. These NCSS accident statistics are

organized and published in three publications:

1. NCSS Statistics November 1979.

2. NCSS Statistics: Passenger Cars June 1980.

3. NCSS Statistics: Light Trucks and Vans June 1980.

There are some key points to be made about these publications. The

statistics in these publications describe police-reported accidents

involving towed vehicles for the aggregate of the seven areas. There is

reason to believe that the accident experience of light trucks and vans

in the aggregate of the seven areas is not described nearly as well as

the accident experience of passenger cars. So, in general, the tow-away

accident population for light trucks and vans is not directly comparable

with that of passenger cars. Finally, it should be noted that missing

data counts have not been excluded from the tabulations and,

consequently, the percentages for a particular category may be slightly

underestimated.

Investigation of the NCSS data indicated that some accidents were

sampled erroneously and some were excluded from the data file. D u ring

the sampling process, accidents were included that were not legitimately

chosen accidents. The effect of these errors is probably sma l l . Th i s

may indicate that accidents were also excluded in the process of

sampling accidents but the extent of this is unknown. The excluded

accidents were those with fatalities. Fatalities were studied

separately and a comparison of NCSS with FARS and various state census

files of accidents suggested that possibly as much as 20% of the

fatalities occurring in the NCSS sites were missing from the NCSS data

file. This would have the effect of making NCSS derived statistics

underestimates of the population proportions.
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As part of this analysis, variance estimates, or sampling errors,

were calculated for selected statistics based on'the Phase 1 data. This

analysis was done in order to assess the magnitude of the effect of t he

cluster design on the variance associated with various NCSS statistics.

The problem of presentation of sampling errors for publications like

NCSS Statistics is given some attention in this analysis.

It was found that the sampling errors associated with some accident

statistics were significantly affected by the cluster design. The

confidence intervals based on the appropriate sampling error can be two

or three times larger than a confidence i nterval based on sampling

errors calculated for a simple random sample. The sampling errors

associated with some injury level variables were actually less than the

sampling errors under the assumption of simple random sampling due to

gains from the stratification used in the NCSS design. It does not

appear that using variances calculated on the assumption of simple

random sampling will be a good approximation for all the NCSS

statistics, and that to get more realistic estimates more complicated

calculations are necessary.

Sampling errors are presented in two ways. A graphical

representation of sampling errors was used. This method looks at the

estimate as a function of its sampling error. This method easily

summarizes a great deal of information. Design effects can also be used

to categorize certain types of statistics, like accident, vehicle, or

occupant level statistics or even a finer breakdown, that summarizes the

effect of the design on the sampling error. So if the design effect is

available it can be multiplied by the simple random sample variance and

the result used as an approximation to the appropriate sampling error.

Both procedures are used in subsection 4.4 to present the sampling

errors calculated.

The focus of the analysis of missing data was on differences

between the vehicles or occupants that were missing data and those that

had complete information. This is the first step in finding appropriate

missing data adjustment procedures. The literature describes various

procedures that are currently being used. They all assume that there is

no basic difference between missing and non-missing data elements. That
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is, only the proportions within the categories of a variable differ

between the two segments. To develop missing data adjustment procedures

some assessment must be made of how these two segments differ.

The key variables involved in the analyses were OAIS and Delta V.

OAIS is an ordinal variable that indicates a degree of injury severity,

and Delta V is a measure of crash severity. Missing data rates were

calculated for OAIS and Delta V and the rate at which one or the other

was missing. The missing data rate for OAIS is about 30%. Calculation

of a missing data rate for Delta V should be relative to those vehicles

where Delta V could be calculated. Using this base, the missing data

rate for Delta V is about 34%. The rate at which one or the other is

missing is about 70%.

Missing data for- fatal and non-fatal occupants were investigated

separately. Information was obtained from the hard copy documentation

for 333 fatal occupants and 388 non-fatal occupants. For the fatal

occupants with missing data there was a higher proportion of occupants

with OAIS coded with a maximum injury. There was also an increase in

the proportion of vehicles with fatal occupants at higher categories of

Delta V. For non-fatal occupants there was a substantial difference in

the proportion of minor injuries.

A procedure was developed to produce nationally representative

estimates. This procedure uses NCSS statistics and demographic

variables by county. A model relates the NCSS statistics and the

demographic variables. This model is then used to predict the

statistics for the counties not observed. These predictions are then

combined with the NCSS statistics to form national projections.

The procedure to develop national projections can be used for

univariate and bivariate distributions as well as simple statistics.

The procedure appears not to be very sensitive to the exclusion of a

particular county from the modelling stage of the analysis; the national

projections vary by about 5%. Investigation of the sensitivity of the

national projection to the choice of demographic variables indicated

that when demographic variables were chosen where the correlation was

significant (in this analysis greater than .75) the national projection

varied by about 9%. This procedure works well as long as the
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correlation between the accident statistics and demographic variable is

high. This method does not produce stable projections when looking at

events with a low probability of occurrence or with variables that have

large amounts of missing data.

All of the NCSS statistics for which national projections were

developed involved only variables with very little missing data. The

procedure is modified to allow for different types of missing data

adjustments. The modification involves using the adjusted county

statistics in the analysis rather than the unadjusted totals directly

from NCSS. This will inflate the national projections as would be

expected.

Finally, the national projections based on the method developed in

this project are compared with a frequently used procedure. This

procedure involves inflating the NCSS aggregate by an inflation factor.

One factor of this type used is the ratio of U.S. fatalities to NCSS

fatalities. The inflation estimates were lower than the national

projection of the total number of accidents involving a towed passenger

car. When an approximate estimate is needed the inflation method will

provide easily obtainable estimates. But, when good national estimates

are needed the national projection method is appropriate.
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5 ACCIDENT ANALYSIS MODELS

The NCSS data contain a wealth of information on the current

highway accident experience. Ultimately, one would also hope that

analysis of this information would reveal modifications which would

reduce future highway accident losses. Accident analysis models are one

attempt to synthesize current information in a manner which is intended

to aid highway safety decisions. These models use information on the

current accident experience to estimate the potential for injury

reduction of proposed restraint systems.

The objective of this chapter is to review the implications of the

analytical work described in this report for the use of the NCSS data in

current accident analysis models. The focus of this 'effort is the

Kinetic Research Accident Environment Simulation and Projection Model

(KRAESP)51. NHTSA is currently funding Kinetic Research to incorporate

the NCSS data in the KRAESP model as part of "Basic Ordering Agreement

for Systems Engineering Studies," Contract No. DOT-HS-9-02096. The

first subsection describes accident analysis models in general, and the

KRAESP model in particular, focusing on the role of the accident

information which is used. This subsection is followed with a

discussion of our analysis of the NCSS data and a discussion of the

implications of this work for the use of the NCSS data in the KRAESP

model.

5.1 Existing Models

This subsection begins with a brief discussion of the general

objectives of accident analysis models, and is followed by a longer

description of the KRAESP model focusing on the role of the accident

data which is required.

5.1.1 General Objectives. Currently there are more than 150

models of the motor vehicle transportation system in the public

51D. Redmond and K. Friedman, "Introduction to the Kinetic Research
Accident Environment Simulation and Projection Model," Prepared under
DOT Contract No. DOT-HS-9-02096, Kinetic Research Draft Report No. KRI-
TR-041, January 1980.



domain52. Virtually all of these focus on economic forecasting of

demand in terms of vehicle miles traveled. An example of these models

is the Automobile Demand Model developed by Wharton Econometric

Forecasting Associates53. However, a few models have been developed

which seek to forecast the motor vehicle accident experience. An early

model of this type developed by Joksch54 used time-series methods to

predict the number of fatalities as a function of the vehicle size mix.

Both of the models of interest to this discussion were developed as

part of the Experimental Safety Vehicle programs sponsored by the

Department of Transportation during the early 1970's. Ford Motor

Company developed the Safety System Optimization Model55, and Minicars,

Inc. developed the Research Safety Vehicle Accident Analysis Model 56

which later evolved into the Kinetic Research Accident Environment

Simulation and Projection (KRAESP) model. The objective of these models

is to estimate the reduction of deaths and injuries for future

populations of vehicles with various proposed occupant protection

systems.

In general, these accident analysis models must synthesize the

current information in both the accident causation and the vehicle

52Richardson, B.C., Segel, L.D:, Barnett, W.S., and Joscelyn, K.B.,
An Inventory of Selected Mathematical Models Relating to the Motor
Vehicle Transportation System and Associated Literature. HSRI, 1979,
Report No. UM- HSRI -79- 7. Ann Arbor, Michigan: UMI Research Press, an
imprint of University Microfilms International. Sponsored by the Motor
Vehicle Manufacturers Association.

53G.R. Shrink and C.J. Loxely, An Analysis of the Automobile
Market: Modeling the Long-Run Determinants of the Demand for
Automobiles, Final Report to the Department of Transportation
Transportation Systems Center, February 1977.

54H. C. Joksch, An Accident Trend Model - Final Report. Center for
the Environment and Man, Inc. Hartford, Connecticut, March 1975.

55Research Safety Vehicle (RSV) Phase I Final Report, Volume I I ,
Ford Motor Company. Prepared for the Department of Transportation under
Contract No. DOT-HS-4-00842, June 1975. DOT HS-801 599.

56D. Struble and G. Bradley, Research Safety Vehicle Phase I,
Volume II, Program Definition Foundation, Minicars, Inc. Prepared under
Department of Transportation Contract No. DOT-HS-4-00844, June 1975. DOT
HS-801 604.
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crashworthiness areas. The two major functions of current accident

analysis models are:

1. Project the accident experience (causation).

2. Project the injury response (crashworthiness).

Projecting the accident experience requires that information on the

size, composition, and use of the current and hypothetical vehicle and

occupant population be supplied as input. Also, a statistical

description of the accident experience of the current population is

required. Current knowledge on the relationship of the characteristics

of the vehicle and driver populations to their resulting accident

experience (causation) is then used to estimate the accident experience

of the hypothetical population of vehicles and drivers. The result of

this computation is 'a complete description of the number and kind of

accidents the hypothetical population of vehicles and occupants will be

involved in.

Projection of the injury experience requires an analogous

treatment. Having estimated the accident experience of the hypothetical

vehicle and occupant population, information on the probability of

injury and death for both the current and the proposed occupant

protection systems is used to estimate the injury experience of the

hypothetical population. Again, the necessary input for this

computation is the injury experience of the current occupant population.

Current knowledge of the relationship of the collision conditions to the

resulting injuries and deaths is used to relate the performance

characteristics of the hypothetical occupant protection systems to their

expected injury experience.
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5.1.2 The KRAESP Model57,58,59,b0. This subsection is intended to

provide a brief overview of the Kinetic Research Accident Environment

Simulation and Projection (KRAESP) model. The focus of this overview is

the role of the accident data inputs to the model. Consequently, other

major operations of the model may be omitted or given only passing

mention.

In the KRAESP model, the accident experience is divided into

numerous subsets. Injury estimation is carried for each subset, and the

results summed. The model, then, is defined by the variables and levels

which define the subsets. These are listed below:

Accidents are subset by:

calendar year

Vehicles are subset by:

manufacturer
model year
weight class
restraint system by occ. seat location

Occupants are subset by:

collision severity
collision mode (vehicle-to-vehicle, single vehicle)
damage area (by-clock direction)
occupant seat location
(occupant age)
(body region of injury)

57D. Redmond and K. Friedman, "Introduction to the Kinetic Research
Accident Environment Simulation and Projection Model (KRAESP)," Prepared
under Department of Transportation Contract No. DOT-HS-9-02096. Kinetic
Research Draft Report No. KRI-TR-041,•January 1980.

