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Introduction 
This study seeks to address real-time operational needs in the context of the evacuation response 

problem by providing a capability to dynamically route vehicles under evacuation, thereby being 

responsive to the actual conditions unfolding in real-time in the traffic network, both in terms of the 

evolving traffic patterns (demand-side) and the available road infrastructure in the aftermath of the 

disaster (supply-side). A key aspect in evacuation operations which is not well-understood is the 

interplay between route choice behavior and its effect on traffic and supply dynamics (i.e., composition 

of evacuation traffic, changes in roadway capacities, etc.). Evacuation traffic has historically been 

quantified with descriptive surveys characterizing the behavioral aspects from social or psychological 

contexts. Integration of these behavioral aspects into traffic and/or supply-side models has been limited. 

This study seeks to address such integration for generating realistic and effective evacuation strategies 

by focusing on developing behavioral models for no-notice mass evacuation. They include: (i) an 

evacuation participation decision model that determines whether an individual or a group of individuals 

would evacuate at the current time in a disaster context, and (ii) an evacuation route choice model that 

determines the routes taken by individuals or groups of individuals after they take a decision to 

evacuate. 

Under a comprehensive framework which integrates the management of demand- and supply-side 

components, this study focuses on the modeling of behavior under no-notice evacuation, which has 

rarely been emphasized in previous studies, especially in terms of the fundamental understanding of the 

effect of evacuation behavior upon information strategies and vice versa. An understanding of evacuee 

behavior in terms of their response to the changing environment and control strategies by emergency 

management agencies (EMAs) throughout the evacuation process is critical for both the planning and 

operational contexts. For operational control, this effectiveness depends significantly on the level of 

behavioral understanding of the demand-side problem. Methodological challenges arise from 

uncertainty and randomness in disaster dynamics and evacuees’ decision process under extreme time 

pressure. 
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Findings 

The modeling of the behavior related to evacuation participation and route choice at an aggregate level 

must accommodate the following considerations: 

(i) Key factors, such as perception of risk, that involve subjective interpretation rather than 

objective assessments and/or observable measurements. 

(ii) During the evacuation process, the information about disaster, traffic conditions and other 

important issues that may entail linguistic description; for example, “the disaster is severe” or 

“may be seriously congested”, rather than numerical measurements. 

(iii) At an aggregate level, the perception of environmental factors may vary across individuals in a 

traffic assignment zone (the unit of aggregation) based on personal attributes, which highlights 

the issue of heterogeneity for model consistency. 

The proposed model adopts discrete choice theory, which is commonly employed in modeling choice 

behavior. However, to address the above issues, fuzzy set theory is further incorporated into the model 

within the structure of the mixed logit model. 

Individual behavior under the context of evacuation problem can be viewed as a hierarchical one. First, 

an individual makes the decision whether to evacuate at a certain time stage or not (that is, to postpone 

the decision to evacuate to a future time stage). The decision at this level primarily depends on: 

(i) perceived risk, which is derived from the information about the disaster. 

(ii) recommendation or order to evacuate (or not to evacuate) at the current time  stage from the 

EMA. 

(iii) herding behavior (or peer effect), which is observed in that people tend to follow the decisions 

of others. 

(iv) state dependence, which is due to non-evacuation decisions in previous time stages, from the 

perspective of evacuation operation. That is, if an individual does not evacuate in the last time 

stage, his/her decision to evacuate or not in the current time stage will be affected by his/her 

previous decision. Further, as the number of non-evacuation decisions increase, there is more 

pressure on an individual to make a decision to evacuate in this time stage. 

Second, an individual makes a decision on which route to take to a safe place. Under no-notice 

evacuation, due to the time pressure issue and the disaster characteristic, an individual does not 

deliberate on the destination of the evacuation trip, but selects a route from among several routes 

which lead him/her to the nearest safe places. In this context, the key variables influencing the decision 

at the second level include: 

(i) estimated travel time from the information available on traffic conditions. 

(ii) perceived risk on the route based on the disaster’s potential impacts or the possibility of link 

failure. 

(iii) recommendation or guidance from the EMA about the route to take. 
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(iv) freeway bias, which has been observed from previous stated preference surveys that indicate 

that the route through freeway is considered more reliable and preferred, though the reported 

travel time on the route is more than that on other arterials. Freeway bias is defined as the 

proportion of the length on freeway to the total length of the route. 

Recommendations 
In the literature, existing studies related to evacuation have predominantly focused on either the 

supply-side solutions or sought to qualitatively describe behavior using observed traffic patterns in 

actual disasters. This study seeks to link these two elements, formally acknowledging that such linkage is 

necessary for effective evacuation strategies, in the context of no-notice evacuation. 

For no-notice evacuation, to the best of our knowledge, behavior issues have not been empirically and 

quantitatively studied in the literature. To address the inadequacy, this research proposes a model that: 

(i) investigates zonal behavior in considering practical implementation and data availability under no-

notice evacuation operations at an aggregate level, and (ii) highlights the importance of understanding 

behavioral issues/phenomena under evacuation and provides a platform for designing behavior-robust 

information strategies for more effective dynamic routing. 

This study reviews the characteristics of the mass evacuation problem from the viewpoints of disaster, 

demand and supply. Based on the problem characteristics, discrete choice models are developed by 

incorporating a fuzzy logic approach into the structure of mixed logit models to account for: (i) 

individuals’ subjective interpretation and perception under time pressure, and (ii) the heterogeneity 

across the individuals in an aggregate manner. Simulation experiments are conducted to test the 

prediction capability of the proposed models. The results indicate the ability of the models to interpret 

the evacuation behavior from observable variables at an aggregate level. 

In the context of real-world deployment, this study proposes aggregate behavior models based on data 

availability. However, the need for insights on human behavior under different kinds of disaster 

situations necessitates field surveys at a disaggregate (individual) level. Additionally, in the absence of 

field data, most studies on the modeling of mass evacuation rely on simulation, resulting in trade-offs in 

terms of realism. Hence, future research that develops robust behavior models at the individual level 

can be used to strengthen the behavior modeling components within a simulation framework. Based on 

the choice models proposed in this study, the next step in the research would be on constructing a 

behavior-based control model to develop more efficient evacuation strategies for EMAs to manage the 

system effectively from the supply side. 
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CHAPTER 1.  INTRODUCTION 

Mass evacuation is necessary for immediate or potential life-threatening danger 

caused by natural or man-made disasters; population in a defined affected area has to be 

evacuated to places of safety. The major challenge of the evacuation problem arises from 

a surge of traffic demand, which might exceed the capacity of an existing roadway 

system and result in congestion or even the gridlock of the network. The purpose of 

evacuation operations is to avoid such unfavorable mobility situations and/or to lessen the 

related loss of life and property. The improvement of the network performance depends 

on the efficient management of the demand-supply problem of the evacuation network. 

