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CHAPTER 1

Introduction

A finite element program has been developed to study the response of flex-
ible pavement to static and dynamic loading. Fully three-dimensional analyses
can be carried out with linear or quadratic hexahedral elements having up to
twenty nodes. Linear and quadratic axisymmetric elements are also furnished
for rapid problem-solving. Chapter 2 describes the hexahedral elements, and
Chapter 3 describes the axisymmetric elements. Both a linear elastic model
and a linear viscoelastic model are provided. The material models are dis-
cussed in Chapter 4.

Chapter 5 explains the solution procedure for static and dynamic problems,
including the explicit and implicit integration methods. The central difference
method, used for explicit integration, is unstable unless the time step is be-
low a critical value. The program estimates the critical value quickly by two
methods instead of computing it directly. The advantage of the central differ-
ence method is that it requires relatively few operations per iteration, but the
disadvantage is that it requires relatively many iterations.

The implicit integration is done with Newmark’s method. This method
is unconditionally stable, so accuracy—not stability—is the only criterion in
choosing the time step. The advantage and disadvantage of Newmark’s method
are the opposite of those for the central difference method: Newmark’s method
requires relatively few iterations but relatively many operations per iteration.

The explicit and implicit integration schemes can be combined for an effi-
cient solution. If the pavement response is integrated by the implicit method,
then the time step needed for accuracy is usually smaller than the critical time
step for the soil. Thus the explicit method can be used for the soil while the
implicit method is used for the pavement. The coupling of the implicit and
explicit portions of the solution is described in Section 5.4.6.

Chapter 6 compares the results of a falling-weight simulation with data

from the Ohio test pavement.






CHAPTER 2

Hexahedral Elements

The finite element program makes available three different hexahedral ele-
ments for three-dimensional analysis. These are an eight-node linear element,
a twenty-node quadratic element, and an element having a variable number
of nodes. Although the eight-node and twenty-node elements have been pro-
grammed separately for computational efficiency, they can be considered as
special cases of the variable element. Thus only the variable element will be
discussed in detail in this chapter. The development of these elements generally
follows Bathe [1], but the elements described by Weaver [9] and Zienkiewicz

(10] are similar.

2.1. Formulation

The hexahedral element has eight corner nodes and zero to twelve mid-
side nodes. The numbering of the nodes is shown in Figure 2.1. In the local
&-n—C coordinate system, the element is a cube situated between —1 and +1
in each direction. This is a displacement-based element, which means that
interpolation functions are assumed to predict the displacements at any point,
given the displacements at the nodes. This is also an isoparametric element,
meaning the same functions are used to interpolate the coordinates.

2.1.1. Interpolation. The interpolation functions in each direction can
be either linear or quadratic, depending on the presence of mid-side nodes. The
interpolation functions are defined in the local £—n—( coordinates. Because
the element is isoparametric, a single set of interpolation functions is used
to interpolate any quantity defined at the nodes. For example, the global
coordinates (z,y, z) corresponding to any point (¢, 7,() in the element can be

found easily by
20 20 20
T = Z hizi, y= Z hiyi, z= Z hiz;, (2.1)
i=1 =1 i=1

where z;, y;, z; are the global coordinates of node ¢ and h; (£, 7, () is the match-
ing interpolation function. Obviously, undefined nodes need not be included
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g

FIGURE 2.1. Twenty-node hexahedral element.

in the summation. Displacements may be interpolated in a similar way:

20 20 20
u = thul, v = Zhivi, w = Zhiwi. _ (22)
i=1 =1 =1

Here are the interpolation functions for the corner nodes:

hy=g5(1+81+n) (1+C) — 3 (ho+ b2+ hr),
hy =351 =& (1 +n)(1+¢) — 5 (he + hio + hs),
hs=3(1=&) (1 —n)(1+¢) — 3 (ko + by + i),
ha=3(1+& Q-1+ — 5 (hi1+ b2+ hx), (2.3)
hs =3 (1+8&) 1 +n)(1—-¢) =3 (hz+hig+ha7),
he = 5(1=6)(1+n) (1 =) =5 (b3 + hig + his),
h7_é(1_5)( -n)(1 C)—%(h14+h15+h19),
he=3(1+6) (1 —=n) Q=) =5 (his+ hig + hao) -



TABLE 2.1. Local coordinates for twenty-node element.

2.1. FORMULATION

el & m Gl il & m Gl i & m G
1 1 1 1 9 0 1 117 1 1 0
21 -1 1 110} -1 0 1181 —1 1 0O
31 -1 -1 111 0 -1 1119/ -1 -1 O
4 1 -1 1112 1 0 1|20 1 -1 0
5 1 1 -1 13 0 1 -1
6| —1 1 —-1)14]-1 0 -1
71i—-1 =1 —-1]|{15 0 -1 -1
8 1 -1 —-11§16 1 0 -1

The interpolation functions for the mid-side nodes are

if node 7 is undefined,
(1-8) 1 +mn) (1+¢¢) fori=09,11,13,15,
(1-n)(A+&E QA+ G fori=10,12,14,16,
(1-¢Q+&E A +mn) fori=1718,19,20,

0

1
hi=41 (2.4)

4

1

4

in which (&;, m;, ;) is the location of node 7 in local coordinates. Table 2.1 gives
the local coordinates for all twenty nodes.

2.1.2. Strain. The six components of strain at a point are given by
derivatives of the displacements u, v, w:

e
5—2; 0 0
0
0O — 0
(5:1:\ By
e=S =145 5 T |qv (2.5)
Yy g 9 w
f)’yz 8y 8x
/YZI
\ Y, 0 _8— 2_
0z Oy
0 0
52 Y ar
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Because the displacements at an arbitrary point must be interpolated from
the nodal values by equation 2.2, the strains become

€ = Bu (2.6)
in which the matrix B has the form
B=[B; B; --- By (2.7)
and u is the vector of nodal displacements:
u={u, v w - up Vo Wi} . (2.8)

When nodes are undefined, their corresponding columns and rows must be
deleted from B and u respectively.

Each derivative submatrix of B is formed from the partial derivatives of
an interpolation function with respect to global coordinates as follows:

- oh, -
B 0 0
Oh;
0 By 0
0 0 ‘98’“
_ z
Bi= | oh, on, ) (2:9)
Jdy Oz
0 Ohi  Oh;
0z Oy
Oh; oh;
L Oz 0 oz .J

However, the interpolation functions are functions of the local coordinates, so
the derivatives in equation 2.9 must be written as

O _ Ohs 05 | Ohidn  OhOX
or 0¢0x Onodx (0’
Ohs _ Ohs0% | Ohion | 0hOC
dy 9Edy ondy OCoy
Ohy _ Ohi0% | Ohion  0hOC
0z 060z Ondz OC0z
In general, the partial derivatives of the local coordinates with respect to
the global coordinates cannot be computed directly. Instead, they must be

(2.10)
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evaluated numerically by inverting the Jacobian matrix,

0¢ 0¢ 0¢
dx Oy 0z
J= 57; % 55 (2.11)
oz oy 0z
LO¢ 9¢ ¢
The entries of the Jacobian matrix are obtained from
J=LX (2.12)

where L is a matrix of the derivatives of the interpolation functions with
respect to the local coordinates,

Om Ohy | Oho
0 0¢ o€
o 8’7,1 ahz 8h20
L= T | (2.13)
om Oy Ohg
L o¢  OC a¢ |
and X is a matrix of the nodal coordinates,
T A
T 2
x=|"7 77 (2.14)

T20 Y20 220

As with B and u, appropriate rows and columns must be deleted from L and
X when some nodes are undefined. The derivatives needed in equations 2.10

are precisely the entries of J71:

(0§ 0n (]

Or Oz Oz

- 06 On O

1 —— — —
=15 5 5 (2.15)

0§ on 9o¢

[0z 0z 0z
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2.1.3. Stress. The six components of stress are

(0= )

o= J 9 r = Ee = EBu (2.16)

Tyz
\ T2z J

where E is the 6 x 6 material constitutive matrix as discussed in Chapter 4. E
may be independent of stress, strain, and time, as is the case in linear elastic
analysis; or it may depend on one or more of those quantities. A dependence of
E on stress or strain is characteristic of a nonlinear analysis. A time-dependent
constitutive matrix is used in common viscoelastic formulations, but Chapter 4
describes an alternative formulation in which a constant E is employed.