58K. Friedman, R. Thomson, and D. Redmond, "The Kinetic Research
Accident Environment Simulation and Projection Model," prepared under
Department of Transportation Contract No. DOT-HS-7-01552. Minicars,
Inc. Draft Report No. KRI-TR-027, July 1978.

59D. Struble and G. Bradley, Research Safety Vehicle Phase I,
Volume II, Program Definition Foundation, prepared under Department of
Transportation Contract No. DOT-HS-4-00844, June 1975 DOT HS-801 604.

60N. DiNapoli, et. al., Research Safety Vehicle Phase II, Volume
II, Comprehensive Technical Results, Minicars, Inc. , prepared under
Department of Transportation Contract No. DOT-HS-5-01215, November 1977.
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Occupant age and body region of injury are subset variables which are

available in the current version of the KRAESP model, but which have not

yet been employed for lack of input data.

Figure 5.1 shows the overall organization of the KRAESP model and

the locations of the accident data inputs. The KRAESP model requires

inputs over a period of calendar years, and produces projections for

each year. This discussion is limited to the data requirements for a

single year for simplicity. The first box indicates the vehicle

population projections. The necessary input is the number of vehicles

introduced during the model year by manufacturer and weight class. This

information is combined with the information on the vehicle population

at the beginning of the year and estimated scrappage rates to project

the total population for the current year. The restraint systems may be

specified by seat location and impact mode (front, side, rear, and

roll). In other words, the model allows different restraint systems to

be specified for the different impact directions; for example, an airbag

for frontal impacts, headrest for rear impacts, and, perhaps, none for

side impacts.

Accident data are input in the second box which describes the

occupancy of each seat location and the closing speed distribution for

each impact mode (vehicle-to-vehicle and single vehicle) and damage area

(clock direction). The information in boxes one and two is combined to

produce the description of the projected "accident environment"

represented by the third box. A key assumption is involved at this

point in the estimation of the number and distribution of accidents.

The total number of accidents is adjusted in proportion to the estimated

number of vehicle-miles. Vehicle mileage, in turn, is assumed to be

only influenced by scrappage (vehicles taken out of use) and vehicle

age. None of the accident information supplied in box two is altered.

Only the total number of accidents is adjusted. One way of viewing this

projection procedure is that it effectively controls (eliminates) any

possible changes in the probability of an accident as a result of

vehicle size or use. Consequently, any changes predicted are the result

of the crashworthiness analysis, and year-to-year changes simply reflect
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the growth of the vehicle class of interest in relation to the total

population of vehicles.

A key analysis variable in this portion of the model is vehicle

weight, which is generally categorized into "classes." Vehicle weight

is central because of its interaction with collision severity. R ecall

that the accident data provided in box two included distributions of

closing speed for each impact mode and damage area. Closing speed is

the velocity of the struck vehicle with respect to the striking vehicle

or object. These distributions are felt to be relatively independent of

the vehicle population (although they may be influenced by oil

shortages, speed limits, or other major changes in the automobile

transportation system). The measure of collision severity required for

the crashworthiness analysis (boxes 4-6) is the velocity change of the

vehicle, Delta V. Basic momentum principles indicate that the velocity

change of each vehicle (in a two-vehicle collision) is related to the

closing speed and the masses of the vehicles by the following equation.

Delta V1 = Vc(M2/(M1 + M2))

where:

V is the closing speed, and
Mi and M2 are the respective vehicle masses.

Having specified the weights of the vehicle population in the first box,

the above relationship is used to compute the distributions of Delta V

for each weight class given the distributions of closing speed for each

impact mode and damaged area provided as part of the accident data in

box two.

The model must now estimate the injury response of the proposed

restraint systems for the specific accident subsets used in stops one

through three. The input data for the proposed restraint systems is in

the form of engineering tests. The major hurdle in this portion of the

model is the relationship of the engineering test measurements to t h e

probability of injury or death. To accomplish this task, accident data

describing the current injury experience (for unrestrained occupants) is

provided to the model as shown in the fourth box. The unrestrained case

is also included in the engineering tests. The accident data supplied

415



takes the form of distributions of AIS (Abbreviated Injury Scale) levels

for each impact mode, damage area, occupant seat location, and 5 mph

increment of Delta V. For each increment of Delta V for the proposed

restraint system, the engineering test measurements (decelerati on, for

example) are' used to identify a comparable severity level for the

unrestrained case. The distribution of AIS from the accident data for

this Delta V level is then identified as the injury response of the

proposed restraint system. The results of this process are the

projected injury response functions shown in the sixth box in Figure

5.1. Separate response functions are computed for each impact mode,

damage area, and occupant seat location.

Having projected the numbers of occupants exposed to each of the

accident subsets in the projected accident environment (box 3) and the

injury response of the proposed restraint systems under each of these

same conditions (subsets), this information can be readily combined to

estimate the numbers of injuries and deaths as shown in the final box in

Figure 5.1.

In view of the development of mechanistic models presented in

Section 3 of this report, the major question to be addressed at this

point in the model is whether collision severity (Delta V) is a

sufficient predictor of the probability of injury or death (more

specifically, the probability of a given AIS level). This material is

presented in the following subsection.

5.2 The NCSS Data

This subsection identifies the work presented in this report which

is relevant to the application of the NCSS data to the KRAESP model.

Our efforts have been presented under two broad headings, population

statistics and mechanistic models. Both of these topics are relevant to

the application of the NCSS data to the KRAESP model.

Earlier in this section, the two major tasks of the accident

analysis models were identified as the projection of the accident

environment and the projection of the injury response. Each of these

tasks, in turn, required accident data inputs. In the projection of the

accident environment, the distribution of accidents across subsets is
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required. In the projection of injury response, the distribution of AIS

is required for each subset. For each of these, national estimates of

the accident distributions are required.

The aggregate of the NCSS areas does not provide national estimates

since the NCSS data collection sites were selected purposively. The

development of national projections from the NCSS statistics is

presented in Section 4.6 of this report. The method uses county-level

demographic information which is published for all counties in the

United States. Models are then developed relating NCSS accident

statistics to the county-level variables. These relationships are used

to project the accident statistics to the counties not included in the

NCSS program. The variance of this estimate is also examined.

Application of this method to the data requirements of the KRAESP

model would be difficult. In general, the technique is not suitable for

all accident statistics. The necessary models must be developed

separately for each statistic. Some statistics, especially those

describing small subsets of the data, may not exhibit strong

relationships with any of the available demographic data. I n these

situations, the resulting national projection is more likely to be

biased. Also discussed in Section 4.6 is the simple ratio, or

inflation, projection method. It appears that this method may also

produce somewhat biased estimates.

However, a careful application of these methods in conjunction with

suitable supplementary information may yield usable results. For

example, population models might be used to estimate totals for major

subsets, and then ratio estimates could be applied for the smaller

cells. For fatal accidents, the FARS file might provide good totals for

ratio estimates. In summary, the NCSS cannot by itself easily provide

all the required national estimates, but NCSS can serve as a valuable

data source.

The mechanistic models presented in Section 3 of this report are

also relevant to the KRAESP model. In the projection of injury

responses for the proposed restraint systems, distributions of AIS

derived from accident data for unrestrained occupants are adjusted to

estimate the distributions of AIS for the proposed restraint system
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based on a comparison of the results of engineering tests and the

collision severity measure, Delta V. The underlying assumption here is

that the resulting AIS distributions can be adequately predicted by

collision severity (Delta V). This assumption will be met to the degree

that the mathematical model used accurately reflects the true physical

relationship between the relevant variables. Models which attempt to

reflect the governing physical principles have been labelled

"mechanistic" models in this report. The following paragraphs wi l l

compare the results of our attempts to develop mechanistic models with

the KRAESP model.

Before beginning this discussion, it should be pointed out that the

problem being addressed here is basically that of vehicle

crashworthiness. Given that a collision has occurred, the objective is

to relate variables which describe the nature of the collision to the

injuries which result. If this can be done successfully, then it is

reasonable to expect to predict the change in the resulting injuries

when the characteristics of one of the elements in the model, l i k e t h e

restraint system, are changed. Such an expectation is reasonable when

the model accurately reflects the physical mechanisms which govern the

collision event. A similar problem is presented in trying to estimate

the number and type of accidents to be experienced by a hypothetical

population of vehicles. Here, the more complex problem of accident

causation is involved. In projecting the accident environment, the

number of accidents is adjusted in proportion to the estimated number of

vehicle miles. Ideally, these adjustments would also be based on

physical principles relating the type and use of vehicles to the

resulting accident experience.

If vehicle populations are hypothesized with appreciably different

distributions of car size, for example, then it might also be reasonable

to envision that the use of these vehicles might be different. Small e r

cars tend to be used more in urban environments. The accident

experience of vehicles in urban usage is appreciably different from

those in rural usage. Collision severity is lower for urban accidents,

as is the proportion of single-vehicle accidents. Other trends

unrelated to the vehicle population might also be important. These
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might arise due factors such as oil shortages or changes in national

speed limits.

Adjusting the distributions in the national accident experience to

reflect year-to-year changes or trends is a subset of the larger problem

of accident causation. Although the accident analysis models were

originally developed to address the crashworthiness area, the KRAESP

model has been .extended to make projections in the accident causation

area. The user has the option to provide inputs on the type of brake

system for each vehicle. Each system is, in turn, presumed to modify

the distribution of closing speeds in the accident population. While

this seems a plausible first approximation, it opens up a vast and

relatively unknown area.

Projections in the causation area will only be as good as the

models used to make the projections. The validity of the accident

causation models will rest on their foundation in the physical

Drinciples which determine the occurrence or non-occurrence of an

accident. This treatment of the accident causation process is felt to

be far more difficult then the crashworthiness area. Unfortunately,

assumptions in this area are currently required in the accident analysis

models just to adjust the national accident experience to reflect

changes in the total estimated vehicle use resulting from changes in the

vehicle population. The total number of accidents is adjusted to

reflect estimated changes in total vehicle mileage. No differences in

vehicle mileage are included for vehicles of differing sizes. Only t he

total number of accidents is adjusted, so that the distributions remain

unchanged. These assumptions imply an accident causation model. The

remainder of this discussion deals with crashworthiness.

The basic model used by KRAESP to project the injury response of

the proposed restraint systems was summarized in Section 5.1.2. The

accident experience is first subset, and then particular distributions

of AIS are associated with 5 mph increments in Delta V. The subset ting

for development of mechanistic models presented in Section 3 followed

similar lines. The initial subsets separated front and side impacted

vehicles. Back damaged vehicles were not studied, and an examination of

rollover vehicles revealed only that ejection was closely associated
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with severe injury. The front and side groups were further divided into

vehicle impacts and fixed object impacts. For the front groups, each of

these were further separated into impacts to the center-front and

impacts involving the right- or left-front portion only. In the side

impacts, impacts to the passenger compartment were separated f nom non-

passenger compartment impacts. Near-side and far-side occupants were

treated separately in the side impacts, as were drivers and right-front

occupants in the front subsets. Other seat locations were not included

in the front subsets.

