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Uncertainty in Individual Flight Predictions 
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[Abstract] Federal Aviation Administration (FAA) air traffic flow management (TFM) 
decision-making is based primarily on a comparison of deterministic predictions of demand 
and capacity at National Airspace System (NAS) elements such as airports, fixes and en-
route sectors. The current Traffic Flow Management System (TFMS) and its decision-
support tools ignore the stochastic nature of the predictions.  Taking into account 
uncertainty in predictions and moving from deterministic to probabilistic TFM is an 
important part of the NextGen program that will help TFM specialists make better and 
more realistic decisions. This paper uses current TFMS data to analyze how uncertainty in 
prediction of arrival times for individual flights translates into uncertainty in prediction of 
aggregate traffic demand counts at arrival airports. A methodology was developed for 
probabilistic prediction of aggregate 15-minute demand counts by using the probability 
distributions of arrival time predictions for individual flights. A key element of the 
methodology is that the aggregate demand counts are predicted from extended sets of flights 
with the estimated times of arrival (ETAs) in both the interval of interest and several 
adjacent intervals. Numerical examples are presented that illustrate the difference between 
deterministic and probabilistic traffic demand predictions. 

I. Introduction 
 
Federal Aviation Administration (FAA) air traffic flow management (TFM) decision-making is based primarily 

on a comparison of deterministic demand and capacity predictions at various National Airspace System (NAS) 
elements such as airports, fixes and en-route sectors. The current Traffic Flow Management System (TFMS) and its 
decision-support tools ignore the stochastic nature of the predictions.   

Taking into account uncertainty in predictions and moving from deterministic to probabilistic TFM is an 
important part of the Next Generation Air Transportation System (NextGen) program that will help TFM specialists 
make better and more realistic decisions.  

During the past few years, the concept of probabilistic TFM has matured, with research producing evidence of 
the potential benefits of the transition from current deterministic to probabilistic TFM. Many organizations, such as 
FAA, NASA, MITRE, Metron Aviation, Sensis, Volpe Center and others, are currently engaged in research on 
probabilistic TFM. 

Several publications have presented the concepts and potential applications of probabilistic TFM as well as 
modeling and benefit analysis (see 1-10). A general concept of probabilistic TFM and representation of uncertainty in 
air traffic demand and capacity predictions for identifying and managing congestion in NAS elements are well 
described in 2-4. Research results presented in 5,6 provide an important contribution to probabilistic TFM describing a 
constructive approach to incorporating probabilistic weather forecast into probabilistic TFM as well as design of the 
modeling tool for evaluating the TFM strategies. Papers7,8 describe a methodology for sequential decision-making 
approach to probabilistic TFM that makes it possible to update TFM strategies in accordance with updated 
probabilistic forecasts on demand and capacity.  

It is important to note that the probabilistic TFM concepts will evolve to everyday TFM practice only if the 
decision support tools for probabilistic TFM are built on realistic data that reflects and quantifies existing 
uncertainty in the aviation system, namely uncertainty in predicting traffic demand and capacity for strategic TFM 
and tactical Air Traffic Control (ATC). This is why thorough data analysis along with analytical tools are needed to 
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analyze the sources of uncertainty, characterization of uncertainty and estimation of its parameters, the ways of 
reducing uncertainty and incorporating uncertainty into the TFM decision-making process.   

This paper continues our previous research on the estimation and characterization of uncertainty in aggregate 
traffic demand predictions in the FAA Traffic Flow Management System (TFMS), formerly Enhanced Traffic 
Management System (ETMS).  Our previous research (Ref. 9 and 10) was focused on analysis of accuracy of 15-
minute aggregate traffic demand predictions in TFMS and on the development of a regression model aimed at 
improving the accuracy and stability of those aggregate predictions. The analysis dealt with aggregate demand 
counts, and did not explicitly consider uncertainty in the prediction of events for individual flights. The regression 
model improved both the accuracy of demand predictions and the stability and accuracy of TFMS Monitor/Alert.   

This paper analyzes how uncertainty in prediction of arrival times for individual flights translates into 
uncertainty in prediction of aggregate traffic demand counts at arrival airports.  Like our previous work, it is based 
on a statistical analysis of current TFMS data. The translation of the characteristics of uncertainty in TFMS 
predictions for individual flights into characteristics of uncertainty in predictions for aggregate demand counts is a 
challenging problem.    

Larry Meyn, in his pioneering publication1, proposed a methodology for obtaining probabilistic aggregate traffic 
demand prediction through characteristics of uncertainty in individual flight predictions. In Ref. 1, a recursive 
algorithm was presented for calculating the probability distribution of predicted aggregate traffic demand based on 
the probabilities of individual flights to be in the time interval of interest (e.g., 15-minute interval). It is worth 
mentioning that in Ref. 1 the set of candidate flights for probabilistic distribution of predicted aggregate demand 
included only the flights with the Estimated Time of Arrivals (ETAs) within the time interval of interest and did not 
include the flights with ETAs outside this interval. To estimate the benefits of probabilistic demand predictions over 
deterministic predictions, Meyn1 used a Monte Carlo simulation. The simulation was conducted on artificial data 
(not actual air traffic data) and showed that the probabilistic approach provided more accurate predictions than the 
deterministic approach.  

Some elements of the methodology from Ref. 1 are used in this paper. Unlike the study reported in Ref. 1, this 
study is based on current TFMS historical data. Extensive statistical analysis of TFMS data was performed to 
characterize the accuracy of predictions of airport arrival time for individual flights. Those characteristics were then 
used for probabilistic predictions of aggregate traffic demand for specific time intervals. A methodology was 
developed to determine the probability distribution of predicted aggregate 15-minute demand counts at arrival 
airports by using the probability distributions of errors in arrival time predictions for individual flights. A key 
element of the methodology is that it considers the extended set of candidate flights for those predictions, which 
includes the flights with ETAs both within the time interval of interest and outside the interval, namely, in several 
adjacent earlier and later intervals.  

The paper presents a methodology and the corresponding techniques of how to use the data for probabilistic 
prediction of aggregate traffic demand at airports. Numerical examples are presented that illustrate the difference 
between deterministic and probabilistic traffic demand predictions as well as benefits of using extended sets of 
flights for improving accuracy of aggregate demand predictions. 

This paper presents  

• An analysis of the accuracy of TFMS flight-by-flight prediction data, data that forms the basis for 
probabilistic TFM. A clear understanding of where predictions are good today, and where they are not so 
good, will aid in the development of improved prediction algorithms.   

