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SI (MODERN METRIC) CONVERSION FACTORS (FROM FHWA) 

Table 0-1.  Approximate Conversions to SI Units 
SYMBOL WHEN YOU KNOW MULTIPLY BY TO FIND SYMBOL 

LENGTH 
in inches 25.4 millimeters Mm 
ft feet 0.305 meters M 
yd yards 0.914 meters M 
mi miles 1.61 kilometers Km 

 
SYMBOL 

WHEN YOU KNOW MULTIPLY BY TO FIND SYMBOL 

AREA 
in2 Square inches 645.2 square millimeters mm2 
ft2 Square feet 0.093 square meters m2 
yd2 square yard 0.836 square meters m2 
ac acres 0.405 hectares Ha 

mi2 square miles 2.59 square kilometers km2 
 

SYMBOL 
WHEN YOU KNOW MULTIPLY BY TO FIND SYMBOL 

VOLUME 
fl oz fluid ounces 29.57 milliliters Ml 
gal gallons 3.785 liters L 
ft3 cubic feet 0.028 cubic meters m3 
yd3 cubic yards 0.765 cubic meters m3 

NOTE: volumes greater than 1000 L shall be shown in m3 
 

SYMBOL 
WHEN YOU KNOW MULTIPLY BY TO FIND SYMBOL 

MASS 
oz ounces 28.35 grams G 
lb pounds 0.454 kilograms Kg 
T short tons (2000 lb) 0.907 megagrams (or "metric 

ton") 
Mg (or "t") 

 
SYMBOL 

WHEN YOU KNOW MULTIPLY BY TO FIND SYMBOL 

TEMPERATURE (exact degrees) 
oF Fahrenheit 5 (F-32)/9 

or (F-32)/1.8 
Celsius oC 

 
SYMBOL 

WHEN YOU KNOW MULTIPLY BY TO FIND SYMBOL 

ILLUMINATION 
fc foot-candles 10.76 lux Lx 
fl foot-Lamberts 3.426 candela/m2 cd/m2 
 

SYMBOL 
WHEN YOU KNOW MULTIPLY BY TO FIND SYMBOL 

FORCE and PRESSURE or STRESS 
lbf Pound force 4.45 newtons N 

lbf/in2 Pound force per square inch 6.89 kilopascals kPa 
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Table 0-2.  Approximate Conversions to English Units 
SYMBOL WHEN YOU KNOW MULTIPLY BY TO FIND SYMBOL 

LENGTH 
mm millimeters 0.039 inches In 
m meters 3.28 feet Ft 
m meters 1.09 yards Yd 

km kilometers 0.621 miles Mi 
 

SYMBOL 
WHEN YOU KNOW MULTIPLY BY TO FIND SYMBOL 

AREA 
mm2 square millimeters 0.0016 square inches in2 
m2 square meters 10.764 square feet ft2 
m2 square meters 1.195 square yards yd2 
ha hectares 2.47 acres Ac 

km2 square kilometers 0.386 square miles mi2 
 

SYMBOL 
WHEN YOU KNOW MULTIPLY BY TO FIND SYMBOL 

VOLUME 
mL milliliters 0.034 fluid ounces fl oz 
L liters 0.264 gallons Gal 
m3 cubic meters 35.314 cubic feet ft3 
m3 cubic meters 1.307 cubic yards yd3 

SYMBOL WHEN YOU KNOW MULTIPLY BY TO FIND SYMBOL 
MASS 

g grams 0.035 ounces Oz 
kg kilograms 2.202 pounds Lb 

Mg (or "t") megagrams (or "metric ton") 1.103 short tons (2000 lb) T 
 

SYMBOL 
WHEN YOU KNOW MULTIPLY BY TO FIND SYMBOL 

TEMPERATURE (exact degrees) 
oC Celsius 1.8C+32 Fahrenheit oF 
 

SYMBOL 
WHEN YOU KNOW MULTIPLY BY TO FIND SYMBOL 

ILLUMINATION 
lx  lux 0.0929 foot-candles Fc 

cd/m2 candela/m2 0.2919 foot-Lamberts Fl 
 

SYMBOL 
WHEN YOU KNOW MULTIPLY BY TO FIND SYMBOL 

FORCE and PRESSURE or STRESS 
N newtons 0.225 Pound force Lbf 

kPa kilopascals 0.145 Pound force per square 
inch 

lbf/in2 

*SI is the symbol for the International System of Units. Appropriate rounding should be 
made to comply with Section 4 of ASTM E380.(Revised March 2003 
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•  17th street: This is bascule Replacement Bridge for the old movable bridge on S.E. 17th 
street Causeway over the intercostals waterway in Fort Lauderdale, located on Broward 
County, FL. 

•  Fuller Warren Bridge: It is localized over the St. Johns River in downtown Jacksonville on 
the Interstate Highway 95 (I-95). It replaced the old Gilmore Street Bridge. 

• FHWA: Federal Highway Administration 

• FOSM:  First-Order-Second-Moment 

• LRFD: Load and Resistance Factored Design 
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EXECUTIVE SUMMARY 

 

Due primarily to economics, large diameter drilled shafts have become more popular for 

supporting large bridges and tall structures.  The benefits of reducing the number of piles, say in 

a group and associated pile cap dimensions, as well as noise and vibration abatement, makes 

drilled shaft design and construction very appealing.  In addition, Florida’s geology, with its 

limestone varying from the ground surface to depths of 150 feet, provides five to ten times more 

axial capacity as compared to a similar size driven pile. Transferring lateral loads to deeper, 

competent material is readily accomplished by simply increasing a shaft’s diameter.  

Consequently, four to nine individual shafts beneath a single bridge pier have evolved down to 

two and more recently to just a single, large diameter shaft per pier.   

The use of eight to twelve foot diameter drilled shafts, embedded ten to twenty feet (for 

typical shaft geometry’s length to diameter ratio of one to three) in Florida Limestone, will lead 

to vertical and lateral tip translations as well as rotations.  In addition, axial tip resistance 

increases quadratically versus side shear (linearly) as a shaft’s diameter increases.  

Unfortunately, current FDOT and FHWA design methodologies were developed for four and six 

foot diameter shafts  (embedded ten to twenty feet), which exhibit little if any tip translation or 

rotation.  Consequently, early designs counted on minimal end bearing and its use offset by 

reducing the axial shaft’s LRFD phi factors. 

This project focused on developing improved axial, shear and moment models for large 

diameter drilled shafts embedded in Florida limestone. Impacting both the shear-lateral 

translation and moment-rotation models was the axial tip-vertical displacement model.   The 

axial tip resistance is controlled by the compressibility or Young’s Modulus of the limestone.  In 

Florida, limestone is both voided and highly variable or layered.  To study the latter, thirty two 
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combined axial and lateral centrifuge tests were performed on drilled shafts embedded in 

homogeneous, as well as layered rock formations.  To characterize the reduced recoveries (e.g. 

30% and 50%), synthetic limestone with micropores made from perlite was created.   

Based on the laboratory centrifuge results, the research found that the FHWA’s end 

bearing approach of O’Neill gave acceptable axial tip resistance versus tip displacement, if either 

the rock’s Harmonic or Geometric Mean Modulus is used as its mass modulus, within three 

diameters below the shaft tip.  The research also found that the mass modulus may be directly 

related to the rock’s recovery.   

In the case of tip shear under combined axial and lateral loading, the study proposes the 

use of an elastic plastic model.  Specifically, for lateral tip displacements less than failure, an 

elastic stiffness based on the rock’s Young’s Modulus or shear strength is proposed. However, 

for displacements beyond failure, a limiting or constant shear resistance is maintained.  Shear 

failure is based on Mohr-Coulomb strength criterion which is a function of normal tip stress and 

the cohesion of the rock.  It should be noted that typical Florida limestone’s shear strength is 

highly dependent on normal stresses, with angles of internal friction between 25 and 55 degrees. 

 For large diameter drilled shafts embedded short distances into limestone, the transfer of 

moment at the tip of shaft was found to be significant and must be modeled to ensure proper 

shaft reinforcement design.  The model developed by Bell (1992) which considers both axial and 

tip shear resistance was found to yield reasonable results compared to the centrifuge results. 

Finally, with axial end bearing varying from 25% to 50% of a shaft’s total capacity, the 

development of appropriate LRFD resistance factors is important.  Presently, one set of 

resistance factors are used for drilled shafts in limestone depending on inclusion or exclusion of 

end bearing.  However, the axial tip resistance is a function of the rock’s Harmonic or Geometric 
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Mean Modulus near the tip, which in turn depends on a site’s coefficient of variability and 

spatial covariance function.  Thus, using Geostatistics, a First Order Second Moment LRFD 

methodology was created.  The resulting Excel spreadsheet, using Monte Carlo simulation, 

allows designers to assign LRFD phi values for specific sites.  Assessment of LRFD resistance 

factors for two separate field sites, the 17th  Street and Fuller Warren Bridges, showed phi values 

varying from 0.3 to 0.6. 
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CHAPTER 1 
INTRODUCTION 

 

1.1 Background  

1.1.1 Design 

Over the past decades, drilled shafts have become the deep foundation of choice for 

bridges and tall structures. Due to their large diameters and associated large moments of inertia, 

they are able to resist large lateral loads induced by hurricanes and ship impacts. In addition,   

installation involves a minimal foundation footprint addressing right of way issues and the need 

to minimize construction noise and vibrations in urban areas. Finally, there are economic 

benefits of replacing a large number of piles in a group with a single or several drilled shafts. 

In the late 1980s, drilled shaft designs for bridges in Florida (e.g., Port Orange, Gandy, 

etc.) utilized shafts with diameters of between four and six feet, with rock embedments 

exceeding 25 ft (i.e., rock socket Length/Diameter or L/D > 5 diameters).  Typical axial load 

transfer was based solely on skin friction with virtually no contribution from tip resistance.  

Subsequently, with the use of shaft inspection devices, field load tests (e.g., Osterberg or 

Statnamic) as well as new end bearing design approaches (e.g., FHWA – O’Neill), end-bearing 

resistance in design has become more common place (e.g., Ringling Bridge). Moreover, in order 

to reduce foundation costs and minimize their footprint, shaft diameters have steadily increased, 

with six to ten feet now the norm (e.g., Apalachicola, Ringling, New River, etc.). 

Unfortunately, the size of drilled shafts has a profound effect on their load resistance 

behavior. For instance, under lateral loading, large diameter shafts develop a significant moment 

or couple from the shear transfer on the side of the shaft, as shown in Figure 1.1. The side shear 

shown in Figure 1.1 thus influences the back calculated P-Y curves.  For example, Figure 1.2 
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(McVay et al., 2004) shows back calculated P-Y curves if side shear is accounted for (i.e., 

labeled  ‘corrected’ in Figure 1.2).  It is apparent that the error in estimating the lateral resistance 

may be as high as 26% for a 12 foot diameter shaft. Consequently, the new release of FB-PIER, 

Version 4, accounts for the side shear and its influence on shaft moments. 

 

Figure 1.1 Field Load Transfer in Soil/Rock 

 

Besides side shear, the tip behavior of large diameter shafts (i.e., 8 ft or greater) is greatly 

influenced by embedment length.  For instance, at typical embedment depths of 20 ft or less, it is 

expected that these shafts will exhibit lateral tip displacement and rotation, especially for L/D < 

3.  The rotations will develop significant moments and shear at the shaft tip, especially in Florida 

limestone.  These shears and moments will correspondingly change the shaft’s internal shears 

and moments and therefore must be accounted for in shaft design (i.e., steel reinforcement 

requirements).  

Besides shears and moments within the shaft, large diameter shafts are also strongly 

influenced by spatial variability within the tip zone (3D). For example, voids, weak zones, and 

variable soil properties (modulus, strength etc.) all must be taken into account. For instance, an 
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eight foot diameter shaft would have a zone of influence of 24 feet which could include layering 

as well as highly variable rock properties and voids.  Any LRFD design methodology must 

account for spatial variability on a site by site basis. 

  

  

Figure 1.2 Reconstructed P-Y Curves for 80 ksf Rock 
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1.1.2 Background – Centrifuge Testing  

Recently, the researchers successfully tested large diameter drilled shafts embedded in 

variable strength limestone.  The testing was conducted using UF’s centrifuge facility, in which 

small scale models are subjected to large scale field stresses. Since Florida limestone is highly 

variable, both horizontally and vertically, it was obvious that there would be insufficient 

duplicate samples needed for the testing program.  Consequently, synthetic rock, which is 

homogeneous and isotropic with strengths similar to Florida limestone, was developed.  The rock 

was produced by mixing ground limestone, cement and water in various proportions to obtain 

prescribed unconfined strengths. Axial and lateral tests of shafts in this “rock” produced similar 

load-deformation response as natural limestone (McVay, 2004).  

 

 Figure 1.3 Combined Axial and Lateral Load Test (McVay, 2004) 
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In this prior research (McVay, 2004), the end bearing contribution was removed by using a 

Styrofoam plug as shown in Figure 1.3.  Thus, only side shear contributed to the lateral 

resistance (P-Y curves) of the shaft. 

For the current research project, the Styrofoam plug was removed and the various shafts 

shortened to L/D < 3.  In addition, the unit end bearing and tip shear as a function of axial tip 

displacement and rotation had to be measured.   Thus, strain gages used in the prior research, and 

shown in Figure 1.4, were used in assessing the axial and lateral shears, moments and lateral 

resistances as a function of shaft displacement and rotation.  However, as the prior research 

performed axial and lateral load tests independently of one another, these tests needed to apply 

both axial and lateral loads concurrently. A range of lateral loads, representative of typical 

Florida designs with variable axial loading (i.e., develop tip resistance vs. displacements) were 

used.   

 

Figure 1.4 Instrumented Drilled Shafts to Monitor Axial, Moment and Shear 

 

1.1.3 Background – Spatial Variability  

Since tip resistance is a function of tip compressibility, the effects of voids found in 

Florida limestone, i.e., Karst materials where recoveries range between 40 to 80% must be 

considered.  For this study, the use of perlite spheres mixed in with the synthetic limestone (30% 
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to 50% by volume) was used to represent typical rock recoveries.  It is important to note that the 

current design methods by O’Neill and FHWA in FB-DEEP model the effects of voids through 

the Mass Modulus of the rock, Em.  This is always smaller than the intact Young’s Modulus, Ei 

and is generally related to Recovery or RQD.  

The results of the laboratory centrifuge work was the development of a tip model (i.e., 

axial, shear, and moment) for short shafts (L/D < 3) as a function of tip displacements, rotations, 

rock strength (qu, qt), stiffness (Ei) and Recoveries. Another important point to consider is that 

current design software (FB-Pier, FB-Deep, FHWA, etc.) identifies tip resistance only as a 

function of tip displacement, stiffness (Ei) and RQD.    

Due to the loss of foundation redundancy and the trend toward larger single shaft 

construction (e.g., Cross-Town Expressway, New River Bridge, Ringling Bridge, etc.), field 

coring of rock near as-built non-redundant shafts is now required (FDOT Structures Bulletin, 

2005).  However, to accurately predict skin and end bearing of a new shaft during the design 

phase is also of strong interest.  For instance, the thickness of limestone layers, recoveries 

(voids), strength and compressibility near the proposed shaft may significantly improve the 

LRFD resistance factors,φ, for design. Consequently, there is a need to assess the LRFD 

resistance factors based on the frequency distribution of strengths, recoveries and compressibility 

data for an entire site rather than for a specific shaft location.    

