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1.0 INTRODUCTION

The need for data on the exposure of driver and vehicle groups to highway

accident producing situations has long been recognized. Accident statistics

which cite accident rates per mile or per registered vehicle are attempts to

control for the different exposure to accidents ofjroups of drivers and vehicles.
Most sources of exposure data are limited (£o)the extent^ which they identify
groups of drivers, vehicle and situations. As safety analysts continue to press for

finer distinctions there is a temptation to assume that certain types of accidents

are more the result of presence in the traffic stream, i.e., of exposure while

other accidents are more influenced by a particular quantity to be called

"proneness" in this report. The meaning of proneness and of exposure will be

developed in more detail especially in Chapter 2.0. That this conceptual step

can probably lead to useful estimates in certain cases may lead one to hope that

systematic procedures could be developed to obtain accurate exposure estimates

from accident data in a wide variety of circumstances. Any procedure for

getting exposure estimates from accident data may be referred to as an induced

exposure modeL Several rather general induced exposure models and procedures

have been suggested in the last two decades and have been tested to varying

extents.

This report focuses on the Koomstra Model because it appears to have the most

potential for application and has clear modeling assumptions. A description of

how a Koomstra Model can extract accident exposure and accident proneness

information from accident data is presented below. It is followed by a brief

summary description of other induced exposure models and finally by a

statement of the objectives of this study.

1.1 INFORMAL JUSTIFICATION FOR THE USE OF THE ACCIDENT

MATRIX TO DETERMINE EXPOSURE AND PRONENESS

The Koomstra Model attempts to estimate exposure and proneness values

pertaining to classes of drivers by analyzing the accident involvement matrix Xy
containing counts of observed collision involvements for drivers of group i and



group j* (the driver groups would ordinarily be defined by some classification

such as by age and sex). A rough idea of the principle behind such an analysis

can be obtained by the following considerations. Suppose that in addition to

several groups of ordinary drivers there are two special groups of drivers, one
group called the "super good drivers" and the other called the "super bad

drivers." The super good group will be labelled-group G, and the super bad group
B, and the ordinary drivers will be groups 1 and 2.

The super good drivers ace so good that when an ordinary driver (from group 1 or
2) has a collision with a member of group G the accident is almost certainly
caused by the ordinary driver. On the other hand, when an ordinary driver has a

collision with a member of group B, the accident is almost surely caused by the
group B driver (super bad).

The collisions which ordinary drivers have with members of group B are mostly
due to being at the wrong place at the wrong time and are thus largely a measure
of exposure. The collisions with members of group G are due to unlucky
circumstances in part but for the most part can happen only if there is fault on
the part of the driver (from the ordinary group). Thus, these accidents are
proportional to both exposure and proneness.

Table 1 gives ahypothetical accident involvement matrix for groups G, 1, 2, and
B. From this data the ratio of exposures of groups 1 and 2 can be estimated as
X1B/X2B =2.22 since Xib is the number of collisions of group 1 with super bad
drivers and thus is assumed to be proportional to the exposure of group 1 and
similarly X2B proportional to the exposure of group 2. Their ratio is thus an
estimate of the ratio of exposures and shows that group 1 has a little over twice
the exposure of group 2.

The ratio of exposure times proneness is estimatedby
X1G/X2G = -53

*Thus, for example, X12 would be the number of collisions in which one driver
belonged to group 1 and the other to group 2.



TABLE 1
EXPOSURE FROM ACCIDENT DATA: AN EXAMPLE

XU

G

1

2

B

G 1 2 B

60 160 300 600

100 120 200

80 90

40

xBl/XB2 = ratio of exposure = 200/90 = 2.22

Xqx/Xg2 = ratio of exposure times proneness = 160/300 = .53

ratio of proneness = .53/2.22 = .24



Thus the ratio of proneness (group 1 to group 2) is estimated by .53/2.22 and this

shows that group 2 has about 4 times the proneness of group 1.

Given the existence of super good and super bad drivers (and a knowledge of

which is which) the relative exposure and proneness of each group of ordinary

drivers is easily obtained from the number of collisions with the super good and

super bad drivers. However, if there are no super good and super bad drivers,

similar information can be obtained from the accident matrix of ordinary

drivers. Each accident experienced by a group of drivers increases both the

estimated exposure and the estimated product of exposure and proneness (for

shortness of expression this product will be referred to as the accident

potential). If the collision is with a group of relatively bad drivers, there will be

more of an increase in the estimated exposure. If, on the other hand, the

collision is with a driver from a group of relatively good drivers, the estimated

accident potential will increase more than the estimated exposure.

Consequently, the complete accident matrix for a goup of ordinary drivers gives

information on their relative exposure and proneness values. There appears to be

some circularity in these considerations because one must know which groups are

good drivers and which are bad drivers before one can compute the proneness

values for other groups. The Basic Koomstra Model admits two symmetric

solutions in which the exposure and accident potential are interchanged. In a

given situation at most one of the solutions will make any sense if some prior

knowledge of relative proneness and exposure is available. This prior knowledge

could be as little as a rough ranking on the basis of exposure or of proneness.

Thus the ambiguity is easily resolved in most practical situations and the

circularity is broken as welL

1.2 OTHER INDUCED EXPOSURE MODELS

In addition to the Koomstra Model which is described in detail in Chapter 3.0,
v

two other types of models have been suggested. The Thorpe model derives the

relative exposure and proneness of a driver group from its proportion, s, of the

single car accidents and its proportion, t, of the two car (collision) involvements.

y<y—-' 2-
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The Thorpe model estimates the relative exposure, ej, of the driver group, i, as:

ei - 2 tj - si, the theory being that two car accidents are only partially the fault

of the given driver while single car accidents are completeley the fault of the

driver group involved. Several assumptions were needed to derive the model, but

one assumption has been found to be severely violated in the case of driver age

groups and is the key assumption of Thorpe's model considered in this paper.

This is the assumption that relative proneness is the same for single and two car

accidents. The evidence which contradicts this assumption is that older drivers

(over 50 years old) appear to have relatively lower proneness to single car

accidents than to two car accidents.

The Haight models are based on single car vs. two car accidents as is the Thorpe

ModeL They were rejected from further consideration on this project on the

basis of this and other considerations as discussed in Reference 1.

Assigned responsibilitly models have been considered by Carr, Hall, and Cerelli

among others.* They have been referred to as "quasi-induced exposure" models

by Height.** These models use assigned responsibility (by police citation or by

accident circumstances) to separate proneness from exposure. Specifically,

relative exposure is measured by relative involvement as the not-responsible

party in two car collisions.

These models have been investigated several times with consistently positive

results. However, there is relatively little evidence derived form direct testing

of the models. In general, the hypothesis that carefully chosen assigned

responsibility information works well for computing exposure from accident data

appears tenable.

It is assigned responsibility data which refutes Thorpe's hypothesis and shows

that the Thorpe model can give very inaccurate and misleading estimates of

exposure. Carr gave dramatic evidence of this and the conclusion was confirmed

by other workers in quite different contexts.

* References 4f8\ and-ft;

** Reference 7.



1.3 OBJECTIVES

The objective of this study is to assess the usefulness of Koomstra induced

exposure models in accident analysis. There are three components to this
assessment. First, the basic assumptions needed to derive the Koomstra Model

are identified and alternatives are suggested. The reasonableness of the
assumptions and the alternatives represents one level of assessment. It is

presented in Chapter 2.0. Second, methods of testing and evaluating Koomstra
•Models on accident data are developed in Chapter 3.0. Third, the Koomstra
Model is tested on accident data from Ulster County, New York and on data
from North Carolina. The results of these tests are presented in Chapter 4.0.



2.0 EXAMINATION OF KOORNSTRA MODELS

In this chapter, the Basic. Koomstra Model is described (2.1); other, more general
Koomstra Models are discussed (2.2); the assumptions leading to the Koomstra
Model are specified (2.3); and the Koomstra Model is derived (2.4).

