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Abstract 

This study presents the numerical implementation and validation of general constitutive 

relationships for describing the nonlinear behavior of asphalt concrete mixes.  These constitutive 

relationships incorporate nonlinear viscoelasticity and viscoplasticity to predict the recoverable 

and irrecoverable responses, respectively.  The nonlinear viscoelastic deformation is modeled 

using Schapery’s model; while the irrecoverable component is represented using Perzyna’s 

viscoplasticity theory with an extended Drucker-Prager yield surface and plastic potential that is 

modified to capture the distinction between the compressive and extension behavior of asphalt 

mixes. The nonlinear viscoelastic and viscoplastic model is represented in a numerical 

formulation and implemented in a finite element (FE) code using a recursive-iterative algorithm 

for nonlinear viscoelasticity and the radial return algorithm for viscoplasticity. Then, the model 

is used to analyze the nonlinear viscoelastic and viscoplastic behavior of asphalt mixtures 

subjected to single creep recovery tests at different stress levels and temperatures. This 

experimental analysis includes the separation of the viscoelastic and viscoplastic strain 

components. Based on this separation, a systematic procedure is presented for the identification 

of the material parameters associated with the nonlinear viscoelastic and viscoplastic constitutive 

equations.  Finally, the model is applied and verified against a set of creep-recovery tests on hot 

mix asphalt at different stress levels and temperatures. 
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Executive Summary 

Approximately 2.4 million miles of pavements in the United States have a hot mix asphalt 

(HMA) surface. HMA or asphalt concrete is a complex composite that comprises of mineral 

aggregates that are bound together using an asphalt binder. Asphalt binder is a by-product 

obtained from the distillation of naturally occurring crude oil. Mineral aggregates are obtained by 

quarrying and processing natural rocks. Mechanical properties of the composite asphalt concrete 

vary significantly depending on the proportioning (mix design), size and distribution of 

aggregates, and individual physio-chemical and mechanical properties of the constituent 

materials. 

There has been significant emphasis in the past few years on warranties of the performance of 

asphalt pavements. However, one of the challenges in establishing these warranties by 

contractors and highway agencies is the lack of mechanistic models and fundamental material 

properties that can be used to predict and enhance performance. The majority of available 

performance models for asphalt pavements are empirical and they do not employ fundamental 

material properties. The researchers at Texas A&M University have worked in recent years on 

developing test protocols for measuring fundamental material properties of asphalt mixtures.  

There is a large need to integrate these properties in models that can be used by engineers to 

predict the performance of asphalt pavements. Therefore, the focus of this research is on 

integrating fundamental properties of constituent materials in a mechanistic model that can be 

used effectively in predicting the performance of an asphalt composite over a wide range of 

loading and environmental conditions. This objective fits well with the vision of the National 

Asphalt Roadmap developed by the Federal Highway Administration for asphalt pavements.  

This vision is stated as “Develop improved asphalt pavement technologies that ensure the 

continued delivery of safe and economical pavements to satisfy our Nation’s needs”.   

This report presents a continuum model for simulating the nonlinear material behavior of 

asphalt mixes or asphalt concretes by incorporating nonlinear-viscoelasticity and viscoplasticity. 

The Schapery’s single-integral nonlinear viscoelastic model describes the nonlinear viscoelastic 

response. The viscoplastic model of Perzyna-type models the time-dependent permanent 

deformations, using a Drucker–Prager-like yield surface which is modified to depend on the third 

deviatoric stress invariant, and to include more complex dependence on state of stress. A novel 

and systematic procedure for separating the recoverable (viscoelastic) and the unrecoverable 
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(viscoplastic) deformations from the total deformations is advocated in this study. This 

procedure allows one to identify the material constants associated with the viscoelastic 

constitutive equations independently of the material constants associated with the viscoplastic 

constitutive equations.  

The nonlinear constitutive model is implemented numerically for three-dimensional, plane 

strain, and axisymmetric problems in the well-known commercial finite element code Abaqus 

through the user material subroutine UMAT. A series of simulations is presented to show the 

performance of the model and its implementation. Sensitivity studies are conducted for all model 

parameters and results due to various simulations corresponding to laboratory tests are presented. 

The model is verified against a limited number of laboratory creep-recovery tests for various 

stress levels, loading times, and temperatures. The model predicts well the experimental data. 

 Finally, work is currently underway at Texas A&M University for coupling the developed 

viscoelastic-viscoplastic model with a continuum damage mechanics-based model. Both damage 

due to mechanical loading and damage due to moisture conditioning will be incorporated into the 

current constitutive model. Moreover, the ability of the proposed model in predicting the overall 

fatigue performance of HMA layers under realistic loading conditions will be demonstrated 

through future studies by the current authors. 
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1 Introduction 

Roadways are designed to last until rehabilitation or replacement, and it is their degraded 

performance that dictates the design of pavements. It is, therefore, essential to be able to predict 

the degradation of an asphalt concrete through the development of a robust computational model 

that can effectively simulate the performance of an asphalt pavement under mechanical (e.g. 

traffic) and environmental (e.g. moisture, temperature) loading. Although all materials are 

heterogeneous, continuum models describe many materials’ behavior in a way that allows 

computation of much more complex physical problems than otherwise feasible. To create a 

model capable of simulating whole sections of a roadway, this study will use a continuum 

approach to describe all facets of material behavior. Many past studies have characterized asphalt 

concrete and its phases using various models (some using continuum models and some using 

micromechanical approaches), and this section will describe several of these studies and models. 

Experimental measurements have shown that the response of hot mix asphalt (HMA) contains 

recoverable (viscoelastic) and irrecoverable (viscoplastic) deformation components (e.g. Perl et 

al., 1983; Sides et al., 1985; Collop et al., 2003).  The recoverable response can be characterized 

as a nonlinear viscoelastic. The nonlinearity is caused by localized high strain concentrations in 

the binder phase (Masad and Somadevan, 2002; Kose et al., 2000).  The Schapery’s single 

integral model has been used in the past to describe the effect of stress and strain level on the 

nonlinear viscoelastic behavior of viscoelastic materials (e.g. Christensen, 1968; Schapery, 1969; 

Schapery, 2000), and several numerical schemes of Schapery’s theory have been developed and 

implemented using finite element (FE) to analyze the material viscoelastic response (e.g. Touati 

and Cederbaum, 1997, 1998; Haj-Ali and Muliana, 2004).  Lee and Kim (1998) and Kim et al. 