In the KRAESP model, damage area is identified by a "clock

position" which "points" to the location of the contact with the other

vehicle or object. The "clock direction" coded as part of the Collision

Deformation Classification 61 in the NCSS data is defined differently.

In the NCSS data, and in the CRASH program, this clock position is used

to identify the principal direction of force. As such, it identifies

the vector direction of the relative velocity with the struck object,

and the direction of the resulting Delta V. The location of damage is

identified by subsequent characters in the CDC. This situation poses no

conceptual problems in applying the NCSS data to the KRAESP model ; it

simply explains why our identification of damage location is specified

somewhat differently.

With these subsets, Delta V was indeed the strongest predictor of

injury severity. However, the examination of residuals presented in

Section 3 indicates that, although the, overall percent of correct

predictions was reasonably good (80-90%), the prediction of severe

injuries was frequently less than 50%. Addition of variables such as

occupant age, intrusion, and accident location (rural/urban) helped

somewhat, although the magnitude of their effects was appreciably less

than that of Delta V.

Further examination of the mispredictions revealed that addition of

body region, in particular, and injury type secondarily, substantially

reduced the mispredictions. Even for the severe injuries, the percent

61.. Collision Deformation Classification--SAE Recommended Practice
J224a," SAE Handbook, 1980 Ed. (Warrendale, Pa.: Society of Automotive
Engi neers, 1980), pp. 34.109-34.113.
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correct prediction was increased to 70% or more. This finding poses

some problems, however. Putting injury type into the model is a little

like putting the dependent variable in as an independent variable, sinde

many injury types can only be assigned to one or two AIS levels.

Similarly, there is a strong correlation between body type and injury

type (extremities usually incur fractures, concussion can only occur to

the head, etc.). While it is informative to know the source of the

mispredictions, it'is not clear what to do. Ideally, one would like to

find variables which would predict the body region. It would seem that

contact points and/or direction of principal force might be useful.

Efforts to use this information were not particularly successful.

Alternatively, separate models might be developed for each generalized

body region. This problem was recognized by Klimko,62 who recommended

that at least a maximum Occupant Injury Classification (OIC) and contact

point be coded for each of at least three generalized body regions

including an indication of no injury and/or no contact. We would agree

with this recommendation, although the data collection problems would be

difficult indeed. Current efforts to get contact points are only

marginally successful. Our modelling efforts seem to point to the need

to treat body regions separately. Currently, the KRAESP model has the

capability to subset by body region, although this capability has not

been used. Subsetting by body region would seem to be the next logical

step.

Another critical assumption in the projection of injury response in

the KRAESP model is the use of engineering test measurements, such as

chest deceleration, to establish equivalence of injury severity i n t h e

accident data and the response of proposed restraint systems. While

this topic is also outside the scope of this discussion, it would seem

that subsetting on body region would somewhat improve this situation,

since it would then be possible to ensure that the engineering

measurement would be taken from the same generalized body region as

that of the observed injuries in the accident data.

62L. Klimko and K. Friedman, Statistical Analysis of Crash
Conditions and Their Relationship to Injuries, Kinetic Research, Inc.,
Fina Report June 1 .
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From a practical standpoint, missing data is one of the most

serious problems with the NCSS data. This topic has been discussed

extensively already. Delta V and AIS are both present on only 40% of

the cases. Even without worrying about possible bias, cell sizes are

likely to be too small for many of the small subsets defined by the

KRAESP model. Missing data on AIS is considerably reduced on the

N!EWOAI S variables generated by the NCSA algorithm. At a minimum, t h i s

algorithm could be modified to identify OAIS 0-2,3, and 4+. The loss of

detail in the final output would probably be worth the reduction in

missing data. Beyond this, it would seem necessary to develop some of

the missing data adjustment techniques presented in Section 4.1.4 and

discussed in Section 7.5.

Missing data on Delta V will also be difficult to deal with.

Closing speed is not available i n the NCSS data. To compute this

variable it will be necessary to create a "two-vehicle" file which

matches the vehicle-level information for the two vehicles used in the

Delta V computation. This matching process can be carried out for

nearly all cases, although some difficulty is involved. For this

project, a two-vehicle file was only prepared for the preliminary data.

Closing speed was not computed.

A related problem is the influence of the towaway threshold on t he

vehicles selected for NCSS investigation. Klimko63 observed that small

cars in the RSEP data actually had a slightly lower mean Delta V than

larger cars. This is certainly contrary to what one might expect if

these vehicles were involved in accidents having the same distribution

of closing speeds as larger vehicles. Based on Equation 5-1, lighter

vehicles would be expected to have higher average Delta V values.

Klimko suggested that a higher Delta V might be required before a larger

vehicle was towed from the scene, than for a smaller vehicle to be

towed. If this were the case, more small cars with low Delta V's and

fewer large cars with low Delta Vs would be towed, and subsequently

eligible to be case vehicles. A review of Delta V by car s i z e in t h e

63L. Klimko and K. Friedman, Statistical Analysis. of Crash
Conditions and Their Relationship to Injuries, Kinetic Research, Inc.,
Final Report June 1978.
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NCSS file revealed that the lighter vehicles do appear to have slightly

higher Delta V values, on than average, than larger vehicles. Again, in

order to pursue this a two-vehicle file is required.

From the standpoint of the influence of the towaway threshold, it

would seem desirable to include non-case vehicles as well as case

vehicles in the two-vehicle file. In that way, the closing speed would

be obtained even if only one vehicle were towed. Distributions of

closing speed would then be less sensitive to any variation in the

towaway threshold with car size.

5.3 Summary

Two major points arise from this brief review of accident analysis

models in general. They are:

1. National estimates of the accident experience are required.

2. The projections will be valid only to the degree that they
reflect the actual physical principles and mechanisms which
govern the events being simulated.

National estimates are required since it is. the national accident

experience which is being projected. The important point here is that

statistically based national estimates (which will eventually be

available from the NASS) carry with them estimates of their variance.

If this information were carried through the simulation process, one

would be in a ,much better position to evaluate the variability of the

resulting projections.

The second point embodies the essence of what we have described as

"mechanistic" models. For many applications a statistical description

of the current situation is completely adequate. The situation is much

different, however, when one wishes to project the effect of proposed

changes in the system. Statistical correlations present before the

changes are introduced may be altered. Controlled experiments generally

cannot be conducted in a social system. The alternative is to ground

the statistical models in the physical principles and mechanisms which

govern the event being simulated. This is the critical issue in the

projection of the accident experience of the hypothetical vehicle

population, and also.in projecting the injury response of the proposed
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restraint systems. Projection of the accident experience of the

hypothetical vehicle population basically involves models or assumptions

in the area of accident causation. However, the current version of the

KRAESP model does not appear to take into account the possibi 1 i ty that

vehicles of different size classes may not be used in the same driving

environment, and, consequently, may have different accident experience.

For example, small vehicles may be used mostly in urban environments

where they are typically involved in fewer single-vehicle accidents and,

in general, collisions of lower severity. The implications of the

assumptions currently employed in the projection of the accident

experience appear to need careful review.

In the crashworthiness area (the projection of injury response),

the subsets used by the KRAESP model are generally comparable with those

which evolved from our work. The important observation here, is that

the prediction of severe injuries was correct only about 50% of the time

unless body region was included in the model. The implication is that

separate models should be developed for at least three or more

generalized body regions. Since not all injuries are coded for the NCSS

data, separate injury distributions for each body region may be somewhat

underestimated. We concur with the recommendation previously attributed

to Klimko; that at least the most severe injury should be recorded for

each of at least three generalized body regions, including the

occurrence of no injury to the body region.

A final observation is that missing data will be a serious problem.

Either Delta V or OAIS are missing on 60% of the file. Our modelling

efforts only addressed the most promising front and side impact subsets.

Alternative techniques will be needed where Delta V is not a s u i t a b l e

measure of collision severity. Statistical techniques such as those

discussed in Section 4.1.4 or 7.5 will have to be employed to address

the missing data problem.
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6 CLINICAL WORK

A major purpose of the NCSS program has been to develop a data set

which would permit predictive modeling of the relationships between

crash severity (and type) and occupant injury. Such models are

discussed in Section 3. In addition to such statistical procedures,

however, the NCSS case reports are relatively rich in detail and offer

the possibility of clinical review. This section of the report

discusses the goals of the clinical review process, the methods, and the

principal findings. These clinical studies have been published in

separate project reports as well as in the scientific literature.

Readers are referred to the original reports for more detail; summaries

will be presented here.

As a result of the coding conventions used in the NCSS program some

information which was available in the field reports was not coded into

the computerized files. Such information ranged from informal injury

descriptions (not fully supported by medical documentation) to

photographs of crash damage (which contain more complete detail than

could be coded into the Collision Deformation Classification system.

Further, injury details in the written reports were usually provided on

an anatomical diagram, and could be interpreted more fully by persons

with medical training. In the following clinical studies much use was

made of these documents.

While the NCSS field reports have been found valuable, the

reviewers have noted some shortcomings which limited their usefulness.

It is hoped that comments regarding the quality and completeness of the

data and the reporting methods will serve to guide the acquisition of

data in future programs. Consequently, one part of this section of the

report will discuss this matter.

The five separate reports produced under the clinical task during

this project include (1) a bibliographic review, (2) a study of

particular side impact cases, (3) an analysis of cervical injuries, (4)

an analysis of ocular injuries, and (5) an analysis of lower extremity

injuries.



6.1 The Bibliography

As a first step toward the clinical studies, the recent

biomechanics and automotive injury literature was reviewed. The purpose

was to determine the state of knowledge relative to injury type, body

region, frequency, severity, and cause, and to define those clinical

areas in which the NCSS data might best f i 1 1 gaps i n the current

knowledge. The bibliographic report was divided into six sections

according to body region, as follows:

1. The head and face
2. The neck and throat
3. The thorax
4. The .abdomen
5. The vertebral column
6. The extremities

Although the titles of many articles in the medical literature are

enticing, most such papers are concerned with treatment plans,

associated medical problems, and/or case histories of a very specific

type of injury. There is usually little crash information contained

within any of these articles. A typical crash description might read:

"The patient...was an occupant of a car that hit a tree at high speed."

Needless to say, such "crash data" do not add much to our understanding.

Biomechanics research laboratory data on human tolerance are

generally very specific in terms of the imposed impact conditions, the

body region impacted, and the subject kinematics. However, the test

conditions may not be totally representative of field conditions, and

may only consider a portion of the overall sequence of events in a real

crash. Biomechanics research on injury is further restricted by the use

of surrogates of the living human (cadavers and animals) as models to

study the mechanics of trauma. Often the number of subjects tested in a

particular study is necessarily small. The lack of large data samples

is counteracted somewhat by the well-defined test conditions and the

degree of control of the mechanical variables during a test.

The literature review suggested that the study of accident details

in the NCSS program might bridge the gap between past medical s t u d i e s

and laboratory experimentation. A measure of crash severity, admittedly

less precise than laboratory instrumentation, is available in the form

426



of a computer reconstruction (Delta V calcualated by the CRASH-2

program). 64 Most of the NCSS injury data have been acquired from

iualified medical sources. This information, combined with a careful

implementation of a sampling plan, should provide a better bridge

between biomechanics, injuries, and injury causation than has been

previously available.

While the biomechanics of severe head injuries are relatively well

understood, knowledge of the frequency of such injuries, and of the

sources (contacts) is not well defined. The sampling procedures used in

NCSS should permit such frequency estimates.