Fortunately, probabilistic based LRFD resistance factors can be used to address these 

issues. For example, using Monte Carlo or Bayesian theory, strength, compressibility, etc., 

statistical properties can be generated from core and laboratory data near a specific shaft or over 

the entire site. Using simple random sampling, end bearing, skin friction, etc. may be computed 

for a specific shaft or for any other shafts on site.  For instance, (McVay 2004) used the latter 
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approach to assess LRFD skin friction resistance factors. This technique had not be been used 

previously and it is expected that the difference in LRFD resistance factors for end bearing will 

be significant when applied at a specific location versus the entire site. 

 

1.2 Scope 

1.2.1 Laboratory 

In order to develop end bearing and tip shear for large diameter short shafts (L/D < 5), two 

different rock strengths, 10 tsf and 30 tsf, were used. For each of the rock strengths, the 

following conditions were varied in order to develop end bearing and tip shear relationships. 

1.2.1.1. Loading (Axial and Lateral)  

 Initially, axial load tests only were performed to assess existing lab/field unit tip resistance 

models (O’Neill FHWA, FB-Pier) as a function of tip displacement (e.g., Osterberg results). 

These tests were used to identify the peak axial force for a given rock strength, Young’s Moduli, 

and L/D embedment.  Next, the maximum lateral capacity of the test shaft was established using 

FB-Pier.  In strong rock, the lateral capacity was controlled by its moment capacity for the longer 

shafts (L/D = 3), but the rock strength controlled the shorter shafts (L/D = 1). The shafts’ axial 

tip displacement and end bearing, as well as tip translation and shear were recorded. 

1.2.1.2. Shaft Diameter   

The effects of short shaft tip rotation was more pronounced for larger diameter shafts, e.g., 

over eight feet.  Consequently, two different shaft diameters were tested to quantify influences of 

shaft diameter. Diameters of six and nine feet were studied since they are representative of 

medium and large diameter Florida drilled shafts.  
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1.2.1.3. Length to Diameter (L/D) Ratio  

 For each shaft diameter, two different L/D ratios were tested to investigate the effect of 

embedment depth on the distribution of end bearing and tip shear.  The embedment depth 

strongly influences the magnitude of displacement and rotation of the shaft as well as its tip 

normal pressure and shear distribution. Long shafts (i.e., L/D > 5) are generally controlled by 

shaft’s moment capacity, whereas the soil/rock lateral resistance controls shorter shaft response.  

L/D ratios between 1 and 3, Table 1.1, were tested, since they represent typical Florida 

embedment depths. 

           1.2.1.4. Influence of Rock Voids or Limestone Recoveries  

Of particular interest was the influence of karst channels or rock voids (Recoveries < 

100%) on end bearing. To account for the effect of voids on a shaft’s ultimate tip resistance as 

well as tip shear, perlite (Styrofoam) spheres, 30% to 50% by volume, were mixed with the 

synthetic limestone. Since voids are more of a concern for short shafts, the studies focused on 

shafts with a length to diameter ratio of one and were tested in weak and strong limestone as 

shown in Table 1.1.  

In addition, since shafts may be embedded in limited thick layers, e.g., Fort Thompson, 

Jacksonville, etc., the extent and quality of rock below the shaft tip becomes extremely 

important.  Current design practice assumes uniform rock properties to a depth below the tip of 

three diameters, which may or may not be conservative.  To investigate this possibility, reduced 

modulus rock, located one and three diameters below the shaft tip (see Table 1.1) were used to 

quantify its influence on end bearing capacities. 

   Table 1.1 shows a summary of all 32 tests performed to quantify end bearing and tip 

shear for large diameter short shafts. Note, there were 16 different scenarios (i.e., rock strength, 

embedment, voids etc.), but each test had to be repeated twice to ensure accuracy.  
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1.2.2 LRFD Assessment and Field Verification 

Current assessment of drilled shaft skin and tip resistance is performed using core samples 

recovered from the site and tested in the laboratory (unconfined compression, split tension, and 

intact Young’s Modulus). Generally, all the samples are averaged over the entire site and either a 

log normal distribution or arithmetic mean is assumed, while discarding those values one 

standard deviation above and below.  Unfortunately, these methods don’t consider spatial 

variability and associated correlation (i.e., covariance), which is important for end bearing.  A 

probabilistic approach (Monte Carlo), which does consider spatial variability and associated 

correlation at a specific pier or entire site is more appropriate. For instance, the designer should 

have the option of developing specific LRFD resistance factors for a specific shaft/pier based on 

adjacent data (summary statistics, covariance, etc.) or by using the entire site data for general 

LRFD assessment values.  Obviously, it is expected that the φ values developed on a pier by pier 

basis should be much higher. However this is offset by the higher cost of additional field testing.   

Examples of predicted tip response, as well as LRFD φ factors using spatial variability and 

correlation is presented for two FDOT sites: 17th Street and Fuller Warren Bridges. 

Table 1.1 Recommended Tests for End Bearing and Unit Tip Shear 
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CHAPTER 2 
CENTRIFUGE TESTING SETUP AND MATERIAL  

 

2.1 Background 

The chapter focuses on the development of a tip shear, end bearing and tip rotation model 

for drilled shafts in Florida limestone using centrifuge results. Specifically, the influence of tip 

translation and rotation, limestone strength and stiffness, as well as voids and layering were 

investigated.  For the model development, the recommended tests, outlined in Table 1.1 were 

adopted and are  re-shown in Table 2.1 below.  

 

Table 2.1 Centrifuge Test Matrix 

 

 

The tests were selected to encompass both soft and medium strength rock for both short 

and intermediate embedment. Also, since Florida limestone typically contains voids, it results in 

a variable modulus. To model this aspect, 1.5 mm diameter perlite spheres were used to capture 

the mass modulus, Em. A total of 32 centrifuge tests were conducted based on Table 2.1, i.e., 

duplicate 16 tests for repeatability. A discussion of the centrifuge testing and results follows. 
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2.2 Hardware & Instrumentation 

The tests were performed in the newly constructed axial/lateral test box shown in Figure 

2.1. The circular steel container holds the cast limestone specimen. The aluminum superstructure 

provides the necessary reaction for both axial and lateral loading of the models. Mounted to the 

top of the container are two load cells for axial and lateral loading as well as two displacement 

transducers ( LVDTs) for axial displacement and one for lateral displacement. The test setup is 

shown Figure 2.2. 

Since the sample container is 12 inches tall and 17 inches in diameter, in order to model a 

prototype foundation embedment of 27 feet, the centrifuge tests were conducted at 67 gravities. 

To minimize the end effects, seven inches were maintained between the model’s tip and bottom 

of container. The basic centrifuge scaling relationships is as follows. The length dimension is 

scaled by 1/67 (i.e., the model diameter equals the prototype diameter divided by the number of 

gravities). By applying this scaling factor, model and field stresses are equal. A comparison of 

Prototype (Field) to centrifuge model dimensions is shown in Table 2.2. 

 

Table 2.2 Conversions between Prototype and Model for Shafts Tested 

 

 

Each model shaft had steel reinforcing oriented in the axial direction for lateral loading, as 

shown in Figure 2.3.  Attached to opposite sides of the reinforcing were four to six pairs of strain 

gages depending on the L/D ratio. The steel reinforcing was modeled with a 0.75 inch diameter 

steel pipe for the 6 ft diameter and a 1.32 inch diameter steel pipe for the 9 ft diameter shaft.  
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Both were slotted, and roughened to aid bonding with the concrete. The strain gages were 

obtained from Micro Measurements with 350 Ohm resistance.  

 

 

 

Figure 2.1 New Cylindrical Sample Container 
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Figure 2.2 Instrumentation for Measuring Lateral & Vertical Forces and Deformation 

 

Figure 2.3 Slotted Steel Pipe (Axial Reinforcement) & Strain Gages 
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The axial forces in the shaft were obtained from the average strain gage readings at 

discrete locations multiplied by the shaft modulus and cross-sectional area. To assess bending 

and thus flexure, the bending strains are measured from which the curvature is compute and 

bending moments obtained. Note the moment-curvature relationship may be nonlinear for 

cracked cross-sections. Once the bending moment distribution along a shaft is known, the shear 

distribution (i.e., derivative of moment with depth) is also known. Not only were the shear and 

bending moments determined along the shaft, but at the tip as well. 

 

2.3 Material 

2.3.1 Synthetic Rock 

The limestone used in the experiments, Figure 2.4, was reconstituted material (synthetic 

limestone), i.e., a mixture of crushed limestone, cement, and water (McVay et al. 2004).  Perlite  

spheres were added to characterize voids associated with typical recoveries from the field.  Of 

primary interest is the influence of void sizes on rock properties, i.e., modulus and strength. The 

current practice (i.e., FHWA intermediate geomaterials) is to reduce modulus as a function of 

RQD or Recovery values.   

 

Figure 2.4 Mixture of Synthetic Rock (10 tsf) for Axial Load Test in Centrifuge 



 

15 

 

For this work, crushed limerock was obtained from a quarry in Newberry (Florida 

Limestone Products Inc.) by the SMO and delivered to UF in bulk (approximate 2 tons).  For 

volume considerations, i.e., centrifuge testing, the limerock was subsequently sieved through a 

No. 10 standard sieve. Its grain size distribution is shown in Figure 2.5 and as seen in the Figure, 

the aggregate is well graded. 
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Figure 2.5 Grain Size Distribution for Limerock Aggregate 

 

To minimize the affect of natural moisture in the material, it was dried for at least 24 

hours. Next, the synthetic limestone was batched by mixing Portland cement and water in 

differing proportions. Cylindrical samples (2 inch diameter and 4 inches high) were cast and 

cured at room temperature for 14 days before unconfined compressive tests were run. To obtain 

the desired strength, multiple trials of different proportions of limerock, cement and water were 
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used and are shown Table 2.3. Once the desired strength was achieved, the tests were repeated at 

least three times to verify repeatability.  Limestone specimens with and without Styrofoam were 

also cast in 2” x 4” cylinders to identify the influence of voids on rock properties, i.e., strength 

and modulus, shown in Figure 2.6.  The unconfined compression strength testing was performed 

in accordance with ASTM D 2938.  An ISTRON, compression testing machine, was used to 

obtain both the unconfined compression strength, as well as the modulus. 

 

 

Figure 2.6 Strength Testing of Concrete and Rock 

 

Table 2.3 Proportion of Component for Synthetic Limestone 
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As discussed previously, perlite spheres cast with the synthetic limestone specimens 

attempted to mimic voids found in natural occurring rock (Figure 2.7).  Figure 2.8 shows the 

stress strain response of intact (i.e., no perlite) versus 30% by volume perlite specimens.  Both 

small (5 mm) and larger (10 mm) spheres were investigated. Evident from the Figure, a 

significant reduction (>50 %) in strength and compressibility (i.e., the slope of stress vs. strain) 

occurred with the addition of the perlite. Interestingly, the size of the pearlite spheres (i.e., small 

vs. large) was not an issue, suggesting that the karst nature of limestone could be characterized 

through sphere inclusion. Table 2.4 shows the comparison of voided modulus to non-voided 

modulus based on volume or recovery. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7 Synthetic Limestone with 5 mm Perlite Spheres Occupying 30 % Volume 
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Figure 2.8 Stress-Strain Response Voided and non-Voided Limestone 

 
Table 2.4 Ratio of Em (with perlite) / Ei  (no perlite) 

 

 

2.3.2 Concrete Grout 

Since the rock strength used in the centrifuge tests are as high as 30 tsf (417 psi), the 

concrete strengths had to be sufficient enough to ensure a limestone failure instead of the 

concrete.  This is because the study focused on rotations of the drilled shaft models, as well as 

translations, i.e., tip shear. To ensure the latter, a concrete strength of 360 tsf (5000 psi) which is 

typical for drilled shafts in Florida, was used. Due to model size of the shafts, the concrete 
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aggregate was limited in size to 2 mm and below. Several trial mixes were tested, incorporating 

five components; Portland cement type I, sand, silica fume, super-plasticizer, and water. The 

silica fume and super-plasticizer provide an increase in strength by reducing the water cement 

(w/c) ratio. The influence of sand particle size, were investigated as follows.  

2.3.2.1 Mix with Silica Sand   

Several trials mixes using w/c ratios of 0.35 to 0.4 and 0.5 to 0.6, with final strength values 

of 3 ksi to 4 ksi were obtained.  After several trials to obtain 5,000 psi, w/c ratio was reduced to 

0.3 for higher strengths; unfortunately the target strength, i.e., 5 ksi, couldn’t be obtained. Table 

2.5 shows the amount of each component. The amounts of each component were for 5 samples. 

Table 2.6 shows the dimensions of the samples and the maximum load applied to each. The 

samples were tested after 4 days of curing at room temperature. 

 

Table 2.5 Amount of Component for Mixing Concrete with Silica Sand 

 

 
Table 2.6 Result of Unconfined Compression Strength Test 
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2.3.2.2 Mix with Granite Sand    

Table 2.7 shows the amount of each component weights required to make 4 samples. Table 

2.8 shows the size of sample and the maximum load on each sample. The samples were tested 4 

days after curing at room temperature. As evident by Table 2.8, the expected strength, i.e., 5 ksi, 

was obtained and was used to make the model shafts.  

 
Table 2.7 Amount of Component for Mixing Concrete with Granite Sand 

 

 
Table 2.8 Result of Unconfined Compression Strength Test 

 

Consequently, the mix design outlined in Tables 2.7 & 2.8 was used for the drilled shafts 

construction, as well as the instrumentation and Testing Matrix outlined in Table 2.1 for a total 

of 32 instrumented tests. 
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CHAPTER 3 
CENTRIFUGE TEST DATA REDUCTION 

 

3.1 Axial Loading 

The standard testing procedure consisted of first applying an axial load to each shaft until 

settlement reached 3% to 5% of the models’ diameters. This was then followed by the lateral 

loading. The axial loading was representative of the vertical live and dead loads under service 

conditions. The data from the axial loading was used to develop the tip displacement vs. tip 

stress model. The reduction of the data is as follows.  

From several pairs of strain gage readings (Figure 3.1) in concert with axial LVDT 

displacements and load cell output at the top of shaft, the transferred skin friction along the shaft 

and tip resistance were computed. Specifically, from each pair of strain gage, the axial strain or 

compressive strain for each applied axial load state was found. 

 

Figure 3.1 Strain Gage Layout for L/D = 1 

 

The compressive strain is given by: 
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2

)( rightleft
a

εε
ε

+
=                                                 Eq.3.1 

Next, the transformed Young’s Modulus of the shaft was assessed from the pair of strain 

gages located above the rock surface along with the applied axial load. The Young’s Modulus of 

the shaft is given by: 

                                         
ar

PE
επ ××

= 2                                                    Eq.3.2 

   Where, P is the applied axial load.     

Subsequently, from each axial strain, the compressive force (Q) with depth may be 

assessed: 

                                             AEQ a ××= ε                                                              Eq.3.3 

      Where, A is Gross Shaft Area. 

