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ABSTRACT 

 
Anticipating changes to public transportation ridership demand is important to planning for and 
meeting service goals and maintaining system viability. These changes may occur in the short- or 
long-term; extensive academic work has focused on bettering long-term forecasting procedures 
while improvements to short-term forecasting techniques have not received significant academic 
attention. This dissertation combines traditional forecasting approaches with multivariate 
regression to develop a transferable short-term public transportation ridership forecasting model 
that incorporates fuel price as a prediction parameter. The research herein addresses 254 US 
transit systems from bus, light rail, heavy rail, and commuter rail modes, and uses 
complementary methods to account for seasonal and non-seasonal ridership fluctuations. Models 
were built and calibrated using monthly data from 2002 to 2007 and validated using a six-month 
dataset from early 2008. Using variable transformations, classical data decomposition techniques, 
multivariate regression, and a variety of forecasting model validation measures, this work 
establishes a benchmark for future research into transferable transit ridership forecasting model 
improvements that may aid public transportation system planners in an era when, due to fuel 
price concerns, global warming and green initiatives, and other impetuses, transit use is seeing a 
resurgence in popularity. 
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EXECUTIVE SUMMARY 

 
 
Currently, most public transportation agencies use tools developed either in-house or by their 
metropolitan planning organization, while in smaller communities, techniques such as sketch 
planning are still employed. The subject of ridership forecasting and its transferability has not, to 
date, received widespread academic attention, and therefore formalized methodologies are 
lacking. 
 
This research attempts to fill the academic and technical void by developing a transferable 
methodology for transit planners to create system-specific short-term ridership forecasts, so that 
the needs of potential transit passengers can be anticipated and met quickly. Rapid response to 
new ridership aids in the ability to provide a pleasant travel experience for new and existing 
passengers; trip makers tentatively trying public transportation as an alternative are unlikely to 
continue using it if transit vehicles are late or uncomfortably crowded, both of which situations 
might be avoided if ridership can be forecast accurately. 
 
In addition to providing a methodology for system-specific forecasts, this work establishes 
region- and mode-specific forecasting procedures. Models were developed by combining 
traditional forecasting techniques with multivariate regression to allow for greater explanatory 
power, localized calibration, and national applicability.  
 
The short-term ridership forecasting model created here starts by assembling ridership and other 
data types for 254 US transit systems during the 2002-2007 period, transforming the dependent 
ridership variable to attain stability, and seasonally decomposing the ridership time series 
datasets to establish seasonal models and derive non-seasonal ridership components for each 
system. Using multivariate regression, encompassing a variety of internal and external factors, 
these non-seasonal components are then dissected to ascertain the non-seasonal relationships 
between ridership and the independent parameters, including, among others, fuel price. 
 
After establishing the seasonal models for each system, as well as non-seasonal regression 
models on system-, region-, and mode-specific bases, the seasonal and non-seasonal models are 
combined to form a composite model, which, on average, explains roughly 70 percent of 
ridership variability across the entire evaluation set of 254 transit systems. The model is then 
validated using data from the first six months of 2008.  
 
Most transit agencies establish their own forecasting methods in-house or through cooperation 
with their local metropolitan planning organization. This research combines established 
forecasting methodologies, such as data decomposition, with more advanced multivariate 
regression in a complementary manner that leads to robust prediction abilities. By calibrating and 
examining each individual system within the evaluation set, the model is transferable, and 
comparisons can be made across systems, regions, and modes, which, in the absence of such 
disaggregate model-building, cannot otherwise be accomplished.  



 

viii 
 

 

 



 

ix 
 

 

Table of Contents 
 
 

Chapter 1: Introduction ............................................................................................................. 1  

Chapter 2: Fuel Price Impacts on Transportation, 1970’s – Present .................................... 5   

 2.1: Introduction ............................................................................................................... 5  

 2.2: The Oil Crises of 1973 and 1979 and Their Effects .................................................. 6  

 2.3: Research Generated in the Mid-1980’s through the 1990’s .................................... 13  

 2.4: Focus on Fuel Prices in the New Century ............................................................... 15  

 2.5: Summary.................................................................................................................. 19  

Chapter 3: Ridership Forecasting Techniques and Needs.................................................... 21  

 3.1: Introduction ............................................................................................................. 21  

 3.2: TCRP Synthesis 66: Fixed-Route Transit Ridership Forecasting 

        and Service Planning Methods ................................................................................ 21  

 3.3: Short-term Forecasts versus Long-term Forecasts .................................................. 22  

 3.4: Factors Contributing to Transit Ridership ............................................................... 25  

 3.5: Short-term Forecasting Techniques and Applications ............................................ 26 

 3.6: Summary.................................................................................................................. 28  

Chapter 4: The Impact of Rising Fuel Prices on US Transit Ridership .............................. 29  

 4.1: Introduction ............................................................................................................. 29  

 4.2: Cities Investigated ................................................................................................... 30  

 4.3: Background.............................................................................................................. 30  

 4.4: Methodology and Results ........................................................................................ 32  

 4.5: Conclusions ............................................................................................................. 46  

Chapter 5: Data Used in Ridership Modeling and Issues in Time-Series Analysis ............ 47  

 5.1: Overview ................................................................................................................. 47 

 5.2: Data Sources ............................................................................................................ 47 

 5.3: Resolving Statistical Issues in Ridership Data ........................................................ 51 

 5.4: Summary.................................................................................................................. 56 

Chapter 6: Dealing with Seasonality in Ridership Data ....................................................... 57 

 6.1: Overview: Adjusting for Seasonal Variations ......................................................... 57 

 6.2: Seasonal Decomposition ......................................................................................... 59 



 

x 
 

 

 6.3: Methods Used .......................................................................................................... 59 

 6.4: Method Selected: Additive Decomposition on PDLOGUPT .................................. 61 

 6.5: Summary.................................................................................................................. 67 

Chapter 7: Examining Non-Seasonal Variability .................................................................. 69 

 7.1: Overview ................................................................................................................. 69 

 7.2: Multiple Regression on Decomposition Error Terms ............................................. 69 

 7.3: Variables Incorporated into Regression Model ....................................................... 69 

 7.4: Additional Variability Explained by Regression ..................................................... 71 

 7.5: Regional Differences in Regression Coefficients for Bus Systems ........................ 74 

 7.6: Differences in Regression Coefficients across Modes ............................................ 90 

 7.7: Generalized Regression Equations .......................................................................... 96 

 7.8: Sensitivity Analysis ............................................................................................... 100 

 7.9: Summary................................................................................................................ 101 

Chapter 8: Composite Ridership Forecasting Model .......................................................... 103 

 8.1: Overview ............................................................................................................... 103 

 8.2: Variability Explained by Composite Model .......................................................... 103 

 8.3: Final Composite Model Form ............................................................................... 106  

 8.4: Summary................................................................................................................ 107 

Chapter 9: Model Validation ................................................................................................. 109  

 9.1: Overview ............................................................................................................... 109  

 9.2: Forecasting STC Values ........................................................................................ 109  

 9.3: Accuracy Measures Applied to Forecasts ............................................................. 110  

 9.4: Performance: Single-Month Projections ............................................................... 111  

 9.5: Performance: Multi-Month Projections ................................................................. 115  

 9.6: Summary................................................................................................................ 120  

Chapter 10: Conclusions and Future Work ......................................................................... 121 

 10.1: Review ................................................................................................................. 121 

 10.2: Contributions ....................................................................................................... 123 

 10.3: Future Work......................................................................................................... 123 

 10.4: Summary.............................................................................................................. 124 

References ................................................................................................................................ 125 



 

xi 
 

 

List of Figures 
 
 

Figure 2.1: US National Monthly Gasoline Price per Gallon, August 1990 – March 2009 ......... 5 

Figure 2.2: US National Weekly Gasoline Price per Gallon, January 2004 – April 2009 ......... 16 

Figure 4.1: Seasonal Fluctuations from Average in Transit Ridership (1992-2001) ................. 31 

Figure 4.2: US National Monthly Gasoline Price per Gallon, August 1990 – March 2009 ....... 32 

Figure 4.3 (a-e): 12-Month Moving Average Trend, MB Mode, (a) Atlanta, (b) Dallas,  

 (c) Los Angeles, (d) San Francisco, (e) Washington, DC ........................................ 34 

Figure 4.5 (a-b): 12-Month Moving Average Trend, LR Mode, (a) Dallas, (b) Los Angeles ... 35 

Figure 4.4 (a-d): 12-Month Moving Average Trend, HR Mode, (a) Atlanta,   

 (b) Los Angeles, (c) San Francisco, (d) Washington, DC ........................................ 36 

Figure 4.6 (a-d): 12-Month Moving Average Trend, CRP Mode, (a) Dallas,   

 (b) Los Angeles, (c) San Francisco, (d) Washington, DC ........................................ 37 

Figure 4.7: Seasonal Index Difference from 100%; All Modes, All Cities ................................ 38 

Figure 4.8 (a-b): Ridership and Fuel Price, (a) Dallas MB, (b) DC HR ..................................... 40 

Figure 4.9: Spectra of (a) Accessibility/Flexibility and (b) Reliability for Selected Modes ...... 44 

Figure 5.1: Time Series of Unlinked Passenger Trips (UPT), MB 5158 DO............................. 53 

Figure 5.2: Transformed Time Series of PDLOGUPT, MB 5158 DO ....................................... 54 

Figure 5.3: National Distribution of Evaluated Public Transportation Systems ........................ 55 

Figure 6.1: Autocorrelation Function of UPT Series for System MB 6048 DO ........................ 58  

Figure 6.2: Autocorrelation Function for Transformed PDLOGUPT Series  

 for System MB 6048 DO .......................................................................................... 58 

Figure 6.3: Autocorrelation Function for Seasonally-Adjusted Series  

 for System MB 6048 DO .......................................................................................... 63 

Figure 6.4: Histogram of Seasonal R2 Values, Bus Systems ...................................................... 65 

Figure 6.5: Histogram of Seasonal R2 Values, Light Rail Systems ............................................ 65 

Figure 6.6: Histogram of Seasonal R2 Values, Heavy Rail Systems .......................................... 66 

Figure 6.7: Histogram of Seasonal R2 Values, Commuter Rail Systems ................................... 66 

Figure 7.1: Histogram of Regression-Derived Adjusted R2 Values for Bus Systems ................ 72 

Figure 7.2: Histogram of Regression-Derived Adjusted R2 Values for Light Rail Systems ...... 73 

Figure 7.3: Histogram of Regression-Derived Adjusted R2 Values for Heavy Rail Systems .... 73 



 

xii 
 

 

Figure 7.4: Histogram of Regression-Derived Adjusted R2 Values for  

 Commuter Rail Systems ................................................................................................. 74 

Figure 7.5: Availability of E85 Fueling Stations ........................................................................ 84 

Figure 8.1: Histogram of Composite R2 Values for Bus Systems ............................................ 104 

Figure 8.2: Histogram of Composite R2 Values for Light Rail Systems .................................. 105 

Figure 8.3: Histogram of Composite R2 Values for Heavy Rail Systems ................................ 105 

Figure 8.4: Histogram of Composite R2 Values for Commuter Rail Systems ......................... 106 

Figure 9.1: Mean Forecast Percentage Error (%) versus Composite  

 Model R2, Single-Month Forecasts, All Modes ...................................................... 113 

Figure 9.2: Mean Forecast Percentage Error (%) versus Composite  

 Model R2, Multi-Month Forecasts, All Modes ....................................................... 118 

Figure 10.1: Flow Chart of Ridership Modeling Process ......................................................... 122 

 

 

 

 

 

 



 

xiii 
 

 

List of Tables 

Table 2.1: The Seven Major Oil Importers in the 1950’s – 1970’s .............................................. 6 

Table 4.1: Adjusted Seasonal Indices (Median Values), 1999 – 2005 ....................................... 39 

Table 4.2: Significance of Calculated Correlation Coefficients ................................................. 45 

Table 4.3: Empirical Relationships between Fuel Price Change and Transit Demand .............. 45 

Table 6.1: Summary Statistics for Calculated R2 Values, Explaining Seasonal Variation ........ 63 

Table 6.2: Regional Average R2 Values for Seasonal Contribution to Variability .................... 64 

Table 7.1: Summary Statistics for Adjusted R2 Values from Regression, All Modes ............... 72 

Table 7.2: Levene Statistics and Multiple Range Tests Selected for  

 Regional Bus Parameter Comparisons ........................................................................... 76 

Table 7.3: Results of ANOVA F-test for Equality of Parameter Means for Bus Systems ........ 76 

Table 7.4: Descriptive Statistics for CONSTANT Terms in Regression  

 Model, Bus Systems Only .............................................................................................. 78  

Table 7.5: Descriptive Statistics for PDVRH Values in Regression  

 Model, Bus Systems Only .............................................................................................. 79  

Table 7.6: Descriptive Statistics for PDVOMS Values in Regression  

 Model, Bus Systems Only .............................................................................................. 80  

Table 7.7: Descriptive Statistics for PDFUEL Values in Regression  

 Model, Bus Systems Only .............................................................................................. 81  

Table 7.8: Games-Howell Test Results for PDFUEL Parameter Means  

 across Bus Systems Only ................................................................................................ 82  

Table 7.9: US Ethanol Consumption by FTA Region, Mgal of Ethanol .................................... 83  

Table 7.10: US Gasoline Consumption by FTA Region, Mgal of Gasoline .............................. 85  

Table 7.11: Descriptive Statistics for PDCPI Values in Regression  

 Model, Bus Systems Only .............................................................................................. 86  

Table 7.12: (a) LSD and (b) Tukey’s HSD Test Results for PDCPI Parameter  

 Means across Bus Systems Only .................................................................................... 87  

Table 7.13: (a) Ryan and (b) Tukey’s HSD Test Results for PDCPI Parameter  

 Means across Bus Systems Only .................................................................................... 87  

Table 7.14: Descriptive Statistics for WEEKDAYS Values in Regression  

 Model, Bus Systems Only .............................................................................................. 88  



 

xiv 
 

 

Table 7.15: Descriptive Statistics for DFARE Values in Regression  

 Model, Bus Systems Only .............................................................................................. 89 

Table 7.16: Levene Statistics and Multiple Range Tests Selected for  

 Parameter Comparisons across All Four Modes ............................................................ 90  

Table 7.17: Results of ANOVA F-test for Equality of Parameter Means for All Modes .......... 91  

Table 7.18: Descriptive Statistics for CONSTANT Values in Regression Model, All Modes ... 91  

Table 7.19: Descriptive Statistics for PDVRH Values in Regression Model, All Modes .......... 92  

Table 7.20: Descriptive Statistics for PDVOMS Values in Regression Model, All Modes ....... 92  

Table 7.21: Descriptive Statistics for PDFUEL Values in Regression Model, All Modes ........ 93  

Table 7.22: Descriptive Statistics for PDCPI Values in Regression Model, All Modes ........... 94  

Table 7.23: Descriptive Statistics for WEEKDAYS Values in Regression Model, All Modes ... 95  

Table 7.24: Descriptive Statistics for DFARE Values in Regression Model, All Modes .......... 95  

Table 8.1: Total Variation (R2) Explained by Composite Forecasting ...........................................   

 Model, Summary Statistics ........................................................................................... 104  

Table 9.1: Regional Median Values of RMSE and MFPE, Single-Month  

 Forecasts, Bus Systems Only........................................................................................ 112  

Table 9.2: Regional Median Values of MAPD and Tracking Signal, Single-Month  

 Forecasts, Bus Systems Only........................................................................................ 112  

Table 9.3: Modal Median Values of RMSE and MFPE, Single-Month Forecasts .................. 113  

Table 9.4: Cumulative Percentages of Systems (%) with Percent Error within  

 Given Range – Single-Month Forecasts: Bus Mode .................................................... 114  

Table 9.5: Cumulative Percentages of Systems (%) with Percent Error within  

 Given Range – Single-Month Forecasts: Rail Modes .................................................. 115  

Table 9.6: Regional Median Values of RMSE and MFPE, Multi-Month Forecasts,  

 Bus Systems Only ......................................................................................................... 116  

Table 9.7: Regional Median Values of MAPD and Tracking Signal, Multi-Month  

 Forecasts, Bus Systems Only........................................................................................ 117   

Table 9.8: Modal Median Values of RMSE and MFPE, Multi-Month Forecasts .................... 117 

Table 9.9: Cumulative Percentages of Systems (%) with Percent Error within  

 Given Range – Multi-Month Forecasts: Bus Mode ...................................................... 118  

Table 9.10: Cumulative Percentages of Systems (%) with Percent Error within  



 

xv 
 

 

 Given Range – Multi-Month Forecasts: Rail Modes .................................................... 119  

 

 



 

xvi 
 

 

 



 

1 
 

 

Chapter 1: Introduction 

 

1.1 OVERVIEW 

The topic of fuel price change has, for the last several years, captured media headlines on 
national, regional, and local levels. Not since the 1970’s have fuel prices received such attention 
and induced such speculation on impacts to the economy and future implications of continued 
price growth. 
 
We live in a world where the price of a gallon of oil affects nearly every aspect of our lives. Oil 
prices continue to fluctuate on an almost daily basis and elevated prices are subsequently 
reflected in numerous ways. The cost to transport goods increases as oil and fuel prices rise and 
these transportation costs are transferred to the consumer through higher prices on the goods. 
Similarly, the cost of transporting livestock feed grows and thus, coupled with higher goods 
transport expenses, the price of milk and meat at the grocery store inflates. In alternative 
businesses, taxi fares are growing as cab companies must pay more for fuel, and delivery 
services increase their delivery charges to offset their increased transportation-related business 
expenditures. 
 
Perhaps the most publicized effect of rising fuel prices has been at gasoline pumps. Regional fuel 
prices are now a common part of local news broadcasts, and occasionally of national news 
broadcasts. As transportation costs consume an ever-greater proportion of household 
expenditures, looking for less expensive alternatives becomes a necessity for many trip makers. 
Public transportation operators have experienced a resulting growth in ridership and have created 
advertising campaigns to encourage drivers to save money by switching to transit. 
 
In 2007, transit ridership reached 10.3 billion annual trips, the highest level witnessed in 50 years. 
Much of this growth is attributed to elevated gasoline prices (Miller, 2008). Growing transit 
ridership presents exciting opportunities and challenges for transit agencies with regard to 
planning their systems to accommodate growth and supplying sufficient services to support and 
retain new ridership. Anticipating the degree to which ridership may grow and be maintained is 
an important part of providing a satisfactory experience for new and habitual transit passengers. 
Clearly, the extent to which trip makers will switch to the transit mode is affected by many 
factors—two of the most important factors being (1) the nature of the existing transportation 
system and local infrastructure layout and (2) the quality of the existing transit network and 
service. These two factors vary considerably on a local basis and therefore, the inclination of trip 
makers to see public transportation as a viable option will depend on local conditions and more 
importantly, trip makers’ perceptions of those local conditions. In some transit markets, the price 
of fuel may have no real impact on transit ridership if potential patrons do not view transit as a 
practical option, due to the quality of the travel experience or its inability to serve their travel 
needs. In other markets, transit use may already be very high because of limitations or costs of 
using other modes, and in such cases, ridership may not be measurably affected by fuel price. 
 
Because of the variability in regional and system-based factors affecting the proclivity of trip 
makers to switch to transit mode, it is desirable to provide a ridership forecasting tool that can be 
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calibrated to local conditions. Currently, most public transportation agencies use tools developed 
either in-house or by their metropolitan planning organization, while in smaller communities, 
techniques such as sketch planning are still employed. The subject of ridership forecasting and 
its transferability has not, to date, received widespread academic attention, and therefore 
formalized methodologies are lacking. 
 
This research attempts to fill the academic and technical void by developing a transferable 
methodology for transit planners to create system-specific short-term ridership forecasts, so that 
the needs of potential transit passengers can be anticipated and met quickly. Rapid response to 
new ridership aids in the ability to provide a pleasant travel experience for new and existing 
passengers; trip makers tentatively trying public transportation as an alternative are unlikely to 
continue using it if transit vehicles are late or uncomfortably crowded, both of which situations 
might be avoided if ridership can be forecast accurately. 
 
In addition to providing a methodology for system-specific forecasts, this work establishes 
region- and mode-specific forecasting procedures. Models were developed by combining 
traditional forecasting techniques with multivariate regression to allow for greater explanatory 
power, localized calibration, and national applicability.  
 
The short-term ridership forecasting model created here starts by assembling ridership and other 
data types for 254 US transit systems during the 2002-2007 period, transforming the dependent 
ridership variable to attain stability, and seasonally decomposing the ridership time series 
datasets to establish seasonal models and derive non-seasonal ridership components for each 
system. Using multivariate regression, encompassing a variety of internal and external factors, 
these non-seasonal components are then dissected to ascertain the non-seasonal relationships 
between ridership and the independent parameters, including, among others, fuel price. 
 
After establishing the seasonal models for each system, as well as non-seasonal regression 
models on system-, region-, and mode-specific bases, the seasonal and non-seasonal models are 
combined to form a composite model, which, on average, explains roughly 70 percent of 
ridership variability across the entire evaluation set of 254 transit systems. Lastly, the model is 
validated using data from the first six months of 2008. Overall, the composite model performs 
quite well; errors are fairly small for single-month projections, while multi-month projections, 
although acceptable, suffer lower accuracy levels due to error propagation through the forecast 
series. 
 
Academically, the research herein explores a topic which has received little attention, most 
transit agencies establishing their own forecasting methods in-house or through cooperation with 
their local metropolitan planning organization. The procedures here are unique in that they 
combine established forecasting methodologies, such as data decomposition, with more 
advanced multivariate regression in a complementary manner that leads to robust prediction 
abilities. By calibrating and examining each individual system within the evaluation set, the 
model is made truly transferable, and comparisons can be made across systems, regions, and 
modes, which, in the absence of such disaggregate model-building, cannot otherwise be 
accomplished.  
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Technical contributions of this work include its transferability via individual system calibration 
of the seasonal and non-seasonal parameters. Additionally, the modeling procedure is 
straightforward to apply, making use of commonly-available data, and readily adaptable to 
mathematical programming interfaces for unique system treatment. 
 
The remainder of this work is organized as follows. Literature review is provided in two 
chapters: Chapter 2 presents the history of fuel price effects on transportation since the mid-
1970’s and Chapter 3 outlines the current state of practice and knowledge with regard to 
ridership forecasting. Chapter 4 explores the impact of fuel price growth on transit ridership in 
five historically auto-oriented US cities. In Chapter 5, the data collected and utilized in building 
and calibrating the ridership forecasting models are outlined and problems inherent in time series 
data are addressed. The removal of seasonal fluctuations from ridership data using a statistical 
decomposition technique is covered in Chapter 6, while Chapter 7 outlines the results of 
multivariate regression analyses performed on the remaining non-seasonal portions. In Chapter 8, 
the seasonal and non-seasonal models are combined to establish the final composite model form, 
which is validated in Chapter 9. The final chapter, Chapter 10, discusses the conclusions from 
this research and contributions thereof, and future steps to improve the work developed herein. 

 



 

4 
 

 

 

 



 

5 
 

 

 

Chapter 2: Fuel Price Impacts on Transportation, 1970’s – Present 

 

2.1 INTRODUCTION 

The price of crude oil and automobile fuel receives considerable attention in our daily lives. 
Even before prices began to rise dramatically around the year 2000, gas prices were a regular 
topic of conversation, and since prices have grown exponentially in recent years, they have gone 
from being a topic of light conversation to one of much argument and debate. 
 
Figure 2.1 shows the national monthly average price for a gallon of regular gasoline between 
August 1990 and March 2008. One can readily see from this plot how prices started their growth 
in mid-2000, jumping to over $1.50 per gallon, and despite many wild fluctuations, have 
continued their upward trend such that a gallon of gasoline in 2008 cost easily twice what 
consumers paid only five years previously. Prices dropped precipitously in late 2008 to levels not 
seen since 2004, but show signs of renewed growth. 
 

 
 

Figure 2.1 US National Monthly Gasoline Price per Gallon, August 1990 – March 2009 
 
Much attention and research have lately gone into analyzing the effects in various sectors of this 
growth in fuel price. However, these recent efforts are not the first time that the cost of gasoline 
and its impacts on our economy and specifically, on our transportation systems, have been 
evaluated. The oil crises of the 1970’s presented researchers with ample opportunity to 
investigate the role that fuel prices play in our society. This chapter explores the history of fuel 
price change during the last four decades and corresponding research correlated with these 
changes, beginning with the oil crises of 1973 and 1979, continuing through the institutional 
changes in oil trade that occurred in the 1980’s as a result, and follows with recent developments 
in the 1990’s and in our current century. 
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2.2 THE OIL CRISES OF 1973 AND 1979 AND THEIR EFFECTS 

Political and institutional circumstances in the oil industry, beginning as early as the 1950’s, 
brought about the oil crises of the 1970’s. Particularly following World War II, with the rise in 
automobile use and dependency, world demand for fuel grew, and as now, most of the available 
petroleum deposits lay in what were then developing countries in the Middle East. In the 1960’s, 
seven major oil importers (the “Seven Sisters”, listed in Table 2.1 with their country of origin) 
dealt directly with oil-exporting countries, whose governments owned the oil deposits. These 
companies had direct influence, in the beginning, on the prices set on oil exports. There was little 
need for competition between these seven companies because demand was continually high; at 
times, they often had difficulty providing sufficient gasoline supply. 
 

Table 2.1 The Seven Major Oil Importers in the 1950’s-1970’s 
 

Company Nationality
Chevron US

Exxon US
Gulf US

Mobil US
Texaco US

British Petroleum Britain
Royal Dutch/Shell Anglo-Dutch  

 
 
As the years progressed, however, the relationships between oil companies and oil-exporting 
nations changed and became strained by internal and external causes. Many wrongly believe that 
the two oil crises of 1973 and 1979, six years apart, were caused by the same political and 
market forces. In fact, the circumstances creating these scenarios were quite different. Here we 
will explore the causes in some detail (see Parra, 2007). 

2.2.1 The Oil Embargo and Crisis of 1973 

Fuel shortages in 1973 came about due to Arabian countries’ use of oil as a strategic weapon 
against nations supporting Israel. Israeli troops had invaded and occupied several formerly Arab-
held lands in 1967 during the Six Days’ War, including the West Bank, Jerusalem, the Golan 
Heights, and the Sinai Peninsula. With Israel backed by the US and Britain, the Arab countries 
recognized that their military forces were no match for those of the western supporters. As 
political tensions in the area rose, the president of Egypt, Anwar Sadat, chose to develop a 
complex solution to the situation, which involved attacking Israeli forces across the Suez Canal 
from Egypt, orchestrating this attack with one from Syria to the north of Israel, and debilitating 
US efforts by withholding oil supplies from Saudi Arabia unless the US changed its foreign 
policy with respect to Israel. 
 
Previous agreements signed by the seven major companies and the oil-exporting countries 
(OPEC, the Organization of Petroleum Exporting Countries) broke down and meetings 
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attempting to rectify the situation and establish market prices for oil met with failure. In early 
October 1973, the seven major companies permanently lost any say in the prices set for oil. 
 
Shortly after the failure of price negotiations between OPEC and the importing companies, 
production cutbacks began. For every month that Israeli forces remained in the contested areas, 
oil ministers jointly decided to curtail oil production by five percent. On October 18, Saudi 
Arabia chose to reduce production by ten percent—but the following day, the US launched a 
colossal new campaign of militaristic support for Israel, so on October 20, Saudi Arabia enacted 
a full embargo of oil exports to the US. Saudi Arabia’s full embargo against the US was joined 
quickly by all other Arabian countries. 
 
Despite a UN cease-fire agreement of the Arab-Israeli war which was accepted by all warring 
parties, the oil embargo towards the United States continued. Prices at the pump rose greatly, due 
to a number of factors, including shortages and rising freighting costs as the US scrambled to 
procure oil from other sources. Peace talks convened in Geneva in December 1973 between 
Israel, Egypt, and Jordan, and in mid-March of 1974, the oil embargo directed at the US was 
finally lifted, five months after it had begun. 
 
During the embargo, President Nixon encouraged use and development of alternative energy 
sources and conservation measures. However, many people were terrified of economic 
catastrophes that they saw as imminent. Economic experts warned of an impending economic 
crash and looming period of world economic darkness to rival that of 1929 and the Great 
Depression (see Cairncross and McRae, 1975; Parra, 2007). The US Subcommittee on 
Multinational Corporations reported in January 1975 that (excerpted from Parra, 2007): 
 

The United States and the rest of the non-Communist world face the most serious 
economic crisis since the depression of the Nineteen Thirties. If strong policies 
are not immediately adopted, this crisis can undermine the economic foundation 
of the non-Communist world and jeopardize our democratic form of government. 
 

In the five months of the 1973-74 oil embargo, crude oil prices tripled. Prices in oil markets 
finally stabilized somewhat in 1974 once OPEC countries put in place production ceilings and 
set official market prices that were more or less independent of supply and demand forces. 
 
As a result, OPEC morphed into what essentially constituted a cartel, setting prices on oil where 
they wished and attempting to balance production among members with little, if any, outside 
influence. They believed that shortages and depletion were imminent and that supply and 
demand forces would eventually balance prices out at what the market would bear. However, 
during the embargo, world oil usage had dropped and in mid-1974, the result was an 
international over-supply of oil. After significant internal (and external) struggle regarding prices 
and production levels, OPEC set prices where they would, and these prices remained fairly intact 
for a number of years. 
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2.2.1.1 The Effects of the 1973 Oil Embargo on US Transportation 
How did the 1973 oil embargo and subsequent crisis affect the US transportation system, and 
specifically, how did it affect transit usage? It is important to keep in mind that public 
transportation was undergoing major institutional changes during this same time period. The 
Urban Mass Transportation Act of 1964 had established what is now the Federal Transit 
Administration and provided federal funding of $375 million for bringing transit systems into the 
public realm (FTA, 2006). Up to this point, most public transportation systems had been 
privately owned and financed, and most were doing quite poorly in attempting to stay afloat as 
viable transportation alternatives. On the heels of the 1964 act came the Urban Mass 
Transportation Act of 1970, which increased the level of funding. Thus, in the early 1970’s, most 
transit systems, particularly the smaller systems, underwent massive changes in their operating 
structures as they grew from floundering, disorganized attempts to prove financially profitable to 
well-planned, federally-supported transportation systems. 
 
Due to data collection techniques at the time, the bulk of research conducted evaluating reactions 
to the changes enacted by the embargo focused primarily on specific regions of the US, rather 
than the nation as a whole. 
 
Between July 1973 and July 1974, national use of public transportation grew by 12.3 percent. 
However, research during this period pointed out that sustained growth in transit use could be 
accomplished only through coordinated land use and urban growth planning over the long-term 
(Leotta, 2007).  
 
A study published in 1975 (see Curry, et al., 1975) calculated cross-elasticities of demand for 
various aspects of regional travel in Washington, DC; Boston; and Denver during the period 
November 1973 through July 1974. This study found short-term price elasticities of fuel demand 
of -0.1 for DC and Boston and -0.12 for Denver (thus, as fuel price increased by 10 percent, 
gasoline sales declined by about one percent). It also calculated a short-term elasticity of transit 
demand in DC with respect to fuel price of 0.04 (prior to the METRO heavy rail construction), 
indicating a growth in transit ridership of 0.4 percent for a 10 percent increase in fuel price. The 
authors note, however, that various unaccounted-for influences in Boston’s transit system 
regarding fares during the analysis period and a transit operators’ strike in DC in May 1974 make 
the calculated results ambiguous and evaluation of their accuracy difficult. They also point to the 
short “post-‘crisis’” period as limiting the usefulness of the findings and emphasize that the 
elasticities derived were for short-term changes. 
 