Koomstra proposed a model and it was applied to traffic accident data from the

Netherlands. The Koomstra model also was the main subject of a rather large
investigation on Danish data reported by Wass (Reference 4). Wass investigated
only the One-and Two-Car Koomstra Model* even though Koomstra had
concluded (in agreement with the discussion below in this report) that the Two-
Car Koomstra Model (or Basic Koomstra Model) was more promising. Wass
concluded that the Koomstra model worked quite well on the Danish data. This

conclusion will be seen to be at odds with the conclusions of this report.

2.1 THE BASIC KOORNSTRA MODEL

In introducing the Koomstra type models, it is best to start with what can be

called the Basic Koomstra ModeL Koornstra's original paper considered a more

complex model, but the simpler model introduces the fundamental concepts. It

also introduces fewer assumptions which may not be valid. Later an extended

model (the One- and Two-Car Model) given by Koomstra will alsobe introduced,
as will another extension (the Generalized Koonstra Model) useful in analyzing
the applicability of the Basic Koomstra Model.

The Basic Koomstra Model takes as data the accident involvement matrix Xy. It
is helpful at the outset to also define the accident matrix Ay for comparison, but
all subsequent discussions will refer to Xjj. The accident matrix Ajj is the
number of collisions between members of group i and group j. In the initial

discussion of the model it is assumed that the groups are classes of drivers (the

case whether they are classes of vehicles or driver-vehicle combinations may

also be considered). A^2 is the number of observed collisions in which one driver

was in group 1 (say a particular age-sex category) and the other driver was in

*See next section for definition of various Koomstra type models.
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group 2. The involvement matrix Xy is defined as the number of involvements
that drivers in group i have in collisions in which the other driver was in group j.

Then Xy = Ay if i i j but Xji = 2Aft. In other words, involvements equal
accidents when the other party is different but since each accident produces two

involvements there are twice as many involvements within a group as there are

accidents. Since each accident leads to two involvements:

^2Lxkj =2N
where Nis the total number of two car collisions. (In terms of Ay we have

^ ^-Afci=N.
k j<k KJ

The Basic Koomstra Model states:*

Xy£?Xy =(pi +pj)eiej
The quantity e^ is taken to measure relative exposure of class k and p^ measures
its relative proneness. These quantities will be discussed in more detail below.

The Basic Koomstra Model is used to estimate the p^'s and e^'s given the Xj^'s.

First, one makes the fairly standard assumption that A;; is Poisson distributed

with mean Ay (Ay = Xy if i -fi j, Ay = 1/2 Xji) and then finds maximum
likelihood estimates for the e^'s and p^'s. Some other goodness of fit criterion

could be maximized with respect to the model parameters (e^'s and pk's) but

maximum likelihood is probably the best. (Koomstra suggested minimizing a chi

square statistic which is nearly equivalent to maximizing the likelihood estimate

for large samples). More is said on the statistical accuracy of this process in

Reference 5 which also describes the details of finding the maximum likelihood

solution.

A question which naturally arises is why should the e^ (as estimated by this

procedure) be expected to be good measures of exposure and Pk of proneness

(proneness in the sense of probability of having an accident given exposure to the

accident situation). More fundamentally why does the involvement matrix give

any information at all on exposure and proneness separately.

*Koornstra's original paper used the accident matrix rather than the involvement
matrix here. The involvment matrix must be used, however. As just seen the
involvement matrix is easily calculated from the accident matrix.
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These two questions are addressed in Sections 1.1 and 2.3. Section 1.1 informally

dealt with the second question regarding how evidence about the amount and

safety of driving can be present in the accident matrix. Section 2.3 gives a
derivation of the Generalized Koomstra Model defined in Section 2.2, carefully
identifying each assumption as invoked in the derivation. It is the reasonableness

of these assumptions which lead to confidence that efc is exposure and pk is
proneness.

Then, the assumptions needed in deriving this model and the more restricted

Basic Koomstra Model are discussed and their implications concerning validity

and testing are considered in subsequent sections. It should be noted that even if

Xy = Xy

is a good approximation as asserted by the Koomstra model, the questions

whether pk and e^ estimate exposure and proneness still remain. However, if all

the assumptions in the deriviation hold then e^ and pk must measure exposure
and proneness. These matters will be dealt with more fully in subsequent

sections.

2.2 OTHER KOORNSTRA-TYPE MODELS

Besides the Basic Koomstra Model two other related models will be referred to

in this report. The first is the One- and Two-Car Koomstra modeL This model

was introduced in Koomstra's original paper and was the model of primary

interest in that paper. It was also the model of primary concern for Wass. This

model has the form of the Basic Koomstra Model but also includes (at least) one

category of fictitious "drivers" to represent accidents which don't involve

collisions with other vehicles. Xj0 is the number of single car accidents

involving driver class i. By assumption Xqq =0 and p\> =0. In the maximum
A A.

likelihood solution, the condition X00 = 0 ensures that the estimate of p0 is

exactly zero.

The One- and Two-Car Koomstra Model is, in effect, a combination of the Basic-

Koomstra Model and the Thorpe Model (the formal aspects of this assertion are

discussed in Reference 1). In practice the estimates are strongly affected by the



comparison of One- and Two-Car accident counts. This is the crux of the Thorpe

Model. It has been found that the assumption of equal proneness in One- and

Two-Car accidents is badly violated in the case of driver age groups and so the

Thorpe Model is probably seldom of any value in estimating proneness and

exposure. It is therefore suggested that the One- and Two-Car Koomstra Model

is less likely to be valid than the Basic Koomstra ModeL This is one of the main

conclusions of Koomstra's second paper.

The second extension of .the Basic Koomstra Model is the Generalized Koomstra

ModeL

The Generalized Koomstra Model can be expressed:

Xy =(pi +pj +<X PiPj +/« )ejej (c| >^0,^ 0)
Simple algebraic manipulation shows that Xy as given by this expression can also
be expressed thus:

Xy =(p'i +p'j) e'ie'j
providing c{ z3 < 1.

Of course p'j and e'i are mixed functions of pi and ei (p'i does not depend on pj or
ej (j 4 i), nor does e'i). Consequently, p'i is not a direct measure of proneness if
Pi is, and e'i is not a direct measure of exposure if ei is such a measure (in

Section 3.5 it will be shown that the Generalized Koomstra Model results from

certain more general assumptions that used in the Basic Koomstra Model).

However, the p'i's will be in the same rank order as the pi's. The variation in the

p'i's will be less than that in the pi's (see Reference 1 for fuller discussion of

these points).

Consequently, p'j and e'i will have the fortunate property that they assign the

accident variation more to exposure than to proneness variations. Thus, they

lead to conservative estimates of difference! in accident rates (providing of

course that ej is true exposure).

The Generalized Koomstra Model can not be applied to data to estimate Pi and

ei. It is introduced for the purpose of deriving the Basic Koomstra Model, and

even more importantly, for providing the basis for analyzing the results of

10



applying the Basic Koomstra Model. The key point to keep in mind is that if

1 it is not possible to separate proneness from exposure even if the data are

governed by a Generalized Koomstra ModeL

2.3 ASSUMPTIONS NEEDED TO DERIVE THE KOORNSTRA MODEL

The aim of this section is to present two sets of assumptions sufficient to derive

the Basic Koomstra Model, show that the model can be derived from the

assumptions, and discuss the significance of the assumptions and what

circumstances can affect their validity.*

The derivation and the assumptions needed focus on what will be called "accident

situations" (or "situations" for short), each involving two drivers. The

specificaton of a situation requires a specification of a point in space and time

and a scenario. Thus, a situation encompasses a particular time on a particular

day, a particular spot on a particular road and a particular traffic pattern

(especially as regards the two vehicles driven by the two drivers to which the

situation refers). It is in the nature of these situations that no accident ever

occurs except in conjuction with one of these (conceptual) situations.** The

situation does not include a specification of the two drivers (or vehicles)

involved.

The expected number of accidents between two specific drivers (say driver k and

driver j) is equal to the sum of the expected number in each situation. Since a

situation is a brief occurrence, only one accident can occur and the expected

number of accidents in a given situation is equal to the probability of an

accident. The result is that the expected number of accidents (between drivers k

and j) is the sum over all situations of the probabilities of an accident between k
and j in that situation.