Most existing evacuation management approaches address the problem from the supply-

side, emphasizing network design and capacity enlargement, such as contra-flow lanes 

(Tuydes and Ziliaskopoulos, 2006; Kalafatas and Peeta, 2007). By contrast, demand-side 

issues have been largely ignored or simplified by assuming a pre-determined origin-

destination pattern and/or a pre-determined compliance rate in most previous studies. The 

research on evacuation behavior has mostly been conducted in social or psychological 

contexts, while quantitative analysis is comparatively sparse  (Lindell and Prater, 2007). 

The demand-supply patterns of the evacuation network are dependent on the 

disaster characteristics. From a disaster perspective, the evacuation problem can be 

categorized into short-notice and no-notice disasters. The key factors for this 

categorization are the predictability of a disaster’s occurrence and lead-time (which 

directly affects the issuance of the evacuation notice). Short-notice disasters, such as 

hurricane, flooding, etc., are comparatively more predictable and provide a lead-time of 

between 24-72 hours (Wolshon et al., 2002). The lead-time allows both evacuees and 

emergency management agencies (EMAs) to be better prepared for the evacuation 
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operations. By contrast, a no-notice evacuation takes place immediately after the 

unexpected occurrence of a disaster (Anon, 2005), incurring a higher level of operational 

complexity. Examples of such disasters include earthquake, terrorist attack, hazardous 

material release, etc. 

Under a comprehensive framework which integrates the management of demand- 

and supply-side components, this study focuses on the modeling of behavior under no-

notice evacuation, which has rarely been emphasized in previous studies, especially in 

terms of the fundamental understanding of the effect of evacuation behavior upon 

information strategies and vice versa. An understanding of evacuee behavior in terms of 

their response to the changing environment and control strategies by EMAs throughout 

the evacuation process is critical for both the planning and operational contexts. For 

operational control, this effectiveness depends significantly on the level of behavioral 

understanding of the demand-side problem. Methodological challenges arise from 

uncertainty and randomness in disaster dynamics and evacuees’ decision process under 

extreme time pressure. 

Some of the earliest studies on evacuation planning were motivated by the 

radiological emergency at the Three Mile Island in 1979 (Sheffi et al., 1982; Stern 1989). 

From the 1990s, many researchers have focused on addressing the evacuation problem 

motivated by several devastating hurricanes, which led to extreme damage in 

southeastern United States. After 9/11, there has been growing concern about the need to 

address mass evacuation under terrorist attacks. A number of models have been 

developed for the aforementioned studies on nuclear-site and hurricane related evacuation 

over the past decades. These models estimate the evacuation clearance time and identify 

potential bottlenecks under different scenarios. Alsnih and Stopher (2004) provide a 

review of these models and conclude that most of these models are static in the context of 

traffic flow modeling or estimate traffic flow dynamics through rather simplified 

macroscopic traffic flow models, where time-dependent demand is approximated by 

some prescriptive departure schedule. 
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In more recent studies, dynamic traffic assignment (DTA) approaches have been 

used to model the evacuation problem for large-scale networks under real-time 

conditions. Sbayti and Mahmassani (2006) proposed a bi-level framework of evacuation 

operation to jointly solve for the desired time-varying origin-destination pattern and 

traffic assignment using the system optimal (SO) DTA module of Dynasmart-P. Chiu et 

al. (2007) applied the concept of “super zone” to reduce multiple-destination SO-DTA to 

a single-destination problem. They derived the optimal destination-route-flow-departure 

scheme for no-notice evacuation utilizing a cell transmission model (CTM) based linear 

programming formulation proposed by Ziliaskopoulos (2000). DTA methods provide 

route guidance for the individual or system-wide objectives by assigning vehicular flows 

to the associated routes. However, a critical aspect for the successful deployment of DTA 

control strategies is the compliance of drivers to the recommended departure times and 

routes. Moreover, under the evacuation process, individuals may make decisions by 

assessing factors other than the provided travel time information; for example, the 

intensity and/or proximity of the threat or disaster. 

To capture individuals’ decision processes under evacuation scenarios, it is 

important to address the related issues and characteristics of driver behavior. Prashker 

and Bekhor (2004) extensively reviewed different models of driver’s route choice 

behavior in traffic assignment problems. Driver’s behavior in an evacuation network, 

however, may be much different from that in a regular network, as evacuees face time 

pressure and an existential threat from extreme events. Current literature on choice 

behavior under both types of evacuation is limited. For short-notice evacuation, there has 

been research on modeling demand generation associated with hurricane evacuation 

through an aggregated representation using logistic regression and neural network models 

(Wilmot and Mei, 2004), sequential logit model (Fu and Wilmot, 2004) and survival 

analysis (Fu and Wilmot, 2006). These models were estimated and tested using a data set 

of evacuation participation collected in southwestern Louisiana following Hurricane 

Andrew in 1992. Chiu and Mirchandani (2008) proposed an online information routing 

system considering behavioral feedback for a flood scenario, where route choice behavior 
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was modeled using a C-logit model and calibrated using the stated preference approach. 

For no-notice evacuation, to the best of our knowledge, behavior issues have not been 

empirically and quantitatively studied in the literature. To address the inadequacy, this 

research aims to propose a model that: (i) investigates zonal behavior in considering 

practical implementation and data availability under no-notice evacuation operations at 

an aggregate level, and (ii) highlights the importance of understanding behavioral 

issues/phenomena under evacuation and provides a platform for designing behavior-

robust information strategies for more effective dynamic routing. 

The next chapter describes the problem characteristics of behavior under no-

notice mass evacuation and defines the scope of the problem. Chapter 3 provides an 

introduction of the methodology adopted for modeling the problem. Chapter 4 presents 

the model formulation to capture influential factors for evacuation behavior. Chapter 5 

examines the robustness of the proposed behavior model using a numerical experiment, 

followed by concluding comments in Chapter 6. 
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CHAPTER 2.  PROBLEM DESCRIPTION 

The main focus of this study is to understand how people respond to information 

provided as part of system-wide control strategies in evacuation environments. Due to 

practical issues related to data availability, the study focuses on aggregate behavior in the 

evacuation network in that the aggregate behavior of individuals in a traffic analysis zone 

(TAZ) is addressed as zonal behavior since it is difficult to obtain disaggregate data under 

real-time evacuation operations. Despite being modeled at an aggregate level, an 

understanding of individual behavior provides insights of problem characteristics which 

are critical for modeling the problem. 