(2007) have used a linear simplified form of the Schapery’s viscoelastic model coupled with 

isotropic damage (Schapery, 1991) in order to simulate the nonlinear behavior of HMA.  Sadd et 

al. (2004) employed the Schapery theory to represent the nonlinear viscoelastic behavior of 

asphalt mixes and implemented it in a finite element code using a recursive numerical scheme.  

Huang et al. (2007) implemented Schapery’s nonlinear viscoelasticity model (Shapery, 1969) in 

a finite element code using the recursive-iterative numerical algorithm of Haj-Ali and Muliana 

(2004) to characterize the viscoelastic behavior of HMA subjected to shear loading at different 

temperatures and strain levels; however, without taking into consideration the viscoplastic 

response of HMA especially at high stress levels and high temperatures. Therefore, the focus of 
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the present study is on coupling nonlinear viscoelasticity and viscoplasticity for more accurate 

representation of the HMA mechanical behavior. Damage coupling will be considered in a future 

work. 

Perzyna’s viscoplasticity theory (Perzyna, 1971) has been used to describe the irrecoverable 

response of asphalt mixtures.  Seibi et al. (2001) developed an elasto-viscoplastic constitutive 

model for HMA.  This model used the Perzyna’s theory of viscoplasticity with the Drucker-

Prager yield surface to model the irrecoverable component. However, this model used an elastic 

model to represent the recoverable component which is not realistic for HMA especially at high 

stress levels and high temperatures.  Lu and Wright (1998) developed a model that employed 

Perzyna’s viscoplasticity theory to represent the irrecoverable component of HMA, and 

considered the recoverable response as elastic or linear viscoelastic.  Masad et al. (2005) 

developed an elasto-viscoplastic model with non-associated flow rule based on conventional 

Drucker-Prager yield surface for HMA.  This model modified Perzyna’s viscoplasticity to 

include material anisotropy and isotropic damage but with no viscoelasticity.  Masad et al. 

(2007) improved this model by employing an extended Drucker-Prager yield surface which 

accounted for the influence of stress state (extension versus compression) on material response, 

and implemented it in a finite element program.  Nevertheless, surprisingly, those material 

constitutive models did not couple nonlinear viscoelasticity and viscoplasticity to predict the 

mechanical response of HMA which is shown in this paper to be crucial at high stress levels and 

high temperatures.   

 Therefore, the objectives of this research are to develop a general material constitutive model 

which integrates a nonlinear viscoelastic model with a viscoplastic model and to implement it 

into the finite element code Abaqus (2008) using a recursive-iterative numerical algorithm for 

viscoelasticity and return mapping algorithm for viscoplasticity.  This study employs the 

Schapery’s nonlinear viscoelastic model to represent the recoverable strain, whereas the 

viscoplastic strain is modeled using Perzyna’s viscoplasticity theory.  The model is used to 

analyze the experimental data on HMA mixtures subjected to creep-recovery tests at different 

temperatures and stress levels, and verify the ability of the model to analyze asphalt mixtures 

response under the boundary conditions of laboratory tests.  
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2 Viscoelastic-Viscoplastic Constitutive Model 

Asphalt concretes are modeled as viscoelastic materials because the recoverable response of 

asphalt changes with time under constant load and varies for various load rates (Sides et al., 

1985; Grenfell et al., 2009) and specifically as nonlinear viscoelastic materials because 

experiments have shown asphalt binder’s response varies with load level and temperature 

nonlinearly (Cheung and Cebon, 1997; Airey et al., 2002a,b, 2004). It is readily observed that 

asphalt pavements in service frequently sustain load and recover deformations, so any accurate 

model for asphalt concrete must include viscoelasticity. 

Asphalt concretes are modeled as viscoplastic materials because experiments and observation 

reveal that asphalt concretes undergo permanent deformation under high loads, and that the rate 

at which these permanent deformations accumulate varies with loading rate (Sides et al., 1985; 

Dessouky, 2005; Grenfell et al., 2008). Specifically, a modified Drucker–Prager yield surface 

and non-associated flow rule are used to conform to empirical observations of asphalt mix 

response (Dessouky, 2005; Masad et al. 2007). Because excessive permanent deformations may 

lead to unacceptable pavement performance, any accurate model for asphalt concrete must 

include viscoplasticity. 

Assuming small strain deformations, the total deformation of an asphalt concrete mix 

subjected to an applied stress can be decomposed into a recoverable component (i.e. viscoelastic) 

and an irrecoverable (i.e. viscoplastic) component such that: 

 nve vp
ij ij ijε ε ε= +  (1) 

where ijε  is the total strain tensor, nve
ijε  is the nonlinear viscoelastic strain tensor, and vp

ijε  is the 

viscoplastic strain tensor. 

 

2.1 Nonlinear viscoelastic model 

This study employs the Schapery’s nonlinear viscoelastic theory to model the recoverable 

component.  The recoverable strain of Schapery integral form (1969) under an applied stress τσ  

is expressed as:   

 ( ) ( ) ( )2

0 0 1

0

t
nve t t

d g
t g D g D d

d

τ
τ

σ
ε σ ψ ψ τ

τ
= + Δ −  (2) 
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where 0D  is the instantaneous elastic compliance, DΔ  is the transient compliance, 0g , 1g , and 

2g  are nonlinear parameters related to stress or strain level, and tψ  is the reduced time which 

can be a function of stress/strain shift factor, temperature shift factor, and other environment shift 

factors and is given by: 

 
0

t
t

T s e

d

a a a

ξψ =   (3) 

where Ta  is the temperature shift factor, sa  is the strain or stress shift factor, and ea  is the 

environment shift factor. For numerical convenience, this study uses the Prony series to represent 

the transient compliance DΔ  as follows: 

 ( )( )
1

1 exp
t

N
t

n n
n

D Dψ λ ψ
=

Δ = − −  (4) 

where nD  is the thn  coefficient of Prony series associated with the thn  retardation time nλ , and 

N  is the number of Prony series components. In the above equations, the superimposed t  and τ  

designates the response at specific time. 