♦The assumptions and derivations given here are quite different from those in
the original Koomstra paper and in the very similar treatment by Wass.
However, the assumptions given here are sufficient to derive the model and are
substantially easier to interpret than Koomstra's assumptions.

**In this sense, the concept involved is somewhat similar to that of "conflict"
which is sometimes invoked in accident analysis.

11



The probability that a collision will occur between drivers k and j in the situation

s will be denoted by Pr(CkjS|k,j,s). Here Ckjs symbolically represents a collision
between k and j in situation s. The accident can occur only if drivers k and j are

<

present at situation s. This event will be donoted by Ekjs. Then by the rules of
conditional probability

prfckjs | k,j,s) =PKCkjs/ E^s, k.J.s) Pr (E^s Ik,j,s)
The Koomstra model is derived by making simplifying assumptions about these

factors: The first assumption deals with the factor Pr(EkjsJk,j,s,):
Assumption 1:

pf<Ekjs/k,j>s,) =rsekej

This assumption can also be stated*

Pr<Ekjs 1k'j's) =*js ek
The previous expression follows immediately from the fact that the same form

for the expression must hold when k and j are interchanged.

In words, the practical content of Assumption 1 can be expressed as follows:

"The exposure of each driver is distributed the same as all other drivers

over space and time and encounters with other drivers."

Equal distribution of exposure over space and time simply means that the

probability of a given driver's being present in a given situation is proportional

only to his overall exposure (proportional to ek for driver k), and that the

proportion is the same for all drivers! Violation of this assumption is called
incomplete mixing** because some drivers must have more of their driving in a

situation than other drivers. Equal distribution of drivers over encounters with

other drivers would follow from equal distribution over space and time were it

not for the effect of different speeds on the highways. In Appendix ^~? the
effects of differential speeds on numbers of encounters between vehicles is

discussed. This is a very complicated matter and will not be discussed in detail

in the text.

♦Note that rs and gjs are arbitrary functions of their subscripts. The assertion
concerns how the probability depends on s, j, and k.

**A term introduced by Haight in Reference 7? .
12



The next assumption deals with the other factor, Pr(Ckjs Ekjs, k,j,s). There are
two possibilities for the second assumption each of which is sufficient to derive

the Koomstra model (when taken in conjunction with Assumption 1). Both will

be considered because neither can be derived from the other and each might- be

expected to be approximately true in certain circumstances:

Assumption 2a:

Pr(Ckjs (Ekjs, k,j,s) =Pks +Pjs
In words:

"The probability of an accident given that drivers k and j are present in

situation s is equal to the sum of two terms each depending on the situation

and one driver only."

What is seriously missing here is a product term of the form qks qjs* The product
term would arise if one calculated the probability of an accident occurring due

to actions on the part of both drivers.

The alternate assumptions is not missing the cross product term (it however,

requires other restrictive conditions):

Assumption 2bl:

PrfCkjsfckjs. k»J,s) =(aspk +bspj +cspjPk +ds)

Assumption 2b2:

For each s there is an s' such that*

PKCkjs) =Pr(Cjks.)

Assumption 2bl and 2b2 together with assumption 1 allow the Generalized

Koomstra model to be derived.

A further assumption now allows the Basic Koomstra Model to be derived from

the Generalized Koomstra modeL

The derivation of the Basic Koomstra Model from assumptions 1 and 2a and the

derivation of the Generalized Koomstra model from assumptions 1 and 2b are

♦For every situation the reverse situation occurs with equal frequency.

13



quite simple and given in the subsection following this one. No further

assumptions are required; the procedure is strictly mathematical.

Assumption 2a can be stated in words approximately as follows;

"Accidents are essentially the result of fault by one party or the other, or

neither, but not the fault of both."

This is meant to say that an unsafe action is required at most on the part of one

driver.

This assumption is not absolutely required since assumption 2b can be

substituted. It says in effect 'There is a proneness for each driver, constant over

situations, such that the accident probability is always linear in this proneness."

A weaker statement that probably contains the essential requirements is: "If one

of two drivers is safer (has lower proneness) in one situation, then that driver is

safer in any other situation." Since 2b yields only the Generalized Koomstra

Model another assumption is needed with 2b to yield the Basic Koomstra ModeL

It was explained in Reference 1 that the Generalized Koomstra Model

xkj =Xkj =(Pi +Pj +*PiPj +£) eiej
can be transformed into a Basic Koomstra Model

Xij =(p'i +p'j)e'je'j
if oty3.5l. The proneness and exposure values are mixed; however, the proneness
values do not change their rankings and the estimated proneness values show less

variation than the true proneness values. In this sense applying the Basic

Koomstra Model leads to conservative estimates. The key extra assumption is:

2b3: 0^3 <1
In words this could be expressed roughly:

"Two-Car accidents are usually and to a large degree caused by overriding

fault of one driver rather than of both drivers (or neither)."

This is clearly very similar to assumption 2a but is weaker.

14



In summary the key assumptions involved in 2a and 2b are (in words)

i) "Accident fault is primarily a single driver phenomenom and to a

large extent does not require unsafe moves on the part of both

drivers."

ii) "Relative driving safety (as measured by proneness) is largely

constant across two-car accident situations."

Clearly all the assumptions mentioned in this section can be violated to some

degree. The key question is not whether they are absolutely valid but whether

they hold to the degree needed to make the Basic Koomstra Model useful for

estimating exposure from accident involvement matrices.

It is suggested that Assumption 1 is the most critical for the validity of the

Koomstra modeL Some more will be said about this in Section 3.6.

This section is ended with examples of how the assumptions are violated:

Assumption 1: This assumption is violated when certain driver groups get

a larger percentage of their exposure at certain times (e.g., nighttime)

than other groups or when certain groups of drivers do more of their

driving on certain types of roads (e.g., rural roads) than other groups of

drivers.

The degree to which this assumption holds can always be improved by

stratifying the data (for example to only daytime accidents)..

Differences in speeds between driver groups can also violate this

assumption as mentioned earlier and discussed in Appendix *••'-'-? in more
detail.

Assumption 2a: This assumption is violated for accidents which occur only

due to mistakes on the parts of both drivers e.g., one driver goes through a

stop sign without stopping and another driver collides with him due to

inattentiveness (i.e., avoidably).

15



Assumption 2b: There is very good evidence that older drivers are

relatively safe drivers in certain single car accident situations but

relatively unsafe in certain two car accident situations. This would suggest
that a reversal in proneness rankings is possible within two car accident

context. For example an older driver may be less likely than a younger
driver to stray into the oncoming traffic lane but may be less skillful in
avoiding another driver who strays into his lane.

2.4 DERIVATION OF THE KOORNSTRA AND GENERALIZED KOORNSTRA

MODELS FROM GIVEN ASSUMPTIONS

The first derivation to be given in this section is of the Basic Koomstra Model

from assumptions 1 and 2a (see Section 3.4 for notation and preliminary
discussion). The expected number of accidents between drivers k and j is

Xkj =|Pr(Ckjs Jk,j,s) =|Pr(Ckjs /Ekjs, k,j,s) PKEkJ8 |k,j,s)

By assumption 1 an 2a this is
A

xkj =f(Pks +Pjs) ""s ek ej

=(Pk +Pj) ek ej

where

Pk=J»,sPks

Applying the aggregation Theorem (see Appendix A) the result is
A

Xy =(pi +pj)eiej
where now i and j refer classes of drivers instead of individual drivers,

ei =k£ ek and Pi =̂ pk ek /^ ek
i.e., ei is the sum of the exposures of the individual drivers in class i and pj is the
weighted average of proneness values for drivers in class i (with the weighting
based on exposure).

In order to apply the aggregation theorem to Xkj it is necessary to assume that

xkk =(Pk + Pktekek = 2pkek
while in reality it is impossible for an individual driver to collide with himself

16



and therefore Xkk = 0. Since, however, there are so many drivers in the total
population this introduces a negligible error into the estimate and so the

derivation of the Basic Koomstra Model from assumptions 1 and 2a is complete.