2.1 System components in an evacuation problem 

Overall, the operation of mass evacuation starts from the issuance of a disaster 

warning and then an evacuation notice. Under some circumstances, such as no-notice 

disasters, the issuance of disaster warning and evacuation notice might be simultaneous. 

The issuance of evacuation notice also involves the definition of the evacuation area, the 

sequential order in which zones are evacuated (if phased evacuation is considered), and 

the provision of shelters. The operation further includes traffic routing and management 

strategies, aid to people who need special care (such as the elderly, injured, disabled, 

etc.), organizing evacuation fleets, and related emergency services. When the evacuation 

problem is viewed in terms of the traffic flow patterns, it presents a system which needs 

to be scrutinized from three facets: disaster, demand and supply. 
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Disaster 

In the evacuation context, a disaster is characterized by how it impacts the 

evacuation areas. The key disaster attributes in an evacuation problem are the disaster 

intensity, spatiotemporal pattern, destruction to the network, and the level of 

predictability. 

 Intensity: The intensity of a disaster implies its destructive strength and risk level. It 

relates to the potential loss of life and property in the affected areas. The intensity of 

a disaster can be represented using objective measures, such as the wind speed of 

hurricanes and the magnitude of earthquakes on the Richter scale. However, such 

measures may not be meaningful to the people who are not familiar with the 

disaster. And for some disasters, for example, chemical spills, there may not be an 

acknowledged measure to describe the intensity of disasters. Instead, the general 

public is more likely to perceive disasters qualitatively in terms of the severity of 

damage and/or casualties. In addition, there is no universal measure of intensity that 

can be applied to different disaster types. Hence, different disaster types may lead to 

different behavioral responses among the public (Nozawa et al., 2008). 

 Spatiotemporal pattern: Most disasters are time-varying in coverage and/or have 

certain trajectories (including the location of occurrence), and manifest as 

spatiotemporal patterns in terms of how they evolve over time and impact the areas. 

This characteristic is important to define the evacuation areas and to determine the 

directions in which to evacuate the affected people. The spatiotemporal pattern 

provides information on the distances between the disaster frontier and the locations 

of the areas threatened by it. It enables projecting the level of danger to these areas. 

 Destruction to the network: To the system managers concerned with traffic 

management, disasters may reduce roadway capacity or cause link failure through 

physical destruction or obstruction (e.g. earthquake, inundation), limited visibility 

(e.g. smoke, heavy rain) or other risk factors (e.g. gale). Hence, the link conditions 

in the evacuation network must be monitored throughout the operational horizon. 

Doing so can also indicate opportunities for capacity recovery if/when the situation 
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permits. Further, the relevant information must also be disseminated to the public as 

part of the information provision strategies. 

 Level of predictability: The level of predictability refers to the degree to which the 

above-mentioned characteristics of disasters can be estimated in advance of an 

event. While uncertainty is generally embedded in disaster dynamics, some disasters 

are more predictable than others. For example, it may be possible to capture the 

characteristics of a hurricane using meteorological techniques before its landfall, 

while it is still considered difficult to predict the occurrence of a devastating 

earthquake using state-of-the-art techniques. Additionally, the quality of prediction 

may also vary. Thereby, the predictability of a disaster directly affects the ability to 

issue a timely warning and/or evacuation notice. 

For an evacuation problem, starting from the issuance of the evacuation notice, it 

is assumed that the dynamics of the disaster characteristics are available through other 

sources as inputs to the problem. 

Demand-side components 

Demand-side components refer to the individuals to be evacuated from the 

endangered areas upon the issuance of an evacuation notice. They manifest as the surging 

demand within a short period based on how individuals respond to environmental factors 

(from the disaster, supply-side and even the interactions among demand-side). It 

determines the traffic pattern in the evacuation network. The issue also highlights the 

significant complexity to the problem arising from the potential behavioral heterogeneity 

across individuals.  

Although a range of environmental factors may be considered by individuals 

under different evacuation situations, a previous study (Mawson, 2005) suggests that the 

dominant ones include perceived risk and seeking social attachment. Social attachment 

refers to familiar persons or places. In the evacuation context, the behavior of seeking 

social attachment is revealed in terms of concerns about household members. It has been 

observed that parents seek to go to their children’s locations first before leaving the 
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evacuation areas (Stern, 1989). Additionally, researchers have observed herding behavior 

from building evacuation and pedestrian flows (Mawson, 2005; Song 2005). Such a 

phenomenon is also a manifestation of social attachment in that people’s decisions affect 

each other. Most people tend to mimic others’ actions, due to the limited time for 

deliberation. In the current study, which considers evacuation operations from the 

perspective of traffic management, the information provided and/or recommendations 

may also affect individuals’ assessment of alternatives, and therefore, decision-making. 

The effects of these environmental factors depend on how each individual 

perceives and interprets the situation. Such perception and interpretation involve 

subjectivity based on personal attributes. Herein, preparedness is indicated as a central 

feature for individuals’ behavior under emergency (Tierney et al., 2001). It generally 

describes a behavioral basis of the public toward the overall process of disaster 

management, which broadly includes disaster prevention, relief, recovery, etc. In terms of 

the evacuation operation, an awareness of the hazard can influence the underlying 

behavior of an individual. Each individual’s awareness of the hazard is related to: (i) 

his/her prior experience with disasters and/or evacuations, (ii) education and training that 

he/she has received related to the disaster preparedness, and (iii) influence of information 

or news reports about disasters (Lindell and Prater, 2000). Individuals who are more 

aware of hazards are likely to be more vigilant and familiar with the evacuation 

operation, and hence, can more properly respond. Additionally, in the context of 

evacuation network management under information provision, individuals’ confidence in 

information and familiarity with the network are potential factors, as is an individual’s 

socioeconomic background. 