The three-dimensional isotropic constitutive relations can be decoupled into deviatoric and 

volumetric parts presented as:     

 
1 1 1

2 9 2 3ij

nve kk
ij ij ij kk ijS JS B

G K

σε δ σ δ= + = +  (5) 

where G  and K  are the shear and bulk moduli, respectively, J  and B  are the shear and bulk 

compliances, respectively, ijS  is the deviatoric stress, and kkσ  is the volumetric stress.  Applying 

the Schapery’s integral constitutive model in Eq. (2), the deviatoric and volumetric strain 

components can be expressed, respectively, as follows (Lai and Bakker, 1996): 

 2, ( )
0 0 1

0

( )1 1

2 2

t
t

ijnve t t t t
ij ij

d g S
e g J S g J d

d

τ
τ τ

ψ ψ τ
τ

−= + Δ  (6) 

 , ( ) 2
0 0 1

0

( )1 1

3 3

t
t

nve t t t t kk
kk kk

d g
g B g B d

d

τ
τ τ

ψ ψ σε σ τ
τ

−= + Δ  (7) 

where ,

ij

nve te  is the deviatoric strain tensor and ,

kk

nve tε  is the volumetric strain tensor.  The material 

constants 0J  and 0B  are the instantaneous elastic shear and bulk compliances, respectively.   
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 Assuming the Poisson’s ratio υ to be time-independent, the deviatoric strain ,

ij

nve te  and 

volumetric strain ,

kk

nve tε  components can be expressed in terms of the hereditary integral 

formulation after substituting Eq. (4) as follows (Huang et al., 2007): 

 

,
0 0 1 2 1 2

1 1

1 , 2
1

1 exp( )1

2

(1 exp( ))1
exp( )

2

tN N
nve t t t t t t tn
ij n n ijt

n n n

tN
t t t t t t t tn

n n ij n ijt
n n

e g J g g J g g J S

g J q g S

λ ψ
λ ψ

λ ψλ ψ
λ ψ

= =

−Δ −Δ −Δ

=

 − − Δ= + − − Δ 
 − − Δ− Δ − Δ 

 


 (8) 

 

,
0 0 1 2 1 2

1 1

1 , 2
1

1 exp( )1

3

(1 exp( ))1
exp( )

3

tN N
nve t t t t t t tn
kk n n kkt

n n n

tN
t t t t t t t tn

n n kk n kkt
n n

g B g g B g g B

g B q g

λ ψε σ
λ ψ

λ ψλ ψ σ
λ ψ

= =

−Δ −Δ −Δ

=

 − − Δ= + − − Δ 
 − − Δ− Δ − Δ 

 


 (9) 

 

2.2 Parametric study on the effect of viscoelastic material constants 

This section presents the results of a parametric study of the viscoelastic nonlinear parameters. 

The results are from a series of simulations in Abaqus. The results are reported at one integration 

point subjected to uniaxial stress of 50kPa for 30s then allowed to recover for 30s.  The material 

properties used in the simulations are presented in Table 1. 

 

Table 1. Viscoelastic material parameters. 

n  (1 / s)nλ  (1 / kPa)nJ  

1 1.0 61.15 10−×  

2 0.1 61.49 10−×  

3 0.01 63.17 10−×  

4 0.001 66.37 10−×  

5 0.0001 62.61 10−×  

6 0.00001 696.1 10−×  

0J  — 60.675 10−×  
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Figure 1 shows the strain response for varying the parameter 0g . Figure 2 shows the strain 

response for varying the parameters 1g  and 2g . 

 

Figure 1. Effect of the viscoelastic nonlinear parameter 0g . 

 

 

Figure 2. Effect of the viscoelastic nonlinear parameters 1g and 2g . 

 

2.3 Viscoplastic model 

This study uses an Extended Drucker-Prager model with nonassociated flow rule to model the 

viscoplastic strain.  From Eq. (1), the total strain rate ijε  can be represented as: 

 nve vp
ij ij ijε ε ε= +    (10) 
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where nve
ijε  is the viscoelastic strain rate and vp

ijε  is the viscoplastic strain rate.  This study uses 

Perzyna’s model (Perzyna, 1971) to present the viscoplastic strain rate component as:  

 ( )vp
ij

ij

g
fε φ

σ
∂= Γ

∂
  (11) 

where Γ  is the viscosity parameter, g  is the viscoplastic potential energy function, and φ  is the 

overstress function which is expressed in terms of the yield surface f .  In Eq. (11), ( )fφΓ  is a 

positive scalar which determines the magnitude of viscoplastic strain rate vp
ijε , and ijg σ∂ ∂  is a 

vector which dominants the direction of vp
ijε .  In addition, •  in Eq. (11) is the McCauley 

bracket such that the following expression for φ  can be postulated: 

 ( ) ( )
( )

0

0
0

0

N

y

f
f f f

φ
φ

φ
σ

 
 ≤ =   >      

 (12) 

where 0
yσ  and N  are material constants.  Eqs. (11) and (12) indicate that the viscoplasticity 

takes place only when the overstress function exceeds zero.  In order to consider the effects of 

confinement, deviatoric stress and dilative behavior of hot mix asphalt (HMA), this study 

employs Extended Drucker-Prager yield surface, which is presented in 1I τ−  plane as follows: 

 ( ) ( ) ( )1
vp vp

ij e ef F Iσ κ ε τ α κ ε= − = − −  (13) 

where α  is a material parameter which is related to the material’s internal friction.  ( )vp
eεκ  is an 

isotropic hardening function associated with the cohesive characteristics of the material and 

depends on the effective viscoplastic strain vp
eε , which is defined later. 1I  is the first stress 

invariant and τ  is the deviatoric effective shear stress modified here to distinguish between the 

asphalt concrete behavior under compression and extension (not necessarily tension) loading 

condition, such that (Tashman et al., 2005): 

 2 3

3
2

1 1
1 1

2

J J

d d J
τ

   = + + − 
   

 (14) 

where 2 3 / 2ij ijJ S S=  and 3 (9 2) ij jk kiJ S S S=  are the second and third deviatoric stress invariants, 

respectively, d  is a material parameter which takes into account the distinction of asphalt 
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concrete behavior to compression and extension loading conditions.  The range of d  is from 

0.778 to 1 (Masad et al., 2005).  For uniaxial compression, the deviatoric effective shear stress 

2Jτ = ; while 2J

d
τ =  for uniaxial tension.  A d  less than 1 indicates that the material 

strength in compression is higher than the material strength in tension.  If 1d = , the yield surface 

will become the Drucker-Prager yield surface. 