2.2. Stiffness

The element stiffness matrix K relates nodal displacements u to nodal
forces f:

Ku=f. (2.17)

The stiffness matrix is an integral over the volume of the element,

K=/BTEBdV:///BTEBda:dydz, (2.18)
' v

but because B is computed in local coordinates, the integration in equa-
tion 2.18 must be carried out in local coordinates. The change of variables
demands a scaling factor to relate the infinitesimal volumes d¢dnd( and
dV = dz dy dz. The required factor is the Jacobian determinant, |J|:

dz dy dz = 3| dé dndC. (2.19)

Then equation 2.18 becomes
+1 p4l ptl

K:/ / /BTEB]ngdndg (2.20)
-1 J-1 Jo1

in local coordinates. The actual integration is done numerically at Gauss-
Legendre sampling points.
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2.3. Mass

In dynamic analysis, the inertial forces are given by Mu where M is the
mass matrix and 1 is the nodal acceleration vector. To compute the mass
matrix, a matrix H of the interpolation functions is required such that the three
components of displacement at any point in the element may be interpolated
from the nodal displacements u by

u
v » = Hu. (2.21)
w

The interpolation matrix H follows directly from equations 2.2 as

hy 0 0 hy 0 O -+ hyp 0 O
H=|{0 h;, 0 0 hy 0 --- 0 hypg O0{. (2.22)
0 0 hy 0 O hy --- 0 0 Ay
As usual, superfluous columns must be deleted. Then the mass matrix is
M= / pHTH dV (2.23)
v

where p is the mass density. The integration is done numerically in local
coordinates, as for the stiffness matrix.

The mass matrix in equation 2.23 is called a consistent mass matrix be-
cause it is constructed according to the interpolation functions. An alternative
mass matrix is the lumped mass matrix, which has nonzero entries only on the
diagonal. The lumped mass matrix is useful for some dynamic solution pro-
cedures, and the accuracy difference is negligible for many problems involving
eight-node (linear) elements. This is because the consistent mass matrix for
the linear element itself has relatively large positive entries on the diagonal and
smaller positive entries off the diagonal. On the other hand, the twenty-node
element has a more complicated consistent mass matrix with many negative
entries, so a lumped mass matrix is a very poor approximation for the higher-

order elements.

2.4. Body Forces

If the body force density, b = {b; b, b.}, is constant throughout the
element, then the corresponding nodal forces are

f, = / H'bdV. (2.24)
v
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Otherwise, if b is not constant, it is interpolated at each integration point
from the nodal values by

b=H {b]x bly blz v bzoi- bgoy bQOZ}T. (225)

2.5. Surface Tractions

Surface tractions may be applied to any face of the hexahedral element.
Tractions may act either normal to the surface (hydrostatic pressure), tangent
to the surface (friction), or in a given direction. In the case of hydrostatic
pressure, only the pressure itself is specified. For friction, the stress must
be given along with a direction vector; the force is applied in the direction
orthogonal to both the surface normal and the direction vector. For the third
case, the traction must be given as a three-component vector. In each case,
the traction may be constant over the surface, or it may be interpolated from

nodal values.

2.5.1. Interpolation on a Surface. Figure 2.2 shows the nodal number-
ing and the local coordinate system of one face of a hexahedral element. The
four corner nodes are mandatory; the mid-side nodes are optional as before.
The nodes on the face must be numbered as shown so that the numbers pro-
ceed counterclockwise as the face is observed from the exterior of the element.

The surface interpolation functions are

ha = 3 (1+&) (1+1n) ~ 5 (hss + hss)

hszzi( &) (1+n) - %(hss+hsﬁ)7

hss =1 (1 —&) (1 —n) — 3 (hes + ha7),

hoo =3 (1 +€) (1 —1) = 5 (her + hes) ,

hes = 1 (1 - €2) (14 1), (2.26)
hsGZ%( 77)(1—5),

ha =5 (1-¢)(1-n),

hss = 5 (1=1%) (1+¢),

in which the local coordinates (£,7) are those given in Table 2.2. Of course,
the interpolation function must be zero for a non-existent node.

2.5.2. Hydrostatic Pressure. Hydrostatic pressure is exerted in a direc-
tion normal to the surface. For a general curved element, the normal direction
varies over each face and should be computed at each integration point on the



2.5. SURFACE TRACTIONS

TABLE 2.2. Local coordinates for eight-node quadrilateral.

)
o

U

P
— e e
[
= b e e

I
O =
|
= O

0~ O U WA
o
—

—
o

FIGURE 2.2. Local coordinates and node numbers for one face
of a twenty-node hexahedral element.

11
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surface. By the chain rule, at any point (£,7) on the surface,

( 2 )

9 oz

o6 | 0

on 0
\ 82 J

where the Jacobian matrix on the surface is

0z 3y o

0§ 05 0¢

Y= oa oy 0] (2.28)

an on

Equivalently,

{ng} =JT {Zf?} : (2.29)

oxr Oy 0z T
={% % &)
_ [0z Oy 0z T
{5 &
define two directions tangent to the surface. It follows that their vector prod-
uct,

Thus the two vectors

(2.30)

n=§¢xmn, (2.31)
is normal to the surface.
If i denotes the outward unit normal vector, the force vector resulting
from a constant pressure p at any point is pn. Integration over the surface
produces the nodal forces,

fsz/pHsTﬁdA, (2.32)
A
where
hg 0 0 hg O 0 -+ hg 0 0
Hi=|{0 hqg 0 0 hg 0 -+ 0 hg 0]. (2.33)

0 0 hg 0 O hg --- 0 0 hg
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Like the volume integrals discussed previously, the integral in equation 2.32
must be computed in local coordinates. The change of variables is accom-
plished by a scaling factor which relates dA to d€ dn. This factor is readily
determined from the two vectors in equations 2.30; their vector product n is

not only normal to the surface, but its magnitude, |[n|| = /nZ +n’ +n?2, is
the ratio dA/ (d€ dn). Therefore,

dA = ||n|| d& dn, (2.34)

and the nodal forces are actually integrated as follows:

+1 1 +1 ptl
t=[ [ pHlalnldedn= [ [ pHInacarn  (239)
-1 Ja1 -1 J-1

If the pressure is not constant, it must be interpolated from the nodal
values by »

p=he{py p2 --- ps}" (2.36)

where
hy={hg hs - hg}. (2.37)

2.5.3. Friction. A surface friction is specified by a shearing stress 7 and
a unit vector a. The friction acts in the direction of & x ii. The resultant nodal

forces are

fs=/TH§‘(axﬁ) dA

A
+1 p+l
:f /THST(éxﬁ)Han«fdn (2.38)
-1 J-1

+1 p+l
=/ / rHT (& x n) d¢ dn.
-1 J-1

Friction may be interpolated by the same method used for hydrostatic pressure
(equation 2.37). ‘

2.5.4. Traction in a Specified Direction. A surface traction may be
specified as a three-component vector p = {p; p, pz}T. Each component
of p acts over a projected area of the surface. For example, p, acts on the pro-
jection of the face onto the y—z plane. The first component of the unit normal
vector, fi,, is precisely that proportion of the surface area which is projected
onto the y—z plane. Similarly, the other components of p are projected onto
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areas given by the other components of . The nodal forces resulting from the
surface traction can then be integrated as

f = / H'PidA, (2.39)
A
where
p. 0 O
P=|(0 p, 0. (2.40)
0 0 p.

Integration in local coordinates is accomplished as before:

+1 p+l
£ = / HTPi (|n]| d¢ di
R (2.41)

+1 p+1
= / HIPnd¢dn.
-1 J-1

If the traction vector is not constant over the entire face, the surface trac-
tion must be interpolated from the nodal values by

P = Hs {plz ply D1z et Psx p8y sz}T- (242)

Equation 2.42 performs the same function as equation 2.36 except that equa-
tion 2.42 interpolates a vector quantity and equation 2.36 interpolates a scalar

quantity.

2.6. Initial Stresses

Initial stresses sometimes arise in special solution procedures. For an initial
stress vector &, the nodal forces are

fy = / BToydV. (2.43)

v

Then oy must be subtracted from the stresses computed by equation 2.16 to
get effective stresses. Initial stresses are usually known at integration points,
but they may be constant throughout the element, or they may be specified
at the nodes, with each component interpolated according to equation 2.37.
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2.7. Initial Strains
Initial strains can be induced by a temperature change AT
g=aAT{l 1 1 0 0 0}" (2.44)
where « is the coefficient of thermal expansion. Other initial strains can occur

as a result of an unusual solution procedure, such as the viscoelastic procedure
detailed in Section 4.5. The equivalent nodal forces are

fo = / BTE g, dV. (2.45)

v
If E is not constant, f; should be updated whenever E is updated during
the solution process. Initial strains must be subtracted from the strains in

equation 2.6 before stresses are computed.