In a second 1975 study that focused on the Hudson River crossings into Manhattan and Staten 
Island from New Jersey (see Lessieu and Karvasarsky, 1975), decreases in traffic volume were 
measured during the first and second quarters of 1974. The authors attribute the considerable 
drop in traffic volumes during the first quarter to fuel shortages, and indicate that high fuel price 
was less a deterrent to volumes in the second quarter than availability had been in the first, since 
volumes recovered somewhat following the end of the oil embargo in March 1974. The 
researchers also examined peak versus off-peak travel and concluded that fuel availability and 
price played no role in changing the peaking pattern and that both peak and off-peak travel were 
affected by fuel price growth. Finally, they concluded that peak-period travelers reacted to fuel 
shortages and price escalations by increasing carpooling and transit usage, while off-peak and 
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leisure travelers reacted by making fewer and/or shorter trips. They add, however, that transit 
passenger volumes at the two crossings analyzed were (at the time) three times what automobile 
user volumes were and that (due to lack of passenger counting technologies at the time), isolating 
transit passenger increases was virtually impossible and thus transit ridership growth was 
hypothesized. 
 
In a study commissioned by the U.S. Department of Commerce, a survey conducted of 
households in suburbs north of Chicago indicated that availability of gasoline played a greater 
role in producing changes in travel behavior, rather than fuel price (see Peskin et al., 1975). 
Furthermore, the research concluded that while work and non-discretionary trips were not 
affected by the fuel shortage or accompanying price surge, discretionary travel fell by 13 percent 
and trip chaining became more prevalent in an effort to conserve fuel. Most respondents viewed 
the fuel shortage and higher prices as little more than an inconvenience and there was virtually 
no change in their mode choice for any type of trip. 
 
The findings of this Chicago-based study were echoed in a study analyzing travel behavior in 
Columbia, South Carolina (see Sacco and Hajj, 1976). The authors found that while auto travel 
did not drop appreciably, what little reduction occurred, through reducing driving speeds and 
limiting discretionary trips, happened mostly on weekend days. They concur that fuel supply 
appeared to affect travel behavior more than price, and concluded that public transit would not 
garner increased ridership due simply to higher fuel prices, based on transit’s poor service 
quality (as mentioned in this sub-section’s introductory paragraph). Overall, reliance on 
automobiles was not reduced, but instead travel behavior and driving habits were adjusted to 
conserve fuel. 
 
Reactions were similar in southeastern Wisconsin, according to a survey conducted in late 1975 
(see Corsi and Harvey, 1977). While more than 75 percent of households in this region admitted 
changing their travel behavior, they did so through “careful retreat, making changes that caused 
the least disruption to their precrisis travel patterns and putting off hard decisions that would 
involve major changes,” such as changing modes or residential relocation. Trip chaining and 
altering travel patterns to locations less distant were the primary reactions; switching to more 
fuel-efficient vehicles was also common. While respondents expressed support for public 
transportation systems, most of that support came in the form of professed backing of additional 
property, fuel, or income taxes to fund transit. The researchers also explored respondents’ 
gasoline “price thresholds”, or the price per gallon that would cause households to make 
significant changes in their travel behavior. For about 30 percent of households, this value was 
80 cents per gallon, although roughly ten percent of respondents indicated that the price at the 
time, between 50 and 59 cents per gallon, was sufficient to cause them to change their habits. 
The final conclusion of the researchers was that households were unlikely to make major 
changes in their travel behavior under the impetus of moderate and gradual growth in gasoline 
prices, that only strong rationing and/or “excessive” price increases would cause substantial 
behavioral shifts. 
 
Reactions of households to high fuel prices shared similarities with reactions to conservation 
strategies. As would be expected, knowing human nature, most surveys collecting respondents’ 
reactions to potential conservation strategies found that households preferred options that 
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impacted their own personal travel habits the least. In rural Iowa, for instance, given the options 
of (1) severe rationing, (2) severe price increases, (3) various speed restrictions (all at or below 
55 mph), (4) taxes based on vehicle fuel efficiency, or (5) incentives and subsidies for transit use, 
carpooling use, or voluntary reductions in household travel, stratification by age and income 
group revealed that household support of one policy versus another was determined mostly by 
the impact to a particular household and that household’s perception of the policy’s adverse 
effects on lifestyle (Brewer and Grey, 1977). 
 
It is important to point out that the short-term nature of the changes in fuel price affected by the 
embargo, as compared to the much longer-term growth in price in today’s market, made 
observing change difficult, and any changes would have constituted short-term changes, rather 
than reactions to prolonged exposure to higher fuel prices. Additionally, and on a related note, it 
may be assumed that changes in travel behavior due to increased fuel prices take time to occur 
and thus present a lag between the price change and behavior change. For instance, if fuel price 
grows by some large percentage, one can hypothesize that it may be weeks or months before 
consumers feel the pinch and begin to investigate alternative travel means, and perhaps an 
additional period of time before they act on that information. 
 
A study conducted in 1979, which looked at the changes in fuel price during the 1973-74 period, 
used flow-adjustment models (a type of econometric model) to account for this time lag (see 
Pucher and Rothenberg, 1979). The researchers point out, however, that the flow-adjustment 
models do not provide insight on the nature of the lag itself, except as far as its timing and 
relative size. The study also summarized the findings of eight aggregate econometric models of 
gasoline demand with respect to vehicle kilometers of travel, most of which had either linear or 
logarithmic functional forms and used ordinary least squares or two-stage least squares 
estimation techniques. Generally, the studies (which did not differentiate between urban and ex-
urban travel, regional differences within the US, trip purpose, or income level) converged on a 
short-term elasticity of -0.2 to -0.3, and the authors suggested that public policies governing the 
price of gasoline could dramatically affect automobile usage and overall travel behavior. 
 
It appears that, although researchers recognized the implications for public transportation use 
brought on by higher fuel prices, conducting research geared specifically towards measuring the 
effect on ridership during the 1970’s was mostly infeasible because of technological limitations 
regarding data collection. Until very recently (the last decade or so), ridership totals were 
gathered through on-board surveys, which were conducted infrequently and at great cost to the 
data collector. The proliferation of automatic passenger counters (APCs) has simplified this 
process and made ridership data more readily available, although smaller transit agencies may 
still be unable to afford this technology. However, in the 1970’s, despite researchers’ best 
intentions, on-board surveys simply did not produce the rich database for analysis that we may 
take for granted today. Thus, many estimates of the effect of fuel price on transit patronage are 
relatively inconclusive as far as producing concrete relationships. 
 
The overall conclusions of researchers following the consequences of the oil embargo of 1973 
indicate that in the wake of the embargo’s fuel shortages and higher fuel prices, travel behavior 
changed only moderately, and mostly only when considering discretionary travel, particularly on 
weekends. Substantial effort focused on determining the relationship between fuel price and fuel 
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consumption and found that, as expected, consumption dropped as prices rose. Purchases of 
smaller, more fuel-efficient automobiles grew and speculation about further reduction of vehicle 
size resulted from findings of research in this period. Trip-makers also conserved energy by 
reducing their travel and, to a much lesser extent, by using alternative modes such as carpooling 
or public transportation, although the propensity of travelers to change modes depended on 
regional factors, such as the higher accepted use of transit in New York City. 

2.2.2 The Oil Crisis of 1979 

Conversely to the oil crisis in 1973, the crisis in 1979 was not created as a strategic political 
weapon against the US. Instead, it occurred as a result of the Iranian Revolution of 1979. OPEC 
had continued to virtually ignore the market laws of supply and demand, and the world was 
waiting with bated breath for certain news of the depleted oil sources that all had been convinced 
were just around the corner, however unfounded the claims actually were. 
 
In October 1978, Iranian oilfield workers went on strike. The strike permeated the rest of Iran 
and until the Shah left the country and was replaced by a heartily welcomed Ayatollah Khomeini, 
the strike continued. The revolution and accompanying transfer of power changed Iran from a 
monarchy to an Islamic republic under the Ayatollah. Oil exports, which had been stopped, 
resumed finally in March 1979. Between September 1978 and November 1979, “spot crude” oil 
prices, which acted as a barometer of sorts for oil prices, exploded from $12.80 a barrel to nearly 
$40 a barrel. 
 
During the Iranian Revolution, as had been earlier agreed upon, OPEC raised oil prices as they 
had planned. This step, however, induced North Sea producers in Norway and Britain to raise 
their crude prices, too, refusing to allow the Middle Eastern countries full leverage over price-
setting. Consequently, a battle began between the two groups, each raising prices higher than the 
other, until the future of prices could not be anticipated. 
 
Members of the worldwide community witnessed the ever-increasing oil prices resulting from 
this pricing battle, and, coupled with the still-present fear of impending oil shortages, stockpiling 
and hording of oil supplies became rampant. Through 1979, prices continued to climb, fueled 
mostly by fear. Eventually, however, by mid-1980, oil storage facilities were full to bursting and 
prices began to fall. In October 1980, Iraq invaded Iran and the two nations went to war, which 
effectively eliminated oil exports from both countries, but amassed supplies were such by that 
time that it had little effect on the market and other producers stepped in to make up the 
difference. Oil exports from Iran and Iraq resumed again in mid-1981, although the Iran-Iraq 
War lasted until August 1988. 
 
Despite falling prices and bursting oil stockpiles, the world continued to believe that an energy 
crisis loomed. Conservation efforts expanded as everyone prepared for the worst. Eventually, 
though, market forces took over and prices began to drop, and by mid-1981, calm had been 
restored. 
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2.2.2.1 The Effects of the 1979 Oil Crisis on US Transportation 
Facing a second oil crisis and fuel price jump in less than a decade, how did Americans react 
regarding their travel habits? 
 
The primary reactions to decreased gasoline availability and higher prices at the pump, as in the 
research pertaining to the 1973 embargo, focused on fuel conservation, by adopting less wasteful 
driving habits and changing to smaller, more mechanically-efficient vehicles (Dansker et al., 
1981). Interestingly, supporting the idea that fuel price and fuel demand are generally recognized 
to have an inelastic relationship, the Dansker study found that sensitivity to fuel price spikes 
(through the form of elasticities) fell over time as consumers became rather desensitized to the 
price surges. 
 
A study published in 1984 by Greene and Hu found that the inclination to reduce travel versus 
switching to more fuel-efficient auto use depended on the number of vehicles in a household. 
They concluded that single-vehicle households reduced their trip-making, while multi-vehicle 
households reduced their use of poorer-fuel efficiency (larger) autos and made a larger 
proportion of their trips in their more fuel-efficient (smaller) vehicle(s). Overall, they found that 
gasoline price increases led to a reduction in vehicle-miles traveled (VMT), the effect of which 
outstripped the savings incurred by switching vehicle types. In developing a corresponding 
model based on household travel survey data between 1978 and 1981, they found that, for a 25 
percent increase in fuel price, the model predicted a 4.7 percent drop in overall vehicle use and 
that fleet fuel economy improved by 0.2 percent. 
 
A second study by this team, using a 1978-1981 data set for single-vehicle households, 
investigated the short-run elasticity of vehicle travel and gasoline demand and found that price 
elasticity grew with fuel price; lower values were on the order of -0.5, while higher values 
obtained a value of -0.6 (Greene and Hu, 1986).  Thus, as gasoline price increased, consumers 
became more sensitive to additional positive changes in price and demand consequently dropped. 
 
While most studies in the 1970’s pertaining to the fuel crises found that most conservation 
behavior came about through reductions in discretionary trip-making, a study in 1981 of the 
latter crisis concluded that, although most reductions resulted from non-work travel, energy use 
for work trips showed the greatest sensitivity to energy supply and price (Neveu, 1981). 
Calculations of elasticities using gallons purchased as a surrogate for VMT led to elasticity 
values of +1.132 for work travel energy use with respect to fuel supply, versus +0.915 for non-
work travel energy use, and travel energy use elasticities with respect to fuel price of -0.335 for 
work travel and -0.270 for non-work travel. From these calculations, the researchers concluded 
that fuel supply was three to five times more influential in reducing energy use than fuel price. 
They explained these seemingly unintuitive values through noting that work trips produced the 
greatest inclination towards use of higher-occupancy modes (transit, carpooling, etc.) and 
changes in fuel efficiency of vehicles purchased. Government conservation propaganda at this 
time focused on work trip energy conservation, which was at odds with what most research 
determined people were actually doing—reducing their non-work travel. This particular study 
suggested that perhaps travelers were actually doing both. Furthermore, the findings from this 
study in New York State were used to make recommendations regarding proposed conservation 
strategies, primarily to the effect that “blanket policies” were not advised, as socio-economic 
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groups react differently to a given strategy and therefore, strategies should be prepared to reach 
specific groups to allow for greater equity and effectiveness. 
 
A report compiled and prepared for the US Department of Energy in 1981 discussed the price 
inelasticity of fuel demand and pointed out that the very low values of these price elasticities 
implied a future of increased dependence on foreign oil sources in providing for US energy 
needs (Morlan, 1981). It also indicated that since the elasticities were so low, it was important to 
invest research funding in exploration of alternative energy sources and new petroleum supply 
technologies because otherwise, the proportion of a household’s income dedicated to fuel 
purchase would continue to increase, as would the net profits gained by oil exporters. Short-term 
gasoline price elasticities of demand surveyed in this study (those for one-, three-, and five-year 
periods) varied from -0.1 to -0.3, while long-term values (for 10-year evaluation periods) ranged 
from -0.3 to -0.9. Perhaps the greatest finding of this research was the conclusion that in 
investigating the long-term effects of heightened prices for all petroleum products, more than 
half of the effect achieved on demand was accomplished within the first three years of the higher 
price levels. This effect, when considering only gasoline prices (compared to all petroleum 
products), came about, not through travel reductions, but primarily via improved vehicle fuel 
efficiencies. 
 
However, although travel reduction was not the main reaction of consumers, it still occurred to 
some extent and not all trip purposes experienced equal decline. While most studies found that 
discretionary travel during the oil crises dropped, a study published in 1983 found little change in 
attendance at national parks during these periods (Kihl, 1983). The study was fairly inconclusive 
and could not explain why some parks’ attendance exhibited no change and others’ seemed to be 
adversely affected. The author hypothesized that trip-makers were observing conservation habits 
during their workweeks and reserving automobile travel for weekend excursions to the parks 
investigated. 
 
In 1981, it was forecast that through the 1980’s and 1990’s, travel (in New York State) would 
increase because of improved vehicle efficiencies, population growth, suburbanization and 
sprawl, and increased auto ownership (Hartgen, 1981). Growth in travel was projected to meet 
difficulty with higher energy prices, additional oil embargoes, and higher inflation and 
employment. Fuel prices were expected to grow rapidly and it was anticipated that gasoline 
demand would fall by ten to 20 percent. 
 
Instead, the mid-1980’s through the 1990’s brought no more embargoes and an extended period 
of the lowest and most stable fuel prices in history.  
 

2.3 RESEARCH GENERATED IN THE MID-1980’S THROUGH THE 1990’S 

Contrary to the 1970’s and 2000’s, the 1980’s and 1990’s brought with them nearly two decades 
of low and stable gasoline prices. 
 
In 1987, after several years of continually low fuel prices, a study was published that speculated 
about the implications of lower prices, compared to the fervor in the past with which the 
government and consumers had pursued conservation and travel reduction techniques. The 
researchers concluded that (1) domestic oil production would drop; (2) use of petroleum products, 
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particularly with regard to transportation, would grow; (3) the US would become ever more 
dependent on foreign sources of oil and more sensitive to price shocks and supply disruptions; 
and (4) research into fuel-efficient technologies would decline due to lack of incentive (Mintz, et 
al., 1987). Today, we can look back and see how prophetic these conclusions seem. 
 
Obviously, given the history of fuel prices, it was impossible to know how consistently low 
prices during this period would prove and therefore, planners tried to anticipate the worst and 
develop contingency plans accordingly. Contingency strategies for interruptions in fuel supply 
were created by the Massachusetts Institute of Technology (MIT) in 1982 for the U.S.  
Department of Energy and presented at a workshop entitled “Strategies for Calm and Order”. 
(Humphrey, 1983). Another incidence of oil supply disruption in the future was considered to 
constitute a “high probability”. 
 
The strategies developed by MIT for dealing with four distinct scenarios included: (1) “Actions 
to facilitate more energy-efficient travel and maintain mobility”, including consumer education, 
promotion of higher-occupancy modes, improvement of transit systems and ride-sharing 
programs, flexible work schedules, and reduced speed limits; (2) “Tax excess profits and provide 
rebate to consumers” by lessening the effects to the economy of fuel price growth; (3) 
enforcement of “Demand-restraint measures” such as limiting consumers’ access to fuel pumps, 
carless days using vehicle stickers, banning Sunday driving, and restricting single-occupant 
vehicle use; and (4) a “Coupon-rationing program” (of which there had been one such program 
in the late 1970’s until it was repealed by President Reagan early in 1981). 
 
The conservation trends observed during the 1970’s continued into the early 1980’s, including 
nationwide shifts to smaller, more fuel-efficient vehicles. Immediately following the fuel 
shortages of the 1970’s, there were reductions in travel and attempts made to conserve energy 
resources. However, as was hypothesized in the late 1970’s, the financial savings garnered 
through conservation efforts on a household level were then “re-invested” in recreational and 
other non-work travel (Brunso and Hartgen, 1985). Despite trip-makers’ claims of reduced non-
work travel during the period 1979-1982, evaluation of trip rates, trip distances, and incidence 
factors revealed that non-work travel had not suffered as much as alleged. 
 
Bicycle use enjoyed a resurgence in popularity in the wake of the oil crises. The energy crisis 
created a demand for bicycles as an alternative mode of transportation in the late 1970’s and 
early 1980’s. The demand elasticity for bicycles at that time with respect to fuel price was 0.51; 
as fuel price grew by 10 percent, bicycle sales grew by 5.1 percent (Kerr, 1987). 
 
One study developed a model using the Almost Ideal Demand System (AIDS) methodology 
created in the 1980’s to replicate household vehicle fuel expenditure allocation in the US 
(Oladosu, 2003). The research used data sets from the late 1980’s and early 1990’s and 
determined that vehicle characteristics were the greatest determinants of household fuel 
expenditure. 
 
Fuel prices around the world were affected in similar ways and timeframes as those in the US. In 
the UK, price elasticities of demand for gasoline between 1980 and 1988 were calculated for 
time-series and cross-sectional data in the short- and long-term, where “short-term” constituted 
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periods of less than one year. For the time-series data, these British elasticities were -0.27 
and -0.71 (short- and long-term, respectively) and -0.28 and -0.84 for the cross-sectional data 
(Goodwin, 1988). These values concur with those found by US researchers looking at 1978-1981 
US data, which had calculated values between -0.5 and -0.6 (Greene and Hu, 1986). A third 
study, examining behavior of drivers in the Netherlands, used fixed and random effects models 
to investigate price elasticities of demand for auto fuel in that country (Rouwendal and de Vries, 
1999). Their findings ranged from 0 to -0.37 when using the fixed effects model and 1986 panel 
data, or -0.44 to -0.50 for the same 1986 data set and -0.63 to -0.65 for a data set from 1991 
when employing the random effects models. Again, these ranges agree with the findings in the 
US and UK.  
 
Most studies and researchers recognize that fuel demand is price inelastic, elasticity values 
falling at or near zero (see Morlan, 1981; Schimek, 1996; Eltony, 1999), although one study 
using data from 1950 to 1994 found that, in the short-term, fuel demand was price inelastic, but 
that in the long-term, its elasticity was -0.7 (Schimek, 1996). 
 
How was public transportation affected by fuel price? Transit systems are not created equal, and 
across regions of the US, or even within regions, there will be substantial differences in effects. 
However, the most notable differences occur when comparing trends in one country with another, 
where not only policies differ, but so do land use controls and city structure. Although a London 
study at the time showed an elasticity of transit demand with respect to fuel price of +0.34, a 
different study in Orange County, California found that, due to the large proportion of captive 
riders in the local system (70 percent), changes in fuel price produced no effect on ridership, 
although a change had occurred in 1979 from the oil shortage (which quickly dissipated 
following the end of the shortage) (Ferguson, 1991). These differences in regionality will be 
explored in more depth in the next section of this chapter and in Chapters 4 and 7. 
 

2.4 FOCUS ON FUEL PRICES IN THE NEW CENTURY 

After many years of relative calm, the 21st century ushered in a new decade of concern over fuel 
prices. Beginning quietly in the year 2000, prices grew and fluctuated rapidly as world events 
and market forces came to the forefront in oil pricing. Figure 2.3 shows weekly prices from 
January 2004 through early April 2009, a period of exceptional growth and flux. As shown in the 
plot, consumers in 2008 paid twice or more what they did in 2004 for a gallon of regular gasoline. 
While the oil embargo of 1973-74 caused prices to balloon by nearly 300 percent, the magnitude 
of this increase is dampened when comparing the absolute price of fuel in 1974 to the prices paid 
today. The average price of a gallon of gasoline in June 1974, following the embargo when 
prices surged, was 55 cents. In 2008, consumers paid more than four dollars for the same gallon. 
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Figure 2.2 US National Weekly Gasoline Price per Gallon, January 2004 – April 2009 
 
 
One of the primary and significant differences between the oil crises of the 1970’s and today’s 
price explosions is the duration of the events. The 1973 oil embargo lasted five months, and 
although the effects were felt for many months afterwards, the actual shortage and corresponding 
price increases were fairly short-term, compared to today. Similarly, the 1979 oil crisis, although 
its effects caused roughly two years of higher prices, did not produce lasting impacts on oil 
prices. The availability (or lack thereof) of gasoline during these crises was the main influence in 
reducing travel by automobile, rather than the inflated prices consumers paid. Contrast these 
situations with today’s scenario, in which consumers have been dealing with continually higher 
prices for nearly eight years, but during which supply has never been at issue. 
 
Many researchers believe that we cannot expect to find the same elasticity values in today’s 
market as were realized in the 1970’s. Given how much our transportation systems and attitudes 
have changed in the last 30 years, it seems realistic to expect consumers to react differently today. 
One study determined that a shift in that reaction has occurred since the oil crises, and found that 
short-run price elasticities have fallen from a range of -0.21 to -0.34 between 1975 and 1980 to a 
range of -0.034 to -0.077 between 2001 and 2006 (Hughes et al., 2007). Thus, consumers are 
much less sensitive to price changes today when it comes to purchasing automobile fuel than 
they were 30 years ago. The study did not address the availability of fuel as an influence in the 
higher fuel price elasticity values in the earlier time period. 
 
This change in elasticity and sensitivity over time is stressed by Basso and Oum, who 
recommend that those relating fuel price to fuel consumption recognize that time-series analyses 
may be flawed if the “non-stationary nature” of the time series and changing reactivity are not 
expressly considered (Basso and Oum, 2007). 
 
Sensitivity to fuel price as it pertains to gasoline demand is also affected by household income.  
A 2007 study found that, interestingly, the lowest and highest income groups respond most 
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strongly to higher fuel prices (price elasticities of 0.35 for the lowest income group and 0.29 for 
the highest), while households falling into mid-range income groups react less strongly (price 
elasticity of demand of 0.20) (Wadud et al., 2007). 
 
In the year 2000, the US constituted 55 percent of total world oil demand. Two-thirds of that 
demand goes towards transportation purposes (Leotta, 2007). As pump prices grow, so does the 
proportion of household expenditure that must be dedicated to transportation, barring the 
adjustment of travel behavior. 
 
A team of Australian researchers evaluated the correlation between major world events during 
the period 1998-2006 and aggregate US transit ridership to investigate correspondence between 
the two. They calculated cross-elasticities of public transportation demand with respect to fuel 
price for transit as a whole (0.12), and separate elasticities for bus (0.04 to 0.08), light rail (0.27 
to 0.38), and heavy rail (0.17 to 0.19). Short-run elasticities prior to September 11, 2001 showed 
less sensitivity to fuel price than the post-9/11 period, although long-run elasticities post-9/11 
showed that sensitivity fell over time (Graham and Currie, 2007). 
 
These results are consistent with a much more disaggregate-level study performed by Haire and 
Machemehl in 2007(b), which evaluated the correlation between fuel price and transit system 
ridership for five historically auto-oriented cities in the US. This research can be found in its 
entirety in Chapter 4. The empirical relationships (similar to elasticities) found in their study 
varied by mode and city, but ranged between 0.22 to 0.54 for the evaluated bus systems, 0.06 to 
0.11 for the light rail systems, 0.11 to 0.40 for the heavy rail systems, and 0.21 to 0.49 for the 
included commuter rail systems. These results can be expected to differ from the results in 
Graham and Currie’s study because this research looked at specific modes in specific cities, 
rather than at total US transit ridership, which includes cities with more transit-dependent riders 
in areas not historically auto-oriented. 
 
In a meta-analysis of transit demand, the effect of fuel price in various western countries was 
evaluated (Holmgren, 2007). For the US, a short-run value of demand elasticity with respect to 
fuel price was calculated as 0.82. However, the research found that these short-run demand 
elasticities were much higher in the US and Australia than in Europe, where an elasticity of 0.4 
was determined, indicating that fuel price plays a much smaller role in European public 
transportation ridership than in the US and Australia. Comparable long-run elasticities were 0.73 
in Europe and 1.15 in the US and Australia, further supporting greater sensitivity to fuel price in 
the latter countries. 
 
In a study completed for Land Transport New Zealand, cross-elasticities of transit demand with 
respect to fuel price in New Zealand, Australia, and international locations were explored in the 
literature and tabulated (Kennedy and Wallis, 2007). The researchers found wide variations, not 
only between nations, but within a single nation. Estimates in New Zealand ranged from +0.07 to 
+0.40, while Australian estimates varied from +0.01 to +0.8 (the higher value was attributed to 
rail transit in Australia, and when omitting such modes, the upper value for bus and tram was 
+0.2). International experience with such calculations gave resulting ranges of +0.08 to +0.80 in 
the US (from studies conducted in the mid-1980’s); +0.07 in Germany; +0.22 in Italy (short- and 
long-run); +0.18 and +0.16 (short- and long-run) in the Netherlands; +0.38 and +0.37 in 
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Brussels; +0.06 and +0.09 in France; and in Paris, specifically, a short-run range of +0.04 to 
+0.11 and a long-run range of +0.12 to +0.19. Clearly, of these results, the US and Australian 
values exhibit not only the greatest range but also the greatest magnitude, agreeing with the 
Holmgren study that concluded higher sensitivity to fuel price in the US and Australia than in 
Europe. 
 
These variations by nation in sensitivity to fuel price and consequential use of public 
transportation are further supported by a study comparing responses to fuel price in the US and 
Canada (Haire and Machemehl, 2007a). The study found virtually no correlation between fuel 
price and Canadian transit use in four historically auto-oriented Canadian cities. Reasons for this 
lack of association were hypothesized to lie primarily in urban form, which is much more 
centralized in Canada, much higher population densities compared to US cities, shorter commute 
distances, and greater acceptance of transit as a transportation option. 
 
In a 2008 study, Mattson used a polynomial distributed lag model, allowing for both short- and 
long-term elasticities, to discern the reaction rates between fuel price and transit patronage. He 
concluded that responses differ based on city size. In large cities, the response to fuel price was 
found to be rapid, occurring within one to two months of rising prices. In medium-sized cities, a 
lesser response occurs immediately after price growth, drawn out over a period of up to seven 
months. In the smallest cities, any transit ridership response to heightened fuel prices took place 
between five to seven months following the change. 
 
Urban form and household location play substantial roles in proclivity to use transit and as a 
factor affecting sensitivity to fuel price. Households in out-lying suburbs and rural areas have 
fewer choices when making their mode choice and thus are more dependent on their automobiles 
to maintain mobility. One study found that price elasticity of fuel demand in rural areas is on the 
order of 0.17, while the comparable value in urban areas is 0.30 (Wadud et al., 2007). A research 
team in Austin, Texas explored the effects of the spike in fuel price that occurred in late 2005 
and concluded that survey respondents reacted to higher fuel prices in a manner similar to that of 
the 1970’s—trip-makers reduced their overall driving and chained trips in more efficient ways, 
and adopted driving behaviors that conserved fuel while behind the wheel (Bomberg and 
Kockelman, 2007). However, the researchers found that households tended to make these 
adjustments and other travel choices based on their residential location; those living in more 
centralized areas with greater land use diversity were more apt to choose alternative modes 
(including transit, walking, or bicycling) to reach their destinations versus households in 
locations further from the central business district, which were more confined to relying on their 
automobiles regardless of fuel price. Thus, the more centrally-located households were likely to 
respond to higher fuel prices by changing their travel mode, while out-lying households were 
more likely to adapt by changing their driving behavior. 
 
Household location is one of many factors that can produce differing reactions in travel behavior 
when trip-makers are faced with fuel price growth. Community and regional characteristics can 
have great effects on transportation system quality, as well as on public perception of alternative 
transportation modes. Haire and Machemehl used a sampling of 22 US public transportation 
systems (bus, light rail, heavy rail, and commuter rail) of various size and location to explore 
relationships between high correlation between fuel price and transit ridership and community 
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characteristics, including transit mode share, vehicle ownership among public transportation 
users, route miles of service per service area, and average transit system trip length (Haire and 
Machemehl, 2008). For the cities analyzed, they found no universally-explanatory trend within 
the examined parameters, suggesting that the reactions within each city rely heavily on regional 
characteristics and perceptions. 
 
Research in the areas summarized here is likely to remain a hot topic and probably grow over 
time if prices do not stabilize. In the absence of oil embargoes or striking oil field workers, why 
have prices exploded in the last decade? Why, unlike in the 1970’s, have prices continued to 
climb ever higher over time, rather than spiking and returning to prior levels? What forces led to 
the volatility in today’s gasoline markets? 
 
International politics and economic forces continue to play strong roles in gasoline price futures. 
A Congressional research report in early 2006 outlined several specific causes for the higher fuel 
prices consumers had experienced to that point (Behrens, 2006). Briefly, the reasons pointed to: 
 

• Increased demand for crude oil and resulting higher prices from economic principles of 
supply and demand 

o Self-imposed restrictions on production quotas by OPEC 
o Growth in crude oil demand in China 
o Oil production interruptions in Venezuela, Iraq, and Nigeria 
o The dropping value of the US dollar in world markets 
o Concerns over supply disruptions in Iraq and Saudi Arabia due to the US war in 

Iraq and terrorism threats 
• Structural and policy restrictions on US refineries 
• In 2005, supply issues surrounding Hurricane Katrina and subsequent questions of price 

gouging 
 
A second investigation by the Government Accountability Office (USGAO, 2007) agreed with 
the impetuses outlined in the Congressional report and included the effects of declining gasoline 
inventories; regulatory factors, such as requiring new environmentally-sensitive gasoline 
formulations; and mergers within the petroleum industry. They found that during the 1990’s, 
more than 2600 mergers took place within the US petroleum industry and these consolidations 
ultimately led to higher gasoline pump prices. GAO looked specifically at eight of the mergers 
and used econometric analyses to determine that each of the evaluated mergers led to price 
increases of one to seven cents per gallon. GAO further speculated that the mergers occurring 
since 2000 also led fuel prices higher, although at the time of publication they had not completed 
analyses of those mergers. 
 