Anterior neck (throat) injuries are occasionally described in the

literature, but their frequency is not well reported. Again a major

contribution of NCSS may be to provide that knowledge.

With regard to thoracic injuries, the NCSS data should provide both

overall frequency information and a data base to answer specific

question regarding occupant age, direction and type of loading, and

crash conditions. Such information should complement presently

available biomechanics research.

Probably the abdominal region has a greater lack of human tolerance

data than any other area. While more biomedical/biomechanical research

is needed, the NCSS data may be expected to complement this with

frequency and crash condition information.

The cervical region of the vertebral column is of particular

importance. The presence of a large number of autopsy reports in the

NCSS data should permit a more complete understanding of the number and

type of such injuries, as well as the crash circumstances which lead to

them.

Some human tolerance data are available on the lower extremity, but

since injuries to this region are seldom fatal, they have not received

much attention. The NCSS data may be expected to contribute both

64 R. R. McHenry and J. P. Lynch, "CRASH2 Users Manual." DOT/
HS 802-106, November 1976
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overall frequency information and more detailed injury descriptions than

have been available to date.

Within the limits of time and funds available for this project,, the

literature review led directly to studies of three specific body

regions--the eye, the lower extremity, and the neck. In addition,

selected side impact cases were studied so as to compare the actual

accident experience with typical laboratory side-impact simulations.

6.2 Side Impact Studies

Approximately 90 selected side-impact cases from the NCSS were

studied to determine similarities and differences between actual crashes

and laboratory (sled) crash tests. Sled tests simulating side impact

have generally been conducted at a 90° impact angle, and the cases

reviewed in detail were those with a near-side occupant and a reported 3

o'clock or 9 o'clock impact vector.

Of approximately 90 cases studied, 51 were judged comparable to the

laboratory situation. The remainder generally involved cars struck at a

point remote from the passenger compartment, often with considerable

rotation of the vehicle. Injuries for the 51 cases were tabul-at-ed by

crash severity (Delta V) and the conclusion was drawn that they were

quite similar to those observed in, laboratory (sled) tests at a slightly

higher Delta V.

The report has been published separatedly as "Analysis of NCSS Side

Impact Cases", by J. W. Melvin, D. H Robbins, D. F. Huelke, and

J. O'Day, and was subsequently published as SAE Paper 800176, February

1980, presented at the SAE Congress and Exposition, 25-29 February,

1980.

6.3 Leg Injuries

Lower extremity injuries are identified in the NCSS data by body

region (pelvis, thigh, knee, leg, and ankle/foot), by injury type

(fracture, laceration, etc.), and by the source or point of contact
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(instrument panel, foot controls, etc.). I n the paper prepared on t h is

topic, only injuries at AIS-3 or above were studied in detail.65

Analysis of the NCSS data indicates that injuries of the more

severe nature (AIS 3 and 4) in the lower extremity are exceeded in

frequency of occurrence only by those in the thoracic region. When

national estimates are made, it appears that there are some 27,000 car

crash survivors each year sustain the more severe lower-extremity

injuries. This is approximately equal to the total number of passenger

car occupants who are killed annually.

The medical consequences of lower-extremity injuries of the more

severe nature may be extreme, including prolonged immobilization, l o n g

recovery periods, and the potential for the development of traumatic

arthritis. Bone infection is a hazard that can cause bone weakening,

recurrent infection, and life long threat of disability. Not

infrequently many of the individuals with these AIS 3 and 4 lower-

extremity injuries will have some degree of permanent impairment.

Front right passengers more often had the more severe lower

extremity injuries than did other occupants; drivers sustained a lower

than average frequency of the more severe lower limb injuries.

The more severe lower-extremity injuries are most often sustained

by unrestrained occupants impacting objects in front of them, with the

lower instrument panel being the main contact location.. Fractures are

the most common type of the more serious lower-extremity injuries.

The instrument panel is associated with injuries of the pelvis,

thigh, knee, and leg, whereas the ankle/foot region is almost always

injured by floor or foot control contacts. The back of the front seat

and the side interior are the contact points most often listed for side

impact crashes.

Of all of the sub-regions of the lower-extremity, the pelvic

injuries are found most in drivers, whereas the front passengers had

pelvis or thigh as the two areas most often injured.

65 "Lower Extremity Injuries in Automobile Crashes--an analysis of NCSS
data,", by Donald F. Huelke, James O'Day, John D. States, and Thomas
E. Lawson, report number UM-HSRI-80-10, January 1980.
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Direct impact loading to any areas of the lower-extremity can cause

injuries in that body region. In many cases force transmission through

bone to other lower-extremity area can cause fractures and/or

dislocations remote from the impact site. Compression or twisting

forces, especially at the ankle area, are believed to be the main cause

of the injuries to the ankle and foot.

Seat belt systems appear to reduce the more severe lower-extremity

injuries; however, there are too few cases available in the NCSS data to

make a definitive statement.

Increased attention to impact characteristics of the lower

instrument panel may prove beneficial in reducing the occurrence of t he

more severe lower-extremity injuries..

6.4 Ocular Injuries

Tempered windshields commonly used in Europe have been shown to be

highly related to ocular injuries. Although windshields of the HPR

(High Penetration Resistance) type in cars in North America are not at

all significantly involved in ocular injuries still, about 50% of the

injuries of the eye area are caused by glass. The HPR windshield

probably is the main reason for the relatively low occurrence of ocular

injuries in United States crashes compared to these injuries reported

from countries with tempered windshields.

No ocular injuries were observed among belted occupants in this

study. Increased use of lap-shoulder belts would decrease the

likelihood for occupant contact with the windshield, mirrors, A-Pillar,

steering column and instrument panel--about half of the occupant

contacts for ocular injury--and thus further reduce the incidence of

injuries leading to decreased vision.

Data from the first fifteen months of the NCSS program provide an

estimate of 7.5 cases of blindness in one eye among 62,000 occupants of

passenger cars damaged severely enough to require towing from the scene.

Among this group, no survivors were blinded in both eyes.
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6.5 Cervical Injuries

Previous studies due to traffic accidents cervical injuries have

been based on clinical reviews, and not from a known automotive accident

population. The National Crash Severity Study has provided for the

first time an adequate sample of actual crashes so that cervical injury

frequencies and severities can be determined.

The NCSS dataset used for this study represents 62,026 occupants of

towed passenger cars, and thus the frequencies quoted here apply to such

a group. Of a l l such persons, one i n 300 had a cervical injury i n t h e

range AIS-3 to AIS-5 or fatal. For contained occupants (i. e., persons

who were not ejected from their cars) this rate was one in 433. For

ejected occupants, the rate was one in fourteen. There are, of course,

many differences between accidents in which persons are ejected as

compared with those in which persons were not ejected, but this one

factor seems to be the strongest explanation of serious neck injury.

Given an AIS 3 to 5 level neck injury to an occupant., the worst

non-neck injury to that occupant is less severe than the neck injury in

62% of the cases.

More occupants sustain severe neck injuries in frontal or side

impacts, but the rate of such injuries is higher in rollovers than in

any other crash type. Such injuries are relatively rare in rear-

impacted passenger cars.

Car occupants between 16 and 25 years of age sustain severe to

fatal neck injuries four times as often (0.43%) as those younger than 16

and twice as often as do those older than 25 years. Of the 131 more

severe neck injuries listed for the 130 car occupants, 53 (40%) led to a

fatality; all these injuries were in the cervical spine. There were 8

individuals who had injuries of level AIS-3 or AIS-4 in the anterior

neck. Most of these involved throat structures, including fractures or

transection of the larynx or trachea, or lacerations of the neck

involving major blood vessels or their branches.

Rarely, if at all, is the neck fractured or dislocated by direct

impact to the cervical area. The anterior neck structures, however, are
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almost always injured by direct blunt impacts or impacts causing deep

la-cerations .

For those not ejected from the car the more serious or fatal neck

injuries are more often associated with windshield contacts, although

many of these may also involve contact with more substantial structures

around the windshield.

6.6 Comments on the NCSS Data

In the process of reviewing the field notes and photography for

these clinical studies, the clinical analysis staff has had an

opportunity to observe the quality and peculiarities of the original

reports. Case selection for detailed reading was generally accomplished

by using the computer file for sorting and identification, and then

selecting and reading the cases from the files maintained at CALSPAN or

at the MVMA.

A first problem in this process occurs when the computer file does

not contain the detail necessary to case identification. Most of the

clinical studies addressed particular injury types or body regions, and

when the Occupant Injury Classification codes were not assigned, some

cases of interest would be missed. For example, nearly half of the

fatalities in the NCSS data had no OIC's coded, since there was not an

autopsy or medical examiner's report provided. This deficiency was

largely countered by a full review of all fatal cases, assigning AIS and

OIC values (admittedly with lower confidence). We would recommend that

future data collection procedures provide for (computer) recording of as

much injury detail as possible, with appropriate notation as to the

quality of the source. Our review of such (fatal) cases was necessarily

performed with available written material, and it seems likely that t h e

original investigators could have more information at hand to make such

estimates. A similar argument would hold for other coded variables-

including the Collision Deformation Classification (CDC) and Delta V.

A specific example will illustrate this problem. If an analyst

wished to study cases in which an occupant suffered a closed head injury

at AIS-3 or above, he would ask the computer to list all cases with a

head injury in that range. But the difference between an AIS-2 and
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AIS-3 concussion depends on the length of time the person was

unconscious (more or less than 15 minutes). The investigator may be

unable to determine a precise value, and is then required to enter an

"unknown" value for the severity level--even though he is certain that

it must be either a "2" or a "3". Some provision should be made for

recording the degree of uncertainty, perhaps with a most probable value

and a range.

Reviewing of the field records was made more difficult than it

might have been because of variability in the reporting forms from time

to time and team to team, penciled entries and marginal notes which

sometimes bordered on illegibility, and the lack of a simple narrative

describing the general sequence of events in the crash.

The reporting form variability was undoubtedly the result of a fast

startup for the NCSS program. Several teams collected injury data, for

example, on forms they had used in previous studies. As a result, one

team's pink form would be the equivalent of another's blue form. While

this may not have constituted a serious problem for keypunching, it

often frustrated the clinical reviewers.

It seems likely that the field personnel made marai nal notes for

their own use. Yet it is just such notation which may provide a

necessary piece of information for a clinical reviewer. I n a s p ec i f i c

case, a contact for a head injury was coded as "unknown", but a

scribbled marginal note (which took some effort to decipher) said

something like, "Mr. xxxx stated that his head hit ----- (pointing to

the A-pillar)." It may have been quite appropriate, given the ground

rules of. the study, to code the "unknown" value, but, for a specific

research task, the marginal information was most helpful.

The clinical reviewer usually wants to form a general picture of

the accident circumstance, learning, for example, that two cars met at a

certain angle or speed, had more than one impact, etc. Such information

may be derivable from coded entries--for example, the presence of two

Collision Deformation Classification codes would suggest a second

impact, but this is not easy to infer from the available material.
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If the occupant kinematics, as they are understood by the field

investigator, were included in a narrative of the accident, this would

lead to a more accurate picture of the injury sequence than if the

reviewer had to construct the picture from a sequence of Occupant Injury

Classification codes, impact values, etc. Further, the process of

writing the narrative may assist the field investigator in his coding

tasks, and result in a more complete and accurate report.