For a uniform temperature, the initial strain is constant throughout the
entire element. But if the temperature is specified at the nodes, the initial
strain must be interpolated from the nodal values. In the case of initial strains
arising from a special solution procedure, the values will naturally be available

at the integration points.
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CHAPTER 3

Axisymmetric Elements

For axisymmetric problems, an isoparametric element of quadrilateral cross
section is used [1, 9, 10]. It has four corner nodes and four optional mid-
side nodes. Specialized, efficiently coded versions are available with four and
eight nodes. Axisymmetric problems cannot model a great variety of physical
situations, but for those problems that do permit their use, they provide a
significantly faster solution without compromising accuracy.

3.1. Formulation

Figure 3.1 shows the cross section of the axisymmetric element. Like the
hexahedral element described in Chapter 2, this is an assumed-displacement,
isoparametric element. Table 3.1 gives the locations of the nodes in local
coordinates. This table is actually a duplicate of Table 2.2.

FI1GURE 3.1. Eight-node axisymmetric element.

17
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TABLE 3.1. Local coordinates for eight-node axisymmetric ele-

ment.
& m
1 1 1
21 —1 1
31-1 -1
4 1 -1
5 0 1
6 —1 0
7 0 -1
8 1 0

3.1.1. Interpolation. The interpolation functions for the axisymmetric
element are identical to those introduced in Section 2.5 for a single face of the
hexahedral element. They are repeated here for convenience:

hi=1(1+& 1 +n) —3(hs+hs),
he=35(1—& 1 +n) —3 (ks +he),

hs=3(1=6)Q—n) ~;(he+hr),

ha=3(1+& 1 —n)—5(hr+hs), (3.1)
hs—%( 52) (L+mn), ‘
hs=%(1—n2)(1—€),

he=3(1-€)(1~n),

hs =3 (1—n") (1+§).

As in Chapter 2, the interpolation functions are zero for unused nodes. Coor-
dinates are interpolated in the usual way,

8 8
r = Z hiriv z = Zhizi, (32)
=1 i=1

where, as before, the undefined nodes are excluded from the sums.

The displacements in this formulation include only two components, a ra-
dial displacement and an axial displacement; displacement is prohibited in
the tangential (8) direction. The radial component of displacement, along the
r direction in Figure 3.1, is denoted by u, and the axial component, in the
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direction of z in the figure, is v. This element is isoparametric, so the dis-
placements are interpolated by the same set of functions used in equation 3.2

for the coordinates:
8 8
Uu = Z hiui, v = Z hi’l)i' (33)
i=1 i=1

3.1.2. Strain. In the cylindrical r—2-6 coordinate system shown in Fig-
ure 3.1, the six strain components are

o oo
& = B Y= 5 T o
ov . 10v Ow
E; = 32’ Y0 = ;554‘6—2, (3.4)
_u, 10w _10u ow w
=TT 60 Yr =180 " o 1

However, axisymmetry dictates that w = 0 and that » and v must be inde-
pendent of #. Thus, the strains of interest in this formulation can be written

a -
(@0
Sy e
Eo 10 v
/YTZ T
o 0
L 52 or 4

When the displacements are interpolated from the nodal values by equa-
tion 3.3, the strains become

e =Bu (3.6)
in which the matrix B has the form
B=[B; B, - By (3.7)
and u is the vector of nodal displacements:
u={u v, - ug ’Ug}T. (3.8)

The strain should not be computed according to equation 3.6 at the axis of
symmetry because the radius, which is zero at the axis, appears in the denom-
inator of the expression for €5. The other strain terms may be evaluated at
r = 0 if they are desired, but in general strains will be evaluated at the integra-
tion points. This precludes the use of Newton—Cotes integration—which places
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integration points on the boundary of the integration domain—for elements
bordering the axis of symmetry. Gauss-Legendre integration is ordinarily used
in the program described in this report, so integration at element boundaries
is naturally avoided.

Each derivative submatrix of B is formed from the partial derivatives of
an interpolation function with respect to global coordinates:

oh; ]
o,
o M
Bi=|, 9z | (3.9)
= 0
dh; Oh;
| 0z Or |

However, the interpolation functions are defined in terms of the local coordi-
nates, so the derivatives in equation 3.9 must be written as

o, _ onsde | onion
or O£ Or  On or’
o, _ onE | omon
0z 0£ 0z 0Onodz

In general, the partial derivatives of the local coordinates with respect to
the global coordinates cannot be computed directly. Instead, they must be
evaluated numerically by inverting the Jacobian matrix of the element cross

section,

or oz
o o
dn On

The entries of the Jacobian matrix are obtained from

J=1X (3.12)
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where L is a matrix of derivatives of the interpolation functions with respect
to the local coordinates,

on  on an
and X is a matrix of the nodal coordinates,
T 2
x=|7 7. (3.14)
rs 2

Now J~! contains the derivatives needed in equations 3.10:

% on
3= gg g; . (3.15)
8z 9z

3.1.3. Stress. Four stress components are of interest:
0z
o= = Ee = EBu (3.16)

where E is the 4 x 4 material constitutive matrix as discussed in Chapter 4.

3.2. Stiffness

The stiffness matrix is integrated over the volume of the element as it is
for the hexahedral element (equation 2.18). However, the volume dV here
becomes 277 |J| d€ dn in local coordinates. Thus

+1  p+l A
K= /BTEB dV = 27r/ / BTEB |J| d¢dn. (3.17)
-1 -1
\4

Of course, 7 must be interpolated at each integration point by the first of
equations 3.2.
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3.3. Mass

The integral for the consistent mass matrix looks like the one for the hex-
ahedral element,

M= [pHTHJV, (3.18)
14

except that dV = 277 |J| d¢ dn. Here, H is the matrix of interpolation func-
tions,

_ hl 0 h2 0 hg 0
H—[o hy 0 hy oo 0 hg]’ (3.19)

which arises naturally from the interpolation of displacements:
{z} = Hu. (3.20)

A lumped mass matrix may be formed as explained in Chapter 2, but its
use should be limited to the four-node element for the reasons discussed in

Section 2.3.

3.4. Body Forces

If the body force density, b = {b, b,}, is defined at the nodes, it is
interpolated at each integration point by

b=H{b, by, - bg bg} . (3.21)
Then the associated nodal forces are

f, = / H™baV. (3.22)
|4

A gravitational force is specified in the component b,. The radial body force
b, is useful if an axisymmetric body is rotating about its axis of symmetry.

3.5. Surface Tractions

Surface tractions can be applied to any surface of the axisymmetric ele-
ment, but they must act in the plane of the cross section in Figure 3.1. Thus
only 7 and z components of traction are permitted; the § component is always

Zero.
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FIGURE 3.2. Node numbers and local coordinate system for one
edge of eight-node axisymmetric element.

3.5.1. Interpolation on a Surface. Interpolation on a surface of the
axisymmetric element is equivalent to interpolation along an edge of a plane
quadrilateral element. In other words, the surface integral is really a line in-
tegral scaled by 27r. Figure 3.2 shows that, along this line, the nodes are
renumbered as 1 and 2 at the ends with the optional node 3 in the middle.
Node 2 must be located counterclockwise from node 1—when viewed with
the 2 axis to the left of the cross section—so that the surface normal (equa-
tion 3.25) will point outward from the element surface. The local coordinates
of the nodes are given in Table 3.2. The surface interpolation functions are

h’sl = %€(£+1),
hy = 36 (€ - 1), (3.23)
hg =1— 62

if the surface is defined by three nodes, or

hsy = % (1 + 5) )
h =3 (1—=¢), (3.24)
hss =0

for two nodes.

TABLE 3.2. Local coordinates for three-node line.