• Given the probability distribution of flight arrival times, the probabilistic predictions of aggregate arrival 
demand counts at airports (e.g., 15-minute demand counts) are derived.  This will provide a better 
understanding the relationship between the uncertainty in flight arrival times and the uncertainty in the 15-
minute counts used by TFMS, thus the likely impacts on TFMS of improved flight event predictions.     

It is organized as follows. 

• Section II describes the data that was used in this study.  

• Section III examines the errors that TFMS makes when predicting flight airport arrival times.  It 
summarizes these errors with empirical distributions.      

• Section IV uses the probability distributions of errors in predictions of ETAs for individual flights (from 
Section III) to derive probability distributions of the number of airport arrivals in a 15-minute interval. 
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From this, probabilistic demand predictions for airport arrivals that comprise the mean demand and the area 
of uncertainty around the mean demand are obtained.    

• Section V concludes the paper by summarizing the findings.  

II. Examined Flight-by-Flight Data 
 
TFMS continuously updates information on the status of each flight in the system and predicts each flight’s time 

and location at various points along its origin-destination route. The TFMS flight list for a NAS element can be 
requested at any time. The flight list shows the flight’s status (airborne or still on the ground), estimated time of 
departure (or actual departure time for an active flight), and estimated time of arrival at a NAS element, including 
destination airport. TFMS also collects flight-by-flight historical data that include both predictions and what actually 
happened.  

On April 25 and 26, 2007, and again on June 7 and 8, 2007, TFMS list requests were repeatedly run for the nine 
airports ORD, ATL, DFW, LAX, MIA, BOS, SFO, STL, and MCI 

These repeated list requests, which were run once every 15 minutes, generated flight-by-flight predictions for 
airport arrivals. Data were gathered for approximately 7 hours after 1200Z of April 25 and 26, 2007 and for 
approximately 12 hours after 1200Z of June 7 and 8.  April 25th was a Wednesday and June 7th was a Thursday.   

For the airports on April 25-26, there were some 6,700 flights, with a total of 78,000 observations. (Each flight 
has multiple observations because predictions are made at various look-ahead times.)  On June 7-8, there were 
approximately 6,000 flights, with a total of 93,000 observations.  

Statistical analysis of flight data was performed to characterize uncertainty (errors) in flight arrival time 
predictions. Separate analysis was conducted for active (airborne) flights and for proposed flights (that are still on 
the ground) to characterize the difference in the accuracy of predictions depending on the flight’s status.    

III. Analysis of TFMS Predictions of Flight’s Arrival Time  
 
This section provides a descriptive statistical analysis of the accuracy of TFMS predictions that will be used in 

later sections. The analyses were conducted on historical data for individual flights collected at nine airports during 
two days in April and two days in June 2007.  The primary figure of merit used is the accuracy of predicted flight 
arrival times at an airport (ETA), which is measured as an error (predicted – actual) in the arrival time.   

First, we present the results of statistical analysis that were derived from processing an extended set of historical 
data, which consolidated the data from all nine airports considered in the study. We focused on look-ahead times 
(LAT) of between 1 and 3 hours, and the results are presented in Table 1. The results of statistical analysis of flight 
arrival data for each airport separately are then shown in Table 2. 

Table 1 shows the distributions of (predicted – actual) airport arrival time, divided into the following time 
buckets: 

• Less than -180 minutes (flights more than 3 hours late) 

• -180 to -61 minutes (flights 1 – 3 hours late) 

• -60 to -15 minutes (flights less than 1 hour late) 

• On time (flights that are between 15 minutes late and 15 minutes early) 

• 15 – 60 minutes (flights less than 1 hour early) 

• 61 – 180 minutes (flights 1 – 3 hours early) 

• Over 180 minutes (flights more than 3 hours early) 
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Table 1  Airports: Distribution of Errors in Flight Arrival Time Predictions 

Time Bucket 
Late (minutes) Early (minutes) 

Month LAT Flight 
Status 

Number of 
Observations 

Over 
180 

61 – 
180 

15  - 
60 

On 
Time‡ 

15 - 
60 

61-
180 

Over 
180 

April 1-2 hr A 7476 0.0% 0.1% 4.4% 92.6% 2.0% 0.0% 0.9% 
June 1-2 hr A 8123 0.1% 0.2% 4.5% 92.7% 2.5% 0.0% 0.1% 
April 2-3 hr A 5699 0.0% 0.0% 4.5% 91.0% 3.9% 0.1% 0.4% 
June 2-3 hr A 4605 0.1% 0.2% 4.8% 89.7% 4.9% 0.3% 0.1% 
April 1-2 hr P 12605 0.2% 5.7% 25.6% 59.9% 6.9% 1.3% 0.4% 
June 1-2 hr P 7159 0.9% 10.6% 30.2% 53.4% 4.1% 0.2% 0.4% 
April 2-3 hr P 10490 0.3% 4.8% 25.3% 59.0% 9.0% 0.6% 1.0% 
June 2-3 hr P 12382 1.1% 10.4% 27.7% 52.8% 7.0% 0.6% 0.3% 

 
Table 1 represents a high level distribution of flight arrival time prediction errors. For active flights (Flight 

Status A), there is no significant difference in prediction accuracy between April and June data: 89.7 to 92.7 percent 
of flights are on time, and almost all prediction errors are within ±1 hour range. For proposed flights (Flight Status 
P), however, there is an obvious difference between April and June data. In April, there is a higher percentage “on 
time” predictions than in June: close to 60% in April vs. 53% in June. Additionally, in April, there is a lower 
percentage of late predictions than in June: approximately 30% in April vs. approximately 40% in June for late 
predictions. The difference between April and June predictions can be explained by the impact of traffic 
management initiatives (TMIs). A review of TMIs in April and June revealed a high number of ground stops on one 
of the June study dates (June 8th), which included several ground stops at the studied airports:  3 in ATL, 1 at DFW, 
MIA, ORD and SFO.   

Closer examination of the data revealed that 

• The prediction accuracy of airport arrival times for active flights is significantly better than for proposed 
flights that are still on the ground: for active flights, the prediction errors are within a ± 15-minute range, 
whereas for the proposed flights, the prediction errors are within a range from - 45 min to 25 min.   

• Within each case of active and proposed flights, the prediction accuracy is nearly the same for LAT = 1 – 2 
hours and LAT = 2 – 3 hours.  

• For active flights, the distributions of prediction errors are nearly symmetric with zero average error. 

• For the flights still on the ground, the distributions of prediction errors are biased (with median error of 
approximately -7 minutes) and asymmetric with heavier left-hand tails that reflect the tendency for 
proposed flights to arrive, on average, later than predicted. Note: negative prediction error indicates that 
flight’s actual arrival time is later than predicted.  