Supply-side components 

Supply-side consists of the components that physically provide capacity to 

evacuate the public from the endangered areas and enable the management to facilitate 

long-term or short-term evacuation operations. The details are discussed in terms of the 

transportation system, evacuation plan and operational strategy: 
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 Transportation system: It broadly includes all kinds of modes that can be utilized to 

move the public out of the endangered areas under a disaster situation. This study 

focuses on the vehicular traffic network, in which the configuration/geometrics of 

the roadway system determines the capacity of the evacuation network. 

 Evacuation plan: The evacuation plan is the long-term management strategy 

determined by analyzing likely events, which: (i) establishes pre-disaster schemes of 

traffic flow patterns that enable the fastest evacuation, (ii) identifies the potential 

bottlenecks and vulnerable infrastructure in the roadway system from the above 

schemes, and (iii) determines corresponding strategies to strengthen the identified 

critical bottlenecks of the network. Other than the roadway system, the evacuation 

plan can also include the operation of public transit and other evacuation fleets. 

Public transit may not be able to operate normally, and therefore a plan for extreme 

events is needed to serve low-mobility demand. For some institutions, such as 

schools and hospitals, pre-planned evacuation fleets can carry their members 

(students and patients) to places of safety. Such an arrangement can reduce the 

complexity of evacuation traffic, incurred by the aforementioned behavior of 

seeking social attachment in which evacuees rush to their family members before 

moving to designated safe places. 

 Operational strategy: In contrast to the evacuation plan, operational strategies are 

implemented to achieve the desired traffic flow patterns as well as to account for the 

actual conditions unfolding on a real-time basis. Contra-flow lanes and signal 

control modification are commonly adopted strategies to increase the throughput in 

the outbound directions. Information control strategies yield the same purpose from 

the perspective of demand management. Information provided by EMAs can be 

descriptive content about disaster and traffic conditions or prescriptive statements, 

which indicate when to depart, where to go and which route to take with different 

levels of mandate. The information strategies can be delivered through several kinds 

of channels; some are available for customized information, like on-board 

communications or cell phones, while most are accessible to the general public or to 
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the individuals at a certain location, like TV, broadcast and variable message signs 

(VMS). Hence, coordination between different dissemination channels is required 

for information consistency.  

2.2 Problem characteristics 

The characteristics of the evacuation problem are determined by the system 

components introduced in the last sub-section. The evacuation areas are identified 

according to the disaster’s trajectory, followed by the estimation of the demand from the 

evacuation areas and the corresponding vehicular network, and manifest in terms of the 

dynamics of evolution of system components. However, further discussion is needed to 

model behavior under no-notice mass evacuation. 

No-notice evacuation versus short-notice evacuation 

No-notice and short-notice evacuations differ primarily in terms of the disaster’s 

predictability of occurrence. While a no-notice evacuation needs to start immediately 

after the occurrence of such a disaster, the pre-evacuation warnings of short-notice 

disasters allow a lead-time (24-72 hours) before the disasters strikes. Such a lead-time 

represents the essential difference between no-notice and short-notice evacuations. From 

a demand-side perspective, with the lead-time, individuals may be able to better judge the 

severity of disaster impacts, analyze possible courses of actions, and then make decisions. 

By contrast, under no-notice disasters, individuals need to respond to the changing 

environment very quickly under a higher level of time pressure. 

Empirical studies (Kang et al., 2007) suggest that with a lead-time most 

individuals would go back to their house, get together with household members, and 

consider securing their houses or protecting property. However, this is impractical under 

no-notice evacuation, especially when the disaster is very severe and tremendous threat is 

perceived. Under such situations, individuals may just intend to get out of the impacted 

areas as soon as possible, but not deliberate on their trip planning (for example, to select a 

shelter in terms of houses of relatives/friends, hotels/motels or public shelters as trip 

destinations). Moreover, the circumstances make it less likely for individuals to make 



 

 

11 

precise plans. Instead, people may tend to adopt some simple rules with approximate 

judgment, under time pressure due to the emergency. 

Evacuation objectives 

Depending on the disaster situation, different objectives may be adopted for an 

evacuation operation, including: (i) to minimize network clearance time or to clear the 

network by some specified (feasible) time, (ii) to maximize the number of people exiting 

the evacuation areas, and (iii) to minimize the number of casualties or the exposure to the 

affected area or environment. Though different objectives may exist, their realization 

would involve the explicit consideration of congestion mitigation strategies (the 

operational strategies mentioned in the previous sub-section) that improve network 

efficiency to serve the sudden demand. 

Interactions between demand and supply 

As the disaster represents an uncontrollable environmental factor, individual 

behavior and the implementation of operational strategies depend on the how demand and 

supply respond to the actions by each side. As indicated in the last sub-section, 

individuals make decisions in response to the evolving environment, including supply-

side factors such as the estimated traffic conditions and the information provided (or 

recommendation). However, the dynamics of traffic flow pattern representing the 

collective outcome of individuals’ travel behavior are a complex factor affecting the 

determination of traffic management (supply-side) strategies. This interplay leads to the 

evacuation operation being an adaptive process. A model may be unrealistic if it does not 

carefully capture the processes associated with these interactions. 

Individuals’ perspectives versus system managers’ perspectives 

In addition to the interactions between demand and supply, another issue arises 

from the discrepancy in the problem interpretation from different perspectives. From 

individuals’ perspective, each individual perceives the environment and responds based 

on his/her own behavioral considerations, which can be different across the population. 

However, from a system manager’s perspective, it is difficult to track each individual’s 
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behavior. Instead, it may be possible to observe the dynamics of demand-side 

components at an aggregate level, for example, through the traffic counts on certain links. 

Further, while it may be desirable to have personalized information guidance for each 

individual, for practical deployment it is more realistic to approach the problem within a 

macroscopic framework due to data availability considerations, whereby individual 

behavior is aggregated at the level of TAZs.  

Accordingly, the heterogeneity across the individuals is an issue to be addressed. 

Further, the boundaries of TAZs need to be pre-planned based on data availability, 

population size, and network configuration. In this context, the TAZs used for standard 

transportation planning may be good candidates, with some potential adjustments. 

2.3 Research scope and framework 

By focusing on the integration of demand-supply management with information 

guidance as control strategies for evacuation operations, Figure 2.1 conceptually shows 

the framework for this study, where the behavior-based information control system 

incorporates individuals’ likely responses when determining information strategies using 

the control model. In the control system, information strategies are derived based on: (i) 

the observed evacuation flow pattern via a monitoring system, (ii) disaster information 

obtained from the relevant external sources, and (iii) the estimated response of the 

affected population. The iterative computation between the behavior model and the 

control model is processed to generate control output, which directs traffic flows to the 

controller-desired pattern. Compared to conventional evacuation models, which assume 

full compliance of individuals to the optimal assignment, the proposed procedure better 

represents the real-world behavior while capturing the interplay between demand and 

supply. This study focuses on the behavior model (the gray box located in Figure 2.1) 

which aims to predict the aggregate behavior of TAZs based on the evolving conditions. 