Figure 3 shows the influence of stress path on the response using the modified Drucker-Prager 

yield surface, plotted in the 1I — 2J  plane. For a classical Drucker-Prager yield surface, 

α α′= andκ κ′= , but the parameter d  causes them to be different for the modified Drucker-

Prager surface. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. The influence of stress path for the modified Drucker-Prager yield surface. 
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The isotropic hardening function ( )vp
eκ ε  in Eq. (13) is expressed as an exponential function 

of the effective viscoplastic strain vp
eε  following the work of Lemaitre and Chaboche (1990), 

such that:    

 ( )( ){ }0 1 21 exp vp
eκ κ κ κ ε= + − −  (15) 

where 0κ , 1κ , and 2κ  are material parameters, which defines the initial yield stress, the saturated 

yield stress, and the strain hardening rate, respectively.  The effective viscoplastic strain rate vp
eε  

is expressed as (Desouky, 2007):   

 
2 2 2

1
13

1 1
1 2

3 2 3 2 31 2
1

3

vp vp vp vp vp
e ij ij ij ij

β

ε ε ε ε ε
β β β

β

 − 
 = =

     − + + +         +  
 −
 

      (16) 

Several studies demonstrated that asphalt mixtures exhibit non-associated viscoplastic 

behavior which means that the direction of viscoplastic strain increment is not normal to the 

yield surface. The use of an associated flow rule (i.e. g f= ) overestimates the dilation 

compared with experimental measurements (Masad et al., 2005, 2007).  Hence, this study defines 

a viscoplastic potential function of a Drucker-Prager-type as in Eq. (13) by replacing α  with a 

smaller parameter β , such that: 

 1g Iτ β= −  (17) 

where β  is a material parameter that describes the dilation or contraction behavior of the 

material. 

From Eq. (17), ijg σ∂ ∂  in Eq. (11) can be expressed as: 

 
1

3 ij
ij ij

g τ βδ
σ σ
∂ ∂= −

∂ ∂
 (18) 

where ijδ  is the Kronecker delta and ijτ σ∂ ∂  is given by: 
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32 2
2 3

2
22

1 1 1
1 1

2 2
ij ij ij

ij

JJ J
J J

d J dJ

σ σ στ
σ

 ∂∂ ∂ −  ∂ ∂ ∂∂      = + + −     ∂    
  

  

 (19) 

where 2 3ij ijJ Sσ∂ ∂ =  and 27
3 22

3ij ik kj ijJ S S Jσ δ∂ ∂ = − . 

 

2.4 Parametric study on the effect of viscoplastic material constants 

This section presents the results of a parametric study for all of the viscoplastic material 

parameters. The results are from a series of simulations in Abaqus. The results are reported at 

one integration point subjected to uniaxial strain at a constant strain rate 0.0015=ò  for 

60 seconds. In all cases uniaxial compression was simulated and in some cases it was deemed 

important to present results from simulations of uniaxial tension; when tensile simulation results 

are reported, they are plotted on the same axes as compression results with dashed lines.  

All material parameters are held constant at the values from Table 1 (which may represent 

reasonable values for asphalt concrete) except the parameter being studied, which is varied with 

one larger and one smaller value. Presented here are nine figures plotting the stress in the 

direction the strain is applied versus the strain. 

 

Table 2. Viscoplastic material parameters. 

Property Value 

α  0.3 

d  0.9 

0
yσ  35kPa 

β  0.25 

Γ  7 15 10 s− −×  

N  2.0 

0κ  35kPa 

1κ  600kPa 

2κ  290 
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Figure 4 shows the effect of the yield surface parameterα , which controls the pressure 

sensitivity of the yield surface. For lower values of α , the tensile and compressive responses are 

more similar. Figure 5 shows the effect of the yield surface parameter d , which serves constrict 

the yield surface while the material undergoes extension, regardless of pressure. Notice that 

when the material is not being extended, d has no effect on the response. Figure 6 shows the 

effect of the yield surface parameter 0
yσ , which simply amplifies the yield surface. 

 

 

Figure 4. Effect of yield surface parameter α . 

 

 

 

Figure 5. Effect of yield surface parameter d. 
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Figure 6. Effect of yield surface parameter 0
yσ . 

 

Figure 7 shows the effect of the flow function parameter β , which makes the flow function 

pressure sensitive. As β  increases, the plastic strain in compression decreases (i.e. the material 

is more stiff, as seen on the graph) and the plastic strain in tension increases (and hence the graph 

shows an more compliant response for higher values of β .) Figure 8 shows the effect of the flow 

function parameter Γ , which controls the amount of plastic strain based on the energy dissipated. 

Greater values of Γ  correspond to more flow (and therefore smaller stresses). Figure 9 shows the 

effect of the flow function parameter N ; greater values of N result in more flow. 

 

 

Figure 7. Effect of the viscoplastic potential energy parameter β . 
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Figure 8. Effect of the viscoplastic potential energy parameter Γ . 

 

 

 

Figure 9. Effect of the viscoplastic potential energy parameter N. 

 

 

Figures 10, 11, and 12 show the effect of the hardening function parameters 0κ , 1κ , and 2κ , 

and are best understood by understanding the hardening functionκ , which is shown in Eq. (15). 

The value of the hardening function ( )vp
eκ ò  varies from 0κ  when 0vp

e =ò  (before viscoplasticity 

occurs) to 0 1κ κ+  as vp
e → ∞ò , and κ  approaches the saturated value 0 1κ κ+  more quickly as 2κ  
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increases. Figures 10 and 11 show the effects of 0κ and 1κ  on the stress-strain behavior, a 

decrease in either decreases the value of the hardening function κ  and results in a more 

compliant material. Figure 12 shows the effect of 2κ on the stress-strain behavior, where the 

material yields more (has more flow) earlier for lower values of 2κ . 

 

 

Figure 10. Effect of the hardening function parameter 0κ . 

 

 

 

Figure 11. Effect of the hardening function parameter 1κ . 
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Figure 12. Effect of the hardening function parameter 2κ . 
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3 Numerical Implementation 

In this section, the time discritization and numerical integration procedures for the presented 

nonlinear viscoelastic and viscoplastic model are presented. At the beginning of the step, by 

applying the given strain increment t t t
ij ij ijε ε ε+ΔΔ = −  and knowing the values of the stress and 

internal variables from the previous step or time t t− Δ , ( )t t−Δ
 , the updated values at the end of 

the step or time t , ( )t
 , are obtained. Therefore, one can discretize the total strain in Eq. (1), the 

effective viscoplastic strain in Eq. (16), and the Cauchy stress tensor ijσ , respectively, at the 

current time t  as follows:  

 , , , , , ,t nve t vp t t t t nve t t vp t t nve t vp t
ij ij ij ij ij ij ij ij ijε ε ε ε ε ε ε ε ε−Δ −Δ −Δ= + = + Δ = + + Δ + Δ  (1) 