2.5 SUMMARY 

The literature regarding the impacts today of higher fuel prices seems taken from that of the 
1970’s. Having failed to learn the lessons of the 1973 and 1979 oil crises, we appear to be 
repeating them. Consumers are responding in the same ways today as they responded 30 years 
ago to higher prices—reducing travel, buying more fuel-efficient vehicles, chaining more trips, 
and switching to higher-occupancy or non-motorized modes. The same issues plague us today as 
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three decades ago: dependency on foreign oil, inefficient and polluting internal combustion 
engines, and questions about domestic oil reserves. However, today’s world introduces even 
more problems and motivations to change our travel behavior: the environmental crisis of global 
warming, ever-increasing congestion on our nation’s highways, and urban forms that show no 
boundaries in their expansion. 
 
All of these critical reasons beg us to really take notice this time, to not slip into complacency as 
happened in the 1980’s when fuel prices stabilized at low levels. If prices continue to increase, 
perhaps this time the changes to our transportation systems will become long-lasting and 
permanent. 



 

21 
 

 

 

Chapter 3: Ridership Forecasting Techniques and Needs 

 

3.1 INTRODUCTION 

Obtaining reliable forecasts of ridership is an important goal for public transportation agencies 
for many reasons. Providing satisfactory levels of service to transit patrons is paramount and 
only through anticipating rider demand and need can such satisfaction be delivered. Another 
main concern for agencies is the allocation of limited funds and the use of those funds by the 
most effective and efficient means possible. Forecasting plays into this careful allocation by 
allowing planners to determine how best to spend funds in order to provide adequate service to 
the most critical parts of the transit network. For instance, if a planner knows that fuel price 
affects the agency’s bus ridership more strongly than its light rail ridership, and that fuel prices 
will rise dramatically in the near future, it may be well worth allotting a greater proportion of 
funds to the bus network than to the light rail network in coming months. Yet another reason for 
producing accurate ridership forecasts lies in presenting these forecasts to decision makers in an 
easily understood format so that pending decisions can be made confidently. 

 

3.2 TCRP SYNTHESIS 66: FIXED-ROUTE TRANSIT RIDERSHIP FORECASTING 
AND SERVICE PLANNING METHODS 

Currently, most public transportation forecasting tools are developed either by a transit agency 
itself or by the agency’s local metropolitan planning organization. These tools take many factors 
into account, but according to a 2005 Transit Cooperative Research Program (TCRP) survey of 
36 US and Canadian transit agencies, gas prices were not a major consideration in the forecasting 
processes used by survey respondents (see TCRP, 2006). Other factors such as proposed new or 
adjusted routes, new modes or types of service, and/or scheduling changes were more prevalent 
inputs into forecast calculations. Problems associated with forecasting methods currently in 
place, or that have been proposed and left unused in the past, include a lack of transferability 
(since the models are developed and applied on local bases), requirements in the models for 
inaccessible data, and results that are difficult to interpret.  
 
Respondents to the TCRP survey indicated a number of desirable attributes for future proposed 
forecasting methodologies. Among these requests was that for a transferable methodology. The 
authors state, “Transferability across different metropolitan areas has not been established and is 
an important factor inhibiting widespread use of ridership forecasting models.”  
 
Another property deemed necessary, which ties in with the problems associated with 
transferability, is an ability to include local factors in the analysis. This need was observed 
within the context of analyzing fuel price effects, as seen in the fuel price research by Haire and 
Machemehl (2007b, discussed in Chapters 2 and 4) and Mattson (2008), because each transit 
community experiences a different reaction to fuel price. Other regional and local factors, such 
as population density and existing public transportation patronage, will also have varying effects 
on forecasted ridership. One of the lessons learned from the research was that local factors 
should be developed and calibrated, rather than reliance on external sources. The researchers 
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state, “Develop local factors—forecast models from external sources do not work well. They are 
complicated, time-intensive, data-intensive, and provide inferior results; local elasticities 
preferred over industry; use experience and results from the past.” 
 
Any forecast that produces a single value of future ridership is guaranteed to be wrong, and 
therefore, respondents to the TCRP survey expressed interest in forecasting methodologies that 
generate projections consisting of ranges and confidence intervals, rather than single values. It is 
also important that these results be easily interpretable and capable of presentation in lay terms 
for stakeholders and decision makers. The ability to interpret and present the forecast results in 
simple terms is viewed by practitioners as having equal importance with the results themselves. 
 
One of the primary problems with forecasting models proposed and produced in the past lies in 
the data requirements asked of planners using them. Respondents to the survey stated that they 
frequently did not have access to all the data required for proposed models; never was there a 
case where having too much available data created a problem. Thus, simplicity regarding data 
entry and data requirements is a considerable need. The authors instruct to “Simplify the 
approach—focus on one or two tools for synergy and absence of conflicting forecasts; trend 
forecasting and professional judgment can be as accurate as regression and econometric models; 
in-house expertise is more effective and less expensive than consultants.” Any proposed 
methodology should also be straightforward to apply, in part because the model will be used to 
compare multiple scenarios and must therefore be easily adjustable. 
 
Finally, the scope of forecasting results differs between large and small public transportation 
agencies. While smaller agencies look for more disaggregate forecasts for their transit networks, 
larger agencies expressed a desire to know results on a system-wide, network basis. 
 

3.3 SHORT-TERM FORECASTS VERSUS LONG-TERM FORECASTS 

Long-term forecasts, with horizons of multiple years and even decades, are time-consuming 
practices that involve such techniques as the four-step planning model (trip generation, trip 
distribution, mode split, and route assignment). However, despite the time and resources required 
to develop these forecasts, they are necessary when attempting to anticipate and plan for a 
region’s travel needs in the distant future. 
 
Completed research and literature abounds with studies focused on long-term forecasting, as is 
used for prospective or start-up projects, rather than short-term forecasts used for existing 
systems. The Federal Transit Administration (FTA) currently requires New Starts rail projects to 
provide ridership forecasts, which are accomplished using the four-step model. 
 
The data used as input in long-term forecasts differs in many cases from that used in short-term 
forecasts. Long-term forecasts make use of substantial amounts of economic, demographic, and 
land use data, from household income and vehicle ownership to maps of existing transportation 
infrastructure. From these data, origin-destination pairs are discerned and trips between the 
origin-destination pairs are assigned to existing and future transportation modes and routes. 
 
Conversely, planners creating short-term forecasts do not typically use origin-destination data to 
develop their forecasts, although such data are frequently considered in other ways (see TCRP, 
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2006). Demographic data are often components of short-term forecasts, however, as are transit 
ridership data. Short-term forecasts make use of system-wide and route-level ridership counts, 
and although planners indicate that stop-level boarding and alighting data would enhance their 
forecasting efforts, most agencies have technological and institutional problems with collecting 
such data. 
 
The primary difference between long-term and short-term forecasts lies in their respective levels 
of analysis. As mentioned, long-term forecasts have planning horizons of several years and often 
multiple decades, and attempt to anticipate the changes that may occur in the economic, 
demographic, or geographic realms. As such, they are concerned with the net changes in these 
factors through the forecast horizon, not the frequent fluctuations in regional and national 
characteristics, or the magnitude of these fluctuations. 
 
For our purposes, paramount among the potential input to forecasts are economic data, which 
arguably may have the greatest short-term fluctuations of the data types. As an example, if fuel 
price effects were to be included in a long-term forecast with a 20-year planning frame, the 
modeler would be interested in the overall change in fuel price within that 20-year period, not the 
yearly or monthly changes that accrued to equal that net change. If the year-to-year changes in 
fuel price fluctuate up and down by ten or 20 or 50 or 300 percent, but the summation of changes 
resulted in a net growth in price of five percent, the long-term forecast would capture the five 
percent change, not the greater short-term changes, which may have a more dramatic effect on 
travel behavior than the five percent net growth. From the elevated perspective that long-term 
forecasts take, they are simply incapable of capturing the effects of short-term changes in 
forecast inputs. 
 
The inability of long-term transportation plans to capture these shorter-term effects does not 
reflect any deficiency on their part. They are not intended to reflect these changes or provide 
forecasts responding to changes occurring on horizons shorter than their design horizon. Long-
term transportation planning forecasts are designed to aid planners in anticipating the travel 
needs of their constituents far into the future, and to prepare the transportation system to meet 
these needs. They examine the “big picture”, looking at regional connectivity and other issues, 
rather than focusing on the requirements of individual modes and systems to better provide 
service over the coming weeks and months. The numerous studies available in the literature 
reflect the long-range goals of these types of forecasts, inasmuch as they are geared towards 
building transportation systems that meet the future travel needs of the community as a whole. 
The inputs to these studies and the resulting projections reflect the long-term net changes in 
regional characteristics. One oft-used purpose of long-term forecasts is to derive benefit-cost 
analyses of potential transportation projects. Section 3.3.1 examines these studies dealing with 
long-term forecasts. 
 
Conversely, short-term forecasts are designed to respond to relevant changes on shorter bases. 
Unlike long-term forecasts, short-term planning forecasts are suited to anticipating changes that 
may occur over coming weeks and months and preparing the transportation system for the 
impacts of such changes. 
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3.3.1 Long-term Forecast Inputs and Horizons 

As stated, long-term regional transportation models are usually time-consuming procedures that 
require extensive small-scale input data, including origin-destination data, demographic and 
employment information, and numerous other transportation system characteristics and regional 
attributes. Despite the intricate level of data and intensive labor used in developing these travel 
forecasts, these types of models are ill-suited to calculating disaggregate transit ridership 
forecasts. Several researchers have attempted to remedy this problem by combining model types 
or introducing various levels of smaller-resolution factors. 
 
Researchers in Seattle combined regional transportation planning with transit ridership 
forecasting by using the regional models to derive estimates of future population growth and 
highway congestion, while relying on observed transit origin-destination pairs, transit line 
passenger volumes, and transit system characteristics to establish anticipated ridership levels 
(Dehghani and Harvey, 1994). 
 
Often, long-term forecasts are created for transit services that do not exist in the base year. In 
these feasibility studies, sketch-planning models are useful tools for planners. An early study in 
1986 sought to develop a sketch model of light rail and commuter rail transit ridership for 
nationwide use. This study collected data from 17 US regions regarding ridership, demographics, 
and the transportation systems in place. After evaluating 163 potential variables, two multivariate 
regressions were achieved that proved fairly reliable when transferred to other systems for 
validation. The model was capable of measuring the impacts to the light and commuter rail 
systems of improvements in operating speed and headways and changes in fares. 
 
Many transit feasibility studies focus on station-level characteristics to determine transit system 
success for proposed services. A study of potential extensions of San Francisco’s BART rail 
system developed a forecasting methodology that combined a direct ridership forecasting 
approach using multivariate regression models with the traditional four-step model to produce 
estimates of ridership at several proposed station locations (Walters and Cervero, 2003). The 
chief variables were based on station-area population and employment (within walking radius), 
catchment-area population, feeder bus service level, parking supply, train frequency, and train 
service type (BART heavy rail versus Caltrain commuter rail). The authors indicate that by 
combining the two forecasting approaches, the resulting model proved capable of responding to 
long-term projections including track alignments, station locations, and effects of nearby land 
use density and walkability, as well as shorter-response issues such as parking, feeder bus service, 
and rail service frequencies. Although the researchers addressed short-term responses to a few 
station-related concerns, the primary horizon for their forecasts was 2020, a year two decades 
distant from the analysis period. 
 
Another study focusing on station-level qualities of potential rail alignments used multivariate 
analysis to investigate the factors contributing most to rail ridership in the San Francisco and 
Sacramento areas (Saur et al., 2004). Similarly to the Walters and Cervero study, the researchers 
used station-level data to characterize ridership in a horizon year of 2020, based on parking and 
feeder bus service, rail service level and characteristics, and station-area demographics and 
employment. 
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In an later study, Saur developed “Transit Likelihood Indices” to compare base and 2025 future 
cases of commuter rail transit service in Petaluma, California, and predict the likely change in 
proclivity to use transit (Saur, 2005). The index was developed using changes in station-area 
development density and levels of service of the rail system. 
 
The Petaluma study made use of Geographic Information System (GIS) data in developing the 
Transit Likelihood Indices. GIS is becoming a more commonly-used application in gathering 
transit data, including ridership counts. Although its use is fairly widespread now, an early 
project at MIT proposed the usefulness of GIS in planning transit systems, particularly with 
respect to vehicle routing tasks (Azar and Ferreira, 1995). 
 
Long-term forecasts are often used to establish benefit-cost analyses for proposed transit projects 
(see Brod, 1997). Ridership forecasts play a large role in determining the success and cost-
effectiveness of an investment; if a service extension results in a ridership level that does not 
justify the cost involved in building the extension, those funds may have been invested more 
wisely in another way. A study evaluating the cost-effectiveness of a rail extension to San Luis 
Obispo from Los Angeles used a five-year time horizon and a limited database to develop 
ridership forecasts for the proposed service (Rice, 1998). The methodology assumed that 
population drove ridership and used historical passenger ridership trends, origin-destination data, 
details of service frequency, and station locations. 
 

3.4 FACTORS CONTRIBUTING TO TRANSIT RIDERSHIP 

Many characteristics of a community, its transit system, and individual household traits affect the 
success or failure of a public transportation network. These characteristics fall into one of two 
categories: factors outside the control of the agency (external factors) and factors within the 
agency’s control (internal factors). TCRP Report 111 (2007; see also Fleishman and Fay, 2005; 
TCRP, 2005) breaks external factors into six broad types and then lists individual elements 
contained within each type: 

• Population characteristics/changes 
o General growth in the region 
o High/increased immigration 
o High/increased number of seniors 
o High/increased tourism 
o High number of college students 

• Economic conditions 
o Employment/unemployment levels 
o Per capita income levels 
o Household auto ownership levels 

• Cost and availability of alternative modes 
o Fuel and toll pricing 
o Parking pricing and availability 
o Taxi fares 
o Fuel taxes 
o Auto purchase and ownership costs 
o Availability of commuter benefits programs by employers 
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• Land use/development patterns and policies 
o Density of development 
o Relative locations of major employers and residential areas 
o Land use/zoning controls and incentives 

• Travel conditions 
o Climate/weather patterns 
o Traffic congestion levels/highway capacity 
o Traffic disruptions (e.g., from major construction projects) 

• Public policy/funding initiatives 
o Air quality mandates 
o Auto emission standards 
o Federal/state transit funding levels (capital and operating) 
o Local transit funding (e.g., sales or other tax receipts) 

 
Regarding internal factors of which the transit operator has control, the authors break the 
system’s features into three types: (1) pricing/availability mode choice considerations (including 
fare levels and amount and types of service available), (2) service quality mode choice 
considerations (such as route design, service schedules and frequency, accessibility features, 
perceptions of agency safety and security, and the public image of the agency, to name a few), 
and (3) aspects of the organizational and management structure that facilitate the agency’s ability 
to enact strategies to influence ridership levels. 
 
Another study, conducted in Canada, used Canadian transit data for the period 1992-1997 from 
85 urban transit networks (carrying 97 percent of all Canadian transit passengers) to develop a 
model for transit ridership. The final model produced highly statistically significant  results that 
showed a positive relationship between revenue hours of service and ridership (using revenue 
hours of service as a proxy for service coverage and population) and a negative relationship 
between fares and ridership, both of which results are intuitive (Kohn, 2000). 

 

3.5 SHORT-TERM FORECASTING TECHNIQUES AND APPLICATIONS 

TCRP Synthesis 66 summarizes the state-of-the-practice with respect to short-term forecasting 
techniques in use by planners at most of the nation’s transit agencies. As cited, trend analysis and 
other means, including professional judgment, comprise the bulk of techniques currently used. 
Most short-term models are developed in-house by the transit agency, or by the regional 
metropolitan planning organization. 
 
Efforts to create short-term forecasting procedures by external researchers have resulted in novel 
developments. Among these is a methodology proposed in 2005 using Madrid transit data 
(García-Ferrer et al., 2005). This study developed a causal econometric model using a monthly 
dataset from 1987 to 2000 and a dynamic harmonic regression model for comparative purposes. 
Dynamic harmonic regression models are a type of unobserved component model. The 
researchers made use of intervention variables to counteract disruptions in ridership resulting 
from consequences of transit worker strikes and holidays. The researchers found that these types 
of models handled the seasonal nature of ridership data well and provided decent short- and 
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medium-term forecasts of ridership, although they admit that the importance of inevitable 
outliers within the dataset makes the process quite complex. 
 
Other applications of short-term forecasting techniques may have alternative goals besides 
projecting transit ridership. The US Department of Energy’s Office of Integrated Analysis and 
Forecasting develops the National Energy Modeling System (NEMS), one module of which 
focuses on transportation energy demand (USDOE, 2007). Among other transportation types 
including air, recreational boating, freight (highway, rail, and waterborne), and light-duty 
vehicles, the NEMS provides forecasts of energy use in mass transit applications. In the transit 
submodules used for the NEMS, passenger-miles are used as a surrogate for energy demand, and 
growth in transit mode usage (passenger-miles) is assumed to be proportional to the growth in 
light-duty vehicle passenger-miles. The validity of this relational assumption seems questionable 
on the surface, since one would assume that as transit patronage grows, some of those patrons 
have come to transit as former automobile users, thus decreasing the overall use of light-duty 
vehicles; one would expect the two to be inversely proportional. However, one must then 
consider the fact that national VMT continues to grow, despite all economic and other factors 
that would normally suggest otherwise. 
 
In the NEMS mass transit submodule, annual passenger rail energy demand by region is 
determined as the sum of transit rail, commuter rail, and intercity rail demand by census division. 
For the bus segment of the NEMS model, bus energy demand is calculated by multiplying the 
previous year’s bus demand by the ratio of change in light-duty vehicle usage and a 
proportionality coefficient (see Equation 3.1). 
 

 
 

(3.1)

where  

TMOD = Passenger-miles traveled, by mode 

VMTEE = Light-duty vehicle vehicle-miles traveled 

BETAMS = Coefficient of proportionality, relating mass transit to light-duty vehicle travel 

IM = Index of transportation mode: 1 = Transit bus, 2 = Intercity bus, 3 = School bus 

 

This short-term demand model is quite simple and relies heavily on the BETAMS coefficient to 
capture the effects of numerous other factors contributing to changes in transit ridership, as well 
as the assumptions made regarding the proportional relationship between automobile VMT and 
transit passenger-mile growth. However, the purpose of the model is not to develop ridership 
forecasts directly, particularly for any given transit agency or system, but to anticipate transit 
energy consumption at census division levels. Thus, rather than achieving a final numerical 
estimate of transit patronage, the value of passenger-miles traveled in the target year is then 
multiplied by a factor calibrated to derive the energy demands for the mode. These energy 
factors for rail and bus modes are developed from the freight (rail and heavy vehicle) module of 
the NEMS. 
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In a paper following similar logic to that presented in Chapter 4 of this document, short-term 
forecasts were derived using single-variate linear regression following seasonal adjustment of 
ridership data (Conlon, 1998). The seasonally-adjusted trend of the data was evaluated using 
least-squares, with the independent variable as time, and the subsequent forecast value was 
calculated and adjusted for its appropriate seasonal trend value. The author indicates that the 
developed forecasts of daily ridership for a multi-modal transit system in Maryland (using 1989-
1995 data) were within 0.16 percent of actual values. 
 

3.6 SUMMARY 

This chapter recounted the state-of-the-practice in short-term public transportation ridership 
forecasting and discussed recent academic and federal efforts to advance this state in terms of 
ridership projections and transit system energy consumption. It also elaborated the differences 
between short- and long-term forecasts and how the two types may be combined synergistically. 
 
Chapter 4 describes research conducted in 2006 that explored the relationship between fuel price 
and transit ridership in five historically auto-oriented US cities. This research supported and was 
succeeded by the forecasting model development that comprises the focus of this report. 
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Chapter 4: The Impact of Rising Fuel Prices on US Transit Ridership 

 

4.1 INTRODUCTION 

Several series of recent events, market forces, and countless other catalysts have driven fuel 
prices skyward over the past many months. As auto-dependent cultures around the world have 
seen fuel prices rising dramatically during this time, some have speculated that once-auto-
oriented transportation patterns may, as a result, begin to lean more heavily upon public 
transportation. 
 
In 2007, US transit ridership reached its highest level in 50 years; 10.3 billion trips were made 
using public transportation (Miller, 2008). The American Public Transportation Association 
(APTA) announced this extraordinary statistic in early 2008 following their analysis of the 
previous year’s ridership, and indicated that high fuel prices and road congestion, coupled with 
more widespread transit services, led to the growth. 
 
Indeed, it is doubtless that at least some commuters have changed their travel habits and now 
rely upon transit to lighten the burden to their wallets. In 2003, when fuel prices were less than 
half where they stood in late 2008, it cost an average of 53 cents per mile to own and operate an 
automobile. At an average fare of 18 cents per passenger-mile in 2003, transit was a decidedly 
more affordable option (USDOT, 2005). At their peak in 2008, however, fuel prices forced the 
price of vehicle ownership higher and although many transit agencies raised fares to offset their 
own fuel expenditures, transit still proves a more economical choice. 
 
A 2004 study by APTA surveyed transit agencies, asking whether they had observed any change 
in their transit patronage due to the increase in fuel prices between the beginning of 2004 and 
June 2004. At that time, the study found that “Transit agencies attribute a very small increase in 
ridership, less than four-tenths of one percent, to have resulted in part from the increase in the 
cost of fuel to motorists. Even if higher prices continue or increase, transit agencies anticipate an 
increase in ridership of only two-tenths of one percent.” (APTA, 2004) 
 
Most agencies have since amended that perspective as extreme fuel prices through 2007 and 
2008 coincided with a resurgence of national transit use. How much, though, have continuing 
fuel price increases affected transit ridership? Many transit agencies boast increased ridership 
and immediately point to fuel prices as the cause. What magnitude increase, however, constitutes 
sufficient change to cite fuel prices as the impetus? 
 
This chapter describes research conducted by the author in 2006 which sought to determine the 
validity of the claim that rising gasoline prices have fueled an increase in transit usage, and, if 
such a claim were warranted, to investigate the nature of such a relationship. Monthly ridership 
counts (unlinked passenger trips) for January 1999 through June 2006 for five large US cities, 
obtained through APTA, were the primary source of ridership trend information, and fuel price 
and consumption data were obtained from the US Department of Energy’s Energy Information 
Administration. 
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4.2 CITIES INVESTIGATED 

In selecting cities for evaluation, it was necessary to choose cities with sufficient transit systems 
in place to give travelers a choice in mode selection (so-called “discretionary users”). If a city, no 
matter how large or small, has a transit system which does not provide enough coverage or 
service regularity to prove a viable alternative to driving, it cannot be expected that travelers will 
switch their mode selection, no matter the expense savings, since such a choice would 
undoubtedly reduce their mobility. 
 
However, it was also important to the selection that a city not already be so oriented to transit 
usage that its residents could be labeled “transit-dependent”. In such cities, fluctuating gasoline 
prices cannot realistically be expected to have a substantial impact upon transit ridership or mode 
choice. To this end, cities with historically transit-oriented societies, including New York, 
Boston, and Chicago, were eliminated from consideration. 
 
Ultimately, five large urban areas were chosen for inclusion in this study: Atlanta; Dallas; Los 
Angeles; San Francisco; and Washington, DC. It is arguable that these cities may, in fact, have 
large “transit-dependent” populations, but in such cases it is believed that there are enough 
commuters and other trip-makers entering and exiting the city centers from areas not as transit-
dependent. 

4.3 BACKGROUND 

4.3.1 Transit Ridership Trends 

Using time-series analysis and seasonal averages between 1992 and 2001, the Bureau of 
Transportation Statistics (BTS) provides a visual representation of national seasonal ridership 
fluctuations, as illustrated in Figure 4.1 (BTS, 2002). 
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Figure 4.1 Seasonal Fluctuations from Average in Transit Ridership (1992-2001)  (BTS, 2002) 

 
 

Figure 4.1 reflects ten years of national ridership data, including cities across the US in regions 
with very different weather patterns, as well as cities in the “snow belt”, which experience four 
distinct seasons. The impact of these seasons can be seen in Figure 4.1; in the milder seasons, 
spring (March through May) and fall (September through October), ridership tends to be higher 
than average. In the seasons where it is less pleasant to travel by foot to a transit stop or wait 
outdoors for the transit vehicle to arrive, winter (November through February) and summer (June 
through August), transit ridership tends to be lower than average. Also enhancing these seasonal 
patterns are school and university academic schedules and seasonal migratory populations. 

4.3.2 Gasoline Price Trends 

It is no secret that fuel prices have risen rapidly in recent years. News agencies now regularly 
cite the prices of national and local gasoline as part of their normal broadcasts, and various other 
media have made those prices a conspicuous part of society. The US Department of Energy 
reports weekly and monthly fuel prices on their website at the national level, for various regions 
of the nation, and for select large metropolises. As can be seen from Figure 4.2, which depicts 
these national monthly data between August 1990 and March 2009, prices were relatively stable 
through the end of 2000, after which they rose quickly and experienced much more prominent 
fluctuations. Furthermore, prices during the 2005-2008 period were not only much higher than in 
the past, but also oscillated frequently by more than 50 cents within periods of only a few months. 
Prices fell precipitously in late 2008 and early 2009 to levels not seen since early 2004, but there 
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is no indication that they will remain at such levels; in fact, the contrary seems more likely, and 
as of publication, prices were again on the rise. 
 

 
Figure 4.2 US National Monthly Gasoline Price per Gallon, August 1990 – March 2009 

 
 

4.4 METHODOLOGY AND RESULTS 

The modes evaluated in this study include bus (MB), light rail (LR), heavy rail (HR), and 
commuter rail (CRP). Each city’s ridership trends for the available modes were evaluated. The 
modes for which data were available for each of the five selected cities are as follows: 
 
Atlanta (ATL): MB, HR 
Dallas (DAL): MB, LR, CRP 
Los Angeles (LA): MB, LR, HR, CRP 
San Francisco (SF): MB, HR, CRP 
Washington, DC (DC): MB, HR, CRP 
 
The modal data for each city are comprised of all such systems operating within the given 
metropolitan region, as data were available. The research contained herein made use of time 
series analysis using 12-month moving averages, seasonal indices, and correlation coefficients. 

4.4.1 Time Series Analysis 

The first step in analyzing the ridership data was to observe the overall trend for the 90 months 
(January 1999 through June 2006) for which data were available. The data were adjusted using a 
12-month moving average to counteract the monthly and seasonal fluctuations in ridership. A 
trend line was fit to these data using least-squares regression analysis. Most of the data sequences 
correspond to the averages for July 1999 through December 2005; exceptions are noted. 
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4.4.1.1 Bus (MB) Mode  
Figure 4.3 reveals substantially different ridership growth patterns for the five examined bus 
systems. Atlanta’s bus system shows a fairly steady decline over the period between May 2000 
and April 2004, then positive growth through the period centered at January 2005, suggesting 
that ridership again declined after June 2005. The trend line is decidedly negative with an R2 
value of 0.8015, suggesting that little variability is unexplained by the trend line. 
 
The Dallas bus system plot shows a sharply decreasing ridership trend which suddenly changed 
to sharply positive at the point centered at March 2003, indicating that ridership began to climb 
greatly in the months following September 2003. This growth continued through June 2006 at a 
high rate. 
 
The Los Angeles bus ridership data for the period analyzed had two anomalous points, assumed 
to be the result of strikes or some other service disruption (these appeared in the HR and LR data 
sets as well), which were omitted and replaced with interpolated data in Figure 4.3(c), so that the 
overall trend could be observed. The adjusted data show a general upward trend, although 
between February 2002 and September 2004 there was a decrease. Since September 2004, 
ridership has been growing steadily. 
 
The San Francisco data reveal that the system hit its ridership peak at the point centered about 
May 2001 and has been declining since then. It should be noted that data for the San Francisco 
Municipal Railway (both MB and LR modes) were either unavailable or too fractured to include 
in this analysis. 
 
The bus ridership data for Washington, DC indicate general sustained growth in ridership over 
the period analyzed, despite a slight dip between June 2004 and July 2005; positive growth 
resumed following July 2005. The trend line fit to these data has a fairly high R2 value of 0.7303, 
showing a good fit to the data. 
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Figure 4.3 (a-e) 12-Month Moving Average Trend, MB mode, (a) Atlanta, 

(b) Dallas, (c) Los Angeles, (d) San Francisco, (e) Washington, DC 
 
 
4.4.1.2 Light Rail (LR) Mode 
Figure 4.4(a) shows that Dallas’ LR system has been experiencing steady slow growth in 
ridership, when the effect of service expansion is ignored. Between July 2003 and about August 
2004, ridership decreased somewhat, but picked up again after August 2004. 
 
The Los Angeles LR system’s ridership has grown fairly steadily over the analysis period, with a 
greater growth rate in the months following February 2005. The R2 value in Figure 4.4(b) is quite 
good, 0.9731, showing that the trend line fits the data well and that the system generally gains 
nearly 580 unlinked passenger trips per month. 
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Figure 4.4 (a-b) 12-Month Moving Average Trend, LR mode, (a) Dallas, (b) Los Angeles 

 

4.4.1.3 Heavy Rail (HR) Mode  
Figures 4.5(a-d) show the plots of 12-month moving averages for the evaluated HR modes. Like 
the Atlanta MB data, the Atlanta HR data show a steady fall in ridership, with a slight increase 
that occurred around June 2004, only to decline again starting May 2005. The R2 value of 0.8502 
shows a good fit with the data. 
 
In Figure 4.5(b), the Los Angeles HR data, adjusted to omit the anomalous points, shows a 
decline between May 2002 and August 2003, but growing ridership since August 2003. 
Ridership growth through the end of the analysis period was rapid. 
 
The San Francisco HR data (for the BART system) grew in magnitude between 2000 and early 
2002, but declined to a low point attained in June 2003 and rose fairly steadily after that time. 
 
Washington, DC’s HR system (METRO) experienced steady growth in ridership at varying rates 
throughout the period of analysis. The R2 value of 0.9297 corresponds to a trend line that fits the 
data well and indicates that the system gains about 1840 new unlinked passenger trips per month. 
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Figure 4.5 (a-d) 12-Month Moving Average Trend, HR mode, 

(a) Atlanta, (b) Los Angeles, (c) San Francisco, (d) Washington, DC 
 

4.4.1.4 Commuter Rail (CRP) Mode 
In Dallas, the CRP system, the Trinity Railway Express, had a major service expansion in 
December 2001, thus the plotted data points in Figure 4.6(a) begin with the 12-month moving 
average centered at June 2002. The system had ridership growth after June 2002, but then 
experienced steadily falling ridership between October 2003 and August 2005, when it began to 
grow rapidly through the end of the analysis period. 
 
Unlike the other transit modes in Los Angeles, the CRP system there did not have anomalous 
data points. The data provide a trend with a relatively stable slope, indicating steadily increasing 
ridership through the analysis period. The R2 value, 0.9812, shows that the derived trendline 
equation fits the data points well, and that the system tends to gain approximately 100 new 
unlinked passenger trips per month. 
 