Figure 1 shows the cumulative probability distribution of prediction errors obtained from the combined historical 
data set that included the data for both active and proposed flights with look-ahead time prediction from 1 to 2 
hours. The distribution is biased (with median error of approximately -3 minutes) and asymmetric with a heavier 
left-hand tail, toward late arrivals.  

 

 

                                                           
‡ “On-time” is considered to be within 15 minutes (early or late) of the predicted time.   
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Figure 1. Cumulative Distribution of Errors in Flight Arrival Time Predictions 

 
Table 2 presents the results of statistical analysis of accuracy of flight arrival time predictions at each of nine 

airports considered in this study. Here again, there are significant differences in airport flight arrival time prediction 
accuracy between active and proposed flights. The differences are not only in absolute values of prediction errors 
(predictions for active flights are significantly more accurate than for proposed flights) but also in their signs: flights 
on the ground tend to arrive later than predicted, but the airborne flights tend to arrive earlier. This is because 
uncertainty in flight departure time, mostly with additional delays on the ground at the origin airport, adds to later 
arrival for proposed flights. 

The differences in average prediction errors vary by airport. In April, when there were many fewer TMIs than in 
June, the prediction error values for proposed flights at different airports are smaller than in June. There is, however, 
not much difference in prediction accuracy for active flights in April and June. For example, in April, the prediction 
errors with LAT = 1 – 2 hours for the proposed flights vary from -13.9 to -10.6 minutes at seven of nine airports 
(except LAX and MIA with -5.9 and -5.2 minutes, respectively). For the active flights with LAT = 1 – 2 hours, the 
average prediction errors vary from nearly zero to 3.9 minutes at seven of nine airports (with the exception of 7.4 
minute early arrivals at MIA and 7.5 minute late arrivals at ORD). A relatively wider range of average prediction 
errors among airports occurred for LAT = 2 – 3 hours. 

There is not much difference between LAT = 1 -2 hour and LAT = 2 – 3 hour predictions within each case of 
flights’ status. However, there is a large difference in accuracy of prediction for flights still on the ground in April 
and June, when the June predictions are significantly less accurate than for April. The high number of ground stops 
on June 8th was noted earlier.  

Table 2. (Predicted-Actual) Arrival Time (minutes) 

Month LAT Status Dest. 
Airport 

Number of 
Observations 

Average 
Error 

Standard 
Deviation 

Skewness 

April 1 – 2 hr A ATL 1832 2.2 7.2 -2.3 
June 1 – 2 hr A ATL 1822 1.4 10.1 -2.2 
April 2 – 3 hr A ATL 916 4.2 6.9 -1.6 
June 2 – 3 hr A ATL 689 2.6 13.2 1.1 
April 1 – 2 hr P ATL 3336 -11 23.1 -1.4 
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Month LAT Status Dest. 
Airport 

Number of 
Observations 

Average 
Error 

Standard 
Deviation 

Skewness 

June 1 – 2 hr P ATL 1721 -32 42.1 -1.2 
April 2 - 3 hr P ATL 2023 -1.7 19.4 -1.6 
June 2 – 3 hr P ATL 2816 -27.4 41.5 -1.2 
April 1 – 2 hr A BOS 659 0 6.8 -1.9 
June 1 – 2 hr A BOS 526 1.7 5.1 -0.1 
April 2 – 3 hr A BOS 373 0 8.4 -1.5 
June 2 – 3 hr A BOS 320 1.9 9.2 -3 
April 1 – 2 hr P BOS 1280 -12.9 23.5 -1.4 
June 1 – 2 hr P BOS 727 -22.2 36.1 -1.6 
April 2 - 3 hr P BOS 880 -10.3 23.8 -0.9 
June 2 – 3 hr P BOS 1057 -21.9 38.1 -1.4 
April 1 – 2 hr A DFW 1300 3.9 6.5 2 
June 1 – 2 hr A DFW 1498 1.7 5.5 1 
April 2 – 3 hr A DFW 1397 1.9 7.6 6.3 
June 2 – 3 hr A DFW 735 2.3 8.4 1.2 
April 1 – 2 hr P DFW 1776 -10.6 20.6 -1.2 
June 1 – 2 hr P DFW 969 -15 30.2 -2.9 
April 2 - 3 hr P DFW 2239 -12.2 21.8 -1.3 
June 2 – 3 hr P DFW 2116 -15.4 29.7 -2.4 
April 1 – 2 hr A LAX 617 0 5 -1.5 
June 1 – 2 hr A LAX 1006 -0.9 7 -9.4 
April 2 – 3 hr A LAX 694 -0.8 4.9 -1.9 
June 2 – 3 hr A LAX 921 -2 11 -9.4 
April 1 – 2 hr P LAX 1032 -5.9 16.2 -2.1 
June 1 – 2 hr P LAX 753 -9.3 15.8 -1.9 
April 2 - 3 hr P LAX 882 -7.2 20.6 -2 
June 2 – 3 hr P LAX 1216 -6.5 18 -1.9 
April 1 – 2 hr A MCI 286 1.4 5.6 -2.5 
June 1 – 2 hr A MCI 262 1.7 7.9 0.2 
April 2 – 3 hr A MCI 262 2 3.9 -0.4 
June 2 – 3 hr A MCI 113 4.7 12.6 1.3 
April 1 – 2 hr P MCI 710 -11.8 18.8 -1.3 
June 1 – 2 hr P MCI 352 -18.4 24.1 -1.5 
April 2 - 3 hr P MCI 517 -13.7 19.7 -0.8 
June 2 – 3 hr P MCI 625 -21.6 30.9 -1.8 
April 1 – 2 hr A MIA 541 7.4 7.7 -1 
June 1 – 2 hr A MIA 624 -0.5 14.4 -1.6 
April 2 – 3 hr A MIA 694 7.4 12 5 
June 2 – 3 hr A MIA 319 0.1 22.3 1.8 
April 1 – 2 hr P MIA 757 -5.2 28.2 -0.9 
June 1 – 2 hr P MIA 575 -19 35.4 -1 
April 2 - 3 hr P MIA 1213 -6.6 27.4 -0.7 
June 2 – 3 hr P MIA 895 -21.3 36 -0.6 
April 1 – 2 hr A ORD 1178 -7.5 11.1 -4.1 
June 1 – 2 hr A ORD 1449 -3.9 11 -3.2 
April 2 – 3 hr A ORD 826 -6.5 11.5 0.1 
June 2 – 3 hr A ORD 891 -3.6 11.2 -0.6 
April 1 – 2 hr P ORD 1263 -13.9 43.6 0.9 
June 1 – 2 hr P ORD 977 -22.3 40.1 -1.1 
April 2 - 3 hr P ORD 1227 -10.1 31.6 0.4 
June 2 – 3 hr P ORD 1963 -19.6 43.7 -0.5 
April 1 – 2 hr A SFO 515 -0.4 8.3 -1.7 