 , , ,vp t vp t t vp t
e e eε ε ε−Δ= + Δ  (2) 

 t t t t
ij ij ijσ σ σ−Δ= + Δ  (3) 

 The viscoelastic bulk and deviatoric strain increments can be expressed from Eqs. (8) and (9) 

as follows (Huang et al., 2007):   

 

, , ,

1 1 ,
1

2 1 1
1

1
exp( )

2

1 exp( ) 1 exp( )1

2

nve t nve t nve t t
ij ij ij

Nt t tt t t t t t t t t
ij ij n n ij n

n

t t tN
t t t t t t tn n

n ijt t t
n n n

e e e

J S J S J g g q

g J g g S

λ ψ

λ ψ λ ψ
λ ψ λ ψ

−Δ

−Δ −Δ −Δ −Δ

=

−Δ
−Δ −Δ −Δ

−Δ
=

Δ = −

 = − − − Δ − − 

    − − Δ − − Δ −    Δ Δ     





 (4) 

 

, , ,

1 1 ,
1

2 1 1
1

1
exp( )

3

1 exp( ) 1 exp( )1

3

nve t nve t nve t t
kk kk kk

Nt t tt t t t t t t t t
kk kk n n kk n

n

t t tN
t t t t t t tn n

n kkt t t
n n n

B B B g g q

g B g g

ε ε ε

σ σ λ ψ

λ ψ λ ψ σ
λ ψ λ ψ

−Δ

−Δ −Δ −Δ −Δ

=

−Δ
−Δ −Δ −Δ

−Δ
=

Δ = −

 = − − − Δ − − 

    − − Δ − − Δ −    Δ Δ     





 (5) 

where the variables tt
nijq Δ−

,  and tt
nkkq Δ−

,  are the shear and volumetric hereditary integrals for every 

Prony series term n at previous time step tt Δ− , respectively.  The hereditary integrals are 

updated at the end of every converged time increment, which will be used for the next time 

increment and are expressed as follows (Haj-Ali and Muliana, 2004): 
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 , , 2 2

1 exp( )
exp( ) ( )

t
t t t t t t t t t t n
ij n n ij n ij ij t

n

q q g S g S
λ ψλ ψ

λ ψ
−Δ −Δ −Δ − − Δ= − Δ + −

Δ
 (6) 

 , , 2 2

1 exp( )
exp( ) ( )

t
t t t t t t t t t t n
kk n n kk n kk kk t

n

q q g g
λ ψλ ψ σ σ

λ ψ
−Δ −Δ −Δ − − Δ= − Δ + −

Δ
 (7) 

The increment of the viscoplastic strain in Eq. (11) can be rewritten as follows: 

 ( ), ,vp t vp t
ij

ij ij

g g
f tε φ γ

σ σ
∂ ∂Δ = Γ Δ = Δ

∂ ∂
 (8) 

where ,vp tγΔ  is the viscoplastic multiplier which is given by: 

 ( ) ( ),

,
0

,
N

t vp t
ij evp t

y

f
t f t

σ ε
γ φ

σ

 
 Δ = Δ Γ = Δ Γ
 
 

 (9) 

Substituting Eqs. (8) and (9) into (2), the effective viscoplastic strain increment can be shown as: 

 
,

, , , ,

2
1
2 31 2
1

3

vp t
vp t vp t t vp t vp t t
e e e e

ij ij

g gγε ε ε ε
σ σβ

β

−Δ −Δ Δ ∂ ∂= + Δ = +
∂ ∂ + 

+  
 −
 

 (10) 

The coupled nonlinear viscoelastic and viscoplastic algorithm starts at a trial stress, which is 

assumed to be viscoelastic and decomposed into deviatoric and volumetric components such that 

their increments can be expressed as follows [see Huang et al. (2007)]:     

 , ,
1 ,,

1

1 1
exp( ) 1

2

N
t tr t t tr t t t
ij ij n n ij nt tr

n

S e g J q
J

λ ψ −Δ

=

  Δ = Δ + − Δ −   
  (11) 

 , ,
1 ,,

1

1 1
exp( ) 1

3

N
t tr t t tr t t t
kk kk n n kk nt tr

n

g B q
B

σ ε λ ψ −Δ

=

  Δ = Δ + − Δ −   
  (12) 

Once the trial stress exceeds the yield limit, the calculation of the viscoplastic strain increment is 

carried out; otherwise, the total stress and strain is viscoelastic. 

According to Wang et al. (1997), one can define a consistency condition for rate-dependent 

plasticity (viscoplasticity) similar to rate-independent plasticity theory such that a dynamic (rate-

dependent) yield surface, χ , can be expressed from Eqs. (11), (12), and (13) as follows: 

 ( )
1/

0
1 0

Nvp
vp
e yI

γχ τ α κ ε σ  
= − − − ≤ Γ 


 (13) 
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such that the above dynamic yield surface satisfies the Kuhn-Tucker loading-unloading 

conditions (consistency): 

 0; 0; 0; 0vp vpχ γ γ χ χ≤ ≥ = =    (14) 

A trial dynamic yield surface function trχ  can be defined from Eq. (13) as: 

 ( )( )
1/,

, 0
1

Nvp t t
tr tr vp t t

e yI
t

γχ τ α κ ε σ
−Δ

−Δ  Δ= − − −  Δ Γ 
 (15) 

In order to calculate ,vp t
eε , one can iteratively calculate ,vp tγΔ  through using the Newton-

Raphson scheme.  Once one obtains ,vp tγΔ , the viscoplastic strain increment vp
ijεΔ  can be 

calculated from Eq. (8).  In the Newton-Raphson scheme, the differential of χ  with respect to 

vpγΔ  is needed and can be expressed as follows: 

 

1
0vp vp N
ye

vp vp vp vp
e N t

σεχ κ γ
γ ε γ γ

 ∂Δ∂ ∂ Δ= − −  ∂Δ ∂Δ ∂Δ Δ Δ Γ 
 (16) 

At the (k+1) iteration, the viscoplastic multiplier is calculated by: 

 ( ) ( )
1

1, ,
,

k
k kvp t vp t k

vp t

χγ γ χ
γ

−
+   ∂Δ = Δ −   ∂Δ   

 (17) 

Because both of the nonlinear viscoelastic and viscoplastic strain increments are functions of 

current stress, this study employs the recursive-iteration algorithm with the Newton-Raphson 

method to obtain the current stress and the updated values of the viscoelastic and viscoplastic 

strain increments by minimizing the residual strain defined as: 