The San Francisco CRP system, Caltrain, has experienced fluctuations in ridership, reaching a 
high in September 2001 that decreased continually for many months, attaining a minimum in 
about February 2004. Since that point, ridership has grown relatively steadily. 
 
For the Virginia Railway Express (VRE), Washington, DC’s CRP system, ridership has risen at a 
steady rate since the beginning of the analysis period, gaining about 73 new unlinked passenger 
trips each month. Since February 2005, however, ridership has leveled off at about 311,000 trips 
per month. 
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Figure 4.6 (a-d) 12-Month Moving Average Trend, CRP mode, (a) Dallas, 

(b) Los Angeles, (c) San Francisco, (d) Washington, DC 
 

4.4.2 Seasonal Indices 

Using the 12-month moving averages, seasonal indices were developed for each month for each 
evaluated city’s modes, each mode in aggregate form (i.e. the sum of all MB system ridership 
across the five cities), and values for all modes and cities combined. These indices were 
developed by dividing the actual monthly ridership values by the corresponding moving average, 
to find what percentage of the moving average the monthly data point constituted. 
 
In finding the index for a particular month, the median value was used (rather than the 
mathematical mean) because it proved more accurate, eliminating the effect of strikes or other 
anomalous data points without requiring use of the interpolated data points (in the case of the 
Los Angeles data). Table 4.1 provides all city- and mode-specific monthly indices derived in this 
manner. 
 
While the cities in this study lie in more temperate regions of the US, the impact of seasonal 
change on their ridership is also apparent. This seasonal change in ridership is displayed in 
Figure 4.7 through the use of the median-valued seasonal indices for all modes in all five cities. 
Unlike the plot supplied earlier from BTS, which includes all cities in all climate regions of the 
US, a drop in ridership during the summer months is not exhibited in Figure 4.7. Although these 
cities experience seasonal weather fluctuations, they are much less pronounced than in cities 
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lying farther north; the winter months (November through February) show lower-than-average 
ridership, while the spring, summer, and fall months (March through October) find higher-than-
average ridership. It is hypothesized that while the relatively colder winter weather temperatures 
have a negative effect on ridership, the residents of these regions are much more sensitive to 
colder temperatures and more tolerant of the warmer summer weather. 
 
 
 

 
Figure 4.7 Seasonal Index Difference from 100 %; All Modes, All Cities 

 
 
 



 

 

 

Table 4.1 Adjusted Seasonal Indices (Median Values), 1999-2005 
 

ATL DAL LA SF DC 
All 
MB ATL LA SF DC 

All 
HR DAL LA All LR DAL LA SF DC 

All 
CRP

Jan 94.3 99.0 96.4 99.7 92.8 96.4 95.5 97.3 95.4 92.7 95.0 97.2 98.0 97.9 101.1 98.2 95.8 98.2 98.0 95.9

Feb 96.6 92.1 90.6 91.9 90.0 90.4 89.5 92.8 92.0 89.4 90.4 91.4 91.0 91.2 93.1 93.6 89.9 92.6 91.5 90.7

Mar 101.8 100.6 103.1 100.9 104.5 104.0 102.7 103.6 104.0 106.3 105.7 104.6 104.4 103.6 113.4 108.0 101.1 109.0 105.7 104.3

Apr 101.7 101.5 103.4 95.3 105.1 102.0 97.6 99.9 100.1 107.5 103.7 99.2 101.8 102.4 100.1 101.9 103.2 104.0 103.6 102.4

May 100.1 101.2 104.0 102.3 102.9 103.8 101.0 104.6 103.1 102.9 102.1 102.2 103.9 103.8 91.4 103.3 106.9 104.5 104.2 103.9

Jun 100.0 94.3 100.1 98.0 106.0 100.0 100.2 105.6 101.7 108.1 106.2 99.4 102.5 101.7 97.9 103.7 104.1 104.9 103.4 101.9

Jul 97.7 95.5 103.7 92.1 107.2 103.4 106.7 114.0 100.6 109.3 106.4 101.6 105.5 103.5 104.2 99.2 103.6 101.1 102.6 104.2

Aug 102.9 104.0 104.9 104.3 103.2 104.5 108.3 114.7 101.7 102.0 102.5 103.2 106.2 108.1 103.8 104.2 107.0 104.2 105.0 104.8

Sep 102.9 105.4 99.5 102.3 99.3 101.0 100.9 99.7 102.7 96.3 99.2 101.0 97.8 98.8 100.8 97.4 101.0 97.9 98.4 100.4

Oct 107.6 113.2 102.1 115.1 104.9 103.1 107.7 82.5 104.8 103.4 102.8 105.5 98.8 99.8 104.0 104.5 104.5 105.8 104.8 102.4

Nov 98.4 98.9 96.8 101.6 93.6 95.9 97.3 90.1 96.7 92.3 94.1 100.2 94.4 95.1 95.0 95.4 94.8 92.2 94.6 95.1

Dec 95.9 94.2 95.5 96.6 90.4 95.6 92.5 95.2 97.1 89.9 91.9 94.6 95.8 94.3 95.4 90.6 88.0 85.6 88.5 94.0

Bus (MB) Heavy Rail (HR) Light Rail (LR) Commuter Rail (CRP) All Modes,
All Cities
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4.4.3 Correlation between Ridership Data and Fuel Prices 

Using correlation coefficients, this research sought to determine how well the ridership and fuel 
prices varied together in the period from January 2004 to June 2006. Figure 4.8 (a-b) provides 
two sample plots of ridership and fuel price, the first for the Dallas MB system and the second 
for Washington, DC’s HR (METRO) system. Examination of these plots reveals interesting 
correspondence between the price data and ridership data. In many locations, the data 
fluctuations appear to vary together, particularly in the 2004-2006 data points. 

 
Figure 4.8 (a-b) Ridership and Fuel Price, (a) Dallas MB, (b) DC HR 

 

Finding how well the two variables varied together should reveal clues as to how much growth in 
ridership may be attributable to fuel price increases. Thus, in calculating the correlation 
coefficients, fuel price was treated as the independent, or observed (X), variable and ridership 
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was treated as the dependent, or predicted (Y), variable. Table 4.2 provides the results of the 
correlation coefficient analysis. 
 
It may also be observed from the plots like those in Figure 4.8(a-b) that there may be a lag period 
between fuel price increases and what appear to be corresponding ridership increases, perhaps 
due to new transit riders’ reluctance to react immediately to the fuel price increases. To 
determine the validity of this observation and find how long it takes riders to respond to 
increasing fuel prices, the fuel price data were shifted forward by single-month increments from 
one to five months. 
 
However, only the one- and two-month shift cases for the Dallas LR system produced better 
results than the original un-shifted data points. It may be the case that the shifted correlation 
values do not capture the behavioral fluctuations accurately; reactions to rising prices may 
generate a different effect than falling prices, or gradual desensitizing to stable, though high, 
prices. A better methodology for determining the existence and magnitude of any behavioral lag 
may be more appropriate. 
 
For the original (un-shifted) data sets, all except the San Francisco MB produced positive 
correlation coefficients and thus it was desired to know the significance of the computed 
correlation coefficients. Finding this significance was accomplished using Student’s T statistic 
and a significance α-level of 0.05. Having 28 degrees of freedom (30 monthly data points minus 
two), the corresponding t-value is ±2.048. 
 
The null hypothesis (H0) was that the population showed zero correlation (H0: ρ = 0) and the 
corresponding alternate hypothesis, HA, that the data had some non-zero correlation (HA: ρ ≠ 0). 
The test statistic used for this test is computed as 
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Using this test statistic by plugging in the calculated correlation coefficients for r, and n = 30, the 
obtained value was compared to the significant t-value of ±2.048. Any test statistics with 
absolute values greater than 2.048 led to a rejection of the null hypothesis with 95% confidence, 
and a conclusion that statistically significant correlation exists between the ridership data and the 
fuel price data. 
 
Table 4.3 provides the results of this statistical test. The bold-faced values indicate a rejection of 
the null hypothesis, or, in other words, transit systems showing non-zero correlation between 
ridership and fuel price. It is notable that only the San Francisco MB system shows a negative 
correlation (statistically insignificant) with fuel price; all others are positive. However, the 
Atlanta MB and HR systems and the DC CRP system do not show statistically significant 
correlation. All the aggregate mode values (those in which data for all systems of that mode type 
are summed) display significant correlation with the fuel price data. All other city modal data 
show statistically significant correlation; the greatest significance is shown in the Dallas MB, 
Los Angeles LR and HR, and the San Francisco CRP systems. The aggregated LR and CRP 
modes display highly statistically significant correlation as well. 
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These results suggest that rising fuel prices have, in fact, played a role in encouraging transit 
usage in the historically auto-oriented cities analyzed here. In general, LR and CRP system 
ridership appear to exhibit the greatest correlation to fuel price, implying that as fuel prices 
increase, potential LR or CRP passengers are perhaps more reactionary to price increases. Heavy 
rail is generally the third-selected of the four analyzed aggregate modes, having the next-greatest 
statistical significance. However, the aggregated HR correlation value is depressed by the 
inclusion of the Atlanta data. Bus passengers (with the exception of the Dallas system and Los 
Angeles systems) appear to react to rising fuel prices the least. This effect may be due to the 
demographic characteristics of bus passengers or average trip lengths. 
 
It may be argued that these correlation coefficients capture the effects of influences other than 
fuel price. This is a valid argument; however, other influences may be grouped into one of two 
categories: supply factors and demand factors. On the supply side, we have aspects of the transit 
service itself, such as service expansions or disruptions. Also included in this category are fare 
increases. In the five cities evaluated, there is generally one transit agency that comprises the 
bulk of the data. These agencies were queried about fare increases during the analysis period. 
The Atlanta MARTA system and Dallas DART systems had no fare increases during the period 
2004 to present, while the San Francisco BART and Los Angeles MTA implemented fare 
increases on January 1, 2004. BART also had a Consumer Price Index-based 3.7 percent increase 
and ten-cent capital surcharge added to its fare structure on January 1, 2006, constituting a 
minimal increase. The DC METRO system had a slight fare increase in June 2004. Thus, no 
system had a sizeable increase that would be believed to effect ridership detrimentally. 
Additionally, the research team is unaware of any substantial service expansions or reductions 
during the January 2004 – June 2006 analysis period. 
 
In the other category, demand factors, it is believed that, because the analysis period is relatively 
short, only 30 months, any economic factors that may affect demand are minimized. 
Environmental influences are minimized through the selection of cities with ridership patterns 
that are less affected by seasonal changes. 

4.4.4 Empirical Relationships between Fuel Price Change and Transit Demand 

For those modes with statistically significant correlation coefficients, this research attempted to 
discern basic empirical relationships between fuel price and transit demand, or the percent 
change in ridership for a one percent change in fuel price. These relationships were obtained by 
analyzing observed data and thus should not be confused with or misinterpreted as elasticities, 
which are today derived by more theoretical means. 
 
To accomplish this goal, the monthly percent changes in ridership were plotted against the 
corresponding percent change in gasoline price. The slopes of the corresponding trend lines are 
provided in Table 4.3. While the R2 values on the trend lines were rather low (most on the order 
of 0.10), the lines tended to fall in the first and third quadrants of the coordinate system, and 
most passed through or very near the origin. 
 
As can be seen from Table 4.3, the HR and CRP modes enjoy the greatest values (0.2653 and 
0.2726, respectively), while LR has a substantially lower value (0.0665) than the other evaluated 
rail modes. This suggests that although there is high correlation between fuel price and LR 
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ridership, ridership fluctuates at a much lower rate on LR systems than on other modes. Whereas 
the HR and CRP modes garner about 0.27 percent more riders for every one percent increase in 
fuel price, LR mode ridership increases by only 0.07 percent. The MB systems analyzed have 
higher values than LR, on the same order as those of the HR and CRP systems. Overall, all 
calculated values were positive, and the general relationship between fuel price and transit 
demand appears to be 0.2379. 
 
As an extension to finding these relationships, plots of percent change in ridership were set 
against the actual change in fuel price. The slope values found in this manner are also located in 
Table 4.3. The relationships, expressed in this alternate form, show similar correspondence to the 
standard relationships, with CRP and HR ridership being most influenced by increases in fuel 
price and LR being least influenced. The MB mode ridership shows varying levels of impact by 
fuel price, although the Dallas bus system is an exception to this generalization. For the 
aggregate model which contained data for all cities and all modes, this value constituted an 
approximate 0.09 percent change in ridership for each additional cent of fuel price. 
 
These findings may have important implications for transit agencies. While all the modes 
showed correlation between fuel price and ridership, some displayed higher correlation than 
others. After observing the correlation values, it is necessary to then find the corresponding 
empirical relationship value. In doing this, one can see that although a particular system may 
have high correlation, the relationship itself may not be great. For instance, the LR systems show 
highly statistically significant correlation, but the relationship value reveals that ridership is not 
changing with fuel price as strongly as other modes. 
 
This result brings into question the matter of resource allocation. If transit operators were to track 
data for their own systems in this manner, it may help them better determine to which modes 
they should allocate their scarce resources. As an example, if an agency manages LR and HR 
systems, knowing from the correlation coefficient values that their potential riders are sensitive 
to rising fuel prices would aid them in anticipating ridership increases. However, knowing the 
nature of the relationship between fuel price and demand through the empirical relationships 
could enable them to better respond to demand changes. Based on the findings in this research, 
an agency would likely choose to allocate more resources to the HR mode than to the LR mode 
in order to better serve their constituents, since the magnitude of the HR response (shown in the 
empirical relationship values) is greater than that of the LR response. 
 
The magnitude of the empirical relationships may underscore differences in service structure 
inherit in the modes. Characteristics of the modes themselves play a role in service quality, 
particularly with respect to accessibility and reliability. Bus systems are very flexible but not 
known for their reliability or timeliness, while rail modes, with their fixed guideways, are less 
flexible but reliable. An exception to the reliability within rail modes are light rail systems 
running in mixed traffic. Figure 4.9 provides a graphical representation of the spectra of transit 
mode accessibility/flexibility and reliability. For instance, while bus systems are flexible and 
offer wide service coverage, they are typically not the most reliable as far as schedule, nor are 
they the most comfortable of the modes. Light rail, it can be argued, is a step up from bus, 
offering greater comfort and improved speed, but because it still shares guideway in some 
locations with automobiles, reliability is decreased. As examples, the Dallas system shares 1.5 
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miles of its 45-mile system with automobiles in downtown Dallas, even if only at intersections. 
The Los Angeles system, by comparison, shares approximately 35 percent of its guideway with 
autos. 
 

 
Figure 4.9 Spectra of (a) Accessibility / Flexibility and (b) Reliability for Selected Modes 

 

Those systems with the highest correlation and empirical relationships include the HR and CRP 
systems. The implications here are that riders switching from auto mode value comfort, speed, 
and reliability when making their modal choice. The drawbacks of these modes are their limited 
coverage and accessibility. 
 
The exception to the generalizations drawn in this study for CRP systems is the Virginia Railway 
Express, the DC CRP system. However, its service routes closely parallel the DC HR routes, 
except far outside the city. Given that this mode is competing with the DC HR for passengers, it 
is not surprising that its correlation is less than that of similar CRP systems. 

 

 



 

 

 

Table 4.2 Significance of Calculated Correlation Coefficients 
 

ATL DAL DC LA SF 
All 
MB DAL LA All LR ATL DC LA SF 

All 
HR DAL DC LA SF 

All 
CRP

Computed r-
value
(Correlation 
Coefficient) 0.344 0.794 0.521 0.715 -0.029 0.597 0.633 0.797 0.823 0.117 0.605 0.800 0.703 0.659 0.534 0.038 0.688 0.844 0.770 0.665

Test Statistic
(Reject H0 if 
>2.048
or <-2.048)

1.937 6.910 3.229 5.408 -0.156 3.934 4.328 6.992 7.663 0.621 4.023 7.044 5.233 4.632 3.341 0.201 5.023 8.320 6.384 4.716

Motor Bus (MB) Light Rail (LR) Commuter Rail (CRP)Heavy Rail (HR)
All 

Modes,
All Cities

 
 
 

Table 4.3 Empirical Relationships between Fuel Price Change and Transit Demand 
 

 

All Modes,
DAL DC LA All MB DAL LA All LR DC LA SF All HR DAL LA SF All CRP All Cities

% change in 
ridership
for a 1% increase 
in fuel price

0.5404 0.3097 0.2229 0.2439 0.1058 0.0582 0.0665 0.4043 0.1053 0.2270 0.2653 0.4923 0.2131 0.3735 0.2726 0.2379

% change in 
ridership
for a 1¢ increase 
in fuel price

0.2330 0.1203 0.0824 0.0939 0.0407 0.0135 0.0197 0.1620 0.0312 0.0948 0.1021 0.1989 0.0790 0.1456 0.1026 0.0916

Light Rail (LR) Heavy Rail (HR) Commuter Rail (CRP)Motor Bus (MB)
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4.5 CONCLUSIONS 

The research presented here, conducted in 2006, found that of the five cities analyzed, most of 
their transit systems experienced ridership growth in the months following early 2004. 
Exceptions to this growth include the Atlanta bus and heavy rail systems and the San Francisco 
bus systems, which saw declining ridership. 
 
Using time series analysis, seasonal indices, and correlation coefficients, ridership trends were 
evaluated and compared with corresponding national fuel prices for individual modes in each 
city and the aggregation of each mode. With the exclusion of the Atlanta bus and heavy rail 
systems, the San Francisco bus system, and the Washington, DC commuter rail mode (Virginia 
Railway Express), this research found statistically significant correlation between ridership and 
fuel prices for all evaluated systems, suggesting that fuel price increases have, in fact, played a 
role in encouraging transit use in historically auto-oriented American cities. The most significant 
correlation, on a system basis, appears in the San Francisco heavy rail and commuter rail systems, 
the Los Angeles bus and heavy rail systems, and the Dallas bus system.  
 
On an overall modal basis, light rail and commuter rail system ridership appear to exhibit the 
greatest correlation to fuel price, implying that riders of these modes react more to fuel prices 
than patrons of other modes, although the systems analyzed in this research vary considerably in 
their service characteristics. Bus passengers (with the exception of the Dallas and Los Angeles 
systems) appear to react to rising fuel prices the least. 
 
The empirical relationships between fuel price and transit demand were evaluated for those 
modes showing statistically significant correlation, and these relationships appear to be on the 
order of 0.24. When converted to percent change in ridership for a one-cent increase in fuel price, 
the average effect is approximately 0.09 percent. 
 
These findings may have implications for transit agencies in the matter of resource allocation. 
The correlation values show how reactionary riders are to fuel price, but the empirical 
relationships indicate the magnitude of that reaction. 
 
Chapter 5 commences the forecasting model building, based in part on the findings from the 
research presented in this chapter. 
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Chapter 5: Data Used in Ridership  

Modeling and Issues in Time Series Analysis 

 

5.1 OVERVIEW 

The remainder of this work comprises the research, data treatments, and modeling conducted in 
developing a transferable short-term transit ridership forecasting methodology, incorporating, 
among other variables, a means of measuring the effect of fuel price on transit demand. 
 
Time series data from the period January 2002 to December 2007 were employed to build and 
calibrate the forecasting model. These data included ridership information as well as time series 
data pertaining to system operating characteristics, among other data types. This chapter 
describes the data available for analysis and how the data were obtained. As will be discussed 
further in Chapter 9, model validation was performed following model development using the 
same time series data types for the six-month period from January through June of 2008. 
 
Special issues inherent in analyses of time series data are also addressed in this chapter, 
including collinearity, non-stationarity, and heteroscedasticity, and the means by which the 
dependent variable was transformed to offset these issues. The reasons for exclusion of some 
public transportation systems from treatment and evaluation are also outlined. 
 

5.2 DATA SOURCES 

In compliance with the forecasting concerns highlighted in Chapter 3, particularly that regarding 
accessibility to and availability of modeling input, all data used in this proposed model are 
readily available to transit planners, either internally from the agency itself or directly from 
federal internet databases. 
 
Data for the model were obtained from several sources, including the Federal Transit 
Administration’s National Transit Database (NTD), personal correspondence with the American 
Public Transportation Association (APTA) for fare histories, and the Bureau of Labor Statistics 
(BLS) for monthly Consumer Price Indices (CPI) and fuel price. 

5.2.1 Data and Variables Available in the National Transit Database 

Using the sources listed, a variety of data were available, particularly from the NTD. Brief 
descriptions of these data follow. 
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5.2.1.1  Unlinked Passenger Trips (UPT) 
The monthly unlinked passenger trip (UPT) counts for each evaluated system make up the 
dependent variable of the model, to be predicted in the forecasts developed herein. An unlinked 
passenger trip is defined as one segment of a transit passenger’s total trip and does not include 
transfers between vehicles or modes. For instance, if a passenger caught a bus near one endpoint 
of his or her journey, transferred to a second bus, and then transferred to a rail system to reach 
the final destination, such a sequence would consist of three unlinked passenger trips. 
 
No public transportation agencies currently gather data for linked trips or report statistics thereon, 
as the technology for collecting information on linked trips is not in place. What data exist 
regarding linked trips are generated through special network demand origin-destination studies 
and thus are synthetic, or artificial, data. Although it is conceivable that unlinked passenger trips 
could increase while the count of linked trips remained constant, it is extremely unlikely as 
travelers tend to view transfers (linkages) unfavorably and will make trips consisting of as few 
segments as possible. Thus unlinked passenger trips, as the only available patronage data type, 
are also well-suited for measuring growth in overall ridership. 
 
5.2.1.2  TRS_ID 
These four-digit identification numbers, assigned by the Federal Transit Administration, serve as 
an agency’s unique identifier; the leading value of the number corresponds to the region of the 
country in which the agency is located. The ten regional assignments are as follows: 

• Region 0: Pacific Northwest 
o Alaska, Idaho, Oregon, Washington 

• Region 1: New England 
o Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, Vermont 

• Region 2: Northeast 
o New Jersey, New York 

• Region 3: Mid-Atlantic 
o Delaware, District of Columbia, Maryland, Pennsylvania, Virginia, West Virginia 

• Region 4: Southeast 
o Alabama, Florida, Georgia, Kentucky, Mississippi, North Carolina, Puerto Rico, 

South Carolina, Tennessee 
• Region 5: North Central 

o Illinois, Indiana, Michigan, Minnesota, Ohio, Wisconsin 
• Region 6: South Central 

o Arkansas, Louisiana, New Mexico, Oklahoma, Texas 
• Region 7: Mid-West 

o Iowa, Kansas, Missouri, Nebraska 
• Region 8: Mountain West 

o Colorado, Montana, North Dakota, South Dakota, Utah, Wyoming 
• Region 9: West 

o Arizona, California, Hawaii, Nevada 
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5.2.1.3  Urbanized Area (UZA) and Urbanized Area (UZA) Name 
The UZA designations contained in the NTD correspond to the US Census Tracts in number and 
name. These values were used to match fuel prices with transit systems (see Section 5.2.2.1). 
 
5.2.1.4  MODE 
The NTD data supply information for numerous modes, including automated guideway (AG), 
cable car (CC), commuter rail (CR), demand response (DR), ferry boat (FB), heavy rail (HR), 
inclined plane (IP), light rail (LR), motor bus (MB), monorail (MO), trolley bus (TB), and van 
pool (VP). 
 
In this report, the modes with widest implementation and heaviest usage were considered. Motor 
bus and trolley bus were combined into a “BUS” category, the difference between the two modes 
being their means of propulsion; motor buses are those involving some type of autonomous 
engine contained within the vehicle; trolley buses gain power from connection to an overhead 
electrical catenary. Also modeled were light rail (LR), heavy rail (HR) (subway), and commuter 
rail (CR) systems. 
 
After accounting for systems with incomplete or inconsistent datasets, 215 bus systems (212 MB, 
3 TB) were included in the final analysis, as were 17 light rail, 10 heavy rail, and 12 commuter 
rail systems, for a total of 254 public transportation systems. 
 

5.2.1.5  Type of Service (TOS) 
This information pertains to further differentiation of mode, representing how the systems are 
managed. In many cases, the transit systems are operated directly by the agencies themselves—
these systems are designated “Directly Operated” (DO). In other cases, the system may be fully 
contracted out to a sub-contractor, or the agency may contract out a subset of their service; these 
systems are designated “Purchased Transportation” (PT). In many cases, the PT aspect of an 
otherwise DO system may indicate a special service operated for the benefit of some sub-section 
of the population, or comprise a group of such services. 
 
5.2.1.6  Vehicle Revenue Miles (VRM) 
Describing the amount of service offered, a vehicle revenue mile consists of one vehicle 
operating in revenue service for one mile. Vehicle revenue miles tend to meet with disfavor in 
measuring service when compared with the vehicle revenue hour (see Section 5.2.1.7), because 
the number of vehicle revenue miles served by an system depends in large part on the operating 
speed of the vehicles in service, which can vary significantly along the length of a route and by 
time of day. 
 
5.2.1.7  Vehicle Revenue Hours (VRH) 
Vehicle revenue hours are a secondary means of describing the quantity of service supplied. One 
vehicle revenue hour constitutes a single transit vehicle operating in revenue service for one hour. 
As mentioned in Section 5.2.1.6, the vehicle revenue hour is favored over the vehicle revenue 
mile for its consistency in measuring revenue service. 
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5.2.1.8  Vehicles Operated in Maximum Service (VOMS) 
As demand for public transportation changes during the course of a day, more or fewer vehicles 
will be required in order to meet demand. The number of vehicles operated in maximum service 
gives a measure of fleet size by indicating the greatest number of vehicles deployed during 
maximum service (usually the peak morning and evening commuting hours) to meet demand. 

5.2.2 Additional Data and Variables from Other Sources 

Seeking additional information outside the NTD to supplement system-specific characteristics 
led to a variety of data from several sources. 
 
5.2.2.1  Fuel Price (FUEL) 
Fuel price data were obtained from the Bureau of Labor Statistics (BLS), which tracks average 
price data for numerous commodities. The values obtained from the BLS website represent the 
per-gallon prices for unleaded regular gasoline on several bases, which were applied as 
appropriate based on the UZA information supplied by the NTD (see Section 5.2.1.3). 
 
There are 14 urbanized regions with specific price data in the BLS. When possible, fuel prices 
from these 14 regions were assigned to the evaluated systems. These regions include: 

• New York-Northern New Jersey-Long Island, NY-NJ-CT-PA 
• Philadelphia-Wilmington-Atlantic City, PA-NJ-DE-MD 
• Boston-Brockton-Nashua, MA-NH-ME-CT 
• Chicago-Gary-Kenosha, IL-IN-WI 
• Detroit-Ann Arbor-Flint, MI 
• Cleveland-Akron, OH 
• Washington-Baltimore, DC-MD-VA-WV 
• Dallas-Fort Worth, TX 
• Houston-Galveston-Brazoria, TX 
• Atlanta, GA 
• Miami-Fort Lauderdale, FL 
• Los Angeles-Riverside-Orange County, CA 
• San Francisco-Oakland-San Jose, CA 
• Seattle-Tacoma-Bremerton, WA 

 
When a transit system did not fall into one of these 14 metropolises, it was still possible to assign 
fuel prices corresponding to city size and national region, as defined for the price data according 
to the BLS. Three population-based city sizes were available for four regions: Northeast, South, 
Midwest, and West. City size “A” indicates those cities having populations greater than 
1,500,000; city size “B/C” corresponds to cities with populations between 50,000 and 1,500,000; 
and city size “D” represents cities with fewer than 50,000 inhabitants. Using Census population 
data and regional definitions as defined by the US Department of Labor, fuel prices were 
matched in the time series with the appropriate UZA and transit system data. 
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5.2.2.2  Consumer Price Index (CPI) 
Inclusion of the CPI in analysis was intended as a measure to track changes in the national 
economy. The CPI is a free, easily-available data type corresponding to the national economic 
pulse and chosen for the reliability of its availability from and derivation by federal sources. 
Other measures of economic activity, such as the Consumer Sentiment Index or Consumer 
Confidence Index, were expensive to purchase. Within the data available for the CPI, the 
national series for “All Urban Consumers” was selected. 
 
5.2.2.3  Weekdays per Month (WEEKDAYS) 
Most trips made by public transportation occur on weekdays as work commute trips. Therefore, 
accounting for ridership variability stemming from differing numbers of weekdays in a month, 
the WEEKDAYS variable counts the number of weekdays in a given month, excepting the New 
Year’s Day, Thanksgiving, and Christmas holidays. 
 
5.2.2.4  Fares (FARE) 
Historically, changes to transit fares have brought on corresponding change in patronage. 
Increases in fares tend to bring about a decline in ridership. The magnitude of this relationship 
has been a subject of debate for many years (see Goodwin, 1992). In this research, measuring 
this relationship or elasticity was not the goal; the purpose of including a variable related to fare 
was merely to identify a potential stimulus for ridership change. 
 

One year of fare data were purchased from the American Public Transportation Association 
(APTA), and remaining years’ data were obtained via personal correspondence. The only 
national agency found to record fares was APTA, which is comprised of member transit agencies 
and collects data only from these members. Hence, a drawback of these data was that not all 
systems in the FTA database had available fare information from APTA. In the end, 82 of a total 
215 bus systems had reliable fare change information provided, as did 14 of 17 light rail, seven 
of ten heavy rail, and six of 12 commuter rail systems. 
 
Due to discrepancies in reporting or recording errors, the usefulness of the fare data was 
minimized and ultimately led to inclusion of a binary variable indicating whether there had been 
a fare change or not. All fare changes implemented were increases to fare. Some fare increases 
were large compared to the previous fare; others were incrementally small. However, although 
some of the fare increases may have been as much as 200 percent, fares are nationally very low 
and therefore even such a doubling of fare does not equate to a large out-of-pocket cost (i.e. 
increasing fare from $0.50 to $1.00 or $1.00 to $2.00). The means by which this variable was 
assigned are described in further detail in Section 7.3.6. 
 

5.3 RESOLVING STATISTICAL ISSUES IN RIDERSHIP DATA 

Due to the nature of time series data, several inherent properties usually exist that introduce 
problems when attempting to model and forecast the data. 
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5.3.1 Collinearity 

When using independent variables to predict a dependent variable, one must ascertain that the 
independent variables are, in fact, independent of each other, so that the effect of one 
independent variable is not masked by a secondary independent variable. When two independent 
variables vary together through time, those variables are said to be collinear. 
 
In the data obtained for this analysis, vehicle revenue miles (VRM) and vehicle revenue hours 
(VRH) are collinear within each system. Dividing VRM by VRH produces a theoretical system 
operating speed, which will be essentially constant throughout the time series, and thus VRM is 
always proportional to VRH by the same ratio. 
 
For this reason, it is necessary to eliminate one of these two variables from model building. VRM 
was selected for removal, so that VRH could be retained in the model. Vehicle revenue hours are 
generally considered a more reliable measure of service offered, since vehicle revenue miles are 
affected by operating speed, which can change during the course of a day, depending on roadway 
congestion and demand for service. 

5.3.2 Non-stationarity and Heteroscedasticity 

One of the primary problems with time series data is the necessity to verify (1) that as the data 
progress through time, values are stationary about the mean and (2) that the variance of the data 
does not change with time (the data are homoscedastic). 
 