Figure 2.2 further illustrates the research scope related to the demand 

management under no-notice evacuation. The total evacuation demand includes: (i) the 

affected population that has not yet joined the vehicular traffic, and (ii) the background 

traffic in each TAZ under the disaster. Two models are proposed to address the 
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behavioral aspects of evacuation: the model for evacuation participation decision and the 

model for evacuation route choice. The first predicts the decisions of individuals who 

have not yet joined the evacuating traffic in each zone. The second estimates the 

distribution of vehicular flows to the set of the evacuation paths, thereby describing the 

traffic flow pattern in the evacuation network. Hence, these two behavior models capture 

the aggregate emergent behavior of the people in the TAZ under the information 

provision strategies and the unfolding environment they perceive. 
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Figure 2.1. Conceptual framework of information control for evacuation operations 
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Figure 2.2. Flowchart of the aggregate behavior model in a no-notice evacuation 
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CHAPTER 3.  METHODOLOGY 

The modeling of the behavior of evacuation participation and route choice at an 

aggregate level, based on the problem characteristics discussed in the previous chapter, 

must accommodate the following considerations: 

(i) Key factors, such as perception of risk, that involve subjective interpretation 

rather than objective assessments and/or observable measurements. 

(ii) During the evacuation process, the information about disaster, traffic conditions 

and other important issues that may entail linguistic description; for example, “the 

disaster is severe” or “may be seriously congested”, rather than numerical 

measurements. 

(iii) At an aggregate level, the perception of environmental factors may vary across 

individuals in a TAZ based on personal attributes, which highlights the issue of 

heterogeneity for model consistency. 

The proposed model adopts discrete choice theory, which is commonly employed 

in modeling choice behavior. However, to address the above issues, fuzzy set theory is 

further incorporated into the model within the structure of the mixed logit model. The 

methodological justification is detailed in the following sub-sections. 

3.1 Randomness and fuzziness 

While choice behavior under uncertainty is embedded with randomness, the 

issues (i) and (ii) induce the issue of fuzziness to the problem, especially under the threat 

from disasters and time pressure issues. As discussed in Chapter 2, though precise 

measurements on the intensity of the disaster may be available, they may not mean a lot 
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to an individual who is not familiar with the disaster. Instead, other information, such as 

reported casualties or damage, can more directly enable his/her perception, which is more 

a qualitative or subjective interpretation than quantitative evaluation. 

Traditionally, probabilistic choice model is adopted in discrete choice theory. 

However, compared to probabilistic modeling approaches that capture behavior 

randomness through well-defined probabilistic distributions over measurements or 

categories, fuzzy set theory can better address the judgments associated with linguistic 

expressions or qualitative data. For example, qualitative data are generally modeled using 

categorical variables to indicate the states of the attribute with clear boundaries in 

probabilistic approaches. But, an individual’s perception of risk may lack a clear 

boundary between “risky” and “not risky”. In contrast to the conventional Boolean logic 

with values just for “true” and “false”, fuzzy set theory introduces membership functions 

that allow partial belonging of a variable by assigning it a value between 0 and 1. The 

value, termed as fuzzy value, indicates the degree of evidence that the variable belongs to 

a set of an attribute’s state; for example, how much degree the environment or certain 

information about a disaster is perceived by an individual as “risky” or “not risky”. The 

fuzzy logic approach provides another advantage of modeling such fuzzy variables by 

using if-then rules for evacuation situations. Under evacuation operations, individuals are 

more likely to make decisions based on some simple and straightforward rules, because 

the time to process information and assess alternatives is limited. Therefore, a fuzzy rule-

based framework can better capture evacuation behavior. To obtain values for such fuzzy 

variables, Peeta and Yu (2002) provided a comprehensive review and description to 

quantify linguistic expressions or qualitative data. Further, a hybrid choice model 

proposed by Peeta and Yu (2004) is adopted to accommodate both fuzzy variables and 

probabilistic variables simultaneously if both are involved. 

3.2 Mixed logit model 

In the proposed aggregate model, each TAZ is treated as an individual. That is, 

the probability of selecting a certain alternative as aggregate behavior for a TAZ is 

considered as the proportion of the individuals in the TAZ who select the alternative. To 



 

 

18 

address the issue  (iii) above, in most of discrete choice models, heterogeneity among 

population is represented by including socioeconomic or other personal attributes as 

variables in utility functions. But when such individual-level data are unavailable, a 

mixed logit model provides a convenient structure to accommodate heterogeneity in an 

aggregate discrete choice model. A mixed logit model allows random parameters and is 

defined as any model whose choice probabilities for decision maker n to choose 

alternative i can be expressed in the form (Train, 2003): 
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 is the choice probability evaluated at parameters   using a 

standard logit model, and ( )niV   is the systematic component of the utility function of 

alternative i to decision maker n. 

In contrast to the standard logit model,   does not consist of constant values, but 

is distributed over a certain attribute  , where ( | )f    is the density function, also 

termed as mixing distribution. With this structure, the mixed logit probability can be 

viewed as a weighted average of the regular logit formula evaluated at different  , and 

the weights are given by the density function. The integration procedure can also be 

treated as the aggregation of individual decisions to a zonal level. 

The parameters   can be interpreted as a decision maker’s tastes on 

corresponding variables. A higher absolute value of a parameter implies higher 

importance of the corresponding variable to the decision maker. In a standard logit 

model, the results of estimation indicate average effects of the variables to the sampled 

individuals, while the structure of a mixed logit model enables the estimation with   

(tastes) varying across individuals with different values of attribute  , which can be 

treated as heterogeneity at a disaggregate level. In addition, unlike a probit model that 



 

 

19 

also allows random parameters but is limited to normal distributions, the mixing 

distribution of a mixed logit model can be in a variety of forms, both discrete and 

continuous. 