 , ,t nve t vp t t
ij ij ij ijR ε ε ε= Δ + Δ − Δ  (18) 

This algorithm applies iterations at both the material and the structure levels to minimize the 

error; otherwise, very small increments are required. The stress increment at the (k+1) iteration is 

calculated by: 

 ( ) ( ) ( )
1

1
kt

k k kijt t t
ij ij klt

kl

R
Rσ σ

σ

−

+   ∂
 Δ = Δ −   ∂   

 (19) 

where the differential of t
ijR  gives the consistent tangent compliance, which can be derived as 

follows:   
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, ,t nve t vp t

ij ij ij

kl kl kl

R ε ε
σ σ σ

∂ ∂Δ ∂Δ
= +

∂ ∂ ∂
 (20) 

where nve
ij klε σ∂Δ ∂  is the nonlinear viscoelastic tangent compliance which is derived in Huang 

et al. (2007).  Whereas, the viscoplastic tangent compliance is derived from Eqs. (8), (9), and 

(13), such that:   

 

, , 2
,

1
2

0 0 0

vp t vp t
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kl ij kl ij kl

N N

y y ij kl y ij kl

g g

t N f g f f g
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   Δ Γ ∂ ∂ ∂= + Δ Γ      ∂ ∂ ∂ ∂   

 (21) 

where 2
ij klg σ σ∂ ∂ ∂  is given by: 
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 (22) 

If the stress does not exceed the yield limit, the material compliance will only be the nonlinear 

viscoelastic compliance nve
ij klε σ∂Δ ∂ ; otherwise, the material compliance will be a coupled 

nonlinear viscoelastic and viscoplastic one.  The nonlinear viscoelastic and viscoplastic 

algorithm is shown in Figure 13.  The flowchart of viscoplastic strain increment calculation 

using the Newton-Raphson method is shown in Figure 14. 
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Figure 13. The flowchart of nonlinear viscoelastic and viscoplastic implementation. 

 

Initialize approximation parameters based on the previous converged stress and 

calculate trial stress based on viscoelastic only

Correct the trial stress
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Yes No 

No No 

1 0f Iτ α κ= − − ≥  

Calculate the viscoelastic strain increment

Calculate viscoplastic strain increment by minimizing
χ  base on the current trial stress (see Figure 14) 

Viscoplastic increment = 0 

Yes 

Input the history variables and strain increment

Recalculate the stress-dependent parameters based on the current trial stress 

Calculate the tangent stiffness and stress correction

Calculate the residual strain

Update the stress, stiffness, and history variables

Correct the trial stress 

t
ijR TOL≤  
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Figure 14. The flowchart of Newton-Raphson method for viscoplastic strain increments. 
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4 Calibration, Application, and Validation 

In this Section, the presented computational constitutive model is calibration, validated, and 

applied to a set of experimental data on asphalt concrete mixes for different applied stress levels 

and temperatures. The asphalt mixture considered here for which experimental data is referred to 

as 10 mm Dense Bitumen Macadam (DBM) which is a continuously graded mixture with asphalt 

binder content of 5.5%.  Granite aggregate and asphalt binder with a penetration grade of 70/100 

is used in preparing the asphalt mixture.  Cylindrical specimens with a diameter of 100mm and a 

height of 100mm were compacted using the gyratory compactor (Grenfell et al., 2009).   

Single creep recovery tests are conducted over a range of temperatures and stress levels.  

The test conditions are summarized in Table 1.  This test applies a constant step-loading and then 

remove the loading until the rate of recovered deformation during the relaxation period is 

approximately zero.  The load is held for different loading times (LT) and the response is 

recorded for each LT as shown in Table 3.  An example of experimental measurements at 

temperature 20 oC is shown in Figure 15.  The details about the experimental results are given in 

the work of Grenfell et al. (2009). 

 

Table 3. The summary of test conditions. 

Temperature (oC) Stress Level (kPa) and
loading times (LT) in sec 

 Reference stress level 
(kPa) 

10 2000 (LT=400 and 600)  

2500 (LT=300 and 350) 

2000 

20 1000 (LT=40, 210, 1517)
1500 (LT=30,150,420) 

1000 

40 500 (LT=130, 180) 

750 (LT=50) 

500 
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(b) 

Figure 15. The experimental measurements at temperature 20oC for stress levels: (a) 1000 kPa, 
and (b) 1500 kPa. LT indicates loading times in seconds. 
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4.1 Separation of recoverable and irrecoverable components 

The first step of the following experimental analysis is to separate the recoverable (viscoelastic) 

and irrecoverable (viscoplastic) components. A schematic of a single creep-recovery test is 

shown in Figure 16 for a constant stress loading and unloading condition.  Hence, one can 

express the creep and relaxation strains for a constant stress from Eqs. (1) and (2) as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16. A schematic of single creep and recovery test. 

 

 ( )1 2( ) ( ) ( ) ( )c rec irrec irrect t t g g D t tε ε ε σ ε= + = Δ +  (23) 

 ( ) ( )2 2( ) ( ) ( ) ( )r rec irrec irrec
a a at t t g D t g D t t tε ε ε σ σ ε = + = Δ − Δ − +   (24) 

where cε  is the total creep strain, rε  is the total relaxation strain, recε  is the recoverable strain, 

irrecε  is the irrecoverable strain,  at  is the loading time shown in Figure 16.  In this study, the 

entire recoverable strain component is assumed to be time-dependent such that one can set the 

instantaneous strain 0 0g D σ =0.  This is motivated by the experimental observations that show 

that it is very difficult to select the time at which the response could be considered to be 
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instantaneous (Saadeh et al., 2007).  When the nonlinear parameters 1g  and 2g  are equal to 

unity, Eqs. (23) and (24) reduce to the linear vicoelastic case. 

The first step of the analysis procedure is to obtain the Prony series coefficients nD  and nλ  

in Eq. (4) from a linear viscoelastic response at low stress levels and low temperatures.  