In a very similar manner the Generalized Koomstra Model can be derived from

assumption 1 and assumption 2b. In abbreviated form the derivation is as
follows:

/*

Xkj=IPr(Ckjs/k,j,s)

=LPr(CkjsiEkjs, k,j,s) PKEkjs>k,j,s)

=̂ (as pk +as pj +cspkPj +dg) rsejek

(since by 2b2, bs =as)

=C(pk +pj +«(PkPj +/9) ek ej

where C=!JLasrs
s

o( =£,cs rs

/3 =Xdsrs

The factor Ccan be incorporated into the ek's by letting ek =ek [5, ej =ej ^5" so
that

•\

xkj=<Pk +Pj +«<PkPj +0) «k ej
Now the aggregation theorem yields

xy =(Pi +Pj +<*PiPj +£) ei ej
where

ei = 2- et
1 kei K

and

Pi =.^-. Pk ek /, X; ek
K&-1 , kei

just as the previous case where the Basic Koomstra Model was derived for

assumptions 1 and 2a. This completes the derivation of the Generalized

Koomstra Model from Assumption 1 and 2b.

17



3.0 AN APPROACH TO TESTING AND APPLYING THE KOORNSTRA MODEL

This section describes a two-step technique to be used in applying and testing the

Koomstra modeL The focus of this section is on techniques for judging the

adequacy of the model which can be applied to the accident data alone, since

this is the situation in which most induced exposure models would be applied.

The techniques first examine the structure of the accident involvement matrix

using eigen value/eigen vector* analysis, and second examine the adequacy of

the fit in relation to a- simpler model which does not permit exposure and

proneness to be separated. Unless the Koomstra Model fits better than this

simple model, it cannot provide information on exposure and proneness.

The first technique to be applied is an eigen value/eigen vector analysis of the

accident involvement matrix. This is an exploratory technique to determine if

the data suggest that the Basic Koomstra Model model fits.

To see how the eigen value/eigen vector analysis applied, first note that the

Generalized Koomstra Model,

Xy =(pi +Pj +<*PiPj *fi ) ei ej
is equivalent to

Xy=AiUiUj+X2ViVj
where U, V are orthonormal vectors (i.e.,"S,UiVi =0,^.Ui2 =1,$/^ =1)

Thus/ii and/2 are the only (non-zero) eigen values of Xy and IJ and V are its
eigen vectors. By choice /\ij /•//2/« Since Xy is positive /i>0. The critical
point is whether ^2 £"u 017^2^ °*

If /[ 2 "^ 0 then the model is equivalent to the Basic Koomstra Model (this
corresponds to ^< / in the Generalized Koomstra Model).

If^2 =° a simple multiplicative model holds e.g., Xy =ei ej or Xy =eiPi ejpj. In
this case no separate proneness and exposure quantities can be calculated for

each driver class.
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If \ 2 '> 0 then tne Generalized Koomstra Model does not reduce to the Basic
Koomstra Model. This is equivalent to o(p > 1 in the Generalized Koomstra
Model. It may suggest that Assumption 2 (of Sec. 2.4) does not hold and that

accidents in which both parties contribute fault are important. It may instead

(or in addition) suggest that the mechanism which produces a non-multiplicative

form for Xy is incomplete mixing (violation of Assumption 1) rather than
variable proneness.

To see how incomplete mixing leads to a positive second eigen value consider a

"mixed multiplicative" model. In a mixed multiplicative model all drivers have

the same proneness but their exposures are distributed differently over space and

time (in violation of assumption 1). For example let eik, e2k> ^3k be the

exposure of driver k in time periods 1, 2, 3. Then if all proneness are equal (say

each equals 1), the model

Xy =^-eri erj
results. It is straightforward to show that Xy in this case has only positive eigen
values. It may also have more than two non-zero eigen values.

In summary, if Xy has a positive second eigen value, a strong breakdown of
assumption 1 or assumption 2 or both is suggested. No application of the

Koomstra Model is possible, in this case.

The exploratory eigen value/eigen vector analysis proceeds as folows: Form the

eigen values of the matrix Xy. The largest eigen value (in absolute value), Ai>
will be positive. The second largest eigen value is *%,

1. Ifj,2-^.u then the Koomstra model is not appropriate to this data.

2. If ^2 < 0 then the Koomstra model may be applicable. The key
question is whether Ai is significantly less than zero. That question
is addressed at the next stage.

Finally (for the Koomstra model to hold) the other eigen values of Xy (} 3 ,^4 , .
. .) should all be considerably less in absolute value than \%. li) 3 is comparable
in magnitude toA2 and of opposite sign, there is evidence that the sign ofA2 *s
not statistically significant.^'s difference from zero is considered next. Thus,
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the eigen value analysis of Xy is primarily to determine the sign of^2 • If A2is
positive the procedure is ended because there is no prospect of applying the

Koomstra modeL If)2 isnegative, the analysis proceeds to the next step.

In this step the fit of the Basic Koomstra Model is compared to the fit of the

Simple Multiplicative Model. The Simple Multiplicative Model is Xy =pjejpiei.
In the Simple Multiplicative Model exposure cannot be separated from proneness.

So, if the Koomstra model does not fit significantly better then there is

inadequate information in the involvement matrix to estimate both proneness

and exposure. The Basic Koomstra Model

Xy =(pi +pj) ejej
is fit to the data (accident involvement matrix Xy) using a maximum likelihood
procedure. If a Poisson distribution for accident counts is assumed, then the log

likelihood was shown in Reference 5 to be:

L=l/2fc Xy log(Xy/Xy) -Xy +XjT)
excluding terms which do not involve Xfi (such terms may be ignored when

A a/^
maximizing over Xy). (This expression for L is chosen since L =0 if Xy = Xy,
otherwise L is negative). In Reference 5 it was also indicated how sampling

variances of the estimated parameters ek and Pk could be determined.

The next step after fitting the Basic Koomstra Model to the data is to compare

the quality of fit to that of the Simple Multiplicative Model:

Xy^j=WiWj
where a maximum likelihood (Poisson) estimate of Wj can be chosen simply as

The X2 value:

l/2£<Xy-Xij)2/2y
mputed f

Model modeL

is computed for both the Basic Koomstra Model and the Simple Multiplicative

The number of degrees of freedom (independent parameters) in the Basic

Koomstra Model for N classes of drivers is 2N - 1 (the -1 term is there because

an arbitrary constant can multiply all the Pk's and divide all the ek's). The

number of independent parameters in the Simple Multiplicative Model is N. The
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number of independent data cells is.(l + 2 ... + N) = N(N + l)/2. The residual

degrees of freedom when fitting the Koomstra model is thus N(N+l)/2 - (2 N-1).

When fitting the Simple Multiplicative Model it is N(N+l)/2 -N. The difference

is N-l. The amount by which the X2 statistic is smaller for the Basic Koomstra

Model than for the Simple Multiplicative Model is compared to the difference in

degrees of freedom, (N-1). The difference in X2 is referred to a

standard X2 (chi square) table with degrees of freedom equal to N-1. If the
difference in X2 is not significantly large for the given difference in degrees of
freedom, it is concluded that the Basic Koomstra Model does not fit significantly

better than the Simple Multiplicative ModeL If the X2 difference is significant
then the Basic Koomstra Model does fit significantly better than the Simple

Multiplicative ModeL

In this case the chi square value for the Basic Koomstra Model should also be

referred to its residual degrees of freedom N(N+l)/2 - (2N-1) to see if the overall

fit is satisfactory. If the overall chi square is not significantly large for the

degrees of freedom, the fit is good. However, if the chi square value is

singificantly large, there is evidence that the fit is poor.

Regarding the process of fitting the Basic Koomstra Model to the data by

maximizing the Poisson likelihood, two further points should be raised here:

( The first concerns the situation in which the second eigen value is negative
but the Basic Koomstra Model does not fit significantly better than the

Simple Multiplicative ModeL This might be due to an insufficiently large

sample size in conjunction with proneness values which do not vary much

between driver classes. Another and perhaps more likely explanation is

that incomplete mixing cancels out proneness. Specifically, the following
combination of conditions can arise: Even though the Basic Koomstra

Model holds on separate strata (of time and/or space) and proneness varies

substantially among driver groups, the different exposure distributions over

the strata result in an accident involvement matrix best fit by a simple
multiplicative modeL In this case, proneness and exposure values cannot

be disentangled by an analysis of the accident involvement matrix and a
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larger sample size will not help (except if it permits more appropriate

strata of accident situations).