The most common means to deal with non-stationarity and heteroscedasticity is to transform the 
original data series in a way that yields a constant mean and variance. To deal with 
heteroscedasticity, an oft-used solution involves logarithmically transforming the data to achieve 
stability in the variance throughout the time series (Brockwell and Davis, 2002). An appropriate 
transformation to resolve non-stationarity is to difference the data series and use these 
differences rather than the original series to develop models and create projections (Makridakis 
et al., 1998). These two transformations were combined to establish stationary, homoscedastic 
time series for all 254 transit ridership datasets. 

5.3.3 Final Definition of Dependent Variable, PDLOGUPT 

In following the appropriate treatments of the datasets to create suitable series for modeling, 
logarithms (base-10) were taken of each data point and first differences calculated of these 
logarithms, as in Equation 5.1.  
 

 

 

(5.1) 

 

 

The models developed using these transformed data thus predict a change in the logarithm of 
ridership, which can easily be converted back to a comprehensible number of unlinked passenger 
trips. To facilitate comparison of trends among public transportation systems having vastly 
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different ridership magnitudes, the differences were further transformed to reflect percent 
changes in logarithmic values of unlinked passenger trips. 
 
As a graphical example, consider the time series of ridership for the University of Michigan bus 
system in Ann Arbor, Michigan (MB 5158 DO), depicted in Figure 5.1. These data exhibit both 
non-stationarity in the mean and heteroscedasticity. The mean climbs as the series progresses 
through time and the seasonal fluctuations become more extreme as the magnitude of the series 
increases. 
 

 
 

Figure 5.1 Time Series of Unlinked Passenger Trips (UPT), MB 5158 DO 
 
 
However, transforming the original UPT time series logarithmically and differencing these log 
values produces the time series in Figure 5.2. As this figure shows, the transformed data series is 
now stationary with a mean of zero, and although seasonality is still apparent, the month-to-
month fluctuations no longer grow with time or the changing magnitude of the series, providing 
homoscedasticity in the series. 
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Figure 5.2 Transformed Time-Series of PDLOGUPT, MB 5158 DO 
 

 
These transformations using logarithms and differencing were conducted on each of the final 254 
transit systems included in this study. 
 
While transforming the data in this way accomplished stationarity in the mean and variance, 
conditions necessary for successful time series forecasting, it makes direct interpretation of later 
analyses difficult. Working backwards from the transformation in Equation 5.1 yields the 
expressions in Equations 5.2 and 5.3: 
 

 

 

(5.2)

  

 

(5.3)

 

Based on these equations, we see that the final value derived for PDLOGUPTt, in addition to 
representing the percent change in the logarithm of ridership, also equates to one less than the 
base-Yt-1 logarithm of Yt. As such, it makes straightforward calculation of elasticities or similar 
evaluations challenging. However, understanding the directional effects of calculated parameters 
is still possible and the analyses in following chapters make use of this property. 
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5.3.4 Data Reporting Issues 

In several cases, although the NTD supplied data for a particular system, further investigation of 
that system may have warranted its exclusion from continued analysis. Occasional omissions of a 
single data point were tolerated, but some systems were missing multiple data points and were 
thus removed from the analysis set. 
 
Other reporting errors were obvious upon observation when transforming the data; recording no 
change in ridership from one month to the next or repeatedly adding and subtracting the same 
value for a period of several months—these types of data problems introduced skepticism and 
reduced confidence in the data and thus required elimination of the entire transit system. 
 
Inspection of each individual transit system in this manner reduced the number of systems 
included in the final analysis set to 215 motor and trolley bus systems from an original 646 
included in the full NTD database, as well as 17 of 33 original light rail, ten of 15 heavy rail, and 
12 of 26 commuter rail systems, for a total of 254 transit systems. Notably, for the problematic 
concerns regarding data reliability described here, the New York City Metropolitan 
Transportation Authority bus and heavy rail systems were among the eliminated systems. 
 
Figure 5.3 provides a graphical representation of the national distribution of systems included in 
the analysis. 
 

 
Figure 5.3 National Distribution of Evaluated Public Transportation Systems 
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5.4 SUMMARY 

This chapter described the data collected for model building and calibration, as well as issues 
inherent in time series analysis. The problems of non-stationarity and heteroscedasticity in the 
dependent ridership variable were resolved by differencing the logarithmically transformed data 
series. Chapter 6 explains the process by which seasonal variability was removed from the 254 
ridership time series datasets using seasonal decomposition. 
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Chapter 6: Dealing with Seasonality in Ridership Data 

 

6.1 OVERVIEW: ADJUSTING FOR SEASONAL VARIATION 

Public transportation ridership data are highly subject to seasonal variation. As depicted in 
Chapter 4, when averaging ridership across the nation, ridership tends to be higher in the more 
temperate spring and fall seasons and lower in the summer and winter months. These climatic 
patterns are further exacerbated by seasonal demands resulting from school or university 
populations, and seasonal migrations of transit riders (and others) from northern climates to 
southern. 
 
However, given the variety of seasonal patterns experienced throughout the US, these seasonal 
transit ridership fluctuations are not standard from one area to the next. In the Northeast, the four 
distinct seasons produce different patterns than those in Florida with little seasonal variability. 
Even transit systems within a few hundred miles of each other can see marked differences in 
seasonal patterns; San Francisco, with a temperate climate year-round, has a markedly different 
seasonality than neighboring smaller cities with large university populations following academic 
schedules. 
 
A useful tool for uncovering underlying seasonality is the autocorrelation function, or ACF. By 
calculating and plotting the ACF for a transit system’s ridership, seasonality trends emerge and 
can be verified. Figure 6.1 presents an example correlogram for the Capital Metro bus system in 
Austin, Texas (MB 6048 DO). In this plot, extreme values can be seen at 12-month intervals, 
indicating an annual seasonal trend to the time series. Another extreme autocorrelation value is 
shown at the one-month lag, indicating that ridership observations are not independent from one 
time period to the next. 
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Figure 6.1 Autocorrelation Function of UPT Series for System MB 6048 DO 

 

After transforming the UPT data by the method described in Chapter 5, the seasonal pattern is 
retained in the transformed series, PDLOGUPT, as shown in Figure 6.2, again presenting data 
for the Austin Capital Metro bus system. In this plot, logarithmically transforming the data and 
differencing the series leads to a more stable ACF plot and removes much of the autocorrelation 
with the one-month-lagged series, indicating greater independence of observations. 
 

 
Figure 6.2 Autocorrelation Function for Transformed PDLOGUPT Series for System MB 6048 DO 

 

The plots in Figures 6.1 and 6.2 depict one selected system from the 215 bus systems (in addition 
to light, heavy, and commuter rail systems) analyzed. Due to the unique nature of seasonal 
fluctuations for a given system and the varied causes of these patterns, the ACF figures shown 
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are not representative of all transit systems, although they show similarities with many. These 
seasonal fluctuations are veritable “fingerprints”, uniquely describing the seasonal pattern of a 
particular system. 
 

6.2 SEASONAL DECOMPOSITION 

Any time series, particularly those known to exhibit seasonality, can be broken into various 
components. This process, known as “seasonal decomposition” (among other names), uses 
standardized procedures to break each time series data point into three components: a seasonal 
adjustment factor, a trend-cycle factor, and an error term. 
 
The seasonal adjustment factor obtained through decomposition describes how, in each year of a 
multi-year series, a particular time period varies with respect to other time periods. In the case of 
the research contained herein, the seasonal time period was a single month of the year. Thus, 
following seasonal decomposition of the six-year model-building period (2002-2007), 12 
seasonal adjustment factors are obtained, all 12 of which are repeated each year when creating or 
validating the seasonal model. In the work done here, these seasonal adjustment factors are 
denoted “SAF”, to be consistent with the notation used in the SPSS software used for modeling. 
 
The trend-cycle series derived through seasonal decomposition describe the underlying growth 
or decline of the original time series once seasonality has been removed. The trend-cycle series 
in these analyses are labeled “STC”, again for consistency with SPSS. 
 
An error term, e, reflecting what the model interprets as random noise, is also created in the 
course of seasonal decomposition. This term represents differing aspects of the seasonal model, 
depending on the type of decomposition performed. 
 

6.3 METHODS USED 

Seasonal decomposition can take two forms: additive (classical) and multiplicative. The primary 
difference in these two model forms lies in the underlying assumptions about the nature of the 
seasonal adjustment factors. 

6.3.1 Additive Form (Classical Decomposition) 

The additive form of seasonal decomposition, also known as “classical decomposition”, assumes 
that seasonal components do not vary with the magnitude of the series. Because the ridership 
data in the analyses of this report have been logarithmically transformed and differenced to 
create homoscedasticity and stationarity about the mean, it may be generalized that such an 
assumption applies to the 254 transit systems evaluated. 
 
The mathematical form of this additive model at time t is: 
 

  (6.1)
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The error term, “e”, produced through seasonal decomposition, represents the remaining 
variability or random noise in the original time series than cannot be explained by seasonality or 
the trend-cycle component. Variability in the error component is produced through other 
processes external to the seasonal fluctuations and growth or decline in the underlying series. 
 
Assumptions associated with this model form when estimating SAFt and STCt terms include 
(Brockwell and Davis, 2002): 
 

E(et) = 0 The error or random noise components are initially estimated to be zero 

for all time periods 

SAFt+d = SAFt Seasonal adjustment factors are equal for each like period, where d 

represents the periodicity of the series 

  The sum of the seasonal adjustment factors over d periods is zero 

 

For the ridership time series analyzed here, the periodicity d of the data is 12 months. 
 
The additive decomposition algorithm works by (1) calculating moving averages, which then 
become the trend-cycle series, (2) subtracting the smoothed moving averages from the original 
series, and then (3) calculating average values for each like month to determine the seasonal 
factors. 
 
The first of the three models created for each transit system consisted of an additive seasonal 
decomposition calculated using the logarithmically-transformed and differenced UPT series. The 
portion of this research using multivariate regression involved analyses of the error terms from 
the additive seasonal decomposition of PDLOGUPT, further explaining additional variation in 
the original series brought on by operational and external factors. The regression procedure, 
parameters considered in the regression, and resulting analysis are elaborated upon in Chapter 7. 

6.3.2 Multiplicative Form 

In the multiplicative form of seasonal decomposition, it is assumed that the seasonal factors vary 
proportionally with the magnitude of the time series (Makridakis, 1998). As the series grows or 
declines, the seasonal adjustment factor for a particular period will always be the same 
percentage of the series. 
 
The multiplicative model for a data point at time t has the mathematical form: 
 

  (6.2)

 

Ridership data typically follow a multiplicative seasonal form, where seasonal fluctuations 
increase as the overall magnitude of ridership grows. However, the data used in this analysis 
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have been transformed to minimize the effects of non-stationarity and heteroscedasticity, as 
described in Chapter 5. In so doing, the series characteristics that normally lend themselves to 
the multiplicative form have been stabilized and lessen the suitability of this model form. To 
verify this assumption, though, the second of three models created for each transit system used 
the multiplicative form on the transformed ridership datasets, PDLOGUPT. The third model 
derived in this research was a multiplicative model based on differencing the original UPT time 
series. These models will be discussed in more detail in Section 6.3.3. 
 
In this multiplicative case, the error term, e, is a multiplicative factor required to bring the 
product of SAF and STC back to the original series. As such, it is inappropriate to assign any 
alternative practical meaning to this term. 

6.3.3 Models Created 

For each of the 254 transit systems evaluated, three seasonal decomposition modeling procedures 
were performed. 
 
The first decomposition performed on each system was an additive model of the PDLOGUPT 
variable. Because the transformations performed to create the PDLOGUPT variable served to 
remove the influence of proportionally-distributed seasonal factors associated with the 
multiplicative decomposition form, this additive form was expected to perform best. 
 
The second model was a multiplicative decomposition on the variable PDLOGUPT. Due to the 
transformations already performed on the original UPT series to obtain the PDLOGUPT variable, 
this model did not perform well and was eliminated from further analysis. 
 
The third and final decomposition model performed on each transit system consisted of a 
multiplicative model of PDUPT, the percentage-differenced original ridership series. Because 
these series had not been logarithmically transformed, the data points were neither 
homoscedastic nor stationary in the mean. This model did not perform well and was omitted 
from further consideration. 
 

6.4 METHOD SELECTED: ADDITIVE DECOMPOSITION ON PDLOGUPT 

After running the three prescribed seasonal decomposition models on each transit system, the 
first model, the additive decomposition of PDLOGUPT, performed best overall, as expected. 
 
Following decomposition of the 254 transit ridership time series datasets, the monthly seasonal 
adjustment factors (SAF) were tabulated. These may be located in Appendix A for each of the 
four modes: bus (listed by region), light rail, heavy rail, and commuter rail.  As indicated in 
Section 6.1, the seasonal adjustment factors and trend-cycle values are unique to the individual 
systems and vary depending on geographic, climatic, socio-demographic, cultural, and 
developmental characteristics of the service area of the transit system. The need to determine and 
apply these system-specific factors can inhibit the transferability of a ridership forecasting model. 
However, by determining these components prior to further analysis, the transferability of a 
model can be enhanced by removing seasonal fluctuations before evaluating the ridership detail 
more closely. 
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Once SAF and STC values were determined for each transit system, it was desired to know what 
percentage of ridership variability could be attributed to seasonal fluctuation. To calculate these 
percentages, the least-squares definition for R2 was applied to each system (see Equation 6.3). 
 

 

 

 

(6.3)

 

where  = Observed values of PDLOGUPT 

  = Estimated values of PDLOGUPT;   

  

 

The calculated values of seasonal R2 for each system are listed in Appendix B. 
 
In addition to calculating values of SAFt, STCt, and et for each time period and each system, we 
can also derive a seasonality-adjusted time series, SASt, for each transit system, equivalent to 
subtracting the seasonal adjustment factor SAFt from the original series of PDLOGUPTt, as in 
Equation 6.4: 
 

  (6.4)

 

To determine whether the decomposition process successfully removed the seasonality from the 
series, we can plot and examine autocorrelation functions for the seasonally-adjusted series SAS 
for the transit systems analyzed. Figure 6.3 provides such a correlogram for the Capital Metro 
bus system in Austin, as addressed in Figures 6.1 and 6.2. 
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Figure 6.3 Autocorrelation Function for Seasonally-Adjusted Series for System MB 6048 DO 

 

One can see from this ACF plot that the seasonality at the 12-month lag, very apparent in Figures 
6.1 and 6.2, has all but vanished, leaving a seasonally-stable series in the wake of additive 
seasonal decomposition.  
 
The value of R2 represents the amount of variability in a particular dataset that can be explained 
by the applied model. In this case, the dataset is the original time series of PDLOGUPT and the 
model in question is that created by adding the appropriate SAF and STC values. The seasonal R2 
value for Austin’s Capital Metro system, portrayed in Figures 6.1, 6.2, and 6.3, describing the 
percentage of variation in the original PDLOGUPT series explained by seasonality, is 0.7714. 
Table 6.1 provides summary statistics of these R2 values for each mode evaluated. Fully 
tabulated values of seasonal R2 values are provided in Appendix B. 
 

 

Table 6.1: Summary Statistics for Calculated R2 Values, Explaining Seasonal Variation 
 

Bus Light Rail Heavy Rail
Commuter 

Rail
Minimum 0.1316 0.2377 0.1861 0.3951
Maximum 0.9645 0.8481 0.8773 0.9792
Average 0.6049 0.5268 0.6099 0.6262
Median 0.6009 0.4963 0.7025 0.5999
Std. Dev. 0.1661 0.2134 0.2382 0.1478

Mode

Ridership Data Variability Attributable to Seasonality
Summary Statistics
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Table 6.1 indicates that, on average, in all four transit modes, seasonality accounts for more than 
half of the variability in ridership. 
 
In inspecting the R2 values calculated for the transit systems, some generalities can be made. 
Systems in larger cities with higher ridership tended to show lower seasonal variation, 
particularly systems with high numbers of passenger-miles serving New York City and Los 
Angeles. Systems serving student populations, particularly university-based systems, had the 
highest measureable seasonal fluctuations. 
 
Table 6.2 provides average R2 information for the analyzed bus systems on a regional basis. 
Region 2, covering New York and New Jersey (including the NYC metropolitan area), shows the 
least response to treatment of seasonality, with an average seasonal R2 value of 0.487. Given the 
historically high level of public transportation usage and dependence in this area, it is not 
surprising that seasonality has a minimal effect on ridership in this region. Region 5, the North 
Central area, shows the greatest response to seasonal treatment, with an average seasonal R2 
value of 0.679; this section of the nation experiences arguably the most extreme weather patterns 
and it is intuitive that seasonality would show the greatest effect in this area. Also exhibiting 
high correlation with seasonal trends are Regions 0 and 7 (both with average R2 = 0.667), the 
Pacific Northwest and Mid-west, two areas of the US having strong seasonal weather patterns. 
 

Table 6.2 Regional Average R2 Values for Seasonal Contribution to Variability 
 

Region Average Seasonal R 2

0 0.667
1 0.578
2 0.487
3 0.556
4 0.526
5 0.679
6 0.636
7 0.667
8 0.598
9 0.631  

 
 
 
Figure 6.4 provides a histogram of seasonal R2 values for the analyzed bus systems. This 
histogram, which had far more observations in the sample than the other three modes, reveals a 
rather normal distribution, perhaps somewhat skewed to the right.  
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Figure 6.4 Histogram of Seasonal R2 Values, Bus Systems 

 

The comparable histogram for light rail seasonal R2 values is given in Figure 6.5. In this figure, 
we see that the R2 values tended to cluster lower on the R2 range than for bus systems; while a 
few systems showed stronger response to seasonal treatment (five systems having seasonal R2 
values above 0.65), most light rail systems can attribute less than half of their ridership 
variability to seasonality.  
 

 
Figure 6.5 Histogram of Seasonal R2 Values, Light Rail Systems 

 

With only ten systems in the heavy rail sample, drawing any conclusions from the histogram in 
Figure 6.6 is difficult. Six of the ten systems show seasonal R2 values above 0.65, while the 
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remaining four fall below 0.5. In four of the systems, seasonality explains more than 80 percent 
of the ridership variability. 
 

 
Figure 6.6 Histogram of Seasonal R2 Values, Heavy Rail Systems 

 

In Figure 6.7, we see that the distribution of seasonal R2 values for commuter rail systems 
follows a roughly normal pattern. For five of the 12 systems, seasonal variability contributes to 
more than 65 percent of ridership fluctuations. In the remaining seven systems, seasonality 
accounts for between 40 to 65 percent of ridership variability. 
 

 
Figure 6.7 Histogram of Seasonal R2 Values, Commuter Rail Systems 
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6.5 SUMMARY 

Seasonality plays a large part in the annual fluctuations in ridership seen on public transportation 
systems. Before uncovering the roles played in ridership change by operating characteristics or 
external factors such as fuel price, it is necessary to remove the seasonal trends from the 
analyzed time series. For this research, this removal was accomplished through additive seasonal 
decomposition, which reduces the original series to seasonal factors, an underlying trend-cycle 
series, and error terms which represent the non-seasonal components of ridership. 
 
In Chapter 7, these non-seasonal components are evaluated using multivariate regression to 
further explain variability in transit ridership. 
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Chapter 7: Examining Non-Seasonal Variability 

 

7.1 OVERVIEW 

Having removed seasonal variability from the PDLOGUPT series of the 254 evaluated transit 
systems, the task now stands to address the systems’ time series of decomposition error terms 
representing the non-seasonal components of ridership. Using independent variables and 
multivariate regression, this portion of the model attempts to explain as much of the non-
seasonal variability as possible and thus minimize remaining error. 
 

7.2 MULTIVARIATE REGRESSION ON DECOMPOSITION ERROR TERMS 

After performing seasonal decomposition using the additive model form and deriving seasonal 
adjustment terms (SAF) and trend-cycle values (STC), we were left with error terms, representing 
the share of the original PDLOGUPT series that could not be explained by seasonal variability 
(see Equation 6.1). These non-seasonal components form their own time series, and yet are 
related to the time series of the independent variables, including system operations elements and 
external factors such as fuel price. 
 
Treating these error terms now as dependent variables, multivariate regression was employed for 
each of the 254 systems in order to determine the relationships between the gathered independent 
variables and the non-seasonal components of ridership, and thus calibrate the non-seasonal 
model (see Section 7.7). 
 

7.3 VARIABLES INCORPORATED INTO REGRESSION MODEL 

Because the original transformed variable, PDLOGUPT, included the percent-change 
transformation to facilitate comparisons between systems having varying ridership magnitudes, 
the error components against which the multivariate regressions were run necessarily also 
contained the percent-change element and could thus be viewed as the percent change in the 
logarithm of UPT that was attributable to forces other than seasonality. Therefore, many of the 
dependent variables were also transformed to reflect a percent change from the previous month’s 
value. Those variables following this change are indicated where appropriate in the following 
sub-sections. 
 
In all decisions to include a particular variable, the primary intent was to account for fluctuations 
in the non-seasonal component of ridership in an explanatory manner. 
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7.3.1 Vehicle Revenue Hours (PDVRH) 

The original series for VRH was transformed to reflect the percent change in VRH from one 
month to the next. Vehicle revenue hours are a measure of the quantity of transit service 
provided—with a decline in service offered, one would expect a corresponding decrease in 
transit patronage as headways are lengthened, operating hours are reduced, or routes are curtailed. 
 
Significant efforts were made to collect information about transit labor strikes, including contact 
with numerous federal agencies, transit union organizations, and news media article searches. 
However, obtaining comprehensive information about strike start dates, durations, and the 
amount of service affected by a strike proved impossible. Work strikes, while occasionally used 
as threats by transit labor unions, are rare events in occurrence. Additionally, in many 
documented cases of transit work strikes, skeleton crews comprised of regular transit agency 
employees and non-unionized labor managed to maintain some semblance of service during 
strikes, often constituting a large percentage of regular service, and usually eliminating fares 
during the reduced service period to retain disgruntled riders. 
 
The PDVRH variable was thus selected for its ability to incorporate the effects of service 
reductions due to strikes and other disruptions, as well as its capacity to measure transit system 
growth in terms of new routes and service extensions. 

7.3.2 Vehicles Operated in Maximum Service (PDVOMS) 

Although fleet size is a variable closely related to ridership magnitude, the variable PDVOMS 
was created to again measure changes to the transit system. The addition of vehicles to service 
during the busiest times of day reflects a growing system with increasing carrying capacity and 
perhaps shorter headways. 

7.3.3 Fuel Price (PDFUEL) 

As the primary variable of political interest, fuel price has been hypothesized by many to play a 
great role in encouraging use of public transportation. This effect differs by city and mode type, 
as discussed in Chapters 2 and 4. 
 
It was further hypothesized in designing this modeling procedure that travelers are more 
sensitive to small nominal changes in price when they occur in the upper range of fuel prices. For 
instance, when fuel price reached four dollars per gallon in late 2008, a ten-cent increase in price 
was perceived as more burdensome to gasoline consumers than a ten-cent increase when fuel 
cost two dollars or less per gallon at other times. 
 
For this reason, two regression analyses were calculated for each transit system. The first 
analysis used the percent change in fuel price from the previous month (PDFUEL), while the 
second replaced the PDFUEL variable with PDFUEL_2, a variable representing the percent 
change from the previous month in the squared values of fuel price. With these differing variable 
definitions, detecting heightened sensitivity to price was attempted. 
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7.3.4 Consumer Price Index (PDCPI) 

While fuel price can reflect changes in the national economy, it often has little to do with 
economic laws of supply and demand. The national value of the consumer price index (CPI) was 
included as a means of tracking general economic activity and its accompanying effects on 
transit patronage. In this case, the variable was transformed to represent the percent change in 
CPI from the previous month. 

7.3.5 Weekdays (WEEKDAYS) 

As discussed in Chapter 5, the number of weekdays can have an effect on public transportation 
ridership since most transit usage occurs as part of workday commuting. This variable comprised 
a straight count of the number of weekdays in a month, excepting the New Year’s Day, 
Thanksgiving, and Christmas holidays.  

7.3.6 Fare (DFARE) 

Not all systems could be represented with this variable since fare information was limited in its 
availability. Of 215 total bus systems, 82 had fare data applied to the analyses. Additionally, 14 
of 17 light rail, seven of ten heavy rail, and six of 12 commuter rail systems had fare data applied 
to the regression models. 
 
Chapter 5 elaborated the logic behind inclusion of a binary variable for DFARE, indicating 
whether a fare change had occurred in the month in question. The available fare data provided 
dates of fare changes, and determining which month to represent with the affirmative fare change 
required consulting this date. If the fare change occurred prior to the fifteenth day of the month, 
the fare change was assigned to that month. If the fare change took place on the fifteenth day or 
later, the fare change was associated with the following month, ascribing it to the month when 
the fare change might show its greatest impact on ridership. 
 

7.4 ADDITIONAL VARIABILITY EXPLAINED BY REGRESSION 

Provided with the SPSS regression output for each of 508 models (two fuel-price-variable 
models calculated for 254 systems), standard and adjusted R2 values indicating the percent of 
variation described by the regression models were tabulated. These are provided in Appendix B 
for both the PDFUEL and PDFUEL_2 models. Overall, the squared fuel price term did not 
significantly or universally improve the explanatory power of the model and thus the model 
based on the simpler non-squared fuel price variable was selected for further evaluation. 
 
It is important to point out that because the ridership, fuel price, and other data used to build the 
model covered a six-year period, the results of the regression are likely to represent long-term 
behavior shifts for all variables, rather than short-term reactions to stimuli such as fuel price 
change. Short-term trends are likely to be more acute than those found here and warrant future 
investigation, particularly with regard to fuel price change and heightened sensitivity to extreme 
prices. 
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Table 7.1 Summary Statistics for Adjusted R2 Values from Regression, All Modes 
 

Bus Light Rail Heavy Rail
Commuter 

Rail
Minimum -0.075 -0.066 0.001 -0.065
Maximum 0.596 0.540 0.543 0.422
Average 0.205 0.107 0.196 0.252
Median 0.201 0.098 0.164 0.309

Mode
Adjusted R2  Statistics from Regression, All Modes

 
 

Table 7.1 provides multi-modal summary statistics for the adjusted R2 values resulting from the 
regression. In general, the regression performed equally well for each mode; light rail (which, as 
a categorical definition, tends to include systems having disparate operating characteristics and 
serving a variety of purposes) tended to comply more poorly than other modes (average R2 = 
0.107), while commuter rail systems (which have more consistent operating characteristics 
within the modal definition) were more explicable using the parameters in the model (average R2 
= 0.252). 
 
Figure 7.1 shows a histogram of the distribution of adjusted R2 values from the multiple 
regression for the 215 bus systems included in the analysis. When standard R2 values were 
adjusted for sample size, a few of the values in three of the modes became negative; this trend is 
reflected in Table 7.1 and in the other modal histogram plots. The plot shows that the R2 values 
are fairly normally distributed between zero and 0.40, with eight systems attaining 0.48 or better. 
 

 
Figure 7.1 Histogram of Regression-Derived Adjusted R2 Values for Bus Systems 

 

A similar plot for the 17 light rail systems is given in Figure 7.2 and comparable depictions are 
shown for the heavy and commuter rail systems in Figures 7.3 and 7.4, respectively. The light 
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rail plot shows that adjusted R2 values were fairly well distributed between zero and 0.20, with 
one system (Los Angeles County Metropolitan Transportation Authority) yielding an R2 value of 
0.540. 
 

 
Figure 7.2 Histogram of Regression-Derived Adjusted R2 Values for Light Rail Systems 

 

The histogram for the ten heavy rail regressions, Figure 7.3, shows that adjusted R2 values tended 
to be lower through the first half of the systems, climbing to more than 0.50 through the end of 
the dataset. 
 

 
Figure 7.3 Histogram of Regression-Derived Adjusted R2 values for Heavy Rail systems 
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The commuter rail regressions, reflected in the histogram in Figure 7.4, show much more 
consistency in their applicability to the regression model; 75 percent of the commuter rail 
systems had R2 values above 0.19 and 50 percent of the systems reached R2 values above 0.30. 
 

 
Figure 7.4 Histogram of Regression-Derived Adjusted R2 Values for Commuter Rail Systems 

 

7.5 REGIONAL DIFFERENCES IN REGRESSION COEFFICIENTS FOR BUS 
SYSTEMS 

The parameter coefficients calculated in the multivariate regression are tabulated in Appendix C. 
 
As noted in Chapter 5, the bus systems are divided, per FTA assignment, into ten regions, 
determined by the first digit of the systems’ four-digit identification numbers. These regions are 
as follows: 
 

• Region 0: Pacific Northwest 
o Alaska, Idaho, Oregon, Washington 

• Region 1: New England 
o Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, Vermont 

• Region 2: Northeast 
o New Jersey, New York 

• Region 3: Mid-Atlantic 
o Delaware, District of Columbia, Maryland, Pennsylvania, Virginia, West Virginia 

• Region 4: Southeast 
o Alabama, Florida, Georgia, Kentucky, Mississippi, North Carolina, Puerto Rico, 

South Carolina, Tennessee 
• Region 5: North Central 

o Illinois, Indiana, Michigan, Minnesota, Ohio, Wisconsin 
• Region 6: South Central 
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o Arkansas, Louisiana, New Mexico, Oklahoma, Texas 
• Region 7: Mid-West 

o Iowa, Kansas, Missouri, Nebraska 
• Region 8: Mountain West 

o Colorado, Montana, North Dakota, South Dakota, Utah, Wyoming 
• Region 9: West 

o Arizona, California, Hawaii, Nevada 
 
Upon conclusion of the regression modeling for the 215 bus systems, the constant terms and six 
variables for each model were evaluated on the basis of region to discern trends among the 
regression parameters. Although these coefficients appeared to fall into similar ranges, it was 
desired to know which regions showed similar values and thus behaviors in responding to 
operational or external stimuli. 
 
These regional comparisons among the bus systems were accomplished using one-way ANOVA 
testing and the associated F-test, followed by multiple range tests to group regions according to 
their parameter values (Devore, 2004; Garson, 2009). 
 
Conducting multiple range tests involves three distinct preparatory steps. First, the data must be 
analyzed to determine whether the variances of the data in each region are equal. The condition 
of variance equality or inequality determines the type of range test to be conducted—some tests 
assume equal variances of the grouped data, while others are needed if the variances are unequal 
or cannot be known. The test used to determine the likelihood of variance equality or inequality 
is known as the Levene test. 
 
The Levene statistic tests for inequality of variances of a variable X between any two groups i 
and j. The Levene test statistic, W, is defined as follows (NIST, 2009): 
 

 

 

 

(7.1) 

 

where 

N is the total sample size, divided into k groups, and 

Ni is the sample size of the ith group. 

 

Zij as used in the analysis here is defined as: 

 

  (7.2) 

 

where  is the mean of the ith group. 
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Table 7.2 shows the results of using the Levene statistic to test the null hypothesis assumption of 
equality of variances for each parameter x across all ten regions of bus systems evaluated (H0: sx0 
= sx1 = sx2 = sx3 = sx4 = sx5 = sx6 = sx7 = sx8 = sx9). The presence of unequal variances increases the 
odds of concluding later in the ANOVA F-test that a significant relationship exists between 
groups when in fact no relationship exists (Type I error). 
 

Table 7.2 Levene Statistics and Multiple Range Tests Selected for Regional Bus Parameter Comparisons 

Regression
Parameter

Levene
Statistic

Significance
(α=0.05)

Variances
Equal?