] 1
2| -1
3] 0
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3.5.2. Hydrostatic Pressure. The direction normal (in the r—z plane)
to the edge interpolated by functions 3.23 or 3.24 is given by the vector

8z or\"

The nodal forces produced by a hydrostatic pressure p follow as

£, = /pHSTﬁ dA, (3.26)
A

where

Che 0 hg 0 hg O
Hs_[o hee 0 hyp O hng' (3.27)

In the local coordinate system, the differential area becomes dA = 277 ||n|| d€,
and hence the nodal forces can be integrated by

+1
pHInrde¢. (3.28)
1

+1
fs:27r/ pHTIA T ||n|| d§=27r/
-1

Of course, r has to be interpolated from the nodes by
3
r = Z h'si'ria (329)
=1

and the pressure may be interpolated from nodal values as in Section 2.5.2. It
is important to note that a compressive hydrostatic pressure (a positive gage
pressure) is indicated by a negative value of p.

3.5.3. Friction. The surface friction 7 is not permitted to have any 6
component; it acts entirely in the & direction shown in Figure 3.2. That
direction is represented by the tangent vector

or 09z)"
s:{a—€ 52} , (3.30)
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and the differential area on the surface is dA = 277 ||s||d¢. The consistent
nodal forces can then be calculated by

f, = /’7‘ HTsdA
A

1
=27 /+ THTS T ||s|| d¢ (3.31)
-1

+1
= 27r/ THTsrdE.

-1
A positive friction tends to rotate the cross section of the element clockwise as

viewed in Figure 3.1, with the axis of symmetry on the left. Like the hydro-
static pressure, the friction may be interpolated from nodal values, although

the utility of this feature is questionable.

3.5.4. Traction in a Specified Direction. When the direction of a
surface traction is known, the load p = {p- pz}T can be integrated by

f, = / HPsdA, (3.32)
A
where
P = [p’ 0] (3.33)
0 p.

and the load vector p itself may have to be interpolated from nodal values. The
effect of the product PS§ is to scale each component of p by the corresponding

component of §.
Integration in local coordinates requires a change of variables with dA =

2mr ||s|| d€:
+1
f.=2r [ HIPSr|s| d¢

T (3.34)

=27 HIPsrd¢.

-1

3.6. Initial Stresses

The equivalent nodal forces produced by initial stresses o are

fo = / BTo,dV. (3.35)

|4
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3.7. Initial Strains
Initial strains €y are equivalent to nodal forces
£ = / BTE¢g,dV.

v
The initial strains induced by a temperature change of AT are

Er 1
£o = ; =aAT ¢

Yrz 0

(3.36)

(3.37)



CHAPTER 4

Material Properties

A linear elastic model and a linear viscoelastic model are provided for
analysis of pavement systems. The elastic model allows rapid solution, whereas
the viscoelastic model is more realistic.

4.1. Elastic Model

The elastic material is linear and isotropic [8]. Stress and strain are simply
related by

o =Ee (4.1)

where E is constant; that is, E does not depend on stress, strain, or time. For
the three-dimensional hexahedral elements,

(1-v v v 0 0 0 ]
v 1—v v 0 0 0
v v 1—v 0 0 0
1—
E— b 0 0 0 2y 0
(1+v)(1-2v) 2 1— 9y
0 0 0 0 0
2 1-2v
0 0 0 0 0 |
) (4.2)
and for the axisymmetric elements,
1—v v v 0
E v 1l—-v v 0
E= 0501 (1=2) v v 1-—v X “02” (4.3)
0 0 0 5

In these equations, F and v are the familiar Young modulus and Poisson ratio.

27
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4.2. Mechanical Viscoelastic Models

-

Unlike elastic or elastoplastic materials, viscoelastic materials display time-
dependent behavior under constant load (2, 3, 4, 5, 6, 8]. In general, vis-
coelastic materials may be linear or nonlinear, but only linear models are
considered here. Linearity means the stress-strain relationship is indepen-
dent of stress and strain (although it is certainly time-dependent), and as a
result, superposition is applicable, just as for the linear elastic model. Lin-
ear viscoelastic material models are often based on mechanical assemblages of
springs and dashpots [2, 4, 5, 8]. Two mechanical models are presented in
this chapter: the generalized Kelvin solid and the generalized Maxwell solid.
Many other models are possible, but any other linear spring-dashpot model
can be considered as a special case of one (or both) of these two models. The
mechanical models developed in this section describe uniaxial behavior; the
results will be generalized to multiaxial behavior in Section 4.4.

4.2.1. Generalized Kelvin Solid. The basic Kelvin element consists
of a spring and a dashpot in parallel and is too simple to represent realistic
material behavior. It models a limited viscous flow but no elastic response.
The generalized Kelvin solid, shown in Figure 4.1, has a spring in series with
n Kelvin elements. The spring and the Kelvin elements each experience the
same stress, while their strains are additive. With n in the range of 2 to 5, it
provides a much more realistic approximation of actual materials than a single
Kelvin element. In fact, the generalized Kelvin solid is the most general linear
mechanical model for solid-like viscoelastic behavior [5].

The single spring R, in Figure 4.1 represents the elastic portion of the over-
all material response. The stress—strain relationship for the spring is simply

1
Eg = —O. 4.4
0= R (4.4)
Kelvin element 7 is made up of a spring with elastic constant R; and a dashpot

with viscous parameter 7;. The stress—strain equation for the spring is 05 =

R;e$, and for the dashpot, 0P = n,6P. Since the two strains have to be equal
(63 = P = ¢;) and the sum of the stresses must be o, the full equation for a

single Kelvin element is

The total strain in the generalized Kelvin solid is

€= —1—0 + Zei. (4.6)
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o
RO
R 2
R, 7,
R, % %J ,
o)

FIGURE 4.1. Generalized Kelvin solid.

Equations 4.5 and 4.6 can be used to find the response of the Kelvin solid to

any applied stress or strain.
The creep compliance of this model is easy to derive. In a creep test, a stress

is applied suddenly and held constant while the changing strain is measured.
Under a constant stress oy applied suddenly at time ¢ = 0, the strain in one
Kelvin element can be found by integrating equation 4.5 to obtain

g = %j (1 — e Ret/m) | (4.7)

in which the initial condition £;(0) = 0 has been applied. Adding the strains for
all the components produces the creep compliance for the generalized Kelvin

solid,

D:ae—_—..Do-*-ZDz (l—e't/a"), (48)
¢ i=1
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where
1
Dy = —
0= T, (4.9)
is the elastic compliance and
1
Di = 5 410
7 (4.10)
and
Ui
Q; = - 4.11
B (411)

are called the asymptotic compliance and retardation time for element 7. The
asymptotic compliance for each element is the value approached as t — oo, and
its retardation time is a measure of how quickly the compliance approaches
the limiting value. The compliance of each element ¢ reaches 63 percent of D;

when t = «;.

4.2.2. Generalized Maxwell Solid. Like the simple Kelvin element,
the simple Maxwell element is composed of a spring and a dashpot, but the
Maxwell element has them arranged in series. Thus the Maxwell element is
capable of elastic response, but its viscous flow is fluid-like. Figure 4.2 shows
the generalized Maxwell solid, which has n Maxwell elements in parallel with
a spring. The single spring acts to limit the viscous flow, making the model
solid-like, and the several Maxwell elements provide a range of viscoelastic
time constants. The strains in the single spring and in the Maxwell elements
must all be equal, whereas the total stress is the sum of the stresses in the
individual elements. It will be shown in Appendix A that the generalized
Maxwell solid is in fact equivalent to the generalized Kelvin solid.

The stress—strain equation for the single spring in Figure 4.2 is, of course,

Og = RQE. (412)
If the stress in Maxwell element i is o;, the strain in spring ¢ is £} = 0;/R;,
and the strain rate in dashpot 2 is a'? = 0;/m;. Then the total strain is the
sum of the spring and dashpot strains, and it must equal ¢:
. 0 0%
€= — + —. 4.13
R; ( )
The stress—strain behavior of the entire generalized Maxwell solid under any
loading condition is governed by equation 4.13 and the following sum:

g = Ro€ + Z a;. (414)

=1
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FIGURE 4.2. Generalized Maxwell solid.