The second point concerns the case where the second eigen value of the

accident involvment matrix is positive. In this case, what happens when a

maximum likelihood fit of the Basic Koomstra Model is obtained, which

entails a negative second eigen value? As might be expected, the model

degenerates into the Simple Multiplicative Model, with its zero second

eigen value.
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4.0 EMPIRICAL TESTING

Because of an ongoing study in Ulster County, New York which involved the

direct collection of exposure (quantity of driving) data categorized by age, sex

and other variables and because accident data were also available for Ulster

County, it was decided to test the Koomstra and Thorpe models on the Ulster

County accident data. This test is described in Section 4.1 below.

The data to be used consists of all accidents in the New York State accident file

)' /'" pertaining to Ulster County during the study period.
o

f -' Since the^UIster County, accident data contained relatively few observations
•• — "^ub "JLf'nu- i-iiuX"*' •<.(
. v„ (approximately^ Tl, -6 testof the Koomstra Model on a large accident data

.r ;•> base for 1980 and 1981 was selected. The analysis of the performance of the

Koomstra Model on these data is presented in Section 4.2.

4.1 ULSTER COUNTY TEST

The Thorpe model and the related one- and two-car Koomstra Models are tested

on the Ulster County data first. Then the more important test of the Basic

Koomstra Model is presented.

4.1.1 THE THORPE MODEL AND THE ONE- AND TWO-CAR KOORNSTRA

MODEL APPLIED TO THE ULSTER COUNTY DATA

The data used in all the Ulster County tests in this report are shown in Tables

4-1 and 4-2. Table 4-1 shows the accident involvement matrix for two car

collisions where both cars had drivers. The driver classes are age by sex with 3

age categories: 16-24, 25-50, and 51 and up. Table 4-2 shows a breakdown of

single car accidents including the case of striking a parked car.

The Thorpe Model is applied first and the resulting relative exposure estimates

(normalized to class 2, males 25-50, having an estimate of 1.00) are shown in

Table 4-3. A corresponding proneness measure is obtained by dividing single car
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accidents by estimated esposure and as will be done repeatedly in this report

normalizing to an estimate of 1.00 for males 25-50. The results are also shown

in Table 4-3.

It is suggested that overall these exposure and proneness values do not accord

very well with intuition. For example, in the exposure estimates, young females

are estimated to have twice the exposure of young males.

The next model to be .applied is the One- and Two-car Koomstra ModeL

Proneness and exposure estimates are given in Table 4-4. ♦ Again, it is suggested

that the estimates do not accord overall very well with intuition. In fact, the

exposure estimates (except for the first category - male under 25) agree rather

well with those of the Thorpe ModeL Since the Thorpe model bases proneness on

single car accidents, it is not expected that the proneness values should agree.♦♦

The agreement of the exposure values suggests that the One- and Two-car

Koomstra model is dominated by the comparison between one- and two-car

accidents on which the Thorpe model is based. It appears that the One- and

Two-car Koomstra model is subject to the same criticisms as the Thorpe modeL

The chi square value and the corresponding degrees of freedom shown in

Table 4-4 show that there is a very significant lack of fit. This is due largely to

the lack of agreement between the One- and Two-car aspects of the model as

will be seen when the Basic Koomstra Model (i.e. the Two-car only model) is

discussed.

In agreement with Koomstra's observation, it is concluded that the One- and

Two-car Koomstra model does not fit the data very well.

♦Both Maximum likelihood and least squares estimates are given (See Reference
5 for calculation procedures) to demonstrate the close agreement of the two
estimates.

♦♦Prior studies have shown that proneness is different for single and multiple
car accidents, at least for older drivers.
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4.1.2 THE BASIC KOORNSTRA MODEL APPLIED TO THE ULSTER COUNTY

DATA

Proneness and Exposure Estimates

The results of applying the Basic Koomstra Model (i.e. the Two-car only model)

to the aggregate Ulster County data are summarized in Table 4-5. The analysis

of this case and disaggregations of it are the primary aim of.this section.

The exposures and pronenesses as shown in Table 4-5 probably agree slightly

better with intuition than those obtained for the Thorpe and One- and Two-car

Koomstra Models. However, they do not appear to be entirely satisfactory. For

example, females 25 to 50 have a much higher proneness than older or younger

females.

The analysis of the Ulster -County data leads to the conclusion that the Thorpe

and Koomstra Models cannot be properly applied to this data. The Thorpe

Models and One- and Two-car Koomstra Models have been rejected as leading to

unreasonable estimates (the One- and Two-car Koomstra Model also had a very

significant lack of fit).

Analysis of the Fit of the Basic Koomstra Model

Although there are moderately large counts in the cells of the accident matrix, a

closer examination of the data suggests that the sample was not large enough to

adequately test the two-car collsion model. This appears to be due to the rather

subtle dependence of the proneness estimates on the accident matrix.

Consider the simple multiplicative model Xy =Wi Wj. This model could arise if
all the proneness values in the two-car model were equal (they could then all be

set equal to 1/2) so that Xy =ei ej. It could also arise from a variant of the
generalized two-car model Xy = pi ei pj ej. In the latter case pj ei cannot be
separated into a proneness pj and an exposure e^ In any case, if the simple

multiplicative model is postulated to hold, then no proneness estimates which
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vary by driver class are possible. The simple multiplicative model is easily fit to

the data as noted in Section 3.6.

The expression for X2 ("chi square") is also given in Section 3.6. For the data in
Table 4.1, X2 = 13.7 for the Simple Multiplicative ModeL The degrees of

freedom (i.e. independent parameters) in the model are six. There are 21

degrees of freedom in the data. The Basic Koomstra model has 5 more degrees

of freedom (i.e. 5 more independent parameters) than the simple multiplicative

model (i.e. 11-6) but reduces the chi square value only by 3.7 (i.e. 13.7 - 10.02).

The change in chi square 3.7, can be referred to a chi square table with the

appropriate degrees of freedom, five. The decrease in chi square is completely

insignificant.

This means that the Basic Koomstra Model does not describe the data

significantly better than the Simple Multiplicative ModeL It can be concluded

that the Basic Koomstra Model cannot be properly applied to this data at this

level of aggregation^. This conclusion is also reached by examining the standard

errors of the proneness values estimated in the Basic Koomstra Model. These

standard errors are estimated in Appendix B.

To summarize the evidence'for the fit of the Basic Koomstra Model to the

aggregate accident involvement matrix the observed facts are these:

1. The X2 of the Basic Koomstra Model is 10.0 for 11 degrees of

freedom - certainly no evidence here of lack of fit.

2. However, the Simple Multiplicative Model has a X2 of 13.7 with 15
degrees of freedom so it does ot fit significantly worse and so is to be

preferred as the simpler model.

♦It may be noticed that the chi square goodness of fit statistic .for the Basic
Koomstra Model, 10.02 shows no lack of fit for 11 degrees of freedom. The
point is that the simple multiplicative model with much fewer degrees of
freedom shows no lack of fit and does not fit significantly worse than the Basic
Koomstra ModeL
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3. - The conclusion that the Basic Koomstra Model does not fit enough

better than the Simple Multiplicative Model to allow for separation

of exposure and proneness values is confirmed by the large standard

errors calculated for the proneness and exposure estimates.

The Basic Koomstra Model has lead to unstable' estimates of proneness and

exposure. The possibility that the Basic Koomstra Model would lead to stable

estimates when applied to a data set containing many more accidents may still

be considered. That possibility lead'to the analysis of the North Carolina data in

Section 4.5.

Although a larger sample size is necessary to see if the Basic Koomstra Model

does or does not fit better than the Simple Multiplicative Model in this situation,

it is possible that a combination of variable proneness and incomplete mixing is

at work leading to a cancellation of the tendency for a negative second eigen

value due to variable proneness by a tendency for a positive second eigen value

due to incomplete mixing, and hence leading to the neutral condition of the

second eigen value being not significantly different from zero.