Range Test

CONSTANT 3.222 0.001 No Games-Howell
PDVRH 1.149 0.330 Yes LSD; HSD; Ryan
PDVOMS 2.589 0.008 No Games-Howell
PDFUEL 2.284 0.018 No Games-Howell
PDCPI 1.355 0.211 Yes LSD; HSD; Ryan
WEEKDAYS 3.156 0.001 No Games-Howell
DFARE 1.294 0.255 Yes LSD; HSD; Ryan  

 
Having determined the equality or inequality of regional variances for each variable’s 
coefficients, the second step in comparing the coefficient means for the ten different bus system 
regions is to compute F statistics for the one-way ANOVA analyses. With a null hypothesis that 
the parameter means of the variable x are equal for all regions (H0: μx0 = μx1 = μx2 = μx3 = μx4 = 
μx5 = μx6 = μx7 = μx8 = μx9), the F statistic allows one to reject the null hypothesis if the computed 
f value exceeds the tabulated F value; rejection of the null hypothesis implies that at least one of 
the means is unequal to the others. This procedure was repeated for the constant term and each of 
the six regression variables and the results are given in Table 7.3. 
 

Table 7.3 Results of ANOVA F-test for Equality of Parameter Means for Bus Systems 

Coefficient
Computed 

f
I J ν 1  = I-1 ν 2  = I(J-1)

Critical
F α,ν1,ν2

Sig.
(α = 0.05)

Conclusion
Means
Equal?

CONSTANT 1.651 10 215 9 2140 1.884 0.103 Do not Reject H0 Yes

PDVRH 1.809 10 215 9 2140 1.884 0.068 Do not Reject H0 Yes

PDVOMS 0.838 10 202 9 2010 1.885 0.582 Do not Reject H0 Yes

PDFUEL 3.874 10 215 9 2140 1.884 0.000 Reject H0 No

PDCPI 7.281 10 215 9 2140 1.884 0.000 Reject H0 No

WEEKDAYS 1.614 10 215 9 2140 1.884 0.113 Do not Reject H0 Yes

DFARE 1.077 10 82 9 810 1.891 0.390 Do not Reject H0 Yes  
 

Following the ANOVA F-test methodology, only two variables caused the null hypothesis to be 
rejected; these were PDFUEL and PDCPI. In these two cases, the computed f-statistics were 
highly significant and the conclusion could be reached that the means were not equal across all 
ten regions; the appropriate range test was applied to the data as indicated in Table 7.2.  
 



 

77 
 

In the case of the PDFUEL variable, Levene’s test found inequality among variances for the 
regional values of the models’ fuel price parameters and therefore the Games-Howell range test 
was employed. Noted for its suitability in the case of unequal sample sizes among more than five 
groups (having ten regions or groups here), the Games-Howell test is designed for mean 
comparison experiments when variances are unequal or unknown and is conservative without 
being exceedingly so. 
 
For the PDCPI variable where the variances were equal across the ten regions, the selected tests 
were the Least Significant Difference (LSD) test, Tukey’s honestly significant difference (HSD) 
test, and the Ryan-Einot-Gabriel-Welsch-Q test (the Ryan test). 
 
The first of these tests, the Least Significant Difference (LSD) test, is the most liberal post-hoc 
multiple range test available—it will tend to indicate differences in regions when no difference 
exists (encouraging rejection of H0 and incurring Type I error). The second test, Tukey’s 
honestly significant difference (HSD) test, is the most conservative post-hoc range test and can 
underestimate the presence of differences between regions (heightening the chance of making a 
Type II error, failing to reject H0). (Since the sample sizes for the different regions were unequal, 
SPSS actually computes the Tukey-Kramer test using the harmonic mean rather than the 
standard HSD test.) The Ryan test (Ryan-Einot-Gabriel-Welsch-Q) is a compromise between the 
LSD and HSD tests in its conservatism (Garson, 2009). Both the Tukey and Ryan tests use the 
Studentized range distribution, or the Q statistic. 
 
The following subsections discuss the parameter values in detail as well as the range tests 
conducted. 

7.5.1 Constant Term (CONSTANT) 

Descriptive statistics for the CONSTANT terms in the bus regressions are found in Table 7.4. 
From the previous analysis, the Levene statistic determined that variances among the ten regions 
were not equal, but the F-statistic for this parameter showed equality of the means for the 
groupings and thus performing further tests for similarities was unnecessary. 
 
The mean value for the CONSTANT term in the regression model is -3.360 for all groups. The 
greatest deviation from this average value is -1.711 for the Northeast region. As anticipated from 
the findings of the Levene statistic, standard deviation values range from 1.596 to 5.718, 
supporting the conclusion that the variances of the groups are unequal. 
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Table 7.4 Descriptive Statistics for CONSTANT Terms in Regression Model, Bus Systems Only 

Lower 
Bound

Upper 
Bound

0 17 -4.695 5.562 1.349 -7.555 -1.836 -25.209 -0.169

1 11 -3.464 1.848 0.557 -4.705 -2.223 -6.976 -0.815

2 20 -1.711 2.531 0.566 -2.896 -0.526 -6.765 3.607

3 27 -3.939 5.718 1.100 -6.201 -1.677 -24.065 6.317

4 28 -2.300 1.596 0.302 -2.919 -1.681 -5.422 2.769

5 43 -3.527 1.849 0.282 -4.096 -2.958 -8.42 2.205

6 17 -4.501 3.822 0.927 -6.466 -2.537 -11.063 -1.116

7 9 -4.261 2.427 0.809 -6.127 -2.396 -8.781 0.034

8 7 -2.865 2.323 0.878 -5.014 -0.717 -5.406 0.523

9 36 -3.134 2.240 0.373 -3.892 -2.376 -6.763 1.857

Total 215 -3.360 3.322 0.227 -3.806 -2.913 -25.209 6.317

CONSTANT  Descriptives
95% Confidence 
Interval for Mean

N Mean Std. 
Deviation Std. Error Minimum Maximum

R
eg

io
n

 
 

The 95% confidence interval on the CONSTANT term is -3.806 to -2.913. For the national bus 
regression model, the cumulative average value (which also serves as a weighted average in this 
case) of -3.360 will be employed. 

7.5.2 Vehicle Revenue Hours (PDVRH) 

In the case of the percent change in vehicle revenue hours, summary statistics for which are 
shown in Table 7.5, the average effect was a positive one on ridership, as expected, with the 
national average for the coefficient falling at 0.009. Thus, a one percent increase in vehicle 
revenue hours results in a 0.009 percent increase in the logarithmically transformed value of 
ridership. 
 
The 95% confidence interval on this parameter falls between 0.006 and 0.012. While all but one 
region had a minimum value below zero (the Mountain West region, which also had the smallest 
sample size at seven systems), all but one regional average is positive (the exception being the 
Pacific Northwest region, which also had the national minimum of -0.122, a relative outlier in 
this analysis and affecting the calculated average sufficiently to pull it below zero). 
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Table 7.5 Descriptive Statistics for PDVRH Values in Regression Model, Bus Systems Only 
 

Lower 
Bound

Upper 
Bound

0 17 -0.004 0.033 0.008 -0.021 0.014 -0.122 0.042

1 11 0.010 0.008 0.002 0.005 0.015 -0.003 0.025

2 20 0.018 0.020 0.004 0.009 0.027 -0.005 0.076

3 27 0.008 0.022 0.004 0.000 0.017 -0.044 0.064

4 28 0.013 0.019 0.004 0.005 0.020 -0.030 0.057

5 43 0.008 0.013 0.002 0.004 0.012 -0.024 0.041

6 17 0.007 0.013 0.003 0.001 0.014 -0.023 0.033

7 9 0.010 0.019 0.006 -0.005 0.025 -0.011 0.055

8 7 0.019 0.020 0.008 0.001 0.038 0.003 0.054

9 36 0.006 0.018 0.003 0.000 0.012 -0.020 0.046

Total 215 0.009 0.019 0.001 0.006 0.012 -0.122 0.076

PDVRH  Descriptives
95% Confidence 
Interval for Mean

N Mean Std. 
Deviation Std. Error Minimum Maximum

R
eg

io
n

 
 

The Levene and F-tests concluded that the variances and means of the coefficient on this 
variable are equal for the ten regions, and so the average value of 0.009 (which again constitutes 
a weighted average in this case when considering the regional values) will be used for the 
national bus regression model. 

7.5.3 Vehicles Operated in Maximum Service (PDVOMS) 

The Levene statistic found that variances for the PDVOMS variable are not equal; however, the 
F-test determined that means across the regions are equal and thus no further grouping 
evaluation was needed.  
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Table 7.6 Descriptive Statistics for PDVOMS Values in Regression Model, Bus Systems Only 
 

Lower 
Bound

Upper 
Bound

0 16 0.005 0.025 0.006 -0.009 0.019 -0.034 0.055

1 10 0.024 0.063 0.020 -0.021 0.069 -0.067 0.145

2 17 -0.001 0.054 0.013 -0.029 0.026 -0.193 0.064

3 26 0.001 0.044 0.009 -0.017 0.018 -0.151 0.072

4 28 -0.013 0.057 0.011 -0.036 0.009 -0.240 0.048

5 42 0.004 0.018 0.003 -0.002 0.010 -0.060 0.056

6 15 -0.017 0.087 0.022 -0.065 0.031 -0.322 0.042

7 8 -0.022 0.049 0.017 -0.063 0.019 -0.119 0.038

8 6 -0.021 0.131 0.054 -0.158 0.117 -0.239 0.168

9 34 -0.001 0.054 0.009 -0.020 0.018 -0.169 0.150

Total 202 -0.002 0.053 0.004 -0.010 0.005 -0.322 0.168

PDVOMS  Descriptives
95% Confidence 
Interval for Mean

N Mean Std. 
Deviation Std. Error Minimum Maximum

R
eg

io
n

 
 

It should be noted from Table 7.6 that the total sample size was smaller in this case, including 
202 bus systems rather than the 215 comprising the full analysis dataset. This reduction occurred 
because, according the NTD database, 13 of the analyzed systems had no change in the number 
of vehicles operated in maximum service conditions over the 2002-2007 calibration period. 
When the number of VOMS was constant over this six-year period, the parameter values for the 
percent change in VOMS were zero for each time period and the variable was thus eliminated 
from regression analysis. 
 
Although it is far from intuitive, the average national value for this parameter is -0.002, 
indicating that a one percent increase in the number of vehicles operated in maximum service 
brings about a decrease of -0.002 percent in the logarithmic values of unlinked passenger trips. 
The 95% confidence interval on this parameter falls between -0.010 and 0.005. One would 
expect that as fleet size increases, ridership would increase, and that the findings here seem to 
indicate otherwise leads one to suspect there are more complex forces at play with regard to this 
variable; this non-intuitive conclusion may mask or accompany another effect. Alternatively, 
since the 95% confidence interval contains zero, there may be no effect of adding vehicles to 
maximum service. Nonetheless, the average value of -0.002 will be included in the national bus 
model. 
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7.5.4 Fuel Price (PDFUEL) 

The Levene and ANOVA F-tests on PDFUEL found that neither the variances nor the means are 
equal across regions. Given the variation nationally in demographics, fuel transport means and 
availability, and resistance to or acceptance of public transportation, to name only a few factors 
affecting gasoline use, it is not surprising that fuel effects show varying relationships to transit 
patronage in different parts of the country. 
 
It is important to note that because the regression model was built upon six years of data, the gas 
price effects here generally represent long-term shifts of behavior. Short-term reactions may be 
more acute, particularly at higher prices, as were seen towards the end of the model calibration 
period. 
 

Table 7.7 Descriptive Statistics for PDFUEL Values in Regression Model, Bus Systems Only 
 

Lower 
Bound

Upper 
Bound

0 17 0.020 0.018 0.004 0.011 0.029 -0.001 0.071

1 11 0.012 0.013 0.004 0.004 0.021 -0.021 0.035

2 20 0.010 0.023 0.005 -0.001 0.021 -0.066 0.059

3 27 0.008 0.052 0.010 -0.013 0.028 -0.196 0.117

4 28 0.011 0.021 0.004 0.002 0.019 -0.031 0.083

5 43 -0.012 0.018 0.003 -0.018 -0.007 -0.064 0.028

6 17 0.002 0.036 0.009 -0.016 0.021 -0.098 0.055

7 9 -0.001 0.016 0.005 -0.013 0.011 -0.022 0.021

8 7 0.014 0.013 0.005 0.002 0.026 0.003 0.039

9 36 0.018 0.017 0.003 0.012 0.023 -0.008 0.070

Total 215 0.007 0.028 0.002 0.003 0.010 -0.196 0.117

PDFUEL  Descriptives
95% Confidence 
Interval for Mean

N Mean Std. 
Deviation Std. Error Minimum Maximum

R
eg

io
n

 
 

Because the F-test determined that means are unequal, the next step is to use a multiple range 
test to identify and group those regions having similar mean values and then to calculate a 
parameter value that may be attributed to all regions within a particular group. 
 
The Levene statistic, which evaluated the equality or inequality of variances, serves to dictate the 
multiple range test to be applied to a set of grouped data. Because the variances in this case are 
not equal, the Games-Howell test was used because of its suitability to comparisons among more 
than five groups when variances are unequal or unknown. 
 
Table 7.8 shows the tabulated output from the Games-Howell test. Regions having means that 
were determined with an alpha value of 0.05 to be statistically different are indicated with an 
“X” in the appropriate cell. Region 5, the North Central portion of the US, shows the greatest 
dissimilarity from other regions. 
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PDFUEL  Games-Howell test

Region 0 1 2 3 4 5 6 7 8 9
0 X
1 X
2 X
3
4 X
5 X X X X X X
6
7
8 X
9 X  

Table 7.8 Games-Howell Test Results for PDFUEL Parameter Means across Bus Systems Only 
 

For this PDFUEL variable, the interpretation of the Games-Howell results is one that must be 
made with care. Region 5 is substantially different from Regions 0, 1, 2, 4, 8, and 9, but not 
substantially different from Regions 3 (Mid-Atlantic), 6 (South Central), and 7 (Mid-west). 
However, 3, 6, and 7 are not substantially different from 0, 1, 2, 4, 8, and 9. 
 
When determining which regions to group together, it can be helpful to examine the summary 
statistics, found in Table 7.7. Ordering the means for the four regions with average values similar 
to Region 5, we get: x5 = -0.012; x7 = -0.001; x6 = 0.002; and x3 = 0.008. The first two of these 
means, those for Regions 5 and 7, are negative, while the values for Regions 6 and 3 are positive. 
 
Deciding where to delineate groupings can be a judgment call in many cases. As a next step to 
finding a point of separation, consider the standard deviations and 95% confidence intervals as 
shown in Table 7.7. Regions 5 and 7, both with negative means, have similar standard deviations 
(0.018 and 0.016, respectively) while Region 6 shows a much larger deviation of 0.036. 
Additionally, the upper bound on the 95% confidence interval for Region 6, at 0.021, falls in a 
range comparable with the other regions (excluding Regions 5 and 7). 
 
Following this logic, the break point for grouping regions in terms of their parameter values on 
the PDFUEL variable was chosen to be between Region 7 and Region 6. Thus, Regions 5 and 7 
will be assigned to one group and the remaining eight regions will belong to a second group. 
 
It remains to determine the final values to be assigned to the two PDFUEL regional groupings. 
Using the regional mean values and group sample sizes, weighted averages are calculated. For 
the first group consisting of Regions 5 and 7, the weighted average is: 
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For the remaining eight regions, the same procedure is employed to calculate a weighted average 
corresponding to these groups; this computed value is 0.012. 
 
The implication behind the summary statistics in Table 7.7 is that in all but the North Central and 
Mid-west regions of the US, a one percent increase in fuel price tends to produce a 0.012 percent 
increase in the logarithm of transit ridership. This conclusion is consistent with anecdotal 
evidence from public transportation operators, who reported surges in demand as fuel prices 
climbed. However, in the North Central and Mid-west sections, the effect appears to be 
opposite—a one percent increase in fuel price has generally brought on a 0.010 percent decline 
in the logarithm of ridership. 
 
One potential explanation for such a difference in the directions of these relationships concerns 
the consumption of alternative fuels. Table 7.9 tabulates the consumption of ethanol fuel in each 
FTA region between 2000 and 2006 in millions of gallons (National Priorities Project Database, 
2009; Oak Ridge National Laboratory, 2008). It is clear from these values that Region 5 has 
consistently shown the highest ethanol use in the US, many times greater than other regions, 
particularly in earlier years. Region 7 has had the third-highest ethanol use. (Region 9 should 
also be noted for its higher ethanol use; most of this consumption has occurred in California 
since 2003.)  
 

Table 7.9 US Ethanol Consumption by FTA Region, Mgal of Ethanol (NPPD, 2009; ORNL, 2008) 
 

Ethanol Fuel Consumption by FTA Region, Mgal Ethanol/Year
Region 2000 2001 2002 2003 2004 2005 2006
0 55 54 122 109 63 69 116 588 2.7%
1 5 1 5 25 191 201 224 652 3.0%
2 28 19 6 27 335 373 827 1614 7.4%
3 60 65 131 118 218 256 536 1384 6.4%
4 49 84 117 181 197 261 391 1280 5.9%
5 862 882 995 1098 1112 1311 1558 7817 35.9%
6 103 84 83 87 93 112 547 1109 5.1%
7 176 172 255 310 279 363 355 1910 8.8%
8 114 144 126 140 132 167 140 964 4.4%
9 126 165 178 737 1037 1097 1101 4440 20.4%
Sum 1579 1670 2018 2831 3655 4210 5796 21759 100.0%

2000-2006 Total

 
 

Based on the higher consumption of ethanol, it is logical to hypothesize that as gasoline prices 
rise, ethanol becomes a natural alternative for those to whom it is available. Ethanol sells at a 
lower price point than gasoline, encouraging its use in the face of higher gasoline prices. It 
should be noted, though, that ethanol and gasoline are not equivalent in terms of their energy 
content; a gallon of regular unleaded gasoline comprises roughly 115,000 Btu, whereas a gallon 
of ethanol holds only about 75,700 Btu. Therefore, ethanol could conceivably cost more per Btu 
than gasoline if the price ratio of ethanol to gasoline were to exceed 0.66, which it frequently 
does. 
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Although ethanol, or ethyl alcohol, is present in most regular gasoline blends in some low 
percentage in order to make it cleaner-burning and raise octane levels, the most widely 
recognized ethanol blend from a commercial standpoint is E85, which is composed of 85 percent 
ethanol and 15 percent gasoline. “Flex-fuel” vehicles are uniquely built to function with gasoline, 
E85, or combinations thereof (Flexible Fuel Vehicle Club of America, 2008). It is of particular 
note that, in support of the region’s higher ethanol use, most E85 service stations are located in 
the states making up FTA Region 5, as shown in Figure 7.5 (USDOE Energy Efficiency and 
Renewable Energy AFDC, 2009). 
 

 
Figure 7.5 Availability of E85 Fueling Stations (from USDOE 

Energy Efficiency and Renewable Energy AFDC, 2009) 
 

Because availability and acceptance of ethanol pervades the North Central and, to a lesser extent, 
Mid-west regions, it provides a ready alternative for travelers struggling with rising fuel prices. 
As ethanol use doubled between 2000 and 2006 in both of these atypical regions, transit use in 
these areas may have suffered or simply continued on a prior downward trend, whereas other 
regions of the nation were seeing ridership climb in association with gasoline price and lack of 
alternative fuel sources.  
 
Table 7.10 provides similar statistics to those in Table 7.9 for regular formulation gasoline. 
Comparing the two fuel consumption tables reveals that while Region 5 accounted for 35.9 
percent of US ethanol use between 2000 and 2006, it made up only 16.1 percent of national 
gasoline sales. 
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Table 7.10 US Gasoline Consumption by FTA Region, Mgal of Gasoline (US Department of Energy) 

 
Regular Gasoline Consumption by FTA Region, Mgal Gasoline/Year
Region 2000 2001 2002 2003 2004 2005 2006
0 4224 4355 4370 4293 4321 4601 4732 30897 4.1%
1 4665 4960 5282 5509 5665 5702 5658 37441 5.0%
2 6548 6993 7302 7524 7655 8206 8286 52515 7.0%
3 8915 9358 9550 9718 10169 10694 10860 69264 9.3%
4 19972 21123 22056 22824 23791 24241 24948 158954 21.3%
5 16578 16681 16836 17107 17682 17515 17784 120183 16.1%
6 14150 14628 15035 15632 16192 17147 17003 109787 14.7%
7 5749 5878 5782 5817 5737 5297 5189 39447 5.3%
8 3549 3552 3413 3400 3633 3893 3981 25421 3.4%
9 13524 13975 14149 14417 14368 15776 16369 102579 13.7%
Sum 97874 101503 103776 106241 109213 113071 114811 746488 100.0%

2000-2006 Total

 
 

7.5.5 Consumer Price Index (PDCPI) 

As a measure of economic function, one would expect the effect of the CPI to differ across the 
nation. This suspicion is confirmed by the F-statistic calculated earlier, which found that means 
for this parameter are unequal. The Levene statistic, however, concluded that variances were 
equal from region to region, and thus the multiple range tests used are those necessitating 
equality of variance; namely, the Least Significant Difference (LSD) test, Tukey’s Honestly 
Significant Difference (HSD) test (Tukey-Kramer test due to unequal group sizes), and the Ryan-
Einot-Gabriel-Welsch-Q (Ryan) test. 
 
Table 7.11 yields summary statistics for the PDCPI variable for the ten regions. Conversely to 
the PDFUEL analysis, where Regions 5 and 7 were negative outliers in an otherwise positive 
trend, Regions 5 and 7 are, in the case of PDCPI, positive outliers in an otherwise negatively 
trended result set. These seemingly conflicting findings may indicate that the effects of PDFUEL 
and PDCPI, as calculated through regression analysis, are complementary and, when modeled 
simultaneously, produce a cumulative effect. Even under this logic, however, it is still 
appropriate to retain both variables in the model and allow this cumulative effect to play out in 
final modeling. 
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Table 7.11 Descriptive Statistics for PDCPI Values in Regression Model, Bus Systems Only 

 

Lower 
Bound

Upper 
Bound

0 17 -0.258 0.294 0.071 -0.409 -0.106 -0.909 0.370

1 11 -0.216 0.212 0.064 -0.359 -0.074 -0.620 0.262

2 20 -0.276 0.312 0.070 -0.422 -0.130 -1.050 0.529

3 27 -0.141 0.310 0.060 -0.263 -0.018 -0.842 0.658

4 28 -0.130 0.336 0.064 -0.260 0.001 -1.089 0.569

5 43 0.207 0.349 0.053 0.099 0.314 -1.269 0.871

6 17 -0.049 0.548 0.133 -0.331 0.232 -0.890 1.433

7 9 0.077 0.206 0.069 -0.082 0.235 -0.240 0.345

8 7 -0.264 0.219 0.083 -0.467 -0.062 -0.676 0.006

9 36 -0.302 0.292 0.049 -0.401 -0.204 -1.078 0.158

Total 215 -0.110 0.375 0.026 -0.161 -0.060 -1.269 1.433

PDCPI  Descriptives
95% Confidence 
Interval for Mean

N Mean Std. 
Deviation Std. Error Minimum Maximum

R
eg

io
n

 
 

One potential explanation for the negative parameter values in the majority of areas may involve 
less overall travel being made as prices rise, including travel by public transportation. The 
conflicting regional results may involve influences from differences in property values and costs 
of living. Future work may include use of regional CPI values, as done in the case of assigning 
appropriate fuel prices (see Section 5.2.2.1), and/or adjusting fuel prices by the CPI to reflect 
constant monetary values. Unfortunately, regional and city-specific values of the consumer price 
index cannot be used to compare costs of living between regions or cities in the US. According 
to the Bureau of Labor Statistics (2009): 
 

An individual area index measures how much prices have changed over a specific 
period in that particular area; it does not show whether prices or living costs are 
higher or lower in that area relative to another. In general, the composition of the 
market basket and the relative prices of goods and services in the market basket 
during the expenditure base period vary substantially across areas. 

 

Tables 7.12 (a) and (b) (respectively) present the graphical representation of the LSD and HSD 
multiple range tests on the PDCPI parameter. The least significant difference (LSD) test, being 
the most liberal test in use, finds many more significant differences between regions (each “X” 
denoting a statistically significant difference at the 0.05 level). Tukey’s HSD test, the most 
conservative test available, finds far fewer regional differences. 
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Table 7.12 (a) LSD and (b) Tukey’s HSD Test Results for 

PDCPI Parameter Means across Bus Systems Only 
 
(a) PDCPI  Least Sig. Difference (LSD) test (b) PDCPI Tukey's HSD test

Region 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
0 X X 0 X
1 X 1 X
2 X X X 2 X
3 X 3 X
4 X X 4 X
5 X X X X X X X X 5 X X X X X X X
6 X X X 6
7 X X X X 7
8 X X 8 X
9 X X X X 9 X  

 

Compromising between the very liberal LSD test and the very conservative HSD test, the Ryan 
test finds two statistically different groups similar to the Tukey HSD test. Comparative results 
from the Ryan and HSD test are shown in Table 7.13. While both tests conclude the presence of 
two groups, the break point between the two groups is not distinct in either test and particularly 
so in the HSD test, which indicates four regions that could belong to either subset. 
 
 
Table 7.13 (a) Ryan and (b) Tukey’s HSD Test Results for PDCPI Parameter Means across Bus Systems Only 
 

1 2 1 2

9 36 -0.302 -0.302

2 20 -0.276 -0.276

8 7 -0.264 -0.264

0 17 -0.258 -0.258

1 11 -0.216 -0.216

3 27 -0.141 -0.141 -0.141

4 28 -0.130 -0.130 -0.130

6 17 -0.049 -0.049 -0.049 -0.049

7 9 0.077 0.077 0.077 0.077

5 43 0.207 0.207

Sig. 0.283 0.206 0.052 0.106

Means for groups in homogeneous subsets are displayed.

* Uses Harmonic Mean Sample Size = 15.716.

Subset for α = 0.05

(b) Tukey's HSD*

PDCPI

REGION N
Subset for α = 0.05

(a) Ryan-Einot-Gabriel-Welsch Range
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Following the Ryan test’s less conservative findings (as compared to the HSD test) and more 
defined break point, this test is chosen to further classify the regions into groups. As in the case 
of PDFUEL, the summary statistics are examined on the bases of standard deviation and 95% 
confidence intervals to determine where to divide the groups. It is clear from such an assessment 
that Region 6 finds itself on the brink of each group due to its relatively large standard deviation, 
which yields an upper bound in order with Regions 5 and 7, but a lower bound consistent with 
the remaining regions. Returning to the full listing of regression results in Appendix C, we find 
that a single outlier, 1.433 exists for one system in Region 6, as indicated in the summary 
statistics. By calculating the mean value for this region when omitting this outlier value, we 
achieve a new Region 6 mean of -0.142, comparable to the majority of systems outside the group 
formed by Regions 5 and 7. This new mean also yields a smaller variance and lands Region 6 
within the larger group. For these reasons, the group break point is made between Regions 6 and 
7. 
Calculating weighted averages for both groups as in Section 7.5.4, we determine that the national 
bus model will contain two values for the coefficient on PDCPI. The first value corresponds to 
Regions 0, 1, 2, 3, 4, 6, 8, and 9, and is equal to -0.204. The weighted average for the remaining 
regions, 5 and 7, is 0.184. In the first set of regions, a one percent increase in the CPI brings 
about a -0.204 percent drop in the logarithm of unlinked passenger trips; for Regions 5 and 7, a 
comparable change in CPI induces a 0.184 percent increase in the dependent ridership variable. 
As with all variables included in the analysis, these conclusions are valid only when the other 
variables are present. 

7.5.6 Weekdays (WEEKDAYS) 

The summary statistics for the WEEKDAYS variable are given in Table 7.14. Although the 
Levene statistic concluded that the regional variances are not equal, the F-test found that the 
means are equivalent and therefore no regional grouping is necessary. 
 

Table 7.14 Descriptive Statistics for WEEKDAYS Values in Regression Model, Bus Systems Only 

Lower 
Bound

Upper 
Bound

0 17 0.223 0.270 0.065 0.084 0.361 0.009 1.222

1 11 0.162 0.086 0.026 0.103 0.220 0.036 0.326

2 20 0.081 0.116 0.026 0.026 0.135 -0.161 0.309

3 27 0.183 0.266 0.051 0.078 0.289 -0.295 1.129

4 28 0.107 0.074 0.014 0.078 0.135 -0.131 0.253

5 43 0.161 0.085 0.013 0.135 0.188 -0.108 0.385

6 17 0.208 0.177 0.043 0.116 0.299 0.043 0.518

7 9 0.196 0.112 0.037 0.110 0.282 -0.001 0.405

8 7 0.134 0.109 0.041 0.034 0.235 -0.023 0.251

9 36 0.147 0.105 0.018 0.112 0.183 -0.088 0.316

Total 215 0.156 0.156 0.011 0.135 0.177 -0.295 1.222

WEEKDAYS  Descriptives
95% Confidence 
Interval for Mean

N Mean Std. 
Deviation Std. Error Minimum Maximum

R
eg

io
n
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As one would expect, the overall statistics for this parameter, including positive confidence 
intervals for all regions, show that transit ridership increases with the number of weekdays in a 
month. Since most public transportation use occurs as part of workday commuting, weekdays see 
the heaviest ridership; the results tabulated here substantiate this pattern. 
 
Comparing the regional values, Region 2, the Northeast (including the New York City 
metropolitan area), yields the lowest mean value, indicating that the number of weekdays in a 
month plays the least role in this region. This finding agrees with an intuitive assumption: transit 
use in this area comprises roughly one-third of national use and one would intuit that with many 
more residents having no access to automobiles and such an ingrained culture of transit use, 
travelers in the Northeast region will use public transportation for weekend, as well as weekday, 
trip making. 
 
Using the national average value of 0.156, we can conclude that an extra weekday in a particular 
month will bring on a 0.156 percent increase in the logarithmically transformed value of 
ridership, as compared to a month with one less weekday. 

7.5.7 Fare (DFARE) 

Table 7.15 presents the summary statistics for the binary DFARE variable. Generally, one would 
expect that a change in fare of any magnitude would induce a reduction in ridership. Although 
the sample sizes were much reduced in this case to 82 total systems by the availability and 
reliability of collected fare data, the assumption of negative fare elasticities appears to generally 
hold true, although the effect is mixed; regions with larger sample sizes tend to have unintuitive 
positive coefficient values.  
 

Table 7.15 Descriptive Statistics for DFARE Values in  
Regression Model, Bus Systems Only 

Lower 
Bound

Upper 
Bound

0 7 -0.120 0.209 0.079 -0.314 0.074 -0.503 0.141

1 3 -0.198 0.292 0.169 -0.924 0.528 -0.415 0.134

2 3 -0.277 0.426 0.246 -1.335 0.781 -0.666 0.178

3 11 -0.085 0.514 0.155 -0.430 0.261 -0.975 0.938

4 15 0.024 0.308 0.080 -0.147 0.194 -0.414 0.66

5 15 0.069 0.670 0.173 -0.302 0.440 -0.779 2.118

6 5 0.534 0.832 0.372 -0.499 1.568 -0.45 1.418

7 2 -0.129 0.397 0.281 -3.693 3.436 -0.409 0.152

8 2 0.121 0.095 0.068 -0.737 0.978 0.053 0.188

9 19 -0.169 0.534 0.123 -0.427 0.088 -1.65 0.744

Total 82 -0.029 0.518 0.057 -0.143 0.085 -1.65 2.118

DFARE  Descriptives
95% Confidence 
Interval for Mean

N Mean Std. 
Deviation Std. Error Minimum Maximum

R
eg

io
n
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Because the Levene and F-tests determined that the variances and means are statistically equal 
across regions, we can examine the national average of -0.029. This value indicates that a 
positive fare change is accompanied by a 0.029 percent decline in the logarithm of unlinked 
passenger trips. 
 