 
American Institute of Aeronautics and Astronautics 

 
 

7

Month LAT Status Dest. 
Airport 

Number of 
Observations 

Average 
Error 

Standard 
Deviation 

Skewness 

June 1 – 2 hr A SFO 608 -0.4 5.5 0.4 
April 2 – 3 hr A SFO 260 -2.4 8.6 -1 
June 2 – 3 hr A SFO 489 -2.7 7.4 0.9 
April 1 – 2 hr P SFO 1132 -11.5 24.5 -1.3 
June 1 – 2 hr P SFO 515 -12.3 23.5 -2.3 
April 2 - 3 hr P SFO 507 -19.1 29.9 -0.9 
June 2 – 3 hr P SFO 780 -8.5 20.4 -2.5 
April 1 – 2 hr A STL 480 1.7 5 0.9 
June 1 – 2 hr A STL 315 5.4 8.4 1.1 
April 2 – 3 hr A STL 254 2 8.2 1.2 
June 2 – 3 hr A STL 121 11.7 14.1 0.9 
April 1 – 2 hr P STL 1019 -12.5 22.1 -1.5 
June 1 – 2 hr P STL 470 -16.1 26.5 -1.6 
April 2 - 3 hr P STL 779 -13.9 23.3 -1.4 
June 2 – 3 hr P STL 739 -15.2 26.5 -1.6 

 

IV. Probabilistic Count Predictions  

A. Introduction 
Previous sections analyzed uncertainty in predicting airport arrival times for individual flights. These results will 

now be used for probabilistic prediction of airport arrival demand counts.  
The steps taken in this section are as follows:  
1) Translate a flight’s arrival time predictions and associated prediction errors into the probabilities for the 

flight to arrive in particular 15-minute time intervals.    
2) Show how these probabilities can be combined to develop probabilistic count predictions for an interval 

from a set of flights with ETAs in the interval and in adjacent intervals (using the analytical approach 
described in Meyn1).  

3) Simplify this approach by decomposing a set of candidate flights and considering the normal 
approximation to the binomial distribution. Derive means and standard deviations of demand counts.  

4) Show how the derived probabilistic count predictions relate to the empirically observed, deterministic 
count predictions.  

B. Probability for a Flight to Arrive During a Specified Interval 
Consider a flight that is deterministically forecast to arrive at an airport at time x, i.e., x is equal to a flight’s 

ETA. What is the probability that the flight will arrive during the interval [a, b)§? We denote this conditional 
probability as Prob(Arrive in [a, b) | fc at time x), where “fc” means forecast. Note: when we say “the probability 
that the flight will arrive during the interval” we mean the probability for the flight to be available to land during the 
interval, and, hence, to be counted in the aggregate demand prediction for this interval. 

Considering the errors in flight’s arrival time prediction (presented in Section III), the flight can arrive during the 
interval in question if the prediction error is between x – b and x – a. Using the cumulative probability distribution 
function (CDF) of prediction error presented in Figure 1, this probability can be determined as follows:  

Prob(Arrive in [a, b) | fc at time x) = CDF(x - a) – CDF(x – b). (1) 

For example, if x = 1140, a = 1200 and b =1215, the flight can arrive in the [1200, 1215) interval if it is 20 to 35 
minutes late, that is, if its “Predicted – Actual” time is between   - 20 and -35 minutes. This probability is  

Prob(Arrive in [1200, 1215) | fc at time 1140) = CDF (-20) – CDF(-35). 
                                                           
§ The left bracket “[”  indicates that the interval includes a, while the right parentheses “)” indicates that the interval 
goes up to but does not include b.  



In a second example, x = 1205, a = 1200 and b =1215. Here, the flight can arrive in the [1200, 1215) interval if it 
is between 5 minutes early and 10 minutes late; that is, if its “Predicted – Actual” time is between  5 and -10 
minutes. This probability is  

Prob(Arrive in [1200, 1215) | fc at time 1205) = CDF (5) – CDF(-10). 

Figure 2 illustrates how the probabilities relate to the CDF for these two examples. In the first example, the 
probability is equal to (CDF(-20) – CDF(-35)) and is approximately 8% (the short vertical red line).  In the second 
example, the probability is equal to (CDF(5) – CDF(-10)) and is approximately 50% (the longer vertical green line).    
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Figure 2. Predicted-Actual (P-A) Time and Flight Arrival Probability 

 
The red curve in Figure 3 illustrates the distribution of probabilities for individual flights to arrive at [1200, 

1215) interval as a function of predicted arrival time x. This curve, which is simply a plot of all of the possible 
vertical lines from Figure 2 makes it possible to determine the probability for a flight with a forecast arrival time x to 
arrive in the [1200, 1215) interval. These probabilities depend on how far the forecast arrival time is from the 15-
minute interval of interest for arrivals: the farther the time x from the 15-minute interval the smaller the probability 
is for the flight to arrive during the interval. Using the two previous examples, if x is 1140, the probability is 8%; if 
x is 1205, the probability is 50%.  
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Figure 3.  Relationship between Flight Arrival Probability and Estimated Arrival Time 
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It is worth noticing that the major reason for determining probabilities for individual flights to arrive in a specific 
15-minute interval is to later use those probabilities to aggregate the flights and then develop a probabilistic 
prediction of aggregate 15-minute demand counts. One could calculate the probabilistic distribution of aggregate 
traffic demand by using different probabilities for individual flights (see Meyn1). However, this will require 
cumbersome computations if many flights are involved. Therefore, to simplify the computational procedure, we will 
work with the probabilities that are the same for each flight in a group of flights predicted to arrive within a 
particular 15-minute interval, not at the particular time x. As a result, the probabilities for individual flights will be 
different only when they are predicted to arrive in different 15-minute intervals. Those probabilities can be obtained 
from the distribution of probabilities to arrive within a particular 15-minute interval as a function of time x (see the 
red curve in Figure 3) through the step-wise approximation of the curve so that the function remains constant within 
each 15-minute interval. The step-wise approximation is shown in Figure 3 by the blue line. The constant values for 
the approximation can be determined   

• by averaging the red function at each 15-minute interval, or 

• by assigning a constant probability in accordance with the allocation of predicted arrival times for 
individual flights within the interval.  