To test for the presence of this effect, a stratification of the data was

performed in an attempt to eliminate the incomplete mixing through the choice

of space/time intervals where the driver exposure to situations is proportional to

total driving within the strata. Several stratifications of the data by time and

roadway category were considered. Five different space/time strata were

selected as likely to alleviate the incomplete mixing problem. These strata were

as follows:

1. All accidents on State Highways

2. All accidents except those which happened late at night (8 p.m. to 5

a.m.).

3. All accidents in the jurisdiction of the Town of Kingston.
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4. All accidents outside of Kingston.

5. All accidents during morningor evening rush hours.

The accident involvement matrix was computed for each of these strata. The
resulting X2 values for the Basic Koomstra Model and the Simple Multiplicative
Model in each case are given in Table 4-6. In each case, except rush hour
accidents, the Basic Koomstra Model did not fit significantly better than the
Simple Multiplicative ModeL In the ease of rush hour accidents, the X2
difference was 10.1 (5 degrees of freedom). This is significant at the .1 level but
not at the .05 leveL Furthermore, the probability of getting a X2 larger than
10.1 with 5 degrees of freedom once in 5 independent tries is .3. This suggests
that this result is not significant. Also, as expected, there were high standard
errors on the exposure and proneness estimates. Consequently, it is concluded

that the separate analysis of the five strata does not change the conclusion that
the accident matrix cannot produce estimates of proneness and exposure in
Ulster County.

The Basic Koomstra Model did not fit significantly better than the Simple
Multiplicative Model even when the accident involvements were stratified into

time/location strata which eliminate asome of the incomplete mixing problems.
A larger sample size might change that result and that possibility will be
addressed in Section 4.5 by analyzing the larger North Carolina data set. It is
also possible that the failure in the Ulster test is due largely to remaining
incomplete mixing. ♦

♦More specifically, variable proneness could be present, but not show up reliably
in the model because of incomplete mixing. The tendency for a negative second
eigen value due to variable proneness could be countered by a tendency for a
positive second eigen value due to incomplete mixing. This could lead to a
second eigen value not significantly different from zero.
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Table 4-1 Two Car Accident Involvements (Ulster County)

DRIVER

GROUP 16-24

Male:

16-24 72

25-50
51+

Female:

16-24

25-50

51+

MALE

25-50 51+ 16-24

FEMALE

25-50 51

91

88

53

70

42

50

50

32

71

90

43

26

34

28

38 45

62

25

34

28
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Table 4-2 Single Car Accidents (Ulster County)

MALES: ' FEMALES:

16-24 25-50 51+ 16-24 25-50 51+

297 228 74 113 104 49
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Table 4-3 Thorpe Model Proneness and Exposure
Estimates on Ulster County Data

Exposure Proneness

Male:

16-24

25-50

51+

.28

1.00

1.04

4.65

1.00

.31

Female:

16-24
25-50

51+

.66

1.28

.67

.75

.36

.32
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Table 4-4 One- and Two-Car Koonstra Model
On Ulster County Data

MAXIMUM LIKELIHOOD

exposure proneness

M16-24
25-50

50+

.555

1.000

.977

2.148

1.000

.358

F16-24

25-50
50+

.655

1.239
.557

.762

.384

.470

X2 = 30.26
G2 = 29.23

DF = 15
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Table 4-5 Basic Koonstra Model:
Ulster County Test Two-Car Accidents

>1- 326. 3

Til- -23. 6

>3 = 18.,5

>4 = 11, 5

>5 = 8.,1

\f 5..3

exposure (ei)

.603

1.000

.335

.431

.409

.342

proneness (pj)

M16-24 .603 2.356

25-50 1.000 1.000
51+ .335 3.860

F16-24 .431 2.014
25-50 .409 4.175
51+ .342 1.674

(All estimates normalized to M25-50 = 1)

Basic Koonstra Model:

X2 = 10.02 G2 = 9.57 .DF = 10

Simple Multiplicative Model:

X2 = 13.71 DF = 15
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Table 4-6 Chi Square Values for the Simple
Multiplicative and Basic Koomstra Models

MODEL

STRATUM
SIMPLE
MULTIPLICATIVE

BASIC
KOORNSTRA

1. State Highway 14.76 10.50

2. No Late Night 15.88 11.07

3. Kingston 12.68 11.73

4. Not Kingston 12.86 7.97

5. Rush Hour 15.00 4.87

34



4.1.3 COMPARISON OF DIRECT EXPOSURE ESTIMATES WITH INDUCED

EXPOSURE ESTIMATES ON ULSTER COUNTY DATA

As noted at the beginning of this section, one reason for selecting Ulster County

as the source of data to test induced exposure models was the fact that direct

exposure data was to be obtained by roadside observation. When this data had

been collected, it was not deemed entirely satisfactory for these purposes since

its accuracy, when broken down by age and sex, was in doubt. In view of the fact

that the induced exposure models did not produce acceptable exposure estimates,

the adequacy of the direct exposure data was not of much importance for

determining the adequacy of induced exposure models. Disagreement or even

agreement of the separate exposure estimates could be due to inaccuracy in

either or in both. Nevertheless, since the direct exposure data was available, a

comparison could be made fairly easily and is reported in this section. The

conclusion, as expected, is that the induced exposure and direct exposure show

an unsatisfactorily low degree of correlation.

Hans Joksch of the Center for Environment and Man (CEM) has communicated to

TSC some Ulster County exposure estimates obtained by direct roadside

observations. Dr. Joksch has cautioned that the data may not be accurate

enough for some purposes, especially as regards any age breakdown. Keeping in
mind the possibility that disagreement (or even agreement) of the direct

exposure estimates obtained from CEM with induced exposure estimates may be

due to inaccuracies in either, a comparison is nevertheless reported.

The Ulster County direct exposure estimates are of two kinds: "segment VMT"
and "intersection VMT." For the purposes of comparing with induced exposure
estimates, they may both be considered to be estimates of total VMT which when

converted to relative estimates are comparable to the induced exposure
estimates.
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Segment and intersection VMT estimates are shown in Table 4.8 (no late night)*

and Table 4.9 (total day and night).* These are shown as relative exposure

estimates in Table 4.10 (no late night) and Table 4.11 (total.day and night). The

corresponding induced exposure estimates using the Basic Koomstra Model are

also shown for comparison in Tables 4.10 and 4.11. Relative estimates are

normalized to 1.0 for males in the middle age group).

It may be seen that the induced exposure estimates do not agree very well with

either the "segment" or the "intersection" estimates. Although the agreement

could have been worse, where there is agreement, it could be due to the fact

that accidents (on which induced exposure is based) increase in general with
exposure.♦♦

The accident rate estimates derived from the exposure estimates divide out that

effect and therefore offer a more decisive comparison. Table 4.12 shows the

relative (two car) accident involvement rates based on each of the three

exposure estimates in Table 4.11 (total day and night). The accident rate in each

case is proportional to the number of two-car accident involvements divided by

the corresponding exposure. The accident rates are then normalized so that the

rate for males in the middle age range is 1.0. It may be observed that the

relative accident rates derived from the direct exposure estimates do not agree

or even correlate well with those derived from the induced exposure (Basic
Koomstra Model).

♦The CEM time periods were 7-19 and 19-23. Consequently "no late night," in
reference to the CEM data, refers to 7-19, while total refers to 7-23. In the
case of the accident (induced exposure) data "no late night" means 6-19 while
total means all times. These are not very different except for the exclusion of
23-7 in the CEM data.

♦♦It should be noted that accidents always show some correlation with exposure
and in this sense, pure accident data is "induced exposure". However, it is
entirely unsatisfactory for the analytic purposes for which exposure is intended.
For that a much higher degree of correlation with direct exposure is needed.
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It should also be pointed out that the direct exposure estimated accident rates

contradict (to the extent they are accurate) the Thorpe hypothesis. The accident

rates derived from the direct exposure estimates are largest for the oldest age

groups and smallest for the youngest age groups. Therefore although these data do

not confirm the Basic Koomstra model they seem much more severely negative in

relation to the Thorpe Model or the One and Two Car Koomstra Models (which

showed, as expected, much higher proneness values for younger drivers than for

older).

However, it must be kept in mind that the accuracy of the direct exposure data

with respect to age is in question. Hans Joksch indicated that 25 years and 50*

years had been intended as the breakpoints for the age groups but feels that both

the actual breakpoints were higher.