While the magnitude of the national average value is small, it is worth noting that the computed 
confidence intervals for all regions contain zero; thus it is possible that fare has no sizeable effect, 
since the overall results are mixed positive and negative. 
 

7.6 DIFFERENCES IN REGRESSION COEFFICIENTS ACROSS MODES 

The procedure followed in Section 7.5 for the regional bus parameter analyses is repeated in this 
section for a multi-modal comparison of the regression coefficients calculated for all bus, light 
rail, heavy rail, and commuter rail systems. 
 
Table 7.16 tabulates the results of the Levene test for the same seven model parameters, 
comparing this time among the four modes rather than across regions for a single mode. 
 

Table 7.16 Levene Statistics and Multiple Range Tests Selected  
for Parameter Comparisons across All Four Modes 

Regression
Parameter

Levene
Statistic

Significance
(α=0.05)

Variances
Equal?

Range Test

CONSTANT 0.515 0.672 Yes LSD; HSD; Ryan
PDVRH 2.245 0.084 Yes LSD; HSD; Ryan
PDVOMS 4.777 0.003 No Tamhane's T2
PDFUEL 1.167 0.323 Yes LSD; HSD; Ryan
PDCPI 1.797 0.148 Yes LSD; HSD; Ryan
WEEKDAYS 0.493 0.688 Yes LSD; HSD; Ryan
DFARE 5.975 0.001 No Tamhane's T2  

 

In the regional comparisons for the bus systems, the Games-Howell test, appropriate for 
comparisons of more than five groups, was employed as necessary when variances were 
determined to be unequal. However, in this condition of comparing across modes, Tamhane’s T2 
test, a conservative test, is used because there are only four groups rather than ten as in the 
regional bus comparison case when the Games-Howell was better suited (Garson, 2009). 
 
Table 7.17 provides the results of F-tests conducted to examine the equality of means across the 
four modes. In this comparison, three parameters were found to have unequal means: the 
CONSTANT term, PDVOMS, and WEEKDAYS. The following sections detail the conclusions 
drawn from the multiple range tests conducted on these parameters. 
 
The analysis contained in this section is performed to find similarities between modes. However, 
due to the very different operational characteristics and functional environments of bus, light rail, 
heavy rail, and commuter rail systems, the conclusions drawn herein will not be used to establish 
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a universal transit equation; for the mode-specific equations outlined in Section 7.7, each mode 
retains its individual mean values for parameter coefficients. 
 

Table 7.17 Results of ANOVA F-test for Equality of Parameter Means across All Modes 

Coefficient
Computed 

f
I J ν 1  = I-1 ν 2  = I(J-1)

Critical
F α,ν1,ν2

Sig.
(α = 0.05)

Conclusion
Means
Equal?

CONSTANT 2.808 4 254 3 1012 2.614 0.040 Reject H0 No

PDVRH 0.572 4 254 3 1012 2.614 0.634 Do not Reject H0 Yes

PDVOMS 2.876 4 240 3 956 2.614 0.037 Reject H0 No

PDFUEL 0.415 4 254 3 1012 2.614 0.742 Do not Reject H0 Yes

PDCPI 1.249 4 254 3 1012 2.614 0.292 Do not Reject H0 Yes

WEEKDAYS 2.848 4 254 3 1012 2.614 0.038 Reject H0 No

DFARE 1.116 4 109 3 432 2.626 0.346 Do not Reject H0 Yes  
 

7.6.1 Constant Term (CONSTANT) 

Summary statistics for the CONSTANT term across the four modes are given in Table 7.18. 
Although the variances were determined to be equal using the Levene statistic, the ANOVA F-
test found that the means are not equal. 
 

Table 7.18 Descriptive Statistics for CONSTANT Terms in Regression Model, All Modes 

Lower 
Bound

Upper 
Bound

BUS 215 -3.36 3.32 0.23 -3.81 -2.91 -25.21 6.32

LR 17 -1.22 2.95 0.72 -2.74 0.30 -4.03 6.93

HR 10 -2.23 1.60 0.51 -3.37 -1.08 -5.70 0.03

CR 12 -3.87 2.33 0.67 -5.35 -2.39 -7.87 0.25

Total 254 -3.20 3.25 0.20 -3.60 -2.79 -25.21 6.93

CONSTANT  Descriptives - All Modes
95% Confidence 
Interval for Mean

N Mean Std. 
Deviation Std. Error Minimum Maximum

M
od

e

 
 

The appropriate range tests for this parameter are the LSD, HSD, and Ryan test, as indicated in 
Table 7.16. 
 
The liberal LSD test found when evaluating these data that light rail differs from bus and 
commuter rail. Tukey’s HSD test, the most conservative test, also concluded that light rail and 
bus are different. The Ryan test, compromising between the LSD and HSD tests in 
conservativeness, found no differences between any of the modes. 
 
Again, for the mode-specific equations, the modal mean values will be used, regardless of 
similarities found in these sections. 
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7.6.2 Vehicle Revenue Hours (PDVRH) 

The Levene and ANOVA F-tests concluded that the variances and means for the PDVRH 
variable are equal across the four modes. Summary statistics for this parameter are given in 
Table 7.19. Generally, a percent change in vehicle revenue miles of service for bus produce the 
strongest change in ridership (0.009), while reactions for commuter and heavy rail are weakest 
(0.004 and 0.003, respectively). 
 

Table 7.19 Descriptive Statistics for PDVRH Values in Regression Model, All Modes 

Lower 
Bound

Upper 
Bound

BUS 215 0.009 0.019 0.001 0.006 0.012 -0.122 0.076

LR 17 0.007 0.011 0.003 0.001 0.012 -0.009 0.033

HR 10 0.003 0.012 0.004 -0.005 0.012 -0.008 0.034

CR 12 0.004 0.006 0.002 0.001 0.008 -0.003 0.016

Total 254 0.008 0.018 0.001 0.006 0.011 -0.122 0.076

PDVRH  Descriptives - All Modes
95% Confidence 
Interval for Mean

N Mean Std. 
Deviation Std. Error Minimum Maximum

M
od

e

 
 

7.6.3 Vehicles Operated in Maximum Service (PDVOMS) 

As in the regional bus analysis, some bus and heavy rail systems included in the analysis had no 
change in the number of vehicles operated in maximum service during the 2002-2007 calibration 
period. For this reason, the sample sizes for this parameter are reduced from the full sample of 
254 systems to 240. Summary statistics for PDVOMS are provided in Table 7.20. 
 
For the PDVOMS variable, variances and means were both found to be unequal across modes. 
This conclusion dictates that Tamhane’s T2 test be conducted to compare the means for the four 
modes. Tamhane’s T2 test is appropriate to use when variances are not equal or are unknown and 
comparisons are made among fewer than five groups. 

 
Table 7.20 Descriptive Statistics for PDVOMS Values in Regression Model, All Modes 

Lower 
Bound

Upper 
Bound

BUS 202 -0.002 0.053 0.004 -0.010 0.005 -0.322 0.168

LR 17 0.008 0.046 0.011 -0.015 0.032 -0.100 0.138

HR 9 0.050 0.126 0.042 -0.047 0.146 -0.052 0.355

CR 12 -0.015 0.040 0.012 -0.040 0.010 -0.107 0.030

Total 240 0.000 0.057 0.004 -0.007 0.007 -0.322 0.355

PDVOMS  Descriptives - All Modes
95% Confidence 
Interval for Mean

N Mean Std. 
Deviation Std. Error Minimum Maximum

M
od

e
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A caveat to the accuracy of the F-test when comparing means occurs when sample sizes are 
unequal, as in all the cases evaluated in this chapter. When sample sizes are unequal, the chances 
of making a Type I error increase, that is, concluding that a difference exists between parameter 
means when in actuality there is no difference. The significance of the F-statistic for PDVOMS 
(shown in Table 7.17) is 0.037, only slightly below the 0.05 significance threshold. 
 
Despite the ANOVA F-test’s indication that the parameter means are unequal, Tamhane’s T2 
test of these data reveals no similar groupings between modes. This finding is consistent with the 
likelihood of making a Type I error due to differing sample sizes as discussed. Although the F-
statistic implied that the means were not equal, further range testing was unable to substantiate 
this conclusion. Thus, we infer that the means are essentially equal. Although the modal means 
indicate differing directions for the effect of changing the number of vehicles in maximum 
service, the average effect across all modes is nil. 

7.6.4 Fuel Price (PDFUEL) 

The effect of changing fuel price was determined through the F-test to be the same across all 
modes. Interestingly, the summary statistics in Table 7.21 show a much smaller effect for light 
rail systems (no effect, on average) than for the other three modes. This conclusion may be 
consistent with the various roles played in communities by light rail systems, oftentimes serving 
more as tourist attractions than true commuting solutions. There are, of course, several 
exceptions to this generalization, as indicated by the higher standard deviation in the mean of the 
light rail mode calculations. 
 

Table 7.21 Descriptive Statistics for PDFUEL Values in Regression Model, All Modes 

Lower 
Bound

Upper 
Bound

BUS 215 0.007 0.028 0.002 0.003 0.010 -0.196 0.117

LR 17 0.000 0.030 0.007 -0.016 0.015 -0.094 0.030

HR 10 0.008 0.014 0.004 -0.002 0.018 -0.023 0.021

CR 12 0.010 0.011 0.003 0.003 0.017 -0.010 0.024

Total 254 0.006 0.027 0.002 0.003 0.010 -0.196 0.117

PDFUEL  Descriptives - All Modes
95% Confidence 
Interval for Mean

N Mean Std. 
Deviation Std. Error Minimum Maximum

M
od

e

 
 

In Chapter 4, high correlation was calculated between light rail ridership and fuel price. The two 
light rail systems included in the Chapter 4 analysis were exceptional systems, those serving 
Dallas and Los Angeles. The findings here, reflecting the analyses of 17 light rail systems, are at 
once different and yet consistent with those in Chapter 4, as revealed in the high standard 
deviation of the PDFUEL parameter mean. 
 
Also intriguing are the confidence intervals calculated for the modes. While the light rail and 
heavy rail confidence intervals include zero (although barely so for heavy rail), leaving open the 
possibility that fuel price exerts no effect on ridership, both the bus and commuter rail systems 
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have confidence intervals that include only positive values. These ranges imply that decidedly 
positive relationships exist between rising fuel price and ridership for these two modes. 
 
Intuitively, this finding is reasonable; bus systems are the most prolific type of transit offered in 
the US and thus provide the greatest opportunity for public transportation use, while commuter 
rail systems tend to carry longer-haul trips and frequently serve as substitutes for airline travel. 
Longer trips on commuter rail systems, whether for commuting purposes or as alternatives to 
flying, can represent financial savings for travelers who would otherwise have paid substantially 
for fuel to make the same trip by auto. 

7.6.5 Consumer Price Index (PDCPI) 

Summary statistics for the PDCPI variable are shown in Table 7.22. Overall, the mean values for 
the PDCPI parameter indicate that as the CPI grows and the buying power of a dollar decreases, 
fewer travelers use transit. This effect is felt most strongly in commuter rail systems (with a 
mean of -0.166), which can have much higher fares than the other modes. Bus systems, having a 
mean value of -0.110, see the second-strongest impact on ridership by the CPI. The effect of the 
CPI on ridership may counter, to some extent, the effect of rising fuel prices on encouraging 
transit use, as suggested by the multi-modal PDFUEL analysis in Section 7.6.4 and similar to the 
regional bus results in Sections 7.5.4 and 7.5.5. 
 

Table 7.22 Descriptive Statistics for PDCPI Values in Regression Model, All Modes 

Lower 
Bound

Upper 
Bound

BUS 215 -0.110 0.375 0.026 -0.161 -0.060 -1.269 1.433

LR 17 0.066 0.578 0.140 -0.231 0.364 -0.793 1.646

HR 10 -0.084 0.266 0.084 -0.275 0.106 -0.382 0.485

CR 12 -0.166 0.218 0.063 -0.305 -0.028 -0.534 0.226

Total 254 -0.100 0.383 0.024 -0.147 -0.053 -1.269 1.646

PDCPI  Descriptives - All Modes
95% Confidence 
Interval for Mean

N Mean Std. 
Deviation Std. Error Minimum Maximum

M
od

e

 
 

7.6.6 Weekdays (WEEKDAYS) 

The Levene statistic for the modal comparisons of the WEEKDAYS parameter found that 
although variances are equal, means for this variable are not. See Table 7.23 for WEEKDAYS 
summary statistics. As with the regional bus analysis, all mean values are positive, agreeing with 
the intuitive relationship between monthly weekdays and ridership. Similarly to the CONSTANT 
term range analysis, the LSD test found that light rail differs from bus and commuter rail, while 
the HSD test determined that differences exist between light rail and bus; the Ryan test found no 
differences among the modes. 
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Table 7.23 Descriptive Statistics for WEEKDAYS Values in Regression Model, All Modes 

Lower 
Bound

Upper 
Bound

BUS 215 0.156 0.156 0.011 0.135 0.177 -0.295 1.222

LR 17 0.055 0.141 0.034 -0.018 0.127 -0.344 0.188

HR 10 0.103 0.076 0.024 0.049 0.157 -0.002 0.268

CR 12 0.180 0.109 0.031 0.111 0.249 -0.011 0.367

Total 254 0.148 0.153 0.010 0.130 0.167 -0.344 1.222

WEEKDAYS  Descriptives - All Modes
95% Confidence 
Interval for Mean

N Mean Std. 
Deviation Std. Error Minimum Maximum

M
od

e

 
 

7.6.7 Fare (DFARE) 

Due to the data limitations discussed previously, the total sample size for DFARE was restricted 
to 109 of the total 254 systems available for analysis. Final sample sizes and summary statistics 
for this variable are given in Table 7.24. 
 

Table 7.24 Descriptive Statistics for DFARE Values in Regression Model, All Modes 

Lower 
Bound

Upper 
Bound

BUS 82 -0.029 0.518 0.057 -0.143 0.085 -1.650 2.118

LR 14 -0.110 1.098 0.293 -0.744 0.524 -2.034 2.092

HR 7 -0.472 0.785 0.297 -1.198 0.254 -1.741 0.586

CR 6 -0.007 0.195 0.079 -0.211 0.198 -0.195 0.317

Total 109 -0.066 0.628 0.060 -0.186 0.053 -2.034 2.118

DFARE  Descriptives - All Modes
95% Confidence 
Interval for Mean

N Mean Std. 
Deviation Std. Error Minimum Maximum

M
od

e

 
 

Although the 95% confidence intervals for the four modes contain zero and thus leave open the 
possibility that no effect on ridership occurs by increasing fares, the mean values indicate that a 
reduction in ridership is achieved with a positive change in fare, which is consistent with 
historical literature on the subject of fare elasticities of demand for public transportation (see 
Goodwin, 1992). 
 

The ANOVA F-test found that the means across the four modes are equal, while the Levene 
statistic concluded that variances are unequal. Despite the findings of these tests, it is interesting 
to look more closely at the modal mean values. The least negative effect on ridership is shown 
with the commuter rail mode (-0.007), which usually has the highest fares of any evaluated mode. 
This value may reflect the willingness of riders to pay for the convenience afforded them by the 
fast, direct service offered by commuter rail. 
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The second-least negative effect is seen on bus systems (-0.029). Such an effect could be 
attributable both to the widespread use of bus systems and to the very low magnitude of bus fares, 
both before and after a fare change. Most systems have fares set at two dollars or less, and when 
a fare change is implemented, it typically amounts to less than an additional dollar. Bus systems 
also tend to have a higher proportion of “captive” riders, who are less responsive to fare changes, 
having few alternatives to transit use. 
 
The higher magnitude of the heavy rail mean value could be indicative of a reduction in non-
essential or discretionary trips as fares increase, since heavy rail fares tend to be higher than bus 
fares, yet the two systems serve similar types of trips. 
 

7.7 GENERALIZED REGRESSION EQUATIONS 

Ideally, it is more appropriate and accurate to use the parameter coefficients calibrated 
specifically for a particular system. However, in the event that general equations describing 
behavior on bus systems within a selected region or on a particular mode are desired, this section 
builds on the calculations in Sections 7.5 and 7.6 to develop region-specific equations for bus 
systems and mode-specific equations for the most generalized forecasts. Modal equations are the 
most general model forms developed here; given the different operating characteristics of the 
four modes and disparities between the types of trips served by each, creating a general equation 
to indiscriminately address all modes is neither practical nor realistic. It should be noted that 
these regression equations must be combined with the appropriate seasonal model (discussed 
more in Chapter 8) to determine the full forecast values. 

7.7.1 Unique System Equations 

Since coefficient values have been calculated for each parameter x in each of the 254 transit 
systems analyzed here (tabulated in Appendix C), the most accurate way to forecast ridership for 
an individual system n is to use its unique coefficient values in the non-seasonal portion of the 
model. In so doing, we can represent this forecasting system in the following manner: 
 

 Ŷn = Xn bn (7.3)

where 

 

Ŷn is the vector of estimated PDLOGUPT for the non-seasonal regression model in each time 

period t for which a forecast is sought (and which must be combined with the seasonal 

model for period t), 

Xn is the matrix of independent variables for the forecast period, and 

bn is the vector of parameters corresponding to system n. 

 

Also stated, 
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Ŷn =  Xn =  bn =  

 

(7.4)

 

where the first subscript 1 through t represents the time period (month) for which the forecast is 
sought, the second subscript 0 through p indicates the parameter (the models here consist of a 
constant b0 and six independent variables), and the final subscript n specifies the transit system 
under consideration. 
 

The bn vector may also be defined for each system n: 

 

bn =  

 

 

 

(7.5)

 

Following this procedure produces forecasts for t time periods representing a percent change in 
the logarithm of UPT, which must then be combined with the seasonal model and used to 
calculate the nominal change in ridership from the last observed or forecasted point. 

7.7.2 Regional Bus Equations 

While the unique system equations in Section 7.7.1 allow specific treatment of individual transit 
systems, we can also use the more general regional parameter values for exploration of bus 
system trends. For region r, analyzed across t time periods, we can define the forecasting system 
as follows: 
 

 Ŷr = Xr br (7.6)

 

where 

 



 

98 
 

Ŷr =  Xr =  br =  

 

(7.7)

 

In these expressions, 

t represents the time period (month) for which the forecast is sought, 

r indicates the bus region (0 through 9) undergoing forecasting, and 

p specifies the regression parameter (which ranges from 0 to 6 in these cases and corresponds 

with Equation 7.5). 

 

The br vectors may be further defined per the analyses in Section 7.5, using the regional values 
or those determined through multiple range testing. Using the regional averages, the seven br 
vectors for the ten regions are as follows, respectively: 
 

b0
T
 = [ -4.695 -0.004 0.005 0.020 -0.258 0.223 -0.120 ]

b1
T
 = [ -3.464 0.010 0.024 0.012 -0.216 0.162 -0.198 ]

b2
T
 = [ -1.711 0.018 -0.001 0.010 -0.276 0.081 -0.277 ]

b3
T
 = [ -3.939 0.008 0.001 0.008 -0.141 0.183 -0.085 ]

b4
T
 = [ -2.300 0.013 -0.013 0.011 -0.130 0.107 0.024 ]

b5
T
 = [ -3.527 0.008 0.004 -0.012 0.207 0.161 0.069 ]

b6
T
 = [ -4.501 0.007 -0.017 0.002 -0.049 0.208 0.534 ]

b7
T
 = [ -4.261 0.010 -0.022 -0.001 0.077 0.196 -0.129 ]

b8
T
 = [ -2.865 0.019 -0.021 0.014 -0.264 0.134 0.121 ]

b9
T
 = [ -3.134 0.006 -0.001 0.018 -0.302 0.147 -0.169 ]  

 

Using the results of the multiple range tests instead, we find br vectors equal to: 
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b0
T
 = [ -3.360 0.009 -0.002 0.012 -0.204 0.156 -0.029 ]

b1
T
 = [ -3.360 0.009 -0.002 0.012 -0.204 0.156 -0.029 ]

b2
T
 = [ -3.360 0.009 -0.002 0.012 -0.204 0.156 -0.029 ]

b3
T
 = [ -3.360 0.009 -0.002 0.012 -0.204 0.156 -0.029 ]

b4
T
 = [ -3.360 0.009 -0.002 0.012 -0.204 0.156 -0.029 ]

b5
T
 = [ -3.360 0.009 -0.002 -0.010 0.184 0.156 -0.029 ]

b6
T
 = [ -3.360 0.009 -0.002 0.012 -0.204 0.156 -0.029 ]

b7
T
 = [ -3.360 0.009 -0.002 -0.010 0.184 0.156 -0.029 ]

b8
T
 = [ -3.360 0.009 -0.002 0.012 -0.204 0.156 -0.029 ]

b9
T
 = [ -3.360 0.009 -0.002 0.012 -0.204 0.156 -0.029 ]  

7.7.3 Mode-Specific Equations 

As for the mode-specific equations, we can represent the model for the non-seasonal portion of 

the forecasts:  

 

 Ŷm = Xm bm (7.8)

 

where 

 

 

Ŷm =  Xm =  bm =  

 

(7.9)

 

Using this notation, 

t represents the time period (month) for which the forecast is sought, 

m indicates the mode (bus = 1, light rail = 2, heavy rail = 3, or commuter rail = 4) undergoing 

forecasting, and 

p specifies the regression parameter (which ranges from 0 to 6 in these cases and corresponds 

with Equation 7.5). 
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With bn vectors comprising the seven parameters (the constant term and six independent 
variables) specified as in Equation 7.5, we create the following transposed bm vectors for the four 
modes: 
 

b1
T
 = [ -3.36 0.009 -0.002 0.007 -0.110 0.156 -0.029 ]

b2
T
 = [ -1.22 0.007 0.008 0.000 0.066 0.055 -0.110 ]

b3
T
 = [ -2.23 0.003 0.050 0.008 -0.084 0.103 -0.472 ]

b4
T
 = [ -3.87 0.004 -0.015 0.010 -0.166 0.180 -0.007 ]  

 

7.8 SENSITIVITY ANALYSIS 

Of the variables included in the regression analysis, most are determined in-house prior to, or in 
conjunction with, conducting forecasts. Parameters such as scheduled vehicle revenue hours, the 
number of vehicles in peak service, and/or whether a fare change is pending are already known 
prior to developing ridership projections. The counts of weekdays in the coming months are also 
known ahead of time. However, the consumer price index cannot be known beforehand, although 
estimates may produce an approximate value. Of the parameters used in this research, fuel price 
presents the greatest hurdle in anticipating input values for the models; the context and 
procedures for forecasting fuel prices constitute a continuing challenge for econometricians and 
are far beyond the scope of the work contained herein. 
 
This sensitivity analysis investigates how deviations from the true value of an external unknown 
input (fuel price or CPI) affect the accuracy of the forecast prior to combining the regression 
model with the seasonal model for a transit system. Because many of the independent variables 
in the model already consist of a percent change in the parameter of concern, interpretation of the 
regression results in sensitivity terms is straightforward. 

7.8.1 Fuel Price (PDFUEL) and Consumer Price Index (CPI) 

With the fuel price and CPI variables transformed to reflect the percent change from the previous 
month’s price or index, the units on these parameters in the final model definition also represent 
percent changes. Thus, sensitivity analysis reveals that determining the effect of wrongly 
estimated fuel prices or indices is as simple as consulting the parameter value associated with the 
PDFUEL or PDCPI variable. For specific systems, these effects are listed in Appendix C. For 
the broader regional values for bus, the mean values tabulated in Tables 7.7 and 7.11 for 
PDFUEL or PDCPI, as appropriate, are valid. 
 
In the case of determining the sensitivity to inaccurate fuel price estimates of non-seasonal 
ridership in the four different modes, the mean values in Table 7.21 serve here demonstratively. 
For bus systems as a whole, one percent overestimates in the percent change in fuel price result 
in an error of +0.007 percent in the non-seasonal component of PDLOGUPT. The final error on 
the estimate will depend on the seasonal parameters for the system in question, as determined 
and tabulated in Chapter 6. Similarly, the non-seasonal components of PDLOGUPT for light rail 
will be essentially nil, while for heavy and commuter rail systems, the non-seasonal portions of 
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the estimate will suffer +0.008 and +0.010 percent errors, respectively. This logic and 
interpretation of parameters pertains to the regional or system-specific PDFUEL coefficient 
values as well. Again, the final estimate of PDLOGUPT will depend on the seasonal factors, 
which vary too widely between regions and systems to define modally. 
 
Modal sensitivity analyses of inaccurate CPI estimates rely on Table 7.22. Using modal mean 
values for PDCPI, we see that a one percent overestimate of the percent change in the monthly 
CPI value brings about errors in the non-seasonal portion of PDLOGUPT equivalent to -0.110, 
+0.066, -0.084, and -0.166 percent, respectively, for bus, light rail, heavy rail, and commuter rail 
systems. The ultimate error in the final forecast of PDLOGUPT will depend on the seasonal SAF 
and STC values used in the projection. 
 

7.9 SUMMARY 

The non-seasonal error terms from the seasonal decomposition in Chapter 6 were analyzed in 
this chapter using multivariate regression to explain additional ridership variability due to 
operational and external factors. The regression results showed differences between modes and 
in the case of bus systems, differences in behavior between regions. The greatest differences are 
shown when comparing the effects of fuel price and consumer price index in the North Central 
and Mid-west sections of the US with the remainder of the nation. 
 
Non-seasonal model specifications were developed on system-, region-, and mode-specific bases, 
and sensitivity analyses for the external parameters were conducted. In the next chapter, the 
seasonal and non-seasonal models are combined to form the final composite transit ridership 
forecasting model. 
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Chapter 8: Composite Ridership Forecasting Model 

 

8.1 OVERVIEW 

Chapter 6 outlined the process by which seasonality was removed from the transformed 
PDLOGUPT time-series for each of 254 evaluated transit systems. The SAF and STC values 
derived for each system make up the seasonal portion of the forecasting models. 
 
Chapter 7 described the multivariate regression analysis conducted on the error terms et from the 
additive seasonal decomposition and the calibration results from the regressions, formulating 
matrices used in defining the model elements describing the effects of non-seasonal factors on 
ridership. 
 
To create the final ridership forecasts, the two model types must be additively combined to arrive 
at a final model definition comprised of both seasonal and non-seasonal components. This 
chapter discusses the composite model and the performance of this final model designation in 
terms of how well it explains variability within the dataset used for model construction and 
calibration. The next chapter, Chapter 9, describes model validation procedures and statistical 
implementation outcomes. 
 

8.2 VARIABILITY EXPLAINED BY COMPOSITE MODEL 

From the R2 value associated with the seasonality model and the adjusted R2 derived from the 
multivariate regression, a composite R2 value was calculated for each system, to determine the 
total percent of variation explained in the original series when combining the seasonal 
decomposition model and non-seasonal regression model. 
 
To calculate this value, the percent of variation described by the seasonal model (seasonal R2) 
was subtracted from one to determine what percentage of variability was not explained by 
seasonality. This percentage was multiplied by the R2 resulting from the regression, to find the 
percent of non-seasonal variation that could be described by the operational and external factors 
included in the regression. Finally, the R2 for seasonality was added to this non-seasonal value to 
calculate the total percentage of variation explained by the combined seasonal and regression 
models. These calculations are included in Appendix B. 
 
In a few cases, adjusting the regression R2 value to account for sample size led the value to 
become negative; in these instances, the R2 value associated with the regression was omitted 
from the final calculation, giving all explanatory power to the seasonal model. 
 
Table 8.1 presents summary statistics for composite R2 values across the four modes. With the 
exception of light rail systems, the final combined model explains an average of 70 percent of 
the total variation in the original ridership time-series. The maxima of these combined R2 values 
exceed 85 percent in all cases and 96 percent for bus and commuter rail systems. 
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Table 8.1: Total Variation (R2) Explained by Composite Forecasting Model, Summary Statistics 

Bus Light Rail Heavy Rail
Commuter 

Rail
Minimum 0.1316 0.2377 0.2024 0.3951
Maximum 0.9645 0.8564 0.9017 0.9792
Average 0.6896 0.5901 0.6879 0.7253
Median 0.7120 0.5721 0.7953 0.7221
Std. Dev. 0.1643 0.1584 0.2382 0.1478

Mode

Total Variation Explained by Composite Forecasting Model
Summary Statistics

 
 

 
Figures 8.1 through 8.4 provide histograms for the R2 values derived from the composite system-
specific models for bus, light rail, heavy rail, and commuter rail, respectively. 
 
In the case of bus systems (Figure 8.1), only 11 percent of bus systems have composite R2 values 
below 0.5. Thus, 89 percent of bus systems have 50 percent or more of their ridership variability 
explained by the composite forecasting model. In addition, for 38 percent of bus systems, more 
than 75 percent of total variability is explained by the model. 
 

 
Figure 8.1 Histogram of Composite R2 Values for Bus Systems 

 

For the light rail systems in Figure 8.2, 71 percent of systems have R2 values above 0.5; in 18 
percent of systems (three of 17), the composite model serves to explain more than 75 percent of 
ridership variability. 
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Figure 8.2 Histogram of Composite R2 Values for Light Rail Systems 

 

Figure 8.3 shows the histogram of R2 values for heavy rail. For this mode, 50 percent of 
variability is described by the model in 80 percent of systems, and in half of the heavy rail 
systems, 75 percent or more of ridership fluctuations are explained by the composite model. The 
R2 values tend to cluster near the top of the possible range. 
 

 
Figure 8.3 Histogram of Composite R2 Values for Heavy Rail Systems 

 

In evaluating the composite model for commuter rail systems (Figure 8.4), only one system 
(eight percent) had an R2 value below 0.5. The remaining 92 percent of R2 values were 0.6 or 
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greater. Additionally, in two-thirds of commuter rail systems (eight of 12), 75 percent or more of 
ridership variability could be explained by the composite model. 
 

 
Figure 8.4 Histogram of Composite R2 Values for Commuter Rail Systems 

 

 

8.3 FINAL COMPOSITE MODEL FORM 

In combining the seasonal model and non-seasonal regression model to form the final composite 
model, the calculation is additive and takes the general form: 
 

 PDLOGUPT = [SEASONAL MODEL] + [REGRESSION MODEL] + {error} (8.1)

 

Combining the seasonal and non-seasonal models mathematically to establish the final model 
form produces a theoretical expression as given in Equation 8.2, which assumes that all 
variability is captured in the model: 
 

  (8.2)

 

where 

 is the vector of accurate PDLOGUPT values over n time periods, 

 indicates the subscript n, r, or m, for the system, region, or mode under consideration, 

I  is the t by t identity matrix, 

SAFn is the vector of seasonal adjustment factors for system n, 
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STCn is the vector of trend-cycle factors for system n, 

 is the matrix of independent variables as defined in Chapter 7, and 

 is the vector of parameters as defined in Chapter 7. 