6.7 Recommendations

Some specific recommendations are given here as possible guidance

to future data collection programs.

1. Push the field investigators to make estimates of the injury
details, including reporting them i n OIC form for
computerization. There were many cases in which relatively
accurate injury information could be inferred from information
available to the investigators, and there should be a system
for recording the best detail possible.

2. Contacts which were responsible for various injuries should be
better and more completely reported. Some of the deficiency
here seems to be the result of minimal training of
investigators, but, again, the field people should be
encouraged to make best guesses and tag them as such. --

3. Field investigators should be informed that analysts and
clinical reviewers may be reading their field notes. They
should complete their reports with such reviewers in mind, a n d
try to make their marginal notes understandable to all.

4. The procedure in the NCSS program of completing essentially
only the coding forms leaves much to be desired. The clinical
reviewer would be aided materially by a short (one or two page)
summary of the accident and occupant kinematics sequence. This
shortcoming was particularly noticeable in the NCSS cases
because of the variability of reporting forms, but would be
helpful also in more structured recording.

5. Photographic quality in many of the NCSS cases was marginal.
Some of this evidently resulted from difficulties in getting
inside the vehicles, but some of it from limited photographic
training of the investigators. Given the total cost of a NCSS
investigation, it would seem appropriate to saend a few more
dollars per case to insure that all photos are usable.
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7 IMPLICATIONS FOR NASS

The analyses used in this report focused on two different

approaches to analyzing the NCSS data. The sample design was used as a

basis for obtaining probability-based estimates of the accident

experience for the aggregate of the seven NCSS areas. On the other

hand, the accident analysis models require analysis of relationships

between variables within a specific subset of accidents. Here

mechanistic models were developed to predict injury severity from crash

severity. These two approaches to analysis are not only technically

different, but address different questions. The relationship between

these two approaches is discussed and compared by Brewer and Mellor66

and Holt and Smith. 67

The purpose of this section is to indicate implications from the

analyses done with the NCSS data for analysis of the National Accident

Sampling System68 (NASS) data. NASS is an ongoing probability sample

of accidents within the United States sponsored.by NHTSA. The primary

selection units are a stratified sample of sites. Within each site, a

probability sample of accidents is chosen. The NASS design differs from

the NCSS design in that the primary selection sites are chosen randomly

within strata; the NCSS sites were purposively chosen. Another

difference is that the weights attached to particular accidents will in

aeneral be more complicated than the weights assigned to the NCSS

accidents since NASS investigates all traffic accidents including

pedestrians, motorcycles and heavy trucks. Finally when NASS is fully

66K. R. W. Brewer and R. W. Mellor, "The Effect of Sample Structure
on Analytical Surveys," The Australian Journal of Statistics, 15:3
(1973), 145-152.

67D. Holt and T. M. F. Smith, "The Design Surveys for Planning
Purposes," The Australian Journal of Statistics, 18:1-2 (August 1976) ,
37-44.

68 H. John Edmonds, Robert H. Hanson, David R. Morganstein, Joseph
Waksberg, National Accident Sampling System Sample Design, Phases 2 and
3--Volume 1: Final Technical Report, Report No. DOT-HS-805-274.
Sponsored by the National Highway Traffic Safety Administration,
Department-of Transportation, Washington D. C., under contract No. DOT-
HS-7-01706 (Springfield, Va.: National Technical Information Service,
November 1979).



operational it will have 75 primary sites in the United States; NCSS had

data collection in seven sites.

In the following, further research and analysis is discussed in

five areas. These areas parallel work done with the NCSS data.

Extensions of the modelling effort to develop mechanistic models is

discussed in Section 7.1. Implications for future work with accident

analysis models is presented in Section 7.2. Development of national

estimates and.related problems are reviewed in Section 7.3. An overview

of modelling national statistics is presented in Section 7.4, and

possible applications are presented. Finally, a crucial problem in all

analyses done was that of missing or incomplete data. This topic is

discussed in Section 7.5, and recommendations for further research are

presented.

7.1 Mechanistic Models

The objective of this analysis was to determine models appropriate

for predicting injury severity from crash severity. In this analysis a

recoded variable that dichotomized injury severity was used as the

dependent variable. The logit model was chosen to be used i n this

analysis. The accident analysis models require a distribution for OAIS

as a function of crash severity. The model used in this project has

been generalized to model, as the dependent variable, an ordinal

variable. This technique is described by Aitchison and Si l vey.69

Investigation into whether this model is appropriate for OAIS would be a

logical continuation of this analysis.

All of the analysis done in this project was done within col l i s i o n

types. These classes were defined by area of the vehicle damaged,

direction of impact, and seat position. These types were an attempt to

form groups of accidents homogeneous within groups and different between

aroups. The models would then reflect differences in the subsets.

Another approach would be to focus on injury to a generalized body

region and use this to classify occupants into groups. This has the

69J. Aitchison and S. D. Silvey, "The Generalization of Probit
Analysis to the Case of Multiple Responses," Bi ometri ka, 44 (1957) ,
131-148.
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advantage of making the OAIS more meaningful within types. To approach

the problem in this manner would require information coded on the level

of injury for each generalized body region, including no injury. There

is not enough information available in NCSS to do this since only up to

six injuries are coded. Using this approach would involve analyzing

multivariate dependent variables, each with ordinal categories. This

type of analysis would need some further research.

Our work with the mechanistic models has also generated some

suggestions with regard to the quantification of the dependent variable

used, and also some suggested additions to the independent variables

available. The dependent variable used was a dichotomy based on the

Abbreviated Injury Scale. Mispredictions were found to frequently

involve relatively low to moderate collision severity impacts which

resulted in severe injuries. For example, a substantial group of

mispredictions in the Near PCD subset of the side impacts (passenger

compartment damage, near-side occupants) were ankle dislocations. These

receive an AIS 3 code. Many factors were assimilated in developing the

AIS scale: threat-to-life, treatment period, probability of permanent

impairment, etc. Not all these factors are directly related to the

collision forces, especially when comparisons involve different body

regions and/or injury types. The ankle dislocations do not seem to be

the result of greater collision forces, but rather the particular point

and, perhaps, direction of force application. The prediction of this

sort of injury would seem to be beyond the capability of models based on

variables which define the collision configuration, no matter how

detailed the description.

Many of the outliers, or mispredictions, from the mechanistic

models developed seemed to have similar explanations. Ruptures and

hemorrhages were other severe injuries which were frequently incorrectly

predicted in the low to moderate collision severity range by the

mechanistic models. The more general problem involved here seems to be

the comparison between injuries to different body regions and of

different types. This problem is critical for the accident analysis

models because our models indicate that this problem is a large part of

the reason that only about 50% of the severe injuries are predicted
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correctly. The implication of this finding is that a substantial

proportion of the severe i-njuries are not strongly linked to collision

severity, and, therefore, the estimated benefits projected by an

accident analysis model which presumes all injuries to be "caused" by

collision severity will be substantially overestimated. The alternative

is to develop more sophisticated dependent variables and associated

models.

One approach might be to extend the injury scale development to

encompass several different scales for each of the various dimensions

such as threat-to-life, treatment period (or even cost), probability of

oermanent impairment, force required, energy required, etc. Injuries

could then be coded on each of these scales, and one would have a

multidimensional dependent variable to work with.

At this point, subsetting on body region in addition to c o l l i s i o n

type would seem to be the more feasible approach despite the uncertainty

of the NCSS data. Separate models would then be developed for each

generalized body region (say head and neck, torso, and extremities).

For use in the accident analysis models, the national accident

experience would also have to be characterized by the frequency of

injury to each of these generalized body regions. Since all injuries

were not coded in the NCSS, there would be some uncertainty as to

whether a given body region in fact had-no injury, or that the injury

was not coded injuries, this problem might not be serious.

Improvements could also be made in the independent variable,

collision severity. Currently, Delta V is the primary variable in the

data file. The current accident analysis models are written in terms of

closing speed so that the effect of altered weight distributions in

future vehicle populations can be treated. While this variable can be

generated gfter the fact, our work has indicated that there are some

problems in determining which two vehicles were used in the original

CRASH run. It would seem simpler if this information were coded in the

first place. The clinical analysis of the side impact cases suggested

that angular velocity may play an important role in determining the

occupant contact point in non-passenger compartment impacts. A first

approximation to the post-impact angular velocity can be added to the
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existing CRASH algorithm with a single statement, and would be useful if

output and coded. Other useful outputs would be the ratio of peak

forces for the two vehicles, and the energy absorbed by each. Again,,

these quantities are currently generated by the program, but simply not

output. In fact, the energy absorbed quantity could be computed even

when no information was available on the, other vehicle, and might be

very useful in addressing the current 40% missing data rate on Delta V.

7.2 Accident Analysis Models

The need for national estimates of the accident experience in the

accident analysis models was discussed in Section 5. The NCSS data do

not provide probability-based estimates of the national experience.

However, the National Accident Sampling System will. The NASS

statistics will also provide estimates of their variance. At that time,

it will be appropriate to modify the accident analysis models to carry

these variances through to the projected benefits. In this way the

influence of the accuracy of the accident data will be reflected in the

estimated benefits. This information should assist i n the

interpretation of the results of the accident analysis models.

Another important issue concerns the possibility of year-to-year

changes, or trends in the national accident experience. Currently, the

KRAESP model uses a single set of accident statistics. While the total

number of accidents is adjusted to reflect estimated changes in total

vehicle use, no changes are made to any of the distributions. If

vehicle populations are hypothesized with appreciably different

distributions of car size, for example, then it might also be reasonable

to envision that the use of these vehicles might be different. Small e r

cars tend to be used more in urban environments. The accident

experience of vehicles in urban usage is appreciably different from

those in rural usage. Collision severity is lower for urban accidents,

as is the proportion of single-vehicle accidents. Other trends

unrelated to the vehicle population might also be important. These

might arise due factors such as oil shortages or changes in national

speed limits.

Such trends could be treated analytically with population models

like those which were developed to provide national projections from the
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NCSS data. This topic is discussed further in Section 7.4, Modelling

Population Statistics.

Adjusting the distributions in the national accident experience to

reflect year-to-year changes or trends is a subset of the larger problem

of accident causation. Although the accident analysis models were

originally developed to address the crashworthiness area, the KRAESP

model has been extended to make projections in the accident causation

area. The user has the option to provide inputs on the type of brake

system for each vehicle. Each system is, in turn, presumed to modify

the distribution of closing speeds in the accident population. While

this seems a plausible first approximation, it opens up a vast and

relatively unknown area. It has already been stressed that the validity

of the crashworthiness projections rests on the degree to which the

mechanistic models reflect the governing physical principles. Problems

previously discussed in the crashworthiness area include collision types

for which good measures of collision severity do not exist such as

rollovers, and substantial portions of the severe injuries that do not

appear to be well determined by the collision severity.