The step-wise approximation makes it easier to deal with the number of flights that are forecast to arrive in the 
15-minute interval [y, y + 15). The constant value that corresponds to this interval determines the probability for 
each flight predicted at this interval to arrive within the [a, a + 15) interval. This probability is denoted as  

                          Prob(Arrive in [a, a + 15) | fc in [y, y + 15)). (2) 

For example, Figure 3 gives the following probabilities for individual flights to arrive in [1200, 1215) interval if 
they are forecasted to arrive at various 15-minute intervals: 

                          Prob(Arrive in [1200, 1215) | fc in [1130, 1145)) = 0.07 (3) 

                          Prob(Arrive in [1200, 1215) | fc in [1145, 1200)) = 0.21 (4) 

                          Prob(Arrive in [1200, 1215) | fc in [1200, 1215)) = 0.47 (5) 

                          Prob(Arrive in [1200, 1215) | fc in [1215, 1230)) = 0.14 (6) 

Note that if the flight is forecast to arrive in the interval [1200, 1215), it has slightly less than 50% probability of 
arriving in that interval.  

C. Combining Probabilistic Count Predictions: a General Approach   
In the previous section, we examined the probability for an individual flight to arrive within a given interval, 

given its forecast arrival time. In this section, we briefly introduce Meyn’s1 method for combining probabilistic 
count predictions from probabilities for individual flights.  

Suppose that for certain set of flights (e.g., N flights), the probabilities for each individual flight to arrive at a 
NAS element (e.g., an airport) during a time interval are known, so that the probability for flight i to arrive during 
the time interval is equal to pi (i = 1, 2, …, N). For example, if flight i is predicted to arrive at 1205, and our interval 
of interest is 1200 – 1215, then the previous section (IV.B) tells us that pi = 0.50. Given the probabilities pi for 
individual flights, the probability distribution of demand counts will then be calculated, which will determine 
probability of each possible demand forecast count from 0 to N out of N flights. As a result, a set of probabilities 
PN[k] that k of N flights are predicted to arrive at an airport determine the probabilistic demand forecast (k = 0, 1, 2, 
…, N). Assuming that the events for flights to arrive at an airport are independent, the following recursive procedure 
for calculating probabilities PN[k] was presented in 1:  

P0[0] = 1 
For i = 1 to N: 

Pi[0] = (1 - pi) Pi-1[0] 
Pi[i]  =  pi  Pi-1[i-1] 

For k = 1 to i-1: 
Pi[k]  =  pi  Pi-1[k-1] +  (1-  pi )Pi-1[k]. 



This procedure covers a general case when the probabilities pi (i = 1, 2, …, N) are different. When all flights 
have the same probability pi = p (i = 1, 2, …, N) to arrive at an airport, the above recursive procedure reduces to 
binomial distribution with parameters N and p: 

PN[k] =  
)!(!

!
kNk

N
−

pk (1 – p)N-k,  k = 0, 1, 2, 3, …, N   (7) 

where k! = 1* 2 * 3 *…* k, and 0! = 1. 

In the next section, we develop a closed-form probabilistic count prediction that makes use of this binomial 
property.   

 

D. A Tractable Probabilistic Count Prediction 
Consider the set of aircraft that might arrive during the interval [a, a +15). The set may include the flights that 

are predicted to arrive during [a, a+15), flights predicted to arrive during adjacent intervals, and other flights, such 
as pop-ups. To calculate the probability distribution of the number of aircraft predicted to arrive during this interval, 
one could consider each aircraft individually with its own probability to arrive in the time interval of interest, and 
use Meyn’s approach1 to develop the probabilistic prediction. This would lead, however, to a cumbersome 
computational procedure.  

Here we present an approximate alternative approach that simplifies the computations and allows for an easy 
way of obtaining probability distributions of traffic demand counts. The idea is to decompose the set of candidate 
flights to several sub-sets, each of which consists of a group of flights with the ETAs within the same 15-minute 
bucket (see Section IV.B). Within a group, each flight will have the same constant probability to arrive in the time 
interval of interest in accordance with the step-wise approximation of the probability function presented in Figure 3. 
Figure 4 illustrates how flights might be grouped by forecast arrival time.  
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Figure 4. Flight Groupings 

 
Suppose that the ETAs of flights in the entire set of  selected candidate flights to arrive at the [a,a+15) interval 

are allocated in J fifteen-minute buckets (including the interval of interest) so that the entire set of N flights can be 
grouped in J groups. Each group contains nj  flights, each of which has a probability to arrive pj to arrive during the 
15-minute interval of interest (j = 1, 2, …, J), so that 

∑
=

J

j
jn

1
= N 
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The number of aircraft from a group j that might arrive during the interval [a, a+15) is a binomially distributed 
random variable, with parameters nj and pj : 

Pnj [k] =  
)!(!

!

knk

n

j

j

−
 pj

k (1 – pj) nj
- k,    k = 1, 2, …, nj; j = 1, 2, …, J,     (8) 

where k! = 1* 2 * 3 *…* k. 

The total number of arrivals during [a, a+15) is the sum of binomially distributed random variables, over the 
forecast arrival time buckets.   

The calculation of the distribution of the sum of binomially distributed values can be simplified if the normal 
approximation of binomial distribution is used. A binomial distribution with parameters nj and pj can be 
approximated by a normal distribution11, with mean njpj  and variance njpj (1- pj)  

The expected total number of aircraft E(a) that would arrive at the [a, a + 15) interval (starting at a) is equal to   

E(a) =    (9)  j

J

j
j pn∑

=1

Assuming independence of distributions of number of aircraft from each bucket that can arrive at the [a, a + 15) 
interval, the variance σ2(a) of the number of aircraft predicted to arrive at [a, a + 15) is approximated by 

σ2(a) =  .  (10)           )1(
1

jj

J

j
j ppn −∑

=

In these equations, again: 
nj -  number of flights with ETAs in the jth bucket 
pj – probability that a flight in the jth bucket will arrive in [a, a +15) 
 
Return to the above example on determining conditional probability for individual flight to arrive in [1200, 

1215) interval if they are forecasted to arrive at four 15-minute buckets from [1130, 1145) to [1215, 1230). The 
probability values are shown in Eqs. (3) – (6), above. Table 3 reproduces the probabilities from Eqs. (4) – (6) in case 
of three (J = 3) 15-minute intervals: the interval of interest [1200, 1215) and two adjacent buckets, [1145, 1200) and 
[1215,1230).  
 