Figure 3.2 shows the typical axial force, Q, distribution within a shaft for various applied 

axial loads. 
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Figure 3.2 Compressive Force (Q) vs. Depth  
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3.1.1 Axial Loading –Side Shear  

Once the axial force distribution along the shaft for a particular top displacement and set of 

strains along the shaft is determined, the T (fs) versus Z curve for the shaft can be computed by:   

                                                    
LD

Qf s ××
Δ

=
π

                                                    Eq.3.4 

Where, L is the interval length between adjacent pairs of strain gages. 

Figure 3.3 shows typical fs vs. Z curve for test shafts. 
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Figure 3.3 Mobilized Skin Frictions vs. Axial Displacement 

 

For any applied axial load, a corresponding axial displacement and skin friction can be 

calculated at each elevation. However, due to the homogenous nature of the rock, the skin 

friction was expected to be uniform along the shaft as well as within range of the FDOT design 

values (McVay, 1992) and of previous centrifuge tests (Lila, 2003).  Shown in Figures 3.4 and 

3.5 are all the T-Z curves for the axial load portions of the centrifuge tests. Figure 3.4 shows the 

results for 10 tsf strength rock and Figure 3.5 shows the 30 tsf strength results. The results show 
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that the FDOT design criteria is quite good, however slightly conservative. The latter is 

attributed to the linear assumption of the strength envelope in assessing cohesion from ½ sqrt 

(qu) sqrt (qt). 
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Figure 3.4 Measured Skin Friction Comparing Lila (2003) and McVay (1992) 

Skin Friction(30tsf)

0
20
40
60
80

100
120
140
160

0 1 2 3 4 5
Axial Displacement,z (in)

Sk
in

 F
ric

tio
n,

 fs
 (p

si
)

9/9-30tsf-50%-#1 9/9-30tsf-50%-#2
McVay Lila
9/9-30tsf-#1 9/9-30tsf-#2
6/6-30tsf-#1 6/6-30tsf-#2
9/27-30tsf-#1 9/27-30tsf-#2
6/18-30tsf-#1 6/18-30tsf-#2

 

Figure 3.5 Measured Skin Friction Comparing Lila (2003) and McVay (1992) 
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The T-Z curves shown in Figures 3.4 and 3.5 agree very well with Lila’s results which 

have subsequently been implemented into FB-MultiPier. 

 

3.1.2 Axial Loading – End Bearing  

 A major focus of this research involves end bearing and specifically mobilized tip 

resistance as a function of tip displacement.  Currently, FB-DEEP and FB-MultiPIER employ the 

FHWA model formulated by O’ Neill which characterizes tip resistance, qb as: 

                                                            0.67
b tq W= Λ                                                        Eq.3.5 

Where   Λ(Lambda) = Elastic compressibility parameter; 

           Wt = Displacement at top of shaft (value assumed) 

The elastic compressibility parameters, Λ(Lambda), Γ(Gamma), and Ω(Omega), may be 

computed as:  
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c
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m

EL L0.37 0.15 1 log 0.13
D D E

⎡ ⎤ ⎛ ⎞⎛ ⎞ ⎛ ⎞Γ = − − +⎢ ⎥ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥ ⎝ ⎠⎣ ⎦

                  Eq.3.6 
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⎝ ⎠ ⎝ ⎠⎢ ⎥ ⎝ ⎠⎣ ⎦

                  Eq.3.7 

Leading to 

         

0.670.5

m

L LL 200 1
D DD0.0134E

L L1
D

⎧ ⎫⎡ ⎤⎛ ⎞ ⎡ ⎤⎛ ⎞ − Ω +⎪ ⎪⎢ ⎥⎜ ⎟ ⎢ ⎥⎜ ⎟ ⎝ ⎠ ⎣ ⎦⎢ ⎥⎪ ⎪⎝ ⎠ ⎣ ⎦Λ = ⎨ ⎬π Γ⎛ ⎞ ⎪ ⎪+⎜ ⎟ ⎪ ⎪⎝ ⎠
⎩ ⎭

                                 Eq.3.8 

The Young’s Modulus in Eqs. 3.4 to 3.6 is the mass modulus, Em, and is of significant 

importance. The latter is different from the Young’s modulus of intact rock samples, Ei, 

measured in the laboratory (ASTM D3148). The rock mass Young’s Modulus, Em, represents the 
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whole mass including fissures, voids, slip planes, etc.  O’Neill suggests a correlation (Table 3.1) 

between the Ei, and Em based on Rock Quality Designation (RQD).   If RQD values are less than 

20 percent, the 20 percent’s RQD correlation was used (Load Transfer for Drilled Shafts in 

Intermediate Geomaterials, 1996).   

 

Table 3.1 Estimation of Em/Ei Based on RQD (Load Transfer for Drilled Shafts in Intermediate 
Geomaterials, 1996) 

 

Of interest was the relationship between Florida limestone’s Mass Modulus and intact 

Young’s Modulus, Ei as reported in Table 2.4.  Shown in Figure 3.6 are the Em/Ei ratios as 

reported by O’Neil and UF.  It shows that the UF data falls between O’Neil’s open and closed 

joint data. Also, there exists a linear relationship between Em/Ei for Recoveries above 50 % and 

below this value there is a sharp drop off. 
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Figure 3.6 O’Neil Em/Ei vs. RQD and UF Em/Ei vs. Recovery 

 

Next in importance for estimating tip resistance is the influence of layered systems 

(Example Table 2.1). The first researchers to address this were Ueshita and Meyerhof (1967) 

whose results are shown in Figure 3.7.  Their theoretical solution for settlement or stress were 

found in terms of an Equivalent Modulus, Ee = K E1 shown in Figure 3.7.  

Others have suggested the harmonic mean Eh (i.e. Menard), or: 

                       
)1..11(

21 N

harmonic

EEE

NE
+++

=                                                     Eq.3.9 

Where N is number of layers and      NE  is the modulus of each layer. 
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Figure 3.7 Two Layer System and Equivalent Modulus (Ueshita and Meyerhof, 1967) 

 

Figure 3.8 Layered Moduli beneath a Drilled Shaft 

Recently, the geometric averaging method, Eg, to account for spatial variability (i.e., 

covariance) provided an excellent correlation with an FEM analysis (Fenton and Griffiths, 2005). 

The latter may be expressed as:  
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Both the Harmonic and Geometric means were used to estimate the tip resistance, qb vs. 

displacement (Eq.3.5) for all axial centrifuge tests. The results are presented in Figure 4.1. 

 

3.2 Lateral Loading in Combination with Axial Loading 

The first phase of the research was to conduct lateral load tests in combination with axial 

loading to obtain moment, shear and tip rotation of the shafts. Variables that were used include: 

rock strength (10 tsf and 30 tsf), diameter (6 ft and 9 ft) and embedment ratio (L/D ratio of 1 and 

3).  Based on the latter tests, tip shear and rotation models were developed.  A discussion on how 

the data reduction was performed is presented in the following section.  

 

3.2.1 Lateral Centrifuge Data Reduction 

As discussed earlier, instrumentation was used to assess the lateral load and displacements 

at the top of shaft.  The strain gage output was found by: 

                                                      
EG
V

×
Δ×

=
4ε                                               Eq.3.11 

 Where, ε  is the strain (inches per inch) 

              VΔ is the change in bridge output voltage (mV) 

              G is the gage factor (2.05) 

               E is bridge excitation voltage (10 V) 

 
It was assumed that the relationship between strain gage resistance and voltage, i.e., 

Eq.3.11 was linear. Figure 3.9 shows a typical output voltage from the strain gages located at the 

rock surface for the entire loading sequence (i.e., axial and subsequent axial with lateral). As 
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expected, from 0 to 600 seconds, the individual gages on each side of the shaft indicated no 

bending since only an axial load was being applied. However after 600 seconds when the lateral 

load was applied the gage values diverged.  A positive output voltage indicates tension and 

negative voltage, compression. Note that the voltage relationhip is linear with the first 

application of the lateral load, but then becomes non-linear due to concrete cracking.  

 

 

Figure 3.9 Output Voltage from Gages vs. Time 

 

At each strain gage elevation, the bending strain may be computed from the gage values on 

each side of the shaft as: 

                                                           
2

rightleft
b

εε
ε

−
=                                             Eq.3.12 

Summing the axial strains (Eq.3.1) and the bending strains will result in the measured 

strain on each side of the shaft, i.e., εa and εb as shown in Figure 3.10. 
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Figure 3.10 Total Axial and Bending Strains along the Shaft Cross-Section 

 

Also of great interest was the moment-curvature relationship of the shaft’s cross-section.  

The latter was used in assessing the moments, shears, rotations and lateral translations of the 

shaft below the rock surface.  That relationship is:  

                                      φ
ε EI
r

EIM b ==                                                         Eq.3.13 

  where E = Young’s Modulus of the shaft 

              I = Moment of Inertia of cross-section 

              r = Shaft’s radius 

             φ  = Curvature of the cross-section (i.e., change in rotation) 

The moment curvature relationship may be simply expressed as M=Bφ  where B is the 

nonlinear relationship of EI. The latter may be obtained readily from the strain gage data in the 

shaft at the rock surface elevation where the moment is readily known (lateral load x height 
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above rock). The curvature, Eq.3.13 is also obtained from strain gage data. A typical moment-

curvature expression is shown in Figure 3.11. 
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Figure 3.11 Moment-Curvature Relationship for 9 ft Diameter from a Pair of Strain Gages above 
Rock Surface. 

 

From the moment – curvature relationship, the moment distribution along the length of the 

shaft may be found from Eq.3.13 by using the bending strains from the gage pairs along the 

shaft. Figure 3.12 a, b, and c show a number of moment distribution curves along the length of 

the shafts under multiple lateral loading states. 
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Moment vs. Depth (9ft - 10 tsf - 30% - 1D)
Lateral Loading: 1456 kips with 1.5 in Lateral Displacement

Axial Loading: 5400 kips with 5 in Axial Displacement

-12

-10

-8

-6

-4

-2

0

2

4

6

8

0 2000 4000 6000 8000 10000 12000
Moment (kips - ft)

D
ep

th
 (f

t)

2 (1456 kips - 1.5 in)
1 (1333 kips - 1 in)
Trend Line For Load Case2
Trend Line For Load Case1

 

Figure 3.12a Moment Distribution along a 9 ft Diameter, 30% Styrofoam at 1D below Tip of 
Shaft in 10 tsf Limestone 
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Moment vs. Depth (9 ft - 45 tsf - 30% - 1D)
Lateral Loading: 4727 kips with 1.5 in Lateral Displacement

Axial Loading: 20500 kips with 4.8 in Axial Displacement
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Figure 3.12b Moment Distribution along a 9 ft Diameter,  30% Styrofoam at 1D below Tip of 
Shaft in 45 tsf Limestone 
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Moment vs. Depth (9 ft - 1D - 35 tsf)
Lateral Loading: 4300 kips with 1.5 in Lateral Displacement

Axial Loading: 6450 kips with 1.3 in Axial Displacement

-12

-10

-8

-6

-4

-2

0

2

4

6

8

0 5000 10000 15000 20000 25000 30000 35000

Moment (kips - ft)

D
ep

th
 (f

t)

2 (4300 kips - 1.5 in)
1 (3560 kips - 1 in)
Trend Line For Load Case 1
Trend Line For Load Case 2

 

Figure 3.12c Moment Distribution along 9 ft Shaft without Styrofoam below Tip in 35 tsf Rock 

 

From a study of Figure 3.12, the moment distribution along the shaft starts at zero at the 

top and increases linearly down to the rock surface (i.e., maximum moment) whereupon it starts 

to decrease due to the rock’s resistance. The moment at the tip is a function of shaft length and 

rock strength. 

After the moment distribution along the shaft is found, the shear distribution within the 

shaft may be readily determined from: 

                                                          
dz

dMV =                                                        Eq.3.14 
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Shown in Figure 3.13 is the increase in shear with increased lateral loading.  The axial load 

is maintained at approximately 80% of the ultimate capacity.  The rock had an unconfined 

compressive strength of 11 tsf, and the shaft was 9 ft in diameter and embedded 9 ft in the rock 

(L/D = 1). The shear at the bottom of the shaft represents the tip shear and is the force transferred 

to the rock at the bottom.  From the Figure it is evident that the tip shear transfer increases with 

lateral load due to increased lateral displacement, suggesting a model which mobilizes tip shear 

based on tip lateral deformation. 
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Figure 3.13 Increase in Tip Shear with Increasing Lateral Load, L/D = 1 

 
Increasing the rock strength (qu = 35 tsf vs. 11 tsf) increases the available tip shear for 

comparable deformations. The results are shown in Figure 3.14.  Both tests involved 9 foot 

diameter shafts embedded 9 feet into limestone under constant axial and varying lateral loads. 

Shown in the Figure is the shear distribution in the shafts under the same lateral top 

displacements. Note that failure occurred at 5% of the shaft’s diameter or 5.4 inches.  
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Figure 3.14 Increasing Tip Shear with Increasing Rock Strength 
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Figure 3.15 Shaft Shear at Failure with and without an Underlying Soft Layer 
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Shown in Figure 3.15 is the influence of a soft limestone layer (i.e., 50 % voids) one 

diameter below the tip of the shaft in 10 tsf strength rock.  This is reflected by the shear crossing 

the axis (i.e., zero shear or lateral resistance) as well as the shear distribution along the length of 

the shaft as it reduces at the shaft’s tip.  

In order to develop a tip shear model, the lateral translation of shaft tip was necessary.  

This was accomplished by evaluating the lateral displacement and rotation along the entire 

length of the shaft. The procedure used is as follows: 

1. Choose a depth along shaft as shown Figure 3.16a; 

2. From the Moment trend line, assess the moment from the selected depth; 

3. With the known Moment, go to the Moment-Curvature relationship, 3.16b, to obtain 

the curvature (i.e., change in slope); 

4. Repeat steps 1 through 3 for several points along the shaft making sure the tip is also 

selected; 

5. Identify where there is zero lateral translation of the shaft, i.e., y = 0, by checking for 

zero lateral resistance, i.e., P = dV/dX = 0 in Figure 3.17   

6. From the curvature,  the rotation at the top of shaft (θ) is found;  

                                                   L
r

bbbt ×
+

=Δ
2

εε
θ                                              Eq.3.15       

where, εbt and εbb are the bending strains at the top and bottom of each segment 

respectively, r is the shaft radius and L is the segment length;     

7. Using the latter estimate of θ, the segment rotations, Δθ at each point are obtained 

along the shaft (i.e., θ2 = θ1- Δθ1, θ3 = θ2 - Δθ2, etc.) 
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8.  The computed θi (step 7) at each point represents the slope of the deflected shape at 

their respective positions (dy/dzi = θi). Thus, the lateral displacement at each point can 

be calculated using dy = θi* dzi . 

9. Steps 5 to 9 were repeated until the line passed through or was very close to the point of 

zero deflection and P = 0.  

10. After shaft rotations and displacements are assessed for the top half of the shaft, i.e., 

above y = 0, the bottom half of the shaft values aree determined, especially for the shaft 

tip. 