In the previous section, the creep compliance was derived for the Kelvin
solid, but in this section, the relaxation modulus of the Maxwell solid will
be derived. The creep compliance of the Maxwell solid is in fact relatively
difficult to derive, as is the relaxation modulus of the Kelvin solid. These will
be saved for Appendix A. In a relaxation test, a constant strain £y is applied
suddenly at t = 0, and the stress is monitored. Obviously, because the strain
is constant, ¢ = 0 in equation 4.13. Integration of equation 4.13, using the
initial condition 0;(0) = R;€, yields

g; = R,igoe-Rit/ni. (415)

The stresses in all the components can be added to get

7 = Ro+ Y ReRtm, (4.16)

- =
0 =1

Equation 4.16 can be cast into a more convenient form by letting Ey be the
initial modulus of the overall model,

Ey=Ry+ ) R; (4.17)
i=1
and substituting an initial modulus,

E; =R, (4.18)
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and relaxation time,
i
B = — 4.19
5 (4.19)
for each Maxwell element. The result is the conventional form of the relaxation
modulus,

g - _ .
E:E_OZEO—ZEi (1— e ¥h). (4.20)

=1
4.3. Material Testing

Several laboratory tests can be performed to determine the viscoelastic
material properties. The creep and relaxation tests (Section 4.3.1) are the
two most elementary tests [2, 5], and their results can be put directly in the
form of equations 4.8 and 4.20 to get the viscoelastic parameters. The main
difficulty with the creep and relaxation tests is that they are relatively long-
term tests; they characterize the material response over periods ranging from
a few seconds to many years. Cyclic loading tests are more effective when the
short-term response is needed {2, 5]. Tests involving cyclic stress and strain
will be discussed in Section 4.3.2.

4.3.1. Creep and Relaxation Tests. The creep compliance of the gen-
eralized Kelvin solid was derived in Section 4.2.1. The result is equation 4.8.
A creep test yields strain data at various times after application of the con-
stant stress. The instantaneous strain directly indicates the elastic compliance
Dy, but the other parameters must be found by a fitting process. Fitting the
experimental data points to equation 4.8 involves, first, selection of the order
n of the model; typically, 2 < n < 5. Then, in theory, the fitting can be per-
formed with a nonlinear least squares method, but the fit will likely be very
ill conditioned. Therefore, it is generally more effective to choose the retar-
. dation times o; and then to find the compliances D; by a linear least squares
method. For example, the retardation times could be selected as powers of
two, oy = 2tk or powers of ten, o; = 10°**. The constant k (as well as the
number n of Kelvin elements) would depend on the time period of interest.

A similar method can be used to fit relaxation data to equation 4.20. An
important fact is that, if the material is truly a linear viscoelastic one, the
creep and relaxation tests are redundant. Appendix A will prove this point.

4.3.2. Cyclic Loading Tests. The creep and relaxation tests are not
often used to measure the response of materials at times much shorter than
one second. This is because the application of the stress or strain cannot be
instantaneous. If the load is applied too quickly, undesirable inertial effects
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will be induced in the material. On the other hand, the effect of the finite
loading rate will become important if the load is applied too slowly relative
to the sampling period. A cyclic test circumvents this dilemma by applying
a sinusoidal load at frequencies that are well below the resonant frequency of
the sample.

A sinusoidal stress will be considered first for the generalized Kelvin solid.
It is convenient to write the stress in complex exponential notation as

o = gpe™”. (4.21)
Now the strain in the spring is
1 jw
Eg = —RE.?"(J’()Cz t, (422)
and the differential equation 4.5 for each Kelvin element can be solved to get
1- iwaj iwt —t/ s

where C is a constant of integration. Only the steady-state response is relevant,
so the last term can be neglected. The total steady-state strain is then

g = Dgge™" (4.24)
where D is the complex compliance,
n .
1 —wa;
D =D D { ———]. 4.2
0+JZ=; J(1~4~w2cx]2-> (4.25)
If the complex compliance is written in the form D = |D|e%, then equa-
tion 4.24 can be rewritten as
e = |D] oottt (4.26)

The magnitude |D| and the phase angle ¢ are directly measured in the sinu-
soidal stress test, which should be performed at several frequencies w. The
parameters D; and a; can then be found by a nonlinear least-squares fit, or
a; can be fixed as explained in Section 4.3.1 and D; found by a linear fit.
Similarly, a sinusoidal strain test can be run to obtain the parameters of a
generalized Maxwell solid. The strain can be assumed to have the form

£ = goe™". (4.27)

The resulting steady-state stresses are
Og = Roé—foeiwt (428)
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for the spring and

w7 :
0j = R]ﬂjw (%) 606Wt (429)

for each Maxwell element. At each frequency w, a complex modulus is mea-
sured:

E = |E| . (4.30)

The parameters E; = 1/R; and f; = n;/R; can be calculated as described for
the cyclic stress test.

4.4. Multiaxial Viscoelastic Model

The mechanical viscoelastic models described in Section 4.2 are uniaxial
models. For multiaxial stress analysis, more than one model is needed. In the
isotropic case, two models are needed: one analogous to the Young modulus
and one for the Poisson ratio, for example [8]. Alternatively, the bulk and
shear moduli can be modeled [11]; this is the approach adopted for this project.
The advantage of treating bulk and shear phenomena separately is that the
volumetric response of many viscoelastic materials is approximately elastic. In
other words, often the bulk modulus is assumed constant while only the shear
modulus is modeled as viscoelastic. In terms of the bulk modulus K and the
shear modulus G, the three-dimensional stress—strain matrix in equation 4.2

18

3K +4G 3K —-2G 3K-2G 0 0 07
3K -2G 3K+4G 3K-2G 0 0 O
1 [3K—-2G 3K—-2G 3K+4G 0 0 0 :
E=3 0 0 0 3G 0 0 (4.31)
0 0 0 . 0 3G O
| 0 0 0 0 0 3G]
The corresponding matrix for axisymmetric stress (equation 4.3) is
3K +4G 3K —-2G 3K -2G 0
1 |3K -2G 3K +4G 3K -2
E * G0 (4.32)

T3 |3K-2G 3K-2G 3K +4G 0
0 0 0 3G
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G and K can be replaced by relaxation moduli of the form

ng
G=0Co-Y G (1 _ et ) (4.33)
1=1
and
K=Ky — XK: K, (1 - e‘t/T"K) : (4.34)
1=1

but the resulting stress—strain relationship will be correct only if the strain is
constant. If the stress is constant, the creep compliances are more appropriate:

ny
é =+ ;J (1 _ e—t/r{) (4.35)
and
-]12 =B =B+ g; B; (1 — 6_t/T*B) . (4-36)

In a general state of varying stress and strain, the correct moduli will be
between these two extremes and will be difficult or impossible to determine
exactly. In practice, the stress and strain are computed incrementally, and
one or the other is assumed to be constant throughout an increment. Then,
for each increment, either the relaxation moduli or the creep compliances can
be used, or, as in the next section, the incremental response can be computed

from differential equation 4.5 or 4.13.

4.5. Finite Element Implementation

The multiaxial linear viscoelastic model presented in the previous section
has been implemented by an elegant method first described by Zienkiewicz et
al [11]. This method requires the parameters Jy, J;, 77/, ¢ =1, ... ,n;, and
By, B;, 72,1 =1, ... ,np, appearing in the creep compliance equations 4.35
and 4.36 for bulk and shear. Strains are separated into elastic and viscoelastic
components. The elastic compliances are simply Jy and By, and the elastic

moduli are, of course,

1
Gy = — 4.
0= (4.37)
and
1
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These elastic moduli are used in the E matrix in equation 4.31 or 4.32, so the

stiffness matrix is independent of time.
The stresses and creep strains are decomposed into average (bulk) and
distortional (deviator) components. If a superscript “c” denotes creep strain,

the bulk components are

e

£ = (e + ¢ +e5) (4.39)

L =

and
_ 1
0=z (07 +0y+0;), (4.40)

and the deviator components are, in vector form,

¢ (4.41)

and

SRS (4.42)

The creep strains in the individual elements of the generalized Kelvin models
are given by equation 4.5, which is rewritten here in different notation for the

bulk and deviatoric components:

=C B’L — 1 —C

E;, = 3TiBO' - 7_1781:? N (443)
J; 1

& = Lg— e (4.44)

The creep strains at time ¢ + At can be approximated from equations 4.43
and 4.44, using the values at t. If the stress is assumed constant throughout
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the interval At¢, then equations 4.43 and 4.44 can be integrated to get the
approximate creep strains at ¢ + At:

(E9)np = (69),e72Y7 + 1 Bi5, (1 B e—At/"QB) i=1,...,ng,  (4.45)

(e;':)t+At = (e?)t e_At/T':] + %Jist (1 - e—At/T£J> 1= 17 -,y (446)

1

The finite element solution advances by time increments of At. If at time
t, the complete stresses and strains are known (including all the individual
components of creep strain), the solution at ¢ + At proceeds as follows. First,
the creep strains at t + At are found by equations 4.45 and 4.46. All the indi-
vidual components of those creep strains must be stored. Next, the bulk and
deviatoric creep strains are converted to total creep strain, which is treated as
an initial strain. This and other initial strains are integrated to get equivalent
nodal forces, according to equation 2.45 or 3.36, in which E represents only the
elastic portion of the material response. Then the stiffness matrix is formed
at t + At, again using only the elastic matrix E, and all the nodal forces are
added together. The solution of the resulting elastic system produces the dis-
placements at t+ At, which are used to find the total strain €;, ;. Finally, the
stress oyya¢ is given by oiar = E [et+At — (€0)¢y At] where (g9),, A, includes
all the initial strains applied at time t + At. The strains calculated from the
displacements by equation 2.6 or 3.6 are in fact the fotal strains; they are the

sum of the elastic and creep strains.
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CHAPTER 5

Finite Element Procedure

In the most general dynamic analysis, element mass and stiffness matrices
are assembled into the global matrices M and K, and element force vectors
and concentrated nodal loads are combined into f. The damping matrix C
is constructed from M and K as described in Section 5.3. The equation of

motion,
Mii + Ciu+ Ku =f, (5.1)

is solved at specific increments of time by either an explicit or an implicit
method, or by a mixture of the two. The particular methods employed are
the central difference method (explicit) and the Newmark trapezoidal method

(implicit).