Table 3.  The Example of Considering Three Adjacent Buckets    

n: Number of forecast 
aircraft 

Forecast arrival bucket pj: Probability of arrival in 
interval [1200, 1215) 

D(1145) 1145 – 1200 0.21 
D(1200) 1200 – 1215 0.47 
D(1215) 1215 – 1230 0.14 
D(other) Not in 1145 – 1230 Small 

 
In the case of Table 3 and according to Eq. (9), the expected number of aircraft for the interval starting at 1200, 

E(1200), is then given by 

E(1200) = 0.21 D(1145) + 0.47 D(1200) + 0.14 D(1215) + pD(other),          (11) 
where pD(other) is a to-be-determined adjustment, representing the last line in Table 3 with small probability p. 
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Equation (10) leads to the following formula for the variance σ2(1200) of the aircraft count for the 15-minute 
interval starting at 1200:  

σ2(1200) = 0.21 (1– 0.21) D(1145) + 0.47 (1– 0.47) D(1200) + 0.14 (1– 0.14) D(1215) + p(1–p)D(other)    (12)     

Equation (12) can be simplified by noting that in the last term, p(1–p)D(other), p is assumed to be much smaller 
than 1 and , hence, (1–p) ≈ 1, so this term can be approximated by pD(other). As a result, Eq. (12) is transformed to  

σ2(1200) = 0.17 D(1145) + 0.25 D(1200) + 0.12 D(1215) + pD(other) (13)  

What is pD(other)? D(other) may represent a number of aircraft, each with a small probability p of arriving 
during the [1200, 1215) interval, and pD(other) can be interpreted as a residual error of the model. In Figure 4 
(above), it includes the flights shown in Group 4. 

There is a variety of possible ways of dealing with the residual error in the model. One approach is to use Eq. 
(11) and (13) with the shown coefficients and neglect the last term pD(other). This will create bias in the resulting 
model, since the pD(other) term is positive. A second approach is to use Eq. (11) and (13) without the last term 
pD(other) but adjust the coefficients to try to compensate for the error, using the following approach: 

Since we have observed that the TFMS aggregate demand counts predictions are not significantly biased10, one 
might reasonably assume that the sum of the coefficients of the terms D(1145), D(1200) and D(1215) in Eq. (11) 
should be close to 1. The adjusting multiplier β to those coefficients can be found from the following equation: 

  β (0.21 + 0.47 + 0.14) = 1,  from which β = 1.22. 

Equation (11) then becomes  

E(1200) = 1.22 (0.21 D(1145) + 0.47 D(1200) + 0.14 D(1215)) = 0.26 D(1145) + 0.57 D(1200) + 0.17 D(1215)       (14) 

and the residual error pD(other) can be  found from the following equation 

pD(other) = 0.22 (0.21 D(1145) + 0.47 D(1200) + 0.14 D(1215)) = 0.05 D(1145) + 0.10 D(1200) + 0.03 D(1215)      (15) 

Equation (13), when combined with Eq. (15), becomes 

σ2(1200) = 0.22 D(1145) + 0.35 D(1200) + 0.15 D(1215)  (16) 

Note that both the expected demand counts and standard deviation of probabilistically predicted demand counts 
depend on deterministically predicted demand counts at all 15-minute intervals used in the probabilistic model. 

What if one uses the forecast aircraft in the [1200, 1215) bucket only, as TFMS does? Then the expected number 
of flights predicted to arrive within [1200, 1215) interval is less than half of the deterministically predicted demand 
counts D(1200): 

E(1200) = 0.47 D(1200) 

The adjusting multiplier β for this coefficient can be found from the following equation: 

     0.47 β = 1, 

from which β = 2.13, and   

pD(other) = (β –1) (0.47 D(1200)) = 0.53 D(1200)  (17) 

The variance of predicted demand counts in this case, with J = 1, is equal to  

σ2(1200) = (0.47 (1–0.47) + 0.53) D(1200) = 0.78 D(1200), (18)  



and the standard deviation is equal to 

σ (1200) = 0.88 )1200(D   (19)  

With the assumption that the probability distribution of demand counts is close to a normal distribution, the 
knowledge of an expected value and a variance of predicted demand counts make it possible to obtain a probabilistic 
prediction of the counts by using the table of percentiles for the normal distribution. If the expected value is equal to 
E and standard deviation is σ, then the probability that the predicted demand counts will be within the range of       
(E ± m σ), where m determines the desired range in the numbers of standard deviations, can be found from the table 
for the normal distribution. For example, if m = 1, then the probability is equal to 0.68. If m = 2, the probability is 
equal to 0.95, i.e., with the probability of 0.95, demand counts will be within the range from (E - 2σ) to (E + 2σ).    

If one wants to know what is the threshold value for demand counts so that the predicted demand cannot exceed 
it with the certain probability, then the threshold value can be found from the table as a corresponding percentile. 
For example, the demand threshold that cannot be exceeded with the probability more than 0.25 is the 75th 
percentile, and according to the table is equal to (E + 0.68 σ). The threshold that determines the lower bound for 
demand counts to be below the threshold with 0.4 probability (not to be below this value with 0.6 probability) is the 
40th percentile, which is equal to (E – 0.26 σ). The expected value E itself represents the 50th percentile. It also 
worth noticing that, for symmetric, bell-shaped distributions, the expected value is the most likely value among 
other values of this distribution. 

To illustrate how the expected value and the uncertainty range of probabilistic demand count predictions depend 
on the deterministic predictions, consider numerical examples with three cases of deterministic demand predictions 
for three consecutive 15-minute intervals (Table 4) 

 
Table 4. Examples of Probabilistic Predictions 

 Case 1 Case 2 Case 3 

D(1145) 25 12 25 
D(1200) 20 20 20 
D(1215) 12 12 30 

E(1200)  from Eq. (14) 19.9 16.6 23.0 
σ2(1200)  from Eq. (16) 14.3 11.4 16.9 

Standard Deviation σ(1200) 3.8 3.4 4.1 
2.3th percentile (E – 2σ ) 12.3 9.8 14.8 

25th percentile (E - 0.68σ) 17.3 14.3 20.2 
75th percentile (E + 0.68σ) 22.5 18.9 25.8 
97.7th percentile (E + 2σ) 27.4 23.3 31.2 

 

In Case 1, D(1145) = 25; D(1200) = 20; D(1215) = 12. 
According to Eqs. (14) and (16), the expected value and variance of probabilistically predicted demand counts 

for the 15-minute interval that starts at 1200 are: 

E(1200) = 0.26*25 + 0.57*20 + 0.17*12 = 6.5 + 11.4 + 2.0 = 19.9     

σ2(1200) = 0.22*25 + 0.35*20 + 0.15*12 = 5.5 + 7.0 + 1.8 = 14.3. 