 
In actuality, the forecasts each have an additive error term associated with the expression, 
yielding a model form as follows: 
 

  (8.3)

 
where 

 is the vector of estimated forecasts over n time periods, and 

e represents the error vector associated with each of n forecasts. 

 
The contribution of this error term e to the forecasts is discussed more in Chapter 9. 
 
Although non-seasonal models were developed in Chapter 7 for regional and modal comparisons, 
comparable seasonal factors (SAF and STC) have not been developed on these bases. In 
addressing the seasonal patterns when regional or modal models are employed, it is suggested 
that one of the following methods be used to determine seasonal factors: 

• When the system of interest is included in the analyses and appendices here, values may 
be drawn directly from the appropriate appendix. 

• If a particular system is of interest and not included in the analyses and appendices here, 
seasonal decomposition may again be used to calculate unique seasonal factors. 

• For general regional values of SAF and STC, average or median values may be calculated 
for the appropriate region as provided in the appendices. 

• When evaluating a particular mode, the region of the US where the modal system resides 
must be known. Then SAF and STC values for a comparable system may be used, or 
regional average or median values may be found. 

 

8.4 SUMMARY 

This chapter described the additive procedure by which the seasonal and non-seasonal models 
are combined to produce the composite forecasting model. Most of the evaluated transit systems 
respond well to this approach, achieving composite R2 values around 0.7. 
 
The following chapter uses data from the first six months of 2008 to validate the composite 
model and assess its performance. 
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Chapter 9: Model Validation 

 

9.1 OVERVIEW 

In Chapter 8, the composite model describing seasonal and non-seasonal patterns was explained 
and formulated. Using R2 values to compare the formulated model to the time series data upon 
which the model was created, the total variability explained by the model was explored for each 
of four modes. 
 
In this chapter, we use the system-specific composite model for each transit system to forecast 
ridership in the first six months of 2008. Two types of forecasts are made; the first set consists of 
single-month forecasts based on actual observations from the previous month. Because the 
dependent variable in the model, PDLOGUPT, represents a percent change from the previous 
month, this forecast type is more accurate because it builds upon a confirmed ridership value. 
 
The second type of forecast created here uses the last observation point in December 2007 to 
project six months into the future with no input from actual ridership counts between December 
2007 and the final forecast month. This method is less accurate than the single-month projections 
due to the nature of the dependent variable because projections are based on the preceding 
forecast and thus errors tend to grow with time. 
 
For both types of forecasts, error analyses are conducted to explore the reliability of the 
composite model in developing ridership projections. Describing the outcome and accuracy of a 
forecast cannot be readily accomplished through the use of a single statistic and therefore several 
are used here, including the mean forecast percentage error (MFPE), root mean squared error 
(RMSE), mean absolute percentage deviation (MAPD), and tracking signal, formulae for each of 
which are described in turn in Section 9.3. Tables of cumulative percentages of systems below 
given error levels are also included. 
 

9.2 FORECASTING STC VALUES 

In the seasonal portion of the model, two parameters, SAFt and STCt, are used to determine the 
seasonal component of ridership at time t. SAF values are constant through time for the month to 
which they pertain. However, STC values, representing the slow, underlying change of ridership 
over time, need to be projected before continuing with the final forecasts. 
 
Several options exist for creating the STC projections for the first six months of 2008. For the 
purposes here, simple three-month moving averages were used to forecast STC values. As such, 
this approach required that STC values for April, May and June 2008 were based solely on the 
estimated STC values earlier in 2008. Given the small magnitude and contribution of STC values 
to the overall ridership forecasts, the method by which to calculate the estimated STC trend was 
deemed trivial to the forecasts. Other methods that might have been effectively employed include 
replication of the last six months’ values, moving averages of varying lengths, and weighted 
averages having greater reliance on observed values and giving less power to projected values.  
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9.3 ACCURACY MEASURES APPLIED TO FORECASTS 

The following subsections describe mathematically the definitions of the accuracy measurements 
used in this chapter and the reasons for utilizing them in quantifying how well the forecasts 
performed. 

9.3.1 Percentage Error 

Percentage error measures the deviation of the forecast at time t from the actual UPT count as a 
proportion of the observed ridership. Based on the definition in Equation 9.1, positive percentage 
errors indicate an overestimate, while an underestimate yields negative values. 
 

 

 

(9.1)

9.3.2 Mean Forecast Percentage Error (MFPE) 

As a measure of forecast bias (SCRC, 2006), the mean forecast percentage error (Equation 9.2) is 
the average percentage error incurred over the entire forecast period. MFPE can also be 
calculated at intermediate periods prior to the end of the forecast period by adjusting n 
accordingly. 
 
 

 

(9.2)

9.3.3 Root Mean Squared Error (RMSE) 

Root mean squared error is the square root of MSE, or mean squared error, calculated by 
subtracting the average monthly error over the validation period,  (or MFPE), from the 
individual monthly errors, squaring and summing these differences, dividing by the n forecast 
periods, and taking the square root (Equation 9.3). Here, the errors e used in the calculations are 
percentage errors. 
 

 

 

 

(9.3)

9.3.4 Mean Absolute Percentage Deviation (MAPD) 

The mean absolute percentage deviation measures the absolute deviation of the forecasts from 
the observed ridership values (Equation 9.4). By summing the absolute values of the percentage 
errors and dividing by n, we determine the average absolute deviation from the real values. 
MAPD may also be calculated at intermediate points during the forecast period. 
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(9.4)

9.3.5 Tracking Signal (TS) 

The tracking signal is a method of easily discerning which forecasts should be adjusted (SCRC, 
2006). By summing the errors over n periods and dividing by the mean absolute percentage 
deviation (MAPD) as in Equation 9.5, we calculate a positive or negative value indicating 
whether the model tends to over- or underestimate the true UPT count. The tracking signal has 
an acceptable range between -4.0 and +4.0; values falling outside this range indicate that the 
model could perform better. 
 

 

 

(9.5)

 

9.4 PERFORMANCE: SINGLE-MONTH PROJECTIONS 

Tables of statistics concerning the outcomes of single-month forecasts for the January 2008 to 
June 2008 validation period may be found in Appendix D for each transit system, including 
month-by-month percentage error values, mean forecast percentage error (MFPE) and root mean 
squared error (RMSE) over the six-month period, as well as mean absolute percentage deviation 
(MAPD) and tracking signal values for each monthly forecast. Tracking signal values outside the 
acceptable range are highlighted in the appendix. It should be noted that transit ridership became 
rather volatile during 2008 as economic factors began to play an unexpectedly greater role in 
travel patterns. 
 
The interpretation of MAPD and tracking signal values for these single-month forecasts is 
somewhat different from the multi-month forecasts, addressed in Section 9.5. Whereas for the 
multi-month forecasts, calculated values and errors build upon previous projection values, the 
single-month forecasts are based solely on the actual ridership value for the preceding month. 
Thus, percentage errors are lower because accuracy is dependent only on the model itself, rather 
than the precision of previous estimates. Values of RMSE, MAPD, and tracking signal are also 
smaller because errors are not propagated through the forecast series. 
 
Table 9.1 displays the median values of root mean squared percentage error (RMSE) and mean 
forecast percentage error (MFPE) for each of the ten bus regions, as analyzed previously. Median 
values are used here to eliminate the influence of outliers resulting from a handful of extremely 
poorly-performing systems. While some regions, such as Regions 3 and 5, show higher RMSE 
(9.0 and 9.1 percent, respectively), their median MFPE values over the six-month validation 
period are very low (0.3 and -0.6 percent, respectively); this indicates that although the MFPE 
tends to hover around zero, the error values contained in the sample fall into a wide range. Seven 
of the ten regions yield median MFPE within two percent of the true ridership value over the six-
month validation period. Overall, the composite model tends to underestimate ridership. 
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Table 9.1 Regional Median Values of RMSE and MFPE, Single-Month Forecasts, Bus Systems Only 
 

Region
Median
6-month
RMSE (%)

Median
6-month
MFPE (%)

0 6.9 -1.9
1 5.7 -2.8
2 7.0 -0.5
3 9.0 0.3
4 6.9 -1.0
5 9.1 -0.6
6 9.5 -1.0
7 7.0 -2.9
8 6.7 -3.9
9 6.5 -1.5  

 

Regional bus statistics for median MAPD and tracking signal values are provided in Table 9.2. 
Examining the MAPD values laterally through the table shows that, since each month’s forecast 
is based upon the actual UPT count from the preceding month, the errors are generally stable 
throughout the validation series. In fact, Regions 0 and 1 show that errors decreased with time, as 
month-to-month ridership variability decreased. With one exception in May 2008 for Region 7, 
median tracking signal values for the ten regions fall within the acceptable range (-4.0 < TS < 
+4.0), indicating that the composite model works well in predicting ridership on a single-month 
basis. The profusion of negative tracking signal values substantiates the conclusion that the 
composite model tends to underestimate ridership. 
 

 
Table 9.2 Regional Median Values of MAPD and  

Tracking Signal, Single-Month Forecasts, Bus Systems Only 
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0 8.8 7.8 8.7 8.1 7.0 6.2 -1.0 -2.0 -0.3 -1.4 -1.3 -2.3
1 10.3 8.0 7.7 7.7 6.7 6.3 -1.0 -2.0 -0.9 -2.1 -2.2 -2.5
2 8.2 6.7 7.4 7.2 6.7 6.3 -1.0 -1.7 0.1 -1.0 -0.1 -0.6
3 9.7 7.5 7.9 8.5 8.8 7.6 -1.0 -2.0 0.1 -1.0 -0.2 0.3
4 3.1 5.6 6.9 7.4 6.4 6.1 -1.0 -1.8 0.3 -0.4 -0.5 -1.3
5 6.3 5.3 7.5 8.5 8.4 8.0 -1.0 -1.8 0.4 -1.4 -0.6 -0.6
6 3.4 8.8 8.2 9.8 9.1 8.7 -1.0 -1.7 0.4 -0.2 0.2 -0.6
7 8.8 7.1 7.6 7.5 6.6 7.0 -1.0 -2.0 -3.0 -4.0 -4.5 -2.7
8 6.7 7.5 8.9 8.0 6.6 6.7 -1.0 -2.0 -1.2 -2.4 -2.4 -3.0
9 3.7 6.1 6.7 6.7 6.3 5.8 -1.0 -2.0 -0.3 -1.4 -0.5 -1.7

Median MAPD (%) Median Tracking Signal (TS)

Region
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Regarding the median RMSE and MFPD results for all four modes, given in Table 9.3, bus 
systems as a whole had a median RMSE value of about 7.3 percent and a median MFPE of -1.1 
percent. The rail modes, with much smaller sample sizes, had slightly higher overall errors; 
median MFPE values for light, heavy, and commuter rail modes were -3.3, -2.2, and -2.3 percent, 
respectively. However, heavy and commuter rail, with higher mean percentage error, showed 
lower RMSE values, indicating less spread about the mean error values, compared to bus and 
light rail system statistics.  
 

Table 9.3 Modal Median Values of RMSE and MFPE, Single-Month Forecasts 

Mode
Median
6-month
RMSE (%)

Median
6-month
MFPE (%)

Bus 7.3 -1.1
Light Rail 8.2 -3.3

Heavy Rail 5.8 -2.2
Commuter Rail 6.0 -2.3  

 

Generally, those systems with higher composite R2 values tended to have lower error, as shown 
in Figure 9.4, which includes information for all four evaluated transit modes. (One extreme 
outlier point with very high positive MFPE and low composite R2 has been omitted from this 
figure for display purposes.) In Figure 9.1, it can be seen that MFPE values tend to cluster closer 
to the zero percent error line as R2 increases. This observation implies that the composite model 
was suitable for explaining variability in both the 2002-2007 calibration series and in the 
validation series.  
 

 
Figure 9.1 Mean Forecast Percentage Error (%) versus  

Composite Model R2, Single-Month Forecasts, All Modes 
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A cursory perusal of Appendix D and Tables 9.1 through 9.3 reveals that the forecasting model 
tended to underestimate ridership, as most of the individual monthly percentage error values are 
negative. One issue that arises from this result is the question of whether underestimates or 
overestimates of ridership are potentially more harmful. Underestimates could mean higher 
occupancies on vehicles and extreme underestimates could be detrimental to public perceptions 
when insufficient capacity is provided. Overestimates could lead to underutilization of vehicles 
and unnecessary expenditure of resources to provide for unmet ridership expectations.  
 
Part of what may have contributed to this tendency to underestimate ridership resides in the 
development of the model. Because the regression model was built upon six years of data (2002 
to 2007), the effects of included non-seasonal components tend to represent long-term behavior 
shifts since results are averaged over the six-year period. Utilizing this longer period for model 
calibration means that the regression results could be less capable of capturing short-term, 
immediate shifts of behavior. Especially in the validation period, the question of long-term 
versus short-term shifts is of great concern since the national economic environment was 
undergoing rapid change at this point (and was felt even more acutely in the latter part of 2008). 
Unprecedented increases in transit ridership during 2008 may have contributed to greater 
forecasting error in this model validation than would have been seen in a more typical year.  
 
Table 9.4 provides the statistics for the cumulative percentage of bus systems with error in each 
validation month within a given error range (positive or negative percent error). In these results, 
more than 75 percent of the 215 systems evaluated fell within 15 percent of the actual ridership 
over the entire validation period. Comparing values laterally across the table, one can see that 
each month performed equally as well as the one preceding it, which agrees with the conclusions 
reached using Table 9.2. Looking vertically, it is clear that increasingly more systems fell within 
each next-higher hit range. 
 

Table 9.4 Cumulative Percentages of Systems (%) with  
Percent Error within Given Range – Single-Month Forecasts: Bus Mode 

Mode
Percent 
Error Jan-08 Feb-08 Mar-08 Apr-08 May-08 Jun-08

Bus 1% 11.2 9.3 6.5 3.7 12.1 16.7
(215 systems) 5% 43.3 45.6 27.4 19.1 53.5 51.6

10% 65.1 80.0 63.3 58.1 80.0 78.1
15% 77.2 90.2 83.7 86.0 92.1 86.5
20% 87.4 94.9 90.7 94.9 96.3 92.6
25% 91.2 97.2 94.4 97.2 97.2 94.9

Cumulative Percentages of Systems (%) Below Given Percent Error
Single-Month Forecasts: BUS MODE

 
 

Hit statistics for rail systems, which had considerably fewer modal observations, are given in 
Table 9.5. Heavy and commuter rail systems, which had the lowest median RMSE values of 5.8 
and 6.0 percent, respectively, also show good response to the model; all ten heavy rail systems 
had monthly errors within 15 percent of the actual values and all twelve commuter rail systems 
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had monthly errors within 20 percent of the observed ridership counts. Light rail, with the 
highest median RMSE of 8.2 percent, performed worst of the four modes, with 75 percent of its 
17 systems seeing forecasting errors within 20 percent of the real values. 
 

Table 9.5 Cumulative Percentages of Systems (%) with  
Percent Error within Given Range – Single-Month Forecasts: Rail Modes 

Mode
Percent 
Error Jan-08 Feb-08 Mar-08 Apr-08 May-08 Jun-08

Light Rail 1% 17.6 11.8 0.0 0.0 5.9 17.6
(17 systems) 5% 47.1 41.2 29.4 35.3 47.1 47.1

10% 52.9 52.9 70.6 52.9 64.7 64.7
15% 76.5 58.8 88.2 76.5 82.4 76.5
20% 82.4 76.5 94.1 82.4 88.2 76.5
25% 94.1 88.2 100.0 88.2 88.2 82.4

Heavy Rail 1% 70.0 90.0 20.0 90.0 20.0 70.0
(10 systems) 5% 100.0 90.0 40.0 100.0 80.0 100.0

10% 100.0 90.0 80.0 100.0 90.0 100.0
15% 100.0 100.0 100.0 100.0 100.0 100.0
20% 100.0 100.0 100.0 100.0 100.0 100.0
25% 100.0 100.0 100.0 100.0 100.0 100.0

Commuter Rail 1% 16.7 8.3 8.3 0.0 41.7 8.3
(12 systems) 5% 66.7 66.7 33.3 33.3 91.7 50.0

10% 75.0 83.3 66.7 66.7 91.7 91.7
15% 100.0 91.7 91.7 91.7 100.0 100.0
20% 100.0 100.0 100.0 100.0 100.0 100.0
25% 100.0 100.0 100.0 100.0 100.0 100.0

Cumulative Percentages of Systems (%) Below Given Percent Error
Single-Month Forecasts: RAIL MODES

 
 

As can be seen from Tables 9.4 and 9.5, error ranges for the single-month projections tended to 
be similar across the six months of the validation period, once more indicating that forecasting 
accuracy did not decline with time, since each previous month’s actual UPT count was used as 
the base for the following month’s forecast. 
 

9.5 PERFORMANCE: MULTI-MONTH PROJECTIONS 

In Appendix E are located tables of monthly percentage errors, as well as mean forecast 
percentage errors (MFPE), root mean square errors (RMSE), mean absolute percentage 
deviations (MAPD), and tracking signal values on monthly bases for the multi-month forecasts 
during the validation period. These multi-month errors tend to be higher than those for the 
single-month forecasts because due to the nature of the dependent variable, which represents a 
percent change from the previous observation or projection, forecasts and errors build on each 
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other throughout the forecast period. Thus, each month is predisposed to have a higher error than 
its predecessor. 
 
Concerning the model validation for the bus systems evaluated, Table 9.6 displays median values 
of RMSE and MFPE for each of the ten regions. Regions 6, 3, and 4 achieve the most accurate 
forecasts (five percent mean error or less), while Regions 1 and 7 have the greatest average 
errors. A side-by-side comparison of this table with Table 9.1 shows that although RMSE values 
were lower for the multi-month projections than for the single-month forecasts (showing less 
variability around the mean regional error values, MFPE), the median MFPE values are 
substantially greater than for the single-month cases. These results indicate that throughout the 
validation period, errors were consistently higher, though similar in magnitude from month to 
month. As in the single-month forecasts, the MFPE values in Table 9.6 indicate that the model 
projections tend to fall short of the actual ridership counts in all regions. 
 

Table 9.6 Regional Median Values of RMSE and MFPE, Multi-Month Forecasts, Bus Systems Only 

Region
Median
6-month
RMSE (%)

Median
6-month
MFPE (%)

0 4.2 -7.3
1 3.4 -14.6
2 4.8 -5.4
3 7.2 -4.5
4 6.3 -4.8
5 6.0 -6.0
6 7.9 -2.3
7 7.8 -18.8
8 5.6 -12.2
9 5.3 -6.2  

 

Multi-month regional bus statistics for median MAPD and median tracking signal values are 
provided in Table 9.7. This table shows that, as expected, MAPD values increase as the forecast 
period progresses. In the single-month cases in Table 9.2, MAPD values were essentially stable 
throughout the six-month validation period. The progressively increasing MAPD values here 
illustrate how the errors in each month’s forecast are greater than the preceding month’s because 
projections build upon the estimate and any error incurred in the previous month. The 
proliferation of negative values in the tracking signals indicates again that the model generally 
underestimates ridership. Many of the tracking signal values in the last two forecast periods fall 
outside the acceptable range. These underestimates may have been exacerbated by the 
unprecedented growth in transit ridership in 2008 resulting from economic and other forces, and 
the longer-term trends captured by the regression model, as opposed to short-term behavior shifts.  
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Table 9.7 Regional Median Values of MAPD and Tracking  
Signal, Multi-Month Forecasts, Bus Systems Only 
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0 8.8 10.6 10.9 12.5 13.7 13.4 -1.0 -2.0 -3.0 -4.0 -5.0 -6.0
1 10.3 11.3 11.7 13.6 17.3 20.5 -1.0 -2.0 -3.0 -4.0 -5.0 -6.0
2 8.2 10.9 9.6 11.3 11.9 12.8 -1.0 -2.0 -2.9 -3.9 -4.7 -5.6
3 9.7 11.8 9.4 10.0 11.7 13.8 -1.0 -2.0 -3.0 -4.0 -4.0 -4.5
4 3.1 5.6 6.4 8.3 9.2 10.1 -1.0 -2.0 -2.5 -3.6 -4.6 -5.7
5 6.3 7.6 9.4 9.6 9.9 10.1 -1.0 -2.0 -2.1 -3.4 -4.5 -5.7
6 3.4 9.4 11.9 11.6 9.8 11.0 -1.0 -1.9 -0.6 -2.0 -0.4 -2.1
7 8.8 10.3 13.0 15.5 18.7 19.6 -1.0 -2.0 -3.0 -4.0 -5.0 -6.0
8 6.7 10.9 10.8 12.5 13.5 15.1 -1.0 -2.0 -3.0 -4.0 -5.0 -6.0

Median MAPD (%) Median Tracking Signal (TS)

Region

 
 

The modal statistics in Table 9.8 show that, with negative MFPE values, the model 
underestimates ridership for all four modes. Compared with the single-month forecasts, based on 
the preceding month’s UPT count, the multi-month forecast errors are greater, building from 
month to month as forecasts differ from real ridership. While the median RMSE value for light 
rail systems did not change from the single-month forecasting case, the values for bus, heavy rail, 
and commuter rail modes dropped, showing smaller variability about the mean percentage error 
(MFPE) values; thus, although the MFPE values are higher for the multi-month projections, the 
error magnitude is similar from month to month. 
 

Table 9.8 Modal Median Values of RMSE and MFPE, Multi-Month Forecasts 

Mode
Median
6-month
RMSE (%)

Median
6-month
MFPE (%)

Bus 5.7 -6.3
Light Rail 8.2 -14.4

Heavy Rail 4.0 -8.3
Commuter Rail 5.2 -7.3  

 

Comparing MFPE for the multi-month validation with composite model R2 values for all 254 
systems results in the plot given in Figure 9.2. (Four data points with MFPE greater than 150 
percent and low composite R2 have been removed from this figure for visual clarity.) This plot, 
like that in Figure 9.1 for the single-month errors, indicates that MFPE tends to cluster closer to 
zero error as R2 increases, although much greater variation is present in this plot, compared to the 
single-month plot. We can again conclude that the R2 values associated with the 2002-2007 
calibration series are representative of the relative variability explained in the multi-month 
forecasts of the validation period, although to a lesser extent than in the single-month projections. 
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Figure 9.2 Mean Forecast Percentage Error (%) versus  
Composite Model R2, Multi-Month Forecasts, All Modes 

 

Table 9.9 presents the cumulative statistics for the percentage of bus systems achieving accuracy 
within a given percent error range. Examining the table laterally, we see that as the forecast 
period progresses, fewer systems attain the given accuracy. This finding is consistent with the 
propagation of error with time through the validation period, as noted previously. 
 

Table 9.9 Cumulative Percentages of Systems (%) with 
Percent Error within Given Range – Multi-Month Forecasts: Bus Mode 

 

Mode
Percent 
Error Jan-08 Feb-08 Mar-08 Apr-08 May-08 Jun-08

Bus 1% 11.2 3.3 7.9 3.7 4.2 4.2
(215 systems) 5% 43.3 21.4 30.7 18.1 18.1 18.6

10% 65.1 48.8 52.1 39.5 43.7 34.0
15% 77.2 67.4 65.1 53.0 58.1 47.9
20% 87.4 82.3 76.3 67.4 68.8 59.5
25% 91.2 87.0 83.3 79.1 77.7 71.2

Cumulative Percentages of Systems (%) Below Given Percent Error
Multi-Month Forecasts: BUS MODE

 
 

The same statistics of accuracy for the three rail modes with much smaller sample sizes are 
shown in Table 9.10. This table also indicates reduced prediction accuracy as forecasts grow 
further in time from the last observed period.  
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Table 9.10 Cumulative Percentages of Systems (%) with 

Percent Error within Given Range – Multi-Month Forecasts: Rail Modes 
 

Mode
Percent 
Error Jan-08 Feb-08 Mar-08 Apr-08 May-08 Jun-08

Light Rail 1% 17.6 11.8 0.0 5.9 0.0 0.0
(17 systems) 5% 47.1 29.4 17.6 11.8 17.6 5.9

10% 52.9 35.3 41.2 29.4 23.5 23.5
15% 76.5 47.1 52.9 35.3 35.3 35.3
20% 82.4 58.8 64.7 35.3 47.1 41.2
25% 94.1 70.6 76.5 52.9 52.9 47.1

Heavy Rail 1% 0.0 10.0 0.0 0.0 10.0 0.0
(10 systems) 5% 60.0 30.0 30.0 30.0 40.0 40.0

10% 80.0 50.0 70.0 50.0 60.0 40.0
15% 80.0 70.0 70.0 60.0 70.0 50.0
20% 80.0 80.0 80.0 70.0 70.0 70.0
25% 80.0 80.0 80.0 80.0 80.0 70.0

Commuter Rail 1% 16.7 0.0 8.3 16.7 0.0 8.3
(12 systems) 5% 66.7 25.0 58.3 25.0 16.7 8.3

10% 75.0 66.7 83.3 58.3 50.0 33.3
15% 100.0 83.3 91.7 66.7 66.7 41.7
20% 100.0 100.0 91.7 100.0 91.7 66.7
25% 100.0 100.0 100.0 100.0 100.0 100.0

Cumulative Percentages of Systems (%) Below Given Percent Error
Multi-Month Forecasts: RAIL MODES

 
 

Equations 9.6 through 9.9 describe mathematically the means by which errors are propagated 
through the multi-month forecasts: 
 

 
 

(9.6)

 

 

(9.7)
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(9.8)

 

 

 

(9.9)

 

For these equations, C represents the last observed ridership data point before forecasting 
commences and T indicates the final time period for which a forecast is conducted. The single-
month forecasts make use only of the first equation, 9.6. These forecasts thus contain only the 
error associated with the initial modeling error. 
 
As the model is used to project beyond the first month and each consecutive forecast is based 
upon the preceding month’s estimated value, the errors grow with time. Ultimately, as in 
Equation 9.9, the forecast at time t contains information regarding the product of all preceding 
ridership change estimates, combined both with the actual ridership values and the forecast errors, 
which cannot be known when creating the projections. 
 

9.6 SUMMARY 

The single- and multi-month model validation performed in this chapter revealed that while the 
model performs satisfactorily, it showed a tendency to underestimate ridership in the first half of 
2008. The multi-month forecasts generally have greater error than the single-month predictions, 
due to error propagation through the series. Some of the error may be attributed to the 
unprecedented growth in transit ridership during 2008 which could not be anticipated by a model 
calibrated on historical data, and by the six-year calibration period of the model, which tends to 
produce estimates of longer-term behavior shifts, rather than immediate reactions to stimuli such 
as fuel price. 
 
The final chapter, Chapter 10, reviews the process by which the forecasting model was 
established, discusses the academic and technical contributions of this research, and outlines 
future steps for the improvement of the transferable short-term transit ridership forecasting 
model developed herein. 
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Chapter 10: Conclusions and Future Steps 

 

10.1 REVIEW 

In the course of this research, a transferable short-term transit ridership forecasting model was 
developed, which includes, among other inputs, a parameter measuring the impact of fuel price 
change on ridership. The effect of gasoline price fluctuations on public transportation ridership 
varies by city, by region, and by transit mode and system, as do the relationships between 
ridership and the other included parameters. 
 
Figure 10.1 presents a flow chart outlining the modeling procedure developed herein. Monthly 
ridership and other time series data were collected for the 2002-2007 period from various federal 
sources for 254 US transit systems, comprising 215 bus systems, as well as 17 light rail, 10 
heavy rail, and 12 commuter rail systems. The modeling process included transformation of 
ridership data to achieve stability in the mean and variance, then decomposing the data to remove 
seasonal variability. Following the breaking of ridership data into seasonal components and non-
seasonal residuals, multivariate regressions of the seasonally-adjusted ridership data were 
conducted. The results from the non-seasonal multivariate analyses were combined with the 
seasonal measures to create a composite model. To test the validity of the model, forecasting 
procedures, including projection of trend-cycle components, operational characteristics, and 
external factors, were applied via the composite model to estimate ridership counts for the first 
six months of 2008. The model produces values of the percent change in the logarithm of 
ridership, which must then be converted back into nominal ridership estimates. 
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Figure 10.1 Flow Chart of Ridership Modeling Process 
 
 
The model, as developed, performed satisfactorily, although it tended to underestimate ridership 
in 2008. These underestimates likely stem from the unprecedented growth in ridership during the 
validation period, in addition to the calibration period of the model, which encompassed a period 
of six years and thus may have led the model to contain longer-term behavior shifts from stimuli 
such as fuel price, rather than short-term, immediate reactions. 
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10.2 CONTRIBUTIONS 

Academically, the research herein explores a topic which has received little attention, most 
transit agencies establishing their own forecasting methods in-house or within their local 
metropolitan planning organization. The procedures here are unique in that they combine 
established forecasting methodologies, such as data decomposition, with more advanced 
multivariate regression, in a complementary manner that leads to robust prediction abilities. By 
calibrating and examining each individual system within the evaluation set, transferability is 
achieved and comparisons are made across systems, regions, and modes, which, in the absence 
of comprehensive model-building, cannot otherwise be accomplished. 
 
Technological contributions of this work include its transferability through individual system 
calibration of the seasonal and non-seasonal parameters. Additionally, the modeling procedure is 
straightforward, making use of commonly-available data, and readily adaptable to mathematical 
programming interfaces for unique system treatment. 
 

10.3 FUTURE STEPS 

Based on the work done here, several opportunities present themselves for improvement upon 
the methods utilized, and potential new directions for future innovations emerge. 
 
In enhancing directly the research contained in this report, the first step should be two-fold. First, 
further exploration of the relationship between fuel price and the consumer price index is 
warranted. These variables may have some underlying relationship that leads to the contradictory 
or complementary effects seen in the multivariate regressions of Chapter 7. Simple analyses may 
begin with using the CPI to adjust fuel prices to a base year, to achieve constant dollar values 
throughout the calibration period. Additionally, if CPI is to be included in future models, it may 
prove useful to assign more disaggregate values to the systems evaluated, as was done with fuel 
price, rather than making use of the national CPI values. 
 
The second step pertaining directly to this research would include re-calibrating the model using 
a shorter and more recent dataset, to compare and contrast longer-term behavior shifts (as 
captured here) with shorter-term, more reactionary shifts, especially with regard to fuel price. 
 
Taking view of a more distant research horizon, augmenting the model developed here may be 
achieved using different model types. Some ideas include dynamic regression, which allow the 
effects of stimuli, such as fuel price, to be distributed over a longer time period, rather than the 
one-to-one correlation as included in the research of this report. This advantage could prove 
highly relevant to the forecasting of transit ridership, since it has already been shown in past 
research that reactions to fuel price are prolonged over several months in nearly all cases. 
 
Another approach that could boost the estimation accuracy of this forecasting model involves 
state-space and structural time series models, which, among other advantages, allow for greater 
capture of random effects, particularly regarding seasonality. 
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10.4 SUMMARY  

Although the methods presented here are straightforward, potential exists to enhance these 
techniques and develop more accurate transit ridership forecasting tools that can be applied 
nationwide. This work establishes a benchmark for future research into transferable transit 
ridership forecasting models that may aid public transportation system planners in an era when, 
due to fuel price concerns, global warming and green initiatives, and other impetuses, transit use 
is seeing a resurgence in popularity. 
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