5.1. Central Difference Method

The central difference integration method {1, 10| is called an ezplicit
method because uy, 4, is written explicitly in terms of the conditions at time ¢.
The central difference method is also called a conditionally stable method be-
cause its mathematical stability depends upon the size of the time increment

used for the step-by-step procedure.

5.1.1. Incremental Procedure. The central difference method gets its
name from the second-order difference equation which is assumed for the ac-

celeration at time ¢,

1

U = NG (Wi-ae — 2u; + gpas) - (5.2)

A first-order difference is used for the velocity,
—U-ar + Wpar) - (5.3)

by = 5 (

39
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The equilibrium condition at time ¢ follows by substitution of equations 5.2
and 5.3 into equation 5.1:

1 1
(EM + '2—A—tc> Wy Ag

2 1 1
== (K- M) w (M - 55 weae 60

This equation must be solved for ua¢.

The initial conditions ug, 0y, and {ip must be specified; they will usually be
zero if f = 0 for ¢ < 0. However, static loads will cause u to be nonzero, and
if loads are to be applied suddenly at ¢ = 0, the initial acceleration should be
computed from equation 5.1. Also required by equation 5.4 is u_x;. Its true
value can be determined from the initial loads f_.,, but equation 5.4 needs a
different u_a; to model accurately the acceleration iiy produced by the sudden
application of loads f;. It is obtained through the difference equations 5.2

and 5.3, with the result
At? .
U_aAr = 7]10 - Atuo + ug. (55)

A similar procedure should be used any time loads are applied suddenly instead
of gradually.

Equation 5.4 makes it clear that K never has to be factored. Nevertheless,
the matrix (4zM + 55;C) has to be factored, and in general, this matrix is
just as difficult to factor as K. For this reason, the central difference method is
appealing only when M is diagonal and C is diagonal or zero, and thus no ma-
trix factorization is necessary. Otherwise, the implicit integration procedure
in Section 5.2 is far more efficient. The central difference method is therefore
best used with lumped mass and damping matrices. Chapters 2 and 3 explain
that lumped mass should generally not be employed with the quadratic ele-
ments, so it follows that the central difference method is most effective with

linear elements.

5.1.2. Critical Time Increment. The central difference method is sta-
ble only if the time step At is less than a critical value [1, 10]. Determining
that critical value is simple in theory, but computationally expensive in prac-
tice. Instead, a lower bound may be found for the critical time step.

If damping is ignored, the equation for free vibration of the finite element

mesh is
Mii + Ku=0. (5.6)



5.1. CENTRAL DIFFERENCE METHOD 41

The solution to this equation can be assumed to consist of various modes
of vibration, each having a characteristic frequency, phase, and mode shape.

Such a solution can be written
u = ¢sinw (t — ty) (5.7)
where ¢ is the mode shape vector, w is the radian frequency of vibration, and #o

is a constant representing the phase of this mode. Substitution of equation 5.7
into equation 5.6 gives a generalized eigenproblem,

K¢ = w?Me, (5.8)

which has n solutions where 7 is the number of degrees of freedom in the finite
element mesh. Each solution consists of an eigenvector ¢; and an eigenvalue
w?. The eigenvalues are of particular interest here because the critical time
step is

Atesy = —— = Lmin
wmax T
where wmay is the highest natural frequency and Tin = 27 /Wmax 15 the smallest
natural period of vibration.

It is impractical to attempt a direct solution of the eigenproblem of equa-
tion 5.8 to obtain wp,. Instead, an upper bound on wy,, can be found by a
less expensive method [1]. One such method is particularly attractive when a
lumped mass matrix is used. In this case, an upper bound on w? is found by

rewriting equation 5.8 as

(5.9)

M™'K¢ = w’¢ (5.10)
and taking norms as follows:
IMH K ol = M K| = |w?|l|o]]- (5.11)

The norms in this equation must be induced vector norms such as the co-norm
or the 1-norm. Of course, K is positive definite,

xTKx > 0 for all nonzero x € R, (5.12)
and the eigenvectors can be made M-orthonormal,
¢ Mo, = b;j, (5.13)
so w? > 0. The resulting upper bound for w? is therefore
w? < M| IK]- (5.14)

Now it is clear why this bound is computationally attractive for a lumped mass
matrix: the inverse in equation 5.14 becomes trivial.




42 5. FINITE ELEMENT PROCEDURE

A second upper bound on w? follows from the fact that the highest nat-
ural frequency of the finite element mesh cannot be higher than the highest
natural frequency of any single element [1]. The matrices M and K are man-
ageably small at the element level, and furthermore, many elements typically
share common M and K matrices, so it is feasible to get an upper bound on
w? by equation 5.14—or even to obtain wyax directly from equation 5.8—for
each element. However, a better upper bound can be obtained by evaluating
equation 5.14 for the global mass and stiffness. This operation can be done
efficiently at the element level without actually assembling the global matrices.

5.2. Newmark Integration Method

The Newmark method [1, 10] is an implicit integration method, which
means the displacement vector at time ¢ is computed from the equilibrium
equation at time ¢. Therefore, the disadvantage of this method is that matrix
factorization cannot be avoided. On the other hand, Newmark integration
has the advantage of being unconditionally stable; that is, the mathematical
stability of the procedure does not depend on the time step At.

5.2.1. Incremental Procedure. The Newmark method is based on ap-
proximations for u and 1 of the form

War = U + WAL+ [(% — a) u; + aiit+m] At? (5.15)

and
Uepne = Wy + [(1 = 6) Gy + Sligyng] At (5.16)

where o and § are constants that are selected for accuracy and stability. In
the remainder of this chapter, it will be assumed that o and é are both non-

negative. The trapezoidal rule—with o = i and § = %—is commonly used

and is unconditionally stable.
Equation 5.15 can be solved for iz a¢ to yield

. 1 . 1 .
Urpar = —3 (wrae — up — Atly) ~ (% — 1) ;. (5.17)

Substitution of equation 5.17 into equation 5.16 produces

. i) a1\ . ) ..
Wi ng :a—&z (ut+At - Ut) + <1 - ‘&) u; + (]. - '2—&) Atut. (518)
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Upon substitution of equations 5.17 and 5.18 into equation 5.1 at time £ + At,
the equilibrium equation becomes

1 )
K
<aAt2M taaC T ) Herat

1 ) . 1 J .
st [(L 1) (1) v [ (2-1) o]
1 0

To solve equation 5.19 at each increment of time, the matrix

1 )
B aAtzM + al
must be factored as explained in Section 5.4.5. Then the new velocity and
acceleration vectors are obtained from equations 5.18 and 5.17.

Initial conditions for the Newmark method are simpler than for the central
difference method in that u_a; is not needed; only uy and 11y need to be
specified. The initial acceleration can be specified, or it can be calculated
directly from equation 5.1.

A

tC +K (5.20)

5.2.2. Selection of At. The stability of the Newmark integration scheme
is independent of At if a and § are chosen properly. That leaves accuracy as
the criterion governing the selection of At. For vibration analysis, At should
be about one tenth of the shortest period of vibration to be considered [1].
However, for pavement, a vibration analysis is not ordinarily useful, but in-
stead a transient analysis must be performed. For a transient analysis, it is
necessary to use a time increment that is small enough to provide an accu-
rate representation of the transient response of the system. Experience with
nondestructive testing of pavement has shown that a sampling frequency of
1000 Hz is sufficient to obtain a complete trace of pavement response even at
60 mph. Therefore, it is reasonable to believe that At = 0.001s should suffice
for any traffic or falling weight analysis, and longer time increments may be
appropriate for simulation of traffic at lower speeds.

