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Executive Summary 

 

In the last two decades, increasing travel demands and insufficient road capacity 

have resulted in severe traffic congestion. Feasible solutions are directed to utilize the 

existing infrastructure more efficiently, which stress better information fusion and 

management. It is of fundamental importance to track vehicles for traffic data collection 

and operations. Vehicle tracking enables collecting a series of traffic measurements, such 

as flow rate, spacing, and velocity for traffic research and operations. For example, if a 

vehicle can be tracked at intersections, its control delays can be accurately measured. 

Also, it is better to measure ground truth density over a length of roadway using multiple-

vehicle trajectories than simply using occupancies at detection points as a surrogate 

variable. These sorts of procedure measurements can produce more accurate and reliable 

detection data than point detectors. Additionally, vehicle tracking data can be employed 

to improve incident detection and analyze driving behavior such as lane-changing and 

acceleration/deceleration patterns. This data is necessary for better traffic operations and 

signal control.  

 

Various traffic detection sensors and techniques including inductance loop, 

microware radar, laser, infrared, ultrasonic, and magnetometers, have been developed and 

employed in traffic surveillance systems to satisfy the needs for better traffic data. 

However, most traffic detectors are point sensors and do not have the tracking capability. 

GPS-equipped vehicles can be tracked, but there are only very few of such vehicles 

present in traffic flows. Considering that video cameras have been increasingly deployed 
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for traffic control and surveillance, using image processing technologies to conduct 

vehicle tracking is of utmost significance.  

 

Video cameras enable large scale detections and provide visible data sources for 

vehicle tracking.  The research on image processing for traffic surveillance was initiated 

in the mid 1970s in the United States, Australia, Japan and Europe. Vehicle tracking 

remains an active research field, with numerous vehicle tracking algorithms developed. 

Some of these tracking algorithms work well in free-flow conditions but have severe 

problems when traffic is congested. Vehicle occlusion is considered to be the major 

reason for the unfavorable performance of these algorithms under congested situations. 

Separating occluded vehicles has been identified as one of the most challenging problems 

for video-based automatic vehicle identification and tracking.  

 
In this report, a computer vision algorithm developed for vehicle tracking in this 

study is described, followed by the implementation and testing of the new algorithm. The 

algorithm presented is primarily based on a single, environment insensitive cue that can 

be obtained in real-time without the need of on-site camera calibration or knowledge of 

scene parameters. The complete algorithm is implemented in C++ using Intel OpenCV 

and BOOST C++ libraries. Five one-hour video sequences were tested containing a 

variety of adverse vehicle monitoring conditions. An additional 30 minutes of extensive 

frame-by-frame testing has also been performed to determine root causes of error. 

Experimental results have shown that our algorithm is robust to many adverse 

environmental factors and has an ability to provide reasonably accurate counts. Errors 

ranged from less than 1% under mild adverse weather effects to 15% under challenging 
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conditions with higher volumes and abundant occlusions. These results are consistent and 

encourage further advances using the presented algorithm. 
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1 INTRODUCTION 

1.1 Research Background 

With the region’s current growth trends, traffic management is becoming 

increasingly important in congestion mitigation. The limited resources available for 

construction of new transportation facilities further contribute to the need of management 

solutions to traffic problems. However, competent traffic management may be performed 

only with quality data. Basic information, such as real-time vehicle counts and lane 

occupancy are typically an integral component of a traffic management system. More 

advanced traffic data, such as travel speed, time headway, and spacing are desirable for 

advanced traffic management but are not directly measurable from most existing traffic 

sensors. 

Numerous sensing technologies have been developed to detect vehicles, the most 

common of which have been inductance loops. Although inductance loops have a proven 

record and are essentially immune to environmental factors, they suffer from several 

drawbacks. Installation and maintenance costs are primary issues. Inductance loop 

installation often requires cutting pavement, thus incurring immediate costs of lane 

closures and labor, as well as the future costs of repairing the damaged section of 

pavement. Loop sensitivity problems are also often difficult to detect and repair. The 

point-sensor nature of loops limits the opportunity for more advanced traffic parameters 

such as accurate travel time and traffic density measurements. These drawbacks have 

stimulated the development of alternative sensing techniques in a variety of spectrums.  

Of the emerging technologies, video sensors have gained a strong foothold due to 

quick and inexpensive deployment characteristics and low maintenance costs. One of the 
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most appealing options for video detection is employing existing surveillance cameras as 

detectors, drastically cutting deployment expenses to fractions of the costs incurred by 

using competing technologies. Surveillance video cameras are currently installed in 

hundreds of freeway and intersection locations, capturing vehicle movements around the 

clock in the Puget Sound region. Recent advances in the field of computer vision have 

made it possible to automatically interpret the information contained within the video 

sequences as vehicle counts, vehicle types, speeds, etc.  

Detecting vehicles in an outdoor environment requires a robust and real-time 

algorithm that is capable of dealing with the impacts of camera vibration, shadow, sun 

and headlight glare, rapidly changing lighting, and sight obscuring conditions such as fog 

and snow as well as daytime/nighttime detection capabilities. Occlusions must also be 

properly dealt with to ensure accuracy. Occlusions occur when one vehicle appears next 

to another and blocks the line of sight either partially or completely. The ability to 

mitigate the above factors contributes to the overall accuracy of the system and allows for 

real-time data collection in various environmental and traffic conditions.  

1.2 Problem Statement 

Due to the extensive applications of surveillance cameras in traffic control and 

management, video has become an important information source for monitoring traffic 

systems. In order to collect better traffic information from video data, accurate 

identification and tracking of vehicles is essential. Many existing tracking and detection 

algorithms are capable of obtaining traffic information only under relatively ideal 

environmental and traffic flow conditions. However, unfavorable environmental factors 

and occlusions are usually present and significantly degrade the quality of data collected 
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using those algorithms. For example, a significant amount of false alarms may result 

from shadows or camera vibrations. Occlusions are often responsible for false positives. 

The severity of occlusion depends on several parameters, such as camera shooting angle, 

installation height, traffic conditions, truck percentage, etc. Once vehicles occlude with 

each other, it becomes very difficult to segment them. 

A few commercial video-based traffic detection and monitoring systems claim to 

be capable of operating during both daytime and nighttime conditions and in poor 

environmental conditions. However, many of these systems tend to be high-cost solutions 

using a combination of proprietary software and hardware that must be properly 

calibrated prior to use. Calibration requires parameters that relate the camera’s current 

position to that of the road, thus requiring a fixed camera position and angle (Avery et al., 

2004). This constraint requires supplementary cameras for data collection, separate from 

those used for traffic surveillance, as operators often pan and zoom surveillance cameras 

in the case of an incident. The use of proprietary hardware, software, and cameras results 

in costly systems and prevents any further improvements or modifications of the installed 

system by the users. Occlusion issues are often viewed as the result of improper camera 

placement, thus many algorithms in use today do not attempt to deal with occlusions, 

despite the fact that occlusion-free angles are not always available. Furthermore, many 

studies (Bonneson and Abbas, 2002; Martin et al., 2004; Rhodes et al, 2005) conclude 

that commercial systems are still significantly affected by some environmental factors 

such as shadows and headlight reflections, falsely interpreting them as additional 

vehicles. 
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Therefore, new vehicle tracking algorithms capable of collecting reliable traffic 

data under challenging environmental and occlusion conditions are still needed. Such 

algorithms make further use of the existing surveillance video cameras and are highly 

beneficial for both traffic data collection and operations.  

1.3 Research Objective 

This research aims to develop and implement a robust video detection algorithm for 

inexpensive traffic data collection through the use of surveillance cameras and a robust 

video detection algorithm. Specifically, we have the following three objectives: 

 To explore the feasibility of collecting traffic data through vehicle tracking using 

surveillance video camera images; 

 To develop an effective approach for vehicle tracking under unfavorable weather and 

lighting conditions as well as traffic occlusions; and 

 To build up a computer system that implements the proposed vehicle tracking 

algorithm to automate the process of vehicle tracking and data collection. 
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2 STATE OF THE ART 

2.1 Overview of Video Detection Algorithms 

Applying image processing technologies to motion segmentation and object 

tracking has been a primary focus of research in the computer version field for the past 

two decades (Michalopoulos, 1991; Gupte et al., 2002; Kanhere et al., 2007; Zhang et al. 