Besides allowing for random taste variation, a mixed logit model represents the 

most generalized structure of overcoming the problems of correlation in unobserved 

factors and restricted substitution patterns, compared to a standard logit model or other 

extended models from the logit family. The issue of correlation generally exists in multi-

choice problems. For modeling route choice behavior, the correlation between routes, 

which is assumed non-existent in regular logit models, could be significant in producing 

estimation bias if not accounted for. For choosing evacuation routes, such correlation 

might result from common links between routes, the same level of perceived risk or 

familiarity across different routes, and other unobserved factors. The adoption of a mixed 

logit model can avoid this dependency problem, while retaining the computational 

simplicity of the logit form. 
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CHAPTER 4.  MODEL SPECIFICATION 

For an efficient evacuation operation, this study assumes that there is a pre-

disaster plan that requires certain institutions, such as schools and hospitals, to take the 

responsibility of evacuating their members (students and patients) to places of safety by 

pre-organized evacuation fleets. For operational clarity, the plan must be known to the 

families of children and/or other members in the associated institutions, and should not 

allow separate pick ups on the institutional premises. Otherwise, the traffic pattern 

induced from such trips to pick up family members can be complex and reduce 

operational control by the system operators. In this study, it is assumed that such “pick-

up” trips are eliminated by the pre-disaster plan, and that the concern for family 

members’ safety is not an attribute of the choice model. 

Individual behavior under the context of evacuation problem can be viewed as a 

hierarchical one. First, an individual makes the decision whether to evacuate at a certain 

time stage or not (that is, to postpone the decision to evacuate to a future time stage). The 

decision at this level primarily depends on: 

(i) perceived risk, which is derived from the information about the disaster. 

(ii) recommendation or order to evacuate (or not to evacuate) at the current time  

stage from the EMA. 

(iii) herding behavior (or peer effect), which is observed in that people tend to 

follow the decisions of others. 

(iv) state dependence, which is due to non-evacuation decisions in previous time 

stages, from the perspective of evacuation operation. That is, if an individual 
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does not evacuate in the last time stage, his/her decision to evacuate or not in 

the current time stage will be affected by his/her previous decision. It is also 

assumed that as the number of non-evacuation decisions increase, there is 

more pressure on an individual to make a decision to evacuate in this time 

stage. 

In this study, we assume that disaster information (related to (i)) and 

recommendation (related to (ii)) are available to each individual through various channels 

such as TV, radio broadcast, the Internet, etc. For all individuals in a certain TAZ, the 

information and recommendation from different channels should be consistent with each 

other. For herding behavior (as mentioned in (iii)) and state dependence (identified in 

(iv)), proxy variables are employed to capture their aggregate effects. In the proposed 

model, the number of people who have already participated in evacuation is the proxy 

variable for herding behavior. Also, the number of time stages since receiving the 

evacuation order (which implies the number of non-evacuation decisions made by the 

individuals who have not evacuated until this time stage) is the proxy variable for state 

dependence. 

If an individual decides to evacuate (representing the first level decision), then 

he/she is considered as making a decision to enter the evacuation network. At this point, 

the individual needs to make a decision at the second level, that is, which route to 

evacuate on. The problem at this level is somewhat similar to the route choice under 

normal traffic, where traffic conditions typically represent the primary focus. However, 

under no-notice evacuation, we further assume that people first tend to seek a safe area as 

soon as possible, and then travel to their final destinations (home, or to get together with 

family members) later. Accordingly, in our problem modeling, an individual does not 

deliberate on the destination of the evacuation trip, but selects a route from among 

several routes which lead him/her to the nearest safe places. In this context, the key 

variables influencing the decision at the second level include: 

(i) estimated travel time from the information available on traffic conditions. 
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(ii) perceived risk on the route based on the disaster’s potential impacts or the 

possibility of link failure. 

(iii) recommendation or guidance from the EMA about the route to take. 

(iv) freeway bias, which has been observed from previous stated preference 

surveys (Chiu and  Mirchandani, 2008) that indicate that the route through 

freeway is considered more reliable and preferred, though the reported travel 

time on the route is more than that on other arterials. Freeway bias is 

defined as the proportion of the length on freeway to the total length of the 

route. 

Evacuation Participation (Decision) Model 

This aggregate binary choice model at the level of a TAZ seeks to predict the 

evacuation decision (to evacuate (1) or not (0)) of the individuals who have not evacuated 

in a certain zone. The output of the model is the proportions of the individuals who 

decide to evacuate (and not to evacuate). A discrete choice model is used with “not to 

evacuate” as the base alternative for a TAZ n at a time stage t (in the following 

expression, for notational simplicity we omit the subscript t in the utility functions and 

variables). The systematic utility of the alternative, “to evacuate”, is: 

1 2 3 4( ) ( ) ( ) ( )n n n n n nV R M H S                                                   (2) 

where n  is the alternative specific constant, and ( )i   is the random coefficient of the 

corresponding variable whose values are conditioned on the distribution of some 

underlying attribute of the population,  . nR , nM  and nH  are the fuzzy values to 

represent the perceived risk, the effect of recommendation from the EMA, and the effect 

from other people’s actions, respectively. For the zone n, nS  is the number of time stages 

since receiving the evacuation order. Using the structure of the mixed logit model, the 

estimation result determines the probabilities that the individuals in TAZ n decide to 

evacuate, nP . Aggregating, the number of evacuees loaded to the network at certain time 

stage is the number of people who have not evacuated multiplied by nP . The values of 
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nR , nM , nH  are determined using the corresponding IF-THEN rules in Table 4.1, 

and the approach provided by Peeta and Yu (2002) to quantify the qualitative data. 

Evacuation Route Choice Model 

This model determines the route choice decisions of individuals in the vehicular 

traffic in the evacuation area, including en-route vehicles and those who just made the 

decision to evacuate and need to choose an evacuation route from the zone where they 

are located. The model output is the proportion of traffic in a certain TAZ assigned to 

routes to evacuate. Only likely routes to the nearest locations of safety are considered as 

the set of alternatives for the vehicles in a certain TAZ. The systematic utilities are 

represented as follows, except that no alternative-specific constant is specified for one 

alternative: 

1 2 4 4( ) ( ) ( ) ( )nk nk nk nk nk nkV T L F G                                                        (3) 

Akin to the evacuation participation model, nk  is the alternative specific constant, and 