5.3. The Damping Matrix

A proper damping matrix cannot be constructed without some knowledge
of the dynamic behavior of the overall system. In other words, C should rep-
resent a physically realistic approximation of the velocity-dependent damping
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of the entire finite element mesh. A very common form of damping matrix is
known as proportional damping [1]. If C is proportional, then
¢ Cop; = 2witiby; (5.21)

where ¢; and ¢; are any two eigenvectors from equation 5.8 and &; is the
damping ratio for mode <.

5.3.1. Rayleigh Damping. A special case of proportional damping is
Rayleigh damping, in which the damping ratio is specified at two different
frequencies [1]. The damping matrix is assumed to have the form

C =aM + bK, (5.22)
so that equation 5.21 becomes
¢ (aM + bK) p; = 2wt (5.23)
Equations 5.8 and 5.13 can be used to write equation 5.23 in the form
a+ bw? = 2w;é;. (5.24)

The two constants a and b are evaluated by solving the two simultaneous
equations given by equation 5.24 corresponding to the two known damping
ratios. 4

For a mesh composed of different materials, such as a pavement system,
each material can have its own set of Rayleigh damping coefficients. The
damping ratios should be determined by experiment if possible, because there
is no good way to estimate them.

5.3.2. Damping in Explicit Integration. For the central difference
method, a diagonal damping matrix should be employed. If M is diagonal,
the Rayleigh damping matrix of equation 5.22 will have the same pattern of
nonzero entries as the K matrix. Thus a further approximation is needed to
make C diagonal. An obvious approach is to use equation 5.22 but with K
replaced by a diagonal matrix K. For example, K could contain only the
diagonal entries of K, or it could have at each position on the diagonal the
sum of the absolute values of the elements in that row of K. In effect, K is a

lumped stiffness matrix.

5.3.3. Damping in Implicit Integration. Rayleigh damping has the
significant advantage of producing a C matrix whose bandwidth is no wider
than the greater of the bandwidths of M and K. Thus the use of Rayleigh
damping does not increase the work required to factor the matrix A in equa-
tion 5.20. However, precautions must be taken to ensure positive definiteness
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of that matrix so that it can be factored. K is certainly positive definite be-
cause of conservation of energy. The consistent mass matrix also is positive
definite because of the way it is constructed. It follows that if @ and b are both
positive, then C will be positive definite, and so will be A.

The case a = b = 0 represents no damping, and A is clearly positive
definite in that case. But if @ < 0 or b < 0, further investigation must be
made. It is helpful to rewrite equation 5.20 as

1+ adAt alAt + bd
= Ap M + AL K. (5.25)
Now, if the coefficients of M and K are both non-negative, A will be positive
definite. In particular, positive definiteness of A can be guaranteed by ensuring
that

1
> - .
@2 -5 (5.26)
and
A
b> —O‘Tt. (5.27)

5.4. The Complete Procedure

The complete solution procedure is outlined below. Most of the individual
steps have already been explained in detail. The rest are self-explanatory.

5.4.1. Read the Input Data. The input files are read and checked for
consistency. These include a mesh file, a material file, a load file, and a bound-
ary condition file. The mesh file holds data for the nodes and elements, includ-
ing the coordinates for each node, the node numbers for each element, and the
material number for each element. Optional data include integration patterns
as well as sets, which are collections of elements or nodes that can be manip-
ulated as a group at a later point in the solution procedure. Examples of sets
would be the elements that should be integrated implicitly or explicitly, nodes
for which displacements should be output, or elements for which stresses are
wanted. The material file specifies the type and properties of each material,
the load file list loads of all kinds, and of course, the boundary condition file

contains the boundary conditions.

5.4.2. Determine What Type of Analysis Is Required. The input
files indicate whether a static or a dynamic analysis is needed. If the problem is
dynamic, it must be determined whether to use implicit, explicit, or implicit-
explicit integration. Implicit—explicit integration can be used if the time step
needed for implicit integration of the stiffest part of the mesh is as short as
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that needed for explicit integration of the most flexible part. For a pavement
system, this usually implies implicit integration in the pavement and base
layers, with explicit integration in the subgrade. If implicit—explicit integration
is to be used, the mesh is divided into the parts to be integrated by each
method. In addition, the time increment is selected if the analysis is dynamic
or if time-dependent (viscoelastic) materials are present.

5.4.3. Compute M, K, and C. The mass, stiffness, and damping matri-
ces are constant throughout the procedure. This is true even for viscoelastic
materials because K represents only the elastic (initial) part of the stress—
strain relationship. For a static analysis, only K is computed. The equations
for the explicitly integrated degrees of freedom do not need to be included in
K. In the case of implicit—explicit integration, M and C are each split into two
parts; the parts for the explicitly integrated degrees of freedom are diagonal.

5.4.4. Compute the Initial Conditions. The initial force vector f_
is initialized. These are the forces applied for a relatively long time before
t = 0, such as body forces, long-term thermal strains, and other static loads.
Two initial displacement vectors u_., and ug are set by a static analysis using
the forces f_o,. The vector u_,, is the instantaneous displacement due to
initial forces and is computed with the usual K matrix. The corresponding
stresses and strains are o_, and €_o,. Displacement uy at ¢t = 0 is computed
with a different stiffness matrix, Ko,, which is obtained by substituting E,
for E in the stiffness calculation. E is formed by letting ¢ approach oo in
equations 4.35 and 4.36. The resulting displacements, strains, and stresses are
Uy, €9, and oy = Eyey. Initial creep strains are ef = g9 — Ealo'o.

The initial velocity 1y is set to zero, and the initial acceleration iiy is
calculated by equation 5.1 using fy. If M is not a lumped mass matrix, it has
to be factored to find iiy. In general this operation is as expensive as factoring
K (or A in equation 5.20). If some degrees of freedom are to be integrated
explicitly, the initial condition u_x; is evaluated by equation 5.5.

5.4.5. Perform the Matrix Factorization. In a static analysis, K is
factored. In dynamic problems, the matrix A in equation 5.20 is formed for
the implicitly integrated degrees of freedom and then factored. In either case,
an LDLT factorization is used. No factorization is necessary for the explicit

integration.

5.4.6. Solve for Displacements. A static, linear elastic problem simply
requires a single solution of Ku = f. On the other hand, a problem involving
viscoelastic materials, time-dependent loads, or dynamic effects, demands an
incremental solution at discrete multiples of At. At each time step ¢, the
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force vector f; is assembled for a quasistatic problem or for the implicit part
of a dynamic problem. Then the equilibrium condition is imposed and the
displacements are found. In the quasistatic case, the equilibrium condition is
juSt Kut = ft-

Integration of the equation of motion for a dynamic problem is more in-
volved. The steps are detailed here for the most general implicit—explicit in-
tegration procedure; the procedures for implicit and explicit integration alone
are obvious special cases of this more general procedure. First the explicit in-
tegration step (equation 5.4) is carried out to get the explicitly integrated part
of u;a¢. If any load is to be applied suddenly at ¢, the procedure described in
Section 5.1.1 is used to find the additional acceleration to add to ii; and the
resulting displacement to add to u;—a¢. The right-hand side of equation 5.4
is actually formed at the element level, without ever assembling the relevant
part of the global stiffness matrix. In general, the vectors u; and u;_a,; used
for the explicit step include displacement components from some of the im-
plicitly integrated degrees of freedom. In other words, there is some coupling
between the explicit and implicit integration operations. To finish the explicit
integration step, the relevant parts of the acceleration and velocity vectors are
calculated by equations 5.2 and 5.3. After the explicit step has been com-
pleted, the implicit integration step is carried out (equation 5.19). Again, the
coupling between the explicit and implicit degrees of freedom must be con-
sidered. For the explicitly integrated degrees of freedom in equation 5.19, the
values that were just computed are used. Finally, the acceleration and velocity
are updated by equations 5.17 and 5.18.

The incremental procedure, whether static or dynamic, is continued until
the maximum time of interest has been reached. At each increment of time,
the load vector f; may have to be updated to reflect varying loads, moving

loads, or viscoelastic creep strains.