 

(a)                                                                     (b) 

Figure 3.16 Assessing Rotation from the Moment-Curvature Relationship  
(a) Moment versus Depth (b) Moment - Curvature Relationship 

 
Shown in Figure 3.17 is a typical displacement vs. depth for a shaft using this method. The 

next chapter presents the shear versus tip displacement for all tests conducted and presents the 

proposed shear tip model. 
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Figure 3.17 Typical Lateral Deflections (y) vs. Depth 

 

 
 
 

  



 

41 

CHAPTER 4 
MEASURED VERSUS PREDICTED SHAFT TIP RESPONSE 

 

The focus of this research was to validate or develop reliable methods to predict the axial, 

shear, and moment response of a drilled shaft tip founded in Florida limestone under combined 

axial and lateral loads.  A number of models to characterize tip response were investigated (e.g., 

O’Neill, Bell, Dohetry, Ueshita, etc.).  Some had been developed specifically for rock (O’Neill), 

while others were applicable for general elastic materials (e.g., Bell, & Dohetry).  However, none 

had tested Florida limestone with its associated variability (see Chapters 5 and 6).  For the lateral 

tip shear response, the work focused on extending the existing FDOT side friction model 

(McVay 1992) to account for normal stress and shaft diameter.  A discussion of axial loading is 

presented next, followed by shear and then moment computations. This sequence was followed 

because shear results use axial data and moment results require shear resistance). 

 

4.1 Axial Test Results 

Figures 4.1a through 4.1j show the measured axial tip response for all shafts founded in 10 

tsf and 30 tsf strength rock with and without layering.  Also shown in each Figure is the 

predicted axial tip response using O’Neill’s (Eqs. 3.5 to 3.8) model incorporating either the 

harmonic mean modulus, Em, or geometric mean modulus, Eg.  Analysis of Figures 4.1a through 

4.1j reveals that both the harmonic and geometric modulus in combination with the O’Neill’s tip 

resistance model shows good agreement with the experimental response.  Since the geometric 

modulus, Eg, gave slightly better results, it was used in the LRFD resistance assessment. 
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Using Geometric
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Figure 4.1a Tip Resistance (Model vs.O’Neill’s Equation with Harmonic Average Method (left) 
and Geometric Average Method (right) for 10 tsf Rock with 50% Recovery at 1D  
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Using Geometric
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Figure 4.1b Tip Resistance (Model vs.O’Neill’s Equation with Harmonic Average Method (left) 
and Geometric Average Method (right) for 30 tsf Rock with 50% Recovery at 1D 
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Figure 4.1c Tip Resistance (Model vs. O’Neill’s Equation) with Harmonic Average Method 
(left) and Geometric Average Method (right) for 9 ft / 9 ft - 10 tsf Rock 
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Using Harmonic
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Figure 4.1d Tip Resistance (Model vs.O’Neill’s) Equation with Harmonic Average Method (left) 
and Geometric Average Method (right) for 9 ft / 9 ft - 30 tsf Rock 
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Figure 4.1e Tip Resistance (Model vs. O’Neill’s Equation) with Harmonic Average Method 
(left) and Geometric Average Method (right) for 6 ft / 6ft - 10 tsf Rock 
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Figure 4.1f Tip Resistance (Model vs. O’Neill’s Equation) with Harmonic Average Method (left) 
and Geometric Average Method (right) for 6 ft / 6ft - 30 tsf Rock 
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Using Harmonic
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Using Geometric
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Figure 4.1g Tip Resistance (Model vs. O’Neill’s Equation) with Harmonic Average Method 
(left) and Geometric Average Method (right) for 9ft / 27 ft -10 tsf Rock 
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Figure 4.1h Tip Tip Resistance (Model vs. O’Neill’s Equation) with Harmonic Average Method 
(left) and Geometric Average Method (right) for 9ft / 27 ft -30 tsf Rock 
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Figure 4.1i Tip Resistance (Model vs. O’Neill’s Equation) with Harmonic Average Method (left) 
and Geometric Average Method (right) for 6 ft /18 ft -10 tsf Rock 
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Using Harmonic
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Figure 4.1j Tip Resistance (Model vs. O’Neill’s Equation) with Harmonic Average Method (left) 
and Geometric Average Method (right) for 6ft / 18ft - 30 tsf Rock 

 

4.2 Lateral Test Result - Tip Shear Model 

Figures 4.2 and 4.3 show the measured mobilized shear stress versus tip lateral 

displacement for all centrifuge tests.  Figure 4.2 identifies the lower strength (10 tsf) response 

and Figure 4.3 the higher (30 tsf) strength rock results.  Also included in each Figure (Red 

Lines/Diamonds Dots) are the results for the layered system, i.e., 50% recovery rock located one 

diameter below the tip of the shafts.   
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Figure 4.2 Tip Shear Stress vs. Tip Lateral Displacement 
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Rock Strength - 30tsf
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Figure 4.3 Tip Shear Stress vs. Tip Lateral Displacement 

 

As expected, the higher strength rock developed the higher tip shear resistance per unit of lateral 

tip displacement. Also, the response for the 9 foot shaft was similar to the 6 foot shafts. 

However, what was not expected was the significantly diminished resistance for the shafts with 

50 % recovery located one diameter below the shaft tip.  Evidently, the more compressible 

voided zone resulted in smaller moments developing at the shaft tip, which in turn required 

larger moments in the overlying rock to resist the applied lateral load.  Figures 4.4 and 4.5 show 

a one to one comparison of the shears and moments with and without the underlying softer 

(voided) layer.  The influence on tip compressibility is shown in Table 4.1 for layered and non-

layered systems.  Also shown in the table is the influence of rock strength.   
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Figure 4.4 Shear in Shafts vs. Depth with and without Underlying Softer Layer 
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Figure 4.5 Moment in Shafts vs. Depth with and without Underlying Softer Layer 

 

Table 4.1 Comparison of Axial Tip Stresses 
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To develop a tip shear model, the influence of rock strength and normal stress must be 

taken into account.  Shown in Figures 4.6 and 4.7 are the mobilized shear stress minus the rock’s 

strength divided by the mobilized tip resistance versus normalized lateral tip displacement. 

Figure 4.6 shows the 10 tsf rock and Figure 4.7, the 30 tsf rock. 
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Figure 4.6 Tip Shear Minus Rock Strength Divided by Normal Tip Stress vs. Normalized Lateral 
Displacement 
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Figure 4.7 Tip Shear minus Rock Strength Divided by Normal Tip Stress vs. Normalized Lateral 
Displacement 



 

49 

Each plot may be characterized by a bilinear representation, i.e., a linear increasing line, 

followed by a horizontal or constant line. The linear portion represents the mobilization of tip 

shear versus normalized lateral tip displacement. The horizontal or maximum value (i.e., 0.55 for 

10 tsf rock, and 1.0 for 30 tsf) represents the failure state as shown in Figure 4.8.  

 

Figure 4.8 Mohr-Coulomb Strength of Florida limestone 

 

Consequently, the failure states represent the shear stresses within the Mohr-Coulomb limit 

state. That is to say, they are represented by angles of internal friction of 28 and 45 degrees 

respectively.  

The generalized shear model for shaft tip is shown in Figures 4.9 a and b.  It is 

characteristic of an elastic-plastic behavior model.  To use the model in a finite element code 

such as FB-MultiPier, one would do the following: 
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1. Depending on the strength of the rock, the lateral spring stiffness (Figure 4.9 a) is 

assessed from the initial slope of the curve (Figure 4.9 b).  If the rock strength is not 10 tsf or 30 

tsf, the slope is interpolated (e.g., 20 tsf is halfway between 10 and 30). 

2. Next, the finite element solution is obtained for the tip displacements; 

3.  Knowing the tip displacement, the axial tip stress is computed from O’Neill’s solution 

using the geometric mean, Eg, modulus; 

4. Subsequently, Plot 4.9 b is entered with the known lateral tip displacement, and the 

mobilized tip shear stress is assessed from the curve along with the normal stress and cohesion of 

the rock 
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(a)                                                                   (b) 

Figure 4.9 Tip Shear Model (a) Tip Shear Model Scheme (b) Tip Shear Model 

 

4.3 Lateral Test Results - Moment-Rotation Model 

Similar to the tip shear distribution, the moment transfer from the shafts to the underlying 

rock were plotted versus tip rotation as a function of rock strength, shown in Figures 4.10 and 

4.11. Figure 4.10 represents the six and nine foot shaft diameter results in 10 tsf rock while 

Figure 4.11 shows the same shafts in 30 tsf rock.  As expected, the moments for the nine foot 



 

51 

diameter shafts were higher than the six foot shafts due to the greater contact area for similar 

bending stresses. As discussed earlier, with the lower tip resistance, the layered rock system 

develops smaller bending stresses due to the lower compressibility modulus. 
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Figure 4.10 Tip Moment Transfer as Function of Tip Rotation 
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Figure 4.11 Tip Moment Transfer as Function of Tip Rotation 
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The first reported work on embedded piles in an elastic half space subjected to both lateral 

tip displacement and rotation was reported by Bell (1991).  He performed hundreds of finite 

element analyses and developed a stiffness matrix [K] relating vertical displacement ( Vu ), 

horizontal displacement ( Hu ) and rotation ( Mθ ) to vertical load (V), horizontal load (H) and 

moment (M) as follows: 
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where G is the Shear Modulus under the tip of shaft  and  R is the radius of shaft 

 
 

Evident from Eq.4.1 are cross coupling between the horizontal shear, H, and moment.  Bell 

developed the moment and horizontal stiffness terms from footings located at the ground surface 

with: 
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                                                     Eq. 4.2 

For the case of embedded shafts, the stiffness terms are adjusted due to resistance provided 

by the shaft’s sidewall as described in Figure 4.12. The embedded stiffness terms (superscript, z) 

are expressed in terms of shaft embedment length DZ  as follows: 
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Figure 4.12 Embedded Shaft 
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                    Eq. 4.3 

Using the metacentre concept, Bell uncoupled the horizontal and moment components by 

replacing 04 =ZK   in Eq. 4.3, resulting in an equation for mZ  as: 
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For the new mK3  w/ 04 =ZK ,  inserting  Eq. 4.4 into Eq. 4.3 for ZK3 yields: 
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Using mK3 , Mθ  is calculated as: 
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The Mθ  term is dependent on the horizontal force, horizontal displacement and moment. 

Also equations 4.1 to 4.6 are dependent on the shear modulus of the rock.  It is assumed 

that the stress-strain behavior of the rock is linear to failure and Poisson’s ratio, μ, of the rock is 

0.2.  Using elastic theory, the shear modulus, G, was calculated as: 

                                                     
)1(2 μ+

=
EG                 Eq. 4.7 

To calculate the shear modulus, G, in Eq. 4.7, Young’s Modulus E, must be known for the 

underlying rock. As discussed in Chapter 3, either the harmonic mean modulus, Eh (Eq. 3.9) or 

geometric mean modulus, Eg (Eq. 3.10) may be used. The harmonic mean modulus for both the 

single and double layered systems was used and the measured versus calculated rotation was 

assessed for the various rock strengths. Shown in Figure 4.13 are the results for the 10 tsf rock 

and Figure 4.14, the 30 tsf rock.    

It is evident from Figures 4.13 and 4.14, that Bell’s representation is quite below the 

strength of the rock, i.e., within the Mohr-Coulomb strength envelope. The latter occurs at 

approximately 0.03 radians (Figure 4.13) which wasn’t reached in the case of the 30 tsf rock 

tests.  It is important to note that even though the tip rotation, θ, was shown as: 

                                 m
measured

Calculated KGR
M

3
3

=θ                                                   Eq. 4.8 

its stiffness coefficient is not constant, but rather is a function of horizontal loads and 

displacements as well as moments, as shown in Eq.4.1. 
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Figure 4.13 Calculated vs. Measured Rotation using Bell (1991) - Trend line is in red 
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Figure 4.14 Calculated vs. Measured Rotation using Bell (1991) with Trend line in red 

 

A less complicated approach is provided by Dohrety and Deeks (2006) for an elastic plate 

embedded in a Gibson soil and rock medium. This model represents an increasing modulus  with 

depth and is as shown in Figure 4.15.  As with Bell (1991), the moment and rotation may be 
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expressed in an equation similar to Eq. 4.8. However, the stiffness coefficient, K, is determined 

using a monograph (Figure 4.16) as a function of the plate rigidity parameter, J.  The plate 

rigidity parameter includes Poisson’s ratio (ν ), Shear modulus ( RG )  and  Poisson’s ratio ( Sν ) 

of the soil, Young’s modulus( SE ), radius (R ) and thickness (t) of the footing.   The rigidity 

parameter, J, is shown in Eq. 4.9, as follows: 

 

 

Figure 4.15 Doherty and Deeks (2006) on left, Bell (1991) on Right 

 

                                            
R
t

G
E

J
R

S

S )1)(1(24
)43(

νν
νπ

−−
−

=                                          Eq. 4.9 

As identified earlier, the shear modulus in Eq. 4.9 varies with depth (z) according to: 

                                                    α)()(
R
ZGzG R=                                                  Eq. 4.10 

In the above equation, GR is the shear modulus of the rock located at a depth R below the 

rock surface, and α is a user defined parameter.  For instance, α was assumed to be equal to 0.5 
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for the 10 tsf rock (i.e., sensitive to overburden depth), whereas, the 30 tsf rock set α  equal to 

zero or a constant G. 

 

 

Figure 4.16 Stiffness Coefficient, K, from Doherty and Deeks (2006) 

 

Using Eq.4.8 with K determined from Figure 4.14 and the rigidity parameter, J, defined 

from Eq.4.9,  the measured and calculated rotations for different rock strengths were found. 

These are shown in Figures 4.17 and 4.18. The Dohrety and Deeks (2006) method also provided 

acceptable predictions between measured and predicted rotations for the developed moments.  

However, the Dohrety and Deeks (2006) trend lines  are in the middle or slightly above the 

measured results, suggesting that they are slightly less conservative.   
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Consequently, even though Bell’s Moment vs. Rotation model also includes tip shear and 

lateral translation and hence more complicated than Dohrety and Deeks, its procedure 

recommended for Florida limestone.  Figures 4.19 a & b show the model. 
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Figure 4.17 Calculated vs. Measured Rotation in 10 tsf Rock using Doherty and Deeks (2006) 
with Trend Line in Red 
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Figure 4.18 Calculated vs. Measured Rotation in 30 tsf Rock using Doherty and Deeks (2006) 
with Trend Line in red 
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Tip Rotation Model
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(a)                                                                   (b) 

Figure 4.19 Recommended Tip Rotations vs. Moment Model from Bell (1991) 
(a) Tip Rotation Model Scheme (b) Tip Rotation Model 

 

 

 

To use this model the following procedure should be followed: 

1. Find the moment and lateral displacement at the tip from FB-MultiPier; 

2. Find the tip shear force from the tip shear model in Figure 4.9 with lateral tip 

displacement; 

3. Find the stiffness coefficient, mK3 ,  from Eq. 4.5 and compute the associated tip 

rotation, θM from Eq. 4.6.; 

4. If θM from Eq. 4.6 is outside the tolerance (i.e. FB-MultiPier computed) then rerun FB-

MultiPier with the new, mK3 , from step 3 until tolerance is achieved. 
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CHAPTER 5 
INFLUENCE OF THREE DIMENSIONAL SOIL/ROCK SPATIAL VARIABILITY ON A 

SHAFT’S CAPACITY 

 

5.1 Soil and Rock Variability Using Geostatistics 

Geostatistics has been used extensively in mining, water and contaminant transport 

modeling. According to Deutsch (2002), “Geostatistics is the study of phenomena that vary in 

space and/or time”, and “Geostatistics offers a way of describing the spatial continuity of natural 

phenomena and provides adaptations of classical regression techniques to take advantage of this 

continuity,” Isaaks and Srivastava, (1989).  