( )j   is the random coefficient of the corresponding variable, which is conditioned on 

the distribution   of the attribute of the heterogeneous vehicular flows in the zone. nkT , 

nkL , nkF  and nkG  are fuzzy variables, which represent estimated travel time and/or delay 

on route k, perceived risk on the links of route k, freeway bias, and the effect from the 

recommendation or guidance that suggests drivers to take route k. As in the evacuation 

participation model, the corresponding IF-THEN rules in Table 4.1. are employed to 

determine the values of nkT , nkL , nkF  and nkG . 
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Table 4.1. Fuzzy IF-THEN rules 

 
Attribute LHS RHS 

Evacuation Participation (Decision) Model 

Perceived risk to 
TAZ 

If minor damage is reported 
If some damage is reported 
If serious damage is reported 

He/she will perceive less risk 
He/she will perceive some risk 
He/she will perceive high risk 

If the TAZ is reported not to be struck 
If the TAZ is reported likely to be struck 
If the TAZ is reported very likely to be struck 

He/she will perceive less risk 
He/she will perceive some risk 
He/she will perceive high risk 

If the disaster’s frontier is distant from the route 
If the disaster’s frontier is close to the route 

He/she will perceive less risk 
He/she will perceive high risk 

Recommendation to 
evacuate 

If the recommendation to stay is mandatory 
If the recommendation to stay is voluntary 
If no specific recommendation 
If the recommendation to evacuate is voluntary 
If the recommendation to evacuate is mandatory 

He/she will stay 
He/she will probably stay 
He/she will be neutral 
He/she will probably evacuate 
He/she will evacuate 

Herding behavior 
If most individuals have not evacuated 
If about half of the individuals have evacuated 
If most of the individuals have evacuated 

He/she will stay 
He/she will be neutral 
He/she will evacuate 

Evacuation Route Choice Model 

Estimated delay on 
route 

If the route is reported as having no congestion 
If the route is reported congested 
If the route is reported seriously congested 

He/she will expect no delay 
He/she will expect some delay 
He/she will expect serious delay 

Perceived risk to 
route 

If the disaster’s frontier is distant from the route 
If the disaster’s frontier is close to the route 

He/she will perceive low risk on the route 
He/she will perceive high risk on the route 

Freeway bias 
If most links on the route are freeway links 
If some of the links of the route are freeway links 
If few of the links on the route are freeway links 

He/she will prefer the route 
He/she will be neutral 
He/she will not prefer the route 

Recommendation on 
evacuation route 

If the recommendation not to take the route is mandatory 
If the recommendation not to take the route is voluntary 
If no specific recommendation 
If the recommendation to take the route is mandatory 
If the recommendation to take the route is voluntary 

He/she will not take the route 
He/she will probably not take the route 
He/she will be neutral 
He/she will probably take the route 
He/she will take the route 
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CHAPTER 5.  NUMERICAL EXPERIMENTS 

5.1 Experimental setup 

In the absence of field data for no-notice evacuation, simulation experiments are 

conducted using the scenario of a terrorist attack in a populated area. The proposed 

choice models are tested with the data from the simulation experiments to analyze if the 

models can robustly interpret the observed traffic in an aggregate context from a 

behavioral perspective. The simulation is performed using a mesoscopic vehicular 

network traffic simulator, DYNASMART. The details of experimental setup are 

described hereafter. 

Study Network 

The simulation experiments are conducted using the Indianapolis downtown area 

network to illustrate the prediction capability of the proposed models. The study 

(evacuation) network is shown as Figure 5.1 (the circled area on the left-hand side). The 

right-hand side of Figure 5.1 is the simplified network for simulation, which has 298 

nodes, 972 links, and 24 TAZs. It is assumed that a terrorist attack occurs in the 

Indianapolis downtown area as indicated in the figure. A 90-min evacuation operation is 

conducted with 10 minutes for each of the 9 time stages, and with 24,000 vehicles to be 

evacuated and 6,000 vehicles as background traffic. 

Data Generation: Individual Behavior 

The purpose of the simulation experiments is to test the ability of the proposed 

models to capture individual behavior under available data. The data are generated using 

assumptions on the choice behavior structure of individuals related to evacuation 

participation and route choice. It is important to note that the assumed behavior structure 
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is not known to the proposed models, while the input to the models are only the 

observable and controllable data available to the system managers; for example, link flow 

volume, and disaster and traffic information.  

Individuals’ behavior is assumed to be based on the variables discussed in the 

previous chapter: perceived risk, estimated travel time, peer effect, freeway bias, and 

recommendation. As these are fuzzy variables, values between 0 and 1 are assigned to 

them. However, to incorporate the heterogeneity across the population, each individual is 

assigned a value for each variable based on a range, which implies that individuals have 

different interpretation and/or perception under similar situations.  

In terms of the decision-making process to generate synthetic behavior data, it is 

assumed that each individual makes decisions using a dominant variable with some pre-

defined criterion at the first level. If decisions cannot be determined accordingly, the 

utility of the alternative as a linear combination of all the considered variables will then 

be compared to generate a decision at the second level. For the evacuation participation 

decision, perceived risk, peer effect and the effect of recommendation by EMA are 

considered the dominant variables for different classes of individuals. Then, for instance, 

in the class where perceived risk is the dominant variable, individuals’ choices are 

generated by comparing the assigned value of perceived risk with the decision criterion. 

In the experiment, we set an indifference band between 0.25 and 0.75. If the value of 

perceived risk is higher than the threshold 0.75, the individual will choose to evacuate. If 

the value is less than 0.25, then the individual will not evacuate. If the value falls within 

the indifference band, then the computation of utility using all variables is needed to 

determine this individual’s decision. The same procedure is applied for other classes, 

which consider peer effect or the effect of recommendation as the dominant variable. For 

the evacuation route choice, a similar two-level decision mechanism is used with 

estimated travel time, freeway bias and route guidance from EMA as the dominant 

variables for different behavioral classes. This mechanism of choice process highlights 

the possibility that individuals may use some simple rules with different key factors for 

decision-making. The behavioral difference accounts for the heterogeneity across the 
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population due to some unobservable individual attributes in an aggregate context, such 

as socioeconomic background, past experience with disasters, confidence in disaster 

response plan, familiarity with the network, etc.  

5.2 Analysis of results 

For the study network, a scenario representing a terrorist attack is considered as 

shown in Figure 5.2. The models are tested for two selected TAZs, zone A and zone B, as 

indicated. One zone includes the location of the attack and the other is about half-way 

from the attack location to the safe areas. 