Similarly, projections in the causation area will only be as good

as the models used to make the projections. The validity of the

accident causation models will also ►'est on their foundation in the

physical principles which determine the occurrence or non-occurrence of

an accident. This treatment of the accident causation process is felt

to be far more difficult then the crashworthiness area. Unfortunately,

assumptions in this area are currently required in the accident analysis

models just to adjust the national accident experience to reflect

changes in the total estimated vehicle use resulting from changes in the

vehicle population as already mentioned. The total number of accidents

i s adjusted to reflect estimated changes i n total vehicle mileage. N o

differences in vehicle mileage are included for vehicles of differing

sizes. Only the total number of accidents is adjusted, so that the

distributions remain unchanged. These assumptions imply an accident

causation model. It will be important to review the implications of

these assumptions.
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7.3 Descriptive Population Statistics

An important use of the NCSS data was to provide summary statistics

that describe the accident population studied. These statistics from

NCSS, without adjustment, may not be adequate to describe the

U.S. accident population. NASS will provide probability-based estimates

for the U.S. accident population. The estimation procedures are

specific to the NASS design and are discussed in the final technical

report on NASS.70

In this report the method of calculating sampling errors is also

Dresented. In designing software to calculate estimates, the sampling

error should also be calculated. It is very difficult however to

tabulate large numbers of statistics and along with each its sampling

error. Design effects71 were calculated for selected NCSS statistics

and some patterns could be seen. These design effects will not be

applicable to NASS since NASS is based on a completely different sample

design. Investigation of design effects to summarize sampling errors

needs to be done over a period of time to see if consistent groups of

variables appear with the same design effects.

To adjust the NCSS data to reflect the national accident experience

a method was developed to produce a national projection. This method is

not restricted to the NCSS data. The projection method could be thought

of as a type of post-stratification. It is possible that by using the

projection method a better estimate would be obtained. This is

Darticularly true when for a certain variable the original

stratification of the NASS design is not efficient and there is known to

be a better stratification. It is this stratification variable that the

projection method would be based on.

70H. John Edmonds, Robert H. Hanson, David R. Morganst e i n , Joseph
Waksberg, National Accident Sampling System Sample Desi n, Phases 2 and
3--Volume 1: Final Technical Report, Report No. DOT-HS-805-274.
Sponsored by the National Highway Traffic Safety Administration,
Department of Transportation, Washington D. C., under contract No. DOT-
HS-7-01706 (Springfield, Va.: National Technical Information Service,
November 1979).

71Leslie Kish, Survey Sampling (New York: John Wiley & Sons, 1965).
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7.4 Modelling Population Statistics

The analysis of complex survey data has been recently given some

attention in the statistical literature. These "population models"

involve modelling population statistics obtained from survey data. In

contrast, the "mechanistic models" are models that describe particular

elements in the population. If, in fact, all elements were described by

the same mechanistic model there would be no difference between the

population and mechanistic models. But if the population is made up of

subsets that are described by different mechanistic models the overall

population model will describe "an average" of the individual

mechanistic models.

These population models could be simple models such as independence

in a contingency table, or more complicated models such as regression

analysis, time series, or the l ogi t analysis. Koch, Freeman, and

Freeman72 present a general framework for using the weighted least

squares approach in analyzing these population models. This is an

extension of work presented by Freeman73 where regression analysis is

discussed in this context. Shuster and Downing74 present a method to

test for independence when the proportions in the contingency table are

population estimates based on a sample design. Rao and Scott75 have

been investigating goodness of fit models and models of independence for

contingency tables based on complex survey data. They have found that

chi.-square tests for goodness of fit need to be adjusted by design

72Gary G. Koch, Daniel H. Freeman, Jr. , and Jean L. Freeman,
"Strategies in the Multivariate Analysis of Data from Complex Surveys,"
International Statistical Review, 43:1 (1975), 59-78.

73D. H. Freeman, The Regression Analysis of Data from Complex
Sample Surveys: An Empirical Investigation of Covariance Matrix
Estimation, mimeo ser. No. 1020 (Chapel Hi 11 , N. C.: Institute of
Statistics, 1975). 1975.

74J. J. Shuster and D.J. Downing, "Two-way Contingency Tables for
Complex Sampling Schemes," Biometrika 63:2 (1976), 271-276.

75J. N. K. Rao and A. J. Scott, "The Analysis of Categorical Data
from Complex Sample Surveys I: Chi-squared Tests for Goodness of fit,"
Paper presented at the American Statistical Association Meeting, August
1979.
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effects or generalized design effects. Finally, Smith76 considers

problems of time series analysis when there is an on-going survey.

One possible avenue of research is to see whether these methods are

useful in analyzing the NASS data, in accident analysis models, in

developing causal models, and in analyzing time series. Causation

models may well be expressed in terms of these population models and

incorporated into accident analysis models to allow for a more realistic

picture of the accident environment. After three years of data

collection in NASS there will be enough data to estimate monthly time

series.

7.5 Incomplete Data

While working with the NCSS data, missing data appeared to be one

of the biggest obstacles. There can be no doubt that the best solution

to the missing data problem is to encourage field investigators to

employ procedures to minimize missing data. But missing data continues

to be a problem and a statistical approach to the problem of missing

data is also necessary.

In the NCSS Statistics publications, distributions based on

variables with missing data were calculated including a separate

category for missing data. The analysis done in Section 4.5 indicated

that distributions of key NCSS variables differs in the cases with

missing data, so that distributions from NCSS ignoring missing data may

be biased.

In the development of the mechanistic models, occupants with

missing data on any variable included in the model had to be excluded

from the logit analyses. The effect is that only a relatively small

subset of occupants are included. This is not a problem specific to the

logit analysis, but would occur in any multivariate analysis unless

adaptive procedures are developed.

These two analytical problems are similar in that the focus is on

contingency tables: distributions being a contingency table with only

76T. M. F. Smith, "Principles and Problems in the Analysis of
Repeated Surveys," in Survey Sampling and Measurement, ed. N. Krishnan
Namboodiri (New York: Academic Press, Inc., 1978), 201-216.
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one dimension. The analysis techniques differ by whether or not the

sampling weights are included. Weighted data to generate the

distributions in NCSS Statistics are used to obtain unbiased (or

approximately unbiased) estimates of aggregate totals and proportions.

In model development the most important concern is to obtain good

estimates of specified model parameters to best describe the mechanistic

model. Analysis modifications will be heavily dependent on the type of

analysis, whether estimation of distributions, modelling of contingency

tables, or a logit analyses. The effects of weighting will be of

secondary importance.

One approach to the missing data problem is to impute for each case

with a missing item ,a "best predicted value." The advantage of this

approach is that the data set is now "complete." Tabulations produced

from such a data set will always give consistent totals. These

procedures use information obtained from the non-missing cases in the

sample to obtain the predicted value.

Many procedures have been devised for on-going surveys where

missing data occurs. A traditional approach is to use a variation of

the "hot deck" procedure.77 But there are alternative imputation

procedures. The EM algorithm78 can be used in this context. A general

procedure referred to as "weighting class adjustments"79 is another

alternative. All of these methods can be used to modify a data set so

that. it resembles a "complete" data set. With the many available

procedures, the final choice depends on the type of data and the use to

which the data is intended.

77Innis G. Sande, "Hot Deck Imputation Procedures," Symposium on
Incomplete Data: Preliminary Proceedings (Washington, D. C., Social
Security Administration, December, 1979), pp. 484-507.

78A. P. Demster, N. M. Laird, and D. B. Rubin, "Maximum Likelihood
from Incomplete Data Via the EM Al gori thum, " Journal of the Royal
Statistical Society, ser. B, 39:1 (1977), 1-38.

19David W. Chapman, "A Survey of Nonresponse Imputation
Procedures," American Statistical Association Proceedings of the Social
Statistics Section, 1976: Part I Washington, D. C.: American
Statistical Association, 1976), pp. 245-251.
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Every discipline has its own variables uniqu-e to that area.

Imputation methods need to be designed with the nature of the variable

in mind. Accident variables may be different than agricultural or

economic data. Different procedures may be more appropriate for

categorical or ordinal or continuous variables.

There are various criteria that need to be evaluated in choosing an

imputation procedure. All of these imputation procedures affect the

bias, variance, and correlation structure of the resulting estimates.

Care must be taken in the choice of the procedure. Ideally the bias

should be minimized and variances and correlations affected as little as

possible. The choice of a particular method becomes complex when many

variables are involved, so that key variables need to be defined and

procedures chosen with respect to these variables. Finally, there are

different costs associated with each imputation procedure. These costs

may involve computer time and development time. Ultimately the best

Drocedure will be a compromise between costs and the effect of the

imputation procedure on the data.

The other approach to missing data is to modify the statistical

methodology to incorporate more of the data available in the analysis.

There has been some work in this area in regression analysis and

categorical analysis. Haitovsky80 looks at the effect of missing data

in regression analysis. Various methods for using more of the available

data in regression analyses are discussed and evaluated. Little8l

investigates the effect of the different methods on statistical tests

and confidence intervals for the regression coefficients.

When analyzing categorical data, different models may be assumed.

Hocking and Oxspring82 consider mul ti nomi al sampling where some

80Yoel Haitovsky, "Missing Data in Regression Analysis," Journal of
the Royal Statistical Society, ser. B, 30:1 67-82.

81Roderick J. A. Little, "Maximum Likelihood Inference for Multiple
Regression with Missing Values: A Simulation Study," Journal of the
Royal Statistical Society, ser. B, 41:1 (1979), 76-87.

82R. R. Hocking and H. H. Oxspring, "Maximum Likelihood Estimation
with Incomplete Multinomial Data," Journal of the American Statistical
Association, 66:333 (March 1971), 65-70.
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observations have missing data on one or more variables. They derive

maximum likelihood estimates for the multinomi al distribution using

variables with only marginal distributions. Adaptation of the weighted-

least squares approach to analyzing contingency tables where

observations have some missing data is presented by Koch, Imrey, and

Reinfurt.83 There is no literature examining the effect of

modifications of the analysis for missing data.

Although investigation of the NCSS data does not provide a good

indication of missing data rates or types of missing data in NASS, it

does point out that the analysis of data becomes much more complex in

the presence of missing data. NASS will undoubtedly have a certain

amount of missing data. From the experience of analyzing the NCSS data

missinq data will affect two major areas, the presentation of

distributions for accident statistics and a reduction in sample sizes

available for developing statistical models.

Future activity in this area would include a review of imputation

procedures. For NASS an imputation procedure could be chosen such that

the bias is minimized, the covariance structure maintained and is cost

effective. Software could be developed to create a "complete" data set

to be used for tabulation of accident statistics. Additional work in

modification of statistical methods to incorporate more available data

could also be undertaken. Modifications such as these will allow more

of the available data to be used in the statistical analysis.

83Gary G. Koch, Peter B. Imrey, and Donald W. Reinfurt, "Linear
Model Analysis of Categorical Data with Incomplete Response Vectors,"
Biometrics, 28 (September 1972), 663-692.
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APPPENDIX A
THE ALGORITHMS FOR CREATING THE NEWOAIS INJURY VARIABLES

The algorithms for calculating the NEWOAIS injury variables were

written at NCSA. They are described in a memorandum from Sue Partyka at

NHTSA, dated March 1979 and entitled "Documentation for Newoais injury

variables."

The recode is integer.