In general these data do not contradict the main findings of the study of induced

exposure models on the Ulster County data, namely that the data do not support

the Koomstra model but have an insufficient sample size to conclusively invalidate

the modeL

4.2 NORTH CAROLINA ANALYSIS

The Ulster County data was inconclusive on the usefulness of the Koomstra Model

because of insufficient sample size. As far as they went, the conclusions were

negative. In order to see whether a larger sample size offered a chance for a more

favorable test of the Koomstra Model, a large accident data set would be useful.

Such data was readily available from the University of North Carolina's Highway
Safety Research Center.

♦25 and 51 are the breakpoints for the accident data.
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Table 4.8

NO LATE NIGHT

SEGMENT INTERSECTION

MALE

Young 41853 25860

Middle 51821 33824

Old 8338 11775

FEMALE

Young 25970 18931

Middle 28466 21492

Old 5052 6017

(for VMT multiply by 1000)
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Table 4.9

TOTAL EXPOSURE

SEGMENT

MALE

Young 42435

Middle 52286

Old 8394

FEMALE

Young 26221

Middle 28577

Old 5066

INTERSECTION

32580

36421

12851

23248

23205

6717

(for VMT Multiply by 1000)
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Table 4.10

RELATIVE EXPOSURE - NO LATE NIGHT

SEGMENT .INTERVAL- . - BASIC KOORNSTRA

MALE

Young .808

Middle 1.000

Old .161

FEMALE

Young .501

Middle .549

Old .097

.765

1.000

.348

.560

.635

.178

Table 4.11

.585

1.000

.358

.435

.449

.395

RELATIVE EXPOSURE - TOTAL

•• y• -<*•' /.: •••• • • : :
' • * * i

SEGMENT INTERVAL^ BASIC KOORNSTRA

MALE

Young .812 .895 .603

Middle 1.000 1.000 1.000

Old .161 .353 .335

FEMALE

Young .501 .638 .431

Middle .547 .637 .409

Old .097 .184 .342
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Table 4.12

ACCIDENT RATES (TWO CAR) - TOTAL

SEGMENT

MALE

Young 1.057

Middle 1.000

Old 3.940

FEMALE

Young 1.133

Middle 1.489

Old 4.270

INTERVAL-

.959

1.000

1.797

.890

1.279

2.251
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1.424

1.000

1.894

1.317

1.992
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They supplied information on all two-car accidents occuring in the. State of

North Carolina during 1980 and 1981 (over 100,000 such accidents in all). A

table of two car accident involvements was constructed using the age-sex

categories shown in Table 4.13. Besides the table representing all two-car

accidents, tables representing various stratifications by time and highway, were

supplied by HSRC at TSC's request. The stratification categories involved are

shown in Table 4.14. There are 24 strata representing four locations by six time

periods. This represents a much finer degree pf stratificatm than was attempted

with the Ulster County data. It represents a rather fine stratification consistent

with the requirement of a goodly sample size in each segment for statistical

significance.

When the Basic Koomstra Model was fit to the overall table of two-car

involvements, it was found that the maximum likelihood fit was identical to the

Simple Multiplicative ModeL In other words, the maximum likelihood Koomstra

Model degenerated into the special case where all proneness values are

equal - the Simple Multiplicative ModeL This phenomenon was not surprising

since the second eigenvalue ( 2) was positive. In Section 3.6, it was noted that

the degenerate maximum likelihood solution might be expected when 2 is

positive. It was expected on the basis of the Ulster County experience that the

unstratified accident involvement matrix would lead to a Koomstra Model not

significantly different from the Simple Multiplicative ModeL

As a consequence of negative results of the test of the Koomstra Model on the

full unstratified accident involvement matrix, the accident involvement matrices

for the stratifications by the categories shown in Table 4.14 were considered.

There were 24 such matricjes and many of them contained empty cells. Since
there were ten matrices which did not contain any empty cells, it was decided to

base the remainder of the tests on these ten accident involvement matrices.

These ten cases are represented in Table 4.15. The first column in that table

indicates the case. The second column, the chi square value corresponding to the
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Basic Koomstra Model, and the third column, the chi square value corresponding

to the Simple Multiplicative ModeL

The fourth column shows the difference in chi square values. In each case, this

should be referred to 10 degrees of freedom. The largest chi square (change)

value is 13.3. A value larger than 13.3 occurring from a chi square distribution

with 10 degrees of freedom has a probability of over .2. The probability of the

largest of 10 values with chi square distributions with 10 degrees of freedom

being greater than 13.3 .is obviously much larger (greater than .9 if they are

independent). Consequently the reduction in chi square from using the Basic

Koomstra Model over the Simple Multiplicative Model is completely

insignificant. There is not even a small indication that the Basic Koomstra

Model fits better. It is concluded that the Basic Koomstra Model does not

appear to provide an appropriate framework for analyzing the North Carolina

data. Although different stratifications for the/driver vehicle groups and of the
overall data could have been tried, the negattuve results in all eleven cases (one

overall, ten subsets) tried suggest that the model cannot be relied on te-giver

exposure estimates.
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AGE

16-20

21-25

26-45

46-65

65+

Table 4.13

TEN AGE-SEX GROUPS

SEX
MALE FEMALE

1 2

3 4
5 6

.7 8
9 10
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Table 4.14

TIME-LOCATION STRATA

Time Strata (time of day - day of week)

FRI SAT SUN MON TUE WED THR FRI

6 a.m.

to
• 6 6

9 a.m.

to 6 6

3:30 p.m.

to
6 6

6:30 p.m.

to
5 5 4

9:30 p.m.

to
5 5 3

6:00 a.m.

1111

2 2 2 2

4 4 4

3 3 3

Location Strata (highway type)

divided undivided
Urban 1 2
Rural 3 4
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Table 4.15

COMPARISON OF BASIC KOORNSTRA MODEL WITH SIMPLE
MULTIPLICATIVE MODEL ON STRATA OF NORTH CAROLINA

ACCIDENT DATA

Chi Square Chi Square
for Basic for Simple
Koomstra Multiplicative Difference
Model Model in Chi Square

UD1# 44.64 54.24 10.40
UD2 47.72 56.16 8.74
UD6 31.32 37.73 6.41
UNI 109.72 118.09 8.37
UN2 53.39 60.96 7.57
UN5 86.67 94.63 7.96
UN6 49.00 59.79 10.79
RN1 43.63 53.30 9.67
RN2 44.71 57.11 12.40
RN6 44.01 57.31 13.30

♦U= urban, R= rural, D= divided highway, N= non-divided highway, 1, 2,...,6= time
periods (as defined in Table 2, e.g. UD1= urban, divided highway during time period 1)
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5.0 CONCLUSIONS

The Ulster Couty accident data did not support the Basic Koomstra Model. This

conclusion is based primarily on the fact that the Basic Koomstra Model did not

fit the data signifcantly better than the Simple Multiplicative ModeL Consistent

with this, the comparison of proneness estimates was largely meaningless
because of high standard errors in ratios of proneness estimates. When the data

were disaggregated spatially and temporally, the problem remained i.e., the

Basic Koornstra Model still did not fit significantly better than the Simple

Multiplicative ModeL

Although this test was negative on the applicability of the Basic Koomstra Model

it was decided that a larger data set would allow a more conclusive test. The

North Carolina data provided this test. The North Carolina data represented

over 100,000 accidents (vs. 907 for the Ulster County data). The aggregate data

showed no evidence that the Basic Koomstra Model fit better than the Simple

Multiplicative Model and the data disaggregated by four highway classes and six

time periods showed no evidence in support of the Basic Koornstra ModeL It

must be concluded that the Basic Koornstra Model is not appropriate for the

North Carolina data at least for the driver categories and disaggregation

categories tested.

The Thorpe and One- and Two-Car Koornstra Models were also considered but

were given a much briefer treatment on account of previous evidence leading to

the conclusion that they have less potential for validity than the Basic Koornstra

ModeL The evidence given here supports that conclusion.