However, in this study it is assumed that the recoverable response is linear viscoelastic 

( 1g = 2g =1) at the lowest stress level of each considered temperature.  The analysis employs the 

strain 1rεΔ  shown in Figure 16 which is the recovered strain between at  and bt  in order to obtain 

the Prony series coefficients nD  and nλ  at the lowest stress level (linear viscoelastic case).  The 

expression for ( )1r tεΔ  can be derived from Eqs. (23) and (24), such that:  
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Then, the Prony series coefficients are determined by minimizing the error between the 

measurements of ( )1r tεΔ  and Eq. (25). The values of nD  and nλ  at different temperatures are 

listed in Table 4.  The nonlinear viscoelastic expressions in Eqs. (23) and (24) with nD  and nλ  

shown in Table 4 can then be used to analyze the experimental measurements at higher stress 

levels in order to determine the nonlinear viscoelastic parameters 1g  and 2g .  At the higher 

stress levels, the following expression for the recovered strain ( )3r tεΔ  from 1t t=  to bt t=  (see 

Figure 16) can be derived from Eq. (24) and then used to determine the nonlinear parameter 2g , 

such that: 
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Table 4. The Prony series coefficients. 

n 
λn 

(s-1) 

Linear Viscoelastic Material Coefficients 

Temp=10oC 20oC 40oC 

Dn (MPa-1) Dn (MPa-1) Dn (MPa-1) 

1 10 7.81E-07 1.98E-07 3.98E-06 

2 1 0.0 1.48E-06 0.0 

3 0.1 5.42E-07 6.56E-07 1.55E-06 

4 0.01 5.58E-07 1.43E-06 6.77E-07 

5 0.001 1.62E-06 2.74E-06 6.05E-08 

 

Once the nonlinear parameter 2g  is obtained, the expression for the recovered strain ( )2r tεΔ  

which can be derived from Eqs. (23) and (24) is fitted to the experimental measurements from 

at t=  to 1t t=  (see Figure 16) in order to obtain the nonlinear parameter 1g , such that: 
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(27) 

The nonlinear parameters at different temperatures are listed in Table 5.  Once the Prony 

series coefficients (Table 4) and the nonlinear parameters (Table 5) are obtained, the nonlinear 

recoverable (viscoelastic) strain in Eqs. (23) and (24) can be calculated.  Consequently, the 

irrecoverable (viscoplastic) strain can be obtained by subtracting the viscoelastic strain from the 

total strain. For example, the decoupled viscoelastic and viscoplastic responses are shown in 

Figure 17 for two stress levels at a temperature 20oC. 
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Table 5. The values of the nonlinear viscoelastic parameters at different temperatures. 

Nonlinear viscoelastic parameters
Temperature (oC) 

10 20 40 

1g  0.908 1.194 0.576 

2g  1.017 0.837 1.920 
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(b) 

Figure 17. An example of separation of the viscoelastic and viscoplastic strains at temperature 
20oC for stress levels: (a) 1000 kPa, and (b) 1500 kPa. 
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4.2 Determination of the viscoplastic parameters 

Once the viscoplastic strain is separated from the viscoelastic strain as shown in the previous 

section, one can then identify the material constants associated with the viscoplasticity equations 

as shown here.  The dynamic yield surface in Eq. (13) for a uniaxial compression step-loading is 

expressed as: 
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 (28) 

where 1σ  is the applied uniaxial compressive stress.  By rearranging Eq. (28), one can write: 

 
( )( )1

1 0 1 2,

0

1 exp
3

N

vp
evp t

yt

σσ α κ κ κ ε
γ

σ

   − − + − −   Δ   = Γ
Δ  

  

 (29) 

where ,vp tγΔ  can be obtained from the separated ,
1
vp tεΔ  from the experimental measurements for 

uniaxial compressive stress using the following expression obtained from Eq. (8), such that: 
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where ,
1
vp tεΔ  is the axial viscoplastic strain increment. Moreover, vp

eε  can be calculated from Eq. 

(10) for uniaxial compression as: 
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 (31) 

where 1

vpε  and 2
vpε  are the viscoplastic strains in the axial and radial directions, respectively.  

However, since the experimental measurements did not include 2
vpε  , this study calculates 2

vpε  

from the following relation between the axial and radial viscoplastic strains.  The relation 

between the axial and the radial viscoplastic strains for uniaxial compression can be determined 

from Eq. (11) as: 
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Once ,vp tγΔ  and  vp
eε  are calculated from the analyzed experimental viscoplastic strain data using 

Eqs. (30) and (31), the viscoplastic parameters Γ , N , 0κ , 1κ , and 2κ  can be obtained by 

minimizing the error between the measurements and Eq. (29).  

 Since the yield surface parameter α  changes only slightly at small strain levels (Seibi et al., 

2001), α  is assumed here to be constant. The parameter β  is also assumed to have a value less 

than α , because using α β≥  would result in higher dilation than is obtained from experimental 

measurements (Masad et al., 2007). However, β  is assumed here to increase with temperature 

since asphalt mixtures dilates more as temperature increases.  The assumed values of α  and β  

are listed in Table 6. 

 

Table 6. The values of the viscoplastic parameters at different temperatures. 

 Viscoplastic 

parameters 

Temperature (oC) 

10 20 40 

α 0.35 0.30 0.25 

β 0.10 0.15 0.20 

Γ  4.0E-4 5.0E-4 1.0E-2 

N  3.63 3.63 3.63 

0κ  40 35 10 

1κ  930 610 550 

2κ  270 215 160 
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Furthermore, it is found that 0
yσ  is stress-dependent and follows 0

1(1 3)yσ σ α= −  which is 

used to obtain the viscoplastic parameters such that Eq. (29) can be rewritten as follows:  
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 (33) 

The advantages of the above analysis procedure are: (1) fitting the material response at different 

stress levels simultaneously; (2) normalizing the overstress function, which represents the 

distance between the current stress and the yield surface over a scale between 0 and 1, such that 

Γ  is used then to determine the magnitude of viscoplastic increment; and (3) incorporating the 

applied stress effect within the dynamic yield surface.  The fitting for both stress levels at a 

temperature 20 oC is shown in Figure 18, where the viscoplastic parameters at different 

temperatures are listed in Table 6. 
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Figure 18. The viscoplastic fitting procedure of vpγΔ  for different loading times (in seconds) 
and stress levels (in kPa) at temperature 20oC. 
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4.3 Numerical predictions of experimental measurements 