To calculate NEWOAIS2:

IF 'INJURY SEVERITY -POLICE' EQUALS 5 THEN 'NEWOAIS2'=O
IF 'INJURY SEVERITY -POLICE' EQUALS 1 THEN 'NEWOAIS2'=1
IF 'INJURY SEVERITY -POLICE' DOES NOT EQUAL 5 OR 1 THEN

'NEWOAIS2'=MISSING
IF 'NCSS CLASS' EQUALS 8 THEN 'NEWOAIS2'=0
IF 'NCSS CLASS' EQUALS(1-3) THEN 'NEWOAIS2'=1
IF 'OIC1-AIS SEVERITY' EQUALS(O-1) THEN 'NEWOAIS2'=0
IF 'OIC1-AIS SEVERITY' EQUALS(2-6) OR 'OIC2-AIS SEVERITY' EQUALS(2-6) OR

'OIC3-AIS SEVERITY' EQUALS(2-6) THEN 'NEWOAIS2'=1
IF 'OAIS' EQUALS(O-1) THEN 'NEWOAIS2'=O
IF 'OAIS' EQUALS(2-6) THEN 'NEWOAIS2'=1

To calculate NEWOAIS3:

IF 'INJURY SEVERITY -POLICE' EQUALS 5 THEN 'NEWOAIS3'=O
IF 'INJURY SEVERITY -POLICE' EQUALS 1 THEN 'NEWOAIS3'=1
IF 'INJURY SEVERITY -POLICE' DOES NOT EQUAL 5 OR 1 THEN

'NEWOAIS3'=MISSING
IF 'NCSS CLASS' EQUALS 8 THEN 'NEWOAIS3'=0
IF 'NCSS CLASS' EQUALS(1-3) THEN 'NEWOAIS3'=1
IF 'OIC1-AIS SEVERITY' EQUALS(O-2) THEN 'NEWOAIS3'=O
IF 'OIC1-AIS SEVERITY' EQUALS(3-6) OR 'OIC2-AIS SEVERITY' EQUALS(3-6) OR

'OIC3-AIS SEVERITY' EQUALS(3-6) THEN 'NEWOAIS3'=1
IF 'OAIS' EQUALS(O-2) THEN 'NEWOAIS3'=0
IF 'OAIS' EQUALS(3-6) THEN 'NEWOAIS3'=1

To calculate NEWOAIS4:

IF 'NO OF DAYS IN HOSPITAL' EQUALS 0 THEN 'NEWOAIS4'=O
IF 'NO OF DAYS IN. HOSPITAL' DOES NOT EQUAL 0 THEN 'NEWOAIS4'=MISSING
IF 'INJURY' SEVERITY -POLICE' EQUALS 5 THEN 'NEWOAIS4'=O
IF 'INJURY SEVERITY -POLICE' EQUALS 1 THEN 'NEWOAIS4'=1
IF 'NCSS CLASS' EQUALS 8 THEN 'NEWOAIS4'=0
IF 'NCSS CLASS' EQUALS(1-3) THEN 'NEWOAIS4'=1
IF 'OIC1-AIS SEVERITY' EQUALS(O-3) THEN 'NEWOAIS4'=0
IF 'OIC1-AIS SEVERITY' EQUALS(4-6) OR 'OIC2-AIS SEVERITY' EQUALS(4-6) OR

'OIC3-AIS SEVERITY' EQUALS(4-6) THEN 'NEWOAIS4'=1
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IF 'OAIS' EQUALS(O-3) THEN 'NEWOAIS4'=0
IF 'OAIS' EQUALS(4-6) THEN 'NEWOAIS4'=1
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APPENDIX B
DATA STRUCTURE FOR VARIANCE COMPUTATIONS

In order to calculate the sampling variances for NCSS statistics it

is necessary to create a data structure that summarizes data by cluster

at the appropriate sampling unit, whether day or accident. The clusters

are defined by Julian date. Each design group, excluding HSRI and SWRI,

used a different systematic sample of days. This adds a complexity to

the problem since information is needed for each specific design group

sample design in order to select the appropriate Julian date to

represent the cluster in the date structure. It is necessary to have

each case, represented by a particular design group, and Julian date,

contain the total of the variable of interest.

The first step in this task is the creation of a dataset in w h i c h

each case would represent a design group/Julian date. This dataset

would have 4550 cases (10 for the number of design groups, 455 for the

number of days on the first fifteen months of the study).

A series of variables then need to be created. A design group

variable, numbered 1-10, is created by coding the first 455 cases as 1,

the second 455 as 2, etc. A year variable is created by coding the

first 365 days for each design group as 7, the last 90 days as 8 (for

1977 and 1978). Similarly, a month variable was created within each

design group year combination. First the days ordinalized within each

design group year and then for each year the first 31 days were coded 1,

the second 28 days 2, the next 31 days 3, etc.

Next within each design-group-year-month combination the days were

numbered in sequence. Thus a dataset is created that identified for

each design group, every Julian date in the fifteen month period. Two

design groups were dropped from the dataset. They were the teams that

sampled by accident rather than by day: HSRI and SWRI.

Two indicator variables were created, one to indicate appropriate

days within each design group for the 25% systematic sample of days, the

other to indicate appropriate days for the 10% systematic sample of

days. Each was coded with the appropriate design group number (1-10)

for days on which the sample was drawn, and with 0 for days on which the

sample was not supposed to be drawn. For the 25% sample indicator every
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fourth day from the design-group's starting day was coded with the

number of the design-group. For the 10% sample indicator every tenth

day from the starting day was coded.

Two ID variables were created, one for the 25% stratum and one for

the 10% stratum. A linear combination of the indicator variable (coded

with the number of the design group), the year, the month and the day

identifies each cluster. By recoding team to a similar ten-level design

croup and forming the same linear combination the same variables are

created in one of the original datasets (accident, vehicle or occupant).

When the cases in the original dataset are restricted to the appropriate

sampling stratum (using a filter) matches are made between the oriqinal

dataset and the sample day dataset. This matching provides a way to

count the overall number of accidents, vehicles or occupants on each

appropriate design-group-day. Counts could also be made for any

category of interest, e.g. rural accidents, belted occupants. These

counts were then written into two permanent datafiles one for the 25%

sample, one for the 10% sample. This was done by writing them out with

a filter from the file initially created. The filter was the non-

missing cases on the 25% or the 10% indicator variable. Thus, days

where the count was zero for a variable of interest would still be

included in the dataset.

An analogous data structure was created for the two teams that

sampled accidents rather than days. For these two teams vehicles and

occupants are clustered by accident. A sample dataset "SAMPLE2" was

created by taking the team, year, month, day and sequence num-bers- from

the accident file for the two teams. The variable indi-cattinq sampling

stratum was also included. A linear combination of team, year, month,

day nand sequence number was created as an ID variable in the sample

dataset and in the vehicle and occupant files. Counts were obtained

using the same matching procedure, taking care once again to restrict

cases in the original dataset to the appropriate sampling stratum.

Once again the counts were written out into two permanent datasets.

This writing was done with a filter in the sample dataset for the

sampling stratum so that only appropriate accidents would be included in

the count.
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It was now possible to obtain counts and statistics by design group

at the original level or at the cluster level for any variable of

interest. These were four cluster datasets:
1) The eight design groups at the 25% level.
2) The eight design groups at the 10% level.
3) HSRI and SWRI at the 25% level.
4) HSRI and SWRI at the 10% level.

These datasets could be used to calculate means, totals, variances

and covariances at the cluster level for any variable by design group.

The numbers so produced could be used to calculate the design effects.
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APPENDIX C
VARIANCES AND DESIGN EFFECTS FOR SELECTED DESIGN GROUP STATISTICS

Note: the figures in the tables presented in the form ".00360 -3" are

equivalent to ".00360 x 10-3".

TABLE 1

Proportions and Variances at the Cluster Level
Accident Statistics

---------------------------------------------------------------------
I I Estimated I Estimated

Statistic I Design Group I Probability I Variance
----------------+------------------+-----------------+---------------

Rural Calspan I .18811 .45696 -3
HSRI I .43414 .60080 -3
Ind. A I .53191 .59220 -3
Ind. B .67108 .18558 -2
Kent. A .61311 .26009 -2
Kent. B I .78762 .14289 -2
Kent. C I .20432 .51872 -3
Miami .00000 none
SWRI I .15607 .11280 -3
DynSci ( .00695 .15884 -4

Rush Hour Calspan i .28926 .35035 -3
HSRI I .32077 .56360 -3
Ind. A J .33865 .74008 -3
Ind. B I .32893 .17175 -2
Kent. A I .39741 .19564 -2
Kent. B I .77671 .47997 -2
Kent. C .31063 .10103 -2
Miami I .32951 .28734 -3
SWRI I .32002 .22940 -3
DynSci .32506 .54152 -3

Dry Road Calspan I .42552 .20958 -2
HSRI I .51723 .63090 -3
Ind. A I .58067 .25299 -2
Ind. B I .57849 .28678 -2
Kent. A I .50761 .70669 -2
Kent. B .53399 .44239 -2
Kent. C .61574 .23915 -2
Miami I .76201 .29191 -2
SWRI .80514 .16320 -3
DynSci .87445 .79353 -3
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TABLE 2

Proportions and Variances at the Cluster Level
Vehicle Statistics

I I Estimated I Estimated
Statistic I Design Group I Probability I Variance

---------------+------------------+-----------------+---------------
Front CDC Calspan .56496 .28289 -3

HSRI .50752 .39490 -3
Ind. A .60863 .46035 -3
Ind. B .49020 .03004 -2
Kent. A .40560 .20959 -2
Kent. B .45635 .20708 -2
Kent. C .54397 .87574 -3
Miami .40634 .20048 -3
SWR I .55576 .07030 -3
DynSci .38770 .43309 -3

Right CDC Calspan .96884 -1 .88485 -4
HSRI .02462 .20304 -3
Ind. A .00960 .07652 -3
Ind. B .04897 .40849 -3
Kent. A .79028 -1 .46039 -3
Kent. B .90608 -1 .80756 -3
Kent. C .00559 .30422 -3
Miami .00096 .84078 -4
SWRI .02020 .79905 -4
DynSci .80000 -1 .02498 -3

Back CDC Calspan .50763 -1 .00098 -3
HSRI .32699 -1 .55395 -4
Ind. A .36202 -1 .00628 -3
Ind. B .67225 -1 .00377 -2
Kent. A .40977 -1 .24335 -3
Kent. B .38204 -1 .25454 -3
Kent. C .56209 -1 .08227 -3
Miami .37935 -1 .35300 -4
S WR I .40330 -1 .30524 -4
DynSci .55769 -1 .87092 -4

Intruded Calspan .20484 .05062 -3
HSRI .23044 .27455 -3
Ind. A .29298 .37420 -3
Ind. B .32773 .02850 -2
Kent. A .20070 .00275 -2
Kent. B .27084 .03742 -2
Kent. C .08495 .38595 -3
Miami .00209 .72026 -4
SWR I .20078 .99766 -4
DynSci .00346 .00503 -3
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TABLE 2 (CONTINUED)

-----------------------------------------------------------------------
I I Estimated I Estimated

Statistic I Design Group I Probability I Variance
------------------+------------------+-----------------+---------------

Not Intruded Calspan I .68704 .26036 -3
HSRI I .66892 .40976 -3
Ind. A i .66386 .35527 -3
Ind. B I .63788 .03660 -2
Kent. A I .53269 .20605 -2
Kent. B .50093 .20096 -2
Kent. C I .73660 .77829 -3
Miami .58709 .34003 -3
SWRI I .66545 .06532 -3
DynSci .50807 .50603 -3