The proposed models are analyzed in terms of their prediction capability of 

evacuation participation and route choice decisions in each time stage. The software 

Limdep 9.0 is employed to estimate the mixed logit models. The data were sub-divided 

for analysis and testing. 80% of the synthetically generated observations were used for 

model estimation, and the remaining 20% were used for model validation. The analysis 

determines the prediction error as shown in Figure 5.3, where the prediction error is 

calculated as the average of the difference between the predicted and observed choices 

across all alternatives. The results are shown for only some of the time stages for zone A, 

as most vehicles have evacuated or left the zone by the later time stages.  

Figure 5.3 indicates that the prediction errors for both models range from between 

15% to 30%. Another trend is that the prediction error tends to increase with the time 

stage. This may be due to the number of observations available for estimation. With the 

time stage moving forward, more individuals evacuate out of the zone, and the people 

who have not participated in evacuation are fewer. Hence, fewer observations for model 

estimation may degrade the prediction capability of the models. 

Sensitivity Analysis 

The simulation experiments further conduct sensitivity analyses related to demand 

levels and the amount of background traffic. Different demands levels and background 

traffic levels are considered as such conditions may arise with time-of-day for urban 

traffic. For instance, if the disaster occurs during the morning peak hours, commuters 
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may not yet reach their work place; then,  more vehicles form the background traffic. The 

network clearance time, defined as the time required from the start of the evacuation 

operation to the time that the last vehicle leaves the evacuation area, is used to analyze 

the sensitivity to demand and background traffic levels. The results are illustrated in 

Figure 5.4. 

As shown in Figure 5.4, the network clearance time increases with the demand 

level as well as with the background traffic. While demand levels increase clearance time 

as expected, the effect of the background traffic can be explained in that more initial 

traffic volume in the network tends to create congestion at early stages of the evacuation 

operation itself and therefore induces longer time to clear the network.  

Tables 5.1 and Table 5.2 show the model prediction capabilities relative to the 

demand and background traffic levels for zone A. For each demand level, it can be seen 

that the prediction error tends to increase with the time stage. The sensitivity analysis for 

background traffic ratio indicates that the prediction error of evacuation participation 

model increases with the background traffic ratio, while that of the route choice model 

shows the opposite trend. This is also related to the number of available observations, 

which suggests that the prediction capability of the models depend on the availability of 

data. 
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Figure 5.1. Study Network 
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Figure 5.2. The location of terrorist attack and the TAZs for model testing 
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Figure 5.3. Prediction capability of the proposed models 
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Figure 5.4. Sensitivity analysis of network clearance time with respect to demand level 

and background traffic ratio 
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Table 5.1. Sensitivity analysis (prediction error) for demand level 

 

Demand 
Level 

Model 
Prediction Error (%) for Time Stages 

1 2 3 4 5 6 7 8 9 

20K 
Participation 19.86 21.60 24.77 28.14 -- -- -- -- -- 

Route 22.61 24.50 24.18 26.03 -- -- -- -- -- 

25K 
Participation 17.25 22.43 23.62 27.32 27.11 -- -- -- -- 

Route 22.54 23.65 23.81 25.16 26.67 27.58 -- -- -- 

30K 
Participation 16.36 22.13 19.25 24.73 26.32 -- -- -- -- 

Route 21.76 22.53 20.35 26.71 25.94 28.47 -- -- -- 

35K 
Participation 16.27 18.71 19.40 21.33 21.15 23.84 26.80 29.07 -- 

Route 18.54 19.23 20.72 22.00 22.86 24.53 26.64 27.43 28.06 

40K 
Participation 15.84 19.43 19.08 21.56 23.70 25.91 26.75 29.02 30.13 

Route 18.70 18.96 20.07 20.84 21.85 24.62 25.59 27.40 29.63 
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Table 5.2. Sensitivity analysis (prediction error) for background traffic ratio 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Background 
Traffic Ratio 

Model 
Prediction Error (%) for Time Stages 

1 2 3 4 5 6 

10% 
Participation 15.64 19.33 20.26 24.55 27.16 28.91 

Route 21.28 23.41 21.69 26.59 27.08 28.21 

20% 
Participation 16.36 22.13 19.25 24.73 26.32 -- 

Route 21.76 22.53 20.35 26.71 25.94 28.47 

30% 
Participation 16.43 23.52 22.61 25.12 27.37 -- 

Route 18.56 20.88 19.92 24.63 25.57 27.81 

40% 
Participation 18.24 21.58 22.09 23.56 26.78 -- 

Route 18.32 19.07 20.85 22.36 27.33 28.40 

50% 
Participation 19.53 22.85 23.54 27.62 28.13 -- 

Route 18.38 19.03 22.45 24.17 24.97 26.44 

60% 
Participation 21.27 24.89 24.77 27.41 -- -- 

Route 16.76 20.34 23.57 25.12 27.14 -- 
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CHAPTER 6.  CONCLUSIONS 

6.1 Summary 

The long-term objective of this research is to address the mass evacuation 

problem from both demand and supply perspectives and capture the interactions between 

them, so as to develop an integrated management strategy for disaster-related mass 

evacuation. This study represents an intermediate step that focuses on the demand-side 

behavior aspects under no-notice evacuation, which has been addressed sparsely in the 

literature. The research contributions include: 

1. This study reviews the characteristics of the mass evacuation problem from the 

viewpoints of disaster, demand and supply. Based on the problem characteristics, 

discrete choice models are developed by incorporating a fuzzy logic approach into the 

structure of mixed logit models to account for: (i) individuals’ subjective 

interpretation and perception under time pressure, and (ii) the heterogeneity across the 

individuals in an aggregate manner. 

2. Simulation experiments are conducted to test the prediction capability of the proposed 

models. The results indicate the ability of the models to interpret the evacuation 

behavior from observable variables at an aggregate level. The results also suggest that 

the number of observations for estimation is a key factor for the model prediction 

robustness. 
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6.2 Future research directions 

In the context of real-world deployment, this study proposes aggregate behavior 

models based on data availability. However, the need for insights on human behavior 

under different kinds of disaster situations necessitates field surveys at a disaggregate 

(individual) level. Additionally, in the absence of field data, most studies on the modeling 

of mass evacuation rely on simulation, resulting in trade-offs in terms of realism. Hence, 

future research that develops robust behavior models at the individual level can be used 

to strengthen the behavior modeling components within a simulation framework. Based 

on the choice models proposed in this study, the next step in the research would be on 

constructing a behavior-based control model to develop more efficient evacuation 

strategies for EMAs to manage the system effectively from  the supply side. 
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