2007). Through the efforts of previous studies, many algorithms have been developed and 

implemented for vehicle detection and tracking, resulting in several off-the-shelf 

commercial products, such as AutoScope and Traficon (Autoscope, 2008; Trafficon, 

2008). Although these algorithms are still subject to various problems, they do provide 

important insights for developing an environmental-insensitive and occlusion-robust 

vehicle tracking algorithm in this research. The following sections summarize several 

major types of existing video-based vehicle detection and tracking algorithms. 

2.1.1 Model Based Tracking 

Tracking vehicles using 3-dimensional (3D) models has been investigated by 

several research groups (Koller et al., 1993, Baker and Sullivan, 1992; Sullivan, 1992; 

Haag, 1999; and Schlosser, 2003). The 3D object models for different types of vehicles 

are used to match the edges of the detected objects on a 2-dimensional (2D) image, and 

trajectories may be recovered for a small number of vehicles through analyzing the 

changes of detected 2D objects (Ferryman, 1998). The weakness of these approaches is 

the excessive dependence on the geometric configuration of object models. Although 

these algorithms are relatively robust to occlusions – as they only depend on a few visible 
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edges of the vehicles, it is difficult to encompass all potential 3D models, as there are a 

large number of variables at play, including the physical appearance of the make and 

model of the vehicle, the camera angle, and the appearance-altering environmental effects 

potentially present. 

2.1.2 Region Based Tracking 

Region-based tracking strategy is initialized by the background extraction 

process. The absolute difference between the foreground and background is used to 

search a connected region, often referred to as a blob, associated with a moving object 

(vehicle). Each blob is tracked using a cross-correlation measure. Derived variations of 

this approach were proposed by Gupte et al. (2002), Magee (2002), and Daily et al. 

(2000). Gupte et al. (2002) use adaptive background subtraction to extract a foreground 

object mask. The threshold for image segmentation is chosen dynamically using the 

histogram of the difference image. These approaches have difficulties when applied to 

congested traffic conditions where multiple occluded vehicles will be recognized as a 

single region.  Camera vibration further poses a complication to this family of algorithms 

– the movement of the camera is often mistakenly interpreted as an object movement in 

the scene, thus significantly degrading the quality of the results for cameras mounted on 

tall poles and/or locations with strong winds. Secondary environmental artifacts, such as 

sun glare, shadows and headlight reflections and light blooms, or the diffraction of the 

light coming directly to the camera, may also be viewed as additional objects due the fact 

that they appear to be sufficiently different from the foreground. 
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2.1.3 Active Contour Based Tracking 

Similar to the region based tracking model, the main idea of the active contour 

tracking approach is to extract the bounding contour of an object and track it 

dynamically. Koller et al. (1994) reported the research work on this method. The object 

contour is initialized and tracked based on the intensity and motion boundaries. An 

explicit occlusion reasoning step is proposed for tracking purposes. One of the 

advantages of contour tracking models is to reduce computational complexity by having a 

contour based representation rather than a region based representation. However, the 

inability to segment vehicles that are partially occluded remains a problem for initializing 

a separated contour for each vehicle (Koller et al., 1994).  

2.1.4 Feature Based Tracking 

An alternative approach is to track some salient features, such as distinguishable 

points and lines, instead of the whole objects. This approach is useful in the presence of 

partial occlusion where some features from a portion of the moving object remain visible. 

The particular features will be clustered to represent different vehicles based on some 

similar criteria. Kanade-Lucas-Tomasi (KLT) feature tracking has been a popular 

technique for vehicle tracking due to its relative insensitivity to noise and environmental 

effects (Tomasi and Kanade, 1991). KLT features are points are with high gradient values 

in both the X and Y directions that are unique within a specified window. These points 

are usually found on corners or edges and can be identified in various lighting conditions, 

making KLT tracking one of the most popular approaches for feature point extraction. 

Clustering the related points, however, can be a problem. Clustering may be 

accomplished based on relative speeds, as suggested by Beymer et al. (1997), but this 
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requires an observation interval long enough to display the relationship between the 

points, which can be lengthy for vehicles travelling at nearly identical speeds. The 

obtained feature points may also project to incorrect locations, resulting in misreadings 

on adjacent lanes. Kanhere and Birchfield (2007) utilized KLT features, but used 

background subtraction to locate ground-plane features to deal with projection error. 

Although the results are very promising, the use of background subtraction implies that 

the algorithm is subject to the limitations mentioned in Section 2.1.2. 

2.1.5 Markov Model Based Tracking 

Kamijo et al. (2001) proposed a spatiotemporal Markov Random Field (ST-MRF) 

model to identify and track vehicles. In their work, the image is divided into pixel blocks 

and ST-MRF is used to segment the occluded vehicles. One drawback of the algorithm is 

that it can not segment and identify vehicles originally occluded when entering the video 

scene.  

2.1.6 Color and Pattern Based Tracking 

Chachich et al. (1997) used sophisticated color signatures as a key component for 

tracking vehicles. Sun et al. (2002) proposed a pattern recognition based approach to 

detect vehicles. In their study, a camera is placed inside a vehicle looking straight ahead. 

Support vector machines (SVMs) were used to combine the Gabor and Wavelet features 

for improved vehicle detection. 
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2.1.7 Scan-line Based Tracking 

Scan-line algorithms work by reducing the amount of information in an image to 

a single array of pixels. Horizontal scan-lines can be used to compare a composed 

background array of pixels with the current state to determine vehicle presence, as 

suggested by Zhang et al. (2007). Niyogi et al. (1994) presented a unique approach to 

detecting pedestrian motion. The approach uses a vertical scan-line as one dimension and 

adds time as a second dimension to create a position-time image of a pedestrian detected 

to be in motion. This approach, however, requires that a potential pedestrian object be 

already detected so that the scan-line can be placed on the object to determine the motion 

pattern. Liu and Yang (2006) recently extended this notion to vehicle tracking and 

received favorable results. However, the system resorts to background subtraction to 

segment the resulting strands, leaving the system vulnerable to environmental factors, as 

mentioned in Section 2.1.2.  

2.2 Occlusion Mitigation 

 Occlusions are often regarded as results of poor camera placement. When a 

camera is placed too low or off-center, the line of sight is likely to be blocked by vehicles 

themselves, resulting in vehicle occlusions. Many video-based vehicle detection 

approaches intend to minimize occlusion problems by placing a camera into a position 

that enables a nearly birds-eye view of the region under detection. While this observation 

angle is ideal for minimizing occlusions, it is not always possible to achieve such a 

camera setting, especially when a pre-mounted surveillance camera is used for video 

input. Occlusion reasoning becomes indispensible for vehicle detection under congested 
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scenarios, when vehicle spacing becomes minimal and vehicle occlusions increase 

drastically. 

 Occlusion reasoning, or the segmentation of several composing vehicles from a 

single foreground moving object, can be done only through some prior knowledge of the 

objects’ appearance and/or behavior. Many approaches turn to using the vehicle’s 

appearance, thus relying on various models to determine an occluded vehicle’s position. 

An example of such an approach is the one taken by Song and Nevatia (2005), where a 

low angle view was used to match vehicles observed in the foreground with stored 3D 

models of vehicles. Only three models were used, a sedan, a truck, or an SUV in their 

study. Complete camera calibration was also performed, relating the camera position and 

angle to real world coordinates. Less intricate models have also been used with success –

Pang et al. (2007) has shown that simple convex polygon models can be used to segment 

occluded vehicles, provided the foreground objects can be segmented from the 

background, shadows, and other visual artifacts.  Other approaches use vehicle behavior 

characteristics to reason through occlusion events, relying on individual objects to display 

distinguishable movement characteristics. Beymer et al. (1997) used this notion to 

segment vehicles out of a cloud of moving feature points. The relative distances between 

all feature points are examined for changes – points on the same vehicle will not alter 

their relative distance relationships, while points on disconnected objects will travel at 

varying speeds, changing the distance relationships. This approach appears to be more 

attractive than the use of models, but requires sufficiently different behavior 

characteristics to be captured from the occluding vehicles during the observation period. 
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2.3 Environment Insensitive Detection 

 Object detection and tracking algorithms often require ideal environmental 

conditions to perform well. These ideal environmental conditions include constant 

uniform lighting and absence of shadows, sun and headlight glare, pavement reflections, 

water trails, camera vibration, and headlight blooms. If adverse environmental factors do 

exist, these algorithms rely on secondary algorithms to address problems caused by these 

unfavorable factors.  

Shadow detection and removal is one of such secondary algorithms; there are 

dozens of proposed shadow detection and segmentation algorithms, as overviewed by 

Prati et al. (2003) and Avery et al. (2007). Many of these algorithms are capable of 

eliminating moving and stationary shadows in most cases, but such ability often comes at 

high computational costs. Similarly, secondary algorithms exist to reduce camera 

vibration – many rely on obtaining the overall motion estimation of the image through 

optical flow and then shifting the input frame by the observed motion. An overview of 

image stabilization algorithms can be found in (Marcenaro et al. 2001). Many of these 

algorithms are very computation intensive as well, creating potential issues for real-time 

traffic detection when multiple undesirable environmental conditions are present. 

 Although many adverse environmental conditions may be addressed through the 

use of secondary algorithms, it becomes a daunting and computationally expensive task 

to attempt to constantly anticipate and mitigate all potential conditions. Many of the 

video-based vehicle detection algorithms reviewed above are inherently resistant to some 

of the conditions that can be encountered, for example, feature point tracking is robust to 
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vibration issues and abrupt lighting changes. Unfortunately, none of the existing 

algorithms are immune to all adverse environmental conditions.  

2.4 Review Summary 

In summary, the existing algorithms typically require ideal camera positioning, 

uncongested traffic flow scenarios, and favorable environmental conditions for accurate 

vehicle detection and tracking. In real-world applications, however, such ideal detection 

conditions may not always be available and this implies the need for further improvement 

of video-based traffic detection algorithms. Another known problem with the existing 

algorithms is that they require extensive on-site calibration before being used for traffic 

data collection. Such calibration requirements minimize the possibility of using 

surveillance video camera images as inputs to these existing algorithms for cost-effective 

vehicle detection and tracking. 

Therefore, the goal for this study is to develop a new video-based vehicle 

detection and tracking algorithm that has both the environmental-insensitive and 

occlusion-robust characteristics desired for real-time traffic detection using un-calibrated 

video cameras. Early on, background subtraction techniques were abandoned as potential 

approaches, as they were simply too sensitive to occlusions and environmental changes. 

Similar reasoning was used to eliminate many of the other potential detection techniques. 

KLT feature tracking was initially the most appealing detection technique and was 

employed in conjunction with K-means clustering as the desired approach to vehicle 

detection. After preliminary testing on a KLT and clustering-based system, several 

problems were recognized and a better solution was desired. This resulted in the 
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development and implementation of a scan-line based approach proven to be effective by 

the experiments conducted in this study.  

3 METHODOLOGY 

3.1 Motion Feature Based Tracking Approach  

 The KLT motion feature based tracking approach implemented in this project is 

illustrated in Figure 3-1.  The algorithm consists of two major components, the KLT 

feature tracking module and the Shared Nearest Neighbor (SNN) clustering module, 

explained in detail in the following sections.  

 

Image 
Stream 
Source

Vehicle  
Identification

Continuous Image 
Sequence

Display 
Results

Motion Feature 
Extraction and 

Tracking

Clustered Feature 
Groups

KLT Feature 
Tracking Algorithm

SNN clustering
F(MinPts, Eps, K)

 

Figure 3-1: Proposed KLT-SNN approach. 
 

3.1.1 KLT Feature Tracking 

 A KLT motion-feature-based algorithm for detection and tracking is first 

attempted. Video sequences can be treated simply as sequences of images. Good KLT 
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motion features can be located by examining the minimum eigenvalue of each 2 by 2 

gradient matrix. A particular feature point with coordinates (x, y) on the image frame 

captured at time t can be mathematically described as I(x ,y ,t). KLT feature tracking can 

be accomplished by examining two consecutive video frames t and t+1 and finding the 

matching point on image frame t+1 for the feature point on image frame t. Feature point 

movements between consecutive image frames are constrained by vehicle speed, camera 

settings, and roadway geometrics. Therefore, a feature point’s position can be predicted 

to fall in a pixel window W on next image frame. To locate the exact location of the 

feature point (x, y) on next image frame, the displacement parameters yx ΔΔ ,  that 

minimize the sum of squared intensity differences of points in W, ε , between frames t 

and t+1 must be computed (Bouguet, 1999): 

[ ]2( , ) ( , , ) ( , , 1
W

x y I x y t I x x y y tε Δ Δ = − + Δ + Δ +∑∑   (3-1) 

The Newton-Raphson search method can be used to find yx ΔΔ , . Once the displacement 

parameters are known, feature points can be tracked from frame to frame. It is important 

to select salient features to track. The selection is based on the following procedure 

suggested by Bouguet (1999): 

 
1. Compute the gradient (G) matrix and its minimum eigenvalue mλ at every pixel 
in the image. 
 
2. Call maxλ  the maximum value of mλ  over the whole image. 
 
3. Retain the image pixels that have a mλ   value larger than 5-10% percent of 

maxλ . 
 
4. From those pixels, retain the local maxima pixels (a pixel is kept if its mλ  value 
is larger than that of any other pixel in its window W). 
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5. Keep the subset of those pixels so that the minimum distance between any pair 
of pixels is larger than a given threshold distance. 

 

The G matrix is defined as follows: 

∑∑
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

W
yyx

yxx
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),,(),,(),,(
2

2

  (3-2) 

The window W was specified at 3 x 3 pixels to reduce computational complexity. Figure 

3-2 shows the resulting displacement vectors in a test sequence. Once the features are 

selected and tracked, a clustering algorithm is necessary to group features belonging to 

the same object together. 

 

Figure 3-2: Displacement vectors of moving KLT feature points. 
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3.1.2 SNN Clustering 

 Feature point clustering is an important step for video-based vehicle detection and 

tracking. The K-means algorithm is a popular approach for point clustering and was 

naturally considered for this study. Additionally, several other clustering algorithms 

needed to be examined to identify the best clustering approach. The KLT feature points 

extracted using the method proposed by Tomasi and Kanade (1991) and Shi and Tomasi 

(1994) tend to form clusters of different densities. This is due to the perspective effect, 

i.e. when nearby vehicles move further away from the camera, the distances between 

feature points decrease, increasing the density and decreasing the size of the potential 

cluster of feature points. This posed a potential issue for the K-means clustering, which 

cannot deal with clusters of varying density and size (Ertoz et al., 2003). Furthermore, K-

means clustering is often sensitive to outliers and produces unfavorable results when 

image noise present. Therefore, this study investigated several other clustering algorithms 

and the SNN clustering algorithm was selected as a superior alternative because it is 

robust to noise and handles clusters of varying density and size.   

 Unlike the K-means algorithm, SNN clustering is based on the principle of 

common nearest neighbors and does not need prior knowledge of the number of clusters. 

The SNN algorithm contains eight steps (Ertoz et al., 2003): 

 

1. Compute the similarity matrix. (This corresponds to a similarity graph with 
data points for nodes and edges whose weights are the similarities between data 
points.) 
 
2. Sparsify the similarity matrix by keeping only the k most similar neighbors.  
 
3. Construct the shared nearest neighbor graph from the sparsified similarity 
matrix.  
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4. For every node (data point) in the graph, calculate the total strength of links 
coming out of the point. 
 
5. Identify representative points by choosing the points that have high density, 
i.e., high total link strength. 
 
6. Identify noise points by choosing the points that have low density (total link 
strength) and remove them. 
 
7. Remove all links between points that have weight smaller than a threshold. 
 
8. Take connected components of points to form clusters, where every point in a 
cluster is either a representative point or is connected to a representative point. 

 

This procedure can be completed in real time even when used in conjunction with KLT 

feature tracking.  

3.1.3 Initial Test Results 

The proposed KLT-SNN approach was initially tested in several simple scenarios, 

such as free-flow freeway scenes. Through this initial experiment, the key difficulty of 

the proposed KLT-SNN approach is found to be the ability to assign the tracked feature 

points to their context-appropriate groups. The SNN algorithm is meant to group feature 

points based on velocity and position to form groups, each representing a vehicle.  

Figure 3-3 shows four consecutive frame examples when the KLT-SNN approach 

is applied. The arrows on the frames represent the vectors resulting from the KLT 

algorithm and the green circles are the cluster centers found by the SSN algorithm. It can 

be seen that the number and location of the obtained clusters varies significantly from 

frame to frame, indicating the difficulty in using the KLT-SNN method to count vehicles 

accurately. The KLT-SNN approach faced three major challenges. First, several clusters 

are often assigned to a single vehicle, considerably reducing accuracy. Second, noise 
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turned out to be a significant issue, despite the use filtering techniques. Noise features 

were so dominant that many clusters are formed entirely of noise, despite attempts at 

filtering by velocity. A noise cluster can be seen bottom-right corner of all the frames in 

Figure 3-3. Finally, occlusion reasoning was difficult to perform due to the number of 

extraneous clusters. Because a vehicle could be represented by several clusters, it would 

be difficult to reason where one vehicle ends and another begins.  

Additional measures were necessary to improve results. Although further filtering 

can improve the KLT-SNN results, the potential is limited. Therefore, a different 

algorithm was sought to supplement the existing approach. 
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Figure 3-3: KLT-SNN initial test results. 
 

3.2 Scan-line Based Approach 

3.2.1 Approach Concept 

 As shown in Section 3.1.3 Initial Test Result, the KLT-SNN approach had 

difficulties in detecting vehicles, especially when the partially occluded vehicles are 

moving at the same speed because “motion” is the main feature for clustering. Therefore, 

in order to improve KLT-SNN detection and tracking, a supplementary approach was 

a) Frame 1: 41 Clusters b) Frame 2: 32 Clusters 

c) Frame 3: 38 Clusters d) Frame 4:33 Clusters 
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needed to mitigate certain clustering issues and assist with occlusion reasoning. 

Additional detection algorithms can reinforce the hypothesis generated through KLT-

SNN and thus enhance accuracy. On the other hand, implementing two algorithms 

concurrently may degrade the computing efficiency and detection capability of the 

existing algorithm.  

Herein, a scan-line based approach is proposed to provide an additional cue. This 

cue should be invariant to environmental factors and could be used for occlusion 

reasoning.  Placing a scan-line along the direction of movement of the vehicles can be 

helpful to identify regions where vehicles are present. As mentioned in Section 2.1.7, a 

traditional scan-line approach can detect vehicles by comparing the present state to a 

background, or by examining the vehicle edges found along the line. In this research, an 

additional dimension, time, is added to the traditional scan-line approach. Figure 3-4 

displays the result of composing multiple snapshots of the pixels present on the scan-line 

in Figure 3-4 (a) into a time-space image hereafter referred to as a Spatial-Temporal (ST) 

map, displayed in Figure 3-4 (b). In other words, all the pixel intensities on the scan-line 

will be recorded at every frame and shown progressively line by line on the ST-Map 

(Figure 3-4(b)).   
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(a) Scan-Line              (b) Corresponding ST-map 

 
Figure 3-4: ST-Map Example (Malinovskiy et. al, 2008). 

 
 

The strands that appear in the ST-map represent the approximate trajectory of the 

vehicles in the lane. Analyzing this simple image would generate the necessary 

information regarding vehicle movement in that lane. In the following sections, the 

proposed ST-map approach will be explained. 

3.2.2 ST-Map Algorithm Overview  

Figure 3-5 displays the flow chart of the ST-map algorithm. The algorithm 

consists of four primary logical steps, which are boxed in dashed lines on Figure 3-5. 
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Figure 3-5: Flow chart of the ST-map algorithm (Malinovskiy et al., 2008). 
 

The initial step for the ST-map algorithm is user initialization. This step is 

performed once. This involves having the user draw a rectangle in the scene to determine 

the detection zone and obtain homography parameters. After the homography parameters 

are determined, the transformed images can be generated continuously. The user is free to 

place up to 20 scan-lines on the transformed image. Following initialization, the ST-map 

can be generated for each of the placed scan-lines in the second step. Strand analysis is 

performed in the third step. In this step, the Canny (Canny, 1986) edge filter is used and 

then the Hough transform (Hough, 1959; Gonzales, 2000) is performed to obtain lines 

characterizing the strands present in the ST-map. The last step is to group these Hough 

lines to separate different vehicles. Once these Hough lines are obtained, a connected-

component graph is constructed to represent the inter-relationships of the available lines. 
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The graph is then searched for connected components; each connected component 

represents a potential vehicle. This step is also called vehicle tracking.  In the proposed 

approach, vehicle tracking and detection are finished in the same procedure. The details 

will be elaborated.  

3.2.3 User Initialization 

  User initialization is the first step of the proposed algorithm. As shown in Figure 

3-4, the strands in the ST-maps obtained using a scan-line are spatially distorted from the 

true trajectories of the vehicles due to perspective because pixels farther away from the 

camera represent greater actual distance in the scene shown in Figure 3-4(a). Typically 

vehicles travel at nearly a constant speed over a short distance under unconstrained 

conditions. This should result in nearly linear trajectories in the world coordinates rather 

than the curved ones shown in Figure 3-4(b).  

In order to correct this distortion error, a perspective image transformation should 

be performed. This procedure can transform scene images to a top-view images (from 

image coordinates to world coordinates). Normally, it is performed through the 

homography matrix Hab. Acquiring this matrix requires knowledge of scene points as 

well as camera parameters. Such information can be easily obtained by a manual user 

initialization procedure proposed in this study. In this procedure, a user is required to 

specify a detection zone by selecting four points on the road surface that would represent 

a square in the scene, as shown by the red quadrangle in Figure 3-6(a). This quadrangle 

must have a side perpendicular to the movement of the vehicles. Then, this quadrangle is 

rectified into a pixel-coordinate square, as demonstrated by the yellow square in Figure 3-

6(a). This yellow square is automatically constructed from the bottom of the user 
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specified quadrangle and is used to compute the homography matrix. After the 

transformation through the homography matrix is performed, the perspective distortion 

can be corrected, as shown in Figure 3-6(b). Once the perspective transformation is 

complete, the ST-map can be generated, as shown in Figure 3-6(c).   

Note that the perspective transform performed for the algorithm is accurate in a 

specific 2D plan only. This means the points that are not on the ground plane are still 

distorted. This is evident by the increased height distortion of vehicles observable in 

Figure 3-6(b) as they move away from the camera.  

  

(a)(a)  
Figure 3-6: User initialization: (a) defining a detection zone, (b) user defined detection 
zone after perspective transformation, and (c) ST map retrieved from a scan-line 
(Malinovskiy et al., 2008). 
 
 
 

As previously mentioned, the transformation matrix Hab is required to perform the 

perspective transform. Finding Hab requires two four-point sets: the four user-input points 

(corner points of the red quadrangle) that corresponds to a perfect square in the real world 

and the four corner points of the yellow square automatically constructed using the 

bottom edge of the user defined quadrangle. The user-provided points represent known 



25 

coordinates in the actual scene, while the automatically constructed points are considered 

to be their pixel-coordinate mappings. Actually, we may not know four points in the 

scene that are corner points of a square. However, this does not matter much for vehicle 

detection. As long as we can identify four points that are corner points of a rectangle in 

the scene, the remaining distortion only affects the ratio of vehicle length to width. If this 

scan-line approach is used for vehicle speed measurement, then the four points must be 

corner points of a square.  

Solving for Hab allows one to compute the pixel mapping of any other points in 

the real scene and thus render the scene in a top-view perspective. As shown in Equation 

3-3, abΗ is a 3x3 matrix containing six unknowns: 

 

11 12 13

21 22 23

0 0 1
ab

h h h
h h h
⎡ ⎤
⎢ ⎥Η = ⎢ ⎥
⎢ ⎥⎣ ⎦

        (3-3) 

 

Suppose point ap  in pixel coordinates can be represented as [ ]1 'a a ap x y=  and its 

corresponding mapping point bp  in the real-world scene is represented as 

[ ]1 'b b bp x y= . abΗ  can then be computed using four matching point sets and the 

relationship: b ab ap p= Η . With abΗ known, the relationship between the scene and 2D 

image plan can be found, and the top-view image can be formed. The distortion-free ST-

maps can be constructed by placing a scan line on the top-view image.  
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3.2.4 Strand Analysis 

 Figure 3-7 displays a variety of environments shown in rows a) and c) and the 

corresponding ST-Maps from the above environments are displayed in rows b) and d). 

The advantages of the ST-map cue are immediately apparent. The resulting strands not 

only give convenient vehicle trajectories that are significantly simpler to analyze, but are 

also remarkably identical regardless of environmental conditions. These strands are 

presented on a relatively uniform background. All ST-maps consist of linear strands 

extending from the top to the bottom of the map. An exception to this rule can be seen in 

the right-most image of row (d) of Figure 3-7. This image shows that traffic has varying 

speed over the scan-line, thus creating non-linear strands. However, all other scenarios 

possess identical near-linear trajectory characteristics and the detection. The proposed 

vehicle tracking algorithm focuses on detecting vehicles by analyzing the linear strands.  

 
Figure 3-7: ST Maps for various traffic environments (Malinovskiy, et al., 2008). 
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The key to successful vehicle tracking now becomes segmenting the strands from 

the ST-map. This can be done in several ways, simplest of which is by using background 

subtraction techniques as discussed in Section 2.1.2. Figure 3-8 shows the preprocessing 

steps necessary for segmentation in Figures 3-8 (a,b,c) and the resulting segmentations in 

Figures 3-8 (d,e,f). Since the background is constantly updating and is uniform enough, it 

is possible to maintain a vector of background pixel values. The incoming scan-line 

values can then be compared against this mode background vector and labeled as either 

background or foreground pixels. The result of such an approach can be seen in Figure 3-

8(d), showing segmented strands from Figure 3-8(b) which were obtained from the scene 

shown in Figure 3-8(a). The segmentation obtained is fractured due to the likeness of the 

similarity of vehicle pixels and pavement pixels. Although there were originally three 

strands, indicating three vehicles have passed within that lane, the result from the 

background subtraction produces four strands, resulting in an over-count. 

Another potential approach is edge dilation. Figure 3-8(c) shows the result of 

running a Canny edge detection (Canny, 1986) algorithm on the strands. Using a dilation 

operation on such an image, the segmentation shown in Figure 3-8(e) can be obtained. 

Details about the dilation algorithm can be found in (Shapiro and Stockman, 2001). This 

results is a significant improvement over background subtraction. As shown in 3-8(e), 

three vehicles are successfully segmented but if these vehicles are very close, the dilated 

strands will be merged and regarded as one vehicle. 

As a result, a third approach is developed in this research to deal with such 

occlusion issues. Figure 3-8(f) shows the result of performing a Hough transform 
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(Hough, 1959; Gonzales, 2000) on the Canny edge image in Figure 3-8(c). The blue lines 

represent the Hough lines detected and produced by the Hough transform algorithm.   

 
Figure 3-8: Strand analysis via various strand segmentation techniques. 
 

As shown in Figure 3-9, these Hough lines will converge to a theoretical 

convergence point. If this point can be determined, these strands intersected at the same 

convergence point can be regarded as a group (a vehicle). The convergence is formed due 

to the height distortion introduced by the perspective transformation. As a vehicle moves 

farther away from the camera it appears taller and taller due to perspective distortion, as 

only the ground plane is accurately transformed in a two-dimensional perspective change. 

This distortion plays an important role in strand segmentation (line grouping). As the 

vehicle moves further away, the strand the vehicle leaves becomes thicker and the 

extensions of the Hough lines that are obtained from the strand begin to converge below 

the image.   
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Therefore, by determining the groups of convergence, one can determine the 

number of vehicles passing the detection zone.  For example, one can also easily 

conclude that there are three vehicles shown in Figure 3-9.  Unfortunately, the 

convergence groups are not easy to determine in practice because image noise and 

camera vibrations will cause the Hough lines to have slightly varying trajectories, thus 

resulting in several convergence points. Hence, Hough line grouping becomes more 

challenging in practice.  

 
Figure 3-9: Theoretical convergence of the Hough lines (Malinovskiy, et al., 2008). 

3.2.5 Hough Line Grouping 

 
As is mentioned in Section 3.2.4, inherent image noise, camera vibration and 

minute vehicle decelerations and accelerations will have the Hough lines rarely converge 
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at the same convergence point. This issue is illustrated in a simplified example in Figure 

3-10(a). The dashed rectangle represents the viewable ST-map on the screen to be 

analyzed, while the red and blue lines are the Hough lines from two different groups of 

strands produced by two different vehicles. Multiple intersection points can be seen.  It is 

possible to group the lines by clustering these intersections because proximal 

intersections should belong to the same strand group.  However, such a solution has 

proved infeasible by providing inconsistent results due to the constantly changing cluster 

sizes and variable intersection densities.  

  As a result, the concept of “first intersection” is introduced. This intersection is 

the first intersection where a given Hough line intersects with the proximal Hough line 

below the bottom of the ST-map. These first intersections are illustrated as green dots in 

Figure 3-10(a). This is meant to represent the intersection that appears near the theoretical 

convergence point. The Hough line may intersect with many other Hough lines above and 

below the first intersection, but those intersections are ignored.  

Clustering these first-intersections becomes critical. In the research, connected 

component concept is adopted to cluster these first-intersections. As shown in Figure 3-

10(b), each Hough line represents a node and each first-intersection pair represents an 

edge between the nodes. A first-intersection pair is determined by the relationship that 

two lines first intersect. For example, in Figure 3-10(a), Line 7 first intersects line 6, and 

there is an edge connecting their nodes in the graph. Lines 5 and 7 are also connected by 

an edge, as line 5 first intersect line 7. The first intersection relationships of lines 5, 6 and 

7 are plotted as a non-directional graph in the lower part of Figure 3-10(b). Now it can be 

seen that lines 5, 6 and 7 form a completely isolated and independent graph from the 
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group of lines 1, 2, 3 and 4. Thus, two different groups of strands can be determined and 

regarded as two vehicles. 
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                      (a)               (b)  

Figure 3-10: Demonstration of line grouping for vehicle detection: (a) Hough lines, and 
(b) result of the constructed graphs (Malinovskiy, et al., 2008). 
 
 

Tarjan’s strongly connected components algorithm (Tarjan, 1972) is used to 

determine the connected components of the graph created by the first intersection pairs. 

BOOST C++ libraries are used in this algorithm to construct first-intersection graphs and 

determine the connected components (BOOST, 2008). The obtained connected 

components represent vehicles. Each connected components consists of several Hough 

lines, and the average slope these Hough lines is the trajectory of the vehicle. This allows 

for retrieval of the complete spatio-temporal history of the vehicle during its progression 

through the detections zone.  
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3.2.6 Preliminary Results and Conclusions  

 Based on our preliminary tests, the scan-line based algorithm developed in this 

study significantly outperformed the KLT-SNN algorithm in both adverse environment 

and occluded conditions. For real-time applications, the scan-line-based algorithm was 

also found to be more suitable because it consumes less computing resources than the 

KLT-SNN algorithm. Although the KLT-SNN algorithm has its advantage in some cases, 

combining the scan-line-based algorithm and the KLT-SNN algorithm increases the 

computational complexity and degrades the efficiency. Thus, the scan-line based 

algorithm was chosen for further development and improvement, without the use of the 

KLT-SNN algorithm.  



33 

4 EXPERIMENTS AND RESULTS 

4.1 Experimental Setup 

4.1.1 Software Development Environment and Required Hardware 

In order to develop a real-time vehicle detection and tracking system, the ST-map 

algorithm was implemented in the C++ computer language. C++ offers direct memory 

management and does not have the external garbage collection costs associated with 

some higher level languages such as Java and C#. C++ also offers valuable libraries for 

computer vision and video processing as well as graph building and searching. A C++ 

console application was built with minimum functions to maximize performance.  

The ST-map algorithm was tested using the hardware configuration shown in 

Figure 4-1. Video data can be obtained from live or taped surveillance footage and sent to 

the computer through a TV-tuner card. Once the information is digitized, user input is 

necessary to initiate the perspective transform and determine basic parameters. The 

video-based vehicle detection system can then begin to analyze the input video sequence. 

Details of the experiments are described in the following sections. 
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Figure 4-1: Test setup. 

4.1.2 Video Input and Digitalization 

The ST-map algorithm implementation was tested on a Sony Vaio SZ-110 Laptop 

running Windows XP on a 1.8Ghz Intel Core Duo processor, 2 GB of RAM and a 

GeForce Go 7400 video adapter. This is representative of an average portable computer 

system in use today. Since the ST-map algorithm was developed with surveillance 

camera deployment in mind, it was tested under similar conditions. A DirectX module 

was integrated with video input in order to ensure the highest possible frame rate using 
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external video devices. The module automatically detects any external video inputs and 

selects one to process. During testing, a digital TV-tuner card, WinTV for this study, was 

used to translate analog video into a digital signal, fed to the mobile computer through the 

USB port.  

The ST-map algorithm test setup does not differentiate between live video coming 

from one of the many WSDOT camera installations or video coming from a tape being 

played on a VCR player. For the purposes of testing, taped scenarios were used in order 

to be able to be able to repeat the testing sequences when further adjustments to the 

algorithm were deemed necessary. Although any input resolution can be chosen through 

the DirectX input module, a consistent value of 320 x 240 was chosen to ensure real-time 

performance. Higher resolution video inputs may generate better results, but are currently 

too computation intensive for consistent real-time performance on our computer system.  

4.1.3 User Interface 

A simple and low-overhead user interface system was designed for the ST-map 

algorithm. To begin vehicle analysis, a user must perform a few simple tasks upon 

running the executable. When the algorithm initiates, a window titled “Input Video” is 

displayed and the input video is shown, as illustrated in Figure 4-2. 
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Figure 4-2: Input video display window. 
 

Upon confirming that the desired video input has been selected, the user must 

now define the four points that are necessary for solving the homography matrix. This is 

done by pressing key “D” on the keyboard to activate the definition window, titled 

“Homography Definition”. On the definition window, the user must draw four points that 

represent a square in the scene by using the right mouse button to specify the point 

locations in a counter-clockwise order. An example of the homography defining 

procedure is illustrated in Figure 4-3, where the first and second segments have been 

drawn. It is important that the first segment drawn be the closest to the camera and 
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perpendicular to the direction of movement of the vehicles. The size and location of the 

square should be roughly the desired detection zone.  

 

Figure 4-3: Homography definition. 
 

Once the four necessary homography points have been defined, a new screen-

coordinate square is generated in the Homography Definition window, as shown in 

Figure 3-6(a). As mentioned earlier, the four corner points of the newly generated square 

show the remaining four points needed for the transformation. At this point, the 

Homography Definition window can be closed. It should be noted that the window may 

be brought back for redefinition at any point by pressing “D”.  
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 Once the perspective transform is complete, the user defines some basic 

parameters. Parameters are defined by moving sliders on the track-bars in the “Parameter 

Definition” window summoned by pressing “P” on the keyboard. Figure 4-4 shows an 

example Parameter Definition window. There are six track-bars in the window. The 

“Canny 1” track-bar adjusts the upper threshold of the Canny algorithm, while the 

“Canny 2” track-bar adjusts the lower threshold of the Canny algorithm. The default 

parameters specified are 120 for Canny 1 and 100 for Canny 2. We have found these 

parameters applicable in most situations; however the user is free to modify these 

settings. It is required to keep the Canny 1 value higher than Canny 2, as it is the upper 

threshold.  

The “Hough” track-bar adjusts the threshold of the Hough transform, lower values 

will produce more Hough lines. Additional Hough lines assist detection quality, but 

consume a significant amount of computing resources, thus this value is best set in 

accordance with the performance of the user’s machine.  

The “Length” track-bar is responsible for setting the minimum length of vehicle 

in pixels. This value helps filter out potential noise and is dependent on the camera angle. 

During testing, this value varied between 50 and 100 pixels, depending on the position of 

the detection zone and proximity of vehicles to the camera.  
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(b)

(a) (c)
 

Figure 4-4: Interface windows (a) parameter definition window, (b) ST-map window, 
and (c) Canny edge window. 
  

 

The “Scan-Line” track-bar moves the current inactive scan-line horizontally. To 

activate a scan-line in the position currently dictated by the Scan-Line track-bar, the user 

must press “L” on the keyboard. This locks the current scan-line into scanning that 

position and creates ST-maps based on that input. The track-bar slider may then be 

moved to another location, where pressing “L” once again will enable yet another scan-
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line. This can be repeated as often as needed, but it should be noted that additional active 

scan-lines generate additional ST-maps and therefore consume significant computational 

resources. Once the desired scan-lines are active, the algorithm may proceed to 

automatically number and mark detected vehicles, as illustrated in Figure 4-4(a). The 

numbering system counts the amount of vehicles per individual scan-line.  

The effects of the first three sliders in the Parameter Definition window can only 

be seen if the user looks at the generated ST-maps and their resulting edges and Hough 

lines. This can be done by pressing “X” on the keyboard. Two windows will pop up, one 

displaying the ST-map generated for the last activated scan-line, titled “ST-map” (see 

Figure 4-4(b) and the other, titled “Canny Edges” (see Figure 4-4(c)) will display the 

result of running the Canny algorithm on that ST-map. The Hough lines obtained from 

the Canny edges will be displayed as superimposed on the ST-map shown in the “ST-

map” window. Based on these windows, the user can adjust the sliders to produce 

contiguous edges and the maximum number of Hough lines that can be handled in real 

time by the user’s machine.  

Although the controls are not intuitive, they provide the quickest and 

computationally inexpensive means of interacting with the algorithm test setup. Table 4-1 

summarizes the keys necessary for operation. 

 
Table 4-1: Key mappings 
Summon Key Effect 
"D" Homography Definition Window 
"P" Parameter Definition Window 
"L" Activate Scan-line 
"X" ST-map and Edges Windows 
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4.1.4 Algorithm Test Setup 

The proposed ST-map algorithm was tested using five hour-long sequences 

featuring a range of environmental issues to ensure stability and adequate performance. 

Additionally, the algorithm was also tested and examined frame-by-frame using three 10-

minute video segments to demonstrate common errors and limitations. Testing was done 

using two scan-lines for consistent comparisons. The results, such as time stamps, vehicle 

positions and vehicle labels for each lane, were recorded in a text file. 

4.2 Experimental Results 

4.2.1 Stability and Overall Performance Experiments  

Stability and overall performance testing was performed using five SR-520 

surveillance video sequences taken at the east entrance of the Evergreen Point Floating 

Bridge in Washington State (hereafter, called SR-520 East). The five sequences were 

taken at an identical location to compare the impacts of adverse weather conditions, as 

well as the effect of traffic volumes on accuracy a screenshot of the tested location is 

shown in Figure 4-5. 
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Figure 4-5: SR-520 East testing site. 
 

Figure 4-6 shows the snapshots of the beginning, middle, and end of the first 

sequence of SR-520. This sequence was taken from 8:30 pm to 9:30 pm on June 4, 2008. 

The sequence suffers from drastic ambient light changes as well as some camera 

vibration issues. 

  

 
Figure 4-6: The snapshots of the first sequence of SR-520 East during 8:30 pm – 9:30 
pm on June 4, 2008. 
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Table 4-2 presents the overall error result for both lanes of the first sequence. An 

error rate is adopted as an index to evaluate the algorithm performance and is defined as: 

(ground truth count – detected count)/(ground truth count) x 100%  

The counting error rate is fairly low for left and right lane, -1.3% and 1.0%, 

respectively. This result shows the proposed algorithm is robust enough to handle 

lighting variations. Furthermore, the performance is not significantly affected by 

headlight reflections on the pavement when the scene is dim.  

 
 
Table 4-2: The result of 8:30 pm – 9:30 pm, June 4, 2008 
Performance measure Left lane Right lane 

Manual count 871 841

ST-map 882 833

Error rate -1.3% 1.0%
 
 

Figure 4-7 shows the snapshots of the second sequence on SR-520, recorded from 

8:30 pm to 9:30 pm, on October 27, 2008. This scene is much more challenging than the 

first sequence since the scene is totally obscure except the lights from vehicle headlights. 

Hence, this nighttime sequence contains severe headlight reflections and glare, as well as 

a general reduction of visibility. 

 
Figure 4-7: The snapshots of the second sequence of SR-520 East, 8:30 pm – 9:30 pm, 
October 27, 2008. 
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Table 4-3 presents the overall error result for both lanes of the second sequence. 

These results show that the algorithm performance degraded because the difficulties 

caused by the lighting issues, but the error rate was within 10%.  The left lane’s higher 

error rate can be attributed to the glare of oncoming vehicles. The glare obscured some 

portions of the vehicle’s trajectory. 

 
Table 4-3: The result of 8:30 pm – 9:30 pm, October 27, 2008 
Performance measure Left lane Right lane 
Manual count 760 822
ST-map count 687 827

Error rate 9.61% -0.61%
 

Figure 4-8 shows the snapshots from the third sequence. This sequence was 

significantly more challenging due to the presence of water-trails, wet pavement glare, 

and strong wind-induced vibrations. The sequence also contained a significantly higher 

vehicle volume and created numerous occlusions, as can be seen in the right-most frame 

of Figure 4-8. 

 

 
Figure 4-8: The snapshots of the third sequence of SR-520 East 11:30 am – 12:30 pm on 
June 4, 2008. 
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The results achieved were promising considering the amount of factors at play. 

Table 4-4 shows the results for the third sequence. The left lane has the higher error rate 

then the right lane. This may be because the higher traffic volume results in higher 

chances of occlusions.   

 
Table 4-4: The result of 11:30 pm – 12:30 pm, June 4, 2008 
Performance measure Left lane Right lane 

Manual count 1556 1302
ST-map count 1328 1194

Error rate 14.7% 8.3%
 

Snapshots of the fourth sequence can be seen in Figure 4-9. This sequence was 

taken during 12 pm – 1 pm on October 27, 2008 and contains a sunny-day situation, with 

moderate shadows, camera shake and nearly constant ambient lighting conditions. 

 

Figure 4-9: The snapshots of the fourth sequence of SR-520 East 12:00 pm – 1:00 pm on 
October, 27, 2008. 
  

Results for the fourth sequence are given in Table 4-5. The left lane has relatively 

lower accuracy than the right. This may be attributed to a higher percentage of 

occlusions, as the lane was blocked by vehicles travelling in the right lane.  

 
Table 4-5: The result of 12:00 pm – 1:00 pm, October 27, 2008 
Performance measure Left lane Right lane 
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Manual count 1554 1296
ST-map count 1348 1239

Error rate 13.26% 4.40%
 

The snapshots of the last SR-520 sequence are shown in Figure 4-10. This scene 

suffered primarily from long shadows, moderate vibrations and high volumes, due to rush 

hour traffic from 4:30 pm to 5:30 pm on October 27, 2008. 

 

Figure 4-10: The snapshots of the fifth sequence of SR-520 East 4:30 pm – 5:30 pm on 
October, 27, 2008. 
 

High volumes in the scene caused numerous occlusions, such as the one seen in the 

middle frame of Figure 4-10. Table 4-6 shows the result of running the ST-map algorithm 

on the above sequence. The resulting left-lane error is significantly lower than expected 

given its high traffic volume. Since it is possible that the false-positive rate was high 

enough to negate the false negatives, a frame-by-frame analysis was necessary to 

determine under-count and over-count tendencies of the algorithm and will be presented 

in the next section. 

 
Table 4-6: The result of 4:30 pm – 5:30 pm, October 27, 2008 
Performance measure Left lane Right lane 
Manual count 1944 1499
ST-map count 1949 1588

Error rate -0.26% -5.94%
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4.2.2 Detailed Performance Analysis 

As some results are dubious in Section 4.2.1, a more detailed, frame-by-frame 

analysis was conducted to determine the under-count and over-count issues. Several 10-

minute AVI files were recorded in order to ensure consistent output and facilitate frame 

analysis. Since a false positive (a.k.a. false alarm) and a false negative (a.k.a. false 

dismissal) can cancel each other, only comparing the total detected vehicles and manually 

counted vehicles is not sufficient. Therefore, in addition to manual and ST-map counts, 

we also employed false positive and false negative rates as two major measures for 

algorithm performance evaluation. The false positive and false negative rates are defined 

as follows:  

(1) False positive rate = over-count / manual count 

(2) False negative rate = under-count / manual count 

The first 10-min SR-520 East sequence is analyzed in detailed and the false 

positive and false negative rates for this sequence can be seen in Table 4-7. This sequence 

was retrieved at the same location as the one adopted in Section 4.2.1 and was recorded 

during 6:30pm ~ 6:40pm, on July 6th, 2008. Moderate camera shake and sunny weather 

are involved in this sequence. 
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Table 4-7: Detailed result of SR 520 East during 6:30 pm - 6:40 pm, on July 6, 2008 
Performance measure Left lane Right lane 
Under-count 21 12
Over-count 1 3
Lane Changes 1 2
ST-Map Count 191 178
Manual Count 212 189
False Positive Rate 0.47% 1.59%
False Negative Rate 9.86% 6.28%

 

Common errors in this sequence involved missing the vehicle due to an incorrect 

Hough line grouping, resulting in several sub-groups, as shown in Figure 4-11(a) and 

missing the vehicle entirely due to insufficient Hough lines in a group, as shown in 

Figure 4-10(b). The corresponding ST-map is shown to the left of the transformed scene 

image and is representative of the right-most scan-line. 
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Figure 4-11: Common errors in SR-520 East sequence. 
 

 

Results from the second detailed analysis can be found in Table 4-8. In addition to 

the SR-520 East sequences, several 10-min sequences were taken at the west entrance of 

the floating bridge (hereafter, called SR-520 West) and one of them was chosen for the 

second detailed analysis. In this video sequence, dense traffic is moving towards the 

camera in sunny conditions, as shown in figure 4-12. 

 

(a) 

(b) 
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Figure 4-12: SR-520 West testing site. 
 

Table 4-8: Detailed result of SR-520 West during 1:30 pm – 1:40 pm, on July 7, 2008 
Performance measure Left lane Right lane 
Under-count 17 34
Over-count 7 3
Lane Changes 1 1
ST-Map Count 222 234
Manual Count 233 266
False Positive Rate 3.00% 1.13%
False Negative Rate 7.26% 12.73%

 

Common errors encountered here were similar to the ones encountered in the first 

10-min sequence, but also involved the errors caused by the linear progression filter that 

would not assign correct labels to the Hough line groups, resulting in a new object 

obtaining an existing label. Figure 4-13 shows a snapshot with all the vehicles moving 

toward the image bottom. We can see that one vehicle in the right lane is labeled “41” in 

the left frame and then this label is transferred to the vehicle behind it in the right frame. 
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Figure 4-13: A common error in the SR-520 West sequence. 
 
 

The third sequence recorded at I-5/I-405 Interchange (Southcenter) (hereafter, 

called I-5 Southcenter) shows a curved highway overpass and is significantly more 

challenging. In addition to highly reflective conditions and large truck volumes, the 

focused surveillance area is on a curve; thus the obtained trajectories are slightly 

distorted. A screenshot of the testing site is provided in Figure 4-14. Table 4-9 

demonstrates the performance measures for this challenging scenario.  

 



52 

 

Figure 4-14: Southcenter testing site. 
 

Table 4-9: Detailed result of I5 Southcenter during 2:00pm –  2:10pm, July 7, 2008 
Performance measure Left Right 
Under-count 9 13
Over-count 11 19
Lane Changes 0 1
ST-Map Count 147 280
Manual Count 145 275
False Positive Rate 7.59% 6.91%
False Negative Rate 6.21% 4.71%

 

The false positive rate here is significantly higher than previous samples. This can 

be attributed to the higher proportion of longer vehicles and the occlusions resulted from 

long vehicle presence. When long vehicles have less texture, they are likely to generate 

fewer Hough lines and the algorithm is likely to mistakenly conclude that this is two 

consecutive vehicles. This potential error is illustrated in Figure 4-15. The short and long 

vehicles can be distinguished in the left and the middle frames of Figure 4-15.  Then, a 

second group of Hough lines developed inside the long vehicle is separated from the 
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initially labeled group. This additional group will be counted as a new vehicle and 

responsible for an over-count, as can be seen in right-most frame of Figure 4-15. 

 

 

Figure 4-15: Three consecutive snapshots for demonstrating a common error for long 
vehicles in the I5 Southcenter sequence. 
 
 

It is important to note here that the presence of larger vehicles will not be detected 

by adjacent scan-lines although it is possible that a large vehicle may stretch out onto the 

adjacent scan-line. In Figure 4-16, a false alarm is caused by the double trailer in the right 

lane, but does not register additional vehicles on the left lane. 
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Figure 4-16: Large vehicle overlapped onto the adjacent scan-line. 
 

This is because there is usually insufficient texture on the top of larger vehicles to 

produce enough Hough lines to be detected. This characteristic of the algorithm is similar 

in nature to shadow mitigation and will be explained in greater detail in Section 5.2.1. 

5 DISCUSSION 

5.1 Occlusions 

There are two types of vehicle occlusions that can appear along a vertical scan-line. 

Longitudinal occlusions occur between vehicles traveling in the same lane, while 

latitudinal occlusions happen between vehicles traveling in neighboring lanes. 

Longitudinal occlusions can be dealt with through the Hough line grouping algorithm. 

Since the adjacent vehicles are not merged into a single object, any difference in 



55 

trajectory between two vehicles will result in varying convergence points for obtained 

Hough lines, thus segmenting the vehicles. Latitudinal occlusions can be dealt with by 

placing scan-lines sufficiently distant form the neighboring lane so that they are not 

occluded. Such scan-line placement is possible in most surveillance angles. 

5.2 Environmental Effects 

 Numerous environmental effects were encountered during the experiments. A 

detailed description of each encountered effect and its consequence on the ST-map 

algorithm is provided in the following sub-sections. 

5.2.1 Shadows and Headlight Reflections 

 Several experimental sequences contained severe headlight reflections and 

shadows. The ST-map algorithm is able to handle these issues due to an inherent feature 

of the algorithm, Hough line grouping. Most false alarms caused by shadow and 

reflection can be mitigated because shadows and reflections only leave few converging 

Hough lines, as they contain only edges generated by the transitions from light to shadow 

or shadow to light. As shown in Figures 5-1 (a) and (b), if a vehicle possesses internal 

edges, such as windshields and sunroofs, it will leave a Hough line for every edge 

encountered along the scan line. However, if a shadow or a reflection crosses the scan-

line, it will leave only two Hough lines, as shown in Figures 5-1 (c) and (d), as only two 

edges are encountered.  
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Scan-line on 
vehicle

Scan-line on 
shadow

(a) (b) 

(c) (d)  
Figure 5-1: (a) Hough lines generated by a vehicle, (b) scan-line placed on a vehicle, (c) 
Hough lines generated by shadow, and (d) scan-line placed on shadow. 
 
 
 

 This theoretical reasoning was proven effective on handling the headlight 

reflection issues encountered in the nighttime sequences tested. Fractured reflections 

from the same pair of headlights would create several edges and generate more Hough 

lines, resulting in more issues, such as detecting shadow as a vehicle mistakenly. This 

could be potentially mitigated by raising the threshold of necessary Hough lines and 

obtaining higher quality video data. 
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5.2.2 Camera Vibration 

Camera vibration is a serious issue for many other algorithms. Vibration introduces 

motion into parts of the image that are thought to be static and often causes numerous 

false alarms. In the ST-map algorithm, the scan-lines provide high tolerance of errors 

because it has the liberty to move side to side as much as a half of a vehicle. Even partial 

trajectories are sufficient to obtain the necessary number of Hough lines, thus making the 

algorithm fairly robust to latitudinal (right and left) oscillations of the camera. 

Longitudinal oscillations (up and down) may distort the trajectory of the vehicle, 

introducing a sinusoidal pattern. However, only in the most severe cases will the 

sinusoidal pattern make a difference in detection accuracy. Thus far, the algorithm has 

encountered few difficulties in maintaining trajectories due to camera vibration. 

5.2.3 Varying Lighting Conditions 

 Many of the cameras installed for traffic monitoring purposes automatically adjust 

exposure settings to better capture the image. Although this helps operators get a better 

picture of the scene, it introduces an extra variable, varying lighting, for video imaging 

algorithms. Therefore, many commercial video detection systems insist on using a 

proprietary camera that will not manipulate the image prior to processing. However, this 

is a non-issue for the ST-map algorithm. No additional edges or strands are introduced to 

the ST-map due to changing lighting conditions. This is one of the advantages of the 

proposed ST-map algorithm.  
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5.2.4 Additional Adverse Effects 

Two other issues were encountered in our experiments: 1) Water-trails left by 

vehicles moving quickly through standing water or rain and 2) different headlight 

reflections on pavement from moving vehicles. These two additional issues barely affect 

algorithm performance, because the beams of light and water-trails have soft boundaries 

that are not typically recognized as edges by the Canny edge detection.  

5.2.5 Lane Changing 

Even though lane changing behavior was not frequently observed in the test 

sequences processed, it should be noted that lane changes do affect the algorithm 

performance. If a vehicle chooses to change lanes in the very beginning of the detection 

zone and completes the merge in the end of the zone, then the vehicle will be missed. It is 

advised to choose location with minimal lane changing to collect traffic data using the 

proposed approach. The other potential solution is to add an additional scan-line between 

the existing ones in an attempt to capture merging vehicles.  
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6 SUMMARY 

6.1 Conclusions 

In order to improve the accuracy of video-based traffic detection and tracking, the 

authors reviewed many existing algorithms and attempted two feasible approaches: a 

motion feature based approach and a scan-line based approach. The KLT-SNN algorithm 

was initially attempted as a representative motion-feature-based approach. This method 

managed to extract high quality motion feature points even under adverse weather and 

occlusion effects. However, classifying feature points into occluded vehicles was very 

challenging and the clustering algorithms tested did not provide favorable results. 

Therefore, a spatio-temporal (ST-map) algorithm was developed. After comparing the 

KLT-SNN algorithm with the ST-map algorithm, however, the authors decided to drop 

the KLT-SNN algorithm because the ST-map algorithm outperformed the KLT-SNN 

algorithm in all aspects tested. Consequently, the ST-map algorithm was chosen to be 

implemented in the resulting system for video-based vehicle detection and tracking.  

The proposed algorithm is a novel way for interpreting scan-line readings as a 

function of time. By appending scan-line values together into a space-time image, one 

can create a representation of the vehicle trajectories. The resulting images, called ST-

maps, display the trajectories of all vehicles moving along the scan-line. These images 

not only create a visually attractive means of illustrating vehicle movements, but are also 

readily analyzed via our developed methods. An innovative detection algorithm was 

implemented to interpret the ST-maps. First, a Canny edge detector is applied on the ST-

map to reveal the edges of the vehicle trajectories. Once these edges have been obtained, 
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a Hough line transform is applied to determine the line segments that best represent the 

trajectory of the vehicle. These line segments (a.k.a Hough lines) are then grouped. The 

grouping method developed in this study uses the concept of “first intersection” to 

construct non-directional graphs of related lines. Once the graphs have been constructed, 

connected components can be found using Tarjan’s strongly connected components 

algorithm. The connected components represent the groups of Hough lines that are 

related and thus belong to the same vehicle. Each Hough line group stands for a potential 

vehicle and the positions of each vehicle can be determined and recorded.  

The algorithm has been tested using five hour-long video sequences containing 

adverse traffic monitoring conditions such as rain, camera vibrations, high reflectivity, 

and ambient lighting changes. Moreover, detailed performance analysis was also 

conducted to evaluate the ST-Map algorithm in more precise manner by inspecting the 

false positives and false negatives frame by frame. Despite the presence of adverse 

environmental factors, the algorithm still provided encouraging results consistently.  

Detection count errors ranged from under 1% in the relatively simple situations to under 

15% in highly challenging scenarios. This result is very encouraging because the test 

video sets were taken under challenging conditions that ordinary video image processing 

algorithms cannot deal with. This implies that the algorithm is robust and able to produce 

reasonably accurate vehicle detection results under scenarios with adverse weather 

conditions and various vehicle occlusions. However, this algorithm requires 

approximately constant vehicle speed to perform well. Further research is necessary to 

extend the capabilities of the current algorithm to stop-and-go traffic conditions. 
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6.2 Recommendations 

Based on the obtained experimental results, several recommendations for further 

development can be made: 

1. Further work should focus on reducing the accuracy loss in high-volume 

situations. This may involve using several scan-lines per lane and/or obtaining 

additional cues.  

2. Stop and go traffic or vehicles with non-consistent velocities should be taken into 

account. The assumption of linear strand/Hough line cannot hold in these 

situations. Instead of Hough line based method, strand analysis can be improved 

by curve analysis or developing a pattern matching method to handle curved 

strands and irregular vehicle trajectories.  

3. Long vehicle detection can be accomplished by determining the thickness of the 

strands obtained in the ST-map. A learning algorithm can be used to classify each 

obtained width. 

4. If the real-world length of the user-drawn detection zone is known, each pixel of 

the transformed image can be assigned real-world dimensions. Speed 

measurements can be obtained by integrating this known length parameter into 

the perspective transform. This problem may be also solved by camera calibration 

procedures.   

5. The implemented algorithm requires manual recalibration whenever the camera 

angle is changed. Automated calibration should be implemented to mitigate the 

impacts of potential zooming and panning of surveillance cameras.  
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6. A multi-threaded implementation of the current algorithm would take full 

advantage of multi-core processors. Additional threads can be used to monitor 

more scan-lines or concurrently run the KLT-SNN algorithm to increase accuracy 

through redundancy. 
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