In the case of Geotechnical Engineering, Geostatistics is very useful for predicting both the 

values of engineering properties in space as well as their variability.  For instance, suppose there 

is a need to assess a limestone’s strength and modulus in the vicinity of a drilled shaft. The 

designer has the option of boring within the footprint of the shaft, e.g., two borings/core holes 

approximately three feet apart.  It would be expected that their strength and modulus values 

would be very similar. However, if a third hole was drilled 10 feet away, their strength and 

modulus values would be expected to be less correlated. As more holes are drilled further and 

further away, a distance is eventually reached in which the first holes are not correlated (strength 

and modulus) with the latter values.  The study of correlation and predicting nearby values based 

on an assessment of spatial variability is termed Geostatistics. It employs the following concepts:  

• (Semi) variogram analysis – characterization of spatial correlation. 

• Kriging – optimal interpolation; generates best linear unbiased estimate at each location; 
employs semivariogram model. 

• Stochastic simulation (e.g., Sequential Gauss Simulation) – generation of multiple equally 
probable images of the variable; also employs semivariogram model. 
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A discussion of each of the above concepts along with example data from one of the 

FDOT bridge sites, i.e., the 17th Street Bridge is presented. 

5.1.1 (Semi) variogram  

Establishing the spatial correlation structure of a site having erratic variation in its soil/rock 

properties would require an extensive amount of subsoil exploration. This may not be feasible 

for many projects due to the high costs (Fenton & Griffiths 1999) involved. One of the most 

common methods to estimate the correlation coefficient length is the semivariogram. 

The semivariogram is a statistic that appraises the average decrease in similarity between 

two random variables as the distance between the variables increases. It describes how spatial 

continuity changes as a function of distance and direction.  

Tterminology used to describe the important features of the semi-variogram model, shown 

in Figure 5.1, are: 

• Sill: The semi variance value at which the variogram levels off. Also it is used to refer to 
the “amplitude” of a certain component of the semivariogram. For the plot below, “sill” 
could refer to the overall sill (1.0) or to the difference (0.8) between the overall sill and the 
nugget (0.2). Meaning depends on context. 

• Range: The lag distance at which the semivariogram (or semivariogram component) 
reaches the sill value. Presumably, autocorrelation is essentially zero beyond the range.  

• Nugget: In theory, the semivariogram value at the origin (0 lag) should be zero. If it is 
significantly different from zero for lags very close to zero, then this semivariogram value 
is referred to as the nugget. The nugget represents variability at distances smaller than the 
typical sample spacing, including measurement error. The ratio of the nugget effect to the 
sill is often referred to as the relative nugget effect and is usually quoted in percentage. 

• Trend: If the empirical semivariogram continues climbing steadily beyond the global 
variance value, this is often indicative of a significant spatial trend in the variable, resulting 
in a negative correlation between variable values separated by large lags. Three options for 
dealing with lag include: 1) Fit a trend surface and work with residuals from the trend,  2) 
Try to find a “trend-free” direction and use the variogram in that direction as the variogram 
for the “random” component of the variable,  3) ignore the problem and use a linear or 
power variogram.  
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Figure 5.1 Typical Geostatistics Semivariogram 

 

The application of Geostatistics to geotechnical foundation design requires the recovery of 

core runs, specifically six at the 17th Street Bridge site, Pier 10, and subsequent laboratory testing 

(strength and modulus), Figure 5.2.  From laboratory analysis of the rock core samples taken 

between 52 and 92 ft of depth, a total of 136  rock cohesions, qs = ½ sqrt(qu) sqrt(qt) were 

obtained. While the numbers in parentheses in Figure 5.2 reflect the means and standard 

deviations of qs at each boring, Figure 5.3 displays the six depth profiles of qs. Figures 5.2 and 

5.3 do not indicate the presence of a spatial trend (deterministic component, e.g., linear trend) in 

qs, neither do they provide evidence against the assumption of statistical homogeneity 

(stationarity) over the site.  As a consequence, the available data is pooled together and the  
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resulting histogram is depicted in Figure 5.4 with a respective fit of a lognormal distribution, 

with a mean of m = 21.3 tsf, a standard deviation of  σ = 10.7 tsf and a coefficient of variation 

(COVqs ) of  0.50. 

Figure 5.5 gives examples of experimental variograms and respective variogram model 

fits, which will be discussed later. The experimental variograms are obtained from the spatial 

data (dots in Figure 5.5) with a lag interval of 2 ft. The correlation length (range) in the vertical 

direction may be interpreted between approximately 5 and 10 ft, while the horizontal correlation 

length may range between 15 and 20 ft. The vertical variogram levels off at a sill of 

approximately 0.8 and the horizontal sill is not quite well defined between 0.8 and 1. A smaller 

sill in the vertical direction than in the horizontal direction is indicative of a zonal anisotropy 

called an areal trend (Deutsch, 2002) and is in agreement with the variability in the mean values 

of the borings given in Figure 5.2.  Due to the sampling geometry (boreholes) the vertical 

experimental variogram is generally better defined down to small lag distances. For the 

horizontal variogram no data is available for lag distances smaller than the minimum separation 

distance between borings. This leaves doubt about the short range behavior at h < D  (e.g., 

nugget effect). 

 

5.1.2 Semivariogram models  

For the sake of kriging (predicting properties at other locations), the empirical 

semivariogram must be characterized with an analytical function or semivariogram model.  Part 

of the reason for this is that the kriging algorithm will need access to semivariogram values for 

lag distances other than those used in the empirical semivariogram. More importantly, the 
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semivariogram models used in the kriging process need to obey certain numerical properties in 

order for the kriging equations to be solvable.  Technically, the semivariogram model needs to be 
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Figure 5.2 Location Map of Core Borings B4 through B9 at 17th Street Bridge: Inside 
Parentheses are Means and Standard Deviations of Measured qs per Boring. 
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Figure 5.3 17th Street Bridge Depth Profiles of qs for Borings B4 through B9. 
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Figure 5.4 17th Street Bridge Histogram of qs with Log-Normal Distribution Fit. 

 
Figure 5.5 Normalized (Unity Sill) Experimental Variograms (Connected Dots) of qs with 

Different Variogram Model Fits (no dots) γA & γB. Solid line is Horizontal Direction 
and Dashed Lines are Vertical. Lag Interval in (a) and (b) is 2 ft, X-Axis is in ft. 
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non-negative definite, in order the system of kriging equations to be non-singular. Therefore, 

Geostatisticians typically select from a number of acceptable semivariogram models.  Using h to 

represent lag distance, a to represent range (i.e., correlation range), and c to represent sill, the 

five most frequently used models are, Figure 5.1:  

 

                           Eq.5.1      

 

The nugget model represents the discontinuity at the origin due to small-scale variation. 

On its own it would represent a purely random variable, with no spatial correlation. The 

spherical model actually reaches the specified sill value, “c”, at the specified range, “a”. The 

exponential and Gaussian approach the sill asymptotically, with “a” representing the practical 

range, the distance at which the semi variance reaches 95% of the sill value. The Gaussian 

model, with its parabolic behavior at the origin, represents very smoothly varying properties. 

(However, using the Gaussian model alone without a nugget effect can lead to numerical 

instabilities in the kriging process.) The spherical and exponential models exhibit linear behavior 

the origin, appropriate for representing properties with a higher level of short-range variability.  
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An omnidirectional semivariogram is one that for which the directional tolerance have 

been incorporated.  That is, it contains all possible directions combined into a single variogram. 

The calculation of the omnidirectional semivariogram does not imply that the spatial continuity 

is the same in all directions. It simply provides a starting point for establishing some of the 

parameters required for sample semivariogram calculations. 

In many cases, a random variable shows different autocorrelation structures in different 

directions, and an anisotropic semivariogram model should be developed to reflect these 

differences. The most commonly employed model for anisotropy is geometric anisotropy, with 

the semivariogram reaching the same sill in all directions, but at different ranges. In geological 

settings, the most prominent form of anisotropy is a strong contrast in ranges in the 

(stratigraphically) vertical and horizontal directions, with the vertical semivariogram reaching 

the sill in a much shorter distance than the horizontal semivariogram. In some settings, there may 

also be significant lateral anisotropy, often reflecting prominent directionality in the depositional 

setting. 

Shown in Figures 5.5 a and b are the semivariogram models fitted to the experimental data 

at the 17th Street Bridge, Pier 10.  The models (solid and dashed lines with no points) used 

spherical models, and both nugget (Figure 5.5 b) and no nugget (Figure 5.5a) effects were 

considered. 

 

5.1.3 Covariance and Correlogram   

There are two other tools used on describing spatial continuity these are the Covariance 

[C(h)] and Correlation function [ρ (h)]. Of the two, the first [C(h)] is extremely important and is 

usually obtained from the semivariogram [γ (h)].  Under the condition of second-order stationary 
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(spatially constant mean and variance), the covariance function, correlogram, and semivariogram 

obey the following relationships: 

C(0) = Cov(Z(u+h(0)),Z(u))= Var(Z(u))     Eq. 5.2 

C (h) = ρ(h) / C(0)        Eq. 5.3 

C (h) = C(0)- γ (h)        Eq. 5.4 

The zero lag covariance (h = 0) should be equal to the global variance of the variable under 

consideration; the Correlogram, ρ(h), should look like the covariance function scaled by the 

variance, and the semivariogram should look like the covariance function inverted.  

Unlike time series analysts, who prefer to work with either the covariance function or the 

correlogram, geostatisticians typically work with the semivariogram. This is primarily because 

the semivariogram, which averages squared differences of the variable, tends to filter the 

influence of a spatially varying mean. 

5.1.4 Kriging  

Kriging technique was named after a South African mining engineer named Daniel 

Gerhardus Krige who develops the method in an attempt to more accurately predict ore reserves.  

Kriging is a group of geostatistical techniques to interpolate the value Z(x0) of a random 

field Z(x) (e.g., the elevation Z of the landscape as a function of the geographic location x) at an 

unobserved location x0 from observations of the random field at 

nearby locations . Kriging computes the best linear unbiased estimator of 

Z(x0) based on a stochastic model of the spatial dependence quantified either by the variogram 

γ(x,y) or by expectation μ(x) = E[Z(x)] and the covariance function c(x,y) of the random field.  It 

have been demonstrated that kriging is not possible without knowledge of the semivariogram or 

the covariance. 
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The kriging estimator is given by a linear combination 

           Eq. 5.5 

 

of the observed values zi = Z(xi) with weights   chosen such that 

the variance (also called kriging variance or kriging error) is given by 

 

 

          Eq. 5.6 

 (with w0(x0) = − 1) of the prediction error  is minimized subject to the 

unbiased ness condition: 

                Eq. 5.7 

 

Depending on the stochastic properties of the random field different types of kriging apply. 

For the different types of kriging the unbiased ness condition is rewritten into different linear 

constraints for the weights wi. 

The kriging variance must not be confused with the variance of the kriging predictor 

itself. 

            

             Eq. 5.8 

 

There are many types of Kriging: 
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• Simple kriging assuming a known constant trend: μ(x) = 0.  

• Ordinary kriging assuming an unknown constant trend: μ(x) = μ.  

 

                                                                                      Eq. 5.9 

 
• Universal Kriging assuming a general linear trend model   

• IRFk-Kriging assuming μ(x) to be an unknown polynomial in x.  

• Indicator Kriging using indicator functions instead of the process itself, in order to 
estimate transition probabilities.  

• Multiple indicator kriging is a version of indicator kriging working with a family of 
indicators. However, MIK has fallen out of favor as an interpolation technique in recent 
years. This is due to some inherent difficulties related to operation and model validation. 
Conditional Simulation is fast becoming the accepted replacement technique in this case.  

• Disjunctive Kriging is a nonlinear generalization of kriging.  

• Lognormal Kriging interpolates positive data by means of logarithms.  

For this research both Simple and Ordinary Kriging approachs were used.  The simple 

kriging weights, wi, have no unbiasedness condition and are given by the by the following 

system of equations requiring the Covariance function, C(h = xi – xj): 

       Eq. 5.10 

 Substituting Equation 5.10 into Equation 5.5 for variable estimation, results in 

 

                Eq. 5.11 
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Simple Kriging Error or Variance is given by: 

 

 

         

        

 

 

                       Eq. 5.12 

which leads to the generalized least squares version of the Gauss-Markov theorem (Chiles & 

Delfiner 1999, p.159): 

 

                Eq. 5.13 

Ordinary kriging is an estimation method that is often associated with the acronym 

B.L.U.E. for “best linear unbiased estimator.” Ordinary kriging is “linear” because its estimates 

are weighted linear combinations of the available data; it is “unbiased” since it tries to have the 

mean residual or error, mR, equal to 0; it is “best” because it aims at minimizing the variance of 

the errors, R
2σ . The distinguish feature of ordinary kriging, is its aim of minimizing the error 

variance.   

 

5.1.5 Stochastic Simulation using Sequential Gaussian Simulation 

There are many algorithms that can be devised to create stochastic simulations. For 

example: 
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 (1) matrix approaches (LU Decomposition), which are not extensively used because of 

size restrictions (an N x N matrix must be solved where N, the number of locations, could be in 

the millions);  

(2) turning bands methods where the variable is simulated on 1-D lines and then combined 

into a 3-D model; not commonly used because of artifacts; 

(3) spectral methods using FFTs can be CPU fast, but honoring conditioning data requires 

an expensive kriging step; 

 (4) fractals which are not used extensively because of the restrictive assumption of self-

similarity, and; 

 (5) moving average methods, which are infrequently used due to CPU requirements. The 

common approach adopted in recent times is the sequential Gaussian simulation (SGS) approach. 

This method is simple, flexible, and reasonable efficient. 

Sequential Gaussian Simulation is the most straightforward algorithm for generating 

realizations of multivariate Gaussian fields. It is provided by the sequential simulation principle 

of including all data available within a neighborhood of the point on question, including the 

original data and all previously simulated values. Each variable is simulated sequentially 

according to its normal Cumulative Distribution Function (CDF) fully characterized through a 

Simple Kriging system.  

The detailed steps in Sequential Gaussian Simulation are: 

• Determine the univariate CDF representative of the entire study area and not only of the 
sample data available. 

• Transform data to “normal space”, i.e., Gaussian Normal Distribution 

• Establish grid network and coordinate system (Zrel-space) 

• Assign data to the nearest grid node (take the closest of multiple data assigned to the same 
node) 



 

74 

• Determine a random path through all of the grid nodes 

• Find nearby data and previously simulated grid nodes 

• Construct the conditional distribution by kriging 

• Draw simulated value from conditional distribution 

• Check results 

• Back transform  

By using different random number seeds, the order of visiting locations is varied and 

therefore, multiple realizations can be obtained. In other words, since the simulated values are 

added to the data set, the values available for use in the simulation are partly dependent on the 

locations at which simulations have already been made and, because of this, the values simulated 

at any one location vary as the available data varies.   

Sequential Gauss Simulation will be used to simulate variability in rock properties for the 

17th Street Bridge from which the capacity variability will be assessed. This process uses 

WINGSLIB (Spatial Variability of Properties) and FLAC3D for assessment of capacities.  A 

discussion of the software follows. 