The standard deviation σ(1200) is equal to 
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σ (1200) = 3.14  ≈ 3.8 

The 75th percentile of the predicted demand counts is equal to E(1200) + 0.68 σ (1200) = 19.9 + 2.6 = 22.5. The 
25th percentile is equal to E(1200) – 0.68 σ (1200) = 19.9 – 2.6 = 17.3. This means that with the probability 0.75 the 
demand counts will not exceed 22.5, and will not be smaller than 17.3. Moreover, with the 0.95 probability, the 
demand counts will be within the range of ± 2σ around expected demand, i.e., within the range from 12.4 to 27.4. 

With this combination of demand counts at the three adjacent intervals, the expected value E(1200) = 19.9 
appeared nearly equal to the deterministic prediction D(1200) = 20 for the 15-minute interval. Figure 5 illustrates 
this case with the range of uncertainty in demand prediction between 25th and 75th percentiles. Both expected 
demand and deterministically predicted demand are close to and in the middle of the uncertainty range. 

 

 
Figure 5. Case 1: Probabilistic vs. Deterministic Prediction 

 

The calculations for Case 2 and Case 3 are similar to those for Case 1, and the results were presented in Table 4. 
They are shown graphically in Figures 6 and 7.   
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Figure 6.  Case 2: Probabilistic vs. Deterministic Prediction 

 

 
Figure 7.  Case 3: Probabilistic vs. Deterministic Prediction 

 

Note that, unlike Case 1, in both Case 2 and Case 3, the deterministic prediction of 20 flights is outside the 
uncertainty range between the 25th and 75th percentiles. In Case 2, the deterministic prediction is above the 
uncertainty range, but in Case 3 it is below (see Figures 6 and 7). It means that in both cases, the probability of 
traffic demand of 20 flights in the 1200 interval is smaller than 0.25. 
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probabilistic 
pro

 at successive 15-
min  demand predictions within a sliding 45-minute wide window 
comprising of three 15-minute intervals with the interval of interest in the middle of the window.  

      1)*15),    i = 1, 2, 3, …       

Then, according to Eq. (14), the following formula determines the expected value E(Δi) of predicted demand 
or three consecutive intervals: 

(20) 

d counts for interval Δi  is equal to 

 σ2

) for each 15-minute interval makes it 
pos

 1200 to 
1415. For this demand, e 21). 

Table 5 shows the ca ute interval.  

 Example: Probab ini n

Time Interval Deterministic 
De

Expected 
Dem nd 

Exp
Determ istic 

D  

Variance σ2 Standard 
Devia on σ 

These examples illustrate probabilistic demand prediction: it is measured by the expected value of demand 
counts and by the range of uncertainty around the expected value that covers the area within which predicted 
demand counts could have their values with a certain probability. The range is limited by the upper and lower 
bounds that correspond to probabilities for predicted demand to be higher and lower than a specified threshold. As 
for deterministic predictions, they make a significant contribution in calculating expected demand values and 
standard deviations that determine the level of predicted demand and parameters of prediction uncertainty (such as 
the range and probabilities), but the deterministic values themselves are not directly used as a 

jection of demand. Instead, the expected demand counts, along with the uncertainty range covering the area 
around the expected demand with certain probability, determine the probabilistic demand predictions.  

We can now give a general formulation of the algorithm for probabilistic demand predictions at 15-minute 
intervals based on characteristics of uncertainty in individual flights’ ETA predictions and using deterministic 
demand count predictions at several consecutive 15-minute interval (for concreteness, we will consider three 
consecutive 15-minute intervals). The algorithm determines the probabilistic demand predictions

ute intervals by processing deterministic

 Consider a series of 15-minute intervals Δi 

         Δi = [t0 + i*15, t0 + (i +

where  t0 is a starting time. 
Let D(Δi) be a deterministic prediction of demand counts for interval Δi. 

counts for interval Δi  as a function of deterministic predictions f

E(Δi) = 0.26 D(Δi-1) + 0.57 D(Δi) + 0.17 D(Δi+1),  i = 2, 3, 4 … 

According to Eq. (16), the variance σ2(Δi) of the predicted deman

(Δi) = 0.22 D(Δi-1) + 0.35 D(Δi) + 0.15 D(Δi+1),  i = 2, 3, 4 … (21) 

Equations (20) and (21) sequentially determine the basic values for probabilistic demand predictions at each 15-
minute interval. In particular, knowledge of the standard deviations σ(Δi

sible to determine desired percentiles to quantify the range of uncertainty around expected values E(Δi). For 
example, the 75th percentile for interval Δi is equal to E(Δi) + 0.68 σ (Δi).   

Consider a numerical example of deterministic 15-minute demand count predictions for 2.25 hours from
xpected values and variances were calculated by using Eq. (20) and (
lculation results along with deterministic predictions for each 15-min

Table 5. ilistic vs. Determ

ected Minus 

stic Predictio s 

mand a in
emand

ti

1200 - 1215 20     
1215 - 1230 12 14.48 2.48 11.0 3.32 
1230 - 1245 16 16.49 0.49 11.99 3.46 
1245 - 1300 25 22.15 -2.85 15.57 3.95 
1300 - 1315 22 21.25 -0.75 15.15 3.89 
1315 - 1330 13 16.19 3.19 12.09 3.48 
1330 - 1345 18 15 4 -2 6 10 6 3.  .3 .6 .6 26
1345 - 1400 10 14.63 4.63 11.21 3.35 
1400 - 1415 25     
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s and are outside the shown uncertainty ranges, which indicated a low probability for deterministic 
pre

Figure 8 ds are 
smoothi ong the 
time pe

 

 

between expected and 
deterministic predictions at 15-minute intervals, there is not much difference in the hourly counts. As Table 5 covers 
only two and a qu  our window that 
moves consecutively by 15 m

 

The table shows that the difference between deterministic and expected demand counts can be significant. For 
example, at [1345 – 1400) interval, the expected demand is more than 46% higher than the deterministic prediction. 
However, the standard deviations of probabilistic predictions do not vary much at different 15-minute intervals.   

Figure 8 illustrates the probabilistic representation of traffic demand count predictions in the form of bar charts 
with the range of uncertainty at each interval restricted by 25th and 75th percentiles using numerical results from 
Table 5. At each bar, the red lines and the thick black horizontal lines show the predicted expected and deterministic 
demand values, respectively. At some 15-minute intervals, the expected values are close to deterministic ones (e.g., 
intervals starting at 1200, 1230 and 1300); at some intervals the deterministic predictions are much higher than 
expected demand

dictions (e.g., intervals starting at 1245, 1330 and 1400), and at some intervals the deterministic predictions are 
much lower than the expected values and also are outside the shown uncertainty range (see intervals starting at 1215, 
1315 and 1345). 

r illustrates another impo tant property of probabilistic demand prediction: the expected deman
ng the deterministic demand profile and are reducing fluctuations of predicted 15-minute demands al
riod that make it more stable.  