Once the viscoelastic material parameters ( nD , nλ , 1g , and 2g ) and the viscoplastic material 

parameters ( Γ , N , 0
yσ , 0κ , 1κ , 2κ , α , and β ) are determined, then the UMAT subroutine in 

the finite element code Abaqus (2008) is used to calculate the creep-recovery response and 

compare the results with the experimental measurements.  The finite element model considered 

here is simply a three-dimensional single element (C3D8R) which is used to obtain the response 

due to creep-recovery loading.  Figure 19 shows a comparison between the experimental data 

and the predictions for the total strain at a temperature 20 oC, where reasonable agreement is 

obtained.  Figures 8 and 9 show comparisons of the measured and predicted viscoelastic and 

viscoplastic strains at a temperature 20 oC, respectively.  Good predictions are obtained for the 

viscoplastic strain.  Figures 10 and 11 show the comparison of total strain between experimental 

measurements and predictions at temperatures 10 oC and 40 oC, respectively, where again 

reasonable agreements are obtained.  The predictions deviate from the experimental data for the 

cases (1) stress level=1500 kPa for LT=420 secs at temperature 20 oC, (2) stress level=2500 kPa 

for LT=300 secs at temperature 10 oC, and (3) stress level=500 kPa for LT=180 secs at 

temperature 40 oC.  By looking at the experimental measurements of these cases (Figures 7 (b), 

10 (b) and 11 (a)), the responses are deviant as compared with the other measurements at the 

same stress level and temperature. Generally, the creep response for different loading times 

should follow the same curve, which is not the case in these reported experiments.  Hence, the 

FE predictions deviate from the measurements for these cases and it will be very difficult to get 

closer predictions of the creep-recovery experimental data. Therefore, more accurate and cleaner 

experimental data are desirable to fully validate the presented model, which is the scope of a 

current work by the authors. 

 Moreover, the FE model with the calibrated material parameters is used to analyze the 

material response at different temperatures.  The simulated case involves a step-loading applying 

a stress level of 500 kPa for 180 secs.  The comparison of the resulted material response is 

shown in Figure 12.  This figure shows that increasing the temperature increases the total, 

viscoelastic, and viscoplastic strains, which is expected.  Figure 13 shows the viscoelastic and 

viscoplastic parts of the total strain for different temperatures as compared to experimental data.  

This figure shows that increasing the temperature from 10 to 40 oC increases the viscoplastic 

portion from 60% to 70%, whereas the viscoelastic portion decreases from 40% to 30%.  
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Moreover, the percentage of the viscoelastic strain decreases with increasing the loading time; 

while the portion of viscoplastic strain increase with the loading time time.  Also, the results 

indicate that the viscoplastic component dominates the material response at higher temperatures, 

whereas the viscoelastic component is more important at lower temperatures. 
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(b) 

Figure 19. The comparison of total strain between measurements and model predictions at 
temperature 20oC for stress levels: (a) 1000 kPa and (b) 1500 kPa. 
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(b) 

Figure 20. The comparison of viscoelastic strain between measurements and model predictions 
at temperature 20oC for stress levels: (a) 1000 kPa and (b) 1500 kPa. 



35 
 

0.00E+00

2.00E-03

4.00E-03

6.00E-03

8.00E-03

1.00E-02

1.20E-02

1.40E-02

1.60E-02

1.80E-02

2.00E-02

0 500 1000 1500 2000 2500 3000

Time (Sec)

V
P

 s
tr

ai
n

 

(a) 

0.00E+00

5.00E-03

1.00E-02

1.50E-02

2.00E-02

2.50E-02

3.00E-02

0 200 400 600 800 1000

Time (Sec)

V
P

 s
tr

ai
n

 

(b) 

Figure 21. The comparison of viscoplastic strain between measurements and model predictions 
at temperature 20oC for stress levels: (a) 1000 kPa and (b) 1500 kPa. 
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(b) 

Figure 22. The comparison of total strain between measurements and model predictions at 
temperature 10oC for stress levels: (a) 2000 kPa and (b) 2500 kPa. 
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(b) 

Figure 23. The comparison of total strain between measurements and model predictions at 
temperature 40oC for stress levels: (a) 500 kPa and (b) 750 kPa. 
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(c) 

Figure 24. The comparison of material response at different temperature (in oC) for: (a) total 
strain, (b) viscoelastic strain, and (c) viscoplastic strain. 
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(b) 

Figure 25. The comparison at different temperatures (in oC) for: (a) the viscoelastic strain 
percentage and (b) the viscoplastic strain percentage. 
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5 Conclusions 

The focus of this study is on the coupling of nonlinear viscoelasticity and viscoplasticity for 

modeling the nonlinear behavior of asphalt concrete mixes. The computational algorithm 

necessary to enhance this coupling is developed and validated against a set of creep-recovery 

experimental data for different constant stress levels and different temperatures.  A systematic 

calibration procedure is proposed for identifying the material parameters associated with the 

nonlinear viscoelastic model and the viscoplastic model.  The results from the experimental 

analysis show that the viscoelastic strain component exhibits a nonlinear response, which 

justifies the need for a nonlinear viscoelastic model, particularly, at high stress levels and 

temperatures.  The viscoplastic parameters are identified by separating the viscoelastic and 

viscoplastic strain components.  The viscoplastic analysis indicated that the overstress function 

in Perzyna model should be modified by normalizing it with respect to the stress in order to 

incorporate the applied stress effect on the viscoplastic yield surface.  The analysis also shows 

that the viscosity parameter Γ  increases with increasing temperature, whereas the viscoplasticity 

isotropic hardening parameters decrease with decreasing temperature.  In fact, the experimental 

analyses indicate that a viscoplastic model different than the Perzyna viscoplasticity could be 

necessary to model the viscoplastic response of asphaltic mixes. 

The constitutive model is validated by comparing the finite element results with experimental 

measurements at different combinations of temperatures and stress levels, and the results show 

that the model predictions have good agreements with the experimental measurements.  

Moreover, the numerical simulations at different temperatures show that increasing the 

temperature will increase the percentage of the viscoplastic strain, but decrease the percentage of 

the viscoelastic strain from the total strain.  This result indicated that the viscoelastic response 

controls the material behavior at lower temperatures, and the viscoplastic response dominates the 

material behavior at higher temperatures.  Moreover, the presented results illustrate that the 

model can explain the material behavior at different temperatures, different stress levels, and 

different loading times.    

The present analysis only considers the creep-recovery test and it is, therefore, needed to 

analyze more different tests in order to fully validate the present constitutive model such as the 

triaxial test and the uniaxial constant strain rate test in order to obtain the viscoplastic properties 

individually.  Moreover, the lowest stress level at each temperature, which is used in this study 
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for identifying the material constants associated with linear viscoelasticity, could have induced a 

nonlinear viscoelastic behavior.  Therefore, it is needed to conduct the test at small stress levels 

and temperatures in order to accurately identify the linear viscoelastic material parameters. Also, 

future work will focus on coupling the presented nonlinear viscoelastic and viscoplastic model 

with a continuum damage mechanics framework. 
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