Low Delta V Calspan I .26034 .35248 -3
HSRI 1 .25000 .52640 -3
Ind. A I .25933 .68450 -3
Ind. B I .24980 .02247 -2
Kent. A .20070 .02650 -2
Kent. B I .08023 .00383 -2
Kent. C I .38395 .98029 -3
Miami I .05873 .20297 -3
SWRI .29360 .22954 -3
DynSci I .04605 .20336 -3

High Delta V Calspan I .29304 .27859 -3
HSRI I .08502 .30409 -3
Ind. A .38734 .66864 -3
Ind. B I .33384 .05029 -2
Kent. A I .20463 .00572 -2
Kent. B .08232 .02268 -2
Kent. C I .08802 .54200 -3
Miami I .04007 .00898 -3
SWRI I .26070 .07499 -3
DynSci I .05423 .20535 -3

Hit a Car Calspan i .53993 .42982 -3
HSRI I .47632 .60577 -3
Ind. A .45575 .58275 -3
Ind. B I .40489 .27475 -2
Kent. A .45560 .09030 -2
Kent. B I .33080 .07007 -2
Kent. C I .59066 .99294 -3
Miami I .57830 .25295 -3
SWRI I .57262 .23449 -3
DynSci .63654 .42508 -3
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TABLE 3

Proportions and Variances at the Cluster Level
Occupant Statistics

I I Estimated I Estimated
Statistic I Design Group I Probability I Variance

------------------------------------------------------------------
Aged 16 & Under Calspan .12947 .19050 -3

HSRI .13503 .29898 -3
Ind. A .20749 .38462 -3
Ind. B .16972 .72879 -3
Kent. A .18546 .60692 -3
Kent. B .17825 .60604 -3
Kent. C .16472 .69061 -3
Miami .93454 -1 .71790 -4
SWR I .18690 .11175 -3
DynSci .84374 -1 .20452 -3

Aged 17 to 30 Calspan .52055 .33537 -3
HSRI .56563 .55651 -3
Ind. A .50389 .67464 -3
Ind. B .54231 .14782 -2
Kent. A .51423 .72747 -3
Kent. B .52843 .20176 -2
Kent. C .53355 .81057 -3
Miami .42785 .17598 -3
SWR I .50475 .19077 -3
DynSci .48352 .41254 -3

Aged 31 to 45 Calspan .14942 .13899 -3
HSRI .12921 .15816 -3
Ind. A .10078 .16075 -3
I nd. B .13099 .35020 -3
Kent. A .14173 .37366 -3
Kent. B .11947 .36842 -3
Kent. C .15501 .19871 -3
Miami .20312 .10711 -3
SWR I .14287 .65790 -4
DynSci .19321 .23546 -3

Aged 46 & Over Calspan .18202 .16569 -3
HSRI .14290 .26384 -3
Ind. A .17139 .27421 -3
I nd. B .14169 .55056 -3
Kent. A .15069 .70200 -3
Kent. B .17383 .13614 -2
Kent. C .14359 .35838 -3
Miami .26362 .19279 -3
SWR I .15085 .81783 -4
DynSci .15377 .23457 -3
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TABLE 3 (CONTINUED)

-------------------------------------------------------------------------
I I Estimated I Estimated

Statistic I Design Group I Probability I Variance
-------------------------------------------------------------------------

Unbelted Calspan .77423 .32791 -3
HSRI .69022 .40267 -3
Ind. A .83250 .42691 -3
Ind. B .85118 .34652 -3
Kent. A .69021 .10686 -2
Kent. B .79328 .20229 -2
Kent. C .80475 .52526 -3
Miami .71043 .55492 -3
SWRI .76129 .15344 -3
DynSci .50051 .48119 -3

Belted Calspan .10448 .89736 -4
HSRI .10235 .15329 -3
I nd. A .44333 -1 .13573 -3
Ind. B .30582 -1 .12141 -3
Kent. A .30032 -1 .13750 -3
Kent. B .35398 -1 .24275 -3
Kent. C .69941 -1 .17706 -3
Miami .27637 -1 .24831 -4
SWR I .87749 -1 .51717 -4
DynSci .82127 -1 .13084 -3

With OAIS 0-2 Calspan .86746 .94289 -4
HSRI .75115 .27069 -3
Ind. A .86106 .19214 -3
Ind. B .81091 .49249 -3
Kent. A .92150 .25981 -3
Kent. B ,92984 .12569 -3
Kent. C .90294 .17445 -3
Miami .74877 .14602 -3
S WR I .80958 .83581 -4
DynSci .56590 .41903 -3

With OAIS 3-6 Calspan .30248 -1 .66904 -5
HSRI .34057 -1 .42184 -5
Ind. A .34735 -1 .57009 -5
Ind. B .74414 -1 .77600 -4
Kent. A .46364 -1 .67395 -4
Kent. B .39189 -1 .29258 -4
Kent. C .26834 -1 .62265 -5
Miami .15147 -1 .16575 -5
SWR I .32501 -1 .42402 -5
DynSci .15727 -1 .34794 -5

-------------------------------------------------------------------------
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TABLE 4

Design Effects
Accident Statistics

Statistic I Design Group Design Effect
---------------------+------------------------+-------------------------

Rural I Calspan I 2.3724
HSRI I 1.5683

I Ind. A I 1.4903
Ind. B I 3.3195

I Kent. A I 2.4993
K Bt 42011en . .

I Kent. C I .96963
I
I

Miami
SWRI

I
I

none
1.0178

I DynSci I 1.8870
Rush Hour Calspan I 1.7177

HSRI I 1.7951
Ind. A I 2.0445
Ind. B I 2.5630
Kent. A I 1.9823

I Kent. B I 4.1379
I Kent. C I 1.8391

Miami 1.4856
I SWRI I 1.8373

DynSci I 1.5748
Dry Road I Calspan I 7.9128

I HSRI 1.7835
I Ind. A I 6.4672

Ind. B I 3.9439
I Kent. A I 6.5497

Kent. B I 3.3611
Kent. C I 3.7489

I Miami I 21.142
i SWRI I 1.7334

DynSci I 4.0204
------------------------------------------------------------------------
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TABLE 5

Design Effects
Vehicle Statistics

------------------------------------------------------------------------
Statistic I Design Group I Design Effect

---------------------+------------------------+-------------------------
Front CDC I Calspan I 1.4226

HSRI I 1.3322
Ind. A I 1.4441
Ind. B I 1.9619
Kent. A 2.3791
Kent. B 1.9106
Kent. C I 1.6521
Miami 1.2759
SWRI I 1.4695
DynSci I 1.4038

Right CDC I Calspan I 1.0601
I HSRI I 1.5415

Ind. A I 1.1553
I Ind. B I 1.2784

Kent. A I 1.7058
Kent. B I 1.9054
Kent. C I 1.2147
Miami I 1.3321
SWRI I 1.5836
DynSci 1.2181

Back CDC I Calspan I 3.2497
I HSRI I 1.4389
I Ind. A I 2.4511

Ind. B I 11.296
Kent. A I 1.5191
Kent. B I 1.6050
Kent. C I 1.5070
Miami I 1.2664

I SWRI I 1.8362
DynSci I 1.5778

Intruded I Calspan I .83504
I HSRI I .97994

Ind. A I 1.1274
Ind. B I 1.8967
Kent. A I 1.1594
Kent. B I 1.2276
Kent. C I .78500
Miami I .70161

I SWRI I .93514
DynSci I .58353

------------------------------------------------------------------------
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TABLE 5 (CONTINUED)

---------------------------------------------------------------------
Statistic I Design Group I Design Effect

----------------=-----+----------------------+-----------------------
Not Intruded I Calspan I 1.3074

I HSRI I 1.4145
I Ind. A I 1.0624
I Ind. B I 2.0222

Kent. A I 2.3250
I Kent. B I 1.9536

Kent. C I 1.4957
Miami I 2.1131
SWRI 1.4133

I DynSci I 1.6271
Low Delta V I Calspan 2.6397

HSRI I 2.8859
Ind. A 3.7619
Ind. B I 3.6822
Kent. A I 2.6066
Kent. B I 1.7547
Kent. C I 2.1852

I Miami I 2.5214
SWRI I 3.1064

I DynSci I 1.4236
High Delta V I Calspan I 1.4216

HSRI I 1.2731
Ind. A 1.9957
Ind. B I 2.2892
Kent. A 1.4862
Kent. B I 1.1889
Kent. C I 1.1670
Miami I .99316
SWRI I 1.5977
DynSci I .93367

Hit a Car I Calspan I 2.1497
HSRI I 2.0773
Ind. A I 1.7907

I Ind. B I 4.3611
Kent. A I 2.0658
Kent. B I 1.6384
Kent. C I 1.8652
Miami I 1.6235
SWRI I 2.0117
DynSci I 1.4218

---------------------------------------------------------------------
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TABLE 6

Design Effects
Occupant Statistics

-------------------------------------------------------------------------
Statistic I Design Group I Design Effect

-------------------------=+----------------------+-----------------------
Aged 16 & Under I Calspan I 3.3396

HSRI I 3.1142
Ind. A 3.1526

I Ind. B I 2.9402
Kent. A I 2.0505

i I Kent. B 1.5541
Kent. C I 3.7724
Miami 1.8446
SWRI I 2.6752

I DynSci I 2.9318
Aged 17 to 30 I Calspan I 2.7694

I HSRI I 3.0095
I Ind. A 3.3495

Ind. B I 3.7509
Kent. A I 1.5443
Kent. B I 3.2519
Kent. C I 2.5227
Miami I 1.8532
SWRI I 2.8326
DynSci I 2.0818

Aged 31 to 45 I Calspan I 2.2937
I HSRI I 1.8679
I Ind. A I 1.8264

Ind. B I 1.9743
I Kent. A 1.7674
I Kent. B I 1.2141

Kent. C I 1.1330
I Miami 1.7057

SWRI I 2.0635
DynSci I 1.9856

Aged 46 & Over I Calspan I 2.2864
HSRI I 2.8059

I Ind. A I 2.4039
I Ind. B I 2.8174

Kent. A I 3.1268
Kent. B I 3.4248
Kent. C I 2.0969
Miami I 2.4131
SWRI I 2.1814

I DynSci I 2.3434
------------------------------------------------------------------------
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TABLE 6 (CONTINUED)

Statistic I Design Group Design Effect
-----------------------+----------------------+-----------------------

Unbelted I Calspan 4.3481
I HSRI I 2.8101

Ind. A J 4.0887
Ind. B I 1.6558

I Kent. A I 3.2862
Kent. B I 5.0419

I Kent. C I 2.6975
I Miami I 7.1539

SWRI I 3.4210
I DynSci I 2.4355

Belted Calspan 2.4274
HSRI 3.1198
Ind. A I 4.9291

I Ind. B 2.7948
Kent. A I 3.2869
Kent. B 2.8959

I Kent. C I 2.5309
Miami I 2.9528
SWRI I 2.9465
DynSci I 2.4659

With DAIS 0-2 I Calspan 1.0548
I HSRI I 1.5223
I Ind. A I 1.1472

Ind. B I 1.3348
I Kent. A I .85297
I Kent. B .31328
I Kent. C I .90068

Miami I 1.7379
I SWRI I 1.4178

DynSci I 2.1221
With OAIS 3-6 I Calspan I .13530

HSRI .48631
Ind. A I .65871
Ind. B I .29878

I Kent. A I .26477
Kent. B I .97855

I Kent. C I .51434
I Miami I .78091
I SWRI .15488
I DynSci I .10712

----------------------------------------------------------------------
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