 

5.1.6 WINGSLIB Stochastic Software  

There exists a wide range of public domain and low cost software for Geostatistics 

assessment that is readily available to the Geotechnical Engineer.  Examples of such software 

packages include WINGSLIB Geostatistical Software Library, and GSTAT.   In addition, several 

commercial GISystems packages now include Geostatistical Tools (i.e., Variograms, Kriging, 

etc.).  Typical Geostatistical data required for stochastic simulation, such as WINGSLIB analysis 

include: 

• The variable to be simulated (e.g., Cohesion Values), Figure 5.4; 
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• The Semivariogram structure, Figure 5.5; 

• The maximum and minimum of original data that should be used to simulate a grid node. 

• The Data Variance, Figure 5.4; 

• X, Y and Z coordinates for the measured data, i.e., Figure 5.2;  

• Layout of a grid system of interest; 

• Type of kriging to be used (Simple Kriging). 

 
Shown in Figure 5.6 is the one of the stochastic simulations of rock strength at the 17th 

Street Bridge using the data provided in Figures 5.2 through 5.5 using the WINGSLIB software.  

Dark blue is the lowest rock strength (c = 0) and red is the highest (c = 43,000 psf). 

 

5.2 Numerical Analysis of Shaft Capacity – FLAC3D 

FLAC3D or Fast Lagrangian Analysis of a Continuum is a powerful three-dimensional 

program for modeling soil, rock and structural behavior subject to static or dynamic loadings. 

The FLAC3D can model non-linear systems as they evolve in time (Itasca 2002). Used 

interactively or in batch mode, FLAC is a general analysis and design tool for geotechnical, civil, 

and mining engineers for broad range of problems including porous media (i.e., fluid analysis). 

The explicit finite difference formulation employed in the code makes it ideally suited for 

modeling difficult problems (for example: penetration, excavation, etc.) which are not generally 

solved with an implicit code (e.g., ADINA). The formulation can handle large displacements and 

strains, non-linear material behavior, capturing yield as well as failure at a point or over a large 

area, i.e., a total collapse.   
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Figure 5.6 Simulation of Rock Strength (i.e., Cohesion) – Red Highest and Blue Lowest 

 

FLAC3D uses an explicit finite difference time-marching scheme to solve the equations of 

motion or velocities at end of a time step.  The velocities are then used to calculate the strains, 

from which stresses can be calculated through the constitutive equation. These calculations are 

carried out over individual time steps for which the velocities are assumed to be constant. The 

advantage of using the explicit formulation is that the numerical scheme stays stable even when 
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the physical system is unstable. This is particularly advantageous, when modeling “non-linear”, 

“large strain” behavior and actual “physical instability”. The disadvantage of the time-marching 

explicit scheme of the FLAC3D is that the time steps must be very small requiring a significant 

number of steps compared to implicit formulations. 

Materials are represented by polyhedral elements within a three-dimensional grid that is 

adjusted by the user to fit the shape of the object being modeled.  Each element behaves 

according to a prescribed linear or nonlinear stress-strain law in response to applied forces or 

boundary restraints. The material can yield, flow and in the case of large deformations is 

updated. The explicit, Lagrangian calculation scheme and the mixed-discretization zoning 

technique used in FLAC3D ensure that plastic collapse and flow are modeled very accurately.  

The FLAC3D has many constitutive models built into it. The user has the option of 

choosing the most relevant constitutive model for a particular problem.  

The following FLAC3D material models are the most used: 

• Elastic, isotropic; 

• Drucker-Prager plasticity; 

• Mohr-Coulomb plasticity; 

• Strain-hardening / softening Mohr-Coulomb plasticity; 

• Bi-linear strain-hardening / softening ubiquitous-joint plasticity 

 
 

5.3 Simulation of an Axial Loaded Drilled Shaft 

 To investigate the influence of spatial variability on the axial capacity of a drilled shaft, 

the rock strength characterized in Figures 5.2 through 5.6 was used. The only exception was that 

the correlation length shown in Figure 5.5 which was varied as one, five, ten and twelve feet 
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respectively. The latter is critical in assessing the influence of spatial correlation.  For instance, a 

correlation length of zero, assumes no correlation, or that homogeneous rock properties are 

simply randomly arranged. 

 The shaft modeled was three feet in diameter and twenty feet long shown in Figure 5.6.  

The rock’s constitutive model was characterized as elastic perfectly plastic, or the material 

behaved linearly, i.e., with a Young’s Modulus, E up to failure after which modulus drops to a 

small or negligible value.  Young’s Modulus was assessed from the linear regression of strength 

values given in Figure 5.7 and a sequential gauss simulation as shown in Figure 5.6. 

 

 

 

 

Figure 5.7 Young’s Modulus, E, vs. Rock Cohesion 
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For each spatial correlation range (1, 5, 10 and 12 ft), WINGSLIB was run approximately 

thirty-five times to obtain 35 spatial distributions of rock properties.  For each distribution,  

FLAC3D was run to assess the shaft’s axial load vs. deformation response.  Using the FDOT’s 

failure criterion (settlement of 5% of the diameter of the shaft), the shaft capacity was assessed 

for each of the 35 runs and three correlation ranges (total FLAC3D runs = 140 runs). Shown in 

Figure 5.8 are the mean total shaft capacities for each of the correlation lengths.  Interestingly, as 

the correlation range increased, the total capacity of the shaft increased.  This was first identified 

by Fenton et al. (2002) who studied the spatial variability of soil/rock properties on the 

settlement of shallow foundations.  They found that the mean settlement, μ δ , of the foundation 

was the inverse (i.e., exponential) of the mean log settlement, μln δ plus ½ the variance of the log 

settlement (1/2 σ2
ln δ ). The above relationship only applied where the variance of the log 

settlement was found to be proportional to the variance of the log of the soil/rock’s Young’s 

Modulus.  The value of the proportionality was found to be equal to Vanmarcke’s (1984) 

variance function, α, (discussed in Chapter 6) related to the spatial correlation length, “a”.  

Specifically, the higher the correlation length “a”, the higher the variance function, α. This 

results in a higher variance of Young’s Modulus, which subsequently yields a higher mean 

settlement, μ δ, and higher capacity.  Similar results were observed with end bearing, i.e., 

increased correlation length had increased mean tip resistance.  The discussion of spatial 

variability on end bearing and associated LRFD resistance factors, φ  is presented in Chapter 6. 
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Figure 5.8 Variability of Shaft Total Capacity with Spatial Correlation Length 
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CHAPTER 6 
LRFD RESISTANCE FACTORS, φ,  FOR END BEARING 

 

6.1 Spatial Correlation and Its Influence on LRFD resistance factors, φ  

A deep foundation’s resistance or capacity, Q, is the summation of side friction, Qs and end 

bearing Qtip.  In the case of cylindrical prismatic shafts of length L and diameter D [L], the 

pile/shaft’s side resistance Qs may be determined from the product of the pile/shaft’s surface area  

As = πDL [units L2] and the mean unit skin friction fs [stress] over As or, mathematically, Qs = 

Asfs. Consequently, fs is related to point unit skin friction qs through: 

                                              ∫ ⋅=
sA

s
s

s dAq
A

f 1                                                           Eq. 6.1 

Since qs may be regarded as a spatially random (“regionalized”) variable of a certain 

distribution (e.g., log-normal) and spatial correlation structure (variogram), fs is also a random 

variable in space and its properties are related to the properties of qs.  The variable qs is defined 

through summary statistics (mean, m and variance, σ) and the covariance function C(h) [stress2]. 

C(h) is a measure of spatial correlation between values of qs, which are separated by a distance h 

[L], and it is directly related to the variogram γ(h) [stress2] by  γ(h) = σ2-C(h).  In practice, this 

assumption corresponds to situations where m, σ2 and γ(h) of a site are known with high 

confidence (e.g., from exhaustive core sample testing) and the shaft is located at a random 

location on the site. 

In the case of the variance, σs
2 of the pile/shaft side friction, it is expected that it would be 

less than the sites variance, σ2 of qs as a result of the spatial averaging over the shaft surface or  

σs
2 < σ2. In geostatistics, the problem of determining σs

2 is known as a “change of support”, 

“scale up” or “regularization” problem (Isaaks and Srivastava, 1989), since the properties of a 
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variable are averaged over different support sizes. In the present case, qs obtained from core 

samples may be thought of as a rather small support volume (i.e., points) as opposed to fs, which 

is defined on a support equal to the shaft’s side surface As.  In fact, α = σs
2/σ2 [dimensionless] 

can be introduced as the factor of variance reduction between qs and fs and it is determined by 

the relationship (e.g., Journel and Huijbregts, 1978; Isaaks and Srivastava, 1989; Deutsch, 2002) 

as: 

 

                                       212 )('1 dAdAhC
A

s sA As
∫ ∫ ⋅=α                                          Eq. 6.2 

where C’(h) = C(h)/σ2 [dimensionless] is a covariance function normalized to unit 

variance. Equation 6.2 contains two integrals over the area As (i.e., in fact a quadruple integral); 

however, it is nothing but the arithmetic average of the covariance values that correspond to all 

possible combinations of two points on As (i.e., the side of shaft).  If the averaging domain As is 

not a continuous area but a discrete number of n [dimensionless] points with statistically 

independent observations of some random variable, then Eq. 6.2 reduces to the well known 

formula of the standard error  σs
2 = σ2/n,  where, α = 1/n. 

To assess the variance of side shear, σs
2, the covariance C’(h) in Eq. 6.2 was assumed to be  

spherical  (Isaaks and Srivastava, 1989) with an isotropic correlation length, a [L] or: 

                                          
3

5.05.11)(' ⎟
⎠
⎞

⎜
⎝
⎛+−=

a
h

a
hhC                                     Eq. 6.3 

Note that C’(h) takes on a value between 0 and 1 depending on the distance h. That is to 

say, when  h ≥ a,  C’(h) = 0  (no correlation) and when  h = 0  C’(0) = 1  (a one to one 

correlation). The correlation length (or range)”a” is established from the experimental variogram 

based on available data.  Substituting Eq. 6.3 into Eq. 6.2 and integrating over the areas, α = 
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σs
2/σ2 may be determined.  The results are presented in a monograph as a function of L/D and 

a/D shown in Figure 6.1.   

Also shown in the graph is the case of D = 0 (thick dashed line) in which  one averages the 

variability over a length or depth  that will subsequently only be used for end bearing. 

Next, the LRFD spatial resistance factors φ for shaft side shear may be assessed from 

COVRs = σs/ms from field and or laboratory soil/rock strength assessment:  

                                 
sq

s

s
Rs COV

mm
COV αασσ

===
2

                                          Eq. 6.4 

 
 

and:  

                                Eq. 6.5 

 
 

Figure 6.2 shows, the LRFD resistance factors,φ for known COVR and reliability index, β, 

values.  Using COVRs (i.e., side shear) from Eq. 6.4 for COVR and typical β values (e.g., 2.5 – 

3.0), LRFD resistance factors, φ value may be found. 
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Figure 6.1  Thick Solid Contour Lines Represent α = σs
2/σ2 for a/D = [0, 20] and L/D = [0,10]. 

Thick Dashed Contour Lines Represent α = f (L/a) for D = 0. Thin Dotted Lines are 
Parabolas, Along Which A = const. 

 
 

6.2 Development of LRFD resistance factors,φ  for End Bearing and the 17th Street Bridge 
Case Study 

In the case of a shaft’s tip resistance, Qtip, the shaft’s unit tip stress, bq  must be calculated 

and then multiplied by the tip’s cross-section area.  However, the shaft’s unit tip resistance is a 

function of the shaft’s displacement, such as found in Eqs. 3.5 to 3.8 as: 

        
0.67

b tq W= Λ                                               Eq.6.6 
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Figure 6.2 LRFD resistance factors,φ, as a Function of Reliability Index β and COVR 

 

Where  Λ(Lambda)  =  Elastic compressibility parameter, and  Wt  =  Displacement at top 

of shaft. 

The settlement of at the bottom of the shaft, Wb, is computed from the elastic shortening of 

the shaft as follows:  

       
( )

⎥
⎦

⎤
⎢
⎣

⎡ +
−= 2

2
DE

LQQ
WW

c

tiptop
tb π

                                             Eq. 6.7 

where Ec  =  Young’s Modulus of the concrete shaft 

φ 
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        Qtop  =  Force at Top of Shaft 

            Qtip  =  Force at Bottom of Shaft (qb Ashaft)  

The shaft’s tip resistance Qtip (i.e., qb), may be found by determining the shaft and rock’s 

compressibility parameter Λ, which is a function of Θf , Γ, and Ω as shown: 
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                                    Eq. 6.8 
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  where Em =  is the mass modulus of the rock 

   L  =  Total length of Shaft 

       D =  Diameter of the shaft 

 
Evident from Eqs.6.8 - 6.10, the Young’s Modulus of the rock mass, Em , controls the 

variability of the results.  Of interest was the relationship between Florida limestone Mass 

Modulus and intact Young’s Modulus, Ei. Synthetic Limestone specimens with various strengths 

were cast with different volume percentage of voids (Styrofoam) reported in Chapter 3.  A 

comparison of no void Young’s Modulus, Ei, vs. Mass Modulus values with different volume 

percentages (i.e., recovery) was completed.  Shown in Figure 6.3 are the Em/Ei ratios as reported 

by O’Neil and UF. As shown, the UF data falls between O’Neil’s open and closed joint data. 
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Also, there exists a linear relationship between Em/Ei for Recoveries above 50% and a sharp drop 

off below 50%. 
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Figure 6.3 O’Neil Em/Ei vs. RQD and UF Em/Ei vs. Recovery 

 

Of interest is the variability in the field and its impact on the tip resistance of shafts.  To 

study the latter, a series of drilled shaft load tests at a bridge site were investigated.  Shown in 

Figure 6.4 is a typical stress-strain plot from an unconfined test on Florida limestone recovered 

from the 17th Street Bridge near load test LTSO4 at pier 10.  A total of 102 unconfined tests were 

performed by SMO personnel on rock cores recovered in six boreholes at 5 foot spacing near 

LTSO4. The analysis considered both the Secant Young’s Modulus as well as the Tangent 

Young’s Modulus in the assessment.  Generally, the secant modulus encompasses end effects as 

well as micro cracking which induces a reduction in modulus vs. the tangent modulus (Figure 

6.4).  All observed loss in tangent modulus (i.e. micro cracking) was found to occur beyond 6 to 
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7% strain which for shafts of interest (6 to 9 ft) equates to a vertical movement greater than two 

inches or the AASHTO service state. 

      

 

Figure 6.4 Secant vs. Tangent Young’s Modulus on 17th Street Bridge Data from LTSO4 

 

Also shown in each Figure are summary statistics (median, mean, standard deviation, and 

COV), of the data as well as a lognormal distribution fit to the data.  From a comparison of 

Figures 6.5 and 6.6, the mean of the tangent modulus is approximately 1.8 times the secant mean 

modulus, but the variation, COV of each are quite similar.  

From the boring logs, the recoveries varied from 65% to 95% with a mean value of 75%.  

Based on Figure 6.3, an Em/Ei ratio of 0.45 was selected, and the Mass Modulus was computed 

using both the secant and tangent Ei moduli.  Figure 6.5 and 6.6 show the probability density 
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Figure 6.5 Tangent Mass Modulus of 17th Street Bridge (118 Values) 
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Figure 6.6 Secant Mass Modulus of 17th Street Bridge (118 values) 
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distribution for the Tangent and Secant Mass Modulus, using both the recent LTSO4 data (102), 

as well as the original design data (16) set. 

Clearly, from Figures 6.5 and 6.6, the mass modulus of the rock varies over the site as well 

as within 3D below the shaft and must be accounted for in Eqs. 6.8 - 6.10.  As identified in 

Chapter 3, one may use the harmonic mean modulus, Eh,or: 

 

    ⎥
⎦

⎤
⎢
⎣

⎡
+=

nh EEEE
n 111

21

K                                                        Eq. 6.11 

In the case of different layer thicknesses: 

                                                                                      Eq. 6.12             

Fenton (2005) showed an excellent correlation with FEM analysis using the geometric 

mean, Eg, or: 
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It should be recognized that the geometric mean generally lies between the arithmetic and 

harmonic mean and is used in this project to assess contact stresses (Eq. 6.6).  The next question 

is the influence of geospatial correlation on the geometric mean modulus, Eg. Specifically, Eq.  

6.13 requires the sum or average of ln (Em) over a distance (3D) below the shaft.  If  Y = ln (Em), 

then the term inside the parenthesis in Eq. 6.13 becomes the simple arithmetic average, i.e., 1/n 

∑Y = F.  Note, that because Y [ln (Em)] is a random variable, so is F and it will have the general 

summary statistics, i.e., mF, and  σ2
F as well.  As discussed for side friction, the mean of F, mF, 

will be the same as mY; however the variance of F will be reduced by the averaging process (i.e., 
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1/n∑Y = F) or σ2
F = α σ2

Y,  where σ2
Y represents the variance of ln (Em) over the site.  As was 

found with side friction, Eq. 6.2 for  α  or the monograph, Figure 6.1, may be used to assess α 

for the case of D = 0 and an appropriate correlation length, “a”. Once the value of α has been 

assessed then the random function, F (mF =mY; and σ2
F = α σ2

Y) is also known and it may be 

substituted back into Eq. 6.13 to obtain Eg, also a random function.    

In the case of the 17th Street Bridge, the ln (Em) was calculated for all the new and old 

tangent data. The mean of ln (Em) = mY = 9.2697 and the standard deviation of ln (Em) = σ2
F = 

0.4053 was obtained. Next, α was obtained for L/D = 3, and a = 5, 10, and 15 from Figure 6.1, 

from which σ2
F = α σ2

Y was found. Subsequently, a Monte Carlo simulation was performed to 

generate typical F values which were substituted into Eq. 6.13,  to generate the distributions 

shown in Figures 6.7, 6.8, and 6.9. 
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Figure 6.7 Geometric Mean Modulus, Eg, Assuming Correlation Length, a = 5 ft from 17th Street 
Bridge Data 
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Old+Tangent a=10, ln(Em)
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Figure 6.8 Geometric Mean Modulus, Eg, Assuming Correlation Length, a = 10 ft from 17th 

Street Bridge Data 
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Figure 6.9 Geometric Mean Modulus, Eg, Assuming Correlation Length, a = 15 ft from 17th 
Street Bridge Data 
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Of particular interest is a comparison of the Geometric Mean Modulus, Eg, with the 

original field data, Em, as well as the inverted lognormal distribution which is shown as the red 

curve in Figure 6.5. Its summary statistics show a mean of 13,140 ksf, a standard deviation, σ of 

10,326 ksf, and a COV equal to 0.785. The red curve represents what the field samples should 

look like if enough samples were recovered and the mass modulus, Em, was lognormally 

distributed.   As expected, the Geometric mean, Eg is reduced from both the field sample mean 

(12,689 ksf), and the assumed inverted lognormal mean (13,140 ksf).  The major difference 

occurs in the COV of the Eg versus the field (0.4675) and its inverted lognormal COV (0.785).  

Specifically, due to spatial correlation represented in the Covariance function as correlation 

lengths of  five, ten and fifteen feet, the COV of Eg was reduced to 0.3635, 0.4732, and 0.5545 

respectively, from the COV of Em. The highest reduction in COV of Eg to 0.3635 is due to the 

lack of correlation between Em over short distances (i.e., the data are more random), which 

results in lower variability in Eg when averaged geometrically. 

Using the Geometric Mean Function, Eg (Figures 6.7 - 6.9), in Eqs. 6.8 - 6.10 and 

subsequently Eq. 6.6, the distribution of the contact stress, qb at the bottom of the drilled shaft 

was obtained for a top shaft movement of 1.6 inches. This is shown in Figures 6.10, 6.11, and 

6.12.  Note that the Figures represent the expected distribution of end bearing on the east side of 

the site where all the data were collected (i.e., in the vicinity of LTSO4). Variograms developed 

for the data showed a typical vertical correlation length of approximately eight feet, which from 

Figures 6.10 and 6.11 suggest a mean tip resistance of between 120 to 125 ksf and a standard 

deviation above and below the mean of 75 ksf to 173 ksf.  The actual recorded tip resistance was 
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120 ksf for LTSO4 and the other east side shaft LTSO3 was 110 ksf. Both were close to the 

mean and well within the one standard deviation (75 to 173 ksf). 

Knowing the distribution of the end bearing,  the LRFD resistance factors,φ may be 

assessed for the shafts from Eq.6.5 for multiple reliability index values, β (e.g., β = 2.5 and 3).  

The computed φ values are also shown in each Figure depending on the correlation length, “a”. It 

is apparent, that there is a significant effect of “a”, on the φ factor for a specific reliability index, 

β.  For example, in the case of β equal 3.0, the φ varies from 0.51 to 0.32, and the design end 

bearing goes from 0.51 (124 ksf) = 63.2 ksf  to 0.32 (124 ksf) = 39.7 ksf. 
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Figure 6.10 Histogram/PDF of Contact Stress, qb, Using Eg with Correlation Length, a = 5ft from 
17th Street Bridge Data 



 

95 

Old+Tangent a=10 for Eg
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Figure 6.11 Histogram/PDF of Contact Stress, qb, Using Eg with Correlation Length, a = 10 ft 
from 17th Street Bridge Data 
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Figure 6.12 Histogram/PDF of Contact Stress, qb, Using Eg with Correlation Length, a = 15 ft 
from 17th Street Bridge Data 
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Figure 6.13 Secant Mass Modulus of Fuller Warren Bridge (96 values) 
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Figure 6.14 Tangent Mass Modulus of Fuller Warren Bridge (96 values) 
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6.3 LRFD resistance factors,φ  for End Bearing at the Fuller Warren Bridge 

Like the 17th Street Bridge, the Fuller Warren Bridge site was revisited and three new 

borings along with sixty-three samples were recovered and tested by the State Materials Office.  

Similar to the 17th Street Bridge data, the mean of the tangent modulus was approximately 1.7 

times the secant mean modulus.  However, the COV of each are quite different: 0.47 & 0.55 for 

17th Street Bridge and 1.27 and 1.17  for the Fuller Warren Bridge.  The latter will have a 

profound effect on the LRFD resistance factors, φ  for the two sites.  

From the boring logs, the recoveries varied from 58% to 94% with a mean value of 77%.  

Based on Figure 6.3, an Em/Ei ratio of 0.5 was selected, and the Mass Modulus was computed 

using both the secant and tangent Ei moduli.  Figures 6.13 and 6.14 show the probability density 

distribution for the Tangent and Secant Mass Modulus, using data between LTSO3 and LTSO4 

(63), as well as the original design data (33). 

In the case of Fuller Warren, the ln(Em) was calculated for all the new and old tangent data 

and is shown Figure 6.13. The results showed a mean of ln (Em) = mY = 8.03, and a standard 

deviation of ln (Em) = σ2
F = 1.14.  Next, α was obtained for L/D = 3, with a correlation range, a 

= 5, 10, and 15  feet from which σ2
F = α σ2

Y was found. Subsequently, a Monte Carlo simulation 

was performed to generate typical F values which were then substituted into Eq. 6.13 to generate 

the distributions shown in Figures 6.16, 6.17, and 6.18. 
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Figure 6.15 Tangent Mass Modulus for the Fuller Warren Bridge Site (96 values) 
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Figure 6.16 Geometric Mean Modulus, Eg, Assuming a Correlation Length, a = 5 ft from Fuller 
Warren Bridge Data 
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Figure 6.17 Geometric Mean Modulus, Eg, Assuming a Correlation Length, a = 10 ft from Fuller 
Warren Bridge Data 
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Figure 6.18 Geometric Mean Modulus, Eg, Assuming a Correlation Length, a = 15 ft from Fuller 
Warren Bridge Data 
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Of interest is a comparison of the Geometric Mean Modulus, Eg, with the original field 

data, Em as well as with the inverted lognormal distribution shown as the red curve in Figure 

6.15.  It has a summary statistics of mean = 5441.414 ksf, standard deviation, σ = 10720.84 ksf, 

and a COV = 1.97 as shown inside Figure 6.15. The red curve represents what the field samples 

should look like if enough samples were recovered and the mass modulus, Em, was lognormally 

distributed. The large difference occurs in the COV of the Eg versus the field (0.8465) and 

inverted lognormal COV (1.97).  Specifically, due to spatial correlation represented in the 

Covariance function as correlation length, “a”,  the COV of Eg was reduced to 0.65965, 0.85474, 

and 1.0252, respectively, from the COV of Em. The highest reduction in the COV of Eg to 0.3635 

is due to the lack of correlation between Em over short distances (i.e., more random), which 

results in lower variability in Eg when averaged geometrically. 

Using the Geometric Mean Function, Eg and Eq. 6.6, the distribution of the contact stress, 

qb at the bottom of the drilled shaft was obtained for a top shaft movement of 3.2” (field data), as 

shown in Figures 6.19, 6.20, and 6.21.  Note, the Figures represent the expected distribution of 

end bearing at the site where the data were collected (LT2 ~ LT 4). Variograms developed for 

the data showed typical vertical correlation lengths of approximately 14 feet, which from Figures 

6.19 ~ 6.21 suggest a mean tip resistance of between 73 to 88 ksf and one standard deviation 

above and below the mean of 33 ksf to 160 ksf, respectively. The actual recorded tip resistances 

were 68 ksf for LTSO3, 108 ksf for LTSO 4 and 160 ksf for LTSO2.  Evident, the results were 

close to the mean and well within the one standard deviation (33 ksf to 160 ksf).  Sixty-three of 

the Moduli for the analysis were from locations between LTSO 4 and LTSO 3 and the other 

thirty-three values were from the entire site. 
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Figure 6.19 Histogram/PDF of Contact Stress, qb, Using Eg with a Correlation Length, a = 5 ft 
from Fuller Warren Bridge Data 
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Figure 6.20 Histogram/PDF of Contact Stress, qb, Using Eg with a Correlation Length, a = 10 ft 
from Fuller Warren Bridge Data 
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Figure 6.21 Histogram/PDF of Contact Stress, qb, Using Eg with a Correlation Length, a = 15 ft 
from Fuller Warren Bridge Data 

 

A comparison of LRFD resistance factors from the 17th Street and Fuller Warren Bridges 

are quite interesting, i.e., Figures 6.10 ~ 6.12 and Figures 6.19 ~ 6.21.  What controlled the 

variability of the resistance factors was the variability of Eg.  For example, the data from Fuller 

Warren had much higher variability (Eg of  0.65 ~ 1.02 shown in Figures 6.16 ~ 6.18) versus the 

lower 0.36 ~ 0.55 for the 17th  Street Bridge data (Figures. 6.7 - 6.9).  The latter affected the 

variability in contact stresses which in turn affected the φ values.  For instance, the φ values  

ranged from 0.50 ~ 0.32 )3( =β  and 0.59 ~ 0.4 )5.2( =β for the 17th  Street Bridge data, 

whereas Fuller Warren’s φ values ranged from  0.26 ~ 0.12 )3( =β  and 0.33 ~ 0.17 )5.2( =β  as 

shown in  Figures 6.19 ~ 6.21.  Evidently, the design end bearing for both sites are quite 

different.  In addition, if sufficient data was collected at any single pier/shaft, an individual 
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LRFD resistance factor could be assessed and its value would most likely be higher than the 

value assigned to the entire site. 
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CHAPTER 7 
CONCLUSIONS AND RECOMMENDATIONS 

 

This project focused on the development of axial, shear, and moment tip models for drilled 

shafts founded in Florida limestone.  Specific interest was large shafts with short embedment 

lengths which undergo tip movements (i.e., translation and rotation).   

Controlling much of the tip resistance (e.g., shear and moment) was the axial response 

which is in turn controlled by the material’s Young’s Modulus.  To study this relationship a total 

of 16 centrifuge tests were performed, which varied shaft dimensions, rock strengths, rock 

recovery, Young’s Modulus as well as layering.  To ensure repeatability, each test was repeated 

twice.  To assist with repeatability, artificial homogeneous limestone was used in the tests, which 

was constructed from ground limestone and cement.  The following conclusions on axial tip 

resistance were found: 

• Florida Limestone’s mass modulus, i.e., Em, is very sensitive to recoveries or voids and is 
proportional to intact Young’s Modulus, Ei, from core samples.  Comparison of Em vs Ei 
has shown values that fall between O’Neill’s (1995) open joint and close jointed 
recommendations shown in Figure 7.1.  The latter may be expressed as two bilinear curves 
that break at approximately 60% recoveries;   

• The Mass Modulus, Emi should be assessed from the tangent Young’s Modulus, Ei,; use of 
secant Young’s Modulus will generally be 1.8 to 2.0 times lower than tangent values 
(Fuller Warren & 17th Bridge sites); 

• The axial tip resistance is very sensitive to mass modulus, Em within a zone of three 
diameters below the tip of the shaft;   

• Variable layered rock modulus, as well as numerical simulations (e.g., Fenton 2005) has 
suggested that the use of either the Harmonic Mean or the Geometric Mean provide 
reasonable predictions of axial tip resistance (e.g., O’Neill, FHWA 1995). 

The Harmonic mean of the mass modulus may be assessed as: 
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or in the case of different layer thicknesses; 

                                                                                      Eq. 7.2             

The geometric mean, Eg, may be expressed as: 
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Figure 7.1 Ratio of Mass Modulus, Em to Intact Young’s Modulus, Ei, for Florida Limestone 

 

Examples of predicting the tip axial contact stresses versus tip displacement using the 

FHWA method (O’Neill 1995) and both harmonic and geometric means are shown in Figure 7.2. 

These are assessed over a depth of 3D below the shaft tip.   Since geometric moduli gave slightly 

better results it is recommended that further investigation of LRFD resistance factors be 

conducted as more data are collected.  
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Figure 7.2 Tip Resistance from Field Data vs. Tip Resistance from O’Neill’s Equation with 
Harmonic Average Method (left) and Geometric Average Method (right) for 10 tsf 
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Figure 7.3 Drilled Shaft Tip Shear Model in Florida Limestone 

 

After assessing the axial tip resistance, the shaft’s tip shear resistance versus displacement 

may be found from Figure 7.3.  For instance, knowing the lateral tip displacement and rock 

strength, Figure 7.3 is entered to obtain the normalized tip shear (i.e., shear stress minus cohesion 

divided by axial tip stress).  Multiplying the normalized tip shear by axial tip stress and adding 
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cohesion will equal the mobilized tip shear.  The bilinear representation covers typical rock 

strengths from 10 to 30 tsf and was obtained from 16 different types of boundaries conditions, 

e.g., L/D = 1 and 3 as well as homogeneous and layered scenarios.  The bilinear characterization 

represents elastic behavior up to failure at which point no additional shear is mobilized.  The 

values of the normalized shear failure, suggest rock angles of internal friction of 28 and 45 

degrees with unconfined strengths, qu, of 10 and 30 tsf, respectively. 

Once the axial and shear resistance of the tip has been determined, the moment versus 

rotation model suggested by Bell (1991) is recommended, as shown in Figure 7.4.  The 

relationship between moment and rotation is given by:  

mM KGR
M

3
3

=θ                Eq. 7.4 

  where G = Shear Modulus, R =  shaft radium, M = applied moment, and K3  is a  

  stiffness term which is a function of lateral tip shear and displacement. 

Tip Rotation Model

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0 0.01 0.02 0.03 0.04
Measured Rotation (rad)

10 tsf - Bell

30 tsf - Bell

 

Figure 7.4 The Tip Rotation Model 
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In summary, the drilled shaft tip model characterized by Figure 7.5 requires that the axial tip 

resistance (qb) versus axial displacement be found first, followed by the tip shear vs. lateral tip 

displacement and ultimately, the tip moment vs. tip rotation.  

 

Figure 7.5 Drilled Shaft Tip Model 

 

Besides developing a tip model, the question as to the appropriate LRFD resistance 

factors,φ to use was investigated.  Presently, one set of fixed resistance factors are used for 

drilled shafts in Florida.  Unfortunately, spatial variability and associated correlation lengths 

(i.e., covariance function), suggest that LRFD resistance factors should vary from site to site.  

Specifically, the geometric mean, Eq.7.3 requires the sum or average of ln (Em) over a distance 

(3D) below the tip. If one lets Y = ln (Em) then the term inside the parenthesis in Equation. 7.3 

becomes the simple arithmetic average, i.e., 1/n ∑Y = F.  Note, because Y [ln (Em)] is a random 

variable, so is F and it will have the general summary statistics, i.e., mF, and σ2
F.  As discussed in 
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Chapter 6, the mean of F, mF, will be the same as mY; however the variance of F, i.e., σ2
F will be 

reduced by the averaging process (i.e., 1/n∑Y = F or σ2
F = α σ2

Y, where σ2
Y represents the 

variance of ln (Em)) over the site or pier location.  The value of  α  may be obtained from Figure 

6.1 which is the integral of the covariance function over a distance of three times the shaft 

diameter, D.  It was found that this distance strongly influenced the correlation length, “a”.   

Once the value of α has been assessed then the random function, F (mF =mY; and σ2
F = α σ2

Y) is 

also known and a Monte Carlo simulation may be performed to generate typical F values. The F 

values,  which when substituted into Eq.7.3, yield the geometric mean modulus, Eg (Figure 7.6).   

When the distribution for Eg is substituted into O’Neill’s mobilized tip resistance model, a 

distribution of axial tip resistance develops shown in Figure 7.7.  Using end bearing, i.e., qb, 

summary statistics (mean, COV), the LRFD resistance factors,φ values for different levels of 

reliability may be determined.  

Old+Tangent a=5, ln(Em)

0
2
4
6
8

10
12
14

0
4000

8000
12000

16000
20000

24000
28000

32000
36000

40000
44000

48000

Range (Eg,ksf)

Pr
ob

ab
ilit

y
(%

)

 

Figure 7.6 Estimated Variability of Geometric Mean Modulus at 17th Street Bridge 
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Old+Tangent a=10 for Eg
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Figure 7.7 Histogram/PDF of Contact Stress, qb, Using Eg with Correlation Length, a = 10 ft at 
17th Street Bridge 

 

An assessment of LRFD resistance factors,φ  for two separate field sites, i.e., 17th  Street 

and Fuller Warren Bridges showed quite dissimilar LRFD resistance factors,φ values due to each 

sites Geostatistics.  Consequently, the LRFD assessment process must be analyzed on a site by 

site basis.  The latter has been coded into an Excel spreadsheet (Appendix E) and is available for 

standard design use.
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APPENDIX A 

Compressive Force (Q) along Depth from Each Pair of Strain Gage with Trend Line  
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Figure A.1 Result from 9 ft Diameter 9 ft Embedded Length in 10 tsf Rock with 50 % Styrofoam 
Layering below 1D below from Tip of Shaft a) Test No. 1 b)Test No. 2 
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Figure A.2 Result from 9 ft Diameter 9 ft Embedded Length in 30 tsf Rock with 50 % Styrofoam 
Layering below 1D below from Tip of Shaft a) Test No. 1 b)Test No. 2 
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Figure A.3 Result from 9 ft Diameter 9 ft Embedded Length in 10 tsf Rock a) Test No. 1 b) Test 
No. 2 
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Figure A.4 Result from 9 ft Diameter 9 ft Embedded Length in 30 tsf Rock a) Test No. 1 b) Test 
No. 2 
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Figure A.5 Result from 6 ft Diameter 6 ft Embedded Length in 10 tsf Rock a) Test No. 1 b) Test 
No. 2 
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Figure A.6 Result from 6 ft Diameter 6 ft Embedded Length in 30 tsf Rock a) Test No. 1 b) Test 
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Figure A.7 Result from 9 ft Diameter 27 ft Embedded Length in 10 tsf Rock a) Test No. 1 b) 
Test No. 2 
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Figure A.8 Result from 9 ft Diameter 27 ft Embedded Length in 30 tsf Rock a) Test No. 1 b) 
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Figure A.9 Result from 6 ft Diameter 18 ft Embedded Length in 10 tsf Rock a) Test No. 1 b) 
Test No. 2 
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APPENDIX B 

Output Voltage (Volt on Y-Axis) from Gages vs. Time (Sec on X-Axis)  with Loadings  

 a) 

b) 

Figure B.1 Output Voltage from 9 ft Diameter 9 ft Embedded Length in 10 tsf Rock with 50 % 
Styrofoam Layering below 1D below from Tip of Shaft a) Test No. 1 b)Test No. 2 
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(a) 

 

(b) 

 

Figure B.2 Output Voltage from 9 ft Diameter 9 ft Embedded Length in 30 tsf Rock with 50 % 
Styrofoam Layering below 1D below from Tip of Shaft a) Test No. 1 b)Test No. 2 
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a) 

 

b) 

 

Figure B.3 Output Voltage from 9 ft Diameter 9 ft Embedded Length in 10 tsf Rock a) Test No. 
1 b) Test No. 2 
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a) 

b) 
Figure B.4 Output Voltage from 9 ft Diameter 9 ft Embedded Length in 30 tsf Rock a) Test No. 

1 b) Test No. 2 
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a) 

b) 
Figure B.5 Output Voltage from 6 ft Diameter 6 ft Embedded Length in 10 tsf Rock a) Test No. 

1 b) Test No. 2 
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a) 

b) 
Figure B.6 Output Voltage from 6 ft Diameter 6 ft Embedded Length in 30 tsf Rock a) Test No. 

1 b) Test No. 2 
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a) 

b) 
Figure B.7 Output Voltage from9 ft Diameter 27 ft Embedded Length in 10 tsf Rock a) Test No. 

1 b) Test No. 2 
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a) 

b) 
Figure B.8 Output Voltage from9 ft Diameter 27 ft Embedded Length in 30 tsf Rock a) Test No. 

1 b) Test No. 2 
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a) 

b) 
Figure B.9 Output Voltage from6 ft Diameter 18 ft Embedded Length in 10 tsf Rock a) Test No. 

1 b) Test No. 2 
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a) 

b) 
Figure B.10 Output Voltage from6 ft Diameter 18 ft Embedded Length in 30 tsf Rock a) Test No. 

1 b) Test No. 2 
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APPENDIX C  

Moment Curve 

Moment vs. Depth
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Figure C.1 Moment Curve with Different Top Lateral Displacement from 9 ft Diameter 9 ft 
Embedded Length in 10 tsf Rock with 50 % Styrofoam Layering below 1D below 
from Tip of Shaft a) Test No. 1 b)Test No. 2 
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Moment vs. Depth
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Figure C.2 Moment Curve with Different Top Lateral Displacement from 9 ft Diameter 9 ft 

Embedded Length in 30 tsf Rock with 50 % Styrofoam Layering below 1D below 
from Tip of Shaft a) Test No. 1 b)Test No. 2 
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Moment vs. Depth
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Figure C.3 Moment Curve with Different Top Lateral Displacement from 9 ft Diameter 9 ft 

Embedded Length in 10 tsf Rock a) Test No. 1 b) Test No. 2 
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Moment vs. Depth
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Figure C.4 Moment Curve with Different Top Lateral Displacement from 9 ft Diameter 9 ft 

Embedded Length in 30 tsf Rock a) Test No. 1 b) Test No. 2 
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Moment vs. Depth
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Figure C.5 Moment Curve with Different Top Lateral Displacement from 6 ft Diameter 6 ft 

Embedded Length in 10 tsf Rock a) Test No. 1 b) Test No. 2 
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Moment vs. Depth
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Figure C.6 Moment Curve with Different Top Lateral Displacement from 6 ft Diameter 6 ft 

Embedded Length in 30 tsf Rock a) Test No. 1 b) Test No. 2 
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Moment vs. Depth
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Figure C.7 Moment Curve with Different Top Lateral Displacement from 9 ft Diameter 27 ft 

Embedded Length in 10 tsf Rock a) Test No. 1 b) Test No. 2 
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Moment vs. Depth
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Figure C.8 Moment Curve with Different Top Lateral Displacement from 9 ft Diameter 27 ft 

Embedded Length in 30 tsf Rock a) Test No. 1 b) Test No. 2 



 

141 

Moment vs. Depth
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Figure C.9 Moment Curve with Different Top Lateral Displacement from 6 ft Diameter 18 ft 

Embedded Length in 10 tsf Rock a) Test No. 1 b) Test No. 2 
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Moment vs. Depth
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Figure C.10 Moment Curve with Different Top Lateral Displacement from 6 ft Diameter 18 ft 
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APPENDIX D  

Shear Curve 

Shear vs. Depth
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Figure D.1 Shear Curve with Different Top Lateral Displacement from 9 ft Diameter 9 ft 
Embedded Length in 10 tsf Rock with 50 % Styrofoam Layering below 1D below 
from Tip of Shaft a) Test No. 1 b)Test No. 2 
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Shear vs. Depth
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Figure D.2 Shear Curve with Different Top Lateral Displacement from 9 ft Diameter 9 ft 
Embedded Length in 30 tsf Rock with 50 % Styrofoam Layering below 1D below 
from Tip of Shaft a) Test No. 1 b)Test No. 2 

 



 

145 

Shear vs. Depth
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Figure D.3 Shear Curve with Different Top Lateral Displacement from 9 ft Diameter 9 ft 
Embedded Length in 10 tsf Rock a) Test No. 1 b) Test No. 2 
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Shear vs. Depth
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Figure D.4 Shear Curve with Different Top Lateral Displacement from 9 ft Diameter 9 ft 
Embedded Length in 30 tsf Rock a) Test No. 1 b) Test No. 2 
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Shear vs. Depth
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Figure D.5 Shear Curve with Different Top Lateral Displacement from 6 ft Diameter 6 ft 
Embedded Length in 10 tsf Rock a) Test No. 1 b) Test No. 2 
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Shear vs. Depth
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Figure D.6 Shear Curve with Different Top Lateral Displacement from 6 ft Diameter 6 ft 
Embedded Length in 30 tsf Rock a) Test No. 1 b) Test No. 2 
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Shear vs. Depth
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Figure D.7 Shear Curve with Different Top Lateral Displacement from 9 ft Diameter 27 ft 
Embedded Length in 10 tsf Rock a) Test No. 1 b) Test No. 2 
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Shear vs. Depth
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Figure D.8 Shear Curve with Different Top Lateral Displacement from 9 ft Diameter 27 ft 
Embedded Length in 30 tsf Rock a) Test No. 1 b) Test No. 2 



 

151 

Shear vs. Depth
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Figure D.9 Shear Curve with Different Top Lateral Displacement from 6 ft Diameter 18 ft 
Embedded Length in 10 tsf Rock a) Test No. 1 b) Test No. 2 
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Shear vs. Depth
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Figure D.10 Shear Curve with Different Top Lateral Displacement from 6 ft Diameter 18 ft 
Embedded Length in 30 tsf Rock a) Test No. 1 b) Test No. 2 
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APPENDIX E 

Example for LRFD resistance factors,φ  to Be Calculated From Field Test 

1. Load the Data(Ei-ksf), i.e., Fuller Warren (First 63 data is “New” and last 33 data is 

“Existing”) 

          

Using the Built-In function, get the statistic of Ei as like below: 

                                                          

2. Calculate the Em-ksf, i.e., Fuller Warren 

From field, RQD or Recovery has been measured. Using that RQD and Figure 6.3, get 

the Em/Ei, i.e., 0.5 for RQD=77% for first 63 data and 0.1 for RQD=50% for last 

33data. 
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Using the Built-In function, get the statistic of Em as like below: 

 

3. The data obtained from Step 2 was converted to ln(x). 

          

Using the Built-In function, get the statistic of ln(Em) as like below: 

                                                                    

4. Using the statistic from Step 3 and α  from Figure 6.1 with correlation length(a=5, 10 

and 15), get the new Cov with same mean(i.e., 8.03189) and new STD like below: 

                                     

5. With above statistic, Monte Carlo Simulation was performed to generate Typical F 

values which were substituted into Equation Eg = exp (F) to give the distributions. 

The step for Monte Carlo Simulation is below 

a. Install “POPTOOL” which is for handling statistic problem in Excel 
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b. Open a new Workbook 

c. Enter “Sample” in Cell A1 and Enter=dNormalDev(mean, std) in Cell A2 for 

generating a random number with given statistics.  

d. Fill this down to row 101. 

e. Enter “Sample Size” in Cell B1 and Enter “Sample Mean” in Cell C1 

f. Enter “=Average(A$2:A2)” in Cell C2 

g. That looks like below: 

                                    

h. Now we want the computer to go through the process of repeatedly calculation 

new random numbers, calculating the sample means, and recording them.  

i. Select “Monte Carlo Analysis in Poptool. 

ii. Put input as like below: 
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6. From Step 5, new generated data sets (F) have been obtained. 

7. Typical F values which were substituted into Equation Eg = exp (F) to give the 

distributions. That distribution is shown below: 

Old+Tangent a=5, exp(ln(Em))
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8. These data (Eg) have been applied into O’Neil Equation to get end bearing 

distributions. That distribution is shown below: 

Old+Tangent a=5, exp(ln(Em))
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As same as Fuller Warren Data, 17th street data is below 

Load the Data (Ei-ksf), i.e., 17th Street Data (First 102 data is “New” and last 16 data is 

“Existing”) 
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Using the Built-In function, get the statistic of Ei as like below: 

                                                          

      Calculate the Em-ksf, i.e., 17th Street Data 

From field, RQD or Recovery has been measured. Using that RQD and Figure 6.3, get 

the Em/Ei, i.e., 0.4 for RQD=75% for first 102 data and 0.15 for RQD=50% for last 16 

data. 

                        

Using the Built-In function, get the statistic of Em as like below: 

 

 