It is concluded that in all probability, the Koornstra type and Thorpe type

induced exposure models are not suitable for deriving driving exposure from

highway accident data. It appears that these models give grossly inaccurate,

unreliable and/or inconsistent results.
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Appendix A

The Aggregation Theorem for Koorastra-Type Models

Let there be M classes of drivers labelled 1, . . . ., M and let the accident

involvement matrix between these driver classes be described by a Generalized

Koornstra Model:

xkjs (Pk +Pj +^ PkPj -y3) ek ej k,j =1..., M

If these classes are aggregated into a new set of classes K, J etc., then the new

accident involvement matrix is given by:

Xrj =I C Xkj
kcK j<J

Here the notation kcK means that the aggregate class K contains the drivers

in the class labelled by k. Of course only one aggregated class contains drivers

in the class labelled by k.

The above expression for Xrj results from the fact that Xrj stands for the

number of involvements of drivers in class K in collisions with drivers in class J.

To simplify the derivation let tk = Pkek then

xkj =tkej +ektj +ai tktj +f ekej

Then

XKJ =Z ^L xkj = X 2Xtkej +ektj +̂ tktj +/? ekej)
kcK jcj kcK jcj '

TKEj + EKTj + c< TKTj + /J EKEj

Where

EK= 2L ek
koK

48



and

TK= £ tk= ^ Pkek
k«=K k^K

consequently

XKJ =(PK +Pj +«< PKPj +p )EK Ej

where

PK = TK/EK

Note that in particular the driver classes labelled by k could be individual

drivers. In this case, Xkj would represent the expected number of collisions
between drivers k and \* in the time period (consequently Xgj represents the

expected number of involvements of members of class K with members of class

J). Since the expected number of collisions between two specific drivers is very

low, Xkj also would represent the probability of a collision in that case (as noted
in Section 3.5 )(kk = 0 but that presents no problem since only a negligible X/a-^
fraction of a driver's collisions are with a specific other driver, in any case).

Note that the aggregation theorem as derived for the Generalized Koornstra

Model specializes to the Basic Koornstra Model by taking^ = A =0.

♦Since k now represents a single driver rather than a class of drivers, in keeping
with standard notation, in this case,' one replaces "kcK" by "keK" in e.g. the
definition of eg.
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Appendix B

Variance Estimates for Comparisons of Exposure and Proneness Estimates

In Section 4.1, it is concluded that the Basic Koonstra Model does not describe

the data significantly better than the Simple Multiplicative Model for the Ulster

County Data. This means that the sample size was too small for an adequate

test of the Basic Koonstra ModeL

The same conclusion can be reached when the standard errors in the parameters

of the Basic Koornstra Model are calculated. It is not to be expected that the

standard errors in the exposure estimate are exceedingly large but is is to be

expected that comparisons of proneness values are invalidated by large standard

errors in these comparisons.

Standard errors in model parameters for the Basic Koomstra Model can be

calculated from the Fisher information matrix. The calculation (as described in

Reference 5) is based on the assumptions of model validity, and large sample size

which are themselves in question. However, they provide the only estimates

available and if they indicate large errors, the errors in the parameters are

almost certainly correspondingly large. These variances and covariances in

model parameters lead directly to estimates of variances in comparisons of

exposure and proneness estimates. The only assumption needed is that the mean

of each model parameter be substantially greater than its standard error. Again,
a failure in these assumptions is not expected to nullify the validity of any
observation of high variances.

The resulting variance estimates are shown in Table B-l. This table shows the

square of the estimated fractional standard error (i.e. it shows the variance

ratio) in the estimates of ej/ej and pj/pj. Thus if R=ej/ej or R=pi/pj then the £ t-'
table shows(CTr^/rY2. For example, the estimate of ps/pi from Table is 1.77. c "^J£-*
Since the i =1, j s 5 entry Table B-l is .216, the estimate of the variance ratio !" *, &*.
of this estimate is .216. When a proportionate standard error is large (nearly 1 V^>_!* M
or even greater than 1) it is sometimes useful to consider it as a standard error cj^Y

t'

so .v^r*



in the logarithm (to the base e) of the estimate. In other words, the estimate is

of <T"for logeR. Crudely, a 95 percent confidence interval on logeR is loge R + 2

Qr/r .

For example,

log (P5/P1) =log (1.77) +2 \f~ZuT
or

.7 ^ P5/P], f 4.5
gives a very crude 95 percent confidence intervaL
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Table B-l Variance Ratios for Exposure
and Proneness Comparison

ij Re

1^ .-

Rp

1,2 .040 .193

1,3 .074
t

.213

1,4 .065 .250

1,5 .076 .216

1,6 .034 .130

2,3 .040 .129

2,4 .029 .138

2,5 .035 .110

2,6 .030 .167

3,4 .053 .158

3,5 .073 .168

3,6 .064 .210

4,5 .056 .167

4,6 .056 .247

5,6 .058

Rp =

Re =

Pi/Pj

ei/ej

.188

ij = 1,6

1 =

2 =

3 =

Male 16-24

Male 25-50

Male 51+

4 = Female 16-24
5 = Female 25-50
6 = Female 51+
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Suppose that Ni vehicles of type i travel ei miles per unit time (this is exposure, ^v /d&ieJL
not speed) uniformly over an entire two-lane roadway system, in both directions.

While on the roadway they travel at speed Vj. Tthe total number of miles of the

roadway lanes is L. Then the number^f expected encounters per unit time
between vehicles of type 1 and type 2 is

1. Njei N2 e2 (1/Vf + 1/V2)/L

if vehicles of type 1 and type 2 are going in opposite directions.

i-r

2. Nt«:, N2e2 / 1/ty - 1A£)/L

if vehicles of(tpe 1 and type 2 are going in the same direction.

3. DNiei N2e2 (1/Vi +1/V2)/L2
vU h J

for encounters at intersections where d/L is the fraction of roadway length
in intersections.

The main question which this appendix seeks to address is whether the number of

encounters can be split into the product of two factors as required by assumption

1 in the derivation of the Basic Koornstra ModeL Clearly these expressions do

not factor in the required manner.

In the aggregate with a combination of same way, different way and crossing
encounters being present, and with realistically each vehicle travelling at various
speeds, it is not clear how seriously the number of encounters fails to factor but

it appears to be potentially serious.

The remainder of this Appendix is devoted to a brief outline of the derivation of

the formulas for the number of encounters.
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/

Each car of type i travels e[ miles per unit time over a system of length L. This
means each car enters the system ei/L times per unit time. The time to

traverse the system is L/Vi. Therefore, the total numberof vehicles of type i in
the system at any time is Ntfei/L) (L/Vi) = Njej/Vi =n\.

The number of vehicles of type 1 per unit length is nf/L.

The number of vehicles of type 1 per unit time encountered by a vehicle of type
2 going in the opposite direction is thus ni(Vi + V2)/L. Therefore, the total
number of encounters between vehicles of type 1 with vehicles of type 2 going in
the opposite direction is (ni/L) (Vi +V2) n2 = Niei N2e2 (1/Vi +1/V2)/L. This
proves the first formula - for encounters of vehicles going in different direction.

The second formula - for encounters going in the opposite direction is derived

similarly. The third formula - for encounters at crossings is derived a little
differently.

Each car of type 1 enters a given intersection ei/L times per unit time. Each
time it enters the intersection, it spends d/Vj units of time in the interstction
(here d is the width of the intersection). The number of vehicles of type 2 which
enter the intersection during this time going in a cross direction is

N2d/Vj) (e2/L). Thus the total number of cross intersection encounters of

vehicles of type 1 with vehicles of type 2 where the vehicle of type 1 enters the
intersection first is (N^i/L) (N2d/Vi) (e2/L) =(Niei N2e2/Vi) (d/L2).

The total number of such encounters where the vehicle of type 2 enters the
intersection first is Njei N2e2/V2 d/L2.

Therefore, the total number of intersection encounter regardless of which enters
first, is (Niei N2e2 (ViV2)) (1/Vi +1/V2) d/L2.

If we sum this up over all intersections, we get
,. JUejJ^2jl/W* l/V2)/ViV2 D/L2
where D=£d is the sum of the width of all the intersections and D/L =f is the
fraction of the roadway in intersections.
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