5.4.7. Compute Strains and Stresses. After each increment of time,
total strains are computed at the integration points according to equation 2.6
or 3.6. Viscoelastic strains (which are computed as in Section 4.5) and other
initial strains are subtracted from the total strains to obtain effective strains.
Total stresses follow by substituting effective strains into equation 2.16 or 3.16.
Any initial stresses must be subtracted to get effective stresses.

5.4.8. Print the Results. The nodal displacements as well as the stresses
and strains at each integration point are printed after each time step.
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CHAPTER 6

Sample Problem

This chapter presents the results of a falling-weight simulation which was
solved with both elastic and viscoelastic material models. Finite element re-
sults are compared with experimental data from the Ohio test pavement sec-
tion 390106. The falling-weight test occurred on 1999 October 12. The nomi-
nal load was 53kN. A pressure cell and a geophone measured the actual load
and the deflection of the pavement. Section 390106 is 180 mm of asphalt on
200 mm of asphalt-treated base and 100 mm of dense graded aggregate.

A mesh of four-node axisymmetric elements extended to 3m in the radial
direction and 3 m deep. The load was applied uniformly over a circle of radius
152 mm as in the falling-weight apparatus. Table 6.1 gives the assumed elastic
properties of each layer. The viscoelastic constants of the asphalt layers are
listed in Table 6.2.

Figure 6.1 compares the result of the elastic solution with the geophone
data. Figure 6.2 shows that the viscoelastic solution is much closer to the

experimental measurements.

TABLE 6.1. Elastic material properties of each layer of the sam-
ple problem.

Layer | Thickness| FE v
mm MPa
AC 180 | 3100 | 0.35
ATB 200 | 3100 | 0.35
DGAB 100 | 170{0.35
Subgrade 70| 0.40
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TABLE 6.2. Viscoelastic parameters for the sample problem.
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CHAPTER 7

Conclusions

The sample problem presented in Chapter 6 clearly demonstrates that
a linear viscoelastic model can be significantly superior to a linear elastic
model, but further research is needed to study the importance of viscoelastic
phenomena, in real pavements. Two obstacles make that difficult.

First, the viscoelastic material properties need to be determined by labo-
ratory testing. The properties used in Chapter 6 are only approximate values
for a typical pavement. Actual viscoelastic constants for several pavement sec-
tions should eventually be used to verify the ability of the program to provide
accurate predictions of pavement response under a wide range of loading and
environmenal conditions. Laboratory tests of asphalt must be conducted at
several different temperatures to obtain a realistic viscoelastic model. (The
program can be used to solve problems at different temperatures by providing
the viscoelastic parameters discussed in Chapter 4 at the desired temperature.)
Furthermore, the true behavior of the soil should be considered carefully. Soil
can easily be modeled as viscoelastic, but the use of more realistic nonlinear
models is not currently feasible because of extremely long solution times.

Indeed, long solution times are the second obstacle impeding further vis-
coelastic pavement modeling. Realistic problems can require several days or
weeks to complete on ordinary desktop computers. An ideal environment for
serious pavement modeling would employ specialized compution servers to
solve useful problems in a few hours.
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APPENDIX A

Equivalence of Kelvin and Maxwell Solids

In Chapter 4, the creep compliance of the generalized Kelvin solid and
the relaxation modulus of the generalized Maxwell solid were derived. In this
appendix, the Maxwell solid is shown to have a creep compliance of the same
form as the Kelvin solid.

The generalized Maxwell solid is shown in Figure A.1. All the Maxwell
elements experience the same strain, and the strain rate is, from Equation 4.13,

o O;

E=—+—, t=1,...,n. Al
R, n (A1)
This equation can be rewritten as
. 1 .
U,-—}—Eoi:E,-é:, i=1,...,n (A.2)
i

by using equations 4.18 and 4.19.

The stress in the lone spring is simply Rpe, and it is important to observe
that this will not be written as op. In Section 4.2.1, oy was used to represent
the stress in the lone spring and also the constant stress of the creep test.

> Q

Ficure A.1. Generalized Maxwell solid.
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Likewise, in Section 4.2.2, €, was the strain in the separate spring as well
as the constant strain of the relaxation test. In this appendix, however, oy
represents only the constant creep stress, and the stress in the single spring is

R()E.
Now the creep compliance of the Maxwell solid is assumed to have the form

of equation 4.8:

D=§=D0+ZD1, (1___6~t/a,')_ (A3)
0 =1

Then the strain rate is

n Dz
€ =0y E et (A4)
=1 t
and equation A.2 becomes
1 "\ D;
G; + —0; = Eiop y  —Let%. (A.5)
51' ; Q;

Integration of this equation with the initial condition 0;(0) = E;e(0) produces
the following expression for stress in Maxwell element 2:

o; = E;fB;00 Z —Jﬂ et/ + F; £(0) — B; - ——]ﬂ' e t/Pi. (A.6)
=1 TP

Oéj i

=1

Differentiation with respect to time yields

E;
=t/Bi _ e(0)e B — BB e~tle
€ Bi () 600; '“ajﬁz
(A.7)
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The total stress is the sum of the stresses in the individual elements, and
the derivative of the total stress must be zero:

i=1
n
D.
qu I —te;
o003 et
Jj=1
n n
D; E;
.+. Z EiaO Z _..]_e—'t/ﬁi — JE(O)e‘t/ﬂi
pa o= b Bi

— E;B;0 et |
0> 2]

For this equation to hold at all times ¢, the coefficients of e~/ and et/
must be zero. For e~/

RQO'()D ] —1
_;_ E,B,——~ /o5 = =0, =1, A9
a;j 2 _ a],Bz .7 ( )
so that
- E:B; )
=Ry, 7j=1,...,n. A.10
=1 CY]' _'Bi ’ ( )

Ths initial modulus of the generalized Maxwell solid is given in equation 4.17
as

Ey=Ry+» R (A.11)

Substitution into equation A.10 results in

ajza ﬁ —Eo, yzl,...,n. (A12)
J t .

e
For the e™*% terms,

", D, E;
E; —2 — ~e(0) =0, i=1,...,n, .
Uoza—j—ﬁi £(0) ; n (A.13)
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which leads to

n D .
/B’LZ _"D07 ZZl)"’an; (A14)
j=1 — b
where
_ £(0) 1
Dy = o "5 (A.15)

Therefore, the equations in this appendix not only demonstrate the equiva-
lence of the generalized Kelvin and Maxwell solids, but they provide a method
for converting between the creep compliance and the relaxation modulus. In
particular, to convert from creep compliance (equation 4.8) to relaxation mod-
ulus (equation 4.20), the time constants f; are the n roots of equation A.14,
the initial modulus is Ey = 1/ Dy, and the moduli E; are given by the n simul-
taneous equations A.12. To go from relaxation modulus to creep compliance,
the time constants a; are the n roots of equation A.12, the initial compliance
is Dy = 1/Ey, and the component compliances D; are glven by n simultaneous
equations A.14.

The one difficulty remaining is the solution of equation A.12 for «; or of
equation A.14 for ;. A general-purpose root-finding method such as Newton—
Raphson can be used, but such methods are not foolproof [7]. Specifically, it is
usually very helpful to bracket a root before using a general-purpose method,
but that cannot be done without some kind of search algorithm. Furthermore,
there is no way to guarantee that a bracketed root is not in fact three roots
or any odd number of roots. On the other hand, foolproof methods do exist
for finding all the roots of a polynomial; Laguerre’s method is a good example
[7]. Therefore it is helpful to cast equations A.12 and A.14 into polynomial
form, and this can in fact be done.

To solve equation A.12 for the n time constants o;, it is necessary to find

the n roots of

n Ez
O‘Za—ﬂi - Ey=0. (A.16)
1=1

This equation can be made a polynomial by multiplying it by the product of
all n denominators, H?zl(a — f3;). The resulting polynomial is

az EiH(a_ﬁj) —EOH(CY—@‘), (A.17)

G
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which is obviously of degree n. Laguerre’s method, along with polynomial
deflation, is guaranteed to find all n roots if exact arithmetic is used. A
similar polynomial can be derived from equation A.14.

Unfortunately, the polynomial form of equation A.12 or A.14 will always
be ill-conditioned when the time constants are widely distributed. The same
is true of the n simultaneous equations. If a “foolproof” method like Laguerre
fails to find n roots, then it is necessary either to reduce the number of time
constants or to increase the precision of the computations.
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