Figure 8.  Probabilistic Predictions of Traffic Demand Counts 

Another measure of interest is hourly demand, as TFM specialists might consider predictions for hourly demands 
during a several-hour period when making decisions on TMIs. 

The example in Table 5 shows that, although there might be significant differences 

arter-hour period, we will illustrate it on the hourly counts within a sliding one-h
inutes. The results of the comparison are presented in Table 6. 
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Expected Minus 

Table 6.  Hourly Demand Predictions: Expected vs. Deterministic Counts 

One-hour Deterministic Expected 
Period Demand Demand Deterministic 

Demand 
1215 - 1315 74 75 1 
1230 - 1330 76 75 -1 
1245 - 1345 78 74 -4 
1300 - 1400 63 66 3 

 
nd counts might not differ much. Further analysis will be needed to more 

ho

 normal distribution   

ions ranged between 
ween 6 to 13 arrivals in 15 minutes10.   

 for e imating the accuracy of demand count prediction
nd 
re 

rd deviation of 2.6, consistent with what was observed in the TFMS 

on model for 15-minute count predictions that made us
gr ons were performed on actual count data to deter

weigh e intervals, as well as a 
con e 

E(1200) = a D(1145) + b D (22) 

In this earlier work, examination of the r lts reve s of the coefficients were  

a = 0.25, b = 0.55, c = 0  0, so that 

E(1200) = 0.25 D(1145) (1200) + 0 215)  (23) 

Table 6 illustrates that the hourly dema
t roughly explore the differences between the hourly demand counts. 
 
The above results on probabilistic prediction of traffic demand counts were obtained while using the following 
simplifying assumptions: 

• Aircraft arrivals are statistically independent 

• Binomial probability distribution for predicted demand counts is approximated by the

• The probabilistic demand forecast provides an unbiased estimation of demand counts.    

E. Comparison with Previous Work 
In our 2007 paper and report9, 10, we analyzed the accuracy of TFMS predictions of aggregate traffic demand 

counts and explored ways to improve prediction accuracy. The analysis was entirely based on 15-minute counts 
without usage of individual flight data.  Although both this paper and the 2007 paper used TFMS data as the basis 
for analysis, the 2007 paper used an earlier data set.  

The 15-minute arrival counts were examined for the same 9 airports as in this paper for look-ahead times ranging 
from 0.5 to 6 hours. For those look-ahead times in the 1.25 – 2 hour range, the standard deviat
2.4 and 3.1 for those moderately busy airports with bet

Analytical results were obtained in this study st s. In 
particular, Eq. (19) in Section IV.D presents a closed form approximation for the standard deviation of dema
counts, based on the number of flights deterministically forecast in a single 15-minute interval. If 9 flights a
forecast in 15 minutes, Eq. (19) yields a standa
data.   

In our previous study, we proposed a linear regressi e of 
the count predictions in adjacent intervals9, 10. Linear re essi mine 

t coefficients a, b, and c for deterministic demand predictions at three consecutiv
stant term k. Using the notation from the previous section, the regression model looks lik

(1200) + c D(1215) + k  

egression resu aled that reasonable value

.2 and k =

 + 0.55 D .2 D(1

Table 7 illustrates the similarity between these predictions and predictions just derived. 
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Table 7. Coefficien Demand Models 

ious paper9) 

ts in Airport Arrival 

 Equation 20 
(this paper) 

Equation 23 
(from prev

D(1145) 0.26 0.25 
D(1200) 0.57 0.55 
D(1215) 0.17 0.20 

 
The similarity of these linear prediction functions, obtained via different methodologies and data

demonstrates the viability of propose
 sets, 

d approach to probabilistic prediction of traffic demand. 

ns based on deterministic projections of traffic and 

t an airport at 

the uncertainty in predictions for individual flights to uncertainty in predictions for 15-minute 

s. 
 well 

as 

s that 
correspond to late arrivals. The probability d prediction errors are asymmetric with heavier 
left-hand tails that reflect the tendency for ts to arrive, on average, later than predicted.  

alytical methods were used to obtain the probability distributions for traffic demand count predictions. The 
pro

ights with ETAs 

Unlike the previous work that was limited by constructing the regression model for demand counts, this work 
developed a methodology that, in addition to regression model, provided the constructive way for quantifying the 
prediction uncertainty and its probabilistic properties. 

V. Conclusion 
TFMS currently makes its aggregate traffic demand predictio

neglects random errors in predictions. The purpose of this study was to  

• Analyze the errors in time predictions for individual flights and characterize the accuracy of TFMS flight-
by-flight prediction data 

• Use these characteristics of uncertainty to determine the probability for an aircraft to arrive a
any given time  

• Relate 
aggregate demand counts.  

Analysis of accuracy of predictions for individual flights was conducted for flights’ airport arrival time
Comparative analyses of prediction errors were performed for different flights’ status (active and proposed) as

for different look-ahead times (from one to two hours and from two to three hours). As a result of analysis of 
TFMS historical data, the characteristics of prediction errors were estimated to characterize uncertainty in flight 
arrival time predictions. 

For flights’ airport arrival times, the results were as follows: 

• Predictions for active flights are significantly more accurate than for proposed flights, with a much 
narrower range of uncertainty for the active flights. For active flights the prediction errors are within ± 15-
minute range, whereas for the proposed flights the errors range from -45 to +25 minutes. 

• There is little difference in accuracy with shorter (1 to 2 hour) or longer (2 to 3 hour) LAT.  

• For active flights, the probability distributions of prediction errors are nearly symmetric with zero average 
error. 

• For proposed flights, the prediction errors are biased with median error of approximately -7 minute
istributions of 

proposed fligh

The results of analysis of uncertainty in individual flights predictions were used to develop probabilistic 
predictions of aggregate traffic demand counts. A methodology was developed for determining characteristics of 
uncertainty in predictions of airport aggregate arrival demand counts based on characteristics of uncertainty in 
predictions of individual flights’ arrival time at an airport.  

An
babilistic characteristics of traffic demand counts for a specific time interval were determined from the set of 

flights that included not only the flights with ETAs within the time interval of interest but also the fl
in the immediate preceding and following adjacent intervals. The probabilistic representation of aggregate traffic 
demand counts includes the expected value along with the range of uncertainty around the expected value restricted 
by specific percentiles (e.g., 25 and 75 percentiles). Numerical examples illustrate the advantages of probabilistic 
demand predictions over deterministic ones. The probabilistic demand predictions along with predicted capacities 
then can be used together in probabilistic TFM to help determine the likelihood of congestion